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Adsorption Kinetics of Protein Mixtures
A Tentative Explanation of the Vroman Effect

PETER A. CUYPERS,*® GEORGE M. WILLEMS,*
H. COENRAAD HEMKER,” AND WIM TH. HERMENS?

“Department of Biophysics
“Department of Biochemistry
Biomedical Centre
University of Limburg
6200 MD Maastricht, The Netherlands

INTRODUCTION

When a surface is exposed to plasma, different proteins from the plasma will
adsorb on the surface within several minutes. This adsorption from plasma or serum or
protein mixtures depends on the concentration of the various proteins, the nature of the
protein and surface, and the adsorption time. Despite numerous studies, the exact
composition of the adsorbed protein layer from a multicomponent mixture such as
plasma is not yet known." Exposure of different surfaces to undiluted plasma results
in a relatively limited adsorption of albumin, immunoglobulin, and fibrinogen
compared with the adsorption of the same proteins from less concentrated solutions.*
From experiments of Vroman® in which he used normal plasma and plasma lacking
high molecular weight kininogen (HMWK), it was concluded that fibrinogen, initially
adsorbed on hydrophilic surfaces exposed to normal plasma, is displaced by HMWK.
These observations were confirmed by Brash.® Observations on the absorption of
proteins from various dilutions of plasma showed that no fibrinogen is adsorbed from
concentrated plasma, adsorption followed by desorption of fibrinogen occurs for
moderately diluted plasma, and a stable adsorbed fibrinogen monolayer is formed for
plasma dilutions of about 5% or less.*'® The observation that a protein, abundantly
present in plasma, predominates initially in the adsorbed protein layer only to be
replaced thereafter by a scarce component of the plasma proteins with a higher affinity
for the adsorbing surface fits qualitatively into classical binding theory. The dilution
effects, however, seem unexplainable in this framework.

In recent studies on the adsorption kinetics of three different proteins on a double
layer of phospholipids it was found that the value of the intrinsic adsorption rate
constant, k'™, is strongly dependent on the surface concentration of the adsorbed
proteins. The experiments showed that k™ decays exponentially with increasing
surface concentration T'. The present study shows that this behavior results in an
interaction parameter between the adsorbed proteins that may in principle cause such
phenomena as the replacement of fibrinogen by HMWK, and, more importantly, also
explains the different types of adsorption from different dilutions of plasma.

bPrescnt address: DSM Research BV, P.O. Box 18, 6160 MD Geleen, The Netherlands.
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MATERIALS AND METHODS
Materials

A double fayer of 1,2-dioleoyl-sn-glycero-2-phosphoserine (DOPS) was stacked on
a chromium slide as described in refs. 11 and 16. Bovine prothrombin and human
fibrinogen were used. The proteins were cither obtained commercially or prepared
according to established procedures.'

Adsorption and desorption experiments were performed by ellipsometry as
described in detail previously.'* " The surface concentration of proteins was calculated
from the measured refractive index and thickness according to the modified Lorenz-
Lorentz equation."’ Sorption experiments were performed in Tris-HCl buffer, pH 7.5,
containing 0.1 M NaCl and 1.5 mM CaCl,.

Analysis of Sorption Kinetics

Introduction of I-dependent intrinsic adsorption and desorption rate constants,
including the deviations from ideal Langmuir adsorption behavior, results in the

following set of equations'®!’
d
E;T(l) = k(T) 3PP (Tinax — T(2 )y, — K(T)SFL(2) (1a)
with
K(T)%P = k(L)Y D/(D + 6k(D)n(Coax — T)) (1b)
and
k(D) = k(M) gD/ (D + k(D) g (Toen — ), (Ic)

where I'(z) = surface concentration (/.Lg/sz) dependent on time ¢
k(I"),, = adsorption rate function (cm?’/ug - s)

k(I'),z = desorption rate function )
¢y = protein concentration in the bulk (ug/cm?)
D — diffusion constant of the protein (cm?*/s)
5 = thickness of the unstirred layer (cm)

The observed values of k(I')2 and k(T')3§ can be approximated by exponential
relations (see FIGURE 2):

k(D)o = ke~
and
k(@) = k_e*™, @)

where « and 3 are respectively the interaction constants for the adsorption and
desorption of this particular protein.'”

From the preadsorption experiments (see RESULTS) it was concluded that the total
amount of adsorbed protein has to be taken into account in these relations; for instance,
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for a mixture of two proteins
[(EET R B

The equilibrium association constant K, is defined by K, = kin/kii. Using
equations 1b, 1c, and 2, K, can be written as:

K, = Kis/ki% = K/ kP = Ke ™,

where v = & + §and K = k_ /k_ is the association constant in the limit of low surface
coverage.
In equilibrium one has d/d¢ T' (¢) = 0 and it follows from equation 1a that

Feq = (k?’l:lP/k:gP) (Fmax = I‘\aq)cb = Ke_‘yrq(rmu i eq)cb'
For two components one then obtains:
T =Tieq + Ty = (Kle_“rq'clb i KZe_hrq("Zb)(Fmax — Feq)- 3)

Knowing the parameters K|, K3, ¥1, 72, Cib» Ca» and Ty, this relation permits
calculation of I',,. Knowing I, one may then calculate T',, and Ty,.
Instead of equation 3 one may also write:

Fieq/Teq = [(chlt:)/(chzt>)]f«’_("I e 4)

This equation shows that the ratio of the adsorbed proteins is dependent on I'q. If Ty is

8.6 4
I' ug/cm?

8.5

@ 4%

¥ T g ! ' ¥ T £ ' Y Y T Y : 4 r 1
1000 2009 3000 4900
time sec

FIGURE 1. Measurement of adsorption and desorption of prothrombin, added 1600 s after
preadsorption of fibrinogen (see text). The initial value of T' = 0.335 ug/ cm? (at ¢ = 0) was
calculated for the DOPS double layer.
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FIGURE 2. The effect of surface concentration T on the value of K (logarithmic plot); O =
without preadsorption of fibrinogen; + — with preadsorption of 0.08 ug/cm? fibrinogen.

changed, for instance by changing the values of ¢,, and c¢,, by the same dilution factor,
the ratio of the absorbed quantities of protein will also change.

RESULTS AND DISCUSSION
The Effect of Preadsorption of Fibrinogen on the Adsorption of Prothrombin

To investigate the effect of the presence of another absorbed protein on the
absorption of prothrombin, a double layer of DOPS was stacked on a reflecting
chromium surface and after 50 seconds 20 ug/ml fibrinogen was added to the cuvette.
The adsorption reaches a plateau value of 0.1 ug/cm? after 1000 s (FIGURE 1). The
content of the cuvette was rinsed with buffer and a small desorption was observed.
After 1600 s prothrombin adsorption was started by adding the protein to the cuvette
(final concentration, 20 pg/ml). Within 100 seconds adsorption was completed at an
adsorbed mass of 0.18 ug/cm? After 2000 seconds the desorption of prothrombin was
measured by again rinsing the cuvette with buffer.

The results of 10 prothrombin adsorptions with and without preadsorption of
fibrinogen are shown in FIGURE 2. The effect of a preadsorption of fibrinogen (0.08
pg/cm?) on the adsorption of prothrombin is to lower the value of ks by about a factor
of ten and to cause a parallel shift to the left of about 0.06 pg/cm?. Comparing these
values, it is concluded that the adsorbing prothrombin molecules, in first approxima-
tion, do not discriminate between preadsorbed fibrinogen or prothrombin. Apparently
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the adsorption of one protein can be strongly influenced by the presence of another
protein and in the case of a mixture of proteins the total adsorbed amount of proteins
has to be taken into account. FIGURE 2 also shows the exponential relation between s
and the surface concentration T, as has been observed before.'s"

Computer Simulations

In order to investigate the consequences of this model for the adsorption of a
protein mixture, we performed some computer simulations. The choice of the
parameter values of the model was guided by the following considerations.

From previous experiments with adsorptions of prothrombin and fibrinogen
mixtures a value of I',,,, = 0.3 pg/cm? was estimated and for I', a value of 0.25 pg/cm?
was chosen arbitrarily. If the first protein must show preferential adsorption for a
highly diluted mixture and be displaced by the second protein for an undiluted mixture,
the following requirements must be satisfied (cf. equation 4):

Kicy

Ky » Kyopy =1 and B e (5)

202

Therefore, the following numerical values were chosen:

K ey,
Ky = 10% Kycp, = 10; Lm0 _ 1072,
Ky

resulting in v, — 72 = 45 (cm®/ng).

For the dynamic simulations, values of k., = k., =1 cm?/ug - s were chosen. For
proteins with molecular weights of 100,000, this value corresponds to an association
rate constant of approximately 10* M ~'/s. Thus a high, and identical, value of k, was
chosen for both proteins, about one order of magnitude lower than the upper limit as
predicted by Smoluchowsky theory. For the bulk concentrations protein values of ¢, =
1000 pg/em’ and ¢,; = 10 pg/cm® were chosen, that is of the order of the plasma
concentrations of fibrinogen and prothrombin, and the corresponding values of k_ thus
became: k_, = 0.1 s~ and k_, = | s, A value of D/§ = 107> cm/s was chosen in
Equation 1, in agreement with ref. 16.

It should be stressed, however, that the simulation results shown in FIGURES 3-5
are determined qualitatively by the conditions in equation 5 and do not depend
critically on the other assumed parameter values. Also, the picture remains qualita-
tively unaltered if it is assumed that the effects of the absorbed quantities of both
species are not strictly additive. This is suggested, for instance, by the finding that
preadsorption of fibrinogen is slightly less effective in lowering Ky, for prothrombin
than preadsorption of prothrombin itself. Such effects could be expected for proteins
having different values of v and could be simply accounted for by assuming a relation
of the type Ty = [y + f Taeqs with fas a weight factor.

The above estimated value of v, the interaction constant, of about 45 cm’/ug is in
good agreement with the experimental values found. For the system tested until now
values between 20 cm?/ug and 80 em?/ug were found."”

The Ratio of the Adsorbed Proteins as a Function of Time and Dilution

FIGURE 3 shows the sequence and ratio of the adsorption of the two proteins.
Initially the protein with the highest K ¢y, value is adsorbed. Ata surface concentration
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.25 =

I ug/cm?

8.208

8.15

time sec.

FIGURE 3. Sequential adsorption of proteins from a binary mixture. Parameter values are given
in the text.

8.25
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8.20
8.15
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0.08 . r . v . r v :
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FIGURE 4. The effect of dilution on the final surface concentrations of the proteins from a
binary mixture. Parameter values are as in FIGURE 3.
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of about 0.16 ug/cm? the exponential interaction term already influences I'jeq/Ieq 50
strongly that the protein with the lower K ¢, value and a lower interaction constant -y
can replace the first protein.

The concentrations of the adsorbed proteins as a function of dilution are presented
in FIGURE 4. It is shown that, although the ratio of protein concentrations in the
solution does not change upon dilution, there is a drastic change in the ratio of absorbed
proteins. The effect of different values of the interaction constants is shown in FIGURE
5 for a range of values v, = 35-55 cm?/ug.

The significance of an “interaction constant” between protein molecules needs
some comment, as has been pointed out recently.'® In a narrow sense it describes the
situation where some real chemical or physical, either attractive or repulsive, forces

8.154

Iy ug/em ]

fa.18

9.05 -

T T
8.8 B.2 8.4 8.6 8.8

Dilution factor

FIGURE 5. The effect of the interaction constant of protein / on the final adsorbed amount.
Other parameter values are as in FIGURE 3.

exist between molecules that influence their distribution. The effect of pH and calcium
ions on the interaction constant (e.g., for albumin, v = 76 at pH = 7.5 and v = 23 at
pH — 6.0) strongly suggests the existence of such forces, particularly the presence of
electrostatic interactions. However, the finite dimensions of the molecules could be
sufficient to explain such effect. Their self-penetration is impossible and differences in
molecular dimensions and orientations could largely influence the surface distribution
of different proteins. It will be difficult to differentiate between various physicochemi-
cal forces and spacing effects, but their net effects seem to be reasonably well described
by the exponential constants a and § in our model.

Fibrinogen displacement is not observed in HMWK-deficient plasma,*>'® and this
suggests some special property of the HMWK molecule resulting in a low value of the
interaction constant v at physiological pH. Indeed it is known that the light chain of
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HMWEK is responsible for the binding to negatively charged surfaces,'” and this light
chain has a rather unique amino acid composition with an average isoelectric point at
PH 7.4. This implies that a large part of the molecule is uncharged at physiological pH,
which could favor a low value of 7. It is tempting to speculate about such relations
between the values of v for different proteins and their amino acid composition and
function. The same is true for a possible regulatory role of changes in the value of yasa
result of local triggers such as changes in pH or calcium concentrations. Such changes
could cause altered compositions of a mixture of adsorbed proteins.

Sequential adsorption of proteins can be explained in a classical binding model by
simply assuming that an abundant protein is displaced by a scarce protein with higher
binding affinity. In such a model, however. dilution would not cause a qualitatively
different behavior but would only make the process slower. A qualitative effect of
dilution, as observed for fibrinogen, could still be explained in the framework of
classical binding theory by assuming that, due to absorption, the highly diluted bulk
phases becomes depleted of scarce proteins.'® The model presented in the present study,
however, may also explain such a qualitative effect of dilution in those cases® where
depletion of protein from the bulk phase did not occur.

SUMMARY

A model for protein adsorption kinetics has been presented. This model includes
diffusion-limited adsorption, adsorption and desorption rate constants ko, and kg,
which are dependent on the surface concentration, and an interaction term for the
mutual influence of the adsorbed protein molecules. It has been shown that, in first
approximation, values of Koy and k,; are exponential functions of the surface
concentration. Assuming an adequate interaction term, it is possible to show with this
model for a mixture of proteins that the ratio of the absorbed proteins is strongly
dependent on the overall surface concentration even if the ratio of the bulk concentra-
tions of these proteins is kept constant. Differences in interaction terms for the
different proteins offer a possible explanation for the peculiar behavior of plasma
protein adsorption on a surface at different dilutions of the plasma, the so-called
Vroman effect.
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