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Abstract
Bankruptcy prediction is a subject of significant interest to both academics and
practitioners because of its vast economic and societal impact. Academic research in
the field is extensive and diverse; no consensus has formed regarding the superiority
of different prediction methods or predictor variables. Most studies focus on
large companies; small and medium-sized enterprises (SMEs) have received less
attention, mainly due to data unavailability. Despite recent academic advances,
simple statistical models are still favored in practical use, largely due to their
understandability and interpretability.

This study aims to construct a high-performing but user-friendly and interpretable
bankruptcy prediction model for Finnish SMEs using financial statement data from
2008–2010. A literature review is conducted to explore the key aspects of bankruptcy
prediction; the findings are used for designing an empirical study. Five prediction
models are trained on different predictor subsets and training samples, and two
models are chosen for detailed examination based on the findings.

A prediction model using the random forest method, utilizing all available
predictors and the unadjusted training data containing an imbalance of bankrupt
and non-bankrupt firms, is found to perform best. Superior performance compared
to a benchmark model is observed in terms of both key metrics, and the random
forest model is deemed easy to use and interpretable; it is therefore recommended for
practical application. Equity ratio and financial expenses to total assets consistently
rank as the best two predictors for different models; otherwise the findings on
predictor importance are mixed, but mainly in line with the prevalent views in the
related literature.

This study shows that constructing an accurate but practical bankruptcy predic-
tion model is feasible, and serves as a guideline for future scholars and practitioners
seeking to achieve the same. Some further research avenues to follow are recognized
based on empirical findings and the extant literature. In particular, this study
raises an important question regarding the appropriateness of the most commonly
used performance metrics in bankruptcy prediction. Area under the precision-recall
curve (PR AUC), which is widely used in other fields of study, is deemed a suit-
able alternative and is recommended for measuring model performance in future
bankruptcy prediction studies.
Keywords bankruptcy prediction, credit risk, machine learning, SMEs
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Tiivistelmä
Konkurssien ennustaminen on taloudellisten ja yhteiskunnallisten vaikutustensa
vuoksi merkittävä aihe akateemisesta ja käytännöllisestä näkökulmasta. Alan tut-
kimus on laajaa ja monipuolista, eikä konsensusta parhaiden ennustemallien ja
-muuttujien suhteen ole saavutettu. Valtaosa tutkimuksista keskittyy suuryrityksiin;
pienten ja keskisuurten (PK)-yritysten konkurssimallinnus on jäänyt vähemmälle
huomiolle. Akateemisen tutkimuksen viimeaikaisesta kehityksestä huolimatta käy-
tännön sovellukset perustuvat usein yksinkertaisille tilastollisille malleille johtuen
niiden paremmasta ymmärrettävyydestä.

Tässä diplomityössä rakennetaan ennustemalli suomalaisten PK-yritysten kon-
kurssiriskin määritykseen käyttäen tilinpäätösdataa vuosilta 2008–2010. Tavoitteena
on tarkka, mutta käyttäjäystävällinen ja helposti tulkittava malli. Konkurssimallin-
nuksen keskeisiin osa-alueisiin perehdytään kirjallisuuskatsauksessa, jonka pohjalta
suunnitellaan empiirinen tutkimus. Viiden mallinnusmenetelmän suoriutumista
vertaillaan erilaisia opetusaineiston ja ennustemuuttujien osajoukkoja käyttäen, ja
löydösten perusteella kaksi parasta menetelmää otetaan lähempään tarkasteluun.

Satunnaismetsä (random forest) -koneoppimismenetelmää käyttävä, kaikkia saa-
tavilla olevia ennustemuuttujia ja muokkaamatonta, epäsuhtaisesti konkurssi- ja
ei-konkurssitapauksia sisältävää opetusaineistoa hyödyntävä malli toimii parhaiten.
Keskeisten suorituskykymittarien valossa satunnaismetsämalli suoriutuu käytettyä
verrokkia paremmin, ja todetaan helppokäyttöiseksi ja hyvin tulkittavaksi; sitä
suositellaan sovellettavaksi käytäntöön. Omavaraisuusaste ja rahoituskulujen suhde
taseen loppusummaan osoittautuvat johdonmukaisesti parhaiksi ennustemuuttujik-
si eri mallinnusmetodeilla, mutta muilta osin havainnot muuttujien keskinäisestä
paremmuudesta ovat vaihtelevia.

Tämä diplomityö osoittaa, että konkurssiennustemalli voi olla sekä tarkka että
käytännöllinen, ja tarjoaa suuntaviivoja tuleville tutkimuksille. Empiiristen havain-
tojen ja kirjallisuuslöydösten pohjalta esitetään jatkotutkimusehdotuksia. Erityisen
tärkeä huomio on se, että konkurssiennustamisessa tyypillisesti käytettyjen suoritus-
kykymittarien soveltuvuus on kyseenalaista konkurssitapausten harvinaisuudesta
johtuen. Muilla tutkimusaloilla laajasti käytetty tarkkuus-saantikäyrän alle jää-
vä pinta-ala (PR AUC) todetaan soveliaaksi vaihtoehdoksi, ja sitä suositellaan
käytettäväksi konkurssimallien suorituskyvyn mittaukseen.
Avainsanat konkurssien ennustaminen, luottoriski, koneoppiminen, PK-yritykset
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1 Introduction

1.1 Background and research motivation

Corporate bankruptcy and other types of financial failure incur significant costs not
only on the failing company and its stakeholders, but also on the wider business
ecosystem and economy at large (Alaka et al., 2018; Bauweraerts, 2016), and
predicting the occurrence of bankruptcies has long been a prominent topic in
business literature and an integral part of credit risk modeling. The subject
particularly garnered attention in the wake of the 2007–08 financial crisis that
exposed vulnerabilities in financial systems and highlighted the importance of credit
risk management (Florez-Lopez & Ramon-Jeronimo, 2015; Gupta & Chaudhry,
2019).

Despite increased awareness of the costs of bankruptcy and the promising results
achieved with novel techniques in recent literature, most financial institutions still
rely on traditional statistical models (Zhang & Thomas, 2015). As technology is
becoming a more and more integral part of the finance industry, the adoption of
modernized bankruptcy prediction models into practice is both easier and more
necessary than ever. New means of financing, such as crowdfunding and peer-to-
peer lending, have emerged in recent years as viable alternatives to traditional bank
loans, particularly among SMEs (Kgoroeadira et al., 2019; Xiang et al., 2018). As
competition among credit institutions increases, efficient credit risk management,
especially in times of economic instability and crises, is a vital factor in remaining
relevant in the industry.

Small and medium-sized enterprises (SMEs) comprise the vast majority of companies
globally; in the EU, they accounted for 99% of all enterprises in 2015 (Papadopoulos
et al., 2015). SMEs are crucial to the development of national economies as well as
the global economy as a whole (Gupta et al., 2018) and play a particularly vital
role in job creation (de Wit & de Kok, 2014), especially during periods of economic
downturn and overall high unemployment (Moscarini & Postel-Vinay, 2012). The
importance of SMEs has been recognized in the EU, for example through the Small
Business Act (European Commission, 2008). Nonetheless, smaller companies often
have difficulty obtaining credit (Beck et al., 2006), partially because small business
loans are subject to disproportionately high capital requirements under the Basel
III framework (Bams et al., 2019).

Corporate failure prediction studies are mostly focused on large companies (Gordini,
2014), mainly due to the better availability of financial data (Ciampi, 2015) as
well as the possibility of using market-based information where listed companies
are concerned (Filipe et al., 2016). This has impeded the development of SME
bankruptcy prediction literature, even though it is widely recognized that they
should be treated separately from larger firms in credit risk modeling (Altman
et al., 2010; Figini et al., 2017). Improving SME bankruptcy prediction models
would be mutually beneficial: it could help financial institutions reduce their risk
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exposure, and thereby improve SMEs’ financing options through lower risk premia
(Tobback et al., 2017).

Data scarcity is a common issue in bankruptcy prediction: most recent studies
employ data samples of only 400 firms or fewer (Veganzones & Séverin, 2020).
Barboza et al. (2017) note that in many cases the available sample is limited in
other ways in addition to small size, for example to the clients of a specific credit
institution; this may induce bias and distort the results. Additionally, the majority
of literature is focused on a handful of large economies such as the US, China,
South Korea, France, and the UK (see e.g. Alaka et al., 2018).

Despite extensive research, findings on the key determinants of bankruptcy are
largely inconclusive and contradictory; there is strong evidence that the best
predictor variables differ significantly between data samples (Balcaen & Ooghe,
2006), and research also shows notable differences between countries in terms of
the effectiveness of predictor variables and their interactions (Filipe et al., 2016;
Laitinen & Lukason, 2014). Findings concerning a specific population of firms
cannot therefore be assumed to apply to others, and prediction models may not be
accurate outside their original context. To obtain reliable information regarding
the population of interest, targeted study is needed.

The choice of prediction technique is subject to much debate, and numerous alter-
natives have been proposed. While machine learning methods typically outperform
classic statistical models (Ravi Kumar & Ravi, 2007; Veganzones & Séverin, 2020),
there is considered to be a trade-off between predictive performance and model
interpretability (Alaka et al., 2018; Virág & Nyitrai, 2014). The explanatory factors
of bankruptcy are a subject of interest, and therefore "black box" models may be of
limited usefulness. Business practitioners usually prefer easily understandable and
interpretable tools, even at the expense of a slightly higher predictive performance
(Jones et al., 2017; Sun et al., 2014). Despite this, the current trend in academic
literature seems to be towards increasingly complex and technically sophisticated
methods (see e.g. Song & Peng, 2019; Sun et al., 2020; Zhang et al., 2019), while
the practical usability of the prediction model is disregarded.

The main motivation for the research topic of this thesis stems from the fact that
the practice of bankruptcy prediction seems to be lagging far behind the academic
progress of recent years. Few scholars address practical considerations directly, and
therefore it may be difficult to implement a bankruptcy prediction model based on
contemporary literature. By addressing the key aspects of bankruptcy prediction
and forming a cohesive picture of the modeling process from a practical perspective,
this thesis contributes to bridging the gap between business practitioners and
academia. A second notable contribution is related to the issues of small sample
size and focus on certain geographic markets in the extant literature, as well as the
lack of SME-specific research: this thesis addresses the aforementioned concerns by
employing a sample of over 125 000 Finnish SMEs.
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1.2 Objectives and research questions

The primary aim of this thesis is to investigate potential means of improving the
bankruptcy prediction model used by Valuatum Oy (Valuatum), a Finnish provider
of financial analysis software. On a more general level, the goal is to identify the key
aspects in the design and implementation of bankruptcy prediction models, and to
apply them in practice to an empirical study in order to establish an academically
and practically viable model. The prediction model should not only perform well,
but also be interpretable and easy to implement in practice. The first research
question relates to the choice of prediction methods:

Q1: Which bankruptcy prediction techniques provide the best balance of performance
and usability in the context of Finnish SMEs?

A second key area of interest are the data and predictor variables used. This thesis
attempts to find the most relevant accounting-based predictor variables for Finnish
SMEs, and additionally explores how the variables should be chosen and whether
their number should be limited. The second research question is formulated as
follows:

Q2: Which accounting-based predictor variables are the most important for Finnish
SMEs, and how should the variable set be composed?

1.3 Research design and scope

The structure of this thesis is twofold. In the first, theoretical part, a literature
review is conducted to gain insights into the state of the art in bankruptcy prediction
and to explore the design and characteristics of bankruptcy prediction models. This
is followed by an empirical study comparing the performance of different prediction
models. This thesis is exploratory by nature and does not attempt to explain the
causal mechanisms of bankruptcy; no hypotheses are therefore formed.

The literature review provides a brief overview of corporate failure prediction as a
field of academic research and describes the process and key aspects of constructing
a failure prediction model. The use of accounting-based predictor variables is
discussed in depth to form a solid basis for the choice of variables in the empirical
study. Different prediction methods and data preprocessing techniques applied in
previous studies are explored in order to align the design of the empirical study
with the objectives of this thesis.

The empirical part of this thesis consists of a quantitative study comparing the
performance of bankruptcy prediction models, which are designed based on the
findings of the literature review. Different combinations of prediction methods,
data preprocessing techniques and predictor variables are analyzed to find the
best-performing alternatives.

The scope of this thesis in terms of the firm population of interest is limited to
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Finnish SMEs. Existing bankruptcy prediction research on Finnish data is scarce,
and additional findings can be valuable. SMEs are targeted because they are
vital to the economy, but underrepresented in the extant literature; new evidence
is certainly welcomed. Furthermore, access to an extensive financial statement
database provides a unique opportunity for studying SME bankruptcies, as data
unavailability is a common hurdle to conducting new studies; the opportunity must
be capitalized on.

Due to considerations related to the practical applicability of the results of this
thesis, input variables for the empirical study are limited to quantitative variables
calculated using financial statement data. The time scope of the data used for
predictor variables is limited to 2008–2010, and the period for which bankruptcies
are observed is 2011–2012. Because of practical limitations, no attempts are made to
generalize the findings of the empirical study to other populations or time periods.

1.4 Structure of the thesis

The remainder of this thesis is structured as follows. Section 2 reviews academic
literature on bankruptcy prediction and establishes the theoretical background for
the empirical study. The data and variables used in the empirical study are described
in Section 3, and methodological choices are detailed in Section 4. Empirical results
are presented in Section 5, followed by a discussion of the results, recommendations
for Valuatum, and proposals for further research in Section 6.
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2 Literature review

2.1 Overview of corporate failure prediction

Corporate bankruptcies and other types of failure, and particularly predicting their
occurrence, have long been a popular research topic; one of the first known works
was published nearly a century ago by FitzPatrick (1932). The first major steps in
the field were taken in the 1960s, with seminal studies by Beaver (1966) and Altman
(1968) describing statistical methods for predicting bankruptcies based on financial
ratios; most papers in the 60s and 70s built on these methods. New approaches
were later developed, Ohlson’s (1980) proposal of using logistic regression becoming
particularly influential. The statistical methods used by the aforementioned authors
remained the most popular choices in failure prediction until well into the 21st
century (Balcaen & Ooghe, 2006; Dimitras et al., 1996; Veganzones & Séverin,
2020). Progress in information technology and data processing capabilities in the
1990s and 2000s provided new opportunities and led to the introduction of machine
learning methods to failure prediction. Alternatives to accounting-based models
also emerged, most notably market-based models using option pricing theory.

Interest towards bankruptcy prediction has increased in the 21st century. The
changes established to capital requirements by the Basel II framework (BCBS, 2004)
encouraged the development of improved risk models (Agarwal & Taffler, 2008;
Angelini et al., 2008; Kirkos, 2015). The 2007–08 financial crisis is mentioned by
many authors (Gupta & Chaudhry, 2019; Huang & Yen, 2019; Succurro et al., 2019)
as a wake up call that alerted both academics and practitioners to the potentially
catastrophic consequences of bankruptcy. It also revealed shortcomings in bank
regulation and led to the revision of the Basel framework, Basel III (BCBS, 2011),
which further promotes risk management and the development of credit risk models.

In addition to developing novel techniques and applying them in different ways,
failure prediction research has branched into various other directions in search for
more accurate models. While company financial statements and market-based data
remain the most commonly used sources of input variables, various other factors
such as macroeconomic variables and corporate governance indicators have been
introduced.

A separate branch of bankruptcy research focuses on identifying and explaining the
root causes of bankruptcy from a theoretical perspective (see Amankwah-Amoah,
2016, for a summary of relevant research). Corporate failure prediction and the
causal theory of bankruptcy remain mostly disjointed. Some studies concentrate on
the process of firm failure and use it for prediction purposes (du Jardin, 2015, 2017;
Laitinen, 1993), but the failure process is mainly presented in terms of financial
characteristics, and the root causes are not examined. Laitinen & Lukason (2014)
link causes of failure to financial indicators, but do not establish a prediction
model; Ooghe & De Prijcker (2008) present a typology of failure processes and
the corresponding developments in financial ratios, but provide no quantitative
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evidence. In general, the connection between bankruptcy theory and empirical
failure prediction research seems tenuous at best.

The definition and boundaries of what corporate failure prediction is are somewhat
indistinct. While some studies focus strictly on predicting bankruptcies, others
use the same methodologies for assessing the default risk of corporate loans. The
related subjects of credit risk and credit scoring further add to the confusion, as
they are used in both corporate and consumer contexts. The explicit meaning of
’corporate failure’ is also challenging due to varying legal definitions, as well as
the use of non-legally based ones; this subject is discussed further in the following
section. The issue of nomenclature and defining the field of study are seldom
addressed in the literature, and many authors discuss corporate and consumer
credit risk jointly without making a clear distinction between the two (see e.g. Li
et al., 2016; Nanni & Lumini, 2009); however, due to the obvious similarities and
empirical evidence of the same methodologies performing well in both contexts, this
approach may be considered justified. In addition, due to its lack of connection to
empirical research, bankruptcy theory provides no compelling argument in favor of
making sharp distinctions between corporate and consumer credit risk in empirical
studies.

2.2 Definition of corporate failure

Literature on corporate failure prediction has approached the subject from various
perspectives, and no universally accepted definition exists for what constitutes
corporate failure (Veganzones & Séverin, 2020). Juridical definitions such as
bankruptcy are commonly used as a measure of failure, while some studies employ
varying interpretations of "financial distress" or other similar concepts (Balcaen &
Ooghe, 2006). Due to the lack of an explicit definition, corporate failure prediction
largely overlaps with default prediction literature, where the main focus is on
forecasting loan defaults rather than only outright business failures.

Many authors use the different terms almost interchangeably and directly draw
on bankruptcy prediction literature for the purposes of credit risk modeling (e.g.
Petropoulos et al., 2016; Sigrist & Hirnschall, 2019); as Platt & Platt (2002) note,
most prediction models rely on bankruptcy data, even if the object of prediction
is defined as something else. Additionally, consumer credit risk is in some studies
addressed in conjunction with corporate failure and default modeling (Lin et al.,
2012b; Nanni & Lumini, 2009), although the main focus in these studies is on the
technical aspects of prediction models. Regardless of the specific definition used,
failure is predominantly modelled as a binary variable that divides firms into failed
and non-failed populations (Veganzones & Séverin, 2020; Yu et al., 2014).

In the modern literature, bankruptcy is the prevalent measure of corporate failure.
Compared to other measures, it offers an unambiguous indication of failure and
provides a clear dichotomy between failed and non-failed companies (Veganzones
& Séverin, 2020). Due to its nature as an explicitly defined legal process, the
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occurrence of bankruptcy can be determined precisely and is an objective measure
for the time of failure (Balcaen & Ooghe, 2006). Additionally, bankruptcy data is
usually easily obtainable (Platt & Platt, 2002).

There are also particular problems related to bankruptcy as a measure of failure.
Hill et al. (1996) note the some bankruptcies occur suddenly, with no prior signs
of financial trouble; research on the causes of bankruptcy supports this notion by
showing that unexpected environmental jolts such as natural disasters may be a
contributing factor (Amankwah-Amoah, 2016). Such outliers to the typical failure
process complicate modeling and can deteriorate predictive performance. Moreover,
classifying firms by bankruptcy disregards other types of legal proceedings through
which a failed firm can be terminated (Balcaen & Ooghe, 2006). The legal process
of bankruptcy can be lengthy, and companies may encounter severe, irremediable
financial problems long before bankruptcy is declared (Pompe & Bilderbeek, 2000;
Theodossiou, 1993). Bankruptcy proceedings are specific to the prevailing legal
framework, and therefore the resulting models may not be generalizable across
countries. Finally, it should be noted that bankruptcy does not necessarily mean
failure: Gupta & Chaudhry (2019) argue that filing for bankruptcy can, in some
situations, be an attempt to gain strategic advantage.

As opposed to bankruptcy, definitions of financial distress vary greatly between
studies and application contexts, from temporary cash flow problems to liquidation
(Sun et al., 2014). Some studies make use of indicators that combine several distress
factors such as loan defaults, filed bankruptcies and other types of insolvency
proceedings (Filipe et al., 2016; Li et al., 2016). Financial ratios are also used,
typically with predefined rules or thresholds that establish the failed/non-failed
status of the studied companies (Lin et al., 2012a; Molina & Preve, 2012). Defining
failure through financial distress rather than bankruptcy can thus allow constructing
a model that is better suited to its context and requirements. Lin et al. (2012a) also
suggest that extending the definition of failure to cover more than officially declared
bankruptcies can help avoid data scarcity issues related to the small number of
bankruptcies in real-world data. However, Veganzones & Séverin (2020) assert
that using arbitrary subjective definitions easily leads to biased results, and that
bankruptcy is therefore the preferred definition for corporate failure prediction
models.

2.3 Accounting-based predictor variables

2.3.1 Main advantages and drawbacks

Throughout the history of corporate failure prediction, financial statement data
have been the most common source of explanatory variables (Acosta-González et al.,
2019; Succurro et al., 2019). Many of the pioneering works such as Beaver (1966),
Altman (1968) and Ohlson (1980) rely entirely on financial ratios, and in modern
research they are still the most widely used category of predictors (Veganzones &
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Séverin, 2020). Even when alternative explanatory variables are used, they are
typically applied in conjunction with accounting-based variables (Calabrese et al.,
2019; Ciampi, 2015; Tobback et al., 2017).

Accounting-based variables are popular in failure prediction, because they offer a
relatively objective, quantitative measure of a company’s performance and financial
status (Balcaen & Ooghe, 2006). The concept of bankruptcy is based on the
inability to pay outstanding debts, and thus directly connected to financial statement
variables (du Jardin, 2015), whereas links between bankruptcy and alternative
predictors such as corporate governance indicators are more ambiguous and difficult
to identify. Additionally, accounting-based ratios typically serve as the basis of
debt covenant conditions, and can therefore contain information that reflects a
company’s credit risk (Agarwal & Taffler, 2008; Hillegeist et al., 2004).

Accessibility and reliability are also important arguments in favor of accounting-
based variables: companies’ financial statements are usually the most readily
available type of information, especially for smaller, unlisted companies (Zoričák
et al., 2020). Global standardization efforts further promote the availability, trans-
parency and reliability of accounting data. Adoption of the eXtensible Business
Reporting Language (XBRL) standard for digital financial reporting has been
found to reduce account manipulation through earnings management practices
(Kim et al., 2019) and decrease information asymmetry in the stock market (Yoon
et al., 2011); additionally, financial statement data from several countries have been
made publicly available in the XBRL format (XBRL International, 2020). The
International Financial Reporting Standards (IFRS) promote the comparability of
financial statements internationally, thus aiding the development of more widely
generalizable failure prediction models.

The predictive capacity of accounting-based explanatory variables is indisputable
and has been demonstrated in a multitude of studies throughout the history of
corporate failure prediction. Many of the financial ratios proposed as determinants
of failure by early scholars are still used today, and their predictive power remains
significant; this robustness is also evidenced by Beaver et al. (2005), who find
that an accounting-based model retains its predictive ability with only a minor
performance decline over the period 1962–2002.

Despite its many benefits, the use of accounting data in corporate failure prediction
is not without its complications. Zavgren (1985) and Zmijewski (1984) argue that
financial information alone is not sufficient for predicting failure; Hillegeist et al.
(2004) point out that financial statements are made on a going-concern basis and
are therefore inadequate for failure prediction by design, and demonstrate that
a model using market information is superior to accounting-based models. The
notion of accounting data being insufficient is supported by empirical evidence: for
example, Jones (2017) finds that in a model combining several different categories
of predictors, the relative importance of financial ratios is lower than that of various
others, such as ownership structure and market-based information. Lukason &
Laitinen (2019) find that the duration of the firm failure process is often quite short,
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particularly for SMEs: even the latest financial statement may not sufficiently reflect
the impending failure, which makes bankruptcy prediction extremely difficult.

Accounting data are often assumed to constitute a reliable and accurate indicator
of a company’s overall financial status. However, financial statements can be
manipulated in diverse ways to distort this perception (du Jardin et al., 2019;
Serrano-Cinca et al., 2019). While there are varying motivations for misrepresenting
accounting figures, firms in financial distress may be particularly inclined to do so,
for example in order to avoid covenant violations (DeFond & Jiambalvo, 1994). On
a related note, Lukason & Camacho-Miñano (2019) find that firms encountering
financial distress are more likely to delay the publication of their financial statements,
which further indicates that the problems companies face may not be observable
from their accounting figures. Furthermore, in many jurisdictions, only large
companies are obligated to publish their financial statements (Balcaen & Ooghe,
2006). Data for smaller firms can be difficult to obtain, more likely to contain
errors and misrepresentation, and their correctness is difficult to verify.

Due to the lack of connection with bankruptcy theory and the causes of failure,
most empirical studies simply pick predictor variables based on the results of
previous research, largely ignoring the theoretical underpinnings (Ooghe & De
Prijcker, 2008). On the other hand, Kirkos (2015) notes that failure prediction
studies rarely try to extract meaningful findings from the observed effects of specific
predictor variables. The possible internal and external factors leading a company
to bankruptcy are numerous (Amankwah-Amoah, 2016), and financial statement
variables seem unable to capture them efficiently.

Various alternative predictors have been introduced to counter the shortcomings
of financial data. Some commonly used examples include market-based variables,
macroeconomic data and firm characteristics such as ownership and management
structures. There is ample empirical evidence of the predictive power of non-
financial variables (see e.g. Andrikopoulos & Khorasgani, 2018; Jones, 2017; Liang
et al., 2016). Recent studies have explored such factors as relationships between
management-level personnel (Tobback et al., 2017), spatial dependence (Calabrese
et al., 2019), and textual information extracted from annual reports (Lohmann
& Ohliger, 2020; Wang et al., 2018); research on alternative predictors is diverse
and growing in popularity. However, the subject is outside the scope of this thesis
and will therefore not be discussed in detail; the following section focuses solely on
accounting-based predictors.

2.3.2 Key predictor categories

Despite significant variation in the specific variables and their combinations, failure
prediction studies using financial statement data typically employ predictors mea-
suring similar key aspects of a company’s financial situation, such as profitability,
solvency and liquidity, capital structure, and activity (Balcaen & Ooghe, 2006;
Dimitras et al., 1996; Ravi Kumar & Ravi, 2007). The vast majority of accounting-
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based predictors are financial ratios; unscaled variables are dependent on company
size, whereas ratios can be used to compare different-sized firms. However, Beaver
(1968) notes that ratios can mask the effects of individual financial characteristics
due to offsetting effects of their components, and Balcaen & Ooghe (2006) further
assert that a similar effect can occur with detailed ratios within a more general
one. For example, a seemingly normal level of working capital could hide a massive
surplus inventory and cash shortage. Therefore, a sufficient level of specificity must
be used in defining ratios for failure prediction.

The specific types of variables found to be most important vary between studies.
For example, Liang et al. (2016) propose solvency and profitability as the key
categories while Lin et al. (2012a) mention profitability, growth and employee
efficiency as the best predictors; Gupta et al. (2014) find that ratios based on
operating cash flow do not add to the performance of their model, while Jones et al.
(2017) list multiple cash flow ratios among the most effective predictors. These types
of findings corroborate that, as has long been suggested, the impact of different
financial ratios is highly sample-specific (Bauweraerts, 2016; Edmister, 1972). It
should also be noted that the categories of predictors are not precisely defined:
there is significant overlap between them, and interpretations and terminology vary
between studies. In general, no consensus has formed over the decades of research,
and knowing which variables to use in a prediction model can be difficult (Yu et al.,
2014).

Recent studies have shed some light on the possible reasons behind the conflicting
findings. Laitinen & Lukason (2014) find that the explanatory factors of failure
vary between Finnish and Estonian companies, and Filipe et al. (2016) similarly
note regional differences in a study covering eight European countries. Firm size is
also a significant factor: (Gupta et al., 2015) show that the process and predictors
of failure vary between medium-sized, small, and micro companies. The numerous
non-financial determinants of bankruptcy cannot be captured by accounting data,
and therefore complicate the interpretation of the effects of specific financial ratios.

Profitability
The significance of profitability in failure prediction is perhaps self-evident; a
company that does not generate positive returns is bound to fail sooner or later.
Lukason & Laitinen (2019) demonstrate that capturing the different types of firm
failure processes requires that both annual and cumulative profit measures are used,
and additionally suggest that changes in profitability should be incorporated in
prediction models. One advantage of cumulative profitability indicators such as
retained earnings is that they implicitly incorporate the company’s age (Altman,
1968), a factor which is known to affect risk of insolvency.

How profitability impacts the failure probability of a company depends on numerous
external and internal factors. According to Andreeva et al. (2016), profitability
is among the key predictors in most studies concerning SMEs, and Lukason &
Laitinen (2018) find that profitability plays a larger role in the failure probability
of exporting firms than that of non-exporting firms. Lohmann & Ohliger (2019b)
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discover that extremely low or high levels of profitability are more likely to indicate
risk of failure for young companies than for mature ones. A potential explanation
could be that newly established firms are less stable than mature ones and have
no accumulated excess funds, and may therefore be more vulnerable to major
short-term losses; the link between high profitability and probability of failure could
be explained by high-growth startups that intentionally pursue a risky strategy.

Solvency and liquidity
Solvency, i.e. a company’s ability to reimburse its outstanding debts, is a commonly
used measure in failure prediction. A distinction is commonly made between
overall solvency and short-term solvency, which is typically referred to as liquidity.
From a conceptual standpoint, bankruptcy and most related definitions of financial
distress essentially mean a company’s inability to meet its financial obligations,
and therefore financial indicators measuring solvency can be considered naturally
suitable for failure prediction (du Jardin, 2015). Solvency and liquidity are among
the most common predictors used in failure prediction (Serrano-Cinca et al., 2019),
and their usefulness is substantiated by empirical evidence (Bauweraerts, 2016;
Dimitras et al., 1996; Liang et al., 2016).

Traditional measures of liquidity include the current ratio (current assets to current
liabilities) and quick ratio (current assets less inventories to current liabilities).
These measures have been criticized for being static in nature; they measure a
company’s ability to repay its existing debts at a given moment using its existing
assets, but do not take the company’s ongoing operations into account (Yli-Olli
& Virtanen, 1989). Shulman & Cox (1985) note that the traditional static ratios
are primarily interesting from a liquidation perspective, and propose an integrative
approach that incorporates operating liquidity to provide more relevant information
from a going concern viewpoint; they argue that increases in inventory or receivables
(both of which improve current and quick ratios) can signal a shortage of cash rather
than improved liquidity. In failure prediction, the essential question is whether
a company is able to continue its operations, and therefore the going concern
perspective can be considered more suitable. Altman (1968) suggests that the ratio
of working capital to total assets is a better predictor of bankruptcy than current
or quick ratio; this seems to validate Shulman’s view that operational requirements
should be taken into consideration, but could also be because popular ratios are
more likely to be subject to manipulation in an attempt to convey a falsely positive
picture of the company’s health (Beaver, 1968). Altman et al. (2010) reiterate
the importance of working capital in failure prediction, and point out that it is
especially effective with SMEs, which typically rely more on trade credit than bank
loans.

Despite taking operations into account, the aforementioned liquidity indicators are
solely based on balance sheet figures; alternative measures have been suggested to
address the operational aspect more directly. The defensive interval (Davidson et al.,
1964), which measures quick assets in relation to (projected) operating expenses is
used for failure prediction by Beaver (1966), while Laitinen (1993) employs dynamic
measures of liquidity and solvency based on cash flow. Contemporary studies
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seldom address the issue explicitly, but most nonetheless include dynamic liquidity
and solvency indicators alongside static ones; it seems that their importance in
failure prediction is widely accepted.

Capital structure
The capital structure of companies is a major area of interest in the field of corporate
finance and has given rise to an extensive body of research. One of the key subjects
of interest is the relative proportion of debt financing (leverage). The seminal work
of Modigliani & Miller (1958, 1963) indicates that using debt financing instead
of equity provides an advantageous tax shield, thereby implying that debt must
entail adverse effects that offset the benefits; the (expected) costs of financial
distress and bankruptcy are cited as one such factor. To assess this notion, Molina
(2005) studies the effects of leverage and finds that higher leverage has a significant
negative impact on credit ratings, indicating a higher risk of failure.

While the impact of leverage on failure risk is substantial, the structure of a firm’s
assets may also have some bearing on its probability of bankruptcy. Tangible
assets can be used as collateral for financing, and are informationally transparent;
therefore, they impact financially distressed companies’ ability to obtain additional
funds and thus increase their chance of survival (Keasey et al., 2015). On the other
hand, Jones (2011) finds that higher capitalization of intangible assets is connected
to a higher risk of bankruptcy.

Ample empirical evidence can be found in bankruptcy prediction literature to
confirm the predictive ability of capital structure ratios (Beaver et al., 2005; Char-
alambakis & Garrett, 2019; Jones et al., 2017; Lukason & Laitinen, 2018; Succurro
et al., 2019). Firms typically have target leverage ratios towards which they adjust
(Mari & Marra, 2019); Löffler & Maurer (2011) use this phenomenon to forecast
companies’ future leverage ratios and find that these forecasts are useful bankruptcy
predictors.

Activity
Activity ratios measure how efficiently a company utilizes its assets, thus providing
a view of the soundness of its operations. Activity has been recognized as a key
category in ratio analysis for a long time, and included in the early failure prediction
models (Altman, 1968; Beaver, 1966). Typical examples of activity metrics include
turnover ratios (De Bock, 2017; Liang et al., 2016; Wang & Ma, 2011) and measures
of employee efficiency (Lin et al., 2012a; Volkov et al., 2017). Empirically, the
usefulness of activity ratios as bankruptcy predictors has been demonstrated on
many occasions (e.g. Charitou et al., 2004; Liang et al., 2016; Zoričák et al., 2020);
Pompe & Bilderbeek (2005) show that activity ratios can have predictive power as
long as five years before company failure.

Company characteristics
While not actually financial ratios, various background data about company charac-
teristics are typically available together with financial statements, and are commonly
used in accounting-based failure prediction models. Company age is one factor that
has been found significant: in general, young firms tend to have a higher risk of
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failure than older ones (Altman et al., 2017; Bauweraerts, 2016). However, Hender-
son (1999) contrarily suggests that older firms may in some cases be more likely to
fail due to becoming obsolete. Additionally, Lohmann & Ohliger (2019b) find that
the relationships between accounting-based predictor variables and probability of
failure are different for young and mature firms.

Company size has also been shown to affect corporate failure risk (El Kalak &
Hudson, 2016; Gordini, 2014; Ohlson, 1980), and is often used as a predictor in
bankruptcy prediction. The most common proxies used for company size are total
sales and total assets; both are directly available in the financial statement and
therefore easy to incorporate into a prediction model. The specific characteristics
of a firm’s industry also have a major impact on the probability and determinants
of failure (Charitou et al., 2004; Hu & Ansell, 2007; Lohmann & Ohliger, 2019a;
Platt & Platt, 1990). Some studies therefore limit the examined firms to a specific
industry, for example manufacturing (Altman, 1968; Kuběnka & Myšková, 2019;
Shin & Lee, 2002), or exclude some, such as financial companies (Agarwal & Taffler,
2008; Jackson & Wood, 2013; Liang et al., 2016).

Growth/change variables
The nature of business failure as a process occurring over time, instead of a sudden
event, has been understood for a long time. However, according to Argenti (1976)
the duration of the bankruptcy process is commonly underestimated. Dimitras
et al. (1996) discover in their literature review that most studies from the 1960s
to 1990s disregard the time dimension of bankruptcy, although some exceptions
(e.g. Laitinen, 1991, 1993; Theodossiou, 1993) can be found. In modern literature,
the temporal aspect of failure has been discussed somewhat more frequently, with
focus on both predictor variables and modeling techniques.

A common approach to incorporating the time dimension through predictor variables
is to use data from multiple periods preceding the failure, either by including
variables measuring the change in various financial characteristics, or by creating a
multi-period model (du Jardin, 2015). The effectiveness of annual growth variables
as failure predictors has been demonstrated empirically (Jones et al., 2017; Lin
et al., 2012a). Nyitrai (2019) proposes an indicator variable that assesses whether
a financial ratio’s value is smaller than, greater than, or within the range of its
values in previous years, and finds that it has significant predictive power.

2.3.3 Predictor variable selection

In corporate failure prediction, the choice of predictor variables is one of the key
choices that affect the performance of the model. The typical approach in the
literature has been to begin with a large initial set of variables assembled more or
less arbitrarily based on prior research, from which the predictors are chosen based
on different statistical or empirical criteria (Balcaen & Ooghe, 2006). This practice
is still common in contemporary research, but many authors also disregard the latter
step and simply use a selection of predictors picked from earlier literature (Barboza
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et al., 2017; Charalambakis & Garrett, 2019) or apply arbitrary selection criteria
(Lohmann & Ohliger, 2019b; Zoričák et al., 2020). Some studies use pre-existing
data sets and are simply constrained to whichever features the data happen to
contain (Le et al., 2019; Tsai & Cheng, 2012). Regardless of the chosen approach,
the final set of predictors in most studies contains at least variables corresponding
to the previously discussed key categories of profitability, solvency/liquidity, capital
structure, and activity.

Apart from variable selection based on prior research alone, the two main approaches
are filter and wrapper methods; additionally, some prediction methods have built-in
mechanisms to perform feature selection in the process of training the model (Li
& Sun, 2011). Filter methods evaluate the general characteristics of the data
to find the best subset of variables, typically using statistical measures such as
mutual information or the χ2 statistic (Zhang et al., 2019). Wrapper methods
train a specific model using different subsets of features and compare predictive
performance to find the optimal set of predictors (Kohavi & John, 1997). Filter
methods are efficient and scalable, and can help avoid overfitting; moreover, a
generic selection of "best" variables can be more useful than one optimized for
a particular algorithm (Guyon & Elisseeff, 2003). Wrapper methods typically
produce high performance, but the selection of best features is not generalizable
to other classification methods (Peng et al., 2005). They are also computationally
very demanding, especially if the initial feature set is large, and can easily cause
overfitting (Lin et al., 2014). The performance of different methods varies; du Jardin
(2017) argues that filters are useful with statistical methods, but machine learning
techniques work better with wrapper methods.

An alternative to selecting a subset of features is feature extraction, in which the
predictor variables are mapped to a lower-dimensional space, creating new features
as linear or nonlinear combinations of the original ones (Bennasar et al., 2015).
A variety of both linear and nonlinear feature extraction techniques have been
successfully applied in bankruptcy prediction (Verikas et al., 2010), but they are
generally used less often than feature selection (Alaka et al., 2018). One potential
explanation for this is interpretability: the effects of the original predictor variables
are difficult to decipher from the extracted features (Zoričák et al., 2020), whereas
feature selection keeps the original financial ratios intact.

As with many other aspects of corporate failure prediction, the findings regarding
different feature selection methods are inconclusive. In two studies that both
use neural networks, Tsai (2009) compares different filter and feature extraction
methods and finds that filtering by t-test gives the best results, while du Jardin
(2010) shows that wrapper selection outperforms filter methods; the superiority
of wrapper methods is supported by the findings of Lin & Lu (2019). Lin et al.
(2014) design a new wrapper algorithm and find that its selected subset of features
yields better performance than literature-based and filter selection alternatives.
Wrapper methods seem to perform well in most contexts, but are not categorically
superior to filter methods: for example, Liang et al. (2015) compare two wrapper
and three filter methods with six different classifier algorithms and find that filter
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methods perform better with some classifiers and datasets, while losing out to
wrapper methods with others.

As the impact of individual variables to failure prediction models is likely to be
sample-specific (Edmister, 1972; Zavgren, 1985), the exclusively literature-based
approach to feature selection can be considered somewhat problematic. Selecting a
large, diversified set of predictors could help ensure that the most important variables
are included. On the other hand, Veganzones & Séverin (2020) note that this results
in the inclusion of irrelevant and redundant variables, which may decrease model
performance, and conclude that multiple variable selection techniques should be
applied to discover the most essential predictors. An alternative view is presented
by Jones (2017), who shows that bankruptcy can be predicted accurately in a
high-dimensional setting, i.e. using a large number of predictors, and that feature
selection is not necessary.

2.4 Sample selection and data preprocessing

In the context of corporate failure prediction, real-world populations of firms
typically consist overwhelmingly of non-failed companies, with failed companies
representing only a small fraction of the total sample (Fan et al., 2018; Sueyoshi
& Goto, 2009). Classification methods are typically designed to maximize the
overall prediction accuracy (number of correct predictions divided by total number
of predicted instances) without regard to class distribution; if the number of
observations in one class is considerably larger than in the other, the model will
focus on accurately predicting the majority class while disregarding the minority
class (Kim et al., 2015; López et al., 2013). The presence of class imbalance can
therefore impair the classifier’s ability to correctly detect failed companies (Sun
et al., 2020); Veganzones & Séverin (2018) find that an imbalance greater than
1:4 significantly weakens failure prediction performance. The small number of
bankruptcies in the data is a major challenge in predicting business failure, since it
leads to frequent misclassification of failing companies as healthy, which is much
more costly than falsely predicting that a healthy company will become insolvent
(Modina & Pietrovito, 2014).

Class imbalance issues are typically tackled either by using a classifier algorithm
designed to take the imbalance into account, or by preprocessing the data to adjust
the class distribution prior to training the classifier (López et al., 2013). Both of
these approaches are frequently seen in failure prediction literature. Chen et al.
(2011), Kim et al. (2015), and Xiao et al. (2012) use algorithmic modifications
to mitigate the effects of imbalance; Faris et al. (2020) and Zhou (2013) employ
sampling techniques to balance the data prior to training, and Sun et al. (2018)
find that a learning ensemble using varied sampling rates is efficient in combatting
the imbalance problem. Due to the rarity of bankruptcies, removing non-bankrupt
firm observations (undersampling) can deplete the data severely, and therefore
oversampling methods such as synthetic minority oversampling technique (SMOTE)
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(Chawla et al., 2002), which create additional instances of the minority class
to balance the data, are more popular. In some studies, the small number of
bankruptcies has been utilized by framing the task as anomaly detection instead
of the typical binary classification (Fan et al., 2018; Zoričák et al., 2020). These
studies use unsupervised learning, in which the algorithm searches for outliers
based on feature values only, without knowing the class (failed or non-failed) of the
observations.

Despite the naturally occurring class imbalance in real-life bankruptcy data, most
studies use a sample that has an equal number of failed and non-failed firms at
the outset (Alaka et al., 2018; Gruszczyński, 2019). While this approach may
seemingly alleviate the class imbalance problem, Zmijewski (1984) shows that
it produces distorted prediction results: the model’s ability to correctly classify
bankrupt firms is overestimated. When the test sample distribution of failed and
non-failed firms changes from 1:1 to a more realistic level (1:20 in Zmijewski’s
paper), the misclassification rate of failed firms grows drastically. Du Jardin (2015)
observes that balancing the data leads to better detection of bankrupt firms and
may not be an issue in classification tasks, but also notes that it produces unreliable
probability estimates. Veganzones & Séverin (2020) conclude that balanced samples
are preferable due to yielding better performance. Regardless of the balance or
imbalance in the training data, Zmijewski’s (1984) findings show that reporting
the results truthfully requires a test sample that reflects the proportions of failed
and non-failed firms in real-world populations.

Depending on the variables used and the companies studied, the range of values in
the data can vary widely. Some prediction methods, for example neural networks,
require that the feature values are in the same range (Angelini et al., 2008). A typical
approach to this is min-max scaling, i.e. applying a monotonic transformation that
limits the values to a given range, [0, 1] being the most common choice (Bao et al.,
2019; Liang et al., 2018).

The distributions of many financial variables used in bankruptcy prediction also
tend to be highly skewed, i.e. not normally distributed (Jones et al., 2015; Laitinen
& Lukason, 2014; Nyitrai & Virág, 2019). Most statistical prediction methods
assume normality (Jones et al., 2017), but many machine learning methods are also
known to achieve better accuracy if predictors are normally distributed (Son et al.,
2019). This issue can be tackled by transforming the data; the Box-Cox family
of power transformations (Box & Cox, 1964) are a popular choice. Jones et al.
(2015, 2017) demonstrate that variable transformation improves the predictive
performance of many failure prediction models.

Financial data typically contain outlier values that significantly deviate from the
rest of the observations. Outlier values can considerably influence prediction models
(Hu & Ansell, 2007; Shumway, 2001), and therefore most studies aim to eliminate
their effects. A common technique for processing outliers is winsorization (Boritz &
Kennedy, 1995; Lukason & Laitinen, 2018; Serrano-Cinca et al., 2019), which sets
all outlier values to a limit value, which is usually defined as a specific percentile
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of the data. Various alternative methods exist, some of which are more or less
arbitrary and subjective (see e.g. Molina, 2005). To take the high dimensionality
of financial data into account, techniques such as the local outlier factor (Breuniq
et al., 2000) have been used (Figini et al., 2017).

Most failure prediction studies appear to consider outlier processing a part of
the standard modeling procedure, and do not specifically examine its effects on
predictive performance. The general assumption is that it improves the model;
however, (Yu et al., 2014) find empirically that outlier values of certain predictor
variables are mostly observed with bankrupt companies, implying that they carry
a notable amount of information and should not be removed or modified. Zoričák
et al. (2020) also note that outliers occur naturally in financial data, and therefore a
bankruptcy prediction model must be able to handle them similarly to non-outliers.
It does seem reasonable to assume that a connection exists between outliers and firm
failure: such characteristics as abnormally low profitability can certainly be seen as
indicators of poor performance and failure risk. Still, outlier processing does not
necessarily impede the ability to detect failing firms: for example, Pawełek (2019)
winsorizes outliers from the non-bankrupt class only and finds that it improves
predictive performance.

Missing predictor values are a common issue in all fields of business research,
and especially prevalent in corporate failure prediction (Jones et al., 2017). The
information in financial statements is often incomplete; this is particularly true for
SMEs, since they are usually subject to less strict accounting-related regulations
than larger companies (Andreeva et al., 2016; Ciampi & Gordini, 2013; Zhou &
Lai, 2017). Typically, methods for handling missing data require that whether a
datum is missing does not depend on its (unobserved) value: the data should be
missing either independently of any observed or missing data (missing completely
at random, MCAR) or potentially depending on some observed values but not on
the missing values themselves (missing at random, MAR) (Hastie et al., 2009).
However, in failure prediction this is often not the case; for example, companies
that perform poorly and have a high risk of bankruptcy are more likely to delay the
reporting of annual accounts than healthy companies (Lukason & Camacho-Miñano,
2019).

The most common approach to missing values in failure prediction and other
fields of research is casewise deletion (Jones et al., 2017), which consists of simply
discarding observations with missing feature values. A major issue with casewise
deletion, especially in failure prediction, is that it may lead to significant depletion
of the training data and introduce bias if data are not MCAR, which is seldom the
case with accounting data (Acosta-González & Fernández-Rodríguez, 2014). An
alternative to casewise deletion is missing value imputation, which replaces the
missing values according to some predefined rule. Techniques range from simply
using the mean or median of the feature, to sophisticated algorithmic approaches
(Xia et al., 2017). Despite the prevalence and implications of missing data in failure
prediction, most studies do not address the issue at all or only note it in passing.
For example, García et al. (2019, p.90) merely mention that "an imputation method
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integrated into the ensemble model was used to handle missing data" and do not
discuss the subject otherwise.

The effectiveness of different methods of handling missing data in failure prediction
remains somewhat unclear. Florez-Lopez (2010) finds that casewise deletion and
simple substitution perform worse than more sophisticated techniques, and Zhou &
Lai (2017) show that imputation improves performance compared to non-imputed
data. On the other hand, Jones et al. (2017) indicate that imputation using
singular value decomposition does not improve the performance of most prediction
methods when compared to casewise deletion. It can be reasonably assumed that
the amount and patterns of missing data vary considerably between data sets due
to a variety of reasons, from legal and accounting factors to different data handling
and storage technologies used by data providers. As with many other aspects of
failure prediction, there are no definitive answers as to how missing data should
be addressed. Observations with missing values are unreliable, and may distort
prediction results; on the other hand, removing or imputing the missing values can
have the same effect, because the data are often not missing at random.

2.5 Prediction methods

The prediction method used plays a key role in the design of a failure prediction
model and has a major impact on its performance. The context and objectives
of a study are central to the choice of modeling approach; for example, assessing
the effects of specific predictor variables may require tools that are not optimal
when the aim is simply to achieve maximal predictive performance. The commonly
used methods can be roughly categorized into traditional statistical methods and
machine learning or artificial intelligence-based methods.

2.5.1 Statistical methods

Failure prediction literature up until the 1990s was dominated by statistical methods,
the foremost of which in early literature was multiple discriminant analysis (MDA).
Although a quadratic variant is applied by some authors, most studies use a linear
MDA model. Terminology in the literature varies; some papers refer to these as
linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA).
The basic principle of MDA is to find the linear (or non-linear in the case of
quadratic MDA) combination of a given set of variables that best discriminates
between distinct, mutually exclusive groups (failed and non-failed firms) (Altman,
1968; Deakin, 1972). MDA first rose to prominence with Altman’s (1968) Z-score
model, which engendered a large number of further studies using a similar approach
(Balcaen & Ooghe, 2006). MDA is subject to restrictive assumptions regarding the
characteristics of the data used, namely multivariate normality of predictor variables,
equal covariance matrices across the bankrupt and non-bankrupt firms, and specified
misclassification costs and prior probabilities (Karels & Prakash, 1987); however,
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many studies fail to ascertain that the assumptions are not violated, and as a
result the MDA method is often applied incorrectly and produces non-generalizable
results (Joy & Tollefson, 1975; Zavgren, 1985).

The use of MDA in corporate failure prediction decreased in the 1980s (Dimitras
et al., 1996), in large part due to the increasing popularity of the logistic regression
(logit) method. Logit was first applied to failure prediction by Ohlson (1980), who
argued that it avoids both the restrictive data assumptions and the arbitrariness of
the procedure of matching failed and non-failed firms that is typical to studies using
MDA. Despite these advantages, logit also suffers from certain limitations, such
as sensitivity to the input variables’ multicollinearity and extreme non-normality
(Chou et al., 2017; Nyitrai & Virág, 2019).

Various modifications and improvements to basic logistic regression have been
proposed in failure prediction literature, such as multinomial logit (Johnsen &
Melicher, 1994), mixed logit (Jones & Hensher, 2004) and quadratic interval
logit (Tseng & Lin, 2005). The logit method remains prominent in contemporary
literature and is used in various contexts. Lukason & Laitinen (2018) assess the
importance of different financial predictors for exporting and non-exporting firms
using logit models. Li et al. (2016) propose a hybrid approach using a combination
of logistic regression and machine learning. A stepwise logit model has also been
applied for selecting the most useful predictor variables (Bauweraerts, 2016; Modina
& Pietrovito, 2014).

In addition to reliance on assumptions about the data, statistical methods have
a major drawback in that they typically assume a specific relationship between
predictors and dependent variable (firm failure), and are therefore unable to model
the complex nonlinear dependencies occurring in the data (Balcaen & Ooghe, 2006).
Although evidence is not completely unanimous (Laitinen & Kankaanpää, 1999;
Pompe & Bilderbeek, 2000), statistical methods are, due to the aforementioned
deficiencies, typically outperformed by the alternatives presented in modern studies
(Veganzones & Séverin, 2020).

Despite the emergence of novel prediction techniques in the last decades, traditional
statistical methods such as logit and MDA maintain a strong position in academic
research to this day (Giriūniene et al., 2019; Jones et al., 2015). They also remain
widely used by practitioners: for example, Zhang & Thomas (2015) claim that as
much as 95% of credit scorecards used by banks are based on logistic regression.
Bemš et al. (2015) suggest that the popularity of the logit model among practitioners
is to some extent due to being recommended in the Basel II framework (BCBS,
2004). Moreover, logit and other statistical methods are generally easy to interpret
and can help in understanding which factors have the greatest impact on bankruptcy
risk (Jones et al., 2015; Veganzones & Séverin, 2020). Furthermore, factors such
as low computational cost (Alaka et al., 2018) and extensive prior literature make
statistical methods an attractive choice.
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2.5.2 Machine learning methods

Machine learning (ML) techniques first appeared as an alternative to statistical
methods in corporate failure prediction in the 1990s. Most of the first studies
(Boritz & Kennedy, 1995; Fletcher & Goss, 1993; Odom & Sharda, 1990; Wilson &
Sharda, 1994) applied neural networks (NN), which are based on interconnected
nodes that mimic the functioning of the human brain. In their extensive review
of failure prediction studies, Ravi Kumar & Ravi (2007) find that NNs generally
perform well and achieve better results than statistical methods (for some examples
see Angelini et al., 2008; Ciampi & Gordini, 2013; López Iturriaga & Sanz, 2015).
Another popular machine learning technique in failure prediction are support vector
machines (SVM) (Min & Lee, 2005; Shin et al., 2005; Van Gestel et al., 2003).
SVMs function by mapping inputs to a high-dimensional feature space, in which
an optimal hyperplane is constructed to divide the sample to two distinct classes
(Cortes & Vapnik, 1995).

Although based on different principles and functionality, NNs and SVMs share
many characteristics. They are able to model complex nonlinear relationships,
and do not rely on restrictive assumptions regarding the input data (Ravi Kumar
& Ravi, 2007). NNs (Angelini et al., 2008; Ciampi & Gordini, 2013) and SVMs
(Huang et al., 2004; Kim & Sohn, 2010) are reported to achieve high predictive
performance, but both are prone to overfitting, i.e. they adapt too closely to
the training data, thus reducing out-of-sample performance (Alaka et al., 2018;
Jackson & Wood, 2013). They are also somewhat challenging to implement, as the
selection of appropriate hyperparameters is difficult (Ravi Kumar & Ravi, 2007).
Additionally, both NNs (Figini et al., 2017; López Iturriaga & Sanz, 2015; Sun
et al., 2011) and SVMs (Verikas et al., 2010; Yao & Chen, 2019) are criticized
for being "black box" methods: the models’ internal structure and the impact of
different input variables is difficult to decipher. This may limit the usefulness of
NNs and SVMs in a corporate failure prediction context, because interpretability is
important to business practitioners (Jones et al., 2017; Nyitrai, 2019). Despite their
shortcomings, NNs and SVMs remain the most popular individual ML classifiers
in bankruptcy prediction (Alaka et al., 2018), but a wide variety of alternative
techniques have also been used.

Genetic algorithms imitate Darwinian evolutionary principles for complex, non-
linear problem solving (Ravi Kumar & Ravi, 2007). In failure prediction they
have been applied both to feature selection (Back et al., 1996) and to the actual
classification task (Gordini, 2014). Zhou et al. (2014) point out that the value of
genetic algorithms to business practitioners may be limited due to the stochastic
nature of the method; running the model twice on the same data may produce
different results. Case-based reasoning significantly differs from typical machine
learning methods: instead of modeling generalized relationships, it compares each
observation to previously known data and finds the closest match (Shin & Lee, 2002).
Examples of case-based reasoning in failure prediction include Bryant (1997) and
Sartori et al. (2016). Numerous other techniques have been applied, for example
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rough sets theory (McKee, 2000, 2003), data envelopment analysis (Horváthová &
Mokrišová, 2018; Sueyoshi & Goto, 2009) and Kohonen maps (du Jardin & Séverin,
2011).

Decision trees (DT), which are constructed by recursively partitioning data using
some predefined splitting criteria, are a relatively common machine learning method
in failure prediction (Alaka et al., 2018), and are increasing in popularity due to
certain advantageous characteristics such as interpretability, capacity to handle
mixed types of data, and ability to model nonlinear relationships (Delen et al.,
2013; Hastie et al., 2009; Serrano-Cinca et al., 2019). The main weakness of DTs
is predictive performance: although conflicting findings exist (Olson et al., 2012),
they are usually reported as being inferior to NN and SVM (Chen, 2012; Ravi
Kumar & Ravi, 2007). Nonetheless, decision trees have been prominent in recent
literature due to their widespread use in ensemble learning.

2.5.3 Ensemble learning

The use of ensemble methods, which combine the predictions of several individual
classifiers ("base learners") to improve model performance, has greatly increased
in recent bankruptcy prediction literature (Veganzones & Séverin, 2020). The
basic principle of ensemble learning is that the base learners misclassify different
observations and thus compensate for each other’s errors, which almost invariably
leads to increased performance compared to the individual classifiers (Lin et al.,
2012b). The two main approaches to building an ensemble are averaging and
boosting methods.

Classification ensembles can, depending on the chosen method, use various kinds
of base learners. Decision trees are considered one of the most suitable options
due to their instability, which promotes diversity in the ensemble, thus supporting
the underlying principle of combining weak learners to achieve high predictive
performance (Breiman, 1996); they are also the most widely used base learner in
failure prediction ensembles. Alternatives such as NN and SVM base learners have
also been used in failure prediction and credit risk literature (Nanni & Lumini,
2009; Sun et al., 2017; Tsai et al., 2014), but to a smaller extent than decision trees.

Averaging or committee methods are based on training multiple base learners in
parallel and combining their predictions using some suitable method, for example
majority voting for classification and mean prediction for regression (Hastie et al.,
2009). One of the most common averaging ensemble methods is bagging (Breiman,
1996), in which the base learners are trained using a bootstrap sample of the
training data, that is, a subset of the sample drawn randomly with replacement.
The random subspace method (Ho, 1998) uses bootstrap sampling similarly to
bagging, with the difference that a subset of the features is drawn, instead of a
subset of firm observations. Another commonly used averaging method is the
random forest algorithm (Breiman, 2001), which is essentially decision tree bagging,
with random subsampling of features during the process of growing each tree.
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As opposed to averaging methods that train classifiers separately from each other, in
boosting (Schapire, 1990) the ensemble is created by training classifiers sequentially.
After the training of each base learner, incorrectly classified instances are identified,
and the next base learner will prioritize correctly classifying those observations that
were misclassified in the previous iteration (Hastie et al., 2009). The outputs of the
individual classifiers are then combined to form the final prediction. Many variants
of the boosting algorithm have been proposed; the most popular ones are AdaBoost
(Freund & Schapire, 1997) and gradient boosting (Friedman, 2001), which both
feature prominently in bankruptcy prediction literature.

The findings regarding the performance of ensemble methods in bankruptcy and
credit risk literature vary. In general, ensembles tend to outperform standalone
classifiers (Veganzones & Séverin, 2020). On the other hand, du Jardin (2018)
remarks that, while an ensemble almost certainly outperforms any of its own base
classifiers, it is not guaranteed to perform better than other types of standalone
models. However, empirical evidence strongly suggests that ensembles are superior
to methods such as NN and SVM (Alfaro et al., 2008; Barboza et al., 2017; Sun
et al., 2011; Wang et al., 2014), which are commonly found to be the highest
performing standalone classifiers (Alaka et al., 2018).

Many failure prediction studies implement multiple ensemble classifiers with mixed
results. Tsai et al. (2014) compare bagging and boosting using NN, SVM and
DT base learners, and find that decision tree boosting performs best, and has
the additional advantage of lower computational cost compared to the next best
options, NN-bagging and SVM-bagging. This supports Schapire’s (1990) original
notion of combining weak, unstable base learners, but contradicts the suggestion
of Abellán & Mantas (2014) that bagging also requires weak classifiers. Barboza
et al. (2017) find no notable difference in the performance of bagging, boosting and
random forest models, while the results of Jones et al. (2017) indicate the same for
generalized boosting, AdaBoost and random forest; in both studies, the distinction
between ensembles and standalone models is much larger than that between the
specific ensemble methods.

In addition to predictive performance, ensemble methods can be, depending on the
choice of base learner, much more interpretable than NNs or SVMs, for example.
Jones et al. (ibid.) demonstrate that the impact of individual predictors in a
tree-based ensemble using the relative variable importance (RVI) measure. De
Bock (2017) proposes a spline-rule ensemble and, in addition to RVIs, presents
partial dependence plots that show each predictor’s contribution to the outcome,
as well as the interactions between different predictors. The ability to quantify
and visualize a model’s functioning can significantly increase its attractiveness,
especially to business practitioners.

In search of improved predictive performance, some recent studies present elaborate,
complex models that combine multiple ensembling approaches and other techniques.
For example, Wang & Ma (2011) and Zhu et al. (2017) find that RS-boosting,
which combines the random subsample approach to a boosting algorithm, outper-
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forms separate random subspace and boosting models. Zhu et al. (2019) further
develop this approach into the RS-Multiboosting method, which integrates the
Multiboosting algorithm (Webb, 2000) with RS. Another example of the complex
nature of contemporary failure prediction methods is the E-SMOTE-ADASVM-TW
algorithm proposed by Sun et al. (2020), which embeds the synthetic minority
oversampling technique (SMOTE) (Chawla et al., 2002) into ADASVM-TW (Sun
et al., 2017), a time weighting-integrated AdaBoost ensemble of SVM classifiers.
While many novel methods seem promising, evidence of their performance is scarce,
and no comparison has been made between the various proposed techniques. Due
to the sample-specificity of failure prediction models, the results of such methods
should be interpreted with some caution, at least until supporting evidence emerges.

2.5.4 Alternative methods

Different modeling methods have been used to address the process nature and
temporal dimension of failure; these mainly fall under the categories of statistical
and machine learning methods, but are presented here separately due to the different
approach. Shumway (2001) proposes a hazard model for failure prediction that
demonstrates good predictive performance; hazard models have been applied in
later studies, for example by Löffler & Maurer (2011) and El Kalak & Hudson
(2016). Other suggested alternatives include Markov-type models (Petropoulos
et al., 2016; Volkov et al., 2017) and self-organizing maps to quantify failure process
types (du Jardin, 2018; du Jardin & Séverin, 2011). However, in general these
techniques have remained in the minority, with most studies either using different
means, such as dynamic variables measuring change in accounting ratios over time
(Nyitrai, 2019), or disregarding the time dimension altogether.

As an alternative to the accounting-based approach, market information and the
work of Black & Scholes (1973) and Merton (1974) on option pricing theory and
contingent claims have been used to develop failure prediction models (Hillegeist et
al., 2004; Vassalou & Xing, 2004). Findings regarding the superiority or inferiority
of such models are contradictory; for example, Hillegeist et al. (2004) and Jackson
& Wood (2013) report contingent claims models outperforming accounting-based
alternatives, while Reisz & Perlich (2007) and Agarwal & Taffler (2008) conversely
find that accounting-based models are equal to or better than methods built on
contingent claims literature. Regardless of predictive performance, market-based
models have a significant disadvantage in that they cannot be used with unlisted
companies and are thus inapplicable to most SMEs (Pompe & Bilderbeek, 2005).
This is also the case in this thesis; therefore, literature on market-based models is
not explored further.
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2.6 Model evaluation

For binary classification tasks, the most common evaluation metrics are based
on correct and incorrect classification of the two classes, commonly labeled the
positive (1) and negative (0) class. The formulation of the classification task in
bankruptcy prediction, and therefore also the terminology used, varies between
studies. Some authors denote failed firms as the positive and non-failed as the
negative class, while in other studies the class definitions are reversed. In both the
literature review and empirical part of this thesis, the positive class (1) refers to
failed and the negative class (0) to non-failed companies. Performance indicators
are derived from the total number of each of the four possible outcomes: correctly
classified failed firms (true positives), failed firms misclassified as non-failed (false
negatives), correctly classified non-failed firms (true negatives) and non-failed firms
misclassified as failed (false positives).

One of the most common classification performance metrics in failure prediction is
accuracy, i.e. the number of correctly classified firms relative to the total number
of observations. It is also widely used in bankruptcy prediction; however, accuracy
may not be an optimal measure where imbalanced sets are concerned, as it does not
differentiate between false positives and false negatives (Bao et al., 2019; García
et al., 2015). For example, if the data set has a 95% majority of the negative class,
any prediction model can achieve a seemingly high 95% accuracy by classifying all
observations as negative, while the model’s recall (proportion of positives predicted
correctly) in this case is 0, and its predictions are of little practical value. Even
with balanced data, the lack of differentiation between the two types of errors is
problematic, since classifying a failing firm as healthy is significantly more costly
than predicting that a healthy company will fail (Lohmann & Ohliger, 2019a;
Succurro et al., 2019). Many authors therefore report the true positive and true
negative rates, or the false negative and false positive rates, to specify the frequency
of different types of errors (Delen et al., 2013; Liang et al., 2016; López Iturriaga &
Sanz, 2015). Although the error rates show how well the model recognizes failed and
non-failed firms, imbalanced data may still cause misleading results, for example
a low error rate in the majority class obscuring the large number of misclassified
instances. Alternative measures have been used to present a more truthful picture
of the results, such as the Matthews correlation coefficient (Bao et al., 2019),
which has been shown to be highly robust against class imbalance (Boughorbel
et al., 2017), or the Fβ score (Serrano-Cinca et al., 2019), which takes into account
different preferences regarding the precision-recall trade-off (Van Rijsbergen, 1974).

One issue related to the previously discussed metrics is that they only contain infor-
mation related to the performance of the model at a fixed classification threshold,
and do not consider the trade-offs that have to be made when using the model.
A widely used tool to rectify this is the receiver operating characteristic (ROC)
curve; it is particularly useful when class imbalance is present in the data or the
misclassification costs are unequal (Fawcett, 2006); both of these occur commonly
in failure prediction. The ROC curve depicts the true positive and false positive
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rates at different classification thresholds (i.e. the cutoff value determining whether
an observation is predicted as failed or non-failed). The resulting plot illustrates
the trade-off between higher recall (correctly predicted failures) and increase in
false positives (non-failed firms classified as failed) (Zhou & Lai, 2017). Jones et al.
(2017) note that the visualization power of the ROC curve can be particularly useful
to practitioners, for example when determining a cutoff threshold that balances
recall and specificity in proportions suitable to a bank’s risk tolerance and credit
policy.

The ROC curve can also be quantified using the area under the curve (AUC),
which is frequently used in failure prediction studies (Fan et al., 2018; Le et al.,
2018; Nyitrai & Virág, 2019). The AUC score is commonly seen as immune to
class imbalance (Veganzones & Séverin, 2020); however, it can be overly optimistic
when imbalance is high (Davis & Goadrich, 2006), and some authors (Xia et al.,
2017; Zhang et al., 2019) address this by using alternatives such as the H -measure
(Hand, 2009).

The various evaluation measures all have their benefits and shortcomings. Vegan-
zones & Séverin (2020) state that no individual measure can convey all the relevant
information about a model’s predictive performance, and that multiple measures
should therefore be used. This does seem to be the standard in failure prediction
literature: although exceptions do exist that only rely on one approach (Le et al.,
2018; Li et al., 2016), most studies use accuracy and related metrics in conjunction
with the AUC score.

2.7 Summary and implications for empirical study

Corporate failure is a complex and unpredictable process, and previous findings
can never be considered truly generalizable. Factors such as varying accounting
practices, industry characteristics and other traits specific to certain populations
of firms make it very difficult to identify specific variables that are consistently
useful predictors across different samples. However, the extant literature can be
used as a general guideline for the composition of the predictor set, because the
broad categories of relevant predictors have been identified.

Despite extensive research, there are also no conclusive results regarding the
superiority of classification techniques for failure prediction (Barboza et al., 2017).
All methods have characteristics that make them relevant, and the choice depends
on the objectives of the researcher or user (Veganzones & Séverin, 2020). However,
recent studies indicate that ensemble machine learning methods could provide a
much sought-after combination of performance and interpretability (Jones et al.,
2017). The choice of prediction methods plays a large role in the need for data
preprocessing; this must be taken into account when designing the study.

Overall, the theoretical basis for corporate failure prediction is somewhat thin, and
the field is empirically oriented. Every new study can add something to the existing
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body of knowledge, but as new information is hard to come by and is mainly based
on empirical findings, it is important to design studies with generalizability and
replicability in mind.
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3 Data and variables

3.1 Sample

The data used in the empirical study comprise the summarized financial statements
and assorted additional information of 126 545 Finnish companies in the years
2008–2010 and data on declared bankruptcies in Finland in the years 2011–2012.
The companies in the sample only include public and private limited companies;
other types of business entities such as general partnerships, limited partnerships
and sole proprietorships are excluded. Both bankruptcy and financial statement
data are originally obtained from the database of Bisnode Finland Oy (Bisnode) and
accessed through a financial analysis platform provided by Valuatum. Companies
in the sample are not limited based on financial or other characteristics: the sole
criterion for including a company is the existence of its financial statements in the
Valuatum database. Firms with missing values are included, because it cannot be
assumed that values are missing at random. All companies in the sample published
their financial statements and were non-bankrupt for the full duration of the years
2008–2010. Firms younger than three years are left out, because their bankruptcy
processes are different from older firms (Lohmann & Ohliger, 2019b), and therefore
the same prediction model might not be efficient. Furthermore, using three years’
data for modeling would be complicated, if there was a need to accommodate firms
that only have data available for one or two years.

Non-SMEs are removed from the data following the European Commission’s rec-
ommendation, under which SMEs comprise enterprises that employ fewer than 250
persons, and either have an annual turnover not exceeding EUR 50 million or an
annual balance sheet total not exceeding EUR 43 million, or both (Commission
Recommendation of 6 May 2003, 2003). However, adhering fully to these limitations
is not possible: the number of employees is missing for approximately 70% of the
companies. Therefore, the employee headcount criterion is dropped, and SMEs are
defined in this study as companies with annual turnover of no more than EUR 50
million or annual balance sheet total of no more than EUR 43 million. Despite the
limitations imposed by the lack of data, it is likely that the staff headcount of most
of the companies defined here as SMEs does not exceed the maximum of 249, since
larger companies are subject to stricter regulation and scrutiny and can therefore be
considered more likely to accurately report their number of employees. Additionally,
for most companies that fall significantly short of the turnover and balance sheet
total limits, a headcount of 250 or more is operationally inadvisable and financially
unsustainable. The sample inevitably contains firms that do not qualify as SMEs
under the Commission’s recommendation; however, it seems reasonable to assume
that such companies are a small minority.

The turnover and balance sheet total values used for establishing the SME status
of the companies in the sample are taken from the most recent available fiscal year
(2010). The filtering out of non-SMEs results in the exclusion of 900 companies,
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leaving a total of 125 645 companies and a total of 376 935 firm-year observations,
three for each company. The descriptive statistics for the data are presented in
Table B1. Due to the large number of predictor variables, only the values from the
latest fiscal year (Y-1, 2010) are shown for practical reasons. The preceding years’
values are largely similar and offer no significant additional information. The data
contain a total of 124 252 companies that remained operational at least until the
end of 2011 and 1393 companies that were declared bankrupt before the end of
2011, amounting to 98.9% and 1.1% of the sample, respectively.

Table 1: Summary of data sample

Number of companies Non-bankrupt Bankrupt
125645 124252 1393

98.9% 1.1%

3.2 Training, validation, and test set

Bankruptcy prediction studies commonly separate the sample into training and
test sets; model optimization such as feature selection and hyperparameter tuning
are performed and tested on the training set using cross-validation (e.g. Liang
et al., 2015; Son et al., 2019). However, this is often due to data scarcity; when
possible, the preferred approach is to include a separate validation set for feature
selection and hyperparameter tuning (Hastie et al., 2009). A further aspect to
consider in this study is the use of sampling methods to balance the training set.
If cross-validation were used on the balanced set, features and hyperparameters
would be optimized for maximum predictive performance on balanced data, while
a significant class imbalance is present in the actual data the model is created
to predict. By using a separate unadjusted validation set, this problem can be
avoided.

There are no clear guidelines for the appropriate proportions in which to split the
sample (ibid.); in this study, the training, validation and test sets contain 60%,
20% and 20% of the sample, respectively. The split proportions are in line with
previous studies (see e.g. Alfaro et al., 2008; Son et al., 2019; Veganzones & Séverin,
2018; West et al., 2005). The train-validation-test split is performed separately and
using different random seeds for the first and second rounds of modeling in order
to reduce possible sample-specific effects.

3.3 Class imbalance

A notable class imbalance is present in the sample used in this study: the minority
class, i.e. bankruptcies, comprise only 1.1% of the total number of companies.
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Veganzones & Séverin (2020) suggest that balanced data yield more accurate
predictions, but also note that large samples are needed to increase the robustness
and reliability of the models, and that these two objectives are often mutually
exclusive due to the small overall number of failed firms.

To avoid depleting the data too much, tools like the synthetic minority oversampling
technique (SMOTE) (Chawla et al., 2002) are often used. However, here the
available data set is large and contains a total of 1393 bankrupt firms; assuming the
proportions of bankrupt companies in the training, validation and test sets remain
close to the original sample, the training data would contain approximately 835
bankrupt firms. This enables the use of a simpler method, random undersampling
(RUS), which simply removes observations belonging to the majority class at random
until the desired balance is achieved (Kim et al., 2015). A balanced set with equal
numbers of bankrupt and non-bankrupt firms using this technique will still contain
upwards of 1600 companies, whereas most recent studies use samples of 400 or fewer
companies (Veganzones & Séverin, 2020). Zhou (2013) shows that RUS performs
as well as more sophisticated methods when the original sample is large, and has
the advantage of computational efficiency; this makes it a suitable choice for this
study.

To assess the effects of class imbalance, prediction models are trained separately on
the full, imbalanced training set and on sets balanced by random undersampling.
In the first round of modeling, only a fully balanced (1:1) set is used in addition
to the original, imbalanced one. In the second round, the best models are trained
on sets with 1:1, 1:3, and 1:10 class distributions to further examine the effect of
different levels of imbalance. Balancing is only applied to training sets; validation
and test sets are kept intact to ensure that the model’s performance is assessed
using the true class distribution.

3.4 Output variable

The output variable in this study is a simple binary variable that indicates whether
a company is expected to go bankrupt during the relevant period of observation;
forecasted bankruptcy is indicated by "1" and non-bankruptcy by "0". The obser-
vation period for the output variable is two years: given the financial statements
from 2008–2010, the models predict whether companies will go bankrupt during
the years 2011–2012.

Each of the prediction models produces a numeric value p ∈ [0, 1], corresponding
to the probability of bankruptcy during the observation period. The binary classifi-
cation output is obtained from the probabilities by determining a cutoff threshold
value: predictions smaller than or equal to the threshold value are classified as
0 (non-bankrupt) and predictions exceeding the threshold as 1 (bankrupt). This
study uses varying thresholds when assessing binary classification performance:
instead of a fixed threshold, the cutoff values are adjusted so that each model
achieves the same level of correctness with regard to non-bankrupt companies. The
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choice of cutoff thresholds is described in Section 4.5. In practical use, the cutoff
value can be adjusted to suit the specific use case: for example, a bank could use a
threshold of 0.1 to classify loan applicants with over 10% probability of bankruptcy
as too risky.

3.5 Predictor variables

3.5.1 Selection of initial variable set

The input variables in this study are chosen from three different sources that
are explained in more detail in the following sections. First, a set of predictors
is assembled from prior empirical studies. This selection is augmented with the
predictors from the prediction model previously used by Valuatum. Lastly, due to
the contingent nature of bankruptcy, and to address any perceived deficiencies in
the predictor set assembled from the first two sources, some additional variables
are picked from outside the established failure prediction literature.

All predictor values are based on the available financial statement data from 2008–
2010. All variables that only use financial statement items from a single fiscal year
are calculated for each firm-year observation. However, variables measuring change
over time cannot be calculated for the earliest firm-year observations, as data from
years preceding 2008 are not available for this study; these exceptions are specified
in the following sections that present the predictor variables. The values of the
same financial ratio in different years are treated as separate variables; for example,
feature selection procedures may remove the 2008 and 2009 values of some ratio,
while selecting the 2010 value as a relevant feature. The full list of abbreviations
used in the predictor variable definitions is presented in Appendix A.

3.5.2 Variables from three prior studies

Existing empirical research on failure prediction is extensive, and a vast number
of predictor variables have been used. Although the predictive ability of specific
variables is not universal, the broad categories and types of useful predictors are
mostly agreed upon. Earlier studies therefore provide a suitable starting point for
assembling the set of predictors for this study. However, it must be noted that
the choice of best predictors is usually sample-specific, and empirical findings are
therefore not directly generalizable (Balcaen & Ooghe, 2006). To counter this issue,
this study uses three different literary sources with diversified predictors, and the
observed performance of the predictors is not used as a criterion for selection. After
the predictor set is compiled, it is qualitatively assessed to ensure that the main
categories are represented by a sufficient number of diverse predictors. The final
selection of predictors from the three studies is presented in Table 2. The table is
organized by category (profitability, capital structure, liquidity, solvency, activity,
growth, size) for readability. However, the categories are not mutually exclusive,
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and many variables could justifiably be placed in a different category.

The first source is a review study by Dimitras et al. (1996), which provides a listing
of all the financial variables used in a total of 59 reviewed failure prediction models,
including such influential studies as Altman (1968) and Ohlson (1980). Due to
the robustness of financial ratio predictors (Beaver et al., 2005) and the fact that
the general view regarding the determinants of failure has not changed in the last
decades, these variables form a good basis for the predictor set in this study. All of
the predictors that appear in the papers reviewed by Dimitras et al. (1996, tables
4a & 4b), that can be calculated using available data, are used in this study.

The second article, by du Jardin (2015), is an empirical study that uses a set of
50 financial predictor variables selected based on prior literature and representing
the main categories of liquidity, solvency, profitability, capital structure, activity,
and turnover; in this study, turnover ratios are grouped under activity instead of
being a distinct category. The selection process or exact sources of the variables are
not specified. The same selection of predictors has been used in later studies (e.g.
Veganzones & Séverin, 2018), indicating that it is considered useful and sufficient
by itself. The variables overlap somewhat with those listed by Dimitras et al., but
also include numerous new predictors, thus augmenting the variable set of this
study.

The third study used for choosing the variables, conducted by Jones et al. (2017),
also employs an approach that utilizes earlier research. All the categories used by
du Jardin are represented, but with different emphases. For example, fewer liquidity
and profitability ratios are used, but capital structure is well represented. Jones
et al. use a somewhat more experimental approach and include predictors that
are less common in the literature, such as intangible assets and asset write-downs.
Additionally, the variables used by Jones et al. incorporate two aspects that are
entirely absent from the other two papers: company size (proxied by total assets
and sales) and growth variables. Some new variables are also included in the
traditional predictor categories, although some overlap with the other two studies
is observed.

Some variables from the three studies are omitted due to data unavailability. For
example, market-based predictors are not included, because the information is not
available in financial statements. Certain financial variables, such as financial debt
and no credit interval, must also be excluded, because the available data are not
sufficiently specific for calculating them. Dimitras et al. (1996) and du Jardin
(2015) do not provide detailed variable definitions, and Jones et al. (2017) use a
sample of US companies that differ notably from Finnish companies in terms of
accounting standards and practices. Therefore, the exact formulas of the predictors
used in this thesis may not be the same as in the original studies, and require a
degree of interpretation. However, basic accounting terminology is quite universal,
and therefore it can be assumed that the underlying principles justifying the chosen
variables also apply in the context of this study.
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Table 2: Predictor variables selected from prior studies
(1) (2) (3) (1) (2) (3)

Activity Profitability
AP/COGS* x EBIT/S* x
AP/S x x EBIT/TA x x x
AR/S* x x x EBIT/TE x
CA/S x EBITDA/S x
CAPEX/TA x EBITDA/TA x
EBIT/VA x GP/S* x x
EE/VA x GP/TA x
I/COGS x NI/S* x x x
I/S* x x NI/TA x x
NI/VA x NI/TE x
NWC/S OCF/S x
OCF/VA x OCF/TA x x
S/TA x x x OCF/TE x
VA/FA x RE/TA x
WC/S x VA/S x
WD/TA x VA/TA x x

Capital structure Solvency
CA/TA x x CA/TD x
CL/TD x EBIT/IE x
FA/TA x FE/EBITDA x
I/NWC x FE/NI x x
I/TA x FE/TA x
IA/TA x FE/VA x
NWC/TA x IE/GP x
QA/TA x x IE/S x
SC/TC x NI/IE x x
TD/TE x x OCF/TD x
TE/TA x x TD/TA x x x
TE/TL* x
WC/TA x x x Liquidity

C/CA x
Annual growth C/CL x
growth CAPEX x C/S x
growth NI x C/TA x x
growth OCF x C+MS/CL x
growth TD x C+MS/S x
growth WC x CA/CL* x x x

CL/S x
Company size CL/TA x x
S* x NI/CL x
TA* x QA/CL* x x

The appearance of the variables in the studied papers is indicated as follows:
(1): in at least one of the studies reviewed by Dimitras et al. (1996, tables 4a & 4b)
(2): in du Jardin (2015)
(3): in Jones et al. (2017)
Variables marked with (*) were also used in the previous prediction model used by Valuatum.
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3.5.3 Variables from previous prediction model used by Valuatum

The variables utilized in the previous prediction model used by Valuatum have been
found effective through empirical testing. Due to the sample-specificity of predictors’
impact to the performance of the model, these variables can incorporate some
useful properties that are not captured by scientific literature, and are therefore
added to those chosen from prior studies. Many of the predictors in the Valuatum
model are also found in the studies discussed in the previous section, and are listed
in Table 2. The chosen Valuatum variables that do not appear in any of the three
studies examined in Section 3.5.2 are listed in Table 3.

Many scholars note that bankruptcy risk is affected by the industry a company
operates in, and incorporate its effect in risk modeling using a dummy variable.
This study takes a different approach by utilizing data on past bankruptcies to
calculate the average bankruptcy rate of different industries to measure the relative
riskiness of the industry.

The previous Valuatum model includes an industry-specific bankruptcy risk indi-
cator (ind_risk) that is also utilized in this study. Unlike the common approach
of industry sector dummy variables, this variable incorporates concrete informa-
tion about the riskiness of each industry in the two preceding years, as shown in
Equation 1. Industries are classified using NACE Revision 2, as established in
Regulation (EC) No 1893/2006 of the European Parliament and of the Council
(2006). By default, the 4-digit NACE code is used; if there are fewer than 100
companies in the industry and/or no occurred bankruptcies in the previous two
years, the parent industry (3-digit NACE code) is used. If the requirements are
still not fulfilled, the wider industry sector corresponding to the 2-digit NACE code
is used, and if this also fails, the industry risk defaults to 1.5%. The industry risk
variable is calculated as

ind_risk(Y ) = bind(Y − 1) + bind(Y )
nind(Y − 2) (1)

where Y is the year for which industry risk is calculated, nind is the total number
of companies in the industry ind, and bind is the number of declared bankruptcies
in industry ind during the specified year.

The industry risk variable can be seen as somewhat problematic, as it incorporates
information from years preceding the period from which financial statements are
available. However, it is not dependent on financial statement values and can be
calculated even for firms that have no financial statements before 2008. In the
Valuatum database, industry risk is available for each firm-year observation as a
precalculated variable and does not require additional information; in the practical
context of this study, it does not differ from typical financial ratios and is therefore
included.

Certain variables are excluded because they are deemed unsuitable for the purposes
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of this study. The categorical variables S_growth_count and EBIT_count use
financial statement data from outside the time scope defined in this study to
describe the development of sales growth and EBIT, respectively, and are therefore
omitted. The unscaled variables EBITDA, net income, net working capital, profit
before depreciation, amortization and extraordinaries, and working capital, are
also excluded: they combine information about the company’s size and the various
aspects of its financial status, and are therefore difficult to interpret. Firm size can
be an impactful factor in failure risk, and to better observe its effects, no unscaled
variables apart from the designated size proxies (see Table 2 section "Size") are
included in the model.

Table 3: Predictor variables selected from previous Valuatum model
(EBIT+FI)/TA TD/PBD TL/S
(EBIT+FI)/TC (TD-C)/EBITDA (TL-C)/S
ind_risk (TD-C)/TE (TL-TD)/S
PBD/S

3.5.4 Additional variables from miscellanous sources

Due to the variability of the observed effectiveness of specific predictors between
studies and the unpredictable nature of bankruptcy prediction (Balcaen & Ooghe,
2006), this study uses a similar approach to Bauweraerts (2016) and Jones et al.
(2017), and introduces some less commonly used predictor variables based on various
academic sources and the author’s own judgement. Some observed deficiencies of
the predictor set constructed from the other two sources are also addressed. The
additional variables are presented in Table 4.

While high leverage is linked to bankruptcy risk, Sanfilippo-Azofra et al. (2016) find
that firms facing financial distress, in part due to already holding large amounts of
debt, tend to seek additional financing by raising new equity. Naturally, companies
may issue new shares for other reasons, many of which indicate positive developments
rather than impending bankruptcy. However, in conjunction with other variables
the annual growth of share capital (growth SC ) could have predictive power. A
precedent for the use of change in share capital as a predictor of failure is found
in Kim & Sohn (2010). On the other hand, according to some authors distressed
firms typically rely more on trade credit than healthy firms (Altman et al., 2010;
Molina & Preve, 2012); change in accounts payable (growth AP/S) is therefore also
included.

Change in total debt is already included from the study of Jones et al. (2017); to
add a further dimension and perhaps eliminate the effect of changes in company
size, growth in debt relative to assets (growth TD/TA) is added. For similar reasons,
change in profitability ratios is also used for prediction (growth GP/S; EBIT/S;
PBD/S; NI/S).
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Employee efficiency is a key factor of business performance and can serve as a
measure of failure risk (Lin et al., 2012a). Mature firms in particular can suffer
from rigidity that contributes to weak performance and eventually bankruptcy;
high employee expenses are one potential symptom (Kücher et al., 2018). The
variables picked from extant literature already include one employee efficiency
measure (EE/VA), but some alternatives (EE/S, EE/PBD, EE/NI ) are added to
better observe the effects. Unfortunately, the number of employees is not available
for the majority of companies, and therefore is not used.

The ratio of receivables to sales typically depends on a company’s credit policy, but
can usually be assumed to remain quite stable over time. Altman et al. (2010) assert
that small companies, when financially distressed, typically extend more credit to
customers; additionally, significant changes in the relative amount of receivables can
be a sign of earnings management, which is more common in troubled than healthy
companies (Serrano-Cinca et al., 2019; Wells, 2001). However, the relationship
between receivables and financial trouble is not entirely straightforward: Box et
al. (2018) suggest that a permissive credit policy can be a means of gaining a
competitive advantage. Due to the possible earnings management implications,
total receivables are used for added robustness against attempts to obscure increases
in accounts receivable; the variable is included both as a static ratio (TR/S) and
its annual change (growth TR/S).

Using data from a three-year period and including annual growth variables can
be considered sufficient for taking the process nature of bankruptcy into account.
However, to capture developments occurring over time more efficiently, all of the
growth variables are also included as two-year compound annual growth rates,
CAGR (cagr AP/S; CAPEX; EBIT/S; EE/NI; EE/PBD; EE/S; EE/VA; GP/S;
NI; NI/S; OCF; PBD/S; SC; TD; TD/TA; TR/S; WC ).

Table 4: Additional predictor variables selected for modeling
EE/NI growth NI/S cagr EE/VA
EE/PBD growth PBD/S cagr GP/S
EE/S growth SC cagr NI
TR/S growth TD/TA cagr NI/S
growth AP/S growth TR/S cagr OCF
growth EBIT/S cagr AP/S cagr PBD/S
growth EE/NI cagr CAPEX cagr SC
growth EE/PBD cagr EBIT/S cagr TD
growth EE/S cagr EE/NI cagr TD/TA
growth EE/VA cagr EE/PBD cagr TR/S
growth GP/S cagr EE/S cagr WC
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3.6 Missing values

Analyzing missing values is challenging, if not impossible, with the data used for
this study: missing values in the database are coded as zeroes, and are therefore
indistinguishable from actual zero-valued variables. Furthermore, variables with
calculation errors such as division by zero may be omitted and appear as missing
values. As there is no reliable means of ascertaining whether a specific data point
is a missing value or not, no actions are taken to either remove or impute missing
values.

Even if it were possible to detect missing values, keeping them unaltered in the
data is a valid approach in a bankruptcy prediction context. Many failing firms
do not report their annual accounts in the last years before failure (Balcaen &
Ooghe, 2006), and Lukason & Camacho-Miñano (2019) find that low profitability
and liquidity, which are also known determinants of failure, are linked to delays in
financial reporting. This indicates that companies facing financial distress are more
likely to have missing values in their financial statements; imputing missing values
or removing firms with missing data could induce bias and distort the prediction
results (Zmijewski, 1984). Apart from the logit model, the prediction models
used in this study are based on decision trees, which are by nature robust against
missing values (Hastie et al., 2009). However, the inability to differentiate between
zeroes and missing values is somewhat problematic, particularly because of the
heteroskedasticity of the variables. A value of zero may indicate different things
for each predictor; for example, a gross margin of zero is quite concerning, while
zero annual change in share capital does not appear to indicate anything specific.
Therefore, when missing values for predictor variables are interpreted as zeroes, the
implications are different in each case.

Nonetheless, the issue of missing values as zeroes is present in the data and cannot
be rectified within the scope of this thesis; it must simply be accepted as one aspect
of the unreliability of data that is common in financial research. Furthermore, the
prediction model developed in this study will eventually be used in practice with
similarly processed data. Therefore, any adjustments to combat missing data could
deteriorate its predictive capacity and give misleading results.

Although the existence of true missing values cannot be investigated, some predictor
values in the latest fiscal year (2010) are examined to assess the quality of the data.
It should be noted that sum variables, such as fixed assets, current liabilities or
EBIT, are calculated from individual financial statement items; if they are non-zero,
it indicates that at least one of their constituent financial statement items is also
non-zero. Out of 125 645 companies, the sample contains 72 firms with zero total
assets, and 951 firms with zero total equity; these numbers do seem reasonable
and indicate that at least some balance sheet items are available for almost all
companies. Total liabilities are zero for 7 639 companies, which also seems plausible
and gives no reason to suspect major issues with missing data. Sales are zero for
13 090 and EBITDA for 7 162 companies; for 2 536 firms, sales, EBITDA and net
earnings are all zero. This indicates that the sample may contain some inactive
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companies, but the number of zero values does not seem unreasonably high, and
income statement figures can also be considered quite reliable.

3.7 Outliers

The values of the data obtained from the Valuatum database are limited to ± 108;
any values outside these limits have been automatically adjusted to the correspond-
ing limit value. Despite the modification, these values remain outliers: as the
descriptive statistics (Table B1) show, the observed minimum and maximum values
for all but three variables are far from these limits. One explanation for the absence
of outliers is that division by zero is treated as an error in the Valuatum system,
and results in a zero value instead of ± ∞, which would appear as ± 108 in the
sample.

Due to the treatment of zero division, applying additional outlier handling methods
would result in increased inconsistency. If the data were winsorised, for example,
the sample would contain two different types of outliers that have been adjusted
using different methods. Additionally, outliers are a common occurrence in real-
life financial data, and therefore prediction models must be able to process them
(Zoričák et al., 2020). For these reasons, and to maintain the modeling process as
simple as possible, outliers are not removed or modified in any way, apart from the
trimming of extreme values that has been applied prior to extracting the data.

3.8 Variable transformations

Financial ratios tend to be non-normally distributed, and various transformations
have been used in the literature to make them more suitable for failure prediction.
However, decision trees, and therefore also ensembles built from them, are immune
to monotonic transformations (Hastie et al., 2009). Empirical evidence from
prior credit risk literature corroborates ensemble models’ indifference to variable
transformation (Jones et al., 2015, 2017). To keep the modeling process simple and
reduce the number of extra steps required, no variable transformations are applied
in this study.
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4 Methodology

4.1 Empirical design and implementation

The empirical study is conducted in two phases. In the first phase, the performance
of five different classification methods is compared. Each classifier is separately
trained using balanced and imbalanced training data, and three different feature
selection methods are applied, resulting in a total of 30 distinct models. The aim
of the first phase is to assess the impact of some of the key modeling choices on
bankruptcy prediction performance and to find the most promising combinations.

Due to the large number of different classifiers and the considerable size of the
data sample, it is not feasible to perform thorough hyperparameter tuning and
repeated testing for the full selection of prediction models; therefore, only the
best candidates are picked for further examination and development. The exact
number of combinations of classification method, training data balance and feature
selection approach is determined by assessing the results of the first phase. During
the second phase, the prediction models are trained using a more detailed set
of hyperparameters, and test scores are averaged over multiple runs for added
robustness. The classification methods chosen for further examination in the second
phase are random forest and gradient boosting. Class imbalance is also explored
further; feature selection is found to be of no significant benefit and is therefore
not used in the second phase.

To ensure the reliability and usability of the prediction models both during this
study and in continued commercial use, a robust and well documented software
platform is required. The project is implemented using the Python programming
language, including various third-party libraries; most notably, the scikit-learn
package (Pedregosa et al., 2011) is used for developing, training and testing the
classification models. Scikit-learn is fully open-source, features a large selection
of off-the-shelf classification methods and other necessary tools, and is extensively
documented. Moreover, it ranks high among the most used machine learning
libraries on the popular version control platform GitHub (Elliott, 2019) and has a
proven track record of commercial application (Scikit-learn, 2020), making it an
attractive choice for the purposes of this thesis. The documentation and source
code of scikit-learn can be consulted for technical details on the learning algorithms
presented in the following section.

4.2 Classification methods

4.2.1 Method selection

The classification methods used in this thesis are chosen based on three main
criteria. First, there must be a sound theoretical basis and sufficient empirical
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evidence demonstrating the method’s predictive ability. Second, the resulting
model must be understandable and the effect of different predictor variables must
be clearly interpretable. Third, the method should be easy to implement and
modify when necessary, even by relatively inexperienced users.

Traditional statistical methods are burdened by extensive evidence of insufficient
performance compared to more recent techniques, and the various requirements
placed on input data complicate the modeling process. They are therefore not
considered viable options for this study. However, logistic regression remains
widely used in bankruptcy prediction literature, and is a common benchmark in
modern studies (Serrano-Cinca et al., 2019; Tsai & Hsu, 2013). Comparing logit to
alternative methods may be of particular interest to business practitioners due to
its widespread use in current credit scoring models (Zhang & Thomas, 2015). For
these reasons, logistic regression is included as one of the modeling techniques.

Based on the requirement of model interpretability, two of the most commonly
used machine learning techniques are ruled out: support vector machines (Verikas
et al., 2010; Yao & Chen, 2019) and neural networks (Figini et al., 2017; López
Iturriaga & Sanz, 2015; Sun et al., 2011) are both commonly described as "black box"
models that, while usually performing well, are difficult to interpret. Furthermore,
neural networks are computationally demanding (Chung et al., 2008), and support
vector machines may also require a substantial amount of computational resources
(Huang et al., 2004). Decision trees have many attractive qualities, but suffer
from instability and weak performance. The less commonly used machine learning
methods are typically not available as off-the-shelf methods and literature on them
is somewhat scarce, which limits their usability.

Following recent trends in bankruptcy prediction literature, ensemble techniques
are identified as an appealing alternative. Three methods emerge as the most viable
options based on frequency of use and observed performance in the literature, as
well as practical considerations: random forests (RF), AdaBoost, and gradient
boosting (GB). Random forests (García et al., 2019; Jones et al., 2017), AdaBoost
(Barboza et al., 2017; Zhou & Lai, 2017) and gradient boosting (Brown & Mues, 2012;
Pawełek, 2019) have all performed well in previous bankruptcy prediction and credit
risk studies. They are widely studied and used, and have ready implementations in
many popular machine learning libraries and platforms, including the scikit-learn
package used in this study. This selection also ensures that both of the major
ensemble techniques, averaging (RF) and boosting (AdaBoost, GB) are represented.

In this study, the random forest ensemble is implemented with decision trees as
base learners, because this is required by design; the use of alternatives is not
possible. Both boosting algorithms are also implemented with decision trees, which
provide weak, unstable base learners in accordance with the underlying principles of
boosting (Schapire, 1990). Furthermore, the lack of interpretability associated with
the two major alternatives, NN and SVM, would still be present in an ensemble
model, which rules out their use in this study. Empirical evidence from failure
prediction also indicates that decision trees are the preferred choice for boosting
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in terms of performance (Marqués et al., 2012; Tsai et al., 2014). To examine the
effects of ensembling versus individual classifiers, a standalone decision tree model
is also trained.

Based on the results of the first modeling phase, two methods are chosen for further
analysis in the second phase: random forest and gradient boosting. This choice of
models is discussed in more detail in Section 5 together with the results.

4.2.2 Decision trees

Decision trees are a widely used machine learning technique that can be used for
both classification and regression; the general term "classification and regression
trees" (CART) was introduced by Breiman et al. (1984). This section focuses solely
on decision trees for binary classification. There are many different algorithms for
constructing tree classifiers; the technicalities are not discussed here in detail. In
this thesis, decision trees are used both individually and as base learners for the
random forest, AdaBoost and gradient boosting classifier ensembles.

Decision tree classifiers are constructed by recursively splitting the training set X
into two smaller subsets ("nodes"), with the objective that the subsets formed in
each split discriminate better between the two classes than their parent node. There
are many different metrics for the goodness of a split, such as the Gini impurity
and information gain. The split is performed by using the best predictor variable
and a cutoff value, according to which the observations are divided into two smaller
nodes. The splitting continues until a predetermined stopping criterion is reached;
for example, the maximum depth of the tree is reached, or all instances in the node
belong to the same class and no further splits are needed. After the tree has been
trained, it can be used for classification by traversing the tree according to the split
rules, until an unsplit terminal node ("leaf") is reached; the leaf indicates the class
probabilities and final classification output for the instance under consideration.
Algorithm 1 describes a basic algorithm for growing a decision tree classifier.

Algorithm 1 Decision tree for classification
Initialize tree T with root node containing the full training sample
for all non-leaf terminal nodes t in T do

Choose the best split point in the feature space
if a stopping criterion is reached then

t is a leaf
else

Split t into two child nodes
end if

end for

Decision tree classifiers have many attractive qualities such as the capability to
process mixed data types, outliers and missing values, and the ability to model
complex nonlinear relationships (Hastie et al., 2009). They are also computationally
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efficient with large, high-dimensional data sets (Florez-Lopez & Ramon-Jeronimo,
2015), which is often useful in a failure prediction context. One notable advantage
of decision trees is their interpretability: the classifier can be presented in the form
of simple if-else rules, and is also easy to visualize.

Figure 1 shows an example of a (weak) decision tree classifier. The nodes display
the splitting criteria, the Gini impurity of the node (lower impurity indicating better
discriminative ability), and the number of firms belonging to each class in the node.
The tree assigns a bankruptcy probability and the corresponding binary class to new
observations based on the number of bankrupt and non-bankrupt samples in the leaf
it belongs to. For example, a company with TE/TL Y-1 -0.05 and S Y-1 0.1 belongs
to the leftmost leaf, and thus its probability of bankruptcy is 163/778 ≈ 0.21. The
only combination that results in classification as bankrupt is (TE/TL Y-1 ≤ -0.032
&& S Y-1 ≥ 0.128), with a failure probability of 456/764 ≈ 0.60. As can be
seen, this tree produces somewhat inaccurate classification rules; three of the four
leaves do not have a significant majority of one class; in other words, they cannot
discriminate between the classes very efficiently. A leaf created mostly of instances
in one class has good discriminative ability on the training set; of course, this does
not necessarily indicate good out-of-sample performance.

Figure 1: Simple decision tree classifier

4.2.3 Random forests

Random forests (Breiman, 2001) are an ensemble learning technique based on
constructing multiple decision trees in parallel and joining their predictions to form
the final classification or regression output. The random forest algorithm combines
the principles of two averaging ensemble methods, bootstrap aggregating (bagging)
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(Breiman, 1996) and random subspace (Ho, 1998). In traditional bagging, the trees
are usually highly correlated and more likely to misclassify the same instances;
random forest avoids this by using random feature subsets for each node split in
the trees. Introducing randomness into the growing of individual decision trees
reduces their correlation and produces more diverse trees, thereby improving the
ensemble’s predictive performance.

A random forest for classification (Algorithm 2), in its simplest form, is built by
constructing an ensemble of decision trees using the following procedure, as outlined
by Breiman (2001). First, a bootstrap sample (i.e. sample with replacement) of
observations is drawn randomly from the training set. Using the bootstrap sample,
the tree is built as described in Algorithm 1, by recursively splitting nodes using
the best available feature. Instead of the full feature space, a random subset (with
replacement) of the predictors is drawn at each node when considering the split.
The output of the model is determined by a majority vote of the individual trees.
The implementation of the scikit-learn package used in this study differs from
the original in that the output of individual trees is combined by averaging the
predicted probabilities rather than majority voting on the class predictions.

Algorithm 2 Random forest for classification (adapted from Hastie et al., 2009)
for b = 1 to B do

Draw a bootstrap sample Z∗ of size N from the training data.
Grow a decision tree T as follows:
for all non-leaf terminal nodes t in T do

Select m of the total p features randomly from the data
Choose the best split point among the m features
if a stopping criterion is reached then

t is a leaf
else

Split t into two child nodes
end if

end for
end for

4.2.4 Boosting methods

Boosting ensemble methods, first proposed by Schapire (1990), are based on the
concept of combining a number of weak learners to form a strong classifier. Unlike
random forest and other averaging techniques, boosting methods train base learners
sequentially. After training a base learner, its observed performance is used for
adjusting the priorities of the model: the next iteration focuses more on instances
that were previously misclassified. The most popular and widely used boosting
methods are AdaBoost (Freund & Schapire, 1997) and gradient boosting (Friedman,
2001). Although the original motivations for these two algorithms were quite
different, their functioning is very similar: AdaBoost was, years after its inception,
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shown to be equivalent to a forward stagewise additive model, which in turn forms
the basis for the gradient boosting approach (Hastie et al., 2009).

The basic principle of AdaBoost (Algorithm 3) is that, with each new learner, the
algorithm adapts training data based on the errors made by previous learners.
Before training a new base learner, the results of the preceding one are assessed,
and sample weights are adjusted. Misclassified instances are assigned a higher
weight, while the weight of correctly classified observations is reduced. This leads
the algorithm to focus on the instances that are difficult to classify and improves
its ability to predict them correctly. After the predetermined number of iterations
have been completed, the predictions of the individual base learners are combined
with a weighted vote based on their performance to produce the output of the
AdaBoost model.

Algorithm 3 AdaBoost (Schapire, 2012)
Training data (x1, y1), . . . , (xm, ym), where xi ∈ X , yi ∈ {−1, 1}
Initialize D1(i) = 1/m for i = 1, . . . , m
for t=1,. . . ,T do

Train weak decision tree using distribution Dt

Get weak hypothesis ht : X → {−1, 1}
Aim: select ht to minimalise weighted error ϵt = Pri∼Dt [ht(xi) ̸= yi]
Choose αt = 1

2 ln
(︂

1−ϵt

ϵt

)︂
for i = 1, . . . , m do

Dt+1(i) = Dt(i)
Zt

×

⎧⎨⎩e−αt if ht(xi) = yi

eαt if ht(xi) ̸= yi

= Dt(i) exp (−αtyiht(xi))
Zt

Where Zt is a normalization factor chosen so that Dt+1 is a distribution
end for

end for
Output final hypothesis:

H(x) = sign
(︂ T∑︂

t=1
αtht(x)

)︂

In contrast with AdaBoost, gradient boosting (Algorithm 4) approaches prediction
from a numerical optimization perspective: it is essentially a gradient descent
algorithm that minimizes the classifier’s loss function on the training set. The
model is initialized with a weak learner; in every subsequent iteration, a learner is
fitted to the gradient of the loss function and added to the existing model. Thus, the
error of the ensemble is reduced with each iteration, resulting in a high-performing
final model.
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Algorithm 4 Gradient boosting for binary classification (Hastie et al., 2009)
Initialize fk0(x) = 0, k = 0, 1
for m = 1 to M do

Set

pk(x) = efk(x)∑︁K
ℓ=1 efℓ(x) , k = 0, 1

for k ∈ {0, 1} do
Compute rikm = yik − pk(xi), i = 1, 2, . . . , N
Fit a regression tree to the targets rikm, i = 1, 2, . . . , N ,
giving terminal regions Rjkm, j = 1, 2, . . . , Jm

Compute

γjkm = K − 1
K

∑︁
xt∈Rjkm

rikm∑︁
xt∈Rjkm

|rikm|(1 − |rikm|) , j = 1, 2, . . . , Jm

Update fkm(x) = fk,m−1(x) + ∑︁Jm
j=1 γjkmI(x ∈ Rjkm)

end for
end for
Output f̂k(x) = fkM(x), k = 1, 2, . . . , K

4.2.5 Logistic regression

Although the name might suggest otherwise, logistic regression (logit) is a linear
method for classification. The logit model is similar to linear regression, but assumes
a linear relationship between the predictor variables and the log-odds of the (binary)
response variable, rather than directly between the predictors and the output. The
logit model for binary classification can be expressed as follows:

log p

1 − p
= β0 + β1x1 + · · · + βnxn (2)

where p is the probability of the observation belonging to the positive class (1),
β0...n are the model coefficients, and x1...n are the predictor variables. The model is
first fitted to the training data using one of various solver algorithms in order to
find the coefficients β. The predicted log-odds for an observation can be calculated
by simply plugging in its predictor values to Equation 2.

4.3 Feature selection

Feature selection is considered an important part of failure prediction, as the
presence of irrelevant or redundant variables can weaken predictive performance
(Veganzones & Séverin, 2020). This study makes extensive use of decision trees,
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which essentially perform feature selection within the training algorithm when
splitting nodes; therefore, the need for selecting a subset of predictors may not be
as significant as with other classification methods. Nonetheless, there is evidence
of feature selection improving the performance of standalone decision trees and
ensemble models (Lin & Lu, 2019). For this study, one technique is chosen from
both of the main feature selection categories, filter and wrapper methods. In
addition to the feature selection methods, prediction models are trained without
selection using the full set of predictors.

There are no reliable guidelines for selecting an appropriate number of features;
quantitative measures can be used to assess the increase/decrease in performance
from removing a feature, or the number of features can be chosen arbitrarily. For
this study, 25 is chosen as a suitable number of predictors that keeps the model
interpretable and can be assumed to contain enough information; many studies use
fewer variables and obtain good results.

Mutual information (Battiti, 1994) (MI), a filter method, is used in this study
to assess the relevance of the predictors statistically, without considering the
different classification methods. The features are ranked by measuring their mutual
information with the class output, i.e. how much relevant information about the
bankruptcy status of the firms each feature holds. For binary classes, the mutual
information of a feature fi with the target class c is defined as

MI(c; fi) =
∫︂

P (0, fi) log P (0, fi)
P (0)P (fi)

dfi +
∫︂

P (1, fi) log P (1, fi)
P (1)P (fi)

dfi (3)

MI is advantageous compared to many alternative filter methods in that it can take
nonlinear relationships into account (Bennasar et al., 2015). One downside is that
MI is computationally complex and in practice has to be approximated (Battiti,
1994); especially with continuous variables, the approximation may be difficult if
sufficient data are not available (Peng et al., 2005). However, data scarcity is not
an issue for this study, and MI has been applied successfully in earlier bankruptcy
prediction literature (Chan et al., 2006); it is therefore deemed an appropriate
choice of filter method.

A wrapper method, recursive feature elimination (RFE), is also used for an al-
ternative selection of the most important predictors. The basic principle of the
method is to recursively consider smaller and smaller subsets until the best subset
of some predetermined size is found. RFE trains a specific classifier using the con-
sidered variable subsets to assess the importance of the predictors. The technique
is therefore applied separately to each of the prediction methods used in this study.

The process, as described by Guyon et al. (2002), is simple. The model is trained
normally on the training data; the predictors are then ranked by relevance according
to some criterion, and the lowest-ranking predictor or predictors are removed. This
process is repeated recursively until a feature subset of the desired size is found. In
this study, the ranking criterion for the predictors is relative variable importance (see
Section 4.5.4) for standalone and ensembled decision trees, and model coefficients
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β for the logit model (see Equation 2). Due to the large feature space and limited
computational resources, 40% of predictors are discarded during each iteration of
the elimination process.

4.4 Hyperparameter tuning

Each of the prediction methods involves several hyperparameters that can be
adjusted to change the functioning of the algorithm. Literature on hyperparameter
tuning is somewhat scarce; the optimal choice of parameters depends on a variety
of factors from the technical implementation of the algorithms to the characteristics
of the data, and definitive guidelines cannot be established. Therefore, the choice
of which parameters to tune and which values to test relies to some extent on the
documentation and default hyperparameter values of the scikit-learn package. This
section describes how the key parameters for each classifier are chosen; the full list
of tested hyperparameter values is presented in Appendix C.

The hyperparameter value combinations are tested using grid search, which takes a
set of discrete values for each hyperparameter and exhaustively tests every possible
combination. It is the most commonly used strategy for hyperparameter tuning
in machine learning tasks in general (Bergstra & Bengio, 2012), and is also used
commonly in corporate failure prediction (e.g. Sigrist & Hirnschall, 2019; Son et al.,
2019; Volkov et al., 2017; Zoričák et al., 2020). Alternative, often more efficient
methods exist, but these usually involve a degree of randomness, and grid search
is therefore preferable from an academic perspective due to its transparency and
reproducability.

Mantovani et al. (2018) find that for decision trees built using the CART algo-
rithm, which is used in the scikit-learn implementation, the minimum number of
observations in a node required to consider splitting (min_samples_split), and
minimum leaf size (min_samples_leaf), which prevents splits if the resulting leaves
would contain too few observations, are important. They further note that small,
shallow trees perform poorly; the depth of the tree (max_depth) should not be
limited too much. In this study, min_samples_leaf and max_depth are included
in hyperparameter tuning; min_samples_split is omitted, because it functions
similarly to min_samples_leaf in controlling tree complexity. Due to the imbal-
ance of the training data, a hyperparameter used for reweighting the observations
(class_weight) is also tested.

According to Breiman (2001), random forests are resistant to overfitting, and
the number of base learners (n_estimators) can therefore be quite large. Van
Rijn & Hutter (2017, 2018) find that restricting the growth of the trees using the
min_samples_leaf parameter is more efficient than using min_samples_split;
they also report that the maximum number of features to consider when splitting
a node (max_features) has a major effect on performance. The parameters
min_samples_leaf and max_features are chosen as the tuning parameters for the
RF model. As with the individual decision tree, class_weight is also used.
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For AdaBoost, the maximum depth of the individual trees (max_depth) and learning
rate (learning_rate), which reduces the contribution of individual trees to avoid
overfitting, are the key parameters; the number of iterations appears less important,
and 50 iterations were sufficient in the empirical study by Van Rijn & Hutter
(2017, 2018). Gradient boosting is very similar to AdaBoost in terms of the basic
mechanism, and the same two aforementioned hyperparameters are therefore chosen
for tuning for both models. Additionally, Friedman’s (2002) suggested improvement
to his original GB algorithm, stochastic gradient boosting, is taken into account.
Stochastic gradient boosting trains each base learner on a bootstrap sample similarly
to bagging; the size of the bootstrap sample as a fraction of total training set
size (subsample) is therefore included. Class weights cannot be adjusted for the
boosting methods, because it would interfere with the boosting algorithm.

For the logistic regression model, the main adjustable factor is regularization, which
penalises model complexity. Adjustments are made by changing the value of the
regularization parameter C. Additionally, two different penalty functions (penalty),
ℓ1 (lasso) and ℓ2 (ridge regression), are tested. Similarly to decision tree and random
forest models, class_weight is included.

In the first modeling phase, hyperparameter tuning is performed on a relatively
narrow selection of different values (see Table C1) for practical reasons. The task of
finding the best hyperparameters for each combination of classifier, feature selection
method and training set composition is computationally demanding; moreover, it
can be expected that a rough adjustment of the key parameters is enough to show
the performance differences between the trained models.

For the finer tuning of hyperparameters in the second phase, observations from
the first round are used as guidelines. For gradient boosting, a low learning rate
(learning_rate= 0.1) appears to be a key performance factor. Although the
interactions between hyperparameters can be complex, it seems safe to assume
that low learning rates work better, and therefore the search in the second phase is
concentrated on small values. The best combinations also use so-called "decision
stumps", i.e. decision trees with only one split from the root node, corresponding
to max_depth= 1; in the second phase, the search is focused on small values of
max_depth. For random forests, min_leaf_size appears to be the most critical
factor, with both 4 and 10 emerging as viable options. Minimum leaf size 1 is not
feasible, most likely due to overfitting, because the trees can become arbitrarily
complex, and the tested values are therefore adjusted upwards for the second round.
Unadjusted class weights are used in all of the best parameter combinations for
RF models trained with the full predictor set, and also for most RF models using
feature selection. Therefore, the class_weight parameter is dropped altogether,
and unadjusted weights are used in the second phase of modeling.

Additional hyperparameters are also considered for both methods in the second
phase of modeling. The number of base learners n_estimators is added for both
methods to ensure that relying on default values does not unnecessarily weaken
model performance. For the same reason, the splitting criterion (criterion),
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which measures the goodness of potential node splits, is added for the RF method.
To provide an alternative to minimum leaf size, the max_depth parameter is also
used for RF; conversely, min_leaf_size is included for GB to complement the
maximum tree depth parameter.

Tuning results from the second modeling phase, particularly those for the random
forest method, may be of some interest for future studies. Entropy is consistently
superior to the Gini coefficient, which is the default option for split criterion in the
scikit-learn implementation: it is used in every one of the three best combinations
for each RF model. Minimum leaf size 6 is chosen as the best value for each RF
model; this somewhat contradicts the findings of Van Rijn & Hutter (2017, 2018),
who report that minimum leaf size is the most important parameter and that
small values (starting from 1) are preferable. Additionally, three of the four RF
models (full data, 1:10, 1:3) benefit from the largest available number (250) of
trees. Tuning results for GB show that a learning rate of 0.05 is preferred by all
models; it seems possible that even lower values could have been beneficial. The
GB classifiers trained on balanced data function best without applying stochastic
gradient boosting (i.e. subsample= 1.0) and 100 base learners, while the model
using the full training data set performs optimally with subsample= 0.75 and 250
base learners.

4.5 Model evaluation metrics

4.5.1 Threshold-dependent metrics

Despite the shortcomings discussed in the literature review, performance metrics
derived from the confusion matrix as described in Table 5 can be useful. They
are intuitive and easy to understand, and can be used to illustrate the differences
between the behavior of the trained models.

Table 5: Confusion matrix (Kohavi & Provost, 1998)

Predicted class
Actual class Negative (non-bankrupt) Positive (bankrupt)
Negative (non-bankrupt) True negative (TN) False positive (FP)
Positive (bankrupt) False negative (FN) True positive (TP)

The true positive rate (recall), true negative rate (specificity) and positive predictive
value (precision) are calculated for each model to provide a simple overview of binary
classification performance. Additionally, the Fβ score and Matthews correlation
coefficient are used. The metrics and their formulas are presented in Table 6.
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The Fβ score, derived from Van Rijsbergen’s (1974) effectiveness measure, is an
indicator of classification performance calculated using precision and recall; more
specifically, it is their weighted harmonic mean. The parameter β "measures the
effectiveness of retrieval with respect to a user who attaches β times as much
importance to recall as precision" (ibid., p.371): β > 1 emphasizes recall, while
β < 1 prioritizes precision.

The usefulness of the Fβ score lies in the ability to easily measure classification
performance according to the user’s priorities and assumptions about misclassifica-
tion costs. The typical β values are 1 for a neutral approach, 0.5 for emphasizing
precision and 2 for emphasizing recall (Saito & Rehmsmeier, 2015), although the
appropriate value depends strongly on the context. In the case of bankruptcy
prediction, undetected bankruptcies are much more costly than healthy companies
falsely classified as bankrupt; a value of β = 3 is therefore chosen. This is still a
very conservative estimate: for example, Serrano-Cinca et al. (2019) estimate the
different cost of false negatives and false positives based on prior literature and use
β = 35. For comparison, the F1 score (i.e. precision and recall considered equally
important) is also calculated.

Table 6: Threshold-dependent performance measures

Recall (true positive rate) TP
TP+FN

Specificity (true negative rate) TN
TN+FP

Precision TP
TP+FP

Fβ (1 + β2) · precision·recall
(β2·precision)+recall

Matthews correlation coefficient TP∗TN−FP∗FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Boughorbel et al. (2017) note that Fβ, although adjustable to specific needs, is
sensitive to class imbalance, and suggest that the Matthews correlation coefficient
(Matthews, 1975) (MCC) is a better alternative. Unlike measures such as accuracy
and Fβ, MCC takes into account all the different prediction outcomes (true positive,
true negative, false positive, false negative) and thus provides a better summary of
the performance of the classifier. MCC values range from -1 to 1, with 1 indicating
a perfect classifier and -1 a classifier that predicts wrong on every instance; a MCC
of 0.6 or higher is usually considered good performance (Bao et al., 2019).

The class imbalance in the data is likely to impact the prediction models significantly;
they cannot be expected to perform optimally using the default classification
threshold 0.5. Results between models trained on balanced and imbalanced data
would not be comparable, and therefore different classification thresholds are used
for each model. This can be done by using the predicted probabilities of the model
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and finding a cutoff threshold that produces the desired result. In this study, the
main subject of interest is the ability to predict actual bankruptcies correctly, i.e.
recall. Therefore, specificity is fixed at 95% for the classifiers in this study; this
helps compare the performance of the models in terms of correct classification of
bankrupt companies, when each model predicts non-bankrupt companies equally
well. In other words, the thresholds are set so that each of the models produces a
false alert for exactly 5% of non-bankrupt companies.

4.5.2 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve (see e.g. Fawcett, 2006) is a
widely used method for evaluating classifiers. The curve visualizes the trade-
off between recall, or true positive rate (TPR), and false positive rate (FPR).
Classification results and the corresponding (TPR, FPR) values are calculated at
different classification thresholds. The values are plotted, typically with FPR in
the x axis and TPR in the y axis. An example ROC curve is shown in Figure 2.

The ROC curve can be quantified by approximating the area under the curve (AUC),
i.e. the area between the ROC curve and the x axis in [0, 1]. A line from (0,0) to
(1,1), with an AUC of 0.5, represents a random guess; AUC= 1 corresponds to a
perfect classifier. The AUC of a prediction model is equivalent to the probability
that it ranks a random instance from the positive class higher than a random
instance from the negative class. It is thus equivalent to the Mann-Whitney U
statistic (Mann & Whitney, 1947), and also relates closely to a number of other
statistical measures.

Figure 2: Receiver operating characteristic (ROC) curve
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4.5.3 Precision-recall curve

Despite its widespread use in evaluating bankruptcy prediction models, the ROC
curve may not be an optimal tool when significant class imbalance is present in the
data; the precision-recall (PR) curve (Figure 3) may be a preferable alternative
(Davis & Goadrich, 2006). The process of plotting the PR curve is similar to
the ROC curve, with the exception that precision is used instead of FPR. An
additional difference is that the PR curve usually shows recall (TPR) in the x
axis rather than the y axis. Similarly to ROC, the PR curve can be quantified by
approximating the area under the curve. Possible values range from 0 to 1, with
PR AUC 1 corresponding to a perfect classifier.

Figure 3: Precision-recall (PR) curve

The usefulness of the PR curve in imbalanced classification stems from the difference
between FPR (and specificity, i.e. 1−FPR) and precision. For example, in a
scenario where class imbalance is high, a prediction model might produce output
TN = 1000, FP = 100, FN = 5, TP = 20, where recall = 20/25 = 0.8, specificity =
1000/1100 ≈ 0.91 and precision = 20/140 ≈ 0.14. In terms of recall and specificity,
performance seems good, but low precision reveals that a predicted positive is
likelier to be a false alert than actual positive. Precision is much more sensitive
to changes in the number of false positives, and therefore the PR curve is more
informative than the ROC curve for imbalanced data (Saito & Rehmsmeier, 2015).

Because linear interpolation can produce overly optimistic results (Davis & Goadrich,
2006), the area under the PR curve (PR AUC) is approximated in this study using
average precision (AP, average_precision_score in the scikit-learn package). It
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is calculated as
PR AUC ≈ AP =

∑︂
n

(Rn − Rn−1)Pn (4)

where P is precision and R recall at classification threshold n. Due to its better
suitability to imbalanced learning, PR AUC is used as the performance criterion
when optimizing hyperparameter values.

4.5.4 Predictor variable importance

To better understand the key determinants of bankruptcy, the importance of
individual predictor variables is analyzed. For the logit model, the impact of
predictor variables can be observed using the coefficients of the model. The
magnitude of the coefficient indicates how strongly a single predictor affects the
output of the model; additionally, the sign of the coefficient shows whether the
predictor is directly or inversely related to bankruptcy risk.

For the other, decision tree-based models, the relative variable importance (RVI)
measure (Breiman et al., 1984) is used. RVI evaluates individual nodes using the
Gini importance, which measures how much the node reduces impurity compared
to its child nodes, weighted by the number of observations nt in the relevant nodes.
The weighted Gini importance (I) is defined in terms of Gini impurity G:

G = p0(1 − p0) + p1(1 − p1) = 2p0p1, I = Np

N
(Gp − Nc1

Np

Gc1 − Nc2

Np

Gc2) (5)

where p0, p1 are the proportions of instances belonging to classes 0 (non-bankrupt)
and 1 (bankrupt) in a node, and N, Np, Nc1, Nc2 are the total sample size, number
of instances in the parent node, and number of instances in each child node,
respectively. To calculate the relative variable importance for predictor X in
decision tree T , the Gini importances at each node t using X for splitting are
summed:

RVIX(T ) =
∑︂
t∈T

It 1(v(t) = X) (6)

where v(t) is the variable that is used for splitting node t. RVI scores are typically
scaled for better interpretability; the scikit-learn implementation used in this study
scales the values to sum to 1. The RVI scores from each individual tree are averaged
to calculate the final scores for ensemble methods.

4.5.5 Benchmarking against original Valuboost model

To assess the usefulness of the results from a practical perspective, the results
of the boosting-based bankruptcy prediction model previously used by Valuatum
("Valuboost") are used as a benchmark. PR AUC (0.19) is used as the primary
measure for comparison, supplemented by ROC AUC (0.91). The results of the
Valuboost model are obtained using some predictors that are omitted in this study



59

(see Section 3.5.3) and therefore not entirely comparable; nonetheless, measuring
the difference to previous results can give some indication of the performance of
the models. The results of the Valuboost model are averaged over several runs with
different training and test sets; the splits to training and test data are different
from those used in this study.
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5 Results

5.1 Predictive performance

5.1.1 First modeling phase

The results of the first phase of modeling presented in Table 7 and Table 8 show
clear differences in the performance of the classifiers. The individual decision tree
model (DT) is superior to logit: its PR AUC score is higher for every combination
of balancing and feature selection, and ROC AUC score higher for four of the
six cases. The performance difference is more pronounced in models trained on
balanced data. Ensemble-based machine learning methods consistently outperform
both of the standalone classifiers. The highest performing model in terms of ROC
AUC is gradient boosting (GB) trained on balanced data using all available features
(0.912). PR AUC scores, on the other hand, indicate that the random forest (RF)
using all features and trained on the full, imbalanced training set performs best
(0.190). The results are in line with recent findings showing the general effectiveness
of ensemble methods (Veganzones & Séverin, 2020); more specifically, the predictive
power of boosting methods and random forest have been demonstrated e.g. by
Barboza et al. (2017), Jones et al. (2017), and Son et al. (2019). The performance
of individual decision tree models is consistently weaker than that of the ensembles,
but seems to behave in a similar manner in relation to the class distribution of the
training data and the variable selection method. This result is quite expected and
supports the notion that ensembling improves the predictive capacity of decision
tree models (Hastie et al., 2009).

None of the ensemble models can outright be deemed superior to the others;
comparing the results for all six combinations of class distribution and predictor
set reveals no obvious patterns. In most cases the differences between ensembles
are not particularly large; the most significant variation is observed in the PR AUC
scores of the models trained on balanced data using either mutual information (MI)
or recursive feature elimination (RFE). It could be speculated that this is mainly
attributable to randomness, as these models have both a small training set and
few predictors. ROC AUC scores are notably even with all combinations; the best
performance is achieved with balanced data and full feature set.

The threshold-dependent metrics (recall, precision, F1, F3, MCC) indicate that,
when adjusted to 95% specificity, the differences in classification performance are
relatively small. Imbalanced data do not seem to produce inherently inferior models;
in fact, only the models trained on the MI-selected predictors perform better on
balanced data, while full-feature models and those with RFE selection appear
slightly better with the original, imbalanced data.

In terms of PR AUC scores, all ensembles with the single exception of RF with MI
features perform better on the imbalanced training set. Balanced data produce
better ROC AUC scores for the ensembles when all predictors are used; with feature
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Table 7: Model performance - full data
ROC AUC PR AUC Recall Precision F1 F3 MCC

Logit 0.723 0.034 0.240 0.048 0.080 0.171 0.087
DT 0.691 0.072 0.415 0.077 0.130 0.288 0.160
RF 0.896 0.190 0.589 0.109 0.183 0.408 0.237
AdaBoost 0.901 0.173 0.605 0.111 0.187 0.418 0.243
GB 0.902 0.184 0.597 0.110 0.186 0.414 0.241
Logit 0.746 0.042 0.295 0.058 0.096 0.209 0.110
DT 0.735 0.081 0.422 0.085 0.141 0.302 0.172
RF 0.893 0.144 0.550 0.102 0.173 0.383 0.221
AdaBoost 0.900 0.139 0.558 0.104 0.175 0.388 0.224
GB 0.900 0.146 0.562 0.104 0.176 0.390 0.225
Logit 0.726 0.036 0.248 0.048 0.081 0.176 0.089
DT 0.771 0.087 0.450 0.080 0.135 0.307 0.171
RF 0.900 0.180 0.597 0.110 0.185 0.413 0.240
AdaBoost 0.896 0.161 0.581 0.105 0.179 0.401 0.231
GB 0.901 0.170 0.601 0.110 0.187 0.416 0.242
All performance metrics range from 0 to 1, except MCC, which ranges from -1 to 1; a
score of 1 indicates a perfect classifier for each metric. For further explanations of the
performance measures, see Section 4.5.

selection methods, the effects of class imbalance appear mixed. Logit shows slight
overall improvement when balanced data are used; standalone DT achieves higher
ROC AUC scores but lower PR AUC scores with balanced data. It must be noted
that, due to substantial class imbalance in the original data, the balanced training
set is significantly smaller; this may have an impact on predictive performance,
even though sample size remains larger than in most recent studies.

The results of the first phase give no conclusive evidence to support the superiority
of either balanced or imbalanced training data. If the aim were solely to create
a binary classifier that performs well with the default classification threshold 0.5,
balanced data would be required. However, in most contexts, including this study,
it is more important to obtain reliable estimates of bankruptcy probability; the
classification threshold can be adjusted as needed.

Of the two feature selection methods used, recursive feature elimination (RFE)
mostly performs better than mutual information (MI). The predictors selected
with RFE give equal or better results than predictors selected with MI; the sole
exception is the AdaBoost model trained on imbalanced data, and even in this case
the difference is negligibly small. This finding is in line with the literature, which
mostly agrees that wrapper methods tend to yield better classification performance
than filter methods (Liang et al., 2015; Peng et al., 2005). Since RFE selects
the most relevant features for each classifier, it seems reasonable that it should
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Table 8: Model performance - 1:1 balanced data
ROC AUC PR AUC Recall Precision F1 F3 MCC

Logit 0.728 0.039 0.248 0.049 0.082 0.176 0.090
DT 0.809 0.043 0.539 0.054 0.098 0.283 0.146
RF 0.907 0.161 0.570 0.107 0.180 0.398 0.231
AdaBoost 0.904 0.152 0.562 0.104 0.176 0.390 0.226
GB 0.912 0.145 0.585 0.109 0.184 0.408 0.237
Logit 0.735 0.044 0.306 0.059 0.099 0.216 0.115
DT 0.843 0.057 0.504 0.074 0.129 0.319 0.174
RF 0.901 0.150 0.570 0.107 0.180 0.398 0.231
AdaBoost 0.901 0.133 0.574 0.106 0.179 0.398 0.231
GB 0.899 0.115 0.531 0.099 0.167 0.370 0.212
Logit 0.726 0.039 0.252 0.050 0.083 0.179 0.092
DT 0.831 0.049 0.457 0.063 0.111 0.281 0.149
RF 0.902 0.163 0.578 0.107 0.181 0.401 0.232
AdaBoost 0.904 0.152 0.562 0.104 0.176 0.390 0.226
GB 0.899 0.126 0.562 0.103 0.174 0.389 0.224
All performance metrics range from 0 to 1, except MCC, which ranges from -1 to 1; a
score of 1 indicates a perfect classifier for each metric. For further explanations of the
performance measures, see Section 4.5.

outperform MI, which does not tailor its selection to suit a specific model. However,
due to the complexity of the interactions between predictors, it is not guaranteed
that the most relevant features give optimal predictive performance out of sample.

The selections made by the MI and RFE feature selection methods are examined by
comparing them to the 25 features that are observed as the most important in the
models trained on all predictors. All of the feature selection results are obtained
from the models using the full, imbalanced training sample. Since the ensemble
models provide the best predictive performance, they are used for evaluating feature
selection; standalone DT and logit models are notably weaker, and therefore their
use of the different predictors can be considered less relevant. The findings are
summarized in Table 9.

Out of the predictors ranked in each full-feature model’s top 25, RFE selects 14 for
RF, 12 for AdaBoost and 15 for GB. Compared to the variable rankings of the
full-feature models, the average rank of the RFE-selected variables is 28 for RF, 44
for AdaBoost and 35 for GB. The MI method selects 10 for RF, 7 for AdaBoost
and 11 for GB out of the top 25 of the full-feature models, and the average rank
of the MI-selected variables in the variable importance ranking of the full-feature
models is 72 for RF, 73 for AdaBoost, and 65 for GB. These results show that
the RFE method fares notably better than MI in selecting those features that are
found the most relevant in the trained models that use all predictors. It seems that
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the MI method drops more useful features and therefore leads to inferior predictive
performance.

Table 9: Feature selection - no. of shared features between methods

RF AdaBoost GB
All top 25 & MI 10 7 11
All top 25 & RFE 14 12 15
MI & RFE 11 8 9
All top 25 & MI & RFE 8 3 5

Furthermore, it is found that 8 predictors for RF, 3 for AdaBoost and 5 for
GB are shared by all of the respective models’ three subsets of 25 predictors
(MI-selected, RFE-selected, best predictors from model using full feature space).
The top predictors of the three ensembles trained using the full feature space are
additionally compared to each other. RF and AdaBoost share 9, RF and GB 15, and
AdaBoost and GB 14 of the 25 most important predictors; 6 predictors are shared
by all three classifiers, with the latest year’s (Y-1) equity to liabilities (TE/TL) and
financial expenses to total assets (FE/TA) occupying the first and second places
respectively for each ensemble method. Only a single predictor, TE/TL Y-1, is
shared by all 18 ensemble-feature selection-training data combinations.

The most notable finding with regard to feature selection is that no predictors,
perhaps apart from TE/TL Y-1, can be deemed categorically more important
than others. There is significant variation in the predictors selected by the feature
selection methods and those that emerge as the most important from the models
trained on all predictors. Additionally, different predictors are relevant for the
three ensemble classifiers. Therefore, it is very difficult to choose a subset of
predictors that can be assumed to perform consistently well out of sample. Jones
(2017) suggests that studying bankruptcy in a high-dimensional context is likely to
capture meaningful predictor interactions that are overlooked if the feature space is
too narrow; because of the contradictory outcomes of the feature selection methods,
it can be assumed that is also the case in this study. The predictive power of specific
variables varies between contexts (Balcaen & Ooghe, 2006; du Jardin, 2015), and
therefore the features selected by MI and RFE in this study may not be relevant
elsewhere; using the full feature space produces a more robust model. For these
reasons, feature selection methods are not applied in the second phase of modeling.

As feature selection methods are not applied further, predictive performance using
all predictors is the main criterion for choosing the classifiers to use in the second
phase. Results on imbalanced data (Table 7) indicate that RF and GB outperform
AdaBoost. GB is the superior model by a narrow margin on balanced data (Table 8),
while AdaBoost and RF perform more or less equally well. AdaBoost is excluded,
because it is the weakest ensemble overall based on predictive performance, and
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does not appear superior to the other two ensembles with any combination of
feature selection and training data balance. Logit and standalone DT are also
dropped due to clearly inferior performance. Thus, RF and GB are used in the
second phase of modeling.

As the results on balanced and imbalanced data show no notable differences, class
imbalance is explored further in the second modeling phase. As Veganzones &
Séverin (2018) show, it is not necessary to balance the training data fully to 1:1
proportions; an imbalance may not impede performance if it is not too severe. To
further assess the effects of class imbalance, the full imbalanced and 1:1 balanced
training sets are again used in the second modeling phase. Additionally, the models
are trained using 1:3 and 1:10 balanced sets; the proportions are chosen from both
sides of the 1:4 limit suggested by Veganzones & Séverin (ibid.).

5.1.2 Second modeling phase

For the second phase, the two best prediction methods (RF and GB) are chosen for
further analysis. Models are trained on the original, imbalanced training data, as
well as balanced sets with proportions 1:1, 1:3, and 1:10. All models are trained using
the full feature space; no feature selection methods are applied. Hyperparameters
are tuned with a larger number of options, but otherwise similarly to the first phase:
the data are split into training, validation and test sets (60%, 20%, and 20% of
the total sample), the models are trained on the training set, and the validation
set is used to assess performance with different parameter combinations. The test
set remains unused during parameter tuning; this ensures that the sample size for
parameter tuning and classification are similar, i.e. the training set, before possible
random undersampling, comprises 60% of the total sample. The final classification
results and variable importances are averaged over 10 runs; models are trained on
the full sample, excluding the validation set used for hyperparameter tuning, in
order to avoid data leakage (Kaufman et al., 2011). For each run, the data are
divided into training and test sets by random splits of 75% - 25% (corresponding
to 60% and 20% of the entire sample), with a different random number seed used
for each run.

The results of the second modeling phase (Table 10) show a marked improvement
in overall predictive performance. Both methods perform better than in the first
phase on both imbalanced and fully balanced data: detailed hyperparameter tuning
has a visibly positive effect, although it is difficult to assess which parameters have
the greatest effect on performance. Similarly to the first phase, it can be observed
that balancing the training data may slightly improve ROC AUC, while lowering
PR AUC at the same time. The threshold-dependent metrics do not provide much
additional information; the results are very similar for both models at all class
imbalance levels, with the exception of the fully balanced training set.

A clear deterioration in all performance metrics is observed between the models
trained on 1:3 and 1:1 training sets. Balancing to 1:10 or 1:3 yields a higher ROC
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Table 10: Model performance - best models with fine-tuned parameters
ROC AUC PR AUC Recall Precision F1 F3 MCC

RF full data 0.915 0.195 0.601 0.120 0.200 0.429 0.252
GB full data 0.914 0.180 0.602 0.121 0.201 0.430 0.253
RF 1:10 0.919 0.192 0.605 0.121 0.202 0.432 0.254
GB 1:10 0.915 0.179 0.593 0.119 0.199 0.424 0.249
RF 1:3 0.918 0.177 0.593 0.119 0.198 0.424 0.249
GB 1:3 0.917 0.173 0.597 0.120 0.200 0.427 0.251
RF 1:1 0.909 0.161 0.560 0.113 0.188 0.401 0.235
GB 1:1 0.913 0.157 0.576 0.116 0.193 0.413 0.242
All performance metrics range from 0 to 1, except MCC, which ranges from -1 to 1; a
score of 1 indicates a perfect classifier for each metric. For further explanations of the
performance measures, see Section 4.5.

AUC and similar MCC and Fβ scores compared to the full imbalanced training
sample; therefore it seems likely that the performance drop for the 1:1 data is
due to training set depletion rather than different class distribution. The number
of observations remaining in the fully balanced set is too small to achieve the
performance of the models trained on larger samples. Unlike Zhou (2013) suggests,
random undersampling may not be the best option despite the large initial sample
size; alternatives that do not overly reduce training set size could perform better.

In terms of both PR AUC and ROC AUC, the RF classifier slightly outperforms GB,
with the exception of ROC AUC on the 1:1 balanced training set. The performance
difference is larger on the full and 1:10 balanced training sets; on the fully balanced
1:1 training set, GB outperforms RF in terms of all metrics except PR AUC. In
general, GB appears less sensitive to different class distributions. It cannot be told
with certainty whether this observation is truly due to class imbalance or not. As
Breiman (2001) argues that RF is practically immune to overfitting, it could be
assumed that the smaller training set size that accompanies closer class balance
is the key factor: if the performance of the RF model improves or at least does
not deteriorate when arbitrarily large numbers of training observations are added,
removing part of the observations should result in weaker performance. GB, on
the other hand, may overfit to the training data; while balancing the data removes
some relevant information, it also reduces overfitting and therefore the change in
performance is less prominent for GB. Hyperparameter tuning results support this
assumption: the GB models consistently picked the smallest possible learning rate
(0.05); it is possible that an even lower value would be needed to avoid overfitting.

Given the improved ROC AUC on 1:10 and 1:3 balanced data, as well as the weaker
performance of models on 1:1 balanced data that is presumably due to insufficient
data, the results corroborate the assertion of Veganzones & Séverin (2020) that a
combination of balanced data and large sample size gives the best results. However,
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this view is based on the assumption that ROC AUC and threshold-dependent
metrics are sufficient for measuring performance in corporate failure prediction. In
highly imbalanced datasets, PR AUC is a more relevant measure, as it captures the
performance impact of the imbalance better than ROC AUC (Davis & Goadrich,
2006). Examining PR AUC scores shows that the full training set gives the best
results, with the 1:10 balanced set producing only slightly weaker results; the 1:3
and 1:1 training sets perform notably worse. The full training set has proportions
of approximately 1:99; it is possible that optimal performance could be achieved
somewhere between 1:99 and 1:10 imbalance. However, this cannot be reliably
assessed without further studies, and therefore the conclusion based on PR AUC
is that no resampling should be used: the original training set with imbalance
corresponding to the real-world situation gives the best results.

Compared to the results of prior studies, it can be said that the ROC AUC scores
achieved in this thesis indicate good performance. Although studies on different
data are not truly comparable, most recent studies seem to reach ROC AUC scores
from approximately 0.8 to somewhere upwards of 0.9 (see e.g. Jones et al., 2017;
Son et al., 2019; Veganzones & Séverin, 2018; Zhou & Lai, 2017). The PR AUC
scores of the models in this study do seem quite low; no useful comparisons to
literature can be made, but it seems that the rarity of bankruptcies makes the
prediction task very difficult in general.

Most of the models do not reach the performance level of the previous model used
by Valuatum. In terms of ROC AUC, the results of all models are comparable or
slightly superior to the benchmark score (0.91), but PR AUC of 0.19 is only reached
by the RF model trained on the full or 1:10 balanced training set. Compared to using
the unadjusted training set, 1:10 rebalancing yields an acceptable trade-off of higher
ROC AUC with only a minor PR AUC deterioration. However, without further
study there is not enough evidence to support the use of resampling. Therefore,
the random forest model trained on the full training set is proposed as the best
choice for practical application.

5.2 Predictor variable importances

The importance of specific variables and predictor categories is assessed using
the best model, namely RF with fine-tuned hyperparameters trained on the full
training set. To add an alternative perspective, the GB model, also with optimized
hyperparameters and trained on the unadjusted data set, is used. The variable
importances of the models using balanced data were briefly examined, but no
notable differences to the models using the full training set were observed.

Similarly to the first phase, the 25 best predictors are examined as the main
subject of interest; some observations from outside the top 25 rankings are also
presented. The best predictors for the RF and GB models are presented graphically
in Figure 4; Table 11 lists the RVI scores of the best predictors for each model
individually, as well as the top 25 of the two models based on the predictors’ average
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ranking. Average RVI is not used, because the scores of the RF and GB models
are dissimilarly distributed, and the average RVI can therefore be uninformative
and misleading.

9 out of 25 and 3 out of 10 of the most important predictors are shared by the models.
The considerable variation supports the observations made in the first phase: there
are no definitive answers as to which predictors are the most relevant. However,
the similarities of the models’ variable rankings can give some insights into the
effect of different predictors. The common top 10 predictors are equity to liabilities
(TE/TL), financial expenses to total assets (FE/TA) and financial expenses to
EBITDA (FE/EBITDA), all from the latest financial year (Y-1). TE/TL Y-1 is
ranked first and FE/TA Y-1 second in both models’ relative variable importance
ranking; this supports the similar findings for the three ensemble models in the
first phase.

Despite sharing the best two predictors, significant differences are observed between
the variable importances of the RF and GB models. For RF, 10 out of 25 best
predictors are capital structure ratios, while for GB the number is only 2 out of 25.
The top 25 ranking of RF includes fewer activity ratios than that of GB, but on
the other hand more liquidity-related predictors. No growth variables, size proxies
or industry variables are in RF’s top 25, while for GB the list includes sales for all
three years, as well as two growth variables and the industry risk variable for the
latest year (Y-1). Both models have some profitability ratios ranked among the best
25, but none of these are shared by both. In addition to the different lists of best
predictors, Figure 4 illustrates a major contrast between the models: the relative
variable importances of GB are more unevenly distributed than those of RF. The
variable importance scores are therefore not directly comparable between the two
models; the fundamental difference in the design of the classification algorithms
causes them to utilize the predictors in different manners.

For the RF model, both TE/TL and TE/TA (equity to assets) in each year (Y-3,
Y-2, Y-1) are ranked in the top 25, the lowest being TE/TL Y-3 at rank 19. In
addition to these, there are 4 other equity-related capital structure ratios among
the best 25 predictors. On the other hand, the GB model’s only capital structure
predictors in the top 25 are TE/TL Y-1 and net debt to equity ((TD-C)/TE) Y-1.
Total equity, and particularly TE/TL, undeniably has significant predictive power.
Due to the differences between the variable importances of RF and GB, it is difficult
to make any further conclusions regarding equity or other capital structure ratios.

Profitability ratios perform quite well for both models. They are slightly more
prominent in the top predictors of GB (4 in total) and occupy places 6, 10, 17, and
21. For RF, the top 25 includes 3 profitability ratios, ranked 13th, 14th, and 18th.
None of the predictors is shared by the two models. Additionally, it should be
noted that both models have a large number of profitability ratios in relatively high
rankings, approximately from 25 to 60. Altogether, it appears that profitability is,
as suggested by the literature, a key determinant of bankruptcy. However, no single
variable can be identified as particularly useful. Given the wide variety of business
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Table 11: Relative variable importances
RF GB avg. rank RF & GB
TE/TL Y-1 0.0189 TE/TL Y-1 0.1206 TE/TL Y-1 1
FE/TA Y-1 0.0154 FE/TA Y-1 0.0494 FE/TA Y-1 2
TE/TA Y-1 0.0136 AP/COGS Y-1 0.0395 FE/EBITDA Y-1 5
CL/TA Y-1 0.0131 **EE/PBD Y-1 0.0369 **EE/PBD Y-1 7.5
FE/EBITDA Y-1 0.0130 FE/EBITDA Y-1 0.0245 AP/COGS Y-1 9.5
TE/TL Y-2 0.0126 *(EBIT+FI)/TC Y-1 0.0203 FE/TA Y-2 9.5
FE/TA Y-2 0.0117 *(TL-TD)/S Y-1 0.0201 *(TD-C)/TE Y-1 10.5
FE/NI Y-1 0.0114 EE/VA Y-1 0.0200 CL/TA Y-1 11
TE/TA Y-2 0.0105 S Y-1 0.0196 FE/NI Y-1 13.5
*(TD-C)/TE Y-1 0.0093 GP/S Y-3 0.0188 *(TL-TD)/S Y-1 19
**EE/PBD Y-1 0.0089 *(TD-C)/TE Y-1 0.0184 *(EBIT+FI)/TC Y-1 20
TD/TE Y-1 0.0088 FE/TA Y-2 0.0183 *PBD/S Y-1 20.5
NI/TA Y-1 0.0083 *ind_risk Y-1 0.0168 EE/VA Y-1 22
*PBD/S Y-1 0.0076 **cagr AP/S 0.0129 NI/TE Y-1 23.5
FE/NI Y-2 0.0075 S Y-3 0.0128 TD/TE Y-1 25
AP/COGS Y-1 0.0074 AP/S Y-1 0.0121 FE/NI Y-2 25.5
TE/TA Y-3 0.0071 NI/TE Y-1 0.0117 *(TD-C)/TE Y-2 26.5
NI/S Y-1 0.0071 CL/TA Y-1 0.0102 AP/S Y-1 28.5
TE/TL Y-3 0.0071 FE/NI Y-1 0.0099 S Y-1 29.5
*(TD-C)/TE Y-2 0.0071 S Y-2 0.0094 SC/TC Y-1 31
(C+MS)/CL Y-1 0.0070 GP/S Y-1 0.0089 *ind_risk Y-1 32
SC/TC Y-1 0.0070 FE/EBITDA Y-2 0.0079 AP/COGS Y-2 32.5
*TD/PBD Y-1 0.0069 AP/COGS Y-2 0.0072 NI/TA Y-1 33
C/CL Y-1 0.0069 growth OCF Y-2 0.0070 FE/EBITDA Y-2 34
**EE/NI Y-2 0.0067 IA/TA Y-1 0.0070 EBIT/TA Y-1 35
*: variables from previous Valuatum model (Table 3)
**: additional predictor variables (Table 4)
Variables with no additional markings are from previous studies (Table 2).

models and cost structures, it is perhaps to be expected that diverse profitability
variables are needed in order to create a model that works well across industries.

Activity variables are found effective, particularly for the GB model, for which
they constitute 3 of the top 10 predictors. These are accounts payable to cost of
goods sold (AP/COGS) at 3rd, employee expenses to profit before depreciation,
amortization and extraordinaries (EE/PBD) at 4th, and employee expenses to
value added (EE/VA) at 8th, each measured for the latest year Y-1. Also in the top
25 are accounts payable to sales (AP/S) Y-1 at 16th, and AP/COGS Y-2 at 23rd.
For RF, activity ratios are somewhat less relevant, the best being EE/PBD Y-1
at 11th, followed by AP/COGS Y-1 (16th) and employee expenses to net income
(EE/NI) Y-2 (25th). These rankings indicate that two operational aspects, accounts
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Figure 4: Relative variable importances - RF and GB

payable turnover and employee efficiency, are important bankruptcy determinants.
Receivables and inventory turnover ratios are mostly insignificant for either model,
and coarser measurements such as sales to total assets (S/TA) and (net) working
capital to sales (WC/S, NWC/S) also perform quite weakly. Some predictors
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measuring cost structure, such as EBIT to value added (EBIT/VA) and net income
to value added (NI/VA) are moderately relevant to both models. Contrary to Jones
et al. (2017), capital expenditure does not appear particularly useful for either
model.

Solvency, and in particular financial expenses, are important for both prediction
models. In the RF model, the ratio to total assets (FE/TA) and to net income
(FE/NI) for years Y-1 and Y-2, as well as the aforementioned FE/EBITDA Y-1, are
in the top 25, with FE/NI Y-2 ranking lowest at 15. In addition to these solvency
indicators, total debt to profit before depreciation, amortization and extraordinaries
(TD/PBD Y-1) is included. For the GB model, FE/TA and FE/EBITDA for Y-1
and Y-2, as well as FE/NI Y-1, are among the best 25 predictors. An interesting
observation regarding financial expenses is that similar predictors using only interest
expenses (e.g. EBIT/IE, NI/IE) are of very little use; RF ranks all of them among
the 20 worst predictors, while for GB the highest-ranking interest expense predictor
is NI/IE Y-1 at 94th. Although total financial expenses (FE) includes interest
expenses (IE) and therefore holds some of the same information, it does not seem
reasonable that this would cause IE to be irrelevant. It seems probable that interest
expenses are saved in the database under another variable, such as other financial
expenses. Interest expenses are unlikely to be missing altogether: in this case,
there would be a discrepancy between profit in the income statement and reported
profit on the balance sheet, and such errors are checked against in the Valuatum
system. Moreover, descriptive statistics (Table B1) show that IE ratios do have
some non-zero values.

Liquidity measures are markedly rare in the top predictor ranking of both models.
Current liabilities to total assets (CL/TA) Y-1 is the highest ranked liquidity
variable for both RF (4th) and GB (18th); for GB it is the only one in the top
25. Although it is listed here under liquidity, CL/TA does not measure short-term
payment ability and its status as a liquidity ratio is questionable. The only other
liquidity variables are found in the RF model’s ranking: cash and marketable
securities to current liabilities ((C+MS)/CL) Y-1 at 21st, and cash to current
liabilities (C/CL) Y-1 at 24th. In this aspect, the findings somewhat contradict the
prevalent view in the literature that liquidity is one of the most important predictor
categories; however, factors such as local accounting practices and bankruptcy
legislation can certainly affect the usefulness of liquidity indicators. Another
potential reason is the time period from which the data are collected: the financial
crisis and subsequent recession may have caused temporary liquidity issues even
to fundamentally healthy companies, making them less distinguishable from those
close to failure.

A further point of interest regarding liquidity is that quick ratio (QA/CL) and
current ratio (CA/CL), the most commonly used measures, are much less effective
predictors than C/CL and (C+MS)/CL. It does seem plausible that the most
liquid assets should hold the most predictive power, as inventories and receivables
can be somewhat illiquid. In such a case a failing, indebted company is forced to
exhaust its cash reserves to cover short-term obligations, while capital remains tied
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to less liquid assets; this view is shared by Beaver (1968), who notes that failing
companies tend to have high inventory balances.

The models behave very differently where growth variables are concerned. RF is
not able to use them effectively: the best growth variable is EE/PBD growth Y-1
at rank 91. On the other hand, for GB the compound annual growth rate from
Y-3 to Y-1 (CAGR) of AP/S ranks 14th, and growth in operating cash flow (OCF)
in Y-2 ranks 24th. Additionally, many growth indicators occupy ranks 25-65. Both
profitability and activity are represented among these; growth measures of other
variables such as share capital, total debt, or debt to assets, perform poorly.

On the whole, the observed relative variable importances are mostly in line with
extant literature; the importance of solvency, activity, profitability, and capital
structure is affirmed. The particular significance of equity ratio TE/TL should not
be taken for a universal truth, but similar findings in the literature (Tian & Yu,
2017) support the observation. The considerable importance of financial expenses
cannot be readily explained and may be particular to this sample; it is nonetheless
an interesting finding that could prove useful for future studies. Employee efficiency
has been found valuable before (Lin et al., 2012a), but many studies measure it
with the number of employees; the results here show that employee expenses are a
valid option for constructing the ratios. Employee expenses are also useful due to
being a standard item in financial statements, whereas the number of employees is
often not included by default; it might be useful to compare the two approaches in
a context where both variables are available. One somewhat surprising result is the
relatively weak performance of liquidity ratios. However, in most studies some of
the typical predictor categories perform worse than others for no apparent reason;
this study adds to the evidence showing that the usefulness of different predictor
categories can vary significantly depending on the context.



72

6 Discussion and conclusions

6.1 Discussion of results

The aim of this study was to examine possible means of improving the performance
of the bankruptcy prediction model used by Valuatum Ltd. This was carried out
by means of a review of relevant literature and an empirical study designed in
accordance with the findings of the literature review.

The literature review examined the key aspects of corporate failure prediction,
including prediction techniques and the various (accounting-based) predictor vari-
ables and their importance. The field of failure prediction is very empirically
oriented: theory on the causes of bankruptcy is mostly disconnected from predic-
tion. Definitions and terminology in the literature are somewhat inconsistent, and
failure prediction is often addressed as part of a wider conglomeration of literature
including subjects such as financial distress prediction and both corporate and
consumer credit risk.

The first research question concerned bankruptcy prediction methods: "Which
bankruptcy prediction techniques provide the best balance of performance and us-
ability in the context of Finnish SMEs?" The literature review showed that there
is no consensus regarding the superiority of prediction methods; empirical results
vary, and the preferred approach largely depends on the objectives of the study. In
line with the goal of finding a practically applicable yet high-performing model,
certain methods were excluded from consideration due to their lack of transparency
and interpretability. For the empirical study, three decision tree-based ensemble
machine learning methods were chosen: random forest, AdaBoost and gradient
boosting. An individual decision tree classifier and a logistic regression model were
trained as benchmarks. Empirical results showed that all the ensemble models
perform well, while the standalone decision tree and logistic regression were no-
ticeably inferior. Random forest performed consistently well; gradient boosting
outperformed AdaBoost on imbalanced data, but was slightly inferior on balanced
data. Random forest and gradient boosting were chosen for more detailed analysis
and testing.

Further analysis showed that random forest outperforms gradient boosting by a
small margin; however, gradient boosting appears more robust against changes
in class distribution and sample size. Balancing the training set was observed to
deteriorate model performance; however, a 1:10 balanced training set produces
results closely comparable to the full training set. Nonetheless, the random forest
model trained on unadjusted training data gave the highest PR AUC score, and is
therefore the recommended choice for Valuatum.

The second area of interest were predictor variables: "Which accounting-based
predictor variables are the most important for Finnish SMEs, and how should
the variable set be composed?" The literature review indicated that certain key
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determinants of bankruptcy should be represented: at least profitability, solvency,
liquidity, capital structure, and activity. A further observation from the extant
literature was that the time dimension should be taken into account: in this
thesis, the issue was addressed by using data from a three-year period and by
including variables that calculate change in financial ratios over time. Based on
three prior studies, a large set of predictors was assembled that represents the
aforementioned categories. The variable set was augmented with predictors from
Valuatum’s previous model that had been empirically found to be effective, and
some further variables were added based on various literary sources and observed
potential deficiencies in the variable set.

Two feature selection techniques were applied to assess the impact of the composition
and size of the predictor set. The findings indicated that feature selection mainly
induces slightly inferior performance, although improvement was also observed in
some cases. Considerable variability was observed between the variable importances
of different models: predictors that played a key role in some models could be
insignificant for others. Although some individual variables performed consistently
well, no evidence was found to indicate that some subset of variables is clearly
superior, even for the specific sample used in this study. The best classifiers used in
this study are resistant against redundant features, and therefore there is no need
to reduce the number of predictors. Thus, the suggestion for practical application
is that no feature selection method should be applied.

Two predictor variables were found to be consistently good predictors for different
classifiers. Total shareholders’ equity to total liabilities in the latest year (TE/TL
Y-1) was the most important, and financial expenses to total assets in the latest
year (FE/TA Y-1) the second-most important feature for each of the ensemble
models used in this study. However, the empirical study also demonstrated that
relevant information can be extracted from a large variety of predictors. Other
capital structure and solvency measures than the two aforementioned were also
found useful. Activity ratios, accounts payable turnover and employee efficiency in
particular, showed significant predictive power. Profitability measures were useful,
but there was notable variability between the specific ratios used by different models.
Contrary to prior literature, liquidity ratios were relatively weak predictors. The
overall conclusion is that, as the literature suggests, different predictor categories
should be represented and the selection of predictors should be sufficiently large
and diverse.

From a practical perspective, the key objective was to achieve improved performance
compared to the bankruptcy prediction model previously used by Valuatum. The
best model in this regard was found to be the random forest classifier using no
feature selection or data resampling methods, which slightly outperformed the
previous model in terms of both key metrics, PR AUC (0.195 vs. 0.19) and ROC
AUC (0.915 vs. 0.91). Although the improvement is small, the main goal of the
thesis in terms of concrete, practicable results was reached. The proposal for
Valuatum is to implement the random forest classifier, trained on an unadjusted
training set and using the full selection of predictor variables as presented in
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Section 3.5. However, since the performance differences between random forest
and gradient boosting are relatively small, both models should be included when
further analysis and development is conducted.

6.2 Academic and practical implications

From an academic perspective, the findings regarding the superiority of ensemble
models to standalone decision tree and logit is not particularly surprising; similar
findings are common in the recent literature. In this thesis, random forest slightly
outperforms boosting methods, and gradient boosting is superior to AdaBoost.
Very similar findings are reported by Brown & Mues (2012), who show that both
random forest and gradient boosting perform well and can cope with class imbalance;
random forest is found superior in the presence of imbalance similar to this study
(1:99). García et al. (2019) also find that random forest performs slightly better
than AdaBoost and stochastic gradient boosting; however, their results are too
mixed to deem either boosting model better than the other. Contrasting results
are also found: Jones et al. (2017) find that boosting models mostly perform better
than random forest, although by a small margin, and Barboza et al. (2017) find
no notable performance difference between AdaBoost and random forest. This
thesis contributes to academic literature by adding evidence of the generally good
bankruptcy prediction performance of ensemble models, and particularly random
forest; however, no definitive conclusions can be drawn from the findings.

Feature selection methods are found to deteriorate rather than improve performance;
this is somewhat contrary to the prevalent view that models should aim for simplicity
to maximize predictive capacity (Veganzones & Séverin, 2020). However, decision
tree-based classifiers are known to be resistant to irrelevant features (Hastie et
al., 2009), and therefore the findings cannot be considered particularly surprising.
Additionally, good performance in a high-dimensional context has been observed
previously (Jones, 2017).

Perhaps the most interesting result in terms of predictive performance is found by
comparing models trained on balanced and imbalanced training sets. As Veganzones
& Séverin (2018) suggest, reducing imbalance appears to improve model performance
in terms of area under the receiver operating characteristic curve (ROC AUC), the
most commonly used metric for failure prediction models. However, the deficiencies
of the ROC curve in a highly imbalanced setting have been noted in other fields
of research (Davis & Goadrich, 2006; Saito & Rehmsmeier, 2015); area under the
precision-recall curve (PR AUC) is proposed as a more suitable measure. PR AUC
scores reveal that the original imbalanced training set yields superior performance
compared to balanced training sets, which contradicts the ROC AUC results and
challenges the consensus in the extant literature. Future studies should include PR
AUC alongside the commonly used metrics, or otherwise pay attention to finding
measures that are appropriate in the presence of significant class imbalance.

Although the performance of individual features is likely to be sample-specific, the
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findings strongly indicate that shareholders’ equity and financial expenses are key
determinants of bankruptcy in the Finnish SME context, and that ratios built on
either of these two components are useful predictors. Another finding that may be
of particular interest is the relatively high importance of employee efficiency ratios.
In itself, this is not unexpected, but many studies use the number of employees,
whereas this thesis utilizes employee expenses to construct the variables. Although
no comparison can be made here between the two approaches, employee expenses
seem to be a viable option, at least if the number of employees is not available.

In general, the variable importances are mainly in line with prior literature: capital
structure, solvency, activity, and profitability are all found to have predictive
power. The relative unimportance of liquidity indicators is somewhat surprising
and conflicts with literary consensus. A further observation on liquidity is that
traditional indicators such as current and quick ratio are particularly inefficient;
predictors involving only the most liquid items perform better. The findings are
not enough to refute the usefulness of liquidity variables entirely; however, specific
attention should be paid to the design of individual ratios in order to capture the
effects of liquidity as accurately as possible.

As noted before, bankruptcy prediction models tend to be sample-specific, and the
models used in this thesis are unlikely to perform optimally in different contexts.
A variety of factors such as the characteristics of local economy and legislation
can greatly impact the relationships between predictor variables and firm failure.
However, some general guidelines can be drawn from this thesis for practitioners
seeking to construct a high-performing yet practical failure prediction model.

Ensemble classifiers are shown to be accurate; additionally, they are robust against
data-related issues, such as missing values and outliers, that are common in financial
data. By using decision trees as base learners, the models are also interpretable: the
impact of different predictors can be easily quantified to assess their importance. The
particular predictors that are most efficient are likely to be dissimilar for different
classifiers and samples; therefore it is important that a sufficiently large number
of variables is included, at least initially. Decision tree ensembles are also helpful
in this respect, since they are not impeded by irrelevant or redundant predictors:
the user can include a diverse collection of predictors without deteriorating model
performance, and thus is more likely to discover the predictors that work best in
the specific context.

6.3 Reliability and validity

6.3.1 Reliability

The reliability of this thesis is affected to some extent by the origin of the empirical
data. The financial statements were originally obtained from Bisnode, a reputable
commercial data provider; the data source can be considered reliable. The data
are used as a key element in the Valuatum analysis platform and monitored for



76

errors or anomalies, and can therefore be assumed to maintain high quality after
being received from the data provider. Nonetheless, transferring data between
dissimilar systems always involves the possibility of errors. In this study, the
data are moved numerous times: from a firm’s accounting system to its financial
statement, which is then stored in the Bisnode database, whence it is conveyed to
the Valuatum database, and finally extracted for use in this thesis. The finding
that interest expenses are practically irrelevant, while total financial expenses are a
strong predictor, indicates that some type of distortion may have occurred; other
similar issues may be present in the data, even if they are not readily observable.

In addition to errors related to data storage and processing, a potential threat to
the reliability of this study are accidentally or deliberately misleading financial
statement figures. A variety of factors, from purposeful distortion through earnings
management (du Jardin, 2019; Serrano-Cinca et al., 2019) to accountant errors, may
cause financial statements to misrepresent the true financial status of a company.
The value of a financial statement item could be different for two identical companies,
and conversely two different companies could have identical values, purely due to
choices made by the accountant.

Despite possible errors and inconsistencies, this thesis can be considered reliable.
The data are from a reputable, widely used commercial source, and subject to
both automatic and manual monitoring and observation. While single financial
statement items are not entirely reliable, the empirical study mostly utilizes ratios
constructed of aggregate values such as current assets, total liabilities, or EBIT,
which can be assumed relatively robust in the presence of minor inconsistencies
in individual financial statement items. Missing values or errors may be present,
but they are consistently treated as zeroes. Literary source material is chiefly from
peer-reviewed scientific journals of good repute, and thus reliable.

6.3.2 Internal validity

The main reason to question the internal validity of this thesis is the lack of
underlying theory in corporate failure prediction (Balcaen & Ooghe, 2006). As
noted in the literature review, bankruptcy theory remains disconnected from
empirical prediction studies, and research design is mainly based on previous
empirical findings. Addressing the issue is outside the scope of this thesis, and
therefore prior empirical studies are used as the main guideline. Despite the lack of
theoretical basis, the design of the study and methodological choices are backed by
an extensive body of research spanning decades, and therefore causes no notable
concerns regarding internal validity.

It is well established in the literature that accounting-based predictors alone are
not sufficient for predicting firm failure. The prediction models constructed in this
thesis cannot capture all of the numerous complex factors that affect bankruptcy,
but neither are they supposed to do so. The main goal is predicting bankruptcy;
omitting some explanatory factors is done as a methodological choice. Thus, the
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set of predictors used is not an issue in terms of internal validity.

The research process and technical implementation are a potential source of internal
validity issues. To avoid possible concerns arising from methodological errors or
inconsistencies, the research structure and process are designed in accordance with
the relevant literature. Using off-the-shelf procedures for technical implementation
helps avoid errors caused by algorithm design flaws. The Python programming
language and the scikit-learn package are widely used tools in machine learning
research, and can be considered appropriate for this study.

Many prediction methods are known to be unreliable if the available training data
are scarce (Alaka et al., 2018). In the empirical part of this thesis, the sample
contains the financial statements of over 125 000 companies, which eliminates
potential issues caused by data scarcity. The large sample size also allows splitting
the data into separate training, validation and test sets. This ensures that the
measured out-of-sample performance is not distorted by data leakage (Kaufman
et al., 2011). To further improve the robustness and validity of the results, they
are averaged over ten runs of the classification procedure.

Any conscious or unconscious biases of the author can impact the research process;
in this case, none are acknowledged. Particular attention must also be paid to the
fact that this thesis is both an academic and a corporate project. The corporate
employer did not impose any explicit or implied restrictions or objectives that could
interfere with the research, and the objective from both perspectives is to construct
a high-performing prediction model. Thus, there are no conflicts of interest or
biases that threaten the internal validity of this thesis.

6.3.3 External validity

As has been discussed previously, this thesis involves some issues that raise concerns
regarding external validity, i.e. generalizability of the results. The sample contains
financial statement data from over 125 000 Finnish SMEs, and is undoubtedly large
enough to be representative of the Finnish SME population. The companies are
selected randomly, and therefore population-related bias should not be an issue.
This thesis did not attempt to produce results that can be generalized to other
populations (e.g. different countries), and the empirical results should not be
assumed applicable outside the Finnish SME context.

The generalizability of the results across different time periods is questionable.
The prediction models used in this study are only trained and tested on historical
data from the years 2008–2010. As Balcaen & Ooghe (2006) point out, this may
lead to problems related to non-stationarity and data instability: the relationships
between predictor variables and bankruptcy risk change over time due to factors
external to the model. For example, it could be assumed that the economic crisis
and subsequent recession in 2008–2010 impact the relationships between financial
ratios and bankruptcy risk. If input data from a period of economic upturn (or
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even a different recession) were used, the previously observed variable importances
would not apply to the data, and the predictive performance of the models might
be different.

Beaver et al. (2005) suggest that financial ratios are robust predictors with regard
to time, but nonetheless the results cannot be assumed to generalize well to other
periods without further testing. As Serrano-Cinca et al. (2019) suggest, intertem-
poral validation would increase the generalizability of the results; unfortunately,
no suitable data for doing so were available in this study. Compared to prior
bankruptcy prediction research, the external validity of this thesis can nonetheless
be considered relatively high, because many studies suffer from the aforementioned
issues, and additionally use much smaller samples. One important aspect to note is
that the ecological validity of this study is certainly high, as it only uses real-world
data without any kind of separate experimental setup.

6.4 Limitations

As already discussed in the previous sections, this thesis suffers from some lim-
itations. Relying exclusively on accounting-based variables severely limits the
possibilities of discovering the most important predictors overall; only the best
financial predictors can be studied. The lack of alternative variables is also likely
to impact predictive performance negatively. Although the focus on financial
predictors is defined in the scope of this thesis, it is a major limitation that is worth
mentioning.

Another limitation is the temporal scope of the empirical data. The results cannot
be validated on data from different time periods, and their generalizability is
therefore limited. A further issue is that the data are from 2008–2010, a period
of financial crisis and recession; the usefulness of the prediction models may be
limited to similar economic conditions only. Sole focus on Finnish companies also
limits the applicability of the findings to other contexts.

This study predicts bankruptcies on a two-year forecasting horizon; the eventual
declaration of bankruptcy may occur long after the proceedings have commenced,
and therefore predicting a bankruptcy that takes place in two years or earlier may
be of limited use (Balcaen & Ooghe, 2006). Although bankruptcy is the preferred
choice of output variable due to having an unambiguous definition (Veganzones
& Séverin, 2020), and therefore also used in this study, an alternative measure
could be more useful if the prediction models are to be applied as an early warning
system.

Despite the extensive number of different accounting-based predictors, all variables
from the examined three studies cannot be applied due to lack of sufficiently
granular information. Furthermore, there are countless financial predictors in other
studies that have been found efficient, but are not used in this thesis; research on
bankruptcy prediction is so extensive that some potentially relevant studies are
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certainly left unexplored, regardless of attempts to conduct a thorough literature
review.

Some limitations are imposed by the methodological choice of using the scikit-learn
package. The selection of classification methods, although extensive, does not
include some of the (less frequently used) alternatives found in the literature. Other
aspects such as feature selection and hyperparameter tuning are also limited to
those options provided in scikit-learn. Naturally, there are no actual obstacles to
using supplementary solutions, but it would conflict with the aim of simplicity and
usability. An additional technical limitation is the availability of computational
power: some aspects such as the number of hyperparameter combinations for tuning
have to be limited, as the prediction modeling is conducted on an ordinary laptop
computer with no additional resources.

The usefulness of the results for practical application may be somewhat limited due
to the performance metrics used. The ROC and PR curves present an overall view
of the models’ performance, but are not directly suitable for finding the optimal
cutoff threshold for a particular context with specific misclassification costs. On
the other hand, Fβ allows adjusting the weights based on the user’s preference,
but is limited to a single cutoff threshold at a time. Misclassification costs are
not constant: they depend on the use case and on the firm under observation.
Therefore, a more dynamic solution for evaluating model performance would be
preferable.

6.5 Future research

The findings of this thesis point to some research topics that should be explored
further. The use of the area under the precision-recall curve (PR AUC) for model
evaluation is common in some fields, and it is considered more suitable for highly
imbalanced data, but failure prediction studies still mostly rely on the area under
the receiver operating characteristic curve (ROC AUC). Future studies should
include PR AUC or other similar measures to ensure the results are examined from
different angles. The widespread reliance on ROC AUC may hide the effects of class
imbalance to some extent: as this study shows, balancing the data may improve
ROC AUC while simultaneously decreasing PR AUC. Additionally, more research
on the effects of different levels of imbalance is needed: this study is unable to
provide much concrete evidence, as the depletion of the training data seems to play
a part in predictive performance, thus masking the true impact of class imbalance.

Although a large number of predictors are tested in this thesis, research on additional
financial variables is warranted. Since annual growth variables do not appear
particularly efficient in the empirical study, additional efforts could be made to
integrate the time dimension of the bankruptcy process into accounting-based
models. For example, Nyitrai (2019) proposes a dynamic indicator variable with
promising results; further research on similar concepts could be useful. This
approach would also provide an interesting alternative to recent studies that build
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prediction models based on different failure processes and patterns (du Jardin, 2018;
Lukason & Laitinen, 2019). Another potentially interesting subject would be to
include comparisons to peer companies, for example by calculating financial ratios
in relation to industry median. Such predictors could in many cases provide more
relevant information than the financial ratio by itself, because they incorporate
industry differences in business models and profit structures.

The literature on non-accounting predictor variables is already extensive, and this
thesis provides no additional indication regarding future directions that should be
pursued in academic research. However, from a practical perspective the use of
non-accounting variables is certainly something worth exploring. The possibilities
for Valuatum are somewhat limited due to the technical restrictions imposed by
the current software platform, as well as the availability and integrability of new
data sources. Macroeconomic indicators could be a suitable starting point, as
they are readily available and do not require firm-specific data; experimentation
could be carried out manually, without need to commit to costly integration work.
The possibility of using market-based information with unlisted companies (see
Andrikopoulos & Khorasgani, 2018) could also be considered.

As a final note on future research directions, this study shows that practicality
and ease of use do not preclude high predictive performance. Many recent studies
develop complex new prediction techniques and achieve excellent results, but in
the end, bankruptcy prediction models are of very limited value if they are never
applied in practice. Business practitioners could certainly benefit from scientifically
developed state-of-the-art prediction models; on the other hand, wide-ranging
adoption could advance scientific research further through additional empirical
evidence, improved data accessibility, and increased general interest in corporate
failure prediction. The ability to accurately predict bankruptcies is of immense
value to individuals, companies, and society at large; it is in everyone’s best interest
to promote deeper cooperation between the scientific and business communities.
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A Financial variable abbreviations
A variety of financial ratios are used as predictors in this study, as described in
Section 3.5. The abbreviations used for different financial statement items and
aggregate values throughout this thesis are presented in Table A1.

Table A1: Financial variable abbreviations
AP Account payable
AR Accounts receivable
C Cash
CA Current assets
CAPEX Capital expenditure
CL Current liabilities
COGS Cost of goods sold
EBIT Earnings before interest and taxes
EBITDA Earnings before interest, taxes, depreciation and amortization
EE Employee expenses
FA Fixed assets
FE Total financial expenses
FI Total financial income
GP Gross profit
I Inventories
IA Intangible assets (excl. goodwill)
IE Interest expenses
MS Marketable securities
NI Net income
NWC Net working capital
OCF Operating cash flow
PBD Profit before depreciation, amortization and extraordinaries
QA Quick assets
RE Retained earnings
S Sales
SC Share capital
TA Total assets
TC Total capital
TD Total (interest-bearing) debt
TE Total shareholders’ equity
TR Total receivables
VA Value added
WC Working capital
WD Asset write-downs
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B Sample descriptive statistics
Table B1 presents the descriptive statistics for the empirical data used in this
thesis. The table only shows the statistics for the latest available fiscal year
(2010, Y-1) and the compound annual growth rate variables. The two earlier
years are omitted for practical reasons; the values of the features behave similarly
and offer no additional insights. The values of the unscaled variables S and TA
are presented in millions of euros, i.e. a value of 1.00 corresponds to EUR 1 000
000.

Table B1: Sample descriptive statistics

mean std min Q1 Q2 Q3 max

AP/COGS Y-1 0.45 16.24 -2857.00 0.00 0.01 0.14 2850.00
AP/S Y-1 -0.40 203.41 -48722.49 0.00 0.00 0.07 39695.16
AR/S Y-1 43.29 632.10 -73000.00 0.00 8.74 36.27 84680.00
C/CA Y-1 0.40 0.45 -27.00 0.07 0.33 0.71 85.00
C/CL Y-1 2.89 26.31 -581.00 0.03 0.33 1.33 5009.00
C/S Y-1 0.74 11.01 -508.00 0.01 0.07 0.26 1320.71
C/TA Y-1 0.24 0.38 -15.00 0.02 0.12 0.37 85.00
(C+MS)/CL Y-1 3.59 36.67 -581.00 0.03 0.34 1.46 7185.00
(C+MS)/S Y-1 0.97 17.58 -508.00 0.01 0.08 0.28 3182.00
CA/CL Y-1 7.17 76.00 -1035.00 0.62 1.50 3.42 12545.20
CA/S Y-1 2.21 44.24 -642.00 0.14 0.32 0.69 9261.58
CA/S Y-2 2.31 66.14 -1042.00 0.14 0.31 0.69 19899.00
CA/S Y-3 1.85 28.78 -1308.00 0.14 0.30 0.62 3221.00
CA/TA Y-1 0.60 0.34 -4.00 0.29 0.67 0.92 6.00
CA/TD Y-1 5.15 112.30 -2092.12 0.00 0.03 1.26 14301.00
CAPEX/TA Y-1 -0.05 5.44 -1141.00 0.00 0.00 0.05 6.98
CL/S Y-1 1.26 29.03 -460.33 0.07 0.16 0.34 6546.85
CL/TA Y-1 0.51 4.34 -45.50 0.09 0.27 0.54 845.00
CL/TD Y-1 2.56 62.79 -387.00 0.00 0.03 1.00 11504.00
EBIT/IE Y-1 -1.40 50.52 -6958.00 0.00 0.00 0.00 1563.00
EBIT/S Y-1 -0.26 65.67 -22599.67 0.00 0.03 0.14 2675.00
EBIT/TA Y-1 0.03 2.54 -834.50 0.00 0.04 0.16 92.00
EBIT/TE Y-1 0.23 7.39 -1055.62 0.00 0.11 0.39 612.14
EBIT/VA Y-1 0.35 55.34 -5999.00 0.00 0.14 0.50 18079.73
EBITDA/S Y-1 0.03 15.49 -4071.00 0.00 0.07 0.21 2683.00
EBITDA/TA Y-1 0.07 1.32 -211.00 0.00 0.09 0.23 92.00
EE/VA Y-1 -0.49 3.56 -358.33 -0.87 -0.57 0.00 858.00
FA/TA Y-1 0.27 0.31 -4.60 0.01 0.12 0.46 5.00
FE/EBITDA Y-1 -0.35 153.10 -52905.33 -0.06 0.00 0.00 5737.00
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mean std min Q1 Q2 Q3 max

FE/NI Y-1 -0.05 72.69 -15504.00 -0.05 0.00 0.00 8841.00
FE/TA Y-1 -0.02 0.42 -106.00 -0.02 0.00 0.00 1.40
FE/VA Y-1 0.17 24.64 -2003.00 -0.03 0.00 0.00 5737.00
GP/S Y-1 0.63 2.91 -49.70 0.02 0.10 0.34 199.17
GP/TA Y-1 1.45 16.58 -58.26 0.01 0.13 0.66 4969.67
I/COGS Y-1 0.37 6.44 -227.42 0.00 0.00 0.05 759.76
I/NWC Y-1 0.25 8.07 -1559.00 0.00 0.00 0.22 432.67
I/S Y-1 0.36 6.13 -80.67 0.00 0.00 0.07 759.00
I/TA Y-1 0.12 0.34 -84.00 0.00 0.00 0.14 16.00
IA/TA Y-1 0.02 0.08 -0.35 0.00 0.00 0.00 2.50
IE/GP Y-1 -1.42 117.26 -27000.00 0.00 0.00 0.00 8833.33
IE/S Y-1 -0.02 0.92 -192.20 0.00 0.00 0.00 0.62
NI/CL Y-1 -0.08 284.09 -97748.50 -0.03 0.08 0.55 19295.00
NI/IE Y-1 -0.85 29.91 -4782.00 0.00 0.00 0.00 1402.00
NI/S Y-1 0.02 18.73 -4042.00 -0.00 0.02 0.10 2730.28
NI/TA Y-1 -0.02 3.73 -699.00 -0.02 0.03 0.13 548.67
NI/TE Y-1 0.08 5.47 -1074.38 0.00 0.10 0.31 652.50
NI/VA Y-1 0.06 111.02 -23154.00 0.00 0.12 0.49 27928.14
NWC/S Y-1 0.73 39.27 -3715.00 0.00 0.09 0.35 7937.92
NWC/TA Y-1 0.06 4.35 -844.00 -0.02 0.20 0.52 47.50
NWC/TA Y-2 0.13 3.07 -890.00 -0.02 0.20 0.52 20.80
NWC/TA Y-3 0.17 1.22 -152.00 -0.01 0.21 0.51 8.50
OCF/S Y-1 -0.13 32.53 -9296.00 0.00 0.05 0.19 3083.00
OCF/S Y-2 0.10 20.49 -1420.62 0.00 0.05 0.19 3949.50
OCF/S Y-3 0.23 45.48 -4397.90 0.00 0.07 0.24 11627.00
OCF/TA Y-1 0.07 3.42 -308.00 -0.01 0.08 0.22 764.00
OCF/TD Y-1 0.95 47.24 -6139.19 0.00 0.00 0.24 12230.00
OCF/TE Y-1 0.42 22.46 -3610.00 -0.05 0.14 0.49 3186.26
OCF/TE Y-2 0.42 54.30 -17027.50 -0.06 0.14 0.50 3031.00
OCF/TE Y-3 1.16 39.77 -2711.38 -0.02 0.22 0.72 7160.67
OCF/VA Y-1 0.11 112.07 -25133.33 0.00 0.20 0.64 13896.74
OCF/VA Y-2 0.64 137.29 -17012.00 0.00 0.19 0.60 34055.00
OCF/VA Y-3 0.85 135.73 -12880.00 0.00 0.25 0.70 27373.00
QA/CL Y-1 5.62 69.41 -585.00 0.37 1.12 2.72 12545.20
QA/TA Y-1 0.47 0.42 -15.00 0.17 0.44 0.78 85.00
RE/TA Y-1 -0.30 12.03 -2173.00 -0.01 0.20 0.53 56.00
S Y-1 1.19 9.09 -10.54 0.02 0.14 0.54 2377.70
S/TA Y-1 1.92 8.32 -42.00 0.21 1.15 2.42 1403.70
SC/TC Y-1 0.24 1.79 -200.00 0.02 0.07 0.24 200.00
TA Y-1 1.65 16.75 -0.03 0.04 0.15 0.52 2188.24
TD/TA Y-1 0.49 7.00 -74.00 0.00 0.05 0.44 1912.00
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mean std min Q1 Q2 Q3 max

TD/TE Y-1 7.54 1095.24 -16541.00 0.00 0.00 0.58 384871.00
TE/TA Y-1 0.07 8.59 -1912.00 0.14 0.49 0.81 59.00
TE/TL Y-1 0.26 4.91 -910.00 0.19 0.52 0.82 3.14
VA/FA Y-1 11.12 75.22 -9983.00 0.00 1.16 6.69 9810.00
VA/S Y-1 0.33 15.24 -4071.00 0.10 0.37 0.60 2698.00
VA/TA Y-1 0.67 1.71 -211.00 0.06 0.40 0.93 92.00
WC/S Y-1 0.25 38.20 -3715.00 -0.07 0.00 0.12 7929.67
WC/S Y-2 0.12 36.45 -5049.71 -0.07 0.00 0.12 8138.00
WC/S Y-3 0.26 22.54 -3049.00 -0.07 0.00 0.11 2714.50
WC/TA Y-1 -0.10 3.96 -833.00 -0.12 0.00 0.20 42.50
WD/TA Y-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
growth CAPEX Y-1 1.04 321.84 -14268.80 -1.00 0.00 0.00 107897.33
growth NI Y-1 0.85 487.54 -19475.00 -1.05 -0.32 0.20 171170.00
growth OCF Y-1 -0.50 49.77 -7393.53 -1.37 -0.52 0.20 9277.87
growth TD Y-1 0.31 17.48 -135.00 -0.11 0.00 0.00 4497.86
growth WC Y-1 -0.85 236.71 -83673.00 -0.71 -0.05 0.27 1602.00
*(EBIT+FI)/TA Y-1 0.08 0.28 -8.67 -0.01 0.05 0.18 15.87
*(EBIT+FI)/TC Y-1 636.85 264648.36 -10000000.00 -0.01 0.07 0.26 10000000.00
*ind_risk Y-1 0.01 0.01 0.00 0.00 0.01 0.01 0.03
*PBD/S Y-1 -0.08 16.23 -4397.00 0.00 0.05 0.16 2686.00
*TD/PBD Y-1 -397.69 101718.01 -10000000.00 0.00 0.00 1.45 10000000.00
*(TD-C)/EBITDA Y-1 -79.10 28223.54 -10000000.00 -1.68 0.00 2.00 181726.00
*(TD-C)/TE Y-1 103.24 3332.08 -3819.00 -0.57 -0.04 1.42 690494.00
*TL/S Y-1 3.39 69.53 -1597.67 0.09 0.24 0.70 13799.50
*(TL-C)/S Y-1 2.42 70.10 -3091.00 -0.02 0.11 0.53 13770.00
*(TL-TD)/S Y-1 1.03 27.65 -419.00 0.06 0.14 0.27 6546.85
**EE/NI Y-1 -4.27 151.39 -20359.00 -3.81 -0.00 0.00 21097.00
**EE/PBD Y-1 -2.38 32.32 -1599.00 -3.31 -0.25 -0.00 3126.00
**EE/S Y-1 -0.30 2.38 -396.50 -0.41 -0.19 0.00 96.00
**TR/S Y-1 1.08 39.47 -1008.00 0.02 0.09 0.20 9253.33
**growth AP/S Y-1 0.80 133.38 -11957.29 -0.15 0.00 0.00 40749.98
**growth EBIT/S Y-1 -1.28 338.10 -114902.91 -1.00 -0.18 0.08 13374.31
**growth EE/NI Y-1 -0.12 30.10 -2199.95 -0.99 0.00 0.00 8108.00
**growth EE/PBD Y-1 -0.18 24.26 -1551.00 -0.75 0.00 0.00 7640.00
**growth EE/S Y-1 0.19 7.32 -243.79 -0.10 0.00 0.05 1520.17
**growth EE/VA Y-1 -0.08 24.61 -7519.00 -0.14 0.00 0.06 3004.10
**growth GP/S Y-1 0.10 30.87 -7410.00 -0.16 0.00 0.18 1774.00
**growth NI/S Y-1 -4.04 1674.20 -559009.44 -1.00 -0.21 0.05 132770.99
**growth PBD/S Y-1 -0.78 340.39 -99279.37 -1.00 -0.12 0.11 67566.24
**growth SC Y-1 0.14 31.95 -13.67 0.00 0.00 0.00 11212.00
**growth TD/TA Y-1 0.34 50.29 -102.32 -0.10 0.00 0.00 17500.00
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mean std min Q1 Q2 Q3 max

**growth TR/S Y-1 1.06 29.96 -713.50 -0.30 0.00 0.28 5962.00
**cagr AP/S 0.08 1.22 -1.00 -0.01 0.00 0.00 179.50
**cagr CAPEX -0.01 2.18 -1.00 -0.61 0.00 0.00 567.94
**cagr EBIT/S 0.06 2.01 -1.00 -0.19 0.00 0.01 491.21
**cagr EE/NI 0.09 1.17 -1.00 -0.06 0.00 0.00 143.63
**cagr EE/PBD 0.07 0.97 -1.00 -0.07 0.00 0.02 180.32
**cagr EE/S 0.02 0.59 -1.00 -0.04 0.00 0.06 38.31
**cagr EE/VA 0.01 0.51 -1.00 -0.04 0.00 0.05 26.13
**cagr GP/S 0.02 0.75 -1.00 -0.14 0.00 0.09 50.97
**cagr NI 0.10 1.09 -1.00 -0.20 0.00 0.05 58.47
**cagr NI/S 0.10 2.42 -1.00 -0.18 0.00 0.00 501.74
**cagr OCF 0.07 1.05 -1.00 -0.25 0.00 0.01 133.13
**cagr PBD/S 0.05 1.31 -1.00 -0.16 0.00 0.04 210.13
**cagr SC 0.02 0.51 -1.00 0.00 0.00 0.00 104.89
**cagr TD -0.02 0.93 -1.00 -0.10 0.00 0.00 139.09
**cagr TD/TA -0.03 0.85 -1.00 -0.09 0.00 0.00 146.71
**cagr TR/S 0.13 1.66 -1.00 -0.19 0.00 0.20 350.10
**cagr WC 0.13 1.03 -1.00 -0.14 0.00 0.15 117.09

*: variables from previous Valuatum model (Table 3)
**: additional predictor variables (Table 4)
Variables with no additional markings are from previous studies (Table 2).
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C Hyperparameter tuning options
Table C1 presents the hyperparameters that are tuned in the first and second
modeling phases, as well as the different values tried for each parameter. The
functions of the different hyperparameters are explained in Section 4.4. For
further information, the scikit-learn package documentation can be consulted.

Table C1: Hyperparameter tuning options

First modeling phase
Logistic regression C 0.1, 1.0, 10.0

class_weight ’balanced’, None
penalty ’l1’, ’l2’

Decision tree class_weight None, ’balanced’
max_depth 10, None
min_samples_leaf 1, 4, 10

Random forest class_weight None, ’balanced’
max_features ’log2’, ’sqrt’, 0.5
min_samples_leaf 1, 4, 10

AdaBoost learning_rate 0.1, 0.5
max_depth* 1, 3, 6

Gradient boosting learning_rate 0.1, 0.5
max_depth 1, 3, 6
subsample 0.5, 1.0

Second modeling phase
Random forest n_estimators 10, 100, 250

criterion ’gini’, ’entropy’
max_depth 5, None
min_samples_leaf 3, 6, 15
max_features ’log2’, ’sqrt’, 0.5

Gradient boosting n_estimators 10, 100, 250
learning_rate 0.05, 0.1, 0.25
subsample 0.5, 0.75, 1.0
max_features 0.5, None
max_depth 1, 2, 3
min_samples_leaf 1, 4, 10

*: AdaBoost accepts non-DT base learners and therefore does not have a
max_depth parameter; the same effect is achieved by giving decision trees
with the listed max_depth values to the base_estimator parameter.
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