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Abstract This paper reports a classroom-based study involving investigation activities in a university 

numerical analysis course. The study aims to analyze students’ mathematical processes and to understand 

how these activities provide opportunities for problem posing. The investigations were intended to 
stimulate students in asking questions, to trigger their thinking processes, to promote their ability to 

investigate and to support them learning numerical analysis concepts and procedures. The results show 

that the investigations provided opportunities for students to experience mathematical processes, 

including posing questions, formulating and testing conjectures and, to some extent, proving results. They 

also provide some understanding about the role of problem posing in these processes. Posing questions 

occurred mainly in an implicit way, in the interpretation of tasks and in identifying regularities, analyzing 

graphs and testing cases. The conjectures were often based on pattern identification or data manipulation 

and the students tended to accept them without testing or proving. The students also proposed alternative 

formulations for the initial questions and posed new problems from their explorations and attempts to 

refine previous conjectures. 

Keywords Problem-posing, Investigation activities, Mathematical processes, Reasoning. 

1 Introduction  

Mathematics may be regarded as a body of knowledge or as a human activity 

(Freudenthal, 1973; Pólya, 1945). Whereas the notion of body of knowledge leads to the 

notion of mathematics teaching as a transmission process, the notion of mathematical 

activity suggests that students may be actively involved in doing mathematics (NCTM, 

1989). Pólya (2002) underlines the importance of such activity when he says: “To 

understand mathematics means to be able to do mathematics” (p. 7). At the heart of 
doing mathematics is posing problems and solving them (Brown & Walter, 1990).  

Problem posing may be regarded as emphasising the formulation of a key 

problem that hopefully will trigger an extended and productive mathematical activity, 

leading to its solution. But problem posing may also be regarded as the constant process 

of posing questions, that permeates any authentic mathematical activity, and that 

generates both key and subsidiary questions. One must note that sometimes subsidiary 

questions become central and sometimes key questions become dead ends. Adopting 

this second view, we see mathematical investigations as providing particularly rich 

opportunities for problem posing (Ponte & Matos, 1992). The close relation to problem 

posing and the increasing visibility of such activities in curriculum documents (such as 

NCTM, 2000) and in teachers’ practices (Ruthven, Hofmann & Mercer, 2011), make 
them an interesting and potentially fruitful field of study. 

This paper identifies the mathematical processes used by university students 
exploring investigations in the classroom, in order to analyse how these activities 

contribute for students’ problem posing processes, from the interpretation of the 
situations to the justification of results. 

                                                
1
 Ponte, J. P., & Henriques, A. (2013). Problem posing based on investigation activities by university 

students. Educational Studies in Mathematics, 83(1), 145-156. 
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2 Problem posing and investigation activities  

In teaching and learning contexts, students may work in a similar way to professional 

mathematicians. Such is the view of Hadamard (1945): “Between the work of the 

student who tries to solve a problem in geometry or algebra and a work of invention, 

one can say that there is only a difference of degree, a difference of level, both works 

being of a similar nature” (p. 104). Working on mathematical investigations provides 

students with the opportunity to experience important mathematical processes. Ernest 

(1991) points out problem posing as a first distinctive feature of mathematical 

investigations, as their statement often is not fully explicit and precise, requiring 

students to pose their own questions and to establish their own objectives. After 

exploring the situation, it is necessary to pose questions about the data, frequently based 

on the identification of patterns, and to formulate and test conjectures (Ponte et al., 

1998). This may show the need to collect more data, to drop the initial conjectures and 

to formulate new ones. The analysis of the situation may lead to modify the initial 

questions (Silver, 1994) or to change some of the conditions to raise new problems. 

Then, one must establish plausible arguments and formal proofs to reject or validate this 

guesswork. The conjectures that resist the tests gain credibility, stimulating proofs that, 

once achieved, yield mathematical validity. Ernest (1991) emphasizes that 

investigations provide stimulus to the students to justify and prove their conjectures and 

to explain mathematical arguments to their colleagues and to the teacher. Also, the 
processes of generalization and specialization may be sources not only of solutions but 

of new problems as well (Pólya, 1981). After obtaining a solution for a particular 
problem, a student can also “look back” to see how the solution may be affected by 

changes in the problem (Pólya, 1945). Thus working on investigations students are led 
to formulate questions and conjectures, conduct tests and refutations, and also present 

results, discuss and argue with their colleagues and the teacher (Ponte, Brocardo & 
Oliveira, 2003). An additional feature of this process is that new questions arise along 

the way. 
Carrying out mathematical investigations may contribute significantly to the 

understanding and consolidation of concepts and to the development of students’ 

mathematical thinking (Henriques & Ponte, 2008; Ponte, 2007). Ponte et al. (1998) also 

argue that mathematical investigations provide students with a more complete view of 

mathematics, thus opposing the narrow view of this subject as just carrying out 

procedures and algorithms. Moreover, investigations give students many opportunities 

to pose new problems (English, 2003; Kilpatrick, 1987). Those may arise prior to 

problem solving when students generate problems from a particular situation or after 

solving a problem when the goals or conditions of a solved problem are modified or 

applied to new situations. In addition, problem posing could occur during problem 

solving when the individual intentionally changes their goals while in the process of 

solving the problem (Silver, 1994). 
Previous studies examined the conceptual benefits of problem posing. Silver 

(1994) argues that problem posing promotes students’ mathematical thinking. English 
(1997) also points out that problem posing, reinforcing and enriching students basic 

mathematics concepts, generates a more diverse and flexible thinking and improves 
their ability to solve problems. Moreover, Silver (1994) and English (1997) indicate that 

students who work on problem posing develop a more positive attitude towards 
mathematics, becoming more responsible and motivated for their learning. From a 

teaching perspective, problem posing can also become an useful assessment tool 
enabling teachers to develop a better understanding of students’ cognitive processes, to 
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find possible misconceptions early in time, and to obtain information on levels of 

students’ learning to adjust their teaching processes (English, 1997). In spite of this, few 

studies have examined the cognitive processes involved when students generate their 

own problems in the course of their problem-solving activity or about instructional 

strategies that can effectively promote productive problem posing. Cai and Cifarelli 

(2005) explained several characteristics of the students’ mathematical explorations in 

open-ended problem situations with particular emphasis on how students formulated 

and solved new problems that arose during their problem-solving activity. The results 

obtained (also extended in Cifarelli & Cai, 2005) suggest a preliminary model of 

mathematical exploration processes that the authors consider needs further refinement. 

In this paper we seek to develop a more elaborated view concerning the mathematical 

processes used by students when exploring investigations and address in a particular 
way how they contribute for university students’ problem-posing processes.  

3 Methodology 

The methodological framework of this study is based on the interpretative research 

paradigm (Bogdan & Biklen, 1994). Examples in this paper come from an extended 

classroom based study supported by investigation activities, conducted in the first 

semester of 2008/09 in a numerical analysis course taught by the 2nd author, in order to 

promote students’ experience of doing mathematics and learning of numerical analysis 

concepts and procedures. The participants were all of the 36 second year university 

students of Escola Naval, who had no prior experience in such activities.  
The study offered a different (unusual) approach to a numerical analysis course. 

Classroom work included the realization of four investigation tasks, which took over a 
significant part of the class time organized in three main moments: (1) presenting tasks, 

(2) exploring, and (3) presenting and discussing students’ conclusions (Ponte et al., 
1998). Each task focused on a different numerical analysis topic (interval arithmetic, 

non-linear equations, curve fitting, and numerical integration). Students were proposed 
situations for which they had neither theory nor routine processes to handle and 

therefore were challenged to pose their own questions and to develop and defend their 

own strategies.  

The tasks were presented to the students through a written statement. They 

worked in self-selected pairs or small groups, constituted at the beginning of the 

semester and could use graphic calculators, if they wanted. Upon finishing the 

exploration of the task, the students presented their work orally to the class. These 

discussions were important learning opportunities. The students presented their 

conclusions and explained their ideas and strategies, and, prompted by their colleagues 

and the teacher’s strong questioning, they sought for justifications and discussed aspects 

to which they had only given little thought. These moments also provided the 

opportunity to introduce new topics progressively and to respond to students’ questions, 

probing the understanding of the procedures of their colleagues and asking them to 

explain their reasoning. Between stages (2) and (3), outside the classroom, the students 
wrote a group report, explaining their strategies and presenting and justifying their 

conclusions. Doing this report encouraged students’ reflection, since it requires to 
articulate ideas, to explain procedures, and to review the processes used and the results 

obtained. 
The investigation tasks were alternated with other classes, with lectures to 

address theoretical aspects of numerical analysis arising during the tasks or to present 
other topics (numbers and errors, interpolation and differential equations). The 
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classroom work also included moments for solving problems and doing practical 

exercises for consolidation of concepts and algorithms (see Fig.1). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 – The classroom based study 

Due to the complexity of the complete study (Henriques, 2010), the results here 

reported focus on three students (Carlos, Gonçalo and Luís) working on two tasks, 
conveniently chosen in order to illustrate a variety of interesting aspects of problem-

posing processes. 
Since the teacher was also a researcher, several difficulties and conflicts could 

arise from that dual role. Following the educational research ethical principles, the 
teacher-researcher informed all the students of the reseach goals and intended activities, 

asked their agreement to participate, keeping their identities confidential, and assured 

students that the research would not bring harm to any student in the classroom.  

Data collection methods included observation of students exploring tasks, 

collection of their written reports (labelled WR#), and audio recording interviews after 

the exploration of each task (E#). The interviews were based on issues that emerged 

from the analysis of written reports in order to understand students’ thinking processes 

and to provide data to clarify ambiguous issues. 

For each task, we described the students’ work and documented it via a set of 

comments made by them indicating both the students’ goals as well as the subsequent 

actions oriented towards the solution. Mathematical processes addressed in Ponte et al. 

(2003), such as the formulation of questions, the formulation of particular/specific 

conjectures and their generalization to more general cases, the test of conjectures and 

their posterior justification, provided the basis for categorizing the mathematical 
processes used by the students during the task exploration. We also analysed students’ 

actions to identify other instances that could be considered problem-posing processes, 
such as posing questions about data, generating partial problems from a larger one, or 

modifying the initial goals or conditions of an already solved problem. 
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4 Students’ mathematical processes  

Task 1 was a starting point for the development and formalization of numerical methods 

for solving nonlinear equations. In particular, we intended to create an opportunity to 

discuss the bisection method, designing procedures (algorithms) for solving nonlinear 

equations and understanding their rationale. 

The three students begin exploring the task by observing the sequence of 

consecutive intervals and looking for regularities. Gonçalo explains it in his report: “We 

tried to find a pattern and understand what was really happening from one interval to 

another” (WR1). However, the students faced some difficulties since they did not use all 

of the information available (as the root of f): “Initially, we were a little unmotivated 

because we could not find a relationship that seemed valid to us” (Gonçalo,WR1). To 

solve the original problem, Gonçalo formulated two more accessible subproblems: (1) 

Is there any decreasing pattern in the width of the intervals of the sequence? (2) What is 

the rule to find the interval bounds? The observation of the sequence of intervals leads 

to a first conjecture based on the correct identification of a decreasing pattern of interval 
widths: “We realized immediately that the intervals were getting smaller and smaller, 

i.e., the width of the next interval is always half of the previous one and that happens for 
all intervals” (Gonçalo,E1). 

Carlos and Luís also begin to pose a simpler question, trying to identify a pattern 
for interval widths but they did not seek to identify a pattern for interval bounds. They 

calculated the range of each interval and correctly identified a decreasing pattern, 
formulating a first conjecture: “By looking at the sequence we found that the interval 

width decreases by half regarding the previous one” (Luís,WR1).  

The formulation of a criterion for deciding on which interval endpoint should be 

reduced raises some questions to the students that do not recognize any regularity by 

observation. Carlos indicated that he and his colleagues made several attempts: “Several 

ideas came up till we got one that seemed correct” (E1). During this process, the 

students posed several questions that led them to formulate conjectures about the pattern 

of interval bounds, most of which were based on counting the number of times each 

endpoint changed or remained constant: 

In these three that kept the upper endpoint of the interval, the lower 
bound was always decreasing. Three times. Then, it changed and it was 

the upper endpoint, twice. Thus, for the general case [a, b], the minimum 

(a) varies in three intervals while the maximum (b) had the same value 

in two consecutive intervals, and then, in the next interval, had another 

value. (Luís,E1) 

However, these strategies were based on simple observations and counting, and 

did not allow the students to formulate a correct identification of a rule for the sequence 

of intervals since they did not use the necessary information about the root of f. Carlos 

and Luís did not test their conjectures and did not realize that these were incorrect. Only 

when the students were induced to a closer reading of the task statement, could they 

Consider the function f(x) = ln(x) - e-x. Look at the following sequence of real number intervals which 
included the root of f,  

[1.000, 2.000] [1.000, 1.500] [1.250, 1.500] [1.250, 1.375]  [1.250, 1.313] [1.281, 1.313] 

What is the next interval of the sequence? Explain clearly how you got that conclution. 
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verify, through experimentation, that the intervals that they constructed did not verify 

all the given conditions: “Only from this reasoning we found that the root of f(x) was 

not contained in all intervals” (Luís, E1). This test of their conjecture prompted a 

reformulation: 

It’s the element of the interval (maximum or minimum) that was farthest 

from the root value that varies, while the other remains constant. 

Following this reasoning, the next interval (…) is: 1.313 - 1.281 = 0.032, 

so in the following interval will be half of that width, i.e. 0.016. The 

farthest element from the root value, i.e. 1.281, will be added in 0.016 

resulting 1.297 and this being translated into [1.297, 1.313]. 

(Carlos,WR1) 

The students now proceeded to verify this conjecture but only to the sequence of 

intervals presented in the task. However, they did not feel any need to justify it Gonçalo 

also formulated his conjecture based on a counting scheme, considering the conditions 

given in the task: 

In the interval 2 it was to be added, in the intervals 3 and 4 it was to be 

subtracted, in the intervals 5, 6 and 7 it was to be added again, so, I 

thought we have the following sequence (…)  

1  2  3  4  5  6  7  8  9  10 11  

-  +  -  -  +  +  +  -  -  -  -    (Gonçalo,E1) 

Unlike his colleagues, Gonçalo tested his conjecture and realized that it was 

incorrect. He used his knowledge on functions to identify the regularity: “As we know 

that the zero of the function is within the interval, from one interval to the next, we drop 

the half that does not contain our zero” (E1). Thus, this test allowed him to formulate a 

new conjecture. 

Once the exploration of this task had been completed for the particular case of 

the given function, the next natural step would be to pose similar questions for any 

function. In the given function, from one interval to the next, a transformation occurred  

according to a rule consistent with some conditions. For Carlos and Luís, the 

generalization of this rule reflected, in part, the previous exploratory work. They 
considered this process a mere formalization and described their conjecture in symbolic 

notation: 

From what I said earlier, we can define the following rule: If x – max > 

(f(x) = 0) then the next interval is [min, x - max] or [x + min, max] if and 

only if x-max <(f (x) = 0). (Luís,WR1) 

The students did not realize that their conjecture depended on an unknown root 
(of this specific function). They felt no need to justify that rule—doing it would 

facilitate their generalization. And, therefore, they did not realize that their rule applied 
only to their particular case but not to the general case.  

Gonçalo, in turn, realized that he must return to the previous questions for any 

function in general. Thus, he presented a rule for constructing intervals in an 

algorithmic form, with the elements of the sequence defined by recurrence, which 

would apply to any continuous function on a range with unknown roots: 
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As a rule and taking into account how we get the next intervals, given 

the interval [a, b] we perform the following steps:  

1st - Find the midpoint, vmed = (a + b) / 2  

2nd - Find f(vmed) 

If f(vmed) > 0 then we get the next interval [a, vmed]  

If f(vmed) < 0 then we get the next interval [vmed, b]. (Gonçalo,RT1)  

Gonçalo seemed to understand that a generalization of this conjecture must be 

applicable to any function. He justified his algorithm when he described the rule for 

constructing intervals of the sequence based on known mathematical properties and 

theorems, including the Bolzano theorem and its corollaries: “As the function is 

continuous and f(a) < 0 and f (b) > 0, we only had to maintain the [images of the] 

bounds of the intervals with opposite signs so that the next interval also contains the 

zero. As vmed is always an extreme it is enough to confirm the sign of f(vmed)” (E1). 

Thus, intuitively, he built the bisection method for solving nonlinear equations. 

In summary, the mathematical processes used by the students in exploring this 

task included looking for regularities, formulating and testing conjectures, generalizing 

these conjectures and justifying them. All students formulated initial questions on given 

intervals, formulating conjectures involving patterns from data observation or 

manipulation. Some difficulties arose in identifying patterns, as they did not take into 

account all information available. Only Gonçalo formulated a more general conjecture 
concerning all possible functions, and he was also the only one to produce justifications. 

Students’ work on this task included the formulation of questions in an implicit way, 
identified by their conjectures. These questions arose when students formulated 

conjectures from examples, generated subproblems from a major problem and, in the 
case of Gonçalo, when he tried to generalize his conjecture to obtain a general solution. 

In task 2, multiple sets of data, provided in tables, represented different 
behaviours to be modelled by different functions. Students were required to analyze and 

identify these trends and then to define criteria in order to complete some missing 
values in the tables, using known mathematical models (e.g., linear, quadratic or 

exponential), together with what they just learned about interpolation. 

 

Carlos and Luís began by asking themselves about the behaviour of the data. 

They calculated the differences between the values of the first table to identify a pattern: 

From three distinct monitoring stations we obtained some data on the evolution of a population of 

anaerobic bacterias in a lake, with which we intend to describe mathematically the growth of that 

population. 

Station 1           

t (hours) 2 3 4 5 6 8 

p (×10
5
) 90 140 --- 240 --- 390 

Station 2 

t (hours) 1 2 3 4 5 6 8 

p (×10
5
) 40 85 --- 220 210 --- 400 

Station 3 

t (hours) 2 3 4 5 6 7 

p (×105) 85 140 --- 250 380 600 

a) There are some missing values corresponding to the records of a few of the hours. How did you 

complete the above tables? 

b) Investigate what mathematical models could be adequate to describe the bacterial population 

evolution in the considered period of time. 
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“Looking at the table station 1(...) we can realize that [the growth of bacterial 

population, p] is a linear function. The slope is constant 

140 90 240 140 390 140

3 2 5 3 8 3

− − −
= =

− − −

” (Luís,E2). Based on these calculations, the students 

conjectured that these values were from a linear function. So, they posed another 

question: Assuming this linear behaviour for data, how do we find the missing values? 

For that, they choose to “use the rule of three” (Carlos,WR2). The students justified the 

conjecture when they just referred to the slope. 
Luís, working with his colleagues on station 1, believed that he could also use 

his recent knowledge about interpolation to find the missing values: “We think that one 
could also find the missing values by a polynomial interpolation method” (WR2). The 

student posed a question about whether Lagrange’s method of (linear) polynomial 
interpolation would yield the same results. He comparesd them with the previous 

computations obtained with the rule of three: “We solved a problem with Lagrange’s 
interpolation. We also used the rule of three to check whether there were differences but 

no, it gave the same” (E2). The analysis of his group work show that the students also 

considered other possible explorations: “We can use any of the learned methods for 

polynomial interpolation. One can use either Newton's method with divided differences 

or the Lagrange’s method” (WR2). 

Gonçalo started exploring the task assuming that the data were in any position 

and therefore the missing values could be found by polynomial interpolation. He tried to 

find the missing values in station 1 by constructing a 4th degree Newton’s polynomial 

function based both on known properties of polynomials and on the idea (not always 

correct) that the greater the degree of the polynomial, the better the approximation to the 

data: “We used the four points because it’s all we had. Moreover, the idea I had is that 

the more points we use more...” (E2). The choice of Newton's polynomial interpolation 

method with divided differences also drew on his recently acquired knowledge: “The 

nodes were not all at the same distance” (E2). The student explored the other tables in 
the same way and assumed that the constructed polynomials were suitable to represent 

data and to calculate the missing values but did not make any test, possibly because he 
believed that he created a suitable option. Thus, he did not realize that some of the 

values obtained were hardly justifiable given the general behaviour of the data. 
For the other two tables (stations 2 and 3), Carlos and Luís wonder again about 

the behaviour of data but, calculating the differences between each two values, they 
verify that there is not a linear relationship: 

For the tables station 2 and 3 we tried to apply the same as for table 

station 1. But:  

85 40 220 40 210 85

2 1 4 1 5 2

− − −
≠ ≠

− − −

 and 
600 250 380 140 140 85

7 5 6 3 3 2

− − −
≠ ≠

− − −

. 

So, they are not linear functions (...). (Luís,WR2) 

These students choose using the polynomial interpolation to find the missing 

values and, from this point on, reasoned very much like Gonçalo. However, before 
finishing the exploration of this task, Carlos proposes to his group a new problem 

assuming other conditions – to construct an algebraic expression for a 2nd degree 

polynomial. He took into account the data behaviour to pose this question and 

formulated a conjecture related to the degree of the polynomial. Then, he interpolated 

the function at 3 in station 2: “We obtained the algebraic expression of the polynomial: 
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p2(x) = 22,5x + 7,5x
2
 + 10” (WR2). He also considered “improving” their conjecture 

using different polynomials to describe the data trend, instead of the single expression 

previously found. His decisions on the degree of the polynomials to be used were based 

on identifying patterns in the data behaviour, the number and the monotony of the 

available values: 

Looking at the data, I found 3 values growing up, a decreasing trend at 5 

and then at 8 the values grow up again. Obviously the values could still 

be falling at 6, but we do not know... In this case, I thought I would get a 

function defined by three branches at the intervals, [1, 4[, [4, 5[, [5, 8[. 

(Carlos,E2) 

When Carlos felt the need to justify their results, he tried to check whether they 

agreed with the expected ones and with the reasoning developed. He used a 

sophisticated graphical representation and properties of functions (monotony and 

derivative): 

It was a kind of checking, if these polynomials were good for that range 

of values. (…) I even did a sketch here... It was through the observation 

of the table (...). It was growing from here to there (...).Therefore the 

polynomials had to be increasing or decreasing and their derivatives had 

to be positive or negative (...). (Carlos,E2) 

An interesting extension of this question was raised by Luís when he wondered 

if, after obtaining an interpolated value, he could add this new data to the table and thus 

get a higher-degree polynomial to find the remaining missing values: “To discover the 

value of t = 6 [in station 2] we could now include the value of p(3) we have just found 

and so the error was smaller” (E2). Here we see an attempt to pose new questions. 

In this task, students formulated conjectures about the most appropriate 

computation methods based on different assumptions about the data. They did not feel 

the need to test their results. However, raising questions on the global behaviour of data 

may lead to using different methods with quite different results. Students’ problem 

posing is visible at several stages of their exploration. Initially, Carlos and Luís 

questioned themselves about the behaviour of data and, based on the identified pattern, 
formulated conjectures. They also posed questions when selecting the appropriate 

methods to find the missing values, taking into account the data, when they sought to 
compare different methods. Before they finished, students still posed new problems 

considering the results or modifying the initial conditions to refine the previous 
formulations. Gonçalo, in turn, did not pose explicit questions about the data behaviour 

since he assumed that polynomial interpolation was the appropriate approach. However, 
even if only implicitly, he also posed questions about the appropriate polynomial to 

represent the data (degree and method). 

5 Conclusion 

During the study, the students were challenged to carry out investigation activities very 

different from the usual university mathematical tasks. This led them to experience 

mathematical processes such as looking for regularities, posing questions, formulating 

and testing conjectures, generalizing and providing justifications. These results extend 
to the classroom setting previous research by Cifarelli and Cai (2005). Furthermore, 
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they show that, besides formulating conjectures and generalizing, students also engage 

in other mathematical processes. 

Looking for regularities was based, mainly, on the observation of examples in 

visual and numerical diagrams or through counting or computation. As in former 

research by Silver (1994), the students’ sketches were very important to help in 

formulating conjectures. Difficulties in this process arose when they did not take into 

account all the available (and necessary) information. 

All students posed questions as they formulated initial questions about the data 

provided and sought to identify patterns that yielded conjectures. Sometimes, they also 

posed questions to simplify the original problem. However, in many cases, the posed 

questions are just implicit being identifiable from the conjectures. 

The students mostly formulated conjectures based on identifying patterns from 
data observation or manipulation. However, they also drew on mathematical properties. 

Their conception of solving a task as a process of getting a result led them to formulate 
conjectures as statements, confirming the findings of Ponte and Matos (1992), and to 

accept them as conclusions, feeling no need for testing or proving. This result, also 
observed by Ponte et al. (1998), seems to be more related to students’ inexperience in 

conducting this type of task and to the challenge of understanding the nature of the 
investigation process than to mathematical difficulties in testing or proving. 

The work on the proposed tasks led the students to understand the importance of 

testing their conjectures and this became a constant concern. Most of the time, testing 

conjectures was done through experimentation (often with the examples available in the 

statement). However, sometimes the test was based on graphic representations and on 

mathematical concepts and properties. In these cases, the test of conjectures coincided 

with the process of justifying them. When they explained their reasoning, the students 

unintentionally gave justifications based on mathematical properties or deductive 

reasoning. When, through testing, students refuted a conjecture, they tried to 

reformulate it. In that way, the process of testing conjectures allowed not only its 

verification but also problem posing, reinforcing the perspective of Cifarelli and Cai 

(2005) of mathematical activity as a recursive process wherein students’ reflection on 

the results can provide them with opportunities to formulate new problems to explore 

and solve.  
An important step in the exploration of some tasks was the generalization of the 

initial conjectures, i.e., the formulation of a more general conjecture, which led to 
posing new questions. Carlos and Luís seemed to be unaware that their conjectures 

might be valid for particular cases but not for the general case, and tended to consider 
the generalization a simple process of formalization. Rather, Gonçalo returned to 

questions previously raised and broadened the scope of his conjectures to obtain a 
general solution. The process of generalization carried out by this student resulted also 

in the construction of the bisection method. In a different way, Carlos and Luís also 

suggested possible extensions of the proposed questions. After obtaining a first solution, 

they posed new questions and formulated new conjectures, or refined existing ones by 

changing the initial conditions (as suggested by Ponte et al., 1998 and Silver, 1994). 
The results of this study highlight the potential of investigation tasks to promote 

problem posing and suggest they may be used in university mathematics courses. 
Students do engage in problem posing when carrying out such tasks. This process 

occurs when they pose questions concerning the given data, look for regularities and 
formulate conjectures from a series of examples, generate more accessible subproblems 

from a larger problem, test their conjectures and reformulate them, try to generalize 

and/or refine their conjectures to obtain a general solution and propose alternative 
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questions, expanding their explorations by changing the initial conditions. Thus, 

students’ problem-posing processes apear to permeate the problem-solving activity, as 

suggested by Brown and Walter (1990) and Cifarelli and Cai (2005). As a key feature of 

authentic mathematical activity, our study shows that problem-posing processes seem to 

be stimulated when students get involved in investigation activities. 
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