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Abstract 
 

Human PON1 enzyme is a multifaceted biomolecule with antioxidant, anti-

atherogenic and detoxifying properties. In that way, it is considered one of the 

main human body endogenous free-radical scavenging system. PON1 actions 

are related with the three activities assigned to it: paraoxonase (POase), 

arylesterase (AREase) and lactonase (LACase). Due to the easy measurement 

of PON1 activities and to its association to several pathologies linked to oxidative 

stress, PON1 represents a potential biomarker of disease, in particular for renal 

disease. 

The general goal of this exploratory and pioneer study was to explore the 

PON1 activities in zebrafish animal model.  

Zebrafish is an emergent animal model that is becoming to be largely used as 

a model in human disease and toxicological studies. Zebrafish presents several 

characteristics that turns it in an extraordinary, even a unique, model for the 

toxicological study. Among these characteristics, we can identify the reduced 

size, the transparency of the embryo, the rapid organogenesis, the low cost of 

maintenance and the complete sequencing of its genome, where PON1 gene is 

included. The knowledge on the homology between the zebrafish and human at 

genetic, molecular and physiological levels is increasing. A good correlation 

between zebrafish and man has been found for organ toxicity as well.  

In the present study, the homology between human (HGNC:9204) and 

zebrafish (Zgc:91887) enzymes was firstly stablished, supporting that PON1 is 

highly preserved on the zebrafish, presenting 49% of similitude with the man. 

All experiments involving zebrafish were previously approved by the Ethical 

Committee at the Instituto Gulbenkian de Ciência (IGC). 

With the objective of determine if human PON1 activities were present on 

zebrafish, in the first part of this study, the quantification of the activities POase, 

AREase and LACase activities were carried out in the whole animal extract, using 

the same spectrophotometric methods which were validated for human plasma 

samples. Both AREase and LACase activities were determined while POase was 

not quantifiable. As the homogenate of whole animal was used, the contribution 

of other enzymes should not be excluded. For instance, the esterases, as the 
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cholinesterases and the carboxylesterase, due to their capacity of hydrolyze the 

phenyl acetate, might increase the AREase activity. Also, the other paraoxonases 

of PON family (PON2 and PON3) may contribute for the AREase and LACase 

activities, when whole animal extract is used, comparatively to plasma. 

Aiming to exclude the contribution of the esterases, other than PON enzymes, 

and as anti-PON1 for the zebrafish was not available, a pharmacological 

approach was followed by using the paraoxon as an inhibitor of cholinesterase 

and carboxylesterase enzymes. A significant diminution of the AREase activity 

was observed when the zebrafish larvae were exposed to the xenobiotic. In 

attempting to clarify the contribution of PON1 for whole animal AREase and 

LACase activities, zebrafish larvae were exposed to acetylsalicylic acid, which is 

an inducer of PON1. No changes in AREase or LACase activities changes were 

observed upon exposition to the PON1 inducer.  

 

There are many factors that might influence the PON1 status. However, what 

turns out to be more dominant is age. In that regard, the AREase, LACase and 

POAse activities during the zebrafish development were explored in the second 

part of this study. The PON1 activities were determined in zebrafish larvae from 

day 1 to day 7 post fertilization (dpf). The contribution of chorion – structure that 

evolves zebrafish embryo – for the AREase and LACase activities was also 

tested. At 24 hours post fertilization, the zebrafish embryos are evolved by the 

chorion and within 48 hours post fertilization they may or may not present that 

structure. The comparison of AREase and LACase activities between groups with 

and without chorion, at 24 and 48 hours post fertilization disclosed that only 

AREase activity is influenced by the presence of chorion for embryos with 24 

hours post fertilization. These results suggest that proteins with AREase activity 

integrate the chorion. The evaluation of AREase and LACase activities until 7 dpf 

pointed to an increase of both activities during the zebrafish development, in 

particular for the AREase activity.  

 

The zebrafish is being postulated as a good model for nephrotoxicity studies 

due to the similarity of its pronephro to the human kidney. As PON1 is being 

studied as a potential biomarker of renal disease, the third objective stablish was 

to evaluate the relation between PON1 activities and drugs associated to 
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nephrotoxicity. Tenofovir disoproxil fumarate (TDF) and paracetamol (PCM), as 

drugs with proved association to nephrotoxicity on zebrafish and man, were 

tested in two concentrations. For both drugs, a decrease in the AREase activity 

was observed.  

 

The results herein presented show, for the first time, that the zebrafish 

presents AREase and LACase activities, although they are not to exclusively 

assign to PON1 enzyme. The POAse activity might not be present in this model. 

The LACase activity, and in particular the AREase activity, increase during 

zebrafish development. Moreover, it was for the first time showed that proteins 

with AREase activity are presented in zebrafish chorion. 

The characterization of this enzyme and other important enzymes for 

xenobiotics and drug detoxification is an important step for the proposal of 

zebrafish as a model for translational research and to disclose its applicability to 

pre-clinical studies. In this regard, the present work, give new insights on the 

three activities involved in endogenous and exogenous compounds metabolism.  

 

 

Keywords 
paraoxonase-1 (PON1); paraoxonase (POase) activity; arylesterase (AREase) 

activity; lactonase (LAC) activity; esterases; zebrafish; drug-induced 

nephrotoxicity 
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Resumo 
 

A enzima paraoxonase 1 (PON1) humana é uma biomolécula multifacetada 

com propriedades antioxidantes, anti-aterogénicas e destoxificantes., sendo 

considerada um dos principais sistemas de destoxificação de radicais livres 

endógenos humano. As suas acções estão relacionadas com as três actividades 

que lhe são associadas: paraoxonase (POase), arylesterase (AREase) e 

lactonase (LACase). O facto de estas actividades serem facilmente mensuráveis 

e de a actividade PON1 ter vindo a ser associada a diversas patologias 

relacionadas com stress oxidativo faz com que seja um potencial biomarcador 

de doença, particularmente de doenças renais. 

O objectivo geral deste estudo exploratório e pioneiro, foi explorar as 

actividades da PON1 no modelo animal zebrafish. 

O zebrafish é um modelo animal emergente que tem vindo a ser largamente 

utilizado como modelo em estudos de doença humana e em estudos 

toxicológicos. Apresenta diversas características que o tornam um modelo 

extraordinário, senão único, para o estudo em toxicologia. Entre elas podemos 

destacar o tamanho reduzido, a transparência do embrião, a rápida 

organogénese, o baixo custo de manutenção e a sequenciação completa do seu 

genoma, onde se inclui o gene PON1. O conhecimento acerca da homologia 

entre o zebrafish e o ser humano a nível genético, molecular e fisiológico tem 

vindo a aumentar. Além disso, tem vindo a ser estabelecida uma boa correlação 

órgão-toxicidade entre zebrafish e o homem.  

No presente estudo, começou por se estabelecer a homologia entre a enzima 

no homem (HGNC:9204) e no zebrafish (Zgc:91887), ficou demonstrado que a 

PON1 está altamente conservada no zebrafish, apresentando 49% de similitude 

com o homem. 

Todas as experiências realizadas com o zebrafish foram previamente 

aprovadas pelo Comité de Ética do Instituto Gulbenkian de Ciência (IGC). 

Na primeira parte deste estudo e com o objectivo de determinar as actividades 

da PON1 humana no zebrafish, procedeu-se à quantificação das actividades 

Poase, AREase e LACase nos homogenatos de embriões/larvas de zebrafish. 

Foi usado um método espectofotométrico validado para amostras humanas. 
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Ambas as actividades AREase e LACase foram determinadas, enquanto que a 

Poase não foi quantificável. Contudo, pelo facto de se usar o homogenato de 

todo o animal, deve considerar-se a contribuição de outras enzimas. Por 

exemplo, as esterases, como as colinesterases e as carboxilesterases, pela sua 

capacidade de hidrolisar o fenilacetato, podem aumentar a actividade AREase. 

Também as outras paraoxonases da família PON (PON2 e PON3) podem 

contribuir para as actividades AREase e LACase quando o homogenato de todo 

o animal é usado, em comparação com o plasma. 

Com vista a excluir a contribuição das esterases que não as PONs, e dada a 

indisponibilidade comercial de anticorpos anti-PON1 para o zebrafish, optou-se 

por uma abordagem farmacológica, usando o paraoxono como inibidor das 

actividades enzimáticas colinesterase e carboxilesterase. As larvas expostas ao 

xenobiótico registaram uma diminuição significativa da actividade AREase. 

Procurando clarificar a contribuição da PON1 nas actividades AREase e LACase 

foi usado o ácido acetilsalícilico como indutor da PON1 e da sua actividade. Após 

a exposição ao fármaco não foram registadas alterações quer na actividade 

AREase, quer na actividade LACase. 

 

São conhecidos vários factores que influenciam o status da PON1 sendo o 

mais relevante a idade. Partindo deste princípio, na segunda parte deste estudo, 

quantificaram-se as actividades PON1 ao longo do desenvolvimento do 

zebrafish. A quantificação das actividades PON1 foi feita do dia 1 até ao dia 7 

pós fertilização (dpf). A contribuição do córion – estrutura que envolve o embrião 

– para as actividades AREase e LACase foi também estudada. 

Os embriões zebrafish às 24 hours pós fertilização (hpf) encontram-se 

envolvidos pelo córion, ao passo que com 48 horas podem ou não apresentar 

esta estrutura. A comparação das actividades AREase e LACase entre grupos 

com e sem córion, às 24 e às 48 hpf mostrou que apenas a actividade AREase 

é influenciada pela presença do córion, para os embriões com 24 hpf. Estes 

resultados sugerem a presença de proteínas com actividade AREase no córion. 

A avaliação das actividades AREase e LACase até ao 7 dpf mostrou o aumento 

de ambas as actividades ao longo do desenvolvimento do zebrafish, em 

particular para a actividade AREase. 
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O zebrafish é usado como modelo em estudos de nefrotoxicidade devido à 

semelhança entre o pronefro do zebrafish e do rim humano. Dado que a PON1 

tem sido estudada como um potencial biomarcador de doença renal, o terceiro 

objectivo definido foi avaliar o efeito de fármacos associados a nefrotoxicidade 

nas actividades PON1. O tenofovir disoproxil fumarato (TDF) e o paracetamol 

(PCM), como fármacos com comprovada nefrotoxicidade no zebrafish e no 

homem, foram testados em duas concentrações. Para ambos os fármacos foi 

observada uma diminuição da actividade AREase. 

 

Em conjunto, estes resultados demostram, pela primeira vez, que o zebrafish 

apresenta actividades AREase e LACase, embora não permitam atribuir 

exclusivamente à PON1 as actividades quantificadas. A actividade Poase parece 

não estar presente neste modelo. A LACase, e em particular a actividade 

AREase, aumenta ao longo do desenvolvimento do zebrafish. Pela primeira vez 

foi também demonstrada a presenta de proteínas com actividade AREase no 

córion do zebrafish. 

A caracterização desta e de outras enzimas importantes para a destoxificação 

de fármacos e xenobióticos representa um passo crucial para a proposta do 

zebrafish como modelo para investigação de translação e para a avaliação da 

sua aplicabilidade em estudos pré-clínicos. Neste contexto, o presente trabalho 

contribui para o conhecimento de três actividades envolvidas no metabolismo de 

compostos endógenos e exógenos no zebrafish. 

 

Palavras-chave: 
paraoxonase-1 (PON1); actividade paraoxonase (POase); actividade 

arylesterase (AREase); actividade lactonase (LAC); esterases; zebrafish; 

nefrotoxicidade induzida por fármacos 
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1. Introduction 
 

1.1 Paraoxonase 1 (PON1) as a polyvalent molecule 
 

Abraham Mazur, in 1946, reported for the first time the enzymatic hydrolysis 

of organophosphate (OP) compounds in animal tissues (Mazur, 1946). In the 

early 1950s, Aldridge identified the human serum paraoxonase-1 (PON1) 

enzyme (Aldridge, 1953a, b).(Aldridge, 1952, 1953)PON1 owes its name to its 

ability to hydrolyze the OP substrate paraoxon, a toxic metabolite of the 

insecticide parathion (van Himbergen et al., 2006). 

Human PON1 (A-esterase, EC 3.1.8.1) is an enzyme with a molecular mass 

of 43 kDa and 355 amino acids (Hassett et al., 1991) encoded by the PON1 gene 

in chromosome 7q21-22. It is a calcium-dependent esterase (Humbert et al., 

1993), mostly expressed in the liver and secreted into the blood where it is 

associated with apolipoprotein AI (ApoA-I) and clusterin (ApoJ) in high-density 

lipoproteins (HDL) (Durrington et al., 2001). Although the liver is the organ where 

PON1 is mainly produced, the enzyme is also expressed in other tissues like 

kidney, brain and lungs (Rodrigo et al., 2001). 

PON1 is considered a promiscuous enzyme due to its ability to hydrolyze 

different substrates: OP compounds such paraoxon, diazinon and chlorpyriphos 

(La Du et al., 1993), aromatic esters  and a variety of aromatic and aliphatic 

lactones (Billecke et al., 2000; Jakubowski, 2000). The three identified activities 

of PON1 enzyme (paraoxonase – POase -, arylesterase – AREase - and 

lactonase - LACase) are closely associated with the mentioned substrates. 

The human PON1 belongs to the same family of proteins as paraoxonase-2 

(PON2) and paraoxonase-3 (PON3). The three PON genes are closely aligned 

on chromosome 7q21-22 (Primo-Parmo et al., 1996). 

The fact that the three PON genes (PON1, PON2 and PON3) share about 65% 

of similarity at the amino acid level and that are highly conserved in mammals 

(Draganov et al., 2005; Humbert et al.,1993) suggest that they play a very 

important physiological role. However, the different tissue distribution of the three 

PON enzymes advocates that they play different physiological roles, although 

these still remain largely unknown (Draganov, 2007). As PON1, PON3 is mainly 

expressed in the liver (Reddy et al., 2001) and is associated to HDL in serum, 
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albeit to a lesser extent than PON1 (Draganov et al., 2000; Reddy et al., 2001). 

Regarding PON2, an intracellular enzyme, it is not detectable in serum, but it is 

largely expressed in a number of tissues, such as the brain, liver, kidney and 

testis (Mochizuki et al., 1998; Ng et al., 2001). Human PON2 do not show any 

POase or AREase activities and in PON3 they are very limited. However, the 

three enzymes show the ability to hydrolyze aromatic and long-chain aliphatic 

lactones. Therefore, LACase activity is a common feature of the PON enzymes 

(Draganov et al., 2005; Zhang et al., 2010). Of the three enzymes that form the 

PON family, PON1 is by far the most studied and best characterized.  

The interest in PON1 enzyme was due not only to its ability of detoxification of 

OP derivate but also to its important physiological roles. 

There are now a number of evidences of human PON1 enzyme’s 

antiatherogenicity, related either to its antioxidant activity, which contributes to a 

real protection against the oxidation of low-density lipoprotein (LDL) and HDL 

(Aviram et al., 1999; Navab et al., 2001) or to the hydrolysis of homocysteine 

thiolactone (HcyTL), a known risk factor for the development of atherosclerotic 

lesions (van Himbergen et al., 2006). Due to the antioxidant role of the enzyme, 

PON1 is considered as one of the major endogenous free-radical scavenging 

system in the human body (Goswami et al., 2009). PON1 protects lipids in 

lipoproteins (LDL and HDL), macrophages and erythrocytes from oxidation 

(Aviram & Rosenblat, 2004) and reduces lipid hydroperoxides to hydroxides (Ng 

et al., 2009). The enzyme also seems to be involved in the protection against 

oxidative stress. Apart from having been demonstrated that the enzyme degrades 

hydrogen peroxide (H2O2), a major reactive species produced under oxidative 

stress (Aviram et al., 1998; Yilmaz, 2012), decreased serum PON1 activity 

appears to be associated with increased oxidative stress (Rozenberg et al., 

2003). 

The physiological role of PON1 against oxidative damage, the direct influence 

of oxidative stress in PON1 activity and the possibility to quantify PON1 in serum, 

make this molecule a very attractive potential biomarker of pathologies linked to 

oxidative stress. In fact, decreases in PON1 activity have been associated to a 

number of disease states, including diabetes mellitus both type I and II (Abbott et 

al., 1995) familial hypercholesterolemia (Mackness et al., 1991), metabolic 

syndrome (Sentí et al., 2003) and Alzheimer disease (Wehr et al., 2009). 
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Furthermore, reduced POase activity has also been associated with hepatic 

disease (Ferré et al., 2006; Keskin et al., 2009) and markedly associated with 

cardiovascular complications (Shih et al., 2002). In addition, lower LACase 

activity has been associated with renal dysfunction, being even pointed out as a 

novel cardiovascular biomarker in end-stage renal disease (Sztanek et al., 2012). 

However, more research is needed to evaluate the specificity of PON1 as 

biomarker of disease. 

PON1 concentration and/or hydrolytic activity vary considerably among 

individuals and are modelled by several factors, including environmental, 

pharmacological, life-style and disease state (Costa et al., 2005; Deakin & James, 

2004). Additionally, one must take into account the PON polymorphisms effect 

on enzyme’s activities and levels. To date, a number of genetic polymorphisms 

in PON1 gene (Draganov et al., 2005; Humbert et al., 1993),  have been 

described, being the most important two polymorphisms present in the PON1 

coding sequence: a glutamine (Q)/arginine (R) substitution at position 192 and a 

leucine (L)/metionine (M) substitution at position 55 (Adkins et al., 1993; Humbert 

et al., 1993). The latter, has been associated with plasma PON1 protein levels, 

with PON1M55 linked to low plasma PON1. Separately, the 192 polymorphism do 

not affect the concentration of the enzyme, but the affinity and catalytic activity of 

its two allozymes towards several substrates (Garin et al., 1997; Mackness et al., 

1998). Another factor that modelled the activity of PON1 is the age, being the 

major determinant of PON1 (Costa et al., 2005b) 

 As it was previously mentioned, PON1 has three different enzymatic activities 

that will be explained in the next paragraphs. 

 

Paraoxonase activity 
POase activity was the first one to be attributed to PON1 (Costa et al., 2003). 

The measurement of paraoxon hydrolysis, the main substrate used in tests, 

reflects both quantity and catalityc efficiency of the enzyme (Huen et al., 2009) 

Consequently, it has been widely used to refer the enzymatic activity in several 

species and tissues. Apart the fact that this activity is used as a biomarker for the 

enzyme status, and the possibility of being related to some diseases, it is 

important to note that this activity does not represent the physiological role of 

PON1 (Soyoral et al., 2011)  
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As mentioned above, this activity has a protective role against the toxicity of 

the metabolites of a number of specific OP insecticides and even some nerve 

gases like sarin and soman (Broomfield and Ford, 1991). Knowing the enzyme 

activity is, therefore, important to evaluate the degree of protection by PON1 in 

the degradation of these xenobiotics and can, therefore, be assessed the risk of 

toxicity to their exposure (Costa et al., 2005). 

A large inter- individual variability was demonstrated in PON1 POase activity 

in several studies using paraoxon as substrate (Humbert et al., 1993). The 

majority of these variations are due genetic factors, including the occurrence of 

polymorphisms in PON1 gene (Rainwater et al., 2009). A lower catalytic efficiency 

PON1Q192 alloform has been reported when compared to PON1R192 in 

hydrolyzes of paraoxon (Humbert et al., 1993; Li et al., 2000; Mackness et al., 

1997). Concerning L55M polymorphism, higher POase activity and mRNA levels 

have been associated to L allele instead of M allele (Li et al., 2000; Leviev et al., 

1997). Despite de name, POase activity is absent or is very limited in PON2 and 

PON3 enzymes (Draganov et al., 2005) being practically exclusive of PON1. 

 
Arylesterase activity 
Recent studies point to AREase activity as the one that best reflects the 

antioxidant activity of PON1, despite not being directly responsible for it (Otocka-

Kmiecik & Orłowska-Majdak, 2009; Rosenblat et al., 2006). Phenyl acetate is the 

most used substrate in determining this activity, is an artificial substrate which 

makes it suitable for monitoring the enzyme’s hydrolytic activity, but does not 

reflect a redox activity (Gur et al., 2007). In enzyme PON3 this activity is very 

limited, while in PON2 is totally absent (Draganov et al., 2005). 

Some authors consider that this test is also a measure of PON1 enzyme 

quantity, since the rate of phenyl acetate hydrolysis does not differ from PON1192Q 

and PON1192R alloforms (Eckerson et al., 1983). Studies by Connelly and 

coworkers (2008) and Kujiraoka and colleagues (2000) confirm a high correlation 

between serum PON1 concentration and AREase activity. However, there are 

studies with different conclusions concerning hydrolysis rates between these 

polymorphisms. In 2001, Brophy and coworkers (2001) described a higher 

AREase activity to 192QQ genotype, while Rainwater and co-authors (2009) 

propose a higher AREase activity in the 192RR and 55LL genotypes. 
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Lactonase activity 
LACase activity of PON1, despite being the last to be discovered, is considered 

as the main and native activity of the enzyme. LACase activity is the one which 

better reflects the physiological activities of PON1 because lactones are 

considered the natural and preferable substrates of PON1 (Draganov & Teiber, 

2008; Khersonsky & Tawfik, 2005). One of the lactones known to be metabolized 

by PON1 is HcyTL, a toxic intermediate that causes protein N-

homocysteinylation. As a result, the homocysteinylated proteins may lose its 

biological activities (Jakubowski, 2002) . PON1 hydrolyzed HcyTL in homocystein 

(Hcy) which is a metabolite that if in excess may be extremely toxic and that is 

accepted as a risk factor for several pathologies including cardiovascular, 

Alzheimer’s diseases and renal failure (Yilmaz, 2012). The hydrolysis of a toxic 

intermediate in a metabolite which causes toxicity might seem as being 

counterproductive and with no physiological advantages. However, some 

authors, such as Jakubowski (2003), suggest that HcyTL may be more toxic to 

human cells than Hcy itself. 

LACase activity is also involved in the metabolism of some drugs containing 

lactones. The prodrug prulifloxacin is hydrolyzed into the active quinolone 

antibiotic NM394 by PON1 (Tougou et al., 1998). Also the local action 

glucocorticoid γ-lactones drugs relies on LACase activity for the rapid hydrolysis 

and inactivation of the fraction of the drug that reaches the circulation, preventing 

systemic side effects (Biggadike et al., 2000). 

Concerning polymorphisms, the most influents appear to be 192QQ and 55LL 

genotypes, for which the higher activities were registered (Brophy et al., 2001; 

Rainwater et al., 2009). 

 

1.2 Zebrafish: a prominent animal model 
 

Zebrafish (Danio rerio) is a small vertebrate tropical freshwater fish, which 

belongs to the family Cyprinidae and is originally from the Indian continent 

(Spence et al., 2008). 

Zebrafish has been a popular aquarium fish for decades and since it was 

introduced as an experiment animal model by George Streisinger in the end of 

the 60’s its use in biomedical research increased extensively (de Esch et al., 
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2012; Hill et al., 2005). Zebrafish has been pointed as a prominent model 

organism in toxicological studies being increasingly used as an in vivo model for 

assessing drug toxicity and safety and ecotoxicological screening (Parng et al., 

2002). 

The emergence of this animal model and its increased used in investigation is 

due to several advantageous features of zebrafish regarding other vertebrate 

models  (Lewis & Eisen, 2003; McGrath & Li, 2008a; Milan et al., 2006; Moens & 

Prince, 2002; Vascotto et al., 1997; Ward, 2002; Wilson et al., 2009). Among 

them are: 

• The small size and low maintenance cost; 

• The high fecundity  (around 200-300 eggs/female/week); 

• The short generation time of adult zebrafish, typically 3 to 4 months. 

(Figure 1); 

• The transparency of the embryo; 

• The remarkable homology with humans at the genetic (85% of homology 

in genomes), anatomical, physiological, cellular and molecular levels; 

• The rapid embryonic development, with precursors of all major organs 

developed within 36 hours  and fully developed larvae available after 48 - 

72 hours post fertilization (hpf) ; 

• The availability of its completed sequenced genome; 

• The increasing availability of powerful genetic tools that enable in a 

relatively easy way the generation of transgenic and mutant zebrafish; 

• The ease of maintenance, zebrafish larvae can live for 7 days supported 

by nutrients stored in the yolk sac. 
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Figure 1 – Diagram of zebrafish life-cycle. Zebrafish develop quickly from a one-cell zygote that sits on 

top of a large yolk cell. Approximately 6 h post fertilization gastrulation begins, followed by hatching between 

days 2 and 3, becoming a free larvae. Zebrafish reach sexual maturity around 3 months of age and can live 

for up to 5 years. 

(Adapted from http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO_03/devo_03.html) 

 

In addition to these characteristics, there are several other specificities of 

zebrafish that should be noted for toxicity studies where embryo and larvae 

stages are mainly used. The small size of the zebrafish embryo and larvae (1-4 

mm) allows its testing in cell-culture plates or Petri dishes. The high number of 

offspring also allows the execution of several replicates at the same time 

(MacRae & Peterson, 2003). Besides, using the whole animal is extremely 

advantageous concerning toxicity studies, since they provide correlative 

information which can easily be extrapolated to humans (Wielhouwer et al., 

2011). The transparency of the embryos allows for direct and real time 

observations of morphological alterations (Hill et al., 2005), dyes and antibodies 

(McGrath & Li, 2008b) under a microscope with no need of tissue sectioning. 

Other experimental advantages of this model include the small amount of drug 

that is needed and the ability to quickly absorb small molecules from the 

surrounding medium mainly through the skin and gills (Rubinstein, 2006). 
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Several studies have already proved the usefulness of the zebrafish model in 

toxicology. Moreover, there is a very good correlation of organ toxicity between 

zebrafish and mammals (McGrath & Li, 2008a), including humans (Milan et al., 

2003; Khersonsky et al., 2003). 

As previously stated, the experiments with zebrafish usually occur during the 

early lifestages, when the yolk is the primary source of nutrition and there is no 

need of complementary feeding. This includes the embryonic and larval stages 

of development, when the zebrafish organs, even if not totally developed, they 

are completely functional (Pickart & Klee, 2014). 

Classically, offspring are considered embryos until they hatch, which occurs 

between 48 and 72 hpf. Afterwards, the larval period begins and finishes with the 

yolk absorption (Parichy et al., 2011). 

The embryonic period is the best studied and documented of all stages of 

development of the zebrafish. On the other hand, little is known about the larval 

development of anatomy. In Table 1, are summarized some of the main 

landmarks of the zebrafish development between post fertilization days 1 and 7, 

which are the stages used in this study. 

 
Table 1 – Principal Landmarks in zebrafish development since 1 to 7 dpf. 

Dpf Developmental Landmarks References 

1 

• 1.9 mm embryo length 
• Kidney - podocyte migration and glomerulus formation; 
• Heart starts beating: 
• First signs of hepatocyte aggregation; 
• Endocrine pancreas formed 
• Primary neurons differentiation; 
• Blood circulation start 

ZFIN, 2015 
Gerlach & Wingert, 2013 
Ober et al., 2003 
Isogai et al., 2001 
Kimmel et al., 1995 

2 

• 3.1 mm embryo length 
• Kidney- onset of glomerular filtration; functional pronephros; 
• First wave of definitive hematopoiesis - erythroid myeloid 

progenitors; 
• Brain ventricles are formed; 
• Active circulation in trunk and tail; 

ZFIN, 2015 
Gerlach & Wingert, 2013 
McGrath, 2012 
Jiang et al., 1996 
Isogai et al., 2001 

3 

• 3.5 mm total body length 
• Total liver vascularization; 
• Establishment of the blood-brain barrier; 
• Digestive system is fully functional; 
• Inflation of the swimbladder; 

ZFIN, 2015 
Ober et al., 2003 
Watanabe et al., 2012 
McGrath, 2012 
Robertson et al., 2007 

4 
• 3.7 mm total body length 
• Hematopoiesis occurs in the thymus and pronephros; 
• Liver is in the growth phase; 

ZFIN, 2015 
McGrath, 2012 
Field et al., 2003 

5 

• 3.9 mm total body length 
• Kidney- Proximal convoluted tubule has multiple loops and coils; 
• Valves between the individual heart  compartments appears; 
• Marked expansion of the exocrine pancreas; 
• Digestive system is functional; 

ZFIN, 2015 
Gerlach & Wingert, 2013 
Wallace & Pack, 2003 
Yee et al., 2005 
Hu et al., 2000 
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6 
• 4.2 mm total body length 
• Pancreas is located asymmetrically on the right side of the body; 
• Skin pigmentation; 
• Endocrine cells are funtional 

ZFIN, 2015 
Argenton et al., 2001 
Li et al., 2010 

7 • 4.5 mm total body length 
• 8 teeth ZFIN, 2015 

 

1.3 Zebrafish and paraoxonase-1 (PON1) 
 

To the best of our knowledge there are no studies concerning the activities of 

paraoxonase (PON) enzymes in zebrafish. Thus, this is the first exploratory study 

that aims to evaluate the activities of PON1 in zebrafish. 

Despite the lack of literature related with PON1 and zebrafish, there are some 

data that confirm the presence and expression of PON1 gene, as well as proteins 

such as HDL and ApoA-l (related to PON1 activities on humans and other 

species) in zebrafish. PON1 gene (zgc:91887) is located in chromosome 16 

(versus the chromosome 7 in humans) and was identified by Thisse and co-

workers in 2004 (http://zfin.org/ZDB-GENE-040912-6). Zebrafish PON1 protein 

has 356 amino acids (one more than in humans). There are no data regarding 

the homology between zebrafish and human PON1. However, it is expected to 

be high because the amino acid sequences of functionally relevant protein 

domains have been proven to be evolutionary conserved (de Esch et al., 2012; 

Reimers et al., 2004). A high similitude is demonstrated in lipid metabolism 

between humans and zebrafish with the identification of very low-density 

lipoprotein (VLDL), LDL and HDL fractions in zebrafish plasma (Babin & Vernier, 

1989; Babin et al., 1997). Also, zebrafish expresses all the major classes of 

apolipoproteins such as apolipoprotein A (ApoA), apolipoprotein E (ApoE), 

apolipoprotein B (ApoB) and apolipoprotein C (ApoC), which share high 

homology with human apolipoproteins (Babin et al., 1997; Stoletov et al., 2010). 

ApoA-I is the major protein of HDL and plays an important role in reverse 

cholesterol transport pathway (Cuchel & Rader, 2006). Zebrafish ApoA-I 

sequences showed 25.6% identities to human ApoA-I sequences and its gene is 

largely expressed in the yolk syncytial layer, a structure involved in embryonic 

and larval nutrition (Babin et al., 1997). 

As it is known, PON1 enzyme participates in the inhibition of LDL oxidation. 

The oxidized LDL (oxLDL) are directly involved in the formation and progression 

of atherosclerotic lesions, either in humans as in experimental animals (Glass & 
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Witztum, 2001; Miller et al., 2011) . Stoletov and co-workers (2009) demonstrated 

that hypercholesterolemic zebrafish shows extremely high levels of oxLDL. 

Although this information does not give enough factual or direct data concerning 

the activity of the PON1 on zebrafish, it demonstrates the high similarities of the 

biochemical pathways in which PON1 is involved between humans and zebrafish. 

 

1.4 Rational and Objectives 
 

What is known? 

1. PON1 is a polyvalent biomolecule with an important role in the human 

endogenous free-radical scavenging system, determining susceptibility 

degrees and protection against insults from physiological or xenobiotics 

toxins (La Du et al., 2001). Furthermore, it is a potential disease status 

marker as well as a drug-induced organ toxicity biomarker (Yilmaz, 2012). 

2. Zebrafish is an emergent animal model widely used in biomedical and 

toxicological research (Parng et al., 2002) comprising nephrotoxic studies 

(Perner et al., 2007). 

 

What needs to be known? 

1. Does zebrafish PON1 have POase, AREase and LACase activities? 

2. Do PON1 activities change throughout the embryonic and larvae 

development? 

3. Are PON1 activities affected by nephrotoxic drugs? 
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2. Materials and Methods 
 

All experiments involving zebrafish were approved by the Ethical Committee 

at the Instituto Gulbenkian de Ciência (IGC), according with directives from 

Direcção Geral Veterinária (Portaria nº 1005/92 de 23 de Outubro). 

The mutant zebrafish line mitfaw2/w2;roya9/a9, also called Casper, was specially 

chosen for this study due to the lack of melanocytes and iridophores. Casper 

zebrafish are transparent through embryogenesis and adulthood (White et al., 

2008). This feature avoids interference of pigments with the colorimetric assays 

used for the assessment of PON1 activities. Moreover, that allows the 

visualization of all organs and possible changes along zebrafish development 

using a standard stereoscope. 

 

2.1 Characterization of amino acid sequence of zebrafish PON1 
 

The method used for the quantification of PON1 activities was developed for 

human samples. Consequently it is essential to compare the homology of PON1 

between human and zebrafish. 

A search for PON1 was performed at the Ensembl zebrafish database 

(http://www.ensembl.org/index.html) in order to check for the localization of 

PON1 in the zebrafish genome and to obtain the sequence of the protein. The 

protein sequences of zebrafish PON1 (Zgc:91887 protein) with human PON1 

(HGNC:9204) were aligned using Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/).  

 

2.2. Zebrafish maintenance 
2.2.1 Adult husbandry 

 

Adult zebrafish were grown at the zebrafish facility of Gulbenkian Institute of 

Science, Lisbon, Portugal. 

Animals were maintained in appropriate tanks with freshwater in a 14:10 hr 

light/dark cycle at 28ºC according to IGC protocols.  
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2.2.2 Breeding and incubation 
 

For each experiment, 6 to 8 pairs of male and female adult zebrafish were 

crossed according to the fish facility protocols. Briefly, each pair was placed in a 

mating container with a partition separating male from female in the afternoon of 

the day before eggs collection. On the next morning the partition was removed 

and breeding was left for 40 minutes. This breeding method allows to collect all 

the eggs at the same moment. This strategy decreases the variability of embryo 

development in the population. Following, eggs were collected using a plastic tea 

strainer and transferred into a petri dish with embryo medium E3 (5mM NaCl; 

0,17mM KCl; 0,33mM CaCl2; 0,33mM MgSO4) and methylene blue. Finally, eggs 

were kept on the incubator at 28ºC. In this phase it is important to remove the 

unfertilized eggs because they provide a source of nutrients for bacterial and 

fungus growth, which rapidly spoil the medium (Brand et al., 2002). 

At 24 hpf the initial E3 medium was changed and replaced by embryo medium 

of E3 solution plus 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffer. In order to keep the embryo medium spotless, it was changed 

every two days. Dead embryos and larvae were also removed under a 

stereoscope (Nikon 95911) using a disposable plastic pipette. 

Zebrafish embryos and/or larvae were kept at 28 ºC until the appropriate stage 

(1, 2, 3, 4, 5, 6 and 7 days post fertilization – dpf) to perform the experiments. 

During the first two days of development zebrafish embryos are surrounded by 

a structure called chorion. However, at day 2 some embryos are already outside 

the chorion. To evaluate the influence of the chorion in PON1 activity, embryos 

of 1 and 2 dpf were collected in parallel with and without chorion. Pronase 

(Sigma) was used to dechorionate embryos with 1 dpf (Westerfield, 2007). At day 

2, since some embryos were already outside the chorion, the selection was made 

by observation. 

 

2.3. Evaluation of PON1 activities in zebrafish 
 

In order to evaluate the enzymatic activity of PON1 in zebrafish embryos and 

larvae some preliminary processes are required to prepare the samples, which 

involve euthanasia and homogenization. 
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2.3.1 Zebrafish euthanasia and homogenization  
 

The chemical methods for euthanasia of zebrafish embryos/larvae (i.e. 

tricaine, sodium or calcium hypochlorite) are not recommended for enzymatic 

studies because they can decrease and/or increase the enzyme activities. For 

this reason, we chose the “rapid chilling” method for zebrafish euthanasia, which 

works by hypothermal shock (Wilson et al., 2009). The protocol that was used is 

now described: 

1. Prepare ice slush with embryo medium; 

2. Fill an appropriate zebrafish embryo container with chilled embryo medium 

at 2 – 4 °C (5 parts of ice slush / 1 part of liquid); 

3. Form a depression in the ice to expose the embryo medium; 

4. Transfer a maximum of 20 embryos/larvae to an embryo net and remove 

as much embryo medium as possible (the use of embryo nets allows 

minimal transfer of acclimated temperature embryo media and avoids 

direct contact between zebrafish embryos/larvae and ice); 

5. Place the embryo net (with the embryos on it) in the chilled embryo 

medium; 

6. After loss of operculum movement, zebrafish embryos/larvae expose for 

20 more minutes to chilled embryo medium in order to ensure death by 

hypoxia; 

7. Add frozen embryo medium (ice slush) when needed during all the 

procedure to maintain temperature between 2 and 4 ºC.  

 

At the end of this procedure, embryos/larvae were transferred to eppendorfs, 

placing 25 embryos/larvae in 110 µL of phosphate-buffered saline (PBS) 1x per 

eppendorf to assess AREase and LACase activities or 50 embryos/larvae in 50 

µL of PBS 1x to measure POase activity. Then, embryos/larvae were 

homogenized using ultrasounds (VWR Ultrasonic Cleaner) between 30 min and 

three hours, depending of the development stage. The temperature of 

ultrasounds bath was kept at 4 ºC, adding ice when necessary. Finally, the 

homogenate was stored at –80ºC until enzymatic quantification. The storage time 

of the samples never exceeded 2 weeks. 
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2.3.2 Quantification of PON1 activities in zebrafish homogenate 
 

For measurement of PON1 activities (POase, AREase and LACase) 

spectrophotometrics methods already validated in human samples were used. 

Essentially, the three activities of the enzyme catalyze the hydrolysis of distinct 

substrates. These reactions can be monitored spectrophotometrically by color 

changes which can be innate to the reaction (POase) or the result of adding the 

reagent phenol red (pH indicator) (AREase and LACase). Enzyme assays were 

performed in triplicate per sample using a microplate reader (Biotrack II plate 

reader, Amersham Biosciences). 

 

2.2.2.1 Paraoxonase activity 

 

The POase activity was measured following the method described by Batuca  

et al (2007). Paraoxon is a substrate of PON1 and is hydrolyzed by POase activity 

in diethylphosphate and p-nitrophenol (Figure 2), whose production can be 

monitored spectrophotometrically. 

 

 
Figure 2 – Diagram for the quantification of paraoxonase activity 

 

In short, paraoxon (1.0 mM) (Sigma-Aldrich) freshly prepared in 290 mL of 50 

mM glycine buffer containing 1 mM CaCl2 (pH 10.5) was incubated with 10 µL of 

sample, at 37 ºC, for 10 min, in 96 well plates (Polysorp). p-nitrophenol formation 

was monitored at 412 nm and the activity was expressed as mmol p-nitrophenol 

per mL of zebrafish homogenate per min. 

 

2.2.2.2 Arylesterase activity 

 

The AREase activity was assessed applying the method published by Dias et 

al (2014). 
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This method is based on the measurement of acetic acid production resulting 

from the hydrolysis of phenyl acetate, a substrate of the AREase activity of PON1 

(Figure 3). A molecule of phenyl acetate is hydrolyzed into phenol and acetic acid 

which can be monitored spectrophotometrically by the color variation of the 

phenol red reagent.  

 

 
Figure 3 – Diagram for the quantification of arylesterase activity. 

 

Shortly, phenyl acetate (5.0 mM) (Fluka) freshly prepared in 190 mL of 2mM 

HEPES buffer containing CaCl2 (1.0 mM), BSA (0.005%) and phenol red (Fluka) 

(106 mM) was incubated with 10 µL of sample, at 37 ºC, for 10 min, in 96 well 

plates (Polysorp). Acetic acid formation was measured by reading the 

absorvance at 405 nm and the activity expressed as kU/L, defined as the amount 

of enzyme producing 1 mmol of acetic acid per minute. 

 

2.2.2.3 Lactonase activity 

 

To quantify LACase activity we used a similar method described above for 

AREase using as PON1 substrate the lactone dihydrocumarin (DHC) (1mM) 

(Dias et al., 2014). 

This method is based on the hydrolysis reaction of the DHC, a substrate of the 

LACase activity (Figure 4). The product of this reaction is 3-(o-hydroxyphenyl) 

proprionic acid (o-HPPA) which can be monitored spectrophotometrically by the 

color variation of the phenol red reagent. 
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       Figure 4 – Diagram for the quantification of lactonase activity. 

 

Briefly, DHC (1.0 mM) (Sigma-Aldrich) freshly prepared in 190 mL of 2mM 

HEPES buffer containing CaCl2 (1.0 mM), BSA (0.005%) and phenol red (Fluka) 

(106 mM) was incubated with 10 µL of sample, at 37 ºC, for 10 min, in 96 well 

plates (Polysorp). After one minute o-HPPA formation was measured by reading 

the absorbance at 405 nm and the activity expressed as kU/L, defined as the 

amount of enzyme producing 1 mmol of o-HPPA per minute. 

For all PON1 activities the specific enzyme activity was expressed as kU per 

mg of protein, with 1 kU defined as the amount of enzyme that hydrolyzed 1 mmol 

of substrate per min. Protein concentration of the samples was determined in 

duplicate using the spectrophotometer Nanodrop SPECTROstar Omega (BMG 

Labtech). 

 

2.4 Acute exposure of zebrafish larvae to paraoxon, acetylsalicylic 
acid, tenofovir disoproxil fumarate and paracetamol 
 

2.4.1 Acute exposure of zebrafish larvae 
 

Zebrafish larvae of 5 dpf were exposed to paraoxon (POX), acetylsalicylic acid 

(AAS), tenofovir disoproxil fumarate (TDF) and paracetamol (PCM) during 24h at 

28 ºC. The choice of the larvae at this stage of development was based on the 

fact that zebrafish organs are totally differentiate/developed by 120 hpf (5 dpf)  

(McGrath & Li, 2008a). Therefore, all organs are functional at the time of drug 

exposure. The features and the reasons for choosing the drugs are summarized 

in Table 2. Briefly, given the unspecificity of the method for differentiate PON 

family members in zebrafish homogenate, zebrafish larvae were exposed to POX 

and AAS to discriminate the activity referent to the PON1 enzyme. In order to 

evaluate the influence of nephrotoxic drugs in PON1 activities, zebrafish larvae 

were exposure to TDF and PCM. 
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Table 2 – Drugs, associated toxicity and its purpose for the study.  

Drug Classification 
Toxicity 

Purpose for the study References 
Organ Mechanism 

Paraoxon 
(POX) 

• OP oxon, active 
metabolite of the 
insecticide parathion 

• Diethyl 4-nitrophenyl 
phosphate 

• Organophosphorous 
ester 

• Autonomic nervous system 
• Somatic motor nerves 
• Brain 

Inhibition of 
acetylcholinesterase  (AChE) 

↓ 
cholinergic toxicity by 

stimulation of muscarinic and 
nicotinic receptors 

Inhibitor of cholinesterases 
and carboxylesterases 

• Pubchem, 2015 
• Kuster, 2005 
• Mileson et al., 1998 
• Watanabe, 1989 

Acetylsalicylic 
acid (AAS) 

• Non Steroidal Drug 
(NSAID) 

• 2-Acetoxybenzoic acid 
• Arylester 

• Gastrointestinal tract 
• Kidney - proximal tubule 
• Liver 
• Others 

Inhibition of prostaglandin 
synthesis 

 
Mitochondrial dysfunction and 

oxidative stress 

Increases PON1 activity 
and expression in HEPG2 

cells and primary rat 
hepatocytes; 

 
Hydrolyzes by PON1 in the 

plasma. 

• Doi & Horie, 2010 
• Patrignani et al., 2011 
• Jaichander et al., 2008 
• Santanam & Parthasarathy, 

2007b 

Tenofovir 
disoproxil 

fumarate(TDF) 

• Nucleotide reverse 
transcriptase inhibitor 

• fumaric acid salt of bis-
isoproxycarbonyloxymet
hyl ester derivative of 
tenofovir 

• Kidney - proximal tubule 
• Nephrotoxic in zebrafish 

larvae 

↑ROS production and ↓ 
antioxidants and antioxidant 

enzymes 
↓ 

Mitochondrial toxicity 

Nephrotoxic in zebrafish 
larvae  

 
PON1 susceptible to 
oxidative inactivation 

• Van Gelder et al., 2002b 
• Ramamoorthy et al., 2011 
• Unpublish data for our group 

Paracetamol 
(PCM) 

• Analgesic and 
antipyretic 

• N-acetyl-p-aminophenol 

• Liver 
• Kidney - proximal tubule 
• Nephrotoxic in zebrafish 

larvae 

Reactive intermediate 
NAPQI(*) 

 
↑ROS(**) production 

Nephrotoxic in zebrafish 
larvae 

 
PON1 susceptible to 
oxidative inactivation 

• Davis & Hanumegowda, 2009 
• Karadas et al., 2014 
• Lorz et al., 2004 
• Peng et al., 2010 

(*) N-acetyl-p-benzoquinoneimine; (**) reactive oxygen species 
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Two different concentrations were selected for each drug (Table 3). 

The rational for the choice of the two concentrations was the following: 

1. Paraoxon: inhibitory doses of cholinesterases and carboxylesterases based in 

literature (toxicity studies with zebrafish larvae) (Küster & Altenburger, 2006; 

Yozzo et al.; 2013) and in preliminary experiences with several concentrations 

(supplementary figures). 

2. AAS: preliminary experiences with several concentrations (Table in 

Suplementary figures); maximum concentration achieved by limiting the solubility. 

As second concentration half of a the maximum concentration was select; 

3. TDF and PCM: empirically adjusted from the experience of our group with those 

drugs. 

 
Table 3 – Drugs concentrations used for the acute exposure assay 

Drug Concentration 
POX 1 µM 2 µM 
AAS 500 µM 1000 µM 
TDF 800 µM 3200 µM 
PCM 7000 µM 20 000 µM 

 

Stock solutions were prepared in 100% dimethylsulphoxide (DMSO) for POX (100 

000 µM) and AAS (4700 µM), or ultrapure water for TDF (9500 µM) or PCM (53 000 

µM). Before each experiment serial dilutions were made to obtain the test 

concentrations. The maximum DMSO concentration was 1%. 

Negative controls were exposed to the drug vehicle, DMSO 1% or water. 

Zebrafish larvae of 5 dpf were transferred to six well plates (Sarstedt). In order to 

ensure that in the end of the experiment we had a minimum of 25 larvae, a total of 34 

larvae were transferred in a total volume of 6 mL of embryo media per well. 

The tested drugs were delivered by soaking to be absorbed mainly through the 

skin and gills (Rubinstein, 2006). 

After 24 hours of drug exposure, zebrafish larvae were subjected to visual 

observation under a stereoscope (Leika MZ6) to record the lethality. Lethality was 

defined as absence of a heartbeat or the presence of necrosis. 

Four independent exposure experiments were performed. In all cases, at least two 

replicates were used for each drug concentration. The totals of samples obtained in 

these experiments were: 7 samples of AAS 1000 µM, TDF 800 µM, PCM 7000 µM 
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and PCM 20 000 µM; 6 samples of POX 1 µM; 5 samples of TDF 3200 µM and 4 

samples of POX 2 µM and AAS 500 µM. 

 

2.4.2 Quantification of PON1 activities 
 

PON1 activities in zebrafish homogenate samples were quantified according with 

the procedures described in 2.3 sections. 

 

2.5 Statistical analyses 
 

Statistical analyses were performed with GraphPad Prism ® version 5.0. One-way 

ANOVA followed by Dunnett’s post-test or Two-way ANOVA followed by Bonferroni 

post-test were used to compare differences among the groups. Data were expressed 

as mean ± standard deviation (SD) and P values < 0.05 were considered statistically 

significant. 
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3. Results 
 

3.1 Characterization of zebrafish PON1 
 

PON1 is highly conserved in mammals (Draganov et al., 2005) and PON1-like 

proteins can be found in several animal species (Primo-Parmo et al., 1996). Bearing 

this in mind the human (HGNC:9204) and the zebrafish PON1 (Zgc:91887 protein) 

protein sequence were  aligned. The alignment showed an identity of 49% with an 

overlap of 356 amino acids (Figure 5).  

 
  
Hu PON1 1 MAKLIALTLLGMGLALFRNHQSSYQTRLN-ALREVQPVELPNCNLVKGIETGSEDMEILP 
Ze PON1 1 MGKLAVLSLAVVALAVFIGERLVTLRHVALSYRELTQNYLPNCHLIKGIECGSEDITIID 
     * **  * *    ** *               **     **** * **** ****  *   
  
Hu PON1 60 NGLAFISSGLKYPGIKSFNPNSPGKILLMDLNEEDPTVLELGITGSKFDVSSFNPHGIST 
Ze PON1 61 DGLAFLSTGVKAPGLP-FCSDDPGKIYTLNLLDSEPKIKALSIKGD-FDQDTFNPHGISV 
     **** * * * **   *    ****    *    *    * * *  **   *******  

 
Hu PON1 120 FTDE-DNAMYLLVVNHPDAKSTVELFKFQEEEKSLLHLKTIRHKLLPNLNDIVAVGPEHF 
Ze PON1 119 YTDDKDGTMYLFVINHPRGNSQVEIFEFVKDEHALKYIKTIEHELLHSVNDIVAVGTESF 
 **  *  *** * ***   * ** * *   *  *   *** * **   ******* * * 
  
Hu PON1 179 YGTNDHYFLDPYLQSWEMYLGLAWSYVVYYSPSEVRVVAEGFDFANGINISPDGKYVYIA 
Ze PON1 179 YATNDHYFSNEILKIVENFFTLPWCDVIYYSPETVQVVADGFLLANGINLSLDKRYLYVS 
   * ******    *   *    * *  * ****  * *** **  ***** * *  * *   
  
Hu PON1 239 ELLAHKIHVYEKHANWTLTPLKSLDFNTLVDNISVDPETGDLWVGCHPNGMKIFFYDSEN 
Ze PON1 239 DVLKHTVTVLEIKKNTVLSRVKEINVGSLADNIELDRESGDLWIGCHPNGFKFMLGDPND 
       * *   * *   *  *   *      * ***  * * **** ****** *    *    

 
Hu PON1 299 PPASEVLRIQNILTEEPKVTQVYAENGTVLQGSTVASVYKGKLLIGTVFHKALYCE 
Ze PON1 299 PPGSEVIKIENIHSEKPLVTQVYSDNGSVIIGSSVAAPYRGKVLIGTVYHKVLLCD 
     ** ***  * **  * * *****  ** *  ** **  * ** ***** ** * * 
  

 

Figure 5 – Zebrafish (Ze) PON1 amino acid sequences aligned with the corresponding human 
(Hu) sequences. Zebrafish PON1 (Ze PON1) was aligned with human PON1 (HuPON1). The 

sequences have 49% identity in 356 aa overlap. The asterisks indicate the overlap, also highlighted in 

yellow for better viewing. H115 and H134, residues that mediate AREase and LACase activities of 

PON1 in humans, are highlighted in red. 

 

3.2 Paraoxonase activities through zebrafish development 
 

Contrarly to AREase and LACase the POase activity was absent in all tested 

samples. The AREase and LACase activities in zebrafish embryos of 24 and 48 hpf 

with or without corion are presented on Figure 6.The AREase activity, in 24 hpf 
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samples, was higher in samples with chorion (W/C) (0.86 ± 0.12) with those without 

chorion (WO/C) (0.79 ± 0.15). This difference was not observed at 48 hpf. The 

LACase activity was not affected by the chorion in the two tested time-points. 

 
Figure 6 – Arylesterase (AREase) and Lactonase (LACase) activities in the absence or presence of 
zebrafish chorion. WO/C: without chorion; W/C: with chorion; hpf: hours post fertilization A) AREase activity 

measured at 24 and 48 hpf. AREase activity is significantly higher in the zebrafish samples with chorion at 24 hpf. 

B) LACase activity measured at 24 and 48 hpf. No significant differences in the activity. Each bar represents 

mean ± SD. P values were calculated using Two-way ANOVA and Bonferroni post test. *p<0.05 

 

Since a higher AREase activity was observed in samples of zebrafish embryos at 

24hpf, a set of experiments using embryos with 48hpf to evaluate PON1 activity in 

post-chorion stages was performed. 

PON1 activities were measured from 2 up to 7 days of development of zebrafish. 

Both AREase and LACase activities are shown in Figure 7. There was a gradual 

increase for the AREase activity throughout the days, experiencing the large increase 

from day 2 until day 7 (0.44 ± 0.11 versus 0.92 ± 0.04, p<0.001. For the LACase 

activity, there was only a significant increase in day 7 when compared with day 2 in 

comparison with day 2 (0.20 ± 0.01 versus 0.27 ± 0.02, p<0.01). 
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Figure 7 – Paraoxonase 1 activities of larvae zebrafish since 2 dpf until 7dpf: A) Arylesterase activity 

(AREase) with significant increase in the activity in 4, 5, 6 and 7 dpf versus 2 dpf. B) Lactonase activity (LACase) 

with significant increase in the activity in 7 dpf versus 2 dpf. Each bar represents mean ± SD. P values were 

calculated using One-way ANOVA with Dunnett post test. *p<0.05, **p<0.01 and ***p<0.001.  

The POase activity was undetectable in all samples tested since 2 dpf until 7 dpf. 

 

3.3 Effect of acute exposure to drugs on PON1 activities of zebrafish 
larvae 
 

Zebrafish larvae of 5 dpf were exposed to two different concentrations of POX and 

AAS (Table 3). The Table 4 contains the lethality observed after 24 hours of drug 

exposure.  
 

Table 4 – Lethality rate 

Drug % Lethality S.D. a 
Control water 0.59 1.32 
Control DMSO 1% 0.59 1.32 
POX 1 µM 2.5 2.21 
POX 2 µM 61.1 39.6 
AAS 500 µM 2.35 1.32 
AAS 1000 µM 1.47 3.60 
TDF 800 µM 3.0 3.14 
TDF 3200 µM 7.35 5.81 
PCM 7000 µM 5.15 4.08 
PCM 20 000 µM 7.35 5.88 

 

POX had the highest mortality rate (61.1% to POX 2 µM), while AAS caused the 

lowest mortality rate (1.47% to AAS 1000 µM). Death larvae were removed and 

AREase and LACase activities were quantified in 25 larvae of each well. Due to high 

lethality rate of POX 2 µM animals of different wells were collected to equal 25 larvae. 
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The results are presented in Figure 8. AREase activity decreased significantly in 

zebrafish larvae exposed to POX 1 µM and to POX 2 µM when compared to controls 

(0.7 ± 0.07 in controls; 0.53 ± 0.05 in POX 1 µM and 0.54 ± 0.03 in POX 2 µM, p < 

0.01). AAS did not affect the AREase activity. Concerning LACase activity, there was 

no impact of POX or AAS concentrations. 
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Figure 8 – Arylesterase (AREase) and Lactonase (LACase) activities in 6 dpf zebrafish larvae after paraoxon and acetylsalicylic acid exposition. POX: paraoxon; AAS: 

acetylsalicylic acid. A) AREase activity in zebrafish exposed to POX 1 and 2 µM. Significant decreased in the activity in both POX concentrations versus DMSO 1%. B) AREase 

activity in zebrafish exposed to AAS 500 and 1000 µM. There was no significant difference in the AREase activity. C) LACase activity in zebrafish exposed to POX 1 and 2 µM  
D) LACase activity in zebrafish exposed to AAS 500 and 1000 µM. LACase activity was not affected by POX or AAS at the tested cncentrations. Each bar represents mean ± SD. 

P values were calculated using One-way ANOVA and Dunnette post test . **p<0.01 
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Figure 9 shows the results of the quantification of the AREase and LACase 

activities in 6 dpf zebrafish larvae after acute exposure to TDF or PCM. The lowest 

concentration of TDF significantly decreased the AREase activity when compared 

with controls (0.81 ± 0.09 versus 0.69 ± 0.06). Both 7000 µM and 20 000 µM PCM 

concentrations showed a significant influence in AREase activity, leading to an even 

higher decrease (0.81 ± 0.09 in controls versus 0.66 ± 0.07 and 0.61 ± 0.08, 

respectively). Once more, LACase activity was not influenced by any of the drugs at 

the tested concentrations. 
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Figure 9 – Arylesterase (AREase) and Lactonase (LACase) activities in 6 dpf zebrafish larvae after tenofovir disoproxil fumarate and paracetamol exposure. TDF: 

tenofovir disoproxil fumarate; PCM: paracetamol. A) AREase activity in zebrafish exposed to TDF 800 and 3200 µM. Significant decreased in AREase activity for TDF 800 µM 

versus control. B) AREase activity in zebrafish exposed to PCM 7000 and 20000 µM. Both concentrations induced a significant reduction of the AREase activity. C) LACase 

activity in zebrafish exposed to TDF 800 and 3200 µM. D) LACase activity in zebrafish exposed PCM 7000 and 20000 µM. LACase activity was not affected either by TDF or 

Paracetamol at the tested concentrations. Each bar represents mean ± SD. P values were calculated using One-way ANOVA and Dunnette post test . *p<0.05, **p<0.01. 
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4. Discussion and conclusions 
 

The high homology between zebrafish and human has been identified at different 

levels, of which it can be highlighted the genetic (85%), the morphologic and the 

molecular levels (Lewis & Eisen, 2003; Milan et al., 2006; Moens & Prince, 2002). In 

this work we found a high homology between human and zebrafish PON1 protein 

sequencs. This high homology is supported by: a) the protein alignment of human 

and zebrafish PON1sequences overlaps at 49% of the amino acids; b) the residues 

of His 115 and His134, which mediated the AREase and LACase activity in humans 

(Khersonsky & Tawfik, 2006), are in the same position in both human and zebrafish 

PON1 proteins, as it can be seen in Figure 5. These evidences allowed us to conclude 

that zebrafish PON1 constitutes a closer homologue to human PON1. 

 

The POase activity was undetectable in all samples tested from 2 dpf until 7 dpf 

(data not show) suggesting that zebrafish is unable to hydrolyze ethyl paraoxon and, 

consequently, does not present POase activity. These results are in agreement with 

the absence of paraoxonase domain in the PON1 zebrafish protein sequence 

(supplementary figures). It is also important to emphasize that the POase activity is 

also absent in other species of fish and some birds, like turkey (Brealey et al., 1980). 

Even though the POase activity has been the first of the PON1 activities to be found 

(Costa et al., 2003), the POase activiy does not reflect a physiologic function. It was 

demonstrated by evolutionary studies that the LACase is the native activity of the 

enzyme while the POase came as a promiscuous activity across its evolution 

(Aharoni et al., 2005). These evidences suggest that the POAse activity was not 

integrated in the PON1 of the zebrafish across its evolutionary process. 

 

The method used for the measurement of PON1 activities allowed quantifying both 

AREase and LACase. However, considering that our sample, represents the whole 

zebrafish embryo/larvae, it is important to take into account the unspecificity of the 

method to discern for the different enzymes with AREase and LACase activity. In 

human, besides PON1, there are other enzymes with esterase capability such as 

albumin, acetylcholinesterase, butyrilcholinesterase, carboxylesterase (Li et al., 

2005; Taylor et al., 2010), which haves the ability to hydrolyze ester substrates like 
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phenyl acetate. While it is disclosed that the hydrolysis of phenyl acetate in the 

plasma (primary fluid where articles evaluate the enzymatic activity of PON1) is due 

almost exclusively to the PON1, because the contribution of other esterases is just 

residual (Ceron et al., 2014), the same principle cannot be stated when a whole 

organism is used as a sample. There are no studies that allow us an exhaustive 

knowledge of esterase enzymes in zebrafish. Table 5 shows some relevant enzymes 

with esterase activity that are known to be present or absent in the zebrafish. 

Acetylcholinesterase and carboxylesterase have esterase activity and both are 

present in zebrafish larvae and thus they can be potential interfering enzymes when 

measuring AREAse activity.  

 
Table 5 – Potentially interfering enzymes in the measurement of the AREAse activity of PON1. 

Enzymes Presence in zebrafish References 
Albumin No Noël et al., 2010 
Acetylcholinesterase Yes Bertrand et al., 2001 
Butyrilcholinesterase No Bertrand et al., 2001 
Carboxylesterase Yes De Lima et al., 2013 

 

Apart from the esterases enzymes above mentioned, it is necessary to 

evaluate the possibility of a contribution for other members of the PON family (PON2 

and PON3). According to Draganov and co-authors, the three human PONs 

hydrolyzed aromatic esters in a very different way. As far as the phenyl acetate is 

concerned, the PON1 hydrolyze it at a higher rate than PON2 and PON3. PON3 

present a limited AREase activity and in PON2 it is absent (Draganov et al., 2005). If 

we assume that the same happens in zebrafish, we can say that we are quantifying 

PON1 at the expense of PON2 and PON3. However, we emphasize that there is 

insufficient data to support this extrapolation. Similarly, when measuring the LACase 

activity, we were confronted with the lack of specificity of the dihydrocoumarin as it is 

a common substract to the three paraoxonases, even though the PON2 presents a 

reduced capability to hydrolyze it (Draganov et al., 2005). Noteworthy that this 

question is due to the use of homogenate of all animal and the lack of data on the 

enzymatic constitution of zebrafish. The application of this quantification method of 

the LACase activity in the plasma is specific of the PON1 once the serum PON3 is 

less abundant than the PON1 and the PON2 is undetectable (Draganov et al., 2000). 
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The use of anti-PON1 zebrafish antibodies would have allowed the specific 

identification and quantification of the PON1. However, since there are no available 

anti-PON1 zebrafish antibodies in the market we cannot conclude that the AREase 

or LACase activities that we quantified proceed exclusively from PON1 enzyme. The 

AREase activity that we are measuring can be due to other enzyme with ability to 

hydrolyze the phenyl acetate. For LACase activity, we have to take into account the 

possible contribution of the three PONs. In humans, LACase activity is much more 

restricted in PON2 than in PON1 and 3 (Draganov et al., 2005).  If we assume a 

similar behavior for zebrafish PONs, possible we are quantifying PON1 and PON3. 

 

In the absence of antibodies, POX was used in an attempt to isolate AREase PON 

activity from other esterases and the AAS was used with the aim of clarifying the role 

of PON1 in AREase and LACase activities. 

In accordance with Aldridge (1953) the esterases can be divided in A-esterases 

(paraoxonase), with the capability to hydrolyze OP compound and B-esterases 

(cholinesterases - ChE- and carboxylesterases – CaE), inhibited by the latter. The 

POX, active metabolite of the OP parathion, was used as an inhibitor of any esterases 

but PONs. 

After the 24h exposure of zebrafish larvae to POX it was verified a significant 

reduction of AREase activity for both tested concentrations, suggesting the complete 

inhibition of the B-esterases (Figure 8). There are several studies with results pointing 

in this direction, allowing to assume that the paraoxon concentrations that were used 

were enough for the enzyme inhibition. In a study performed by Küster (2005) with 

zebrafish embryos, both enzymes where inhibited with 0.4 µM paraoxon-methyl. Also, 

Yozzo and its colaborators (2012) demonstrated an 85% reduction on the 

acetylcholinesterase (AchE) activity in 96hpf zebrafish larvae, when exposed to a 

concentration of 500nM paraoxon, compared with the vehicle controls.  

With the inhibition of the B-esterases, we can conclude that the quantified Arease 

activity probably can be attributed to PONs (1, 2 or 3). As mentioned before, based 

on the experiences in human PONs, the PON1 is likely the responsible for this activity 

as phenylacetate is slowly hydrolyzed by the PON2 and modestly hydrolyzed by 

PON3 (Draganov et al., 2005). However, it cannot be excluded the possibility of the 

existence of nonspecific esterases which somehow are not inhibited by the POX and 

may interfere in the measurement of the AREase activity, increasing its signal. 
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Regarding to the LACase activity, as expected, it was not affected by POX (Figure 

8). POX is an ester and an inhibitor of B-esterase activity and thus, affects only the 

AREase activity. Again, if we assume that the zebrafish PONs behave similarly to 

man, we are measuring the LACase activity of PON1 and 3. 

Regarding AAS, studies in HEPG2 cells and primary rat hepatocytes reported an 

increase in PON1 activity and gene expression of PON1 and ApoA-l in (Jaichander 

et al., 2008). Furthermore, it is known that AAS is rapidly hydrolyzed in plasma by 

PON1 and other esterases, such as ChE (Santanam & Parthasarathy, 2007) and CaE 

(Tang et al., 2006; Yang et al., 2009) and there are studies that establish an 

association between the use of AAS and the increase in the activity of PON1 in 

plasma (Blatter-Garin et al., 2003). 

In our study, AAS did not reveal to have a significant effect either on AREase 

activity or in LACase activity at the tested concentrations. However we cannot 

conclude that AAS does not affect AREase or LACase activities because we were 

not able to test higher concentrations due to the poor solubility of AAS in water. 

 

The levels and activities of PON1 enzyme are affected by different factors, being 

the age the most determinant of PON1 activity (Costa, et al., 2005b). As such, we 

aimed here to address if PON1 activity changes throughout the zebrafish embryonic 

and larvae development.  

It is considered that the zebrafish goes from the embryo stage to larvae when the 

chorion hatches, which occurs between the 48h and the 72 hpf. (Parichy et al., 2011). 

For this reason, we decided to evaluate the chorion’s influence in the PON1 activities, 

using for that 24 and 48 hpf zebrafish. While at 24 hpf all embryos presented chorion, 

at 48 hpf there were some larvae that already had no chorion.  

In our experiments the chorion increases the AREase and LACase activities in 

zebrafish 24 hpf samples but not in the 48 hpf ones. 

As previously mentioned there are no studies about PON and zebrafish or the 

chorion itself. Moreover, the studies that specifically evaluate molecular constitution 

of the chorion are scarce. The chorion is the acellular envelope surrounding the 

mature egg and the future embryo of zebrafish. According to Cotelli and co-authors 

(1988), it is a complex structure, organized in three-layers formed essentially by four 

major polypeptides, two of them glycosylated. In response to certain physiological 



 

31 
 

needs, this structure faces changes after the fertilization and during the development 

of the oocyte (Robles et al., 2007). One of these changes is called “chorion softening”. 

In the “chorion softening” process proteases enzymes are secreted, which are 

responsible for digesting the chorion that becomes thinner until complete dissolution. 

At this point, hatching occurs (Schoots et al, 1983; González-Doncel et al., 2003; Hiroi 

et al., 2004). The major AREase activity in embryos with 24 hpf WC, when compared 

with embryos WOC, might possibly be explained by the fact that the chorion is made 

of proteins, such as PON1, that have AREase activity. However, the same activity 

does not show any significant changes in fishes with 48 hpf. In this case, the “chorion 

softening” process might explain these results. Most likely, the chorion was already 

very thinner and the proteins with AREase activity in the chorion were degraded by 

the proteases. 

Regarding the LACase activity, it did not suffer any influence by the 

presence/absence of chorion. To the best of our knowledge, the zebrafish does not 

have any other enzymes with LACase activity apart from the PONs (1, 2 and 3). 

According to Murata and co-authors (2014), the enzymes that are part of the zebrafish 

chorion are synthesized in the ovary. In a human study that evaluates the localization 

of  PON1 and PON2 mRNA in different tissues, it was found that both PONs were not 

expressed in the ovary (Mackness et al., 2010). Then, assuming that zebrafish 

ovaries also do not express PONs, if the ovary is responsible for the synthesis of the 

chorion proteins, it is plausible to assume that the PON1 and the other PONs are not 

part of the molecular constitution of the chorion. This hypothesis was confirmed by 

the lack of LACase activity in the chorion. 

 

Having established the influence of the chorion in the AREase and LACase 

activites in embryos with 24 hpf we next investigated how the age affected the 

AREase and LACase activities from 2 dpf (only animals WOC) until 7 dpf. 

Both AREase and LACase activities increased significantly along the development. 

For the AREase activity this increase was progressive while for the LACase activity it 

was only registered between days 2 and 7 (Figure 7). Studies made in humans (Cole 

et al., 2003; Huen el al., 2009) show that serum PON1 activity is low at birth and 

increases significantly with age until reaching a quite constant level over time (at 2-7 

years), until it begins to decrease with the ageing process of individuals (Milochevitch 

& Khalil, 2001; Seres et al., 2004). 
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Similar results were obtained with mice suggesting that the PON1 activity is very 

low at birth and increases significantly until the 21 days of age. There are data 

suggesting that the PON1 activity can be minor in the fetus, with the premature babies 

showing 24% less activity than the term babies (Huen et al., 2009). 

Our results do not allow us to make a parallelism with the referenced studies. 

Although it was observed an age-dependent increase in the AREase activity levels 

(Figure 7), it cannot be justified only due to the PON1 as this study is probably 

measuring the other PONs and other esterases present in the homogenate of the 

zebrafish. Besides, in the study conducted by Küster (2005) both ChE and CaE 

activities increased with the age and size of the zebrafish embryo. 

The assessment of the LACase activity, believed to be only related to the PONs, 

suggests that the activity increases with age. Nevertheless, as previously stated, this 

activity cannot be assigned exclusively to PON1 as PON2 and PON3 can also 

contribute. 

 

As it is known, PON1 it is an important antioxidant and detoxifying enzyme and the 

decrease of its activity is related to several disease states. Due to its characteristics, 

it is seen as a potential biomarker of a number of diseases, which includes renal 

damage (Sztanek et al., 2012). The zebrafish is an important research model in 

toxicology and has been a successful model in the study of many pathologies, 

including renal diseases (Parng et al., 2002; Sharma et al., 2014). Additionally, the 

pronephros of the zebrafish is similar on cellular, structural and functional level, to the 

kidney of mammals, making it a good model for nephrotoxicity (Perner et al., 2007). 

Considering this information, the final step of our study was to evaluate the effect of 

nephrotoxic drugs in PON1 activities. Hence, the zebrafish larvae were exposed to 2 

drugs with nephrotoxic effects in humans and in zebrafish: TDF and PCM. 

Our results show that the lowest concentration (800 µM) of TDF significantly 

decreased the AREase activity while the LACase activity was not affected by any of 

the concentrations. (Figure 9). TDF is a nucleotide reverse transcriptase inhibitor 

used in antiretroviral therapy with recognized renal toxicity, being the proximal tubule 

the main site of toxicity (Elias et al., 2014; Ramamoorthy et al., 2014). Although the 

nephrotoxicity mechanism of the TDF is not well characterized, there are studies that 

show the tubular proximal mitochondria as an important target in this process either 

in humans or in animal models (Biesecker et al., 2003; Birkus et al., 2002; 
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Ramamoorthy et al., 2014). Although the mechanism by which the damage in 

mitochondria causes tubular dysfunction is unclear, it seems to be related to the 

increasing production of reactive oxygen species (ROS) and depletion of antioxidants 

and antioxidant enzymes (Circu & Aw, 2010; Ramamoorthy et al., 2011) . The 

decreasing of AREase activity in zebrafish larvae exposed to TDF 800 µM may be 

related to ROS production, since the PON1 is highly susceptible to oxidative 

inactivation enzyme (Nguyen & Sok, 2003). 

Several studies confirm that ROS are responsible for the loss of activity of PON1 

under oxidative stress (Aviram & Rosenblat, 2004; Rozenberg et al., 2003). Under 

the same conditions, the activity of PON3 also decreases whereas the enzymatic 

PON2 activity increases (Aviram et al., 1999; Van Lenten et al., 2001). Regarding the 

possible esterases AREase that contribute to the measured activity, it is known that 

the AchE of Torpedo californica was inactivated when exposed to ROS (Weiner et 

al., 1994). In contrast, studies with human CaE show that oxidative stress induces 

the enzyme (Maruichi et al., 2010). Taking all this into account, the decrease in 

AREase activity could be attributed to the inactivation or reduction of the activities of 

PON1 (assuming a similar behavior of zebrafish and human PONs) and CaE. 

It should be noted that the AREase activity was not affected by the higher 

concentration of TDF (3200 µM). In view of the lethality rate of the 2 TDF 

concentrations (3% for 800 µM and 7.35 % for 3200 µM) we were not expecting this 

results for AREase activity. 

 

The exposure to PCM resulted in the reduction of AREase activity for both 

concentrations (7000 and 20 000 µM). Regarding the LACase activity, no changes 

were experienced. As happens with TDF, ROS may be also the cause of the 

decreased AREase activity in zebrafish larvae exposed to the PCM. 

The PCM or acetaminophen is a widely used drug that presents hepatic and renal 

toxicity (Lorz et al., 2004; Peng et al., 2010). The injuries caused by the PCM are 

induced by the toxic reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI). It is 

believed that cellular damage caused by NAPQI is due to it covalent binding to 

macromolecules or mediated lipid peroxidation by ROS (Davis & Hanumegowda, 

2009, Jones & Vale, 1993; Saito et al, 2010 ). The relationship between ROS and 

PONs mentioned above is also applicable here. Furthermore, there are studies 
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showing an association between increased oxidative stress and decreased PON1 

activity in patients with PCM poisoning (Karadas et al., 2014). 

In regards the effects of paracetamol on other esterases, in an in vitro experiment, 

PCM largely mitigated the erythrocytic AchE suggesting a strong antagonism 

between the drug and the enzyme (Tariq et al., 2014). As for the CaE, there are 

conflicting reports. Studies made in humans indicate a marked increase in serum 

enzyme activity in patients with liver damage caused by PCM intoxication (Talcott et 

al, 1982; Hammock et al., 1984). In contrast, a study in rats does not support the 

association between elevated serum CAE and liver damage caused by PCM (Huang 

et al., 1993). However, in our study, we have to consider the contribution of the 

enzyme, since the PCM is also hepatotoxic in zebrafish (North et al., 2010). The 

question that arises is whether different enzymes besides PON1 contributed to the 

AREase activity measured, each contributing with their own specific characteristics 

in response to the PCM.  

Considering that the LACase activity is the most sensitive of PON1 activities to 

oxidative inactivation (Nguyen et al., 2009), a decrease in its activity would be 

expected after exposure to TDF and PCM. Some questions can be raised as possible 

explanations for these conflicting results: 

1- Is the decrease in the AREase activity due to other mechanism rather than 

the inhibition caused by ROS? 

2- With the apparent greater stability of the LACase activity relative to AREase, 

would the exposure time (24h) to the drug have been insufficient to induce 

effects on LACase activity? 

 

In summary, with this work we show that PON1 is highly conserved in zebrafish, 

presenting 49% of similarity with human. We demonstrate, for the first time, that 

AREase and LACase activity are present in zebrafish and increase throughout 

zebrafish development, mainly AREase activity. On the other hand, our results 

suggest that POase activity is absent and likely to be a promiscuous activity that was 

not integrated in the zebrafish evolutionary process. Despite our efforts, it is not 

possible associate the AREase and LACase activities exclusively to PON1. There 

could be paraxonases (2 and 3) and other esterases present in zebrafish that 

hydrolyze the substrates that were used to quantify those activities.  
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The present work, give new insights on the three enzymatic activities involved in 

endogenous and exogenous compounds metabolism and detoxification. The full 

characterization of this and other important enzymes for xenobiotics and drug 

detoxification is missing for the proposal of zebrafish as a model for translational 

research on drug biotransformation and toxicity mechanisms and to disclose its 

applicability to pre-clinical studies.  
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5. Supplementary Figures 
 

 

 
Table 1 - Lethality rate for AAS and POX in preliminary experiences 

Drug % Lethality 
AAS 100 uM 0 
AAS 200 uM 0 
AAS 300 uM 3.12 
AAS 400 uM 0 
AAS 1000 uM 0 
POX 0,1 uM 0 
POX 0,5 uM 0 
POX 1 uM 0 
POX 2 uM 0 
POX 5 uM 87.5 

 

 

 
 
Figure 1 - Protein domains for zebrafish PON 1. Absent of paraoxonase domain. 
(http://www.ensembl.org) 
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