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Abstract 

Herpes simplex virus type 2 (HSV-2) is widely distributed through the human population, infecting 

more than 500 million people globally. Although causing generally mild infections this virus may cause 

severe symptoms occasionally, mainly in immunocompromised patients. Presently, there are a number 

of systemic antiviral agents against herpesvirus, the most commonly used being acyclovir (ACV) and its 

prodrugs. However, long term treatments with these drugs may result in the development of 

resistance, especially in immunocompromised patients, which leads to a continuous search for new 

and better therapeutic alternatives. According to the World Health Organization (WHO) plants would 

be the best sources for obtaining a wide variety of drugs. In fact, in the last decades many 

pharmacological and chemical studies have focused on medicinal plants and the discovery of new 

natural therapeutic compounds. In this study the anti-herpetic action of an aqueous extract was 

evaluated. The product was obtained by decoction of stem and leaves from Solidago virgaurea, a 

perennial herb member of the Asteraceae family. The study of the aqueous extract activity included a 

preliminary evaluation of its cytotoxicity in Vero cells – by the MTT assay - in the same conditions that 

are applied for viral production. Extract direct effect on viral particles – virucidal effect – was also 

assessed, having proved null. Anti-herpetic activity was investigated through two kinds of experiments: 

treatment of infected cells during virus production that revealed a mean yield reduction of 94 % in 

treated relatively to non-treated cells and an IC50 of 35.1 μg/mL; and treatment of infected cells during 

virus titration, which revealed slighter inhibition but significant size differences between virus plaques 

formed in treated and control conditions (smaller in treatment conditions).  To further evaluate the 

mechanisms that mediate the aqueous extract inhibitory effect, infected cells – treated and non-

treated - and virus particles – produced in treated and non-treated cells - were visualized through 

Transmission Electron Microscopy (TEM), revealing less damage due to infection in treated cells and a 

reduced amount of viral particles in HSV-2 suspensions produced in treated cells, relatively to controls. 

A kinetic of the first hours of the infection was performed with and without treatment, to assess 

possible differences in DNA production. Extracted samples were subjected to qPCR and results showed 

that the amount of viral DNA raises significantly slower in treated versus non-treated infected cells, 

throughout the infection. This is consistent with the effective reduction of the extract when added at 

later infection times - 4-6 h p.i. - when DNA replication is already in an advanced stage. Our results 

suggest that the aqueous extract inhibits HSV-2 replication, when present at the beginning of the 

infection, possibly by interfering with the viral DNA synthesis. 

 

Keywords: HSV-2; Anti-herpetic activity; Asteraceae; Vero cells; Cytotoxicity  
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Resumo 

O vírus Herpes simples tipo 2 (HSV-2) é um vírus de simetria icosaédrica e grandes dimensões, 

pertencente à família Herpesviridae, subfamília Alphaherpesvirinae da ordem Herpesvirales. Infecta 

mais de 500 milhões de pessoas em todo o mundo, surgindo, em cada ano, mais de 20 milhões de 

casos. A sua prevalência é geralmente mais elevada entre mulheres do que homens e varia 

substancialmente entre diferentes regiões do globo, alcançando os mínimos na Europa Ocidental - 18 

% para mulheres e 13 % para homens – e percentagens máximas na África Subsaariana – 70 % para 

mulheres e 55 % para homens. O HSV infecta as células da mucosa oral ou genital e tem a capacidade 

de infetar as dendrites e os gânglios sensoriais que enervam estes tecidos onde estabelece latência. 

Estas infeções causam normalmente patologias ligeiras – gengivite, herpes labialis ou herpes genitalis 

– podendo até ser assintomáticas. Porém, infeções com HSV-2 podem causar complicações sérias a 

nível ocular - sendo a primeira causa de cegueira devida a infeção no mundo Ocidental -, neurológico 

- causando meningites e encefalites, especialmente comuns em neonatos – e dermatológico. Estas 

patologias mais severas, associadas à infeção com HSV, ocorrem com maior frequência em pacientes 

imuno-comprometidas, nomeadamente em indivíduos HIV (Vírus da Imunodeficiência Humana) 

positivos. Aliás, a infeção com HSV-2 aumenta 3 a 4 vezes a probabilidade de adquirir HIV e a sua 

disseminação, sendo esta relação recíproca, uma vez que pacientes HIV positivos têm maior 

probabilidade de adquirir HSV-2 e sofrem mais reativações da infeção. Atualmente, existem vários 

agentes com atividade antiviral contra HSV, como o Aciclovir (ACV) e as suas pró-drogas, no entanto, 

tratamentos prolongados com estes compostos podem resultar no desenvolvimento de resistência. De 

acordo com a Organização Mundial de Saúde (OMS) as plantas são a melhor fonte para a obtenção de 

novas drogas e, nas últimas décadas, as plantas medicinais têm sido alvo de vários estudos químicos e 

farmacológicos. Neste estudo foi avaliado o efeito anti-herpético do extrato aquoso de Solidago 

virgaurea, uma planta perianal, membro da família Asteraceae.  

O extrato utilizado foi obtido por decocções de caules e folhas de S. virgaurea e a solução stock foi 

preparada a 100 mg/mL em DMSO. Antes de ser sujeito a testes de actividade anti-herpética foi 

ensaiado o efeito do extracto aquoso na viabiliade de células hospedeiras não infectadas, através do 

método do MTT – um ensaio colorimétrico que se baseia na capacidade de reduzir metabolicamente 

o sal de tetrazolio das células viáveis. Para isso culivaram-se células Vero em placas de 96 poços – em 

meio de cultura com FBS (Soro Fetal Bovino) a 10 % – até à sub-confluência. O meio de cultura foi 

depois substituido por meio com FBS a 2 % e diferentes concentrações de extracto (25 - 250 μg/mL), 

ou meio com FBS a 2 % sem adição de extrato no caso dos testemunhos, e as placas foram incubadas 

24 ou 48 horas a 37 °C. No final do período de tratamento fez-se o teste do MTT para determinação da 

viabilidade das culturas tratadas, por comparação com as culturas não tratadas. Os conteúdos de cada 
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poço da P96 foi analisado espectofotometricamente num leitor de placas Elisa. Para caracterizar a 

actividade citotóxica do extracto foram comparadas as absorvâncias obtidas em poços com células 

tratadas e relação a células não tratadas e determinaram-se os parametros CMNC (Concentração 

Máxima Não Citotóxica) - 150 μg/mL - e CC50 (Concentração que inviabiliza 50 % das células) – 177,3 

μg/mL. 

O efeito directo do extracto nas partículas de HSV-2 foi testado através da comparação dos títulos de 

suspensões virais previamente tratadas com 100 μg/mL de extrato em meio com FBS a 2 % com os 

títulos de suspensões não tratadas. O extrato não demonstrou efeito virucida sobre partículas virais 

em suspensão, uma vez que os títulos das suspensões tratadas foram muito semelhantes aos títulos 

dos testemunhos.  

Para testar o efeito do extrato na formação de placas virais infetaram-se células, em placas de 24 

poços, com diluições seriadas de HSV-2. Depois da entrada do vírus – 30 minutos pós infeção – os 

inóculos foram removidos e foi adicionado meio de cultura com FBS a 2 % com ou sem 100 μg/mL de 

extrato, às culturas tratadas e testemunho, respetivamente. No final do período de tratamento – 3 a 4 

horas pós infeção (h p.i.) – foi adicionado meio com FBS e Sephadex a 2 %. A redução de título em 

culturas tratadas foi 71,6 ± 26,8 %, em relação às não tratadas. Foi ainda evidente uma redução no 

diâmetro das placas produzidas nas culturas tratadas. 

Foram também levadas a cabo várias experiências envolvendo a produção de vírus em condições de 

tratamento, em que culturas celulares sub-confluentes foram infetadas com cerca de 3 pfu/célula e 

tratadas com extrato em diferentes concentrações e durante diferentes períodos da infeção. Os títulos 

das suspensões produzidas em condições de tratamento foram comparados com os títulos dos 

testemunhos para o cálculo das percentagens de inibição. A redução média de título – com 

concentrações de extrato não citotóxicas – foi de 93,65 ± 8 %, relativamente a vírus produzido na 

ausência do extrato. Para determinar os parâmetros IC50 e IC90 (concentrações que reduzem o 

rendimento viral em 50 e 90 %, respetivamente) foram produzidas suspensões de HSV-2 em meio com 

FBS a 2 % e diferentes concentrações de extrato (10-175 μg/mL) que foram posteriormente tituladas. 

Os IC50 e IC90 foram calculados através de regressão linear da curva dose-resposta e foram 35,1 e 128,1 

μg/mL, respetivamente. Para investigar a etapa da infeção afetada pelo extrato produziram-se 

suspensões de HSV-2 sob tratamento - com 100 μg/mL de extrato – iniciado em diferentes horas pós 

infeção. Foi observável uma redução da percentagem de inibição do extrato para cerca de 50 % em 

tratamentos começados entre as 3 e as 6 h p.i. e para 0 % a partir das 15 h p.i. Células infetadas tratadas 

e não tratadas, e partículas virais produzidas em ambas as condições, foram observadas por 

Microscopia Eletrónica de Transmissão (TEM), revelando a existência de menos danos, devidos à 
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infeção, em células infetadas tratadas do que em não tratadas e uma quantidade significativamente 

menor de partículas de HSV-2 em suspensões virais produzidas em células tratadas, apesar dos viriões 

produzidos sob tratamento não apresentarem defeitos morfológicos. Por fim foi executada uma 

cinética da infeção em condições de tratamento (e uma cinética testemunho, em condições normais 

de produção viral), para tal, células infetadas – tratadas e não tratadas - foram raspadas para o meio 

de cultura a diferentes horas pós infeção – 2 a 7. O DNA de cada cultura infetada recolhida foi extraído, 

quantificado e submetido a PCR para a deteção de DNA viral. O resultado não permitiu visualizar 

diferenças significativas na quantidade de DNA de HSV-2 em células tratadas e não tratadas, mas 

mostrou um aumento considerável na quantidade de DNA a partir das 5 horas pós infeção. As mesmas 

amostras foram depois utilizadas para PCR em tempo real (qPCR) para avaliar possíveis diferenças na 

quantidade de DNA viral. O resultado mostrou que, embora nas horas iniciais – 3-4 h p.i. – as diferenças 

na quantidade de DNA sejam mínimas, entre amostras de DNA extraído de células tratadas e não 

tratadas, é visível um aumento muito mais lento no número de cópias de DNA viral ao longo da infeção 

em culturas tratadas do que em não tratadas, indicando que a replicação de DNA é afetada durante o 

tratamento com extrato aquoso de S. virgaurea. 

 

Palavras-chave: HSV-2; Atividade anti-herpética; Asteraceae; Células Vero; Citotoxicidade 
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1. Introduction 
 

Herpes simplex viruses (HSV) have been interacting with humans for thousands of years [1] and occur 

worldwide, without seasonal variation [2]. HSV-2 infects more than 500 million people globally, and, 

each year, more than 20 million new cases arise. HSV-2 prevalence increases with age, peaking at 35-

39 years of age, and is generally higher among females than males. It varies substantially by region, 

ranging from about 18 % among women and 13 % among men in Western Europe to 70 % and 55 % in 

Sub-Saharan Africa [3].  

Herpetic lesions at the oro-labial area are typically caused by HSV-1 and genital lesions are commonly 

associated to HSV-2, but, up to 10 % of primary oro-facial herpes infections could be caused by HSV-2 

[4] and, on the other hand, HSV-1 seems to be emerging as the most common cause of primary genital 

herpes [5]. Even though, recurrences of infection by HSV-1 represent less than 5 % of the total cases of 

genital herpes [6]. 

Although HSV typically causes mild diseases it may provoke severe infections in immunocompromised 

patients like HIV seropositives and recipients of solid organ or bone marrow transplants [7]. In fact, an 

important finding in the last decades is that infection with HSV-2 is associated with high susceptibility 

to HIV, and increases its shedding [8, 9]. This relationship is reciprocal, as infection with HIV also 

significantly increases the probability of acquiring HSV-2 and its reactivation has shown itself more 

frequent in HIV-1 positive patients [10].  

Currently, there are several systemic antiviral agents, against herpesvirus, like acyclovir (ACV) and its 

prodrugs – valaciclovir (VACV), famciclovir (FCV), ganciclovir, valganciclovir, cidofovir and foscarnet 

(FOS) – approved by the US Food and Drug Administration (FDA) [11], but, long-term prophylaxis and 

treatment with ACV, VACV or FCV can result in the development of resistance, especially in the 

immunocompromised patients group[7,12] where ACV-resistant HSV prevalence varies between 3.5 % 

and 10 % [7]. 

Plants are still an important source of widely used pharmaceutics [13-19] and Asteraceae family has been 

one of the most studied lately, and specifically its inhibitory activity against HSV was even the subject 

for a few recent works [17, 19-21]. Therefore, and considering the serious negative clinical implications 

that HSV-2 infections cause globally, it’s highly significant to further evaluate anti-viral activities of 

plants of the Asteraceae family, inclusively the anti-herpetic proprieties of Solidago virgaurea, the 

object of this study. 
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1.1.  Herpes Simplex Virus 

 

1.1.1. Classification 

Herpesvirus classification was addressed for the first time in 1971 by the International Committee on 

Taxonomy of Viruses (ICTV) where the genus Herpesvirus was established [23]; this genus was later 

elevated to the family Herpesviridae[23].A first attempt of grouping herpesvirus into subfamilies has 

been done based in biological criteria[24]; this division was successful but contained a few 

misclassifications, therefore, further distribution of the subfamilies into genera was based in molecular 

data – genome characteristics, such as size and structure - to a greater extent than before[25].  

Nowadays, the former family Herpesviridae has been elevated to a new order, the Herpesvirales, which 

accommodates three subfamilies - Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae - 

17 genera and 90 species [26]. 

 

1.1.2. Virion Properties 

HSV are large viruses, and their viral particles have complex and characteristic structures. The spherical 

virion includes four major elements: core, capsid, tegument and envelope [27, 28].  

The core consists of the viral genome packed as a linear double-stranded DNA molecule - 150 kpb - 

into the icosahedral capsid. Herpes simplex virus genome has an unusual structure that consists of two 

covalently linked components, long (L) and short (S), and each of these components contains a stretch 

of unique sequences, UL and US, flanked by inverted repeats (Fig. 1 a). The two components can invert 

relative to one another, creating four different types of DNA molecule that differ only in the orientation 

of DNA sequences (Fig. 1 b). The sequence repeat at the left end of UL is designated ab, and the internal 

inverted repeat is designated b’a’. The inverted repeats flanking US are designated a’c’ and ca. Most 

viral genes are present in only one copy per genome; the UL region contains 65 protein coding 

sequences, and the US region contains 14 [28].  

Therefore, HSV contain at least 84 different genes. Presently, most herpes simplex genes are numbered 

sequentially from one end of the unique sequence in which they are found. Thus, genes UL1 to UL56 

are located in the L unique segment and US1 to US12 are located in the S unique segment, and some 

genes lying within the b and c segments have names related to their time of expression or other 

properties. HSV genes can be classified in at least three groups – immediate early (α), early (β) and late 

(γ) -  based on the time of their expression during the replication cycle [2, 28]. 
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Fig. 1 - Genome of herpes simplex virus. a) Organization of unique and repeat sequence elements. Repeat sequence 
elements aare shown in small letters (a,b,c) and elements shwon with a prime are inverted. Unique sequence elements 
are shown in capital letters (UL, US). b) Four isomeric forms of viral DNA with different orientations of the long (L) and (S) 
components due to frequent recombination at the repeated sequence elements. (Source: Acheson 2007) 

 

The bilayered capsid (100-110 nm in diameter) is constructed with six proteins, of which the major 

one, VP5 (150 kDa), makes up the 162 capsomers, that are arranged as 12 pentamers at the vertices 

and 150 hexamers on the faces and edges of the icosahedron. Another capsid protein, VP26, is located 

at the tips of the capsomers. The capsid is enclosed in an envelope that contains at least ten different 

glycoproteins (gB to gM) and several other non-glycosylated membrane proteins [28, 29]. 

The virus envelope has a typical appearance and is thought to be derived from patches of host cell 

nuclear membrane modified by the insertion of virus glycoprotein spikes [29]. 

Unlike in most enveloped viruses, there is a large amorphous mass between the capsid and the 

envelope, called the tegument, which contains about 14 viral proteins like virus host shutoff (vhs), 

VP16 (α-TIF, ICP25), VP11-12, VP13-14 and VP1-2. These proteins are introduced into the cell upon 

infection by herpesviruses, and some of them carry out crucial functions in the virus growth cycle like 

activation of transcription and shutoff of host macromolecular synthesis [28, 29].  

 

1.1.3. Replication 

This virus is characterized by a short – 18 to 24 hours – and cytolytic replicative cycle. Initial attachment 

and penetration of the host cell is mediated via envelope glycoprotein gB that binds to heparan sulfate 

proteoglycans at the cell surface. Afterwards, envelope glycoprotein gD binds to at least two 

alternative receptors: nectin 1 – member of the nectin family of intercellular adhesion molecules – and 

herpesvirus entry mediator (HVEM) – member of the tumor necrosis factor (TNF) receptor family. 

Receptor binding triggers a pH-independent fusion of the viral envelope with the cellular membrane, 

which requires three conserved glycoproteins – gB, gH and gL [28, 29]. 

a) 

b) 
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Fusion results in the introduction of tegument proteins and viral nucleocapsid into the cell cytoplasm 

and the rapid shut down of host macromolecular metabolism. Host DNA synthesis ceases, protein 

synthesis declines rapidly, ribosomal RNA synthesis is reduced and host protein glycosylation ceases. 

Most tegument proteins are believed to act directly or indirectly to produce early shutoff of the host 

macromolecular synthesis and to contribute to the early events of replication, like nucleocapsid 

attachment to nuclear pores and DNA release [29]. 

Nucleocapsids, along with some of the tegument proteins, are transported to the nuclear pores by 

dynein motors along the microtubular network of the cell and, at the nuclear pore, DNA is released 

and enters the nucleus. Empty capsids remain at the cytoplasmic side of nuclear pores for several hours 

until they disintegrate. Viral DNA in the nucleus is circularized, either by direct ligation of the ends or 

by recombination between the a sequences at the ends [28]. 

HSV gene expression is regulated and sequentially ordered as a cascade (α→β→γ). Transcription of 

HSV immediate early (α) genes is carried out in the host nucleus, during the first several hours after 

infection, by cellular RNA polymerase II. Five of the six α gene products are regulatory proteins, 

involved in the regulation of viral and cellular gene expression, and their expression is required for the 

production of all subsequent polypeptide groups. To initiate transcription, tegument protein α-TIF or 

VP16, known as α-transinducing factor, forms a complex with at least two key cellular proteins - Oct-1 

and HCF-1 - which binds to specific response elements in viral DNA that have a central consensus 

sequence – TAATGARATT. These elements, along with binding sequences for other cellular 

transcription factors, are found upstream of the promoters of all α genes, and act as transactivators to 

enhance the transcription of these genes. Transcripts are then transported to the cytoplasm where 

they are translated into five proteins – ICP0, ICP4, ICP22, ICP27 and ICP47 – that are transported back 

to the nucleus where they exert regulatory and activating functions relatively to β genes expression [28, 

29].  

Expression of early – or β - genes results in the production of proteins that work together to carry out 

essential steps in DNA replication. Maximum synthesis rates of these proteins are observed at 5-7 h 

p.i., and when sufficient levels have accumulated within the infected cell, viral DNA replication starts. 

Like other DNA viruses, herpesviruses make their own DNA polymerase that is encoded by a single 

major RNA and has its synthesis during β phase. This enzyme can begin DNA synthesis at any one of 

three viral origins of DNA replication on the herpes simplex virus genome. oriL is located in the middle 

of UL region, and the other two – oriS – are in the c inverted repeats flanking the US region. Replicating 

DNA in infected cells is found as high molecular weight, branched head-to-tail multimers called 

concatemers, suggesting that DNA is made by a rolling circle mechanism, which can produce multimers 
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from a circular template. However, herpesvirus initially sets up bidirectional replication on the circular 

viral DNA, and only later shifts to rolling circle replication [28, 29]. 

Although γ1 genes can be transcribed in the absence of viral DNA replication their optimal expression 

requires viral DNA synthesis, presumably because of the increase in the number of template DNAs 

available for transcription; in contrast, the transcription of γ2 genes is totally dependent on viral DNA 

synthesis. Late mRNAs enter the cytoplasm for translation into late proteins which include the capsid 

structural proteins that travel back to the nucleus, envelope proteins that are produced in the 

endoplasmic reticulum (ER) and become incorporated in the nuclear membrane and other structural 

and packaging related proteins [28].  

Immature capsids lacking DNA are assembled in the nucleus by accumulation of the major capsid 

protein VP5 and several other proteins around a scaffold formed by three late proteins – VP21, pre-

VP22a and VP24. Viral DNA - in the form of head-to-tail concatemers - is cleaved and stuffed into the 

preformed capsids by the interaction of several viral late proteins with high conserved packaging sites 

– pac1 and pac2 – located in the a sequence near the termini of the DNA. Entry of viral DNA into the 

capsids is carried out by a multimers of UL6 protein located at one vertex of the capsid and involves 

several other nonstructural proteins. DNA packaging is complete when a sufficient length of the DNA 

is introduced and when the packaging machinery encounters the next a sequence along the DNA in 

the same orientation. The packaged DNA is cleaved from the concatemers at a specific site within a 20-

nt direct repeat flanking the terminal a sequence The DNA filled capsids proceed to bud trough the 

modified inner nuclear membrane, into the lumen between the two nuclear membranes, acquiring an 

envelope and a layer of tegument proteins. Virions are then transported from the lumen to the outside 

of the cell [28, 29].  

Three distinct theories account for the mechanism by which virus particles exit the cell. According to 

one theory, virions retain their envelopes and are transported to the Golgi membranes within vesicles 

that bud from the outer nuclear membrane. According to another theory, virions lose their envelope 

by fusion with the outer nuclear membrane, releasing nucleocapsids into the cytoplasm; these 

nucleocapsids subsequently reacquire an envelope by budding into Golgi membranes. In either case, 

the envelope proteins would be glycosylated within the Golgi, and further transport of mature virions 

to the extracellular space is via secretory vesicles. A third theory is based on the observation that 

nuclear pores become enlarged and the Golgi membranes are fragmented during viral replication; 

according to this hypothesis, nucleocapsids exit through the enlarged nuclear pores without an 

envelope and become enveloped at multivesicular bodies derived from fragmented Golgi membranes 

[28, 29]. 
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1.1.4. Clinical Manifestations 

HSV infections cause usually mild pathologies – gingivostomatitis, herpes labialis and herpes genitalis 

– and may be, many times, asymptomatic [28, 30]. Transmission occurs by intimate contact with an 

infected individual either with evident infection or asymptomatic excretion of viral particles, and, after 

primary HSV replication, at the oral or genital mucosa, the virus is able to infect neuronal dendrites of 

sensory ganglia that innervate these tissues and establishes long-term latency, from which it can 

reactivate episodically [31, 32]. 

Besides common herpetic lesions HSV-1 and HSV-2 infections can also result in other skin diseases such 

as herpetic whitlow, which manifests as lesions at the finger tips [33], and eczema herpeticum in patients 

underlying atopic dermatitis – the most common chronic inflammatory skin disease - which may be 

life-threatening for children [34]. 

These viruses are also linked with a variety of ocular complications, mostly epithelial and stromal 

keratitis. HSV can cause stromal opacification and is estimated to be the first cause of blindness due to 

infection in the Western world [35]. 

In addition to establish latent infection in the human nervous system these neurotropic viruses can 

also infect the central nervous system (CNS) causing diseases as meningitis and encephalitis. These 

kinds of infections more often occur in neonates as a result of congenital infection from the mother to 

the new born at birth - even when the mother shows no clinical signs of infection - and can lead to 

severe neurological damage as well as death [36].  

An important finding in the last decades is the fact that infection with HSV-2 increases 3-4 times the 

likelihood of acquiring HIV [8] and considerably increases the dissemination of HIV in the genitalia of co-

infected patients [9].Interestingly this is a reciprocal relationship, since infection with HIV also 

significantly increases both HSV-2 reactivations and the probability of acquiring it [10]. 

 

1.1.5. Therapeutic 

The antiviral therapies for herpes were first approached at Yale, USA in 1959 where a team synthesized 

idoxuridine (IDU) - the first Food and Drug Administration approved antiviral drug - followed by 

trifluorothymidine (TFT), both used to treat Herpes Keratitis (HK) [11]. 

Vidarabine was the first antiviral drug selective enough to be used for systemic treatment of 

herpesvirus (HSV and Varicella zoster virus, VZV) [11, 37]. This drug was later abandoned for reasons 
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including relative insolubility in aqueous medium and rapid deamination, but, most of all, by being 

surpassed by much safer and potent drugs [11]. 

In December 1977 [38] and April 1978 [39] it was announced the discovery of acyclovir (9-(2-

hydroxyethoxymethyl guanine)), a guanosine nucleoside analog that once internalized into infected 

cells is processed into a monophosphorylated form – by HSV thymidine kinase - that is subsequently 

phosphorylated into acyclovir triphosphate by host kinases. In this form ACV thriphosphate is 

incorporated by the viral DNA polymerase disrupting the viral genome replication by a chain 

termination mechanism [40 -42]. 

In vitro, ACV is most potent against HSV-1, approximately half as potent against HSV-2, 1/10th as potent 

against VZV and Epstein-Barr virus (EBV) and least potent against human cytomegalovirus (HCMV)[7]. 

Its main limitation resides in its rather poor oral bioavailability, which led to the development of 

valacyclovir (VACV), an L-valyl-ester prodrug of acyclovir [43, 44]. 

Drug-resistant strains of HSV frequently develop following therapeutic treatment, particularly in 

immunocompromised patients group [7, 12] where its prevalence was reported between 3.5 % and 7 % 

in HIV patients, 2.5 % and 10 % in solid organ transplant patients and 4.1 % and 10.9 % in hematopoietic 

stem cell transplant (HSCT) patients [7]. 

 

1.2.  Medicinal Plants 

Evidence for the use of medicinal plants dates back to 60,000 years ago [45] and, in the last decades, 

many pharmacological and chemical studies concerning medicinal plants have been made, with the 

discovery of new therapeutic compounds as a goal [13]. In fact, according to the World Health 

Organization (WHO), these would be the best sources for obtaining a wide variety of drugs and could 

benefit a large population [14]. It has been estimated that more that 50 % of available drugs have, in 

some way, originated from plants [15, 16], examples being morphine, ementine, vincristine and colchicine 

[13]. 

 

1.2.1. Solidago virgaurea 

Solidago virgaurea is a perennial herb member of the Asteraceae family, one of the largest plant 

families with more than 1,600 genus and 24,000 to 30,000 species [46, 47]. This family has a wide 

distribution, existing in every continent, except Antarctic [17, 18]. Solidago L. genus includes about 125 

species that are widely present in the north hemisphere. Solidago virgaurea, commonly designated 
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Goldenrod, being the single member of this genus native in Europe [47, 48]. This species is recognizable 

by its elongated and branched golden yellow flower heads that bloom in summer and has been 

traditionally used to treat urinary tract, nephrolithiasis and prostate diseases [49, 50]. 

 

1.3.  Objectives 

Considering the high prevalence of this virus and the serious clinical implications that HSV-2 infections 

may cause to seropositive patients, along with the cooperative relation it can establish with HIV and 

the increasing occurrence of ACV-resistant strains, especially in imunodeficient individuals, the search 

for new and effective treatments is an extremely important matter. As two previous studies [17, 19] had 

concluded that S. virgaurea aqueous extract exhibited anti-herpetic activity, this work aims to further 

characterize its inhibitory effect and investigate the associated mechanisms. 
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2. Materials and Methods 

 

Working with virus and, therefore, with cell cultures demands really strict sterility conditions. Thus, 

most procedures described were prepared in a class II laminar flow cabinet (Biohazard), irradiated with 

U.V. light for 30 minutes before and after each utilization. Most materials used were sterile, either 

disposable or glass, the last ones were sterilized in an autoclave (121 ºC, 15 minutes). All culture media 

were supplemented with antibiotic and kept at 4 ºC. 

 

2.1.  Cell Culture 

Cells used were Vero – a continuous lineage isolated from the renal epithelium of the green African 

monkey (Cercopithecus aethiops) – and were obtained from the American Type Culture Collection 

(ATCC) with the reference CCL81. These cells form a monolayer adherent to the flask surface and are 

widely used in virology studies for being permissive for a large variety of virus.  

Cultures were grown in T25 and T75 flasks (Nunc) at 37 ºC in CO2 Independent Medium (Gibco) or 

Dulbecco’s Modified Eagle Medium (D-MEM, Gibco) supplemented with 10 % Fetal Bovine Serum (FBS, 

Gibco), 0.1 % gentamicin sulfate (50 μg/mL) and glutamax (5 μg/mL) with or without a 5 % CO2 

atmosphere,  respectively for each medium. The cultures were observed through an inverted optic 

microscope (Zeiss IM).  

Cells were transferred to a new flask when cultures reached 90 % confluence. The culture medium was 

removed and the cultures washed, twice, with 2.5 mL of PBS (Phosphate Buffered Saline, Gibco), then 

the cultures were trypsinized with 1 mL of trypsin (Gibco) at 37 ºC for 5 minutes. After that, 5 mL of 10 

% FBS culture medium – D-MEM or CO2 Independent Medium - were added to the flask, to disable 

trypsin and homogenize the suspension. Then the cell suspension was distributed accordingly to the 

flask/plate size.  

 

2.2.  Aqueous extract stock preparation  

The aqueous extract used in this study was obtained from steams and leafs of the Portuguese 

Asteraceae family member Soligado virgaurea L. The lyophilized extract was supplied by Prof. Dr. Luísa 

Serralheiro from CQB (Centro Química e Bioquímica), FCUL (Faculdade de Ciências da Universidade de 

Lisboa) and kept at -20 ºC. Stock solution was prepared at 100 mg/mL concentration in DMSO 
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(Dimethyl sulfoxide) and kept at -20 ºC, the work solutions were prepared at 10 mg/mL in PBS and kept 

at 4 ºC.  

 

2.3.  Virus  

The viruses used in this study were acquired from ATCC, and are wild strains of HSV-2 (Herpes simplex 

type 2 HD) and HSV-1 (Herpes simplex type 1 SC 16). Viruses were kept in suspension with 2 % FBS 

culture medium (D-MEM or CO2 Independent Medium) at 4 ºC. 

 

2.3.1. Virus Production 

The virus suspensions were produced in T75 flasks with sub confluent cell cultures (about 107 cells). 

Culture medium was removed and cells were infected with, approximately, 106 pfu, in a 1 mL volume. 

After the adsorption period – 30 to 60 minutes at 37 ºC – 12 mL of 2 % FBS culture medium (D-MEM 

or CO2 Independent Medium) were added. Flasks were kept at 37 ºC until total cytopathic effect – 

characterized by severe morphological changes in the culture and loss of adherence by most or all the 

cells - could be observed, what takes, usually, 48 to 72 hours of infection.  

Virus suspensions were collected in 15 mL Falcon tubes and centrifuged at 3,000 g for 5 minutes, the 

supernatants were transferred to new, similar, tubes and the pellets were discarded. Produced viruses 

were kept at 4 ºC. 

 

2.3.2. Virus Titration 

To determine the virus titer – the number of plaque forming units (PFU) per mL – each virus suspension 

was serially diluted (1:10) in 2 % FBS culture medium (D-MEM or CO2 Independent Medium) to 10-6. 

Then, in 24 or 48 well plates with sub confluent Vero cell cultures, the 10% FBS culture medium was 

removed and 0.1 mL of each viral dilution was inoculate in duplicates.  

The plates were then incubated for 30 minutes at 37 ºC, to allow viral entry, before the addition of 500 

μL of titration medium – 2 % FBS culture medium with 2 % Sephadex G-75 (Pharmacia Fine Chemicals). 

Plates were kept, absolutely still, at 37 ºC for 2 days – HSV-2 – or 3 days – HSV-1.  

To end the titration, the infected cultures were fixated with 0.5 mL of 10 % (v/v) formaldehyde for 30 

minutes, at room temperature, with stirring. After that, formaldehyde was removed and the plates 
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washed with tap water. The cells were then dyed with 0.2 % crystal violet for 15 minutes, with stirring, 

then the stain was removed and the plates were washed with tap water and dried in an oven at 37 ºC. 

All countable viral plaques were counted and virus titer was calculated by the formula: 

𝑉𝑖𝑟𝑢𝑠 𝑡𝑖𝑡𝑒𝑟 (𝑝𝑓𝑢/𝑚𝐿) = #𝑝𝑙𝑎𝑞𝑢𝑒𝑠 × (
1

𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛
) × (

1

𝐼𝑛𝑜𝑐𝑢𝑙𝑒 (𝑚𝐿)
) 

 

2.4.  Cytotoxicity Assays 

The aqueous extract cytotoxicity was determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) method, which is a colorimetric assay that relies on viable cells ability to 

metabolically reduce tetrazolium salt - through mitochondrial enzyme succinic dehydrogenase – into 

purple formazan crystals that accumulate inside the cells. [51] 

Cells were grown in 96 well plates, at 37 ºC, with 10 % FBS culture medium until sub confluence was 

reached. Afterwards, the 10 % FBS culture medium was replaced by 200 μL of 2 % FBS medium with 

different extract concentrations (25 – 250 μg/mL). Wells with 2 % FBS culture medium were kept as 

control. The cell cultures were then incubated at 37 ºC, and regularly observed, for 24 or 48 hours. 

When the incubation periods were concluded all inoculums were removed and the wells were washed 

with 100 μL of PBS.  

Then 100 μL of 0.5 mg/mL MTT solution (Sigma) in 2 % FBS culture medium was added to each well 

and the plate was incubated at 37 ºC for 2 hours, to allow MTT reduction. After that, the solution was 

carefully removed and the formazan crystals were dissolved with the addiction of 100 μL of DMSO. 

Following 30 minute incubation at room temperature the wells content was spectrophotometrically 

analyzed in a microplate reader (Tecan Sunrise) with a 570 nm wavelength and a 630 nm reference 

filter.  

To characterize the extract cytotoxicity parameters as MNCC (maximum non-cytotoxic concentration), 

CC10, CC50 and CC90 (cytotoxic concentration that destroy 10, 50 and 90 % of the cells, respectively) 

were defined, by means of comparison of treated and control wells average absorbance values. 

 

2.5.  Virucidal Effect 

The virucidal effect of a compound is its ability to directly inactivate a viral particle, outside or inside 

the host cell. To determine whether or not the aqueous extract exhibit this effect on HSV-2 particles, 
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viral suspensions of 100 – 200 μL (~106 pfu) were treated, in 1.5 mL micro tubes, with different extract 

concentrations for 1-3 hours at room temperature with stirring. A control suspension, with the addition 

of the same volume of PBS, was prepared in parallel to each treated suspension. 

Following the treatment each viral suspension was titrated as well as the respective control. After titers 

determination, the percentage of virus inactivation by each extract concentration was calculated by 

the formula: 

𝑉𝑖𝑟𝑢𝑠 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = (1 − (
𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝑣𝑖𝑟𝑢𝑠 𝑡𝑖𝑡𝑒𝑟

𝑁𝑜𝑛 − 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑣𝑖𝑟𝑢𝑠 𝑡𝑖𝑡𝑒𝑟
)) × 100 

 

2.6.  Effect on HVS-2 replication 

To uncover the extract influence in HSV-2 replication cycle, two kinds of approaches were employed: 

HSV-2 titration under treatment and HSV-2 production under treatment.  

 

2.6.1. Extract effect on viral plaques formation 

HSV-2 was serially diluted (1:10) to 10-6, in 2 % FBS culture medium (D-MEM or CO2 Independent 

Medium) and, in 24 (or 6) well plates with sub confluent Vero cell cultures, the 10 % FBS culture 

medium was removed and 0.1 mL (or 0.4 mL) of each viral dilution was inoculated in duplicates. After 

a 30 minute incubation - to allow viral entry – 0.15 (or 0.7 mL) of culture medium with or without 100 

μg/mL extract were added, respectively, to each treated and control infected cells. 

Plates were then incubated for 10 minutes to 4 hours at 37 ºC, before the addition of 0.5 (or 1.5 mL) 

of titration medium – 2 % FBS culture medium with 2 % Sephadex G-75 – with or without 100 μg/mL 

extract, respectively to treated and control infected cells. 

 

2.6.2. Extract effect on virus yield 

Sub confluent cell cultures, grown in 6 well plates, were inoculated with 3 to 30 pfu/cell of HSV-2 and 

incubated at 4 ºC for 1 to 1.5 hours at a plate rocker to allow viral adsorption to cell membrane. After 

the adsorption period, plates were incubated at 37 ºC for 30 minutes, for viral entry, and inoculums 

were removed. Infected cells were then treated with 500 to 900 μL of 2 % FBS culture medium with or 

without extract (100 μg/mL), and incubated at 37 ºC, in the presence of the extract, for 2 to 24 hours. 

The content of all wells was replaced by 1.4 mL of 2 % FBS culture medium, following the treatment 



13 
 

period. Produced HSV-2 were subsequently titrated in 24 well plates as described before, and treated 

suspensions titers were compared to control titers for evaluation of the yield reduction percentage. 

 

2.6.3. IC50 and IC90 determination 

Sub confluent cell cultures, grown in a 12 well plate, were inoculated with 3 pfu/cell of HSV-2 and 

incubated at 4 ºC for 1 hour at a plate rocker. After that, plates were incubated at 37 ºC for 30 minutes 

and then inoculums were removed. Infected cells were then treated with 550 μL of 2 % FBS culture 

medium with or without extract – at variable concentrations -, and incubated at 37 ºC, in the presence 

of the extract, for 4.5 hours. The content of all wells was replaced by 1.4 mL of 2 % FBS culture medium 

following the treatment period. Produced HSV-2 were subsequently titrated in 24 well plates, as 

described before, and treated suspensions’ titers were compared to control titers for evaluation of the 

yield reduction percentage. 

Concentration that reduces viral yield in 50 % (IC50) and concentration that reduces viral yield in 90 % 

(IC90) were calculated through linear regression of the dose-response curve. 

 

2.6.4. Determination of the affected stage during the virus replication 

Sub confluent cell cultures, grown in 6 well plates, were inoculated with 3 pfu/cell of HSV-2 and 

incubated at 4 ºC for 1 hour at a plate rocker. After the adsorption period plates were incubated at 37 

ºC for 30 minutes and inoculums were removed. 800 μL of 2 % FBS culture medium without extract 

were added to each well and, at each treatment starting point – 0.5 to 20 h p.i. -, 800 μL of 2 % FBS 

culture medium with extract (200 μg/mL) were added to treated cultures. Four controls were kept - 

two for treatment starting at 0.5 h p.i., one for 6 h p.i. and one for 20 h p.i. – where 800 μL of 2 % FBS 

culture medium without extract were added at the indicated times. Plates were incubated at 37 ºC, in 

the presence of the extract, for 24 hours. Produced HSV-2 were subsequently titrated in 24 well plates, 

as described before, and treated suspensions titers were compared to control suspensions titers for 

evaluation of the yield reduction percentage. 

 

2.6.5. Comparison with acyclovir inhibition  

Sub confluent cell cultures, grown in 6 well plates, were inoculated with 3 pfu/cell of HSV-2 incubated 

at 4 ºC for 30 minutes at a plate rocker. After adsorption plates were incubated at 37 ºC for 30 minutes 

and inoculums were removed. Infected cells were then treated with 1.5 mL of 2 % FBS culture medium 



14 
 

with or without extract/ACV (100 μg/mL), and incubated at 37 ºC, for 48 hours. Products were present 

throughout the whole infection, unlike in most experiments, once ACV requires continuous presence 

to exert maximum inhibitory effect. Produced HSV-2 were subsequently titrated in 24 well plates, as 

described before, and treated suspensions titers were compared to control titers for the evaluation of 

yield reduction percentage. 

 

2.7.  Visualization of treated and non-treated infected cells and virus 

suspensions by Transmission Electron Microscopy (TEM) 

 

2.7.1. Infected cells – treated and control – observation by TEM 

Sub confluent Vero cell cultures, grown in 6 well plates, were inoculated with 140 pfu/cell of HSV-2 

and incubated at 4 ºC for 1 hour at a plate rocker. After the adsorption period plates were incubated 

at 37 ºC for 30 minutes, for viral entry. Then, inoculums were removed and each culture was washed 

with 500 μL of PBS. Infected cells were subsequently treated with 1 mL of 2 % FBS culture medium with 

or without extract (100 μg/mL) and incubated at 37 ºC, in the presence of the extract, for 3 hours. The 

content of all wells was replaced by 1.4 mL of 2 % FBS culture medium following the treatment period.  

Infected cells – treated and control – were collected at 14 hours post infection, by scraping to the 

medium with a policemen, to 1.5 mL microtubes and centrifuged at 3,000 g for 5 minutes. 

Supernatants were rejected and pellets were resuspended in 800 μL of 3 % glutaraldehyde in sodium 

cacodylate buffer (0.1 M, pH 7.3), which was replaced, 24 hours later, by cacodylate buffer. Samples 

were kept at 4 ºC until they were sent to Dr. A. P. Alves de Matos (CESAM and Centro de Investigação 

Interdisciplinar Egas Moniz), being then processed and analyzed as described before [52]. 

 

2.7.2. Virus suspensions – treated and control – Negative Staining for TEM 

Sub confluent cell cultures, grown in T75 flasks, were inoculated with 1 pfu/cell of HSV-2 in 2.5 mL of 

virus suspension, and incubated at 4 ºC for 1 hour at a plate rocker. After the adsorption period flasks 

were incubated at 37 ºC for 30 minutes and inoculums were removed. Infected cells were then treated 

with 5 mL of 2 % FBS culture medium with or without extract (100 μg/mL), and incubated at 37 ºC, in 

the presence of the extract, for 2.5 hours. The content of both flasks was replaced by 13 mL of 2 % FBS 

culture medium without extract, following the treatment period. Treated and control suspensions 

were collected 28 hours post infection. 
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Virus suspensions – treated and control – were collected at 28 h p.i. to 15 mL Falcon tubes and 

centrifuged at 3,000 g for 5 minutes. Supernatants were collected in centrifuge tubes and centrifuged 

at 19,000 g for 5 hours, for virus concentration. Supernatants were rejected and the pellet 

(concentrated virus) was resuspended in 100 μL of PBS. 

Samples were kept at 4 ºC until they were sent to Dr. A. P. Alves de Matos (CESAM and Centro de 

Investigação Interdisciplinar Egas Moniz), being then processed and analyzed as described before [52]. 

 

2.8.  Kinetics of HSV-2 infection in treated and non-treated cells 

To determine the extract effect on viral DNA replication, sub confluent cultures grown in 12 well plates, 

were infected with 3 pfu/cell of HSV-2, incubated at 4 ºC for 1 hour at a plate rocker and at 37 ºC for 

30 minutes. Then, the viral inoculums were removed and 1 mL of culture medium with or without 100 

μg/mL of extract was added to each treated or control well. 

Each treated and respective control culture was scrapped into the culture medium and collected in a 

1.5 mL microtube, at different hours post-infection – 2 to 7 h p.i. Collected suspensions were 

centrifuged at 3,000 g for 5 minutes, supernatants were rejected and kept at 4 ºC until DNA 

purification.  

DNA was purified using JETQUICK® protocol for the purification of DNA from up to 1 mL of whole blood 

[53] as per manufacturer’s instructions and eluted in 200 μL of DNase free water. Purified DNA samples 

were observed thru electrophoresis in a 0.7 % agarose gel in TBE with 0.005 % EtBr (ethidium bromide), 

to confirm their integrity. DNA concentration was determined for every sample using a NanoDrop® 

Spectrophotometer (Thermo Scientific ND-1000), and 19.41 ng of each DNA sample was used for 

polymerase chain reaction (PCR), to detect HSV-2 DNA.  

Each sample was amplified with HV/Cons primers [54], and reactions were carried out in a total volume 

of 5 µL prepared in ultrapure water with 2.5 µL of 2X MyTaq™ Red Mix (Bioline), 0.5 µM of each primer 

and 1 µL of DNA sample, following manufacturer’s instructions. The amplification program consisted 

of an initial 3 min denaturation at 95 ºC followed by 30 cycles of denaturation – 95 ºC for 30 seconds, 

annealing – 45 ºC for 30 seconds – and extension – 72 ºC for 1 minute. The final extension was carried 

out at 72 ºC for 5 minutes. DNA samples extracted from HSV-2 particles, with JETQUICK® protocol for 

the purification of DNA from up to 1 mL of whole blood [53], were used as PCR positive controls. PCR 

products were visualized by electrophoresis in a 0.7 % agarose gel in TBE with 0.005 % EtBr using 1Kb 

Plus DNA Ladder (Gibco) as a molecular weight marker. The expected amplified fragment size should 

be about 500 bp [54]. 
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To further detect and quantify the amount (copy number) of virus DNA, in treated and non-treated 

cells, 2 ng – in 10 µ of each DNA sample were subjected to real-time PCR (qPCR). qPCR was performed 

with HSV1 HSV2 VZV R-gene® kit from ARGENE® [55] in an Applied Biosystems™ 7500 Instrument, 

according to manufactures instructions - except in the primers addition step, where only HSV-2 

amplification premix was added to the reactions. 
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3. Results 

 

3.1.  Cytotoxicity assays 

Results shown were obtained through the MTT colorimetric assay.  

 

3.1.1. Determination of the extract CC50 and MNCC 

Cell viability (Fig. 2, Tab. 1 and Tab. S. 1 in supplementary data) was evaluated by comparison of 

measured absorbance in wells with treated cells – maintained in 2 % FBS medium with different extract 

concentrations - and control cells – maintained in 2 % FBS medium without extract. Cytotoxic 

concentration that destroys 50 % of the cells (CC50) and maximum non-cytotoxic concentration (MNCC) 

were calculated through linear regression of the dose-response curve. 

 

 

Fig. 2 - Graphic representation of the extract cytotoxicity. Values 
represent the mean ± SD of four independent experiments. The black 
arrow indicates the CC50.  

 

According to the calculations the extract CC50 and MNCC are 177.3 and 150.3 μg/mL, respectively. 
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*175 *55.9 

150 100.9 ± 20 

125 102.7 ± 17 

100 99.4 ± 4 

62.50 110.6 ± 2 

50 98.26 ±6 

31.25 110.0 ±1 

25 114.8 ±19 

Tab. 1 – Cell viability percentages obtained in MTT 
assays post 24 or 48 hours of incubation with the 
extract. Values represent the mean ± SD of two 
independent experiments (except *) with 4 replicates. 
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3.1.2. Correlation between FBS concentration in the culture medium and 

cytotoxic effect of the extract 

To investigate possible dissimilarities of the extract cytotoxic effect when it is diluted in medium with 

different serum concentrations, sub-confluent cell cultures were treated with different extract 

concentrations in medium with different FBS concentrations - 0, 2 or 10 % - and controls (cultures 

maintained in medium with the same FBS concentrations, without extract). The extract exhibited 

extremely variable cytotoxicity (Fig. 3, Tab. 2) with variations in the FBS concentration in the culture 

medium. 

 

 

Fig. 3 - Graphic representation of the extract cytotoxicity in different 
FBS concentrations. Values represent the mean ± SD of 1, 3 and 4 
experiments – respectively to 0, 10 and 2 % FBS culture medium – 
with 4 replicates. 

Extract CC50 and MNCC in medium with 2 % FBS were 177.3 and 150.3 μg/mL, respectively, and 123.2 

and 21.2 μg/mL in serum free medium. These values could not be determined in the assays with 10 % 

serum medium. 

 

3.2.  Virucidal effect 

Virucidal effect results were obtained by titration of previously treated (with 100 µg/mL of extract) and 

control viral suspensions and comparison of the obtained titers. As noticeable in Fig. 4 and Tab. S. 2 (in 

supplementary data) the extract revealed no meaningful effect against viral particles outside the host 

cell, with a 3.44 ± 2.37 % (mean of 3 experiments) reduction on the virus titer of treated suspensions 

– 7.67 × 106 pfu/mL – relatively to non-treated ones – 7.94 × 106 pfu/mL. 
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Extract 
Concentration 

(μg/mL) 

% Cell Viability 

0 % 
FBS 

10 % FBS 2 % FBS 

250 2 138 ± 30 4 ± 1 

200 3 118 ± 13 9 ± 6 

150 11 56 ± 45 101 ± 20 

125 64 105 ± 12 103 ± 17 

100 62 118 ± 27 99 ± 7 

50 93 93 ± 24 93± 11 

25 97 98 ± 42 110 ± 15 

Tab. 2 - Cell viability percentages obtained in MTT assays 
after 24 or 48 hours of incubation with the extract diluted 
in culture medium with 0, 2 or 10 % FBS. 
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Fig. 4 – HSV-2 suspensions – treated and control - titration results. 

3.3.  Extract effect on viral plaques formation 

In order to test the extract effect on HSV-2 plaque formation, cell cultures, grown in 24 or 6 well plates 

were infected with serial dilutions of the virus. After the viral adsorption and entry periods, the 

inoculums were removed and 2 % FBS culture medium – with or without 100 μg/mL of extract – was 

added to treated and control wells. Following the treatment period, 2 % Sephadex titration medium 

was added to each well.  

The extract inhibitory effect was evaluated by comparison of treated and control titers and plaques’ 

diameters.  

 

 

 

 

 

 

 

 

 Control Treated 

10-6 

 

10-5 

10-4 

 Treated Control 

10-7 

 

10-6 

Fig. 5 - HSV-2 suspensions – treated and control - titration results. 
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When added during titration the extract exhibit a 71.6 ± 26.8 % (mean of 3 experiments, see Tab. S. 3 

in supplementary data) reduction in titer and a visible decrease in plaque diameter (Fig. 5) of treated 

versus control conditions. 

 

3.4.  Extract effect on virus yield 

Several experiments, involving HSV-2 production under treatment, were performed, to uncover the 

extract effect on virus yield and the involved infection stages. 

It’s noteworthy that a mean yield reduction of 93.65 ± 8 % was calculated using data obtained in 13 

experiments (see Tab. S. 4 in supplementary data) performed in “standard” treatment conditions – 2 

% FBS medium with 100 µg/mL of extract at 0.5 h p.i. during 2 to 4.5 hours. 

 

3.4.1. IC50 and IC90 determination 

To determine the extract IC50 and IC90, HSV-2 was produced in culture medium with different extract 

concentrations, and controls were produced in culture medium without extract. Produced suspensions 

were then titrated, and viral titers (in treated and control cultures) were compared to obtain the 

percentage of yield reduction attributed to each concentration (Tab. 3, Fig. 6). Concentration that 

reduces viral yield in 50 % (IC50) and concentration that reduces viral yield in 90 % (IC90) were calculated 

through linear regression of the dose-response curve. 

  

Fig. 6 - Graphic representation of HSV-2 yield reduction when cell 
cultures were treated with different extract concentrations. Values 
were obtained in one experiment. 

According to the calculations the extract IC50 and IC90 are 35.1 and 128.1 μg/mL, respectively. 
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Extract Concentration (μg/mL)
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(μg/mL) 

% Yield 
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175 96.34 

150 90.77 

125 87.99 

100 83.03 

75 84.76 

50 78.86 

40 69.23 

30 60.00 

25 55.56 

20 44.62 

12.5 13.45 

10 1.54 

Tab. 3 - HSV-2 yield reduction percentage when cell 
cultures were treated with different extract 
concentrations.  
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3.4.2. Determination of the affected stage of virus replication 

HSV-2 was produced under treatment conditions - in culture medium with 100 μg/mL of extract – with 

different treatment starting times, and a control suspension was produced in culture medium without 

extract. Yield reduction percentage was determined by titration of the produced virus suspensions and 

comparison of the titers obtained in treated and control conditions. 

 

Fig. 7 - Graphic representation of HSV-2 yield reduction by the extract (100 
μg/mL) in different treatment starting points. Values were obtained in one 
experiment. 

There is a noticeable decrease (Tab. 4, Fig. 7 and Tab. S. 4 in supplementary data) of the extract 

effectiveness when added between 3 to 6 h p.i. and no effect when the treatment is started at 15 h p.i. 

or later (data not shown).  

 

3.4.3. Comparison with ACV inhibition  

To evaluate the mechanisms which mediate the 

virus yield reduction by the aqueous extract, HSV-

2 was produced under treatment conditions with 

both compounds – aqueous extract and ACV – at 

the same concentration – 100 μg/mL. Control 

suspensions were produced in culture medium 

without extract. Each compound yield reduction 

percentage was determined by titration of the 

produced virus suspensions and comparison of 

titers obtained in treated and control conditions. 
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0.5 91.27 

1 78.55 

3 64.53 

6 46.27 

14 28.74 

Tab. 4 - HSV-2 yield reduction percentage at 
different treatment starting times (h p.i.). 
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Fig. 8 - Graphic representation of HSV-2 yield reduction by 
the extract and ACV (100 μg/mL). Values were obtained in 
one experiment with 2 replicates. 
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Fig. 8 shows HSV-2 yield reduction percentages in virus produced under treatment with ACV – 95.89 % 

- or S. virgaurea aqueous extract – 97.40 % - , relatively to non-treated virus. The extract exhibited a 

very similar inhibition to the one observed in ACV treatment.  

 

3.4.4. Visualization of treated and non-treated infected cells and virus 

suspensions by Transmission Electron Microscopy (TEM) 

Cell cultures were infected with HSV-2 and treated with 2 % FBS culture medium with or without 100 

μg/mL of extract. Infected cells were then collected at 14 hours post infection and observed by TEM. 

Treated and control viral suspensions were concentrated and observed by negative staining. 

 

Fig. 9 – a-b) Thin section TEM micrographs of HSV2 infected Vero cells processed for TEM at 14 hours p.i. a) Non-treated 
(control). b) Cells treated with 100 μg/mL of the extract. c) HSV-2 virus particle negatively stained with 1 % aqueous uranyl 
acetate. Photos were kindly provided by Dr. A.P. Alves de Matos. 

Negative staining showed a highly reduced amount of virus produced under treatment, as compared 

to controls, with no significant morphogenetic defects (Fig. 9 c), while fine sections with treated 

infected cells (Fig. 9 b) exhibited fewer morphological deficiencies, due to infection, than control 

infected cells (Fig. 9 a). 

 

3.4.5.  HSV-2 Infection Kinetics 

DNA was extracted from Vero cell cultures 

infected with HSV-2 – in treatment and control 

(non-treatment) conditions – at 14 hours post-

infection (h p.i.) and was observed by gel 

electrophoresis (Fig. 10). DNA concentration of 

Infection 
Time (hours) 

DNA concentration (ng/µL) 

Treated Control 

3 26.35 20.34 

4 24.18 19.41 

5 22.39 25.93 

6 22.40 26.74 

7 34.24 31.25 

Tab. 5 - Infected cells - treated and non-treated - DNA 
quantification. 

a b 

c 
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each sample was determined (Tab. 5) using a NanoDrop® and was equalized to 19.41 ng/µL in every 

sample, with DNase free water. PCR was performed to 26 ng of each sample, in order to verify the 

presence of HSV-2 DNA. 

 

Sample 

L 

Treated Controls (Non-Treated) 

h p.i. 2 3 4 5 6 7 2 3 4 5 6 7 

 

Fig. 10 – DNA from treated and non-treated infected cells (from 2 to 7 h p.i.) DNA observed trought gel electrophoresis. 

 

All extracted DNAs showed similar bands when observed in gel electrophoresis (Fig. 10), indicating that 

only cellular DNA is visible.  

 

Sample Treated Controls (Non-Treated) 

L 

PCR 

Controls 

h p.i. 2 3 4 5 6 7 2 3 4 5 6 7 + + - 

 

 

Fig. 11 – Results of PCR for the detection of HSV-2 DNA in infected cells – treated and controls – at different times post 
infection. White arrows indicate the size of two molecular weight marker bands that surround the PCR product bands. 

Although no differences are evident between treated and non-treated PCR products (Fig. 11) this 

experiment shows that, in the applied experimental conditions, viral DNA replication is started 

between 4 and 5 h p.i.  

1018 bp 

506.5 bp 
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The PCR products visualization (Fig. 11) showed that the amplified fragment size was slightly above 

506 bp but under 1018 bp, which fits the expected size. 

 

3.4.6. Quantitative real-time PCR (qPCR) 

To evaluate possible differences between the amounts of viral DNA in treated and non-treated cell 

cultures at different hours post infection, qPCR was performed with 2 ng of the extracted DNA samples 

(Fig. 10). 

 

 

Fig. 12 - Quantification of HSV-2 DNA (copy/mL) in infected cells (treated and non-treated)  at different hours post infection 
(h p.i.). 

 

While at the beginning of infection – 3-5 h p.i. – viral DNA quantities are similar with or without 

treatment, it’s noticeable a slower increase of the copy number in treated relatively to non-treated 

samples, that gets more evident as the infection progresses. 
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4. Discussion 

 

4.1.  Extract cytotoxic effect  

When evaluating a product effect against a species or class of micro-organisms it’s important neither 

to overlook the incidence of false-positives nor to discriminate aspecific cell toxicity [56]; this can be 

solved by inclusion of a parallel evaluation of the product effect on host cell lines (cytotoxicity 

evaluation) [57]. 

The lyophilized extract was diluted in DMSO, one of the most frequently used solvents to prepare stock 

solutions, once it eliminates microbial contamination and assures good solubility during the serial 

dilution procedures. It’s important to notice that DMSO is potentially toxic for cells and some 

microorganisms [56]. In fact, DMSO has shown anti-herpetic activity for concentrations above 2 % [58]. 

While previous studies have verified 100 % cell viability for DMSO concentrations under 1 % [56, 58] a 

2012 [19] work showed, through microscopic observation, that DMSO concentrations higher than 0.5 % 

cause cellular modifications. Considering this, all tested extract concentrations were correspondent to 

a lower than 0.5 % concentration of DMSO, to prevent false positives in both cell viability and anti-viral 

activity assays. 

Extract effect in Vero cells viability was evaluated by sub-confluent cell cultures exposition to different 

extract concentrations, at adequate experimental conditions for viral infection – 2 % FBS culture 

medium and 24 or 48 hours incubation at 37 º C. The determined CC50 and MNCC were 177.3 and 150.3 

μg/mL under these conditions (Fig. 2), but varied critically when differences in the FBS concentration 

in the culture medium were introduced, showing greater susceptibility in serum free culture medium 

with a CC50 of 123.2 μg/mL and a MNCC of 21.2 μg/mL (Fig. 3). 

This data shows that, when determining an extract or compound effect on the viability of a virus host 

cell, experimental conditions should be the same as in virus inhibition experiments. However, some 

antiviral studies lack to refer the serum concentration used in cytotoxicity assays [20, 59-61] and others 

describe the utilization of high FBS concentrations [21], what may lead to the employment of cytotoxic 

concentrations in antiviral activity experiments. 
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4.2.  Virucidal effect 

Extract direct effect on virus particles was evaluated through the treatment - in non-cytotoxic 

concentrations - of HSV-2 suspensions for 1 to 3 hours, at room temperature, with stirring.  

While previous studies involving this plant aqueous extract [17, 19] concluded that it exhibited strong 

virucidal effect on HSV-2 particles, in the present study it showed irrelevant virucidal effect, since 

treated virus titer reduction relatively to non-treated virus was only 3.44 ± 2.37 % and viral plaques’ 

dimensions were similar (Fig. 4). It’s important to notice that this dissimilarity is probably due to the 

utilization of different batches of extract in the different studies, obtained from plants harvested in 

different years. This shows the discrepancies faced when working with natural products, once the 

compounds produced by plants may vary considerably, depending on environmental factors. 

Further virus production experiments, aiming to analyze the affected stage of the replicative cycle 

stage during treatment, also support the inexistent virucidal activity of the extract, as when the extract 

is added at 15 h p.i. or later, and kept until the end of infection, yield reduction is null (data not shown). 

This suggests that, although viral particles remain several hours in contact with the extract outside host 

cells, it exerts no effect on them showing no virucidal effect. 

 

4.3.  Extract effect on plaque formation 

When added during titration - in non-cytotoxic concentrations - the extract showed minor and more 

dissimilar - 71.6 ± 26.8 % - titer reduction of treated relatively to non-treated infected cells than when 

treatment was applied during viral production. This is probably due to the fact that a percentage of the 

cells are still capable of productive infection, yet with lower productions; this may also explain the 

smaller plaques observed in treatment conditions (Fig. 5): a lower number of produced particles will 

infect a lower number of neighbor cells in successive replication cycles. 

These results are consistent with a 2014 study [17] where the extract showed 56 % inhibition and led to 

the production of smaller plaques when added to HSV-2 titration at 100 µg/mL, and a 2012 work [19] 

where it exhibited 86 % inhibition at 300 µg/mL.  
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4.4.  Extract effect on virus yield 

Treatment - in non-cytotoxic concentrations - was extremely effective when performed during virus 

production, with a mean yield reduction of 93.65 ± 8% of treated versus non-treated infected cells. 

Yet, viral plaques were morphologically normal, comparatively to controls. 

When evaluating a product antimicrobial proprieties by means of in vitro models the activity of extracts 

or compounds is generally expressed by numeric values - IC50, IC90, etc. – but for a correct interpretation 

of the results a profound knowledge of the model and used protocol is required. Yet, stringent 

endpoint criteria can be defined, being relevant antimicrobial activity set for IC50 values below 100 

µg/mL for natural extracts [56]. Solidago virgaurea aqueous extract IC50 – in treatment during virus 

production - was 35.1 μg/mL, which fits the values described as common endpoints in antimicrobial 

activity. 

The selectivity index (SI) is also an intrinsic component of any antiviral testing and refers to the ratio of 

the maximum drug concentration causing either 50 % or 90 % inhibition of growth of normal cells - 

CC50, CC90 - and the minimum drug concentration at which 50 % or 90 % of the virus is inhibited - IC50, 

IC90 [56]. Accordingly, the extract SI is 5.1 and its noteworthy that this result was founded in cytotoxicity 

experiments performed with 2 % FBS culture medium, while many other studies [20, 59-61] use 10 % FBS 

media, which allows the utilization of much higher product concentrations without cell death, incurring 

in possible results adulteration. 

Furthermore, experiments were performed where treatment was started at different times post 

infection, in order to investigate at which HSV-2 replicative cycle stage does the extract exert its 

inhibitory effect. Results (Tab. 4, Fig. 7) revealed a decrease in the inhibition percentage from 

treatments started at 30 minutes post infection where yield reduction was about 90 %, until 

treatments started at 14 hours post infection where yield reduction dropped to 28.74 %. When added 

at 15 h p.i. or later the extract showed no effect on virus yield. This suggests that the extract may apply 

its inhibitory effect in one or more earlier stages of the infection but after virus adsorption, once the 

effect drops to about 50 % the treatment is started between 3 and 6 hours post infection (Fig. 7). These 

stages may include: nucleocapsid transport to host nuclear pores, viral DNA release into the nucleus, 

immediate early and/or early genes expression and DNA replication [28]. 

Once acyclovir is known to inhibit HSV DNA replication [40-42], an experiment was performed using 

parallel treatments with ACV and S. virgaurea aqueous extract, in order to compare both inhibitory 

effects in virus progeny yield. Results (Fig. 8) shown a very similar inhibition, even a little higher by the 

aqueous extract, but it’s important to highlight that this result was obtained in only one experiment, 

although with two replicates for each treatment. A manifest difference between the two products is 
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the length of the treatment that is required to achieve maximum inhibition; while ACV presence is 

obligatory throughout the entire infection - once it is removed viral replication may carry on - extract 

treatment may be as short as 2 hours (data not shown). This may indicate that only earlier HSV-2 

replication stages are affected and/or that some components of the extract, namely the ones that 

display antiviral activity, remain inside host cell when culture medium is removed. 

To evaluate possible morphological modifications among treated and non-treated infected cells, an 

experiment where treated and non-treated infected cell cultures were collected at 14 hours post 

infection and subsequently observed by TEM was performed. Morphological differences between 

treated and control infected cells were very evident (Fig. 9 a and b) as control cells exhibited 

significantly greater damage, mainly in the nuclear envelope, due to infection than treated cells, 

suggesting that infection was impaired by the treatment. 

Virus particles produced under treatment were also compared with controls by TEM visualization, in 

an experiment where large amounts of HSV-2 were produced, in T75 flasks, with and without 

treatment and were subsequently concentrated. The concentrated viruses were then negatively 

stained with uranyl acetate and counted through TEM. Observations showed that the number of viral 

particles was severely reduced – about 1 % - in suspensions produced in treatment conditions – 100 

µg/mL of aqueous extract - relatively to control suspensions. However, HSV-2 particles produced under 

treatment displayed no morphological decencies (Fig. 9 c). This indicates that the extract inhibitory 

activity leads to an actual reduction in HSV-2 progeny yield, rather than leading to production of 

deficient particles, or other possible inhibitory situation.  

In order to further evaluate the extract action mechanism, a HSV-2 infection kinetics was executed, 

where infected cell cultures - treated and non-treated – were collected from 2 to 7 hours post infection. 

Each infected cell culture DNA was then extracted and observed in gel electrophoresis (Fig. 10), all DNA 

samples presented similar bands, even in later times into the infection, hence only cellular DNA was 

visible in total DNA gel electrophoresis.  

Extracted DNAs were then quantified and equalized to the same DNA concentration – 19.41 ng/µL. A 

PCR for the detection of HSV-2 DNA was then performed with about 25 ng of each total DNA extracted 

and PCR products were observed through gel electrophoresis. While PCR results (Fig. 11) did not supply 

any informative data about the extract inhibitory activity on viral DNA replication - once results were 

quite similar in treated and non-treated samples - they allowed the determination of the time post 

infection at which viral DNA replication occurs, in the applied experimental conditions. This 

information is very relevant to future experiments planning, and interpretation of the obtained results. 

For example, when the beginning of the treatment is delayed to 6 h p.i. the yield reduction drops to 



29 
 

less than 50 %, which is consistent with HSV-2 infection kinetics results, as at 5 h .p.i. it’s noticeable a 

major increase in the amount of viral DNA present in the infected cells, which reveals that HSV-2 DNA 

replication stage is already in an advanced phase at that time.  

Accordingly when the treatment is started after viral DNA replication it loses much of its efficiency, 

suggesting that this could be the affected process by the aqueous extract when exerting its antiviral 

activity. To further investigate possible divergences between the HSV-2 DNA replication in treated and 

non-treated cells the same DNA samples were used for real-time PCR to detect and measure the 

amount of viral DNA present in infected cells at the several times post infection – 3 to 7 h p.i. The 

results (Fig. 12) revealed that in shorter infection times – 3 to 5 h p.i. –  no major differences can be 

observed in the amount of viral DNA present in treated and control cells but, as the infection 

progresses, its noticeable that the amount of DNA increases in a severely slower rate in treated 

relatively to non-treated cells. This may indicate that HSV-2 DNA replication may be impaired when S. 

virgaurea aqueous extract is present in the culture medium during infection. 

The overall conclusion of this work is that when infected Vero cells, with HSV-2, are treated with S. 

virgaurea aqueous extract during early infection stages - 0.5 to 5 hours post infection - the virus 

progeny yield is significantly reduced. Moreover, it was evident that viral DNA replication is severely 

impaired when HSV-2 infection occurs under treatment conditions. This antiviral effect may result from 

the inhibition of viral DNA polymerase activity by one or more extract components, leading to the 

termination of HSV-2 DNA replication.  

 

4.5.  Further Perspectives 

Further works should focus on the investigation of possible differences in the processes that are part 

of the infection early stage, in HSV-2 macromolecules (RNA, proteins, or DNA) produced under 

treatment comparatively to non-treated suspensions, to assess early genes expression and viral DNA 

replication. 
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6. Supplementary Data 

 

6.1.  Extract Cytotoxic Effect 

 

Concentration 
(μg/mL) 

% Cell Viability 

Experiment 1a Experiment 2b Mean 
Standard 
Deviation 

250 5.15 3.68 4.42 1 
200 6.66 9.60 8.13 2 
175 - 55.92 55.92 - 
150 86.71 115.04 100.87 20 
125 114.36 90.93 102.65 17 
100 102.08 96.63 99.36 4 
62.5 109.13 112.15 110.64 2 
50 102.16 94.37 98.26 6 

31.25 111.04 108.93 109.98 1 
25 127.92 101.65 114.79 19 

Tab. S. 1 – Cell viability percentages obtained in MTT assays post 24 (a) or 48 (b) hours of incubation with the extract and 
standard deviation. Cell viability percentages were calculated relatively to controls (non-treated). Each value is the mean 
of 4 replicates. The mean of the two experiments and respective standard deviation is shown. 

 

6.2.  Extract Virucidal Effect 

 

  Experiment 1 Experiment 2 Experiment 3 Mean SD 

Treated pfu/mL 1.00 × 107 1.04 × 107 2.64 × 106 7.67 × 106 - 

Control pfu/mL 1.05 × 107 1.05 × 107 2.82 × 106 7.94 × 106 - 

Inactivation % 4.35 1.72 6.45 3.44 2.37 

Tab. S. 2 - Treated - with 100 μg/mL of aqueous extract – and control (non-treated) HSV-2 suspensions titers. Inactivation 
percentages were calculated relatively to controls. 
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6.3.  Extract effect on viral plaques formation 

 

  Experiment 1 Experiment 2 Experiment 3 Mean SD 

Treated pfu/mL 8.03 × 107 1.43 × 108 5.36 × 108 2.53 × 108 - 

Control pfu/mL 1.06 × 109 7.00 × 108 9.09 × 108 8.90 × 108 - 

Inhibition % 92.4 79.6 41.0 71.6 26.8 

Tab. S. 3 – Results of three titration experiments where infected cultures were treated - with 100 μg/mL of aqueous extract 
- at 0.5 h p.i. and 2 % Sephadex medium was added 4 h p.i.. Inhibition percentages were calculated relatively to controls. 

 

6.4. Extract effect on virus yield production along infection period 

 

Experiment % Yield Reduction 
Treatment Period 

(h p.i.) 

1 98.86 0.5 - 24.0 

2 77.78 0.5 - 3.5 

3 97.67 0.5 - 3.0 

4 79.35 0.5 - 2.0 

5 78.55 1.0 - 24.0 

6 76.32 0.5 - 2.0 

7 91.71 0.5 - 2.5 

8 46.27 6.0 - 24.0 

9 81.54 0.5 - 16.0 

10 28.74 14.0 - 24.0 

11 89.88 0.5 - 5.0 

12 91.27 0.5 - 24.0 

13 97.40 0.5 - 24.0 

14 64.53 3.0 - 24.0 

15 83.90 0.5 - 2.5 

16 93.97 0.5 - 2.5 

17 98.93 0.5 - 2.0 

Tab. S. 4 – HSV-2 yield reduction percentage of treated - with 100 μg/mL of aqueous extract – relatively to non-treated 
virus suspensions at different treatment periods (h p.i.). 


