% Maastricht University

The kinetics of enzyme cascade systems

Citation for published version (APA):

Hemker, H. C., & Hemker, P. W. (1969). The kinetics of enzyme cascade systems: General kinetics of
enzyme cascades. Proceedings of the Royal Society of London, Series B, Biological sciences, 173(1032),
411-420. [H]. https://doi.org/10.1098/rspb.1969.0068

Document status and date:
Published: 01/01/1969

DOI:
10.1098/rspb.1969.0068

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

« A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 03 Jun. 2020


https://doi.org/10.1098/rspb.1969.0068
https://doi.org/10.1098/rspb.1969.0068
https://cris.maastrichtuniversity.nl/en/publications/dfd67b14-fa7d-453b-9fa3-a00eac01e778

Proc. Roy. Soc. B. 173, 411-420 (1969)

Printed in Great Britain
H. THE KINETICS OF ENZYME CASCADE SYSTEMS

General kinetics of enzyme cascades

By H. C. Hemker AND P. W. HEMRER

Laboratories of Coagulation Biochemistry and Cardiovascular
Biochemical Research, Departments of Haematology and Cardiology,
University Hospital, Leiden, The Netherlands

The theory of the kinetics of enzyme cascades is developed. Two types of cascades are
recognized, one in which the products are stable (open cascades) and another in which the
products are broken down (damped cascades). It is shown that it is a characteristic of a
cascade that the final product appears after a certain lag phase. After this lag phase, the
velocity of product formation can be very rapid. It is shown that whereas open cascades will
always show a complicated time—product relation, damped cascades can under certain circum-
stances resemble a simple enzymic reaction. Because the relation between the over-all reaction
velocity in the extrinsic coagulation cascade and the concentration of any of the proenzymes
in this cascade is a hyperbolic one, it is concluded that this cascade is of the damped type
rather than the open type.

THE KINETICS OF A SINGLE STEP ENZYMIC REACTION

An enzyme cascade can be defined as a sequential array of enzymic reactions in
which the product of one reaction serves as the enzyme in the next. A discussion
of the kinetics of an enzyme cascade can best start with the consideration of a
single enzymic reaction. This subject, of course, can only be treated superficially
here. For a more detailed discussion the reader is referred to textbooks (Dixon &
Webb 1965 ; Gutfreund 1965).

We can write an enzymic reaction as follows:

B
S—P (A)

and the most simple kinetic formula that can be thought of is found when there is
so much substrate that the reaction velocity is proportional to the enzyme con-
centration. In that case S 08 (1)

(v = reaction velocity; k = a constant; £ = enzyme concentration).

This relationship is encountered only under very special circumstances.

A more generally applicable picture of the situation is given by the Michaelis—
Menten model, which depicts the state of affairs in an enzymic reaction as

k+1 k+a
E+82C0>E+P, (B)
k—1

Mathematical evaluation of this model is best done with approximations. The best
[ 411 ]
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known approximation is the so called Briggs—Haldane formula which gives v as

k., ES
g o @
(S = substrate concentration) where
B (19—1]:‘F 1k+2) _ 3)

This formula is valid only under the following conditions

(@) 8§ > E. Computer simulation experiments (Hemker & Hemker 1967, un-
published results) have shown that the error introduced by this approximation
will remain below 19, as long as § > 30EK.

(b) The ‘transient phase’ can be neglected. The transient phase is defined as the
lapse of time immediately after the start of the reaction during which there is a net
synthesis of the enzyme substrate complex.

(¢) Initial reaction velocities are measured. This means that during the period
over which the reaction velocity is measured, S does not drop considerably.

With respect to the question of whether we can maintain these assumptions in
the steps of the reaction systems we are interested in here, it must be remarked
that:

(@) The assumption § > FE is not a very realistic one, because very often we do
not even know whether a certain reactant should be regarded as a substrate or as
an enzyme. On the other hand, we can be reasonably sure that either S > ¥ or
E > 8, because one of the two reactants is the reaction product of the foregoing
step. We were able to show that under these conditions (Hemker, Hemker &

Loeliger 1965a)
S k. ,ES (4)
K,+E+8
which for the case in which £ > 8, reduces to
R BE
VG )

This is equal to the Briggs—Haldane formula except that S in the denominator is
replaced by Z. This place in the formula is apparently reserved for the concentra-
tion of the reactant present in excess. If we define the substrate in an unorthodox
way as the reactant that is present in excess, we can maintain the Briggs—Haldane
formula. But we should keep in mind that if we do so, we do not differentiate
between the reaction schemes:

E, E,
S;—=H, Sy<E, ©)
B, E,
and S;—=P; P,—H, (D)

(6) To neglect the transient state, which is the second assumption in the
Briggs—Haldane case, does not seem to be very realistic either. Although it is
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justified in the majority of cases where the reaction is started by adding a fixed
amount of enzyme at zero time, in our systems we are dealing with enzyme con-
centrations that change in time, and there is no good reason to assume that the
transient phase can be neglected under these circumstances.

Gutfreund (1965) gave a solution for the kinetics of the Michaelis-Menten model
providing for recognition of the transient phase. With a small modification, this
yields the analogue of the Briggs—Haldane formula valid for the transient phase

kB8 L
W = ——Km-{—S(l G (6)
where b = b (K, +8). (7)

Here we can recognize the Briggs—Haldane formula multiplied by a factor which
is 0 at ¢ = 0 and which will tend to become 1 when ¢ grows large.

(¢) The third assumption of the Briggs-Haldane treatment, i.e. the considera-
tion of initial reaction velocities, will have to be maintained because we can not
yet handle the mathematics if we discard it. Moreover, we know that experi-
mental results do not force us to drop this assumption.

To summarize, we have three formulae for the reaction velocity as a function of
reaction constants and concentration of reactants in a one step enzymic reaction,
namely:

(@) v=FkE, (1)
k., ES

) v=F% @)
kb

@ o= pig-en) (6

It is evident that the more realistic the formula, the more complicated it becomes.

THE RKINETICS OF CASCADE SYSTEMS

The only thing intuition tells me when I try to visualize what happens in an
enzyme cascade is that it will necessarily be quite a bit more complicated than
the kinetics of a single step reaction. This compels a thorough mathematic in-
vestigation of the subject. The outcome of such a study will very probably be a
set of more or less complicated formulations (i.e. mathematical equations) that
are only of limited comfort to those—the author included—who try to investigate
the enzyme cascade system at the laboratory bench, unless such equations are
translated into terms that can be checked at the bench. This is what we have tried
to do here.

Tn the first place, it should be recognized that there are actually two different
classes of cascade systems, which we will call the open and the damped cascades.
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(@) The open cascade is the cascade as originally proposed by Macfarlane.
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(b) The damped cascade is a cascade in which each enzyme is broken down as
soon as it appears

2 A :[2
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i

By L ohe (F)
From the standpoint of physiology, the damped type represents an interesting
case because many active principles generated in cascades are known to be

inactivated.
Kinetics of the open cascade

The best thing to do seems to be to apply the most realistic formulae for the
reaction velocity of one step to each of the steps in the cascades. As you will see
later, this results in the most horrible and unhelpful formulae. We will therefore
discuss the results of applying the most simple of the single step formulae first.
When an open cascade is triggered by the addition of a fixed amount of enzyme at
zero time, the reaction velocity of the first step will be v; = k&, F;. The concentra-
tion of the product of the first step will therefore rise linearly in time according to
the formula: Py, = to, = th, B, (8)
and, because the product of the first step is the enzyme of the second step, it
follows that

By = thy B (9)

The velocity of the second step will therefore be

AP, [dts=n 0=kl it e Bl (10)
Integration shows that the concentration at time ¢ of the product of the second step
pilbRe P,, = kb, B, (11)
For a cascade of n steps this becomes

P,, = (1/n!) "B, .1:}1 %y (12)

So the course of product formation in an open cascade will be a higher degree curve
of the type given in figure 1. Some important conclusions can be drawn from this
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simple formula. In the first place, the most important effect of a cascade is not
an amplification but a triggering effect. Just as a sneeze can trigger an avalanche,
the first addition of enzyme triggers a burst of product formation after a certain
incubation time (see also Hemker 1963).

The actual amount of product present at a given time is determined by all the
multiplied reaction constants and #,, that is by the term

n

(1/n Y E, 11 k,.

=1

There is no reason to assume that this will be a big number. When, for instance, all
these constants are smaller than one, we end with a very small number (figure 2).
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Figure 1 FiGcure 2

Ficure 1. Product formation curves in an open cascade when all reaction constants are unity.

The figures indicate the step number (n).
Ficure 2. Product formation curves in an open cascade when the reaction constants differ
from unity. The figures indicate the step number (n). Solid lines:k = 0-5; dashed lines

E=— 20

The conclusion must therefore be that an open enzyme cascade is an avalanche
rather than an amplifier or, with the model of a photomultiplier tube in mind, we
should perhaps call it a multiplier system rather than an amplifier.

When we calculated the formulae that would result if we started with a more
sophisticated formula for the one step reaction velocity, we found that, using the
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APPLICATION TO THE STUDY OF BLOOD COAGULATION

If you will return with me now to the laboratory, I will show you some experi-
ments concerning a complete cascade in which the concentration of each of the
reactants was varied separately. The cascade under study is the extrinsic blood
coagulation system. This cascade consists of the proenzymes factor VII, factor X,
factor V, and factor II, and further needs phospholipids, Ca®t ions and a still
poorly defined protein from tissue (‘tissue factor’). The substrate of the last step is
fibrinogen, the product is fibrin (for full experimental details see Hemker & Muller
1968). The over-all reaction velocity in such a system is assessed by measuring a
clotting time; that is essentially the time necessary for a fixed amount of fibrinogen
to be converted into fibrin. A practical difficulty arises in these systems from the
circumstance that it is not possible to obtain plasmas that are completely devoid of
one specific factor. This difficulty is demonstrated by the fact that in a reaction
medium planned to be deficient in one factor, coagulation occurs when this factor
is not added to the system if the system is provided only with tissue thrombo-
plastin (i.e. protein factor from tissue and phospholipids) and Ca?* ions. (The
clotting time then obtained is the so-called buffer value, #; ;). The cause of this
reaction can be either that a small percentage of the factor planned to be absent
still is present or that another plasma protein functions as a stand-in for the
deficient factor. In the latter case the functional amount of the deficient activity
that is still present can be expressed as an equivalent concentration of the normal
factor. A fundamentally different explanation of the observation that a deficient
plasma still clots would be that a different reaction pathway takes over—one in
which the deficient factor is not required. A choice between these two possibilities
can be made on the basis of the following considerations:

(@) No alternative pathways are known when a system is deficient in one of the
factors II, V, or X.

(b) (i) If an alternative pathway exists, it will be active when the deficient
factor is added but will be overshadowed by the activity of the main pathway.
The overall reaction velocity would then be a result of the combined activities of
both pathways. The ‘buffer time’ is determined by the velocity of the alternative
pathway only. The velocity in the pathway under study (veo,,) can therefore be
found by subtracting the velocity giving the buffer time (v, ) from the over-all
velocity (veyp.). If the coagulation velocity is defined as the inverse of coagulation
time, this gives:

Veorr.= Vezp. = Uputt. = 1/t — 1 [tyus.- (26)

The correlation between v, and the concentration of the factor (C) that is rate

limiting in the pathway under study can then be determined experimentally.

When v,,,, of the extrinsic pathway was determined in this way, we found no

comprehensible correlation between C' and v, (Hemker et al. 1965a; Hemker,
Van der Meer & Loeliger 1965b).

(ii) When, however, we assume that one pathway is operative but that, besides
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the amount of the rate limiting factor added (C), a certain unknown amount (L)
of the same factor was present in the reaction mixture, it will be clear that veyp, 18
determined by (C + L), whereas vy, if determined by L only. The nature of the
relationship between v and the concentration of the rate limiting factor would then
be essentially the same, whether v, is expressed as a function of (C+ L) or vy,
as a function of L. The latter approach proved to be the more fruitful one. It could
be shown beyond all reasonable doubt that the inverse of the concentration (C + L)
against 1/v,,, is a straight line (linear regression coefficient 0-998 in the case of
factor IT and factor VII determinations estimated from 500 experimental points
each). The same linear relation between factor concentration and coagulation time
was found for factor V and factor X. It was not found in the intrinsic system, nor
was it found when factors VII and X were varied simultaneously. Factor I was
shown to be present in excess (Hemker ef al. 1965a).

This experimental outcome leaves us with the problem that in all cases in the
extrinsic blood coagulation pathway the relation between reaction velocity and the
concentration of the rate limiting coagulation factor is of the type

kES
= s (27)
(p being an arbitrary constant).

Comparison with equation (2) shows that the over-all reaction velocity in the
extrinsic cascade bears a relation to the concentration of each of its substrates that
perfectly imitates the relation found in a simple system. On the basis of the theo-
retical considerations given above, we must conclude that it is likely that a damped
cascade is operative in this system. This, in combination with the results of other
experiments (Hemker, Esnouf, Hemker, Swart & Macfarlane 1967), led us to
postulate the following reaction mechanism, which you will recognize as essentially
the same as that proposed by Dr M. P. Esnouf (this volume, p. 269):

VIL
X — 2Xa,

Xa + V + phospholipid 2= prothrombinase — inactive prothrombinase,

prothrombinase antithrombins
II— 5 thrombin———— inactive thrombin,

thrombin
fibrinogen —— fibrin

The interaction of fibrinogen, thrombin, and fibrin shows some interesting features
which cannot be discussed here. For a more detailed discussion, see Hemker &

Muller (1968).
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