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RESUMO 
 

A instabilidade genómica ao nível da estrutura cromossómica (instabilidade 

cromossómica) tem um papel importante na progressão do cancro. Vários estudos 

sugerem também que a instabilidade cromossómica pode proporcionar saltos gigantescos 

na paisagem adaptativa durante a adaptação a um novo ambiente. Isto porque o número 

de passos mutacionais necessários para que daí possam resultar mudanças significativas 

no fenótipo é menor do que em mutadores ao nível de substituições nucleotídicas simples.  

A instabilidade cromossómica gera alterações estruturais nos cromossomas 

(rearranjos cromossómicos) que podem afetar não só as sequências nucleotídicas de genes 

específicos como também interferir com a ordem de elementos regulatórios no genoma 

e, consequentemente, alterar padrões de expressão génica. 

 Contudo, há uma considerável escassez na literatura de estudos sobre as dinâmicas 

evolutivas de mutadores da estrutura cromossómica (organismos com elevada 

instabilidade cromossómica), que em última análise são necessários para uma melhor 

compreensão do quanto e em que circunstâncias a elevada evolvabilidade, que é intrínseca 

destes mutadores, poderá ser benéfica ou deletéria a curto e a longo prazo. 

 Há hipóteses que sugerem que em ambientes constantes, não stressantes, a 

instabilidade cromossómica paga um custo devido à acumulação de mutações deletérias. 

No entanto, durante a adaptação a novos ambientes ou em ambientes alternados, estes 

mutadores da estrutura cromossómica podem contribuir com a variabilidade genética 

necessária para a adaptação da população. Os efeitos positivos que alguns rearranjos 

cromossómicos representam para o fitness podem exceder os efeitos pejorativos dos 

restantes rearranjos resultantes deste tipo de instabilidade. 

 O objetivo deste trabalho é o estudo dos “trade-offs” evolutivos que condicionam 

a evolução da instabilidade cromossómica. Através de evolução experimental estudámos 

a adaptação a curto prazo de estirpes instáveis de Schizosaccharomyces pombe em duas 

condições ambientais: um ambiente constante, não stressante, e um ambiente alternado. 

Nomeadamente, queríamos determinar se as estirpes instáveis têm uma vantagem 

adaptativa num contexto de ambiente alternado, em que há mais espaço para adaptação, 

e se, por outro lado, o balanço entre as mutações deletérias e as mutações benéficas que 

possam surgir pode constituir um custo para estas estirpes num ambiente constante, em 

que há menos espaço para adaptação.    



 

 

 O fenótipo de instabilidade característico das estirpes que usámos é consequência 

de um conjunto de mutações construídas no laboratório que afetam o encapsulamento dos 

telómeros bem como mecanismos de reparação de DNA e que, em conjunto, originam 

padrões de rearranjos cromossómicos brutos como translocações, inversões, deleções, 

amplificações e aneuploidia. 

 Para responder às questões a que nos propusémos, realizámos ensaios de 

competição entre as estirpes instáveis e um clone de referência das estirpes controlo, bem 

como entre as estirpes controlo e um clone referência das estirpes instáveis. As estirpes 

controlo foram evoluídas em conjunto com as instáveis durante a evolução experimental 

e estão marcadas com mCherry, uma proteína flourescente, o que permite que as suas 

frequências sejam seguidas por um equipamento especializado ao longo de alguns ciclos 

de crescimento e diferenciadas das frequências das estirpes instáveis, que não têm 

fluorescência. Estes ensaios permitiram-nos determinar o fitness relativo das duas estirpes 

como função da alteração das suas frequências relativas ao longo das competições. Desta 

forma, estimámos o fitness das estirpes no início da evolução experimental e depois da 

adaptação a curto prazo nas duas condições ambientais (ambiente constante e alternado).  

Também realizámos experiências para testar se o tamanho populacional das duas 

estirpes sofreu alterações ao longo da evolução experimental, já que alterações neste 

parâmetro podem afetar grandemente a eficiência da seleção natural em oposição à ação 

da deriva genética. 

O efeito fundador também pode afetar a ação da seleção natural. No início da 

evolução experimental usámos diferentes clones de cada estirpe para fundar os replicados 

populacionais e testámos se haviam diferenças no fitness inicial. Procurámos também 

perceber se mutações que possam ter surgido nos diferentes clones das estirpes instáveis 

imediatamente após a criação do seu fenótipo de instabilidade condicionaram a sua 

evolução. Para isso testámos o efeito do clone no fitness final de cada estirpe para as duas 

condições ambientais. Fizémos também uma estimativa do papel relativo da seleção, 

história e deriva na distribuição dos valores finais de fitness de cada estirpe. 

Os dados de fitness permitiram-nos responder a várias perguntas específicas: 1) 

as estirpes adaptaram-se às condições ambientais a que foram expostas (há diferenças 

entre o fitness inicial e o fitness após a evolução experimental?); 2) qual foi a dinâmica 

evolutiva das estirpes (houve convergência para os mesmos valores de fitness ou 

divergência entre os replicados populacionais de cada estirpe?); 3) há diferenças entre as 



 

 

dinâmicas evolutivas das duas estirpes?; 4) há diferenças entre as dinâmicas evolutivas 

de cada estirpe na adaptação aos dois tipos de ambiente?. 

Concluímos que, após a adaptação a curto prazo em ambiente constante, o fitness 

das estirpes instáveis aumentou e a adaptação foi caracterizada por uma divergência 

fenotípica reveladora de uma paisagem adaptativa complexa, composta por vários picos 

locais. Estas observações suportam a hipótese de que a instabilidade cromossómica pode 

permitir uma exploração  mais abrangente da paisagem adaptativa, aumentando as 

probabilidades de se atingirem picos mais elevados. 

As estirpes controlo, no entanto, sofreram um decréscimo do fitness durante a 

adaptação em ambiente constante. Não detectámos nenhum padrão de divergência ou 

convergência entre os replicados populacionais destas estirpes o que, aliado à observação 

de que o clone teve um efeito significativo nas suas trajectórias evolutivas, constitui 

evidência para a incapacidade de grandes populações com taxas moderadas de mutação 

explorarem paisagens adaptativas muito complexas. Assim, os genótipos fundadores dos 

replicados populacionais destas estirpes terão determinado a paisagem adaptativa passível 

de ser explorada no início da experiência de evolução tendo em conta as suas limitações 

em termos de taxa de mutação. 

O efeito do clone nos valores de fitness das estirpes controlo foi evidente mesmo 

no fim da experiência de adaptação. Embora a história não tenha tido um efeito 

considerável nas distribuições de fitness das estirpes evoluídas em comparação com o 

efeito da seleção natural, há evidências de que a variabilidade genotípica entre as 

populações no início da experiência de evolução terá limitado as diferentes populações a 

vales distintos na paisagem adaptativa. 

A adaptação de ambas as estirpes em ambiente alternado foi caracterizada por um 

“trade-off” na capacidade de exploração de fontes de carbono alternativas. 

Em suma, os nossos resultados indicam que as dinâmicas evolutivas que 

condicionam a adaptação a curto prazo de mutadores da estrutura cromossómica são 

altamente complexas e dependentes das condições ambientais. 

 
 
Palavras-chave: instabilidade cromossómica; adaptação; taxa de mutação; evolução da 

instabilidade cromossómica; evolução experimental; dinâmicas adaptativas.  

 
 



 

 

ABSTRACT 

 
Genomic instability at the level of chromosomal structure (chromosomal instability) plays 

an important role in cancer progression. It has been suggested by several studies that 

chromosomal instability could facilitate large leaps in the fitness landscape during 

adaptation to a novel environment with less mutational steps than single-nucleotide 

substitution mutators. This is because chromosomal instability generates structural 

changes in chromosomes (chromosome rearrangements) with the ability to not only affect 

genetic sequences of particular genes but even interfere with the order of regulatory 

elements, thus changing gene expression patterns. 

 Studies addressing the evolutionary dynamics of mutators for chromosomal 

structure are currently lacking in the literature and are utterly necessary to understand the 

extent to which the higher intrinsic evolvability of these mutators could be beneficial or 

deleterious. 

 It has been hypothesized that in a constant, non-stressful environment, 

chromosomal instability is expected to pay a cost due to the accumulation of deleterious 

mutations. However, during adaptation to a novel environment or under fluctuating 

environments, mutators of chromosomal structure can provide the genetic variation 

necessary for the population to adapt and the positive fitness effects contributed by 

individual rearrangements may exceed the detrimental effects. 

The aim of this work was to ascertain the evolutionary trade-offs that drive 

evolution of chromosomal instability. Through an experimental evolution approach, we 

studied the short-term adaptation of Schizosaccharomyces pombe unstable strains to two 

environmental conditions: a constant non-stressful environment and a fluctuating 

environment. 

The instability phenotype of the strains used in this work is given by a set of 

mutations in the capping of telomeres and in DNA repair mechanisms that ultimately lead 

to patterns of gross chromosome rearrangements, including translocations, inversions, 

deletions, amplifications and aneuploidy. 

After short-term adaptation to a constant environment, the fitness of mutator 

strains increased and adaptation was accompanied by phenotypic divergence, revealing a 

complex fitness landscape with many local peaks. Furthermore, adaptation under a 

fluctuating environment revealed a trade-off in the ability to exploit alternative carbon 

sources. 



 

 

Altogether, our results indicate that the short-term evolutionary dynamics of 

mutators for chromosomal structure is highly complex and dependent on the 

environmental conditions. 

 

 

Keywords: chromosomal instability; adaptation; mutation rate; evolution of 

chromosomal instability; experimental evolution; dynamics of adaptation. 
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INTRODUCTION 
 

Change is the keystone of evolution. Genomes are dynamic entities that can change as a 

response to alterations in their immediate environment, and have been repeatedly altered 

and rearranged since the very beginning of life on the planet [1; 2]. 

In response to an environmental stress, organisms evolve corresponding adaptive 

functions that improve their chances of survival and reproduction [3]. These adaptations 

are achieved through the successive accumulation of beneficial mutations promoted by 

the action of natural selection [4]. 

For asexual organisms for which recombination is not an option, mutations are the 

“raw material” for evolutionary adaptation. It would seem that producing as many 

mutations as possible would prove to be a good strategy for microbial evolution, 

especially if we consider the ever-changing, never-constant environments that 

populations are exposed to in the wild. However, advantageous mutations are rare [5] 

while many more have deleterious effects [6] and higher mutation rates can bear the cost 

of more deleterious mutations.  

 

Genetic and genomic bases of adaptation 
 

Adaptation can be achieved, at the nucleotide level, by small-scale nucleotide changes 

like base insertions, deletions or substitutions [3; 7]. Conversely, adaptive variation can 

arise from organizational changes to the genome itself through large-scale processes that 

act at the multi-locus level, known as chromosome rearrangements (CRs) [8; 9]. CRs 

encompass a variety of events like chromosome duplications and deletions, translocations 

and inversions, which can be caused by breakage of DNA molecules at two different 

locations, followed by a rejoining of the broken ends to produce a new chromosomal 

arrangement of genes [10].  

 

Evolution of high mutation rates 
 

Although the spontaneous mutation rate is generally low [11], higher mutation rates can 

appear in the so-called mutators through the disruption of mechanisms of DNA 

replication and/or repair [12], or through mechanisms that disrupt chromosome 
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segregation. Mutators can be categorized by their strength (the effect on mutation rate) 

and mutational spectrum (from single-nucleotide to large chromosomal structural 

variations) [13]. 

Eukaryotic cells have evolved mechanisms to assure an accurate transmission of 

chromosomes during mitotic proliferation [14; 15]. Nevertheless, there are many reported 

examples of instability at the level of chromosome structure in natural isolates at higher 

frequencies than expected [16; 17; 18; 19]. Laboratory evolution experiments also 

reported that mutator genotypes were selected in populations undergoing adaptation. In 

these conditions, they benefit from a higher rate of acquisition of beneficial mutations. 

[20; 21; 11]. This occurs in asexual populations because the mutator allele remains 

physically linked, and hence hitchhikes to fixation, with the beneficial mutations it 

produces [20; 22; 23].  

There is clearly a trade-off between the costs of elevated mutation rates in terms 

of higher genetic load (accumulation of lethal and deleterious mutations resulting in 

decrease in the rate of population growth) and the potential benefits of increased 

evolvability once mutators become sufficiently common in a population to be an 

important contributor to the supply of beneficial mutations [24]. 

To better understand the interplay between costs and benefits of mutators in 

microbial adaptation, we need to take into account two main parameters: the population 

size and the fitness landscape [25]. Large changes in these parameters are expected to 

greatly affect the adaptive process.  

 

The effect of population size 

 

In small populations of mutators and their nonmutator counterparts, genetic drift 

can lead to the irreversible accumulation of deleterious mutations (Muller’s ratchet – 26; 

27), a risk that can be considerably higher for mutators [22]. This cost is negligible in 

large, maladapted populations or in populations exposed to strong stress. In adaptive 

conditions such as these, mutators are likely to become fixed in the population [21]. 

However, adaptation may be limited by the population supply of beneficial mutations: in 

large or maladapted populations, the supply rate of beneficial mutations is very high and 

clonal interference may reduce the mutator’s benefit of faster adaptation when only one 
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favorable mutation can become fixed at a time [28; 22]. If, instead, the population is at 

equilibrium, mutator genotypes are expected to be rare [25]. 

 

The effect of the fitness landscape 

 

As mentioned above, the second major factor to consider in the fate of mutators is 

the fitness landscape. This landscape is simply the relationship between the genotype and 

fitness. Negative epistatic gene interactions in particular should be considered in the 

evolutionary dynamics of mutators: a gene favorable in one given genomic context is 

likely to be unfavorable in other genomic contexts [29]. Specifically, reciprocal sign 

epistasis (RSE), where there is an intermediate low-fitness genotype between two 

genotypes, can constrain mutational trajectories and create rugged fitness landscapes with 

local peaks and valleys [30; 31; 32].  Under RSE, the valleys adjacent to local fitness 

peaks create barriers to adaptive evolutionary change [33]. The likelihood of a population 

traversing these valleys depends on the ease with which the population can explore that 

ridge, subject to its size and mutation rate [33]. 

The fitness landscape can be altered in different environments. A constant 

environment, for example, might require different adaptations than a rapidly changing 

environment, defining new adaptive peaks.  

Previous studies have shown that in a constant environment, a minimal mutation 

rate should be selected since selection will pull large haploid populations towards local 

fitness optima and mutation should bring populations away from that optima [34; 35; 36; 

37].  

Conversely, in fluctuating environments, mutation should be advantageous if the 

genetic variation necessary for a population to adapt to the changing environment is 

provided [36]. Under temporal and spatial heterogeneity, natural selection favors 

mechanisms that create and maintain genotypic diversity, thus increasing the long-term 

adaptability of the population [38; 39]. 

If environmental conditions change frequently, mutators should rapidly specialize 

in exploiting the present resources at the expense of other functions that might be needed 

not in the present but in future environments, a process referred to as “antagonistic 

pleiotropy” [40; 41; 42]. Thus, mutator populations evolving in a changing environment 

may suffer from a reduced niche breadth [22]. 
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Short-term fate: lower replication rate and flatter fitness peaks 

 

Studies with digital mutator organisms in direct competition with their low-

mutation rate equivalents have demonstrated that, if both populations have a high 

mutation rate during competition, the mutator organisms win because they adapt to lower 

but flatter fitness peaks in the adaptive landscape. They become more robust to the effects 

of deleterious mutations at the expense of a lower replication rate [43]. This suggests that 

mutator organisms would not only rapidly adapt to the environment but also to the very 

effects of their increased mutation rate. However, the lower replication rates would make 

them inferior competitors in direct competition with organisms that evolved with low 

mutation rates. It remains to be tested if these results can also be observed in real microbes 

and what would happen in direct competitions where mutation rates are the same as 

during adaptation for both populations (mutators and nonmutators).   

 

Mutators of Chromosome Structure 

 

While most studies regarding the evolutionary dynamics of mutators have focused on 

mutators at the level of point mutations, caused by the loss of mismatch repair activity, 

there is a considerable lack of literature regarding the dynamics of structural mutators that 

manifest Chromosomal Instability (CIN). CIN is caused by breakdowns in chromosomal 

segregation mechanisms during cell division or by the fusion of parts of chromosomes to 

one another [44; 9].  

CIN is the most prevalent form of inherent genomic instability and often results 

in gross chromosomal rearrangements (GCRs) including translocations, inversions, 

deletions, amplifications and aneuploidy. These have the potential to alter not only 

genetic sequences of particular genes but also interfere with the order of regulatory 

elements, therefore changing gene expression patterns in ways not possible through point 

mutations [45; 46].   

GCRs are frequently associated with cancer progression and have been observed 

in various types of tumours.  The majority of solid tumor cells exhibit moderate to 

drastically elevated CIN [47]. Loeb (2001) [48] first introduced the idea that cancer 

progression is accelerated by an enhanced mutation rate and later in 2002 Nowak et al. 



 

5 

 

[49] concluded that it is very likely that CIN mutations contribute to the first phenotypic 

change in cancer pathways [50]. Despite the association with cancer, extreme mutation 

rates and genomic instability are thought to be deleterious under constant environments. 

That is because most of the mutations generated will be highly deleterious [51].  

Previous work has shown that GCRs occur at a high frequency in natural yeast 

populations and in cells adapting to various selective conditions during laboratory short-

term evolution experiments [52; 53; 54; 55]. Although most of the rearrangements are 

probably deleterious, it is possible to detect the appearance of single GCRs after only a 

few generations of adaptation to a new environment [56; 57]. Altogether these studies 

indicate a role for GCRs in generating phenotypic variation that could facilitate yeast 

adaptation to different environments.  

It has also been suggested that evolution via karyotypic changes is a more effective 

way to make large leaps in the fitness landscape within a smaller number of mutational 

steps, thus conferring the system with a higher intrinsic evolvability in comparison to 

evolution by point mutations [58]. A matter of discussion is the extent to which this high 

evolvability could be beneficial or detrimental to cells. One hypothesis is that it depends 

on the strength of the selective condition: in a non-stressful environment the fitness 

contributions from all the GCR’s variants arising in genomic unstable strains may lead to 

a slight to highly detrimental effect. However, as the environment becomes more 

stressful, the positive fitness effects contributed by individual GCRs in a population may 

start to exceed the detrimental effects, leading to a net selective advantage for instability.  

In addition, several studies of short-term yeast adaptation to a strong selective 

pressure reported the appearance of repeated, independent chromosomal rearrangements 

throughout the experiments [52]. This suggests that there might be hotspots for genome 

rearrangements, where rearrangements would be more likely to be beneficial. Theoretical 

and experimental studies of the evolutionary dynamics of chromosomal unstable strains 

to a constant vs changing selective pressure would be very important to understand the 

trade-offs between the costs and benefits of these specific mutators.  

 

The aim of this thesis is to study the evolutionary trade-offs that drive the 

evolution of chromosomal instability. We performed experimental evolution of 

Schizosaccharomyces pombe strains with high levels of chromosomal instability to study 

the short-term adaptation to two environmental conditions: a constant non-stressful 
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environment and a fluctuating environment. With this system we addressed two 

questions: 1. Is there a cost of chromosomal instability in a constant environment where 

there is little room for adaptation? 2. Is there an advantage of chromosomal instability in 

a changing environment, where a lot of adaptation is expected?  

The instability phenotype of the strains used in this work (HIN strains) is given 

by a set of mutations in the capping of telomeres and in DNA repair mechanisms that 

ultimately lead to increased mutation rates throughout the genome with patterns of gross 

chromosome rearrangements. 

We controlled for high population sizes and therefore expect that the mutator 

strains have a short-term advantage in both environmental conditions since the higher 

supply of beneficial mutations should be favorable in the initial stages of adaptation. 

However, clonal interference can be very common in large populations and in populations 

with high mutation rates [59], so we predict that this will hamper the adaptation rate of 

our mutator strains comparatively to the nonmutator populations.  

Chance events and previous history may also hamper the effect of natural selection 

and condition evolution in a novel environment. In our study we took into account the 

relative role of chance, history and selection by comparing the short-term evolution of 

populations founded by the same clone and populations founded by different clones of 

the same strain.  

 
 
 

MATERIALS AND METHODS 
 

Strains and media 
 

The strains used in this study are listed in the Supplementary Information, Table1. We 

used strains with different levels of genomic instability.  

High Instability (HIN) strains were constructed by Hentges et al. (2014) [60] and 

have a characteristic genomic instability phenotype given by a set of three mutations: 

ctp1d taz1d xlf1.AA. Because of these three mutations they accumulate damage at the 

telomeres, repress homologous recombination (HR) and hyper-activate non-homologous 

end joining (NHEJ). Altogether, this will allow for the generation of multiple 

chromosome end-fusions that will lead to breakage-fusion-bridge cycles and 
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subsequently to patterns of gross chromosomal rearrangements like copy number 

increases of chromosomal segments and fold-back inversions [61; 62].  

We constructed a stable counterpart for the HIN strains (ContHIN strains) using 

one stable parental of HIN and a wild-type strain, as described in the Supplementary 

Information (1. Construction of Control strains for the High INstability strains). 

During the all the experiments carried out for this work, we used standard media 

and growth conditions [63]. Cultures were always grown until early stationary phase: for 

1-2 days at 32ºC at 180 rpm when in liquid medium and for 2-3 days at 32ºC without 

shaking when in solid plates. 

We used three types of medium: rich yeast extract-based medium (YES), 

glutamate-based medium (PGM) and ammonium-based medium (EMM). YES is a rich, 

non-selective medium composed of yeast extract, glucose and supplements required for 

the most common auxotrophies in fission yeast (adenine, histidine, leucine, lysine and 

uracil). PMG and EMM are minimal, defined media that differ in the source of nitrogen 

(glutamic acid and ammonia, respectively) but are both composed of potassium hydrogen 

phthalate, sodium phosphate, glucose and a mix of salts, vitamins and minerals. Solid 

plates were made by adding 20g/L of agar to any of the above media. 

When growing cultures in minimal media we always added the amino acids for 

which the assay strain is auxotrophic (if any) to the medium. Whenever we needed to test 

or select for specific auxotrophies, we prepared minimal media with and without the 

appropriate supplements to which we replica plated single colonies of a given strain and 

checked for growth under both conditions. 

Minimal medium without any supplements nor sources of carbon and nitrogen 

was also used to dilute cultures between passages of the evolution experiment and the 

competition assays.  

We also used malt extract (ME) medium, a specific medium for nutrient starvation 

required for conjugation and sporulation [63]. ME is only composed of Bacto-malt extract 

and the same supplements as YES (adenine, histidine, leucine, lysine and uracil). 

For the evolution experiment and all related experiments with the same population 

replicates we grew cells in liquid culture in VWR 96-well deep well plates (96 deep-well 

plates) filled with 500uL of medium per well. We also used Corning Incorporated 

COSTAR 96 Well Cell Culture plates (small 96-well plates) to dilute cultures between 
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passages and for Fluorescence-Activated Cell Sorting (FACS) analysis during the 

competition assays. 

For long term storage, cells were grown overnight in 5 mL of YES, re-suspended 

in 1,5 mL of Freezing Medium, a 50:50 mixture of YES and Glicerol (50%), and kept at 

-80ºC in 2mL cryotubes. The population replicates used in the evolution experiment were 

frozen in the same way, but were re-suspended in 150uL of Freezing Medium and were 

transferred to small 96-well plates in the exact same order as they were originally 

distributed. 

 

Estimation of population sizes 

 

A two-level design was used to evaluate differences in cellular density at early stationary 

phase between: HIN and ContHIN strains; different media used in the evolution 

experiment. 

 Strains were revived from the -80ºC stocks and streaked in YES plates to isolate 

several colonies. We took 4 isolated colonies of each HIN and ContHIN clones to 

inoculate 500uL of each of the four minimal media (EMMG, EMMM, PMGG, PMGM) 

according to the schemes in SI, Table2. After 48h of growth in standard liquid conditions, 

we transferred 20uL of each culture to 500uL of fresh medium (either EMMG, EMMM, 

PMGG or PMGM, according to the same plate scheme) (25x dilution). ContHIN strains 

were previously diluted in 200uL of PMG before passaging to fresh medium (250x 

dilution). We plated 100uL of each culture in YES plates before dilution and after the 

following growth cycle, as demonstrated in Figure1.We did three replicates of this assay. 
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Figure 1: Experimental setup for the estimation of population size after one growth cycle in 

EMMG, EMMM, PMGG and PMGM (T0) and after dilution (D) and subsequent growth in fresh 

medium (Nf). Cells were always diluted to the same medium. 

 

 

By counting the number of viable cells (CFUs) in the plates we could estimate the 

cellular density of cultures in 500uL of each medium before passaging (T0) and at the 

end of the following 48h-cycle (Nf). Assuming exponential growth, we can estimate the 

number of generations during a single growth cycle: 

 

Equation 1        𝒈 = 𝒍𝒐𝒈𝟐(
𝑵𝒇

𝑵𝒊
) 

 

where and Ni=T0/dilution factor. 

In a sequence of serial dilutions, Ni=Nf /dilution factor, where Nf is the population 

size achieved in the previous growth cycle. Assuming a constant Nf throughout an 

evolution experiment under serial dilutions, if we apply different dilutions to HIN and 

ContHIN and thus keep Ni constant for each strain, this will affect the number of 

generations between passages. 

We estimated the total number of generations that HIN and ContHIN strains 

should have at the end of the evolutionary experiments in a constant and in a fluctuating 

environment under two premises: in a constant environment, cultures are always passaged 

to the same medium and Ni=Ni /dilution factor and 𝑔 = 𝑙𝑜𝑔2(𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟); in a 

fluctuating environment, the medium between passages is different and we need to 

estimate g for every passage. Therefore, for the constant environment setup, we fixed the 

number of generations by fixing the dilution factor, and end up with T x g generations, 

where T is the total number of passages. For the fluctuating environment setup, we 

estimated g for every growth cycle based on the sequence of media used during the 
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evolution assay and taking into account the population sizes each strain achieved after 

one growth cycle in each medium (see Results and Discussion: Estimation of population 

sizes): 𝑔 = 𝑙𝑜𝑔2 (
𝑁𝑓(𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑒𝑑𝑖𝑢𝑚)

𝑁𝑓 (𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑒𝑑𝑖𝑢𝑚)

𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟

), and ended up with ∑ 𝑔𝑇
0  generations at the 

end of the evolution experiment. 

At the end of the experimental evolution assay, we plated all HIN and ContHIN 

population replicates from the two environmental conditions in YES plates to determine 

the CFUs in each culture and measure the population size of evolved strains. 

 

Evolution Experiment 
 

We propagated each strain (HIN and ContHIN) in two environmental conditions: a 

constant environment (EMMG) and a fluctuating environment characterized by different 

combinations of carbon and nitrogen sources. We used EMM and PMG media, which 

differ in the nitrogen source, and added Glucose or Maltose as alternative carbon sources 

for each media. In total, we worked with four media: EMM with Maltose (EMMM), 

EMM with Glucose (EMMG), PMG with Maltose (PMGM), and PMG with Glucose 

(PMMG). Leucine and Uracil were always added to the medium since HIN and ContHIN 

strains are auxotrophic for these amino-acids. 

Strains were retrieved from the freezer (-80ºC) and streaked in YES plates in order 

to allow for the isolation of several single colonies. We then distributed the isolated 

colonies over two 96 deep-well plates with EMMG, one plate for each environmental 

condition. Each well is considered a population replicate and was founded by a single 

colony, ensuring that there was no genetic polymorphism within founding populations.  

In order to study the effect of history, we used 5 different HIN clones derived from 

two independent crosses: HIN1 and HIN2, and 5 ContHIN clones derived from the same 

cross. We propagated 20 replicates of HIN1, 5 to 6 replicates of each of the four HIN2 

clones, 20 replicates of one ContHIN clone and 5 to 6 replicates of each of the remaining 

four ContHIN clones (See SI-Table3).  

Strains were spread throughout 24 passages by transferring 20uL of culture (in 

stationary phase) into 500uL of fresh medium (25x dilution) every other two days. To 

control for same effective population size, ContHIN cultures were diluted 10x in 200uL 
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of PMG prior to the transfer to 500uL of fresh medium (250x dilution) (See Results and 

Discussion: Experimental Evolution).  

For the fluctuating environment condition, we created a random cycle of the 4 

alternative media (SI-Table4) followed every passage. This way we avoided adaptation 

to a specific cycle of alternate media.  

Samples were stored after 12 and 24 passages (or time-points T12 and T24) at –

80ºC and later revived for the competition assays. We also froze the population replicates 

as they were at the onset of the evolution experiment (T0) for this purpose.  

 

Competitive fitness assays 

 

In order to ascertain the fitness of evolved and ancestral strains (T0 and T24) we 

performed competitive fitness assays and followed the frequencies of the fluorescently-

labelled strain (either the competitor or the strain of interest, depending on the 

competition) through FACS analysis in a LSR Fortessa equipment. 

 As the ContHIN strains are marked with mCherry and the HIN strains do not 

possess any type of fluorescence, we competed the HIN strains from the two evolutionary 

time-points against a common ContHIN (not evolved) clone (ContHIN ancestor) that was 

kept at -80ºC for this purpose. We then followed ContHIN (and indirectly, HIN strains’) 

frequencies throughout four passages to ascertain the relative fitness of HIN strains (See 

SI 1. Fitness Estimates).  

 ContHIN strains were competed against a HIN ancestral clone (HIN reference), 

and their fitness was estimated relative to the relative fitness of HIN reference when 

competed against the ContHIN ancestor. 

Strains from each evolutionary time-point were thawed in YES plates, transferred 

to 96 deep-well plates filled with EMMG, retransferred to fresh EMMG-filled deep-well 

plates after two days of incubation and left incubating in the same conditions for another 

two days.  

Afterwards, the assay strain was mixed with the competitor and diluted 10-fold 

onto a small 96-well plate filled with PMG. From this, 20 μL were added to fresh medium 

(EMMG) in a 96 deep-well plate, which was then incubated at 32ºC with agitation for 48 

hours. The remainder of the PMG plate was incubated for at least 2 hours at room 

temperature and then analyzed by FACS.  



 

12 

 

When competing population replicates from the constant environment 

evolutionary setup, we repeated this procedure four times over eight days per competition 

replicate. When competing population replicates from the fluctuating environment 

evolutionary setup, we followed a cycle of alternate media that was maintained in all 

competitions of this kind: EMMG-EMMM-PMGG-PMGM-EMMG. Each competition 

was replicated three times. 

 

Statistical Analysis 

 

In the competitions under a constant environment, we noticed that the slope of HIN 

frequencies started to change in signal after the first three timepoints. This is a strong 

indicative that beneficial mutations appeared during the competitions and could bias our 

fitness estimates. For this reason, we took only the first three points in the competitions 

in this environmental condition to estimate fitness.  

For each evolutionary timepoint and environmental setup, we calculated the mean 

fitness between the three competition assays for each population replicate and used this 

as our unit value for the statistical analysis. 

We also estimated fitness trajectories of HIN and ContHIN strains as the 

difference between mean fitness after adaptation and mean fitness at T0. 

We used the Shapiro-Wilk normality test to check if the fitness values of HIN and 

ContHIN strains at T0 and after adaptation to the two environmental conditions were 

normally distributed. This test showed a significant deviation from normality for all our 

datasets and non-parametric tests were used in the following statistical analysis.  

We employed Wilcoxon rank sum tests (Wilcoxon) to test the equality of medians 

between mean fitness distributions between: 1) ancestral and evolved strains; 2) HIN and 

ContHIN strains at the two assayed evolutionary timepoints; 3) HIN and ContHIN fitness 

trajectories. We also used the Kolmogorov-Smirnov (KS) test for comparisons between 

the distributions of mean fitness in the same conditions and tested the homogeneity of 

variances using the Fligner-Killeen test.  

We used the same tests to compare the medians and distributions of population 

sizes between evolved strains and their ancestors when subject to one growth cycle in 

each medium. 
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We tested the effect of clone and cross in the population sizes of HIN and 

ContHIN strains, as well as in the fitness distributions of these strains, using a One-Way 

Anova. We used the same test to detect an effect of the medium in the population sizes 

of the each strain. 

 

 
 

RESULTS AND DISCUSSION 
 

Estimation of population sizes 

 

In experiments where populations are serially cultured, the effective population size (Ne) 

depends strongly on the transfer size (Ni) [64]. Specifically, Ne = Ni x g, where g is the 

time in generations elapsed between passages. The population sampling error associated 

with each passage follows a Poisson distribution. The bigger this error, the stronger 

genetic drift will be and natural selection will be less effective. Hence, a higher sampling 

error at each passage means less beneficial mutations will be represented in the next 

growth cycle. For the evolution experiment, we wanted to maintain large population sizes 

to ensure a sufficient supply of mutations and a realistic sampling of the population 

between passages. From previous experiences in the lab, 10 000 cells is considered as a 

good threshold for sampling. This represents a standard deviation of 100 individuals 

(1%).  

 Since we were working with mutant strains and using different media, we had to 

test whether we could use the same demographic conditions. To test the growth of the 

genetically unstable (HIN) and their wild type control (ContHIN) strains we used a two-

level design described in the Materials and Methods section to estimate the effect of strain 

and media in population size. Briefly, strains were grown in each of the media to be used 

in the experimental evolution. These included minimal media with one of two sources of 

nitrogen and one of two sources of carbon (in total four different conditions). We then 

measured the total number of viable cells in the culture (CFUs – colony forming units) 

after one round of growth. 

 An analysis of variance showed that the effect of media in the maximum 

population size of HIN and ContHIN was not statistically significant (F(3,72)= 0.475, p-
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value=0.7). However, the strain had a significant effect (F(1,72)=18.242, p-value=5.86e-

05), with ContHIN having a significantly higher population size in all media than HIN 

strains (Wilcoxon: W = 1269, p-value = 2.847e-06) (Figure2). We also analyzed the effect 

of the different carbon and nitrogen sources separately, but did not find any significant 

effect of either nor of their interaction in the population size (Carbon: F(1,72)= 0.384, p-

value=0.538; Nitrogen: F(1,72)=0.852, p-value=0.359; Carbon*Nitrogen: 

F(1,72)=0.191, p-value=0.663). 

Also, the effect of the different HIN and ContHIN clones in population sizes of 

each strain was not significant (HIN: F(1,32)=0.734, p-value=0.579; ContHIN: 

F(1,32)=1.870, p-value=0.181), neither was the effect of the cross in the population sizes 

of HIN strains (F(1,32)=0.258, p-value=0.615).  

This indicates that the final population size is equal within each genotype, but 

different between HIN and ContHIN strains.  

 

 

 
Figure 2: Population size of HIN (red) and ContHIN (blue) clones after one growth cycle in each 

medium (EMMG, EMMM, PMGG, PMMM): mean of the three assay replicates. The error bars 

show the standard error. 
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Experimental Evolution 

 

To study the dynamics of short-term evolutionary adaptation of HIN and ContHIN strains 

we developed two experimental setups: a setup of evolution under a constant environment 

and another setup of evolution under a fluctuating environment. For the constant 

environment condition, strains were evolved under serial dilution to a single medium 

(EMMG). For the fluctuating environment condition, the medium was changed each 

passage following a random cycle of four different combinations of carbon and nitrogen 

sources, one of which was identical to the medium used under the constant environment 

condition (EMMG, EMMM, PMGG and PMGM). Since the two strains grow to different 

levels between passages, we could not grow them in the same way. We had to either 

change Ni or the dilution rate (which affects g). Since the effective population size is more 

sensitive to Ni, we decided to maintain that value constant (> 10 000 cells) and so at each 

passage the HIN strains were diluted 25 times and ContHIN 250 times. In both designs 

we performed a total of 24 passages. 

The total number of generations depends on three factors: the final population size 

that a culture achieves after one growth cycle in the medium prior to a passage, the final 

population size it achieves after one growth cycle in the medium to which it is passaged 

next, and the dilution we apply. For the constant environment setup where the medium 

prior to and posterior to each passage is the same, the total number of generations depends 

only in the dilution factor applied and the number of passages. This gives a total of 111 

generations for HIN strains and 191 generations for ContHIN. For the fluctuating 

environment condition, we estimated the number of generations after serial dilution to the 

same sequence of media used in the evolution assay, based on the total population size 

HIN and ContHIN achieved in average after one growth cycle in each of the four media. 

This gives an average of 112 generations for HIN strains and 190 generations for 

ContHIN. For simplification purposes, we consider the same number of generations for 

each strain under constant and fluctuating environmental conditions. 

We founded 5 different HIN clones from two independent crosses HIN1 and 

HIN2. There were 20 replicates of HIN1, and 5 to 6 replicates of each of the four HIN2 

clones. We also used 5 different ContHIN clones with 20 different replicate populations 

of ContHIN1, and 5 to 6 replicates of each of the other four clones to start the evolution 
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experiments. This represents a total of 40 HIN lines and 41 ContHIN lines. The HIN 

clones were derived from two independent crosses, whilst ContHIN clones were derived 

from the same cross. This design allows for the quantification of the effect of history in 

fitness trajectories. At the onset of the evolution experiment, we expect HIN1 and HIN2 

to have different genomic backgrounds due to differential segregation of mutations in 

each cross; we also expect the clones from the second independent cross to have different 

genomic backgrounds between them due to the inherently high mutation rate. We don’t 

expect the clones from ContHIN to not have significantly different genetic backgrounds. 

Relative fitness of HIN strains was estimated in competitions with a ContHIN 

ancestral clone (ContHIN reference) in a constant environment (EMMG) and in an 

alternate environment, depending on the conditions present during the evolution 

experiment. Relative fitness of ContHIN strains was estimated relative to the relative 

fitness of the ContHIN reference (all ContHIN replicates were competed against a HIN 

reference clone). The competitions in an alternate environment were conducted in a cycle 

of alternate media that was maintained in all competitions of this kind. The cycle always 

began with one growth cycle in EMMG (initial EMMG) and ended with one growth cycle 

in the same medium (final EMMG): EMMG-EMMM-PMGG-PMGM-EMMG. 

 

Adaptation and Divergence in a Constant Environment 

 

At the beginning of the evolution experiment, the fitness median of HIN strains 

measured in competitions in a constant environment was 0.6831 between population 

replicates of all the clones (Table1). This was significantly lower than the fitness median 

of ContHIN strains – 0.9995 (Figure3-A; Table1 and 2). The distribution of fitness values 

also differed between the two strains (KS: p-value= 5.551e-16). 

 
 

Table 1: Median and interquartile range of mean fitness of HIN and ContHIN strains relative to 

the ContHIN ancestral as determined in competitions in a constant environment. 

 Median (interquartile range) 

 T0 Evolved 

HIN 0.6831 (0.5994-0.7543) 1.0320 (1.0050-1.0550) 

ContHIN 0.9995 (0.9919-1.0870) 0.7950 (0.7730-0.8191) 
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Figure 3: Mean fitness of HIN (red) and ContHIN (blue) strains assayed from three competition 

replicates in a constant environment (EMMG): A) at the onset of the evolution experiment (T0); 

B) after evolution in a constant environment (EMMG). Mean fitness of all population replicates 

is represented as relative to the ContHIN ancestor against which all HIN clones were competed. 

 

 

 

 

Table 2: Wilcoxon rank sum test results for the equality of medians between mean fitness 

distributions of HIN and ContHIN strains at: the onset of the evolution experiment, after 

adaptation to a constant environment and in overall fitness trajectories. 

T0 Evolved Fitness trajectories 

W=1640, p-value < 2.2e-16*** W=6, p-value < 2.2e-16*** W=0, p-value < 2.2e-16*** 

*** p < .001 

 

 

 

 

At the end of the evolution experiment in a constant environment, the fitness 

median of HIN strains was 1.0320 (Table1), significantly higher than the ContHIN 

median of 0.7950 (Figure3-B; Table2). Both HIN and ContHIN strains had a significant 

change in fitness from T0 (Table3). The fitness median of HIN strains increased from 

0.6831 to 1.0322 (Figure4; Table1), whilst the fitness median of ContHIN strains 

decreased from 0.9995 to 0.7950 (Figure4; Table1). The distribution of fitness values 

around the median of both strains was significantly different between evolved strains and 

ancestral (Table3). 
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Table 3: Wilcoxon rank sum test for the equality of medians and Kolmogorov-Smirnov results 

for comparisons between mean fitness distributions of ancestral and evolved strains as determined 

in competitions in a constant environment. 

 HIN ContHIN 

Wilcoxon V=0, p-value=1.819e-12*** V=861, p-value=9.095e-13*** 

Kolmogorov-Smirnov D=0.95, p-value=8.882e-16*** D=1, p-value=4.441e-16*** 

*** p < .001 

 

 

 

Effect of clone and cross 

We wanted to test if founder effects were involved in the evolutionary dynamics 

of both strains, which may bias our results. Specifically, we wanted to know whether such 

effects were caused by mutations that appeared shortly after the unstable phenotype was 

produced. For that, we tested the effect of clone and cross in the mean initial fitness of 

the strains and after adaptation to the two environmental conditions.  

We found a significant effect of both cross and clone for the HIN populations 

(Table4). However, a post-hoc Tukey’s HSD test showed that at 0.05 level of confidence 

the only significant comparison was between HIN1 and HIN5. As for the ContHIN, the 

clone had a significant effect in the mean initial fitness of these strains (Table4). Post-hoc 

Tukey’s HSD tests showed that at 0.05 level of confidence all ContHIN clones 

significantly differed in mean fitness between each other except for ContHIN1 and 

ContHIN3.  

 

 
Table 4: One-way ANOVA results for the effect of “clone” and “cross” in mean fitness of HIN 

and ContHIN strains, at the beginning of experimental evolution, after 110 or 190 generations of 

adaptation to a constant environment (respectively), and in fitness trajectories. 

 HIN ContHIN 

 

T0 Evolved 
Fitness 

trajectories 
T0 Evolved 

Fitness 

trajectori

es 

Clone 0.00452** 0.5053 0.00047*** <2e-16*** 0.01367** 0.00116** 

Cross 0.00173** 0.1497 0.00116**    
 

* p < .05 

** p < .01 

** p < .001 
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After adaptation to a constant environment, the effects of clone and cross in the 

distribution of HIN mean fitness were not statistically significant, though both factors 

affected the fitness trajectories (Table4). The effect of the clone in the ContHIN strains 

remained after evolution, both in the fitness distributions and in the trajectories (Table4). 

 

 

Fitness trajectories 

The fitness trajectories of HIN and ContHIN were significantly different (Table2), 

as all HIN replicates increased in mean fitness between time 0 and generation 110 

(Figure4 and 5-B) and all ContHIN replicates decreased in mean fitness between time 0 

and generation 190 (Figure4 and 5-A). 

 

 

 

 
Figure 4: Difference in mean relative fitness between evolved and ancestral ContHIN (blue) and 

HIN (red) strains after short-term adaptation to a constant environment. 
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Figure 5: Trajectories of mean fitness of: A) ContHIN population replicates; B) HIN population 

replicates, during 190 and 110 generations of adaptation to a constant environment (EMMG), 

respectively. Different shades of red and blue represent different HIN and ContHIN clones. 

Fitness of all population replicates is represented as relative to the ContHIN ancestor against 

which all HIN clones were competed. Competitions were carried in a constant environment 

(EMMG) and the means between the three competition replicates are represented; the error bars 

show the standard error. 

 

B 
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Variance in fitness within and between populations 

We tested for overall convergence in fitness values after short-term adaptation of 

HIN and ContHIN to a constant environment by comparing the between-group variances 

of each strain between evolved and ancestral population replicates. We also tested if the 

different clones of each strain are converging or diverging at the same rate by testing the 

homogeneity of within-group variances for each strain at T0 and after adaptation.  

The estimates of within-group and between-group variances for HIN and 

ContHIN strains are given in Table5 and represented in Figure6. Within-group and 

between-group variances were estimated for each time-point separately. Within-group 

variances correspond to the variances of each HIN and ContHIN clone. Between-group 

variances correspond to the variance of all population replicates of a given strain. 

 

 

 
Table 5: Within-group and between-group variances of HIN and ContHIN strains at the 

beginning of experimental evolution and after adaptation to a constant environment. Between-

group variances correspond to the variance of each strain between all population replicates. 

Within-group variances correspond to the variances of each clone of a given strain (HIN and 

ContHIN).  

   T0 Evolved 

Between-

group 

HIN 0.011225 0.012417 

ContHIN 0.002835 0.002404 

Within-

group 

HIN HIN1 0.005680 0.000924 

HIN2 0.033565 0.001024 

HIN3 0.007382 0.033880 

HIN4 0.001500 0.003133 

HIN5 0.001963 0.038894 

ContHIN ContHIN1 0.000045 0.004599 

ContHIN2 0.000164 0.000185 

ContHIN3 0.000012 0.000313 

ContHIN4 0.000044 0.000145 

ContHIN5 0.000034 0.000480 

 

 

At the beginning of the evolution experiment, the within-group variances of HIN 

strains (the variances of HIN clones) were all the same (Table6). After adaptation in a 

constant environment, the between-group variance significantly differed from the 

variance at T0, increasing from 0.011225 to 0.012417 (Table5 and 6). The within-group 

variances were also significantly different in evolved HIN strains (Figure6, Table6). 
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Figure 6: Within-group (smaller circles) and between-group (larger circles) variances of HIN 

(red) and ContHIN (blue) strains at the beginning of experimental evolution and after adaptation 

to a constant environment. Within-group variances were estimated as the variances between 

population replicates of each of the 5 HIN and ContHIN clones. Between-group variances were 

estimated as the variance between all population replicates of ContHIN and HIN strains. 

 

 

As for ContHIN, the within-group variances were equal at T0 but significantly 

differed in all clones after adaptation in a constant environment (Figure6, Table6). 

However, the between-group variances between ContHIN at T0 and Evolved remained 

the same (Figure6, Table6). 

In general, between- and within-group variances of HIN strains were considerably 

higher than variances of ContHIN strains, both at T0 and after adaptation in a constant 

environment (Table5). 

 

Table 6: Fligner-Killeen test results for comparisons of: between-group variances of each strain 

between population replicates of both time-points; within-group variances for each strain and 

time-point between the different clones, for the evolution experiment under a constant 

environment. 

 HIN ContHIN 

Between-

group 

df=1, p-value=0.009747*** df=1, p-value=0.9222 

Within-

group 

T0 Evolved T0 Evolved 

df=4, 

p-value=0.2661 

df=4, 

p-value=0.01016* 

df=4, 

p-value=0.06143. 

df=4, 

p-value=0.04428* 
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* p < .05 

*** p < .001 

 

Evolution of population size 

During adaptation in the two experimental setups we noticed visible changes in 

population size in some population replicates. A significant change in population size can 

affect the effectiveness of selection relative to drift. To test if the population size changed 

in the course of adaptation to EMMG we compared the population size at the end of the 

evolution experiment with the population size of the ancestors after one growth cycle in 

EMMG. 

After adaptation to a constant environment, population size was significantly 

different from the population size of the ancestors for both HIN and ContHIN strains after 

one growth cycle in EMMG (Wilcoxon: HIN - W = 89.5, p-value = 0.003218; ContHIN 

- W = 402, p-value = 8.714e-06), with a significant increase in the population size of HIN 

strains and a significant decrease in the population size of ContHIN strains (SI3.Table7, 

8, 9 and 10). However, the median of population sizes at the end of this evolution 

experiment did not differ between HIN and ContHIN strains (Wilcoxon: W = 1055.5, p-

value = 0.3501), neither did the distribution of population sizes (KS: D = 0.22063, p-

value = 0.2408). It seems that HIN and ContHIN strains evolved to similar population 

sizes. 

 

HIN strains adapted to a constant environment 

As expected, HIN strains strongly benefited from their increased supply in 

beneficial mutations during adaptation to a novel environment. In direct competitions 

with a ContHIN ancestor in the same conditions met during the evolution experiment, 

evolved HIN strains won. They also evolved to higher population sizes, which indicates 

that, contrary to what has been suggested in previous studies with digital organisms [43] 

they did not evolve lower replication rates to become more robust to the effects of 

deleterious mutations. This suggests that the intrinsic increase in the supply of beneficial 

mutations is sufficient to outcompete the genetic load of these strains in the early stages 

of adaptation to a constant environment. It remains to be tested if this increase in fitness 

would be maintained should the populations become closer to fitness peaks in the adaptive 

landscape. 
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The control strains decreased in fitness 

The ContHIN strains, contrary to what we were expecting, suffered a significant 

decrease in fitness during this experiment. This decrease in fitness was sustained by 

observations that ContHIN strains evolved to lower population sizes, indicating that they 

had lower replication rates at the end of the evolution experiment. 

One possible explanation resides in game theory and is known as the tragedy of 

the commons [65] which states that individuals (cheaters) overexploiting a common 

resource for their own gain can drive populations extinct. As Haldane (1932) [66] has 

previously suggested, individual adaptations do not necessarily lead to traits that are 

beneficial for the whole population. The cheaters have a higher relative fitness and 

therefore can invade the population. But as they do so, they decrease the overall density 

and drive themselves and the population to extinction. This has been reported in microbes 

in a study with the social bacterium Myxococcus xanthus [67] in which cheaters were 

artificially selected and invaded wild-type strains leading to various competitive fates: 

persistence at high frequencies with little effect on total population dynamics, persistence 

after major disruption of total population dynamics, self-extinction with wild-type 

survival, and total population extinction.  

In the current study, all replicate populations of ContHIN strains showed 

descendent fitness trajectories. If in fact this reflects a cheating strategy, it was replicated 

in all evolutionary lines. Studies of the within-population diversity may shed some light 

about the existence of cheaters in all populations, as the cheaters should have higher 

fitness values than the mean fitness of a given population. 

 

Phenotypic divergence of HIN strains 

The between-group variances of HIN strains significantly increased during 

adaptation to a constant environment, and the within-group variances significantly 

differed between HIN clones at generation 110. This suggests that populations are 

diverging to different fitness values, possibly reaching various local optima, while clones 

are fixing different adaptive mutations at different rates. This adds some weight to the 

hypothesis that the inherent higher evolvability of chromosomal instability can facilitate 

large leaps in the fitness landscape, allowing a broader exploration of the fitness 

landscape, with increased probabilities of reaching global optima [22]. [58] 
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No clear pattern of convergence or divergence in ContHIN strains 

The analysis of between-group variances of ContHIN strains does not suggest any 

pattern of convergence or divergence in fitness values after adaptation. The within-group 

variances at generation 190 suggest that the different ContHIN clones are adapting at 

different rates. This, along with the observations these strains had an overall decline in 

fitness and that clone had a significant effect in their evolutionary dynamics, constitutes 

evidence for the hypothesis that large nonmutator populations may be stuck in lower 

fitness valleys due to the reciprocal sign epistatic interactions between adaptive 

mutations. Their intrinsic lower mutation rate might be impeding a further exploration of 

the fitness landscape to overcome these negative epistatic effects and acquire sets of 

adaptive mutations that increase the general fitness of the population. The valleys they 

occupy are most likely determined by the founder genotypes and, therefore, there is no 

phenotypic convergence nor divergence during adaptation. 

Adaptation and Divergence in a Fluctuating Environment 

 

 As described in the methods, the fluctuating environment experiment was 

performed in a random sequence of four media with two nitrogen sources (ammonia and 

glutamate – EMM and PGM respectively) and two carbon sources (Glucose and Maltose 

– G and M). The four possible combinations were EMMG, EMMM, PMGG and PMGM. 

At the beginning of the evolution experiment, the fitness median of HIN strains measured 

in competitions in a fluctuating environment was lowest in EMMG (0.6138) and highest 

in PMGM (1.2730) (Figure7-A; B and D; Table7). The median of the average fitness 

values across media was 0.8547 (Table7), significantly lower than the median of the 

average fitness values across media for the ContHIN strains, 1.0760 (Figure8-A; Table7, 

8 and 9). The highest fitness median of ContHIN strains at T0 was also in PMGM 

(1.2490) and was not significantly different from the fitness median of HIN strains in this 

medium (Figure7-D; Table8 and 9). After one competition cycle, the fitness median of 

ContHIN strains in final EMMG at T0 dropped to its lowest level, 0.7624, significantly 

lower than the fitness median of HIN strains in the same conditions (0.8953) (Figure7-A; 

Table7, 8 and 9). The difference between the first and the last competitions in EMMG is 

that in the former, cells were grown in EMMG prior to competition and in the latter cells 

were grown in PMGM (different nitrogen and carbon sources). 
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The distribution of fitness values also differed between the two strains in all media 

and in the average of fitness values across media (KS tests: EMMG, EMMM, PMGG, 

average of all media - p-values<0.001; PMGM – p-value<0.05; final EMMG – p-

value<0.01). 

 

 

 
Table 7: Median and interquartile range of mean fitness of HIN strains relative to the HIN 

ancestral as determined in competitions in a fluctuating environment. 

 Median (interquartile range) 

 T0 Evolved 

EMMG (initial) 0.6138 (0.4953-0.6746) 1.0080 (0.9394-1.0480) 

EMMM 0.9602 (0.7833-1.0650) 0.9479 (0.9187-0.9926) 

PMGG 0.8151 (0.7610-0.9200) 1.1500 (1.0690-1.1740) 

PMGM 1.2730 (1.1670-1.4610) 1.1620 (1.1160-1.2590) 

EMMG (final) 0.8953 (0.8005-0.9924) 1.0860 (1.0350-1.1300) 

Average of all media 0.8547 (0.7798-0.9152) 1.0740 (1.0250-1.0950) 

 

 

 

 

Table 8: Median and interquartile range of mean fitness of ContHIN strains relative to the 

ContHIN ancestral as determined in competitions in a fluctuating environment. 

 Median (interquartile range) 

 T0 Evolved 

EMMG (initial) 1.0360 (1.0110-1.1020) 0.8825 (0.8414-0.8971) 

EMMM 1.0630 (1.0410-1.1040) 1.7180 (1.5160-1.7950) 

PMGG 1.0160 (0.9980-1.1360) 1.0300 (1.0100-1.1160) 

PMGM 1.2490 (0.9981-1.7000) 2.8010 (2.3580-2.9800) 

EMMG (final) 0.7624 (0.8005-0.9924) 0.4636 (0.3959-0.5105) 

Average of all media 1.0760 (0.7798-0.9152) 1.2630 (1.2270-1.3310) 
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Figure 7: Mean fitness of HIN (red) and ContHIN (blue) strains assayed from three competition 

replicates in a fluctuating environment at the onset of the evolution experiment in: A) final 

EMMG; B) initial EMMG; C) EMMM; D) PMGM; E) PMGG. Mean fitness of all population 

replicates is represented as relative to the ContHIN ancestor against which all HIN clones were 

competed.  
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Table 9: Wilcoxon rank sum test results for the equality of medians between mean fitness of 

distributions of HIN and ContHIN strains at: the onset of the evolution experiment, after 

adaptation to a fluctuating environment. 

 T0 Evolved 

EMMG (initial) W=1638, p-value < 2.2e-16*** W=182, p-value = 6.275e-11*** 

EMMM W=1217, p-value = 0.0001211*** W=1638, p-value < 2.2e-16*** 

PMGG W=1496, p-value = 1.556e-12*** W=486, p-value = 0.001442** 

PMGM W=785, p-value = 0.7528 W=1638, p-value < 2.2e-16*** 

EMMG (final) W=456, p-value = 0.0004878*** W=0, p-value < 2.2e-16*** 

Average of all 

media 

W=1572, p-value < 2.2e-16*** W=1638, p-value < 2.2e-16*** 

** p < .01 

*** p < .001 

 

 

 
Table 10: Wilcoxon rank sum test results for the equality of medians between mean fitness 

distributions of ancestral and evolved strains (HIN and ContHIN) as determined in competitions 

in a fluctuating environment. 

 HIN ContHIN 

EMMG (initial) V=0, p-value=3.638e-12*** V=903, p-value=4.547e-13*** 

EMMM V=367, p-value=0.7562 V=0, p-value=4.547e-13*** 

PMGG V=3, p-value=1.819e-11*** V=455, p-value=0.9704 

PMGM V=603, p-value=0.002361** V=0, p-value=4.547e-13*** 

EMMG (final) V=117, p-value=5.914e-05*** V=900, p-value=2.274e-12*** 

Average of all 

media 

V=4, p-value=2.547e-11*** V=0, p-value=4.547e-13*** 

** p < .01 

*** p < .001 

 

  

At the end of the evolution experiment in a fluctuating environment, the fitness 

median of HIN strains as measured in competitions in a fluctuating environment was 

lowest in EMMM (0.9479) (Figure9-C; Table7). However, it was not significantly 

different from the median at T0 (0.9602) (Figure10-C; Table10). The highest median for 

HIN strains was in PMGM (1.1620), as it was at T0 (Figure9-D; Figure7-D, Table7). 

However, the median in PMGM was significantly lower for evolved HIN replicates than 

for the ancestral (Figure10-D; Table10). The biggest difference in HIN strains was 

between the medians of mean fitness values in initial EMMG which significantly 

increased from 0.6138 at T0 to 2.8010 at the end of the evolution experiment (Figure10-

A; Table7 and 10). 
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The median of the average HIN fitness values across media was 1.0740, 

significantly greater than the average at T0 (Figure8-B; Table7 and 10), but significantly 

lower than the average of fitness values across media for evolved ContHIN strains 

(1.2630) (Figure8-B; Table8 and 9). The medians of ContHIN fitness values significantly 

increased from T0 to the end of the evolution experiment in all media except in initial and 

final EMMG, where they significantly dropped from 1.0360 to 0.8825, and from 0.7624 

to 0.4636, respectively (Figure10; Figure8-C; Table8 and 10). The biggest increase in the 

medians between ancestral and evolved ContHIN replicates was in PMGM (from 1.2490 

to 1.0080) (Figure10-D; Table8 and 10). 

Evolved HIN strains have significantly higher medians in Glucose media than 

evolved ContHIN strains, but significantly lower medians in Maltose media (Figure9; 

Table7, 8 and 9). 

The distribution of fitness values around the median of HIN strains was 

significantly different between evolved and ancestral strains in all media except in 

EMMM (Table11). As for ContHIN, the distribution of fitness values around the median 

also differed significantly from ancestral to evolved replicates in all media except for 

PMGG (Table11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: Mean fitness of HIN (red) and ContHIN (blue) strains averaged across all media 

assayed from three competition replicates in a fluctuating environment at: A) the onset of the 

evolution experiment; B) the end of adaptation to a fluctuating environment; and C) difference in 

mean relative fitness between evolved and ancestral ContHIN and HIN strains. Mean fitness of 

all population replicates is represented as relative to the ContHIN ancestor against which all HIN 

clones were competed. 
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Figure 9: Mean fitness of HIN (red) and ContHIN (blue) strains assayed from three competition 

replicates in a fluctuating environment in: A) initial EMMG; B) final EMMG; C) EMMM; D) 

PMGM; E) PMGG. Mean fitness of all population replicates after short-term adaptation to a 

fluctuating environment is represented as relative to the ContHIN ancestor against which all HIN 

clones were competed. 
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Table 11: Kolmogorov-Smirnov test results for comparisons between mean fitness distributions 

of ancestral and evolved strains as determined in competitions in a fluctuating environment.  

 HIN ContHIN 

EMMG (initial) D=0.89744, p-value=2.22e-16*** D=1, p-value=2.22e-16*** 

EMMM D=0.25641, p-value=0.1547 D=1, p-value=2.22e-16*** 

PMGG D=0.76923, p-value=1.34e-11*** D=0.19048, p-value=0.4355 

PMGM D=0.33333, p-value=0.02558* D=1, p-value=2.22e-16*** 

EMMG (final) D=0.66667, p-value=1.62e-08*** D=0.92857, p-value=2.22e-16*** 

Average of all 

media 

D=0.82051, p-value=1.943e-13*** D=0.95238, p-value=2.22e-16*** 

* p < .05 

*** p < .001 

 

 

 

Effect of clone and cross 

Similarly to the analysis of the constant environment, we tested whether the 

founding clone had an effect on the observed evolutionary trajectories. Overall there 

seems to be an effect of clone in both HIN and ContHIN strains after short-term 

adaptation in a fluctuating environment (Table12). 

At T0 there is an effect of clone in the distribution of mean fitness of HIN strains 

in EMMG (both initial and final) and in the average of fitness values across all media, but 

not in the other media conditions (Table12). This effect remained significant after 

adaptation in a fluctuating environment and in the fitness trajectories in the same media 

(Table12). As for the ContHIN strains, the clone had a significant effect in T0 and in 

fitness trajectories in all media conditions, and also in the distribution of fitness values of 

evolved replicates except in final EMMG (Table12). We also detected an effect of cross 

in fitness distributions of evolved and ancestral HIN strains in all media except for 

EMMM and PMGM (Table13). This effect of the cross was not significant in fitness 

trajectories, with the exception being final EMMG and the averaged fitness values across 

all media (Table13). 
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Table 12: One-way ANOVA results for the effect of “clone” in mean fitness of HIN and ContHIN 

strains, at the beginning of experimental evolution, after 110 or 190 generations of adaptation to 

a fluctuating environment (respectively), and in fitness trajectories. 

 HIN ContHIN 

 
T0 Evolved 

Fitness 

Trajectories 
T0 Evolved 

Fitness 

Trajectories 

EMMG (initial) 0.000266*** 5.35e-07*** 0.0158* <2e-16*** 0.0384* 0.000207*** 

EMMM 0.268 0.5331 0.28 4.419e-06*** 0.000253*** 0.00245** 

PMGG 0.139 8.35e-05*** 0.0393* 2.28e-13*** 0.06468. 8.69e-09*** 

PMGM 0.811 0.564 0.76 0.0004156*** 3.96e-06*** 0.00074*** 

EMMG (final) 0.07205 . 0.00224** 0.00167** 0.00752** 0.864 0.0957. 

Average of 

all media 

0.000852*** 2.77e-05*** 0.00167** 2.07e-09*** 1.12e-09*** 0.000413*** 

. p < .1 

* p < .05 

** p < .01 

*** p < .001 

 
 

 

 

Table 13: One-way ANOVA results for the effect of “cross” in mean fitness of HIN strains, at 

the beginning of experimental evolution, after 110 or 190 generations of adaptation to a 

fluctuating environment (respectively), and in fitness trajectories. 

 
T0 Evolved 

Fitness 

Trajectories 

EMMG (initial) 0.000107 *** 8.22e-05 *** 0.455 

EMMM 0.111 0.9398 0.12 

PMGG 0.0138 * 0.00354 ** 0.914 

PMGM 0.321 0.766 0.7641 

EMMG (final) 0.00121 ** 0.00134 ** 5.03e-05 *** 

Average of all media 8.2e-05 *** 0.00198 ** 0.0569 . 

. p < .1 

* p < .05 

** p < .01 

*** p < .001 

 

 

 

Fitness trajectories 

Fitness trajectories of HIN and ContHIN were significantly different in all media 

conditions (Wilcoxon: p-values<0.001). All HIN replicates increased in mean fitness 

between time 0 and generation 110 in Glucose media, but decreased in PMGM and 

maintained the same fitness values in EMMM; all ContHIN replicates increased in mean 
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fitness between time 0 and generation 190 in Maltose composed media, but decreased in 

EMMG (both initial and final) and maintained the same fitness values in PMGG 

(Figure10) (Wilcoxon tests to fitness trajectories between HIN and ContHIN strains, p-

values <0.001 for all media). However, there is no difference between average of fitness 

trajectories across all media of HIN and ContHIN strains (Wilcoxon: W = 865, p-value = 

0.6688) (Figure 8-C and 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 10: Difference in mean relative fitness between evolved and ancestral ContHIN (blue) 

and HIN (red) strains assayed from three competition replicates in a fluctuating environment in: 

A) initial EMMG; B) final EMMG; C) EMMM; D) PMGM; E) PMGG. Mean fitness of all 

population replicates after short-term adaptation to a fluctuating environment is represented as 

relative to the ContHIN ancestor against which all HIN clones were competed.  
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Figure 11: Trajectories of mean fitness averaged from all competition media of: A) ContHIN 

population replicates; B) HIN population replicates, during 190 and 110 generations of adaptation 

to a fluctuating environment, respectively. Different shades of red and blue represent different 

HIN and ContHIN clones. Fitness of all population replicates is represented as relative to the 

ContHIN ancestor against which all HIN clones were competed. Competitions were carried in a 

fluctuating environment and the means between the three competition replicates are represented; 

the error bars show the standard error. 
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Variance in fitness within and between populations 

To test for overall convergence in fitness values after short-term adaptation of 

each strain to a fluctuating environment, we compared the between-group variances of 

each strain between evolved and ancestral population replicates for all media conditions.  

We also tested the homogeneity of within-group variances for each clone of each 

strain at T0 and after adaptation to see if the different clones of each strain are converging 

or diverging at the same rate. 

The estimates of within-group and between-group variances for HIN and 

ContHIN strains are given in Table14 and represented in Figure12. Within-group and 

between-group variances were estimated for each time-point separately and for all media 

conditions.  

At the beginning of the evolution experiment, the within-group variances of HIN 

strains (the variances of HIN clones) were all the same in every media condition except 

in EMMM and in final EMMG (Table14 and 15). After adaptation in a fluctuating 

environment, the between-group variance significantly decreased from the variance at T0 

(from 0.009752 to 0.003357 in the Average of all media) in all media conditions except 

in PMGG (Table14 and 15; Figure12). The within-group variances were not significantly 

different for the evolved strains, except in EMMM (Table15). 

As for ContHIN, the within-group variances are equal at T0 for initial and final 

EMMG and PMGG, but significantly differed in EMMM, PMGM and in the Average of 

all media (Table15). After adaptation to a fluctuating environment, the within-group 

variances of ContHIN strains were equal in all media except in PMGG (Table15). The 

between-group variances significantly increased from the variances at T0 in EMMM and 

significantly decreased in final EMMG (Table14 and 15). Other than that, the variances 

remained the same as in T0 (Table14 and 15; Figure12). 
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Table 14: Within-group and between-group variances of HIN and ContHIN strains at the 

beginning of experimental evolution and after adaptation to a fluctuating environment. Between-

group variances correspond to the variance of each strain between all population replicates in each 

media. Within-group variances correspond to the variances of fitness values of each clone of a 

given strain (HIN and ContHIN) averaged across all media.  

   T0 Evolved 

Between-

group 

HIN EMMG (initial) 0,014661 0,008422 

 EMMM 0,136842 0,011857 

 PMGG 0,013373 0,008858 

 PMGM 0,744379 0,018148 

 EMMG (final) 0,044556 0,004328 

 Average of all media 0,009752 0,003357 

ContHIN EMMG (initial) 0,002715 0,001971 

  EMMM 0,003312 0,037693 

  PMGG 0,008158 0,005866 

  PMGM 0,164609 0,160472 

  EMMG (final) 0,018517 0,004332 

  Average of all media 0,003031 0,004305 

Within-

group 

HIN HIN1 0,004354 0,001130 

HIN2 0,004867 0,000898 

HIN3 0,000530 0,001053 

HIN4 0,001841 0,005945 

HIN5 0,023022 0,023022 

ContHIN ContHIN1 0,001172 0,001603 

ContHIN2 0,001125 0,001125 

ContHIN3 0,000228 0,001709 

ContHIN4 0,001577 0,001577 

ContHIN5 0,000024 0,000335 
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Figure 12: Within-group (smaller circles) and between-group (larger circles) variances of HIN 

(red) and ContHIN (blue) strains averaged from all competition media at the beginning of 

experimental evolution and after adaptation to a fluctuating environment. Within-group variances 

were estimated as the variances between population replicates of each of the 5 HIN and ContHIN 

clones. Between-group variances were estimated as the variance between all population replicates 

of ContHIN and HIN strains 
 

 

 

 
Table 15: Fligner-Killeen test results for comparisons of: between-group variances of each strain 

between population replicates of both time-points; within-group variances for each strain and 

time-point between the different clones, for the evolution experiment under a fluctuating 

environment. 

  HIN ContHIN 

Between-

group 

EMMG (initial) df 1, p-value=0.05316. df=1, p-value=0.1689 

EMMM df=1, p-value=0.0004303*** df=1, p-value=2.115e-05*** 

PMGG df=1, p-value=0.2165 df=1, p-value=0.677 

PMGM df=1, p-value=0.007612** df=1, p-value=0.4906 

EMMG (final) df=1, p-value=4.65e-06*** df=1, p-value=0.0004611*** 

Average of all 

media 
df=1, p-value=0.01238* df=1, p-value=0.1218 

Within-

group 

 T0 Evolved T0 Evolved 

EMMG (initial) df=4, 

p-value=0.2882 

df=4, 

p-value=0.6553 

df=4, 

p-value=0.2302 

df=4, 

p-value=0.1996 

EMMM df=4, 

p-value=0.09598. 

df=4, 

p-value=0.0157* 

df=4, 

p-value=0.03479. 

df=4, 

p-value=0.5756 

PMGG df=4, 

p-value=0.2382 

df=4, 

p-value=0.1823 

df=4, 

p-value=0.2798 

df=4, 

p-

value=0.01546. 

PMGM df=4, 

p-value=0.2712 

df=4, 

p-value=0.1506 

df=4, 

p-value=0.01121. 

df=4, 

p-value=0.2443 

EMMG (final) df=4, 

p-value=0.03417. 

df=4, 

p-value=0.2866 

df=4, 

p-value=0.2518 

df=4, 

p-value=0.5415 

Average of all 

media 

df=4, 

p-value=0.1073 

df=4, 

p-value=0.1751 

df=4, 

p-value=0.09178. 

df=4, 

p-value=0.3013 

 

. p < .1 

* p < .05 

** p < .01 

*** p < .001 
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Evolution of population size 

Population size of HIN strains after the adaptation experiment in a fluctuating 

environment was significantly higher than the population size of the ancestors after one 

growth cycle in PMGM (the last medium in the random cycle of media for 24 passages, 

where cultures had grown before plating to count CFU’s and freezing to be kept at -80ºC) 

(Wilcoxon: W = 109.5, p-value = 0.02419) (SI3.Table11 and 12). However, there was a 

significant decrease in the population size of ContHIN strains (Wilcoxon: W = 374.5, p-

value = 0.0001399) (SI3.Table13 and 14). 

The median of population sizes at the end of this evolution experiment did not 

significantly differ between HIN and ContHIN strains (Wilcoxon: W = 791, p-value = 

0.5267), neither did the distribution of population sizes (KS: D = 0.16551, p-value = 

0.6207). 

 

 

Carbon source specificity and fitness convergence of HIN strains 

The short-term adaptation of HIN and ContHIN strains to a fluctuating 

environment was specific for the two different carbon sources to which they were 

adapted: glucose and maltose.  

HIN strains had increased fitness levels in all glucose-composed media (EMMG 

and PMGG), whilst maintaining the same fitness levels or suffering a fitness decrease in 

all maltose-composed media (EMMM and PMGM, respectively). It seems that our 

mutator strains rapidly evolved to exploiting glucose at the expense of a better usage of 

maltose as a carbon source. The distribution of fitness values of HIN strains was 

significantly narrower after adaptation in all media except for EMMM, to which the 

strains did not adapt (equal fitness between evolved and ancestral strains). The between-

group variances of HIN strains significantly decreased between T0 and generation 110 

except in PMGG, but the within-group variances were not significantly different between 

HIN clones at generation 110 except in EMMM. This suggests that populations are 

converging to similar fitness values, possibly reaching the same local optima, while the 

different clones are fixing adaptive mutations at the same rate.  

The averaged fitness across all media was higher for the evolved strains, with also 

narrower distributions of fitness values, which could suggest that HIN strains might be 

adapting to intermediate fitness values between the four media they were exposed to 

during the evolution experiment. However, this is not supported by the observation that 
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the between-group variance of HIN strains in PMGM, the only medium in which they 

decreased in fitness, also decreased between T0 and evolved strains. Instead, this 

observation suggests that there is not much room for adaptation in this medium and an 

antagonistic pleiotropy with glucose-composed media prevailed. 

As previously hypothesized, mutators rapidly specialized in exploiting the present 

resources at the expense of functions needed to exploit the subsequent alternative 

resources, when environmental conditions changed rapidly [22]. 

Intriguingly, the population size measured at the end of the evolution experiment, 

correspondent to one growth cycle in PMGM, was higher on average than the population 

size of HIN ancestors in this medium. However, this population size may reflect previous 

growth cycles in the other media during adaptation. To really test if a decrease in fitness 

in PMGM was accompanied by a decrease in growth rate in this medium, we must 

measure CFU’s after at least two more growth cycles in PMGM. 

It remains to be tested if in the long-run, these HIN populations will become 

extinct under similar evolutionary conditions due to successive reductions of niche 

breadth in maltose-composed media or if their inherent instability will create the means 

to reach other fitness peaks in the adaptive landscape to escape the effects of antagonistic 

pleiotropy between the two carbon sources. It would also be interesting to repeat this 

evolution experiment starting from another medium, one composed by maltose instead, 

and see if the first growth cycle in the cycle of random environments is determinant for 

the nature of this trade-off between carbon sources. 

 

 

Carbon source specificity and evolutionary dynamics of ContHIN 

strains 

ContHIN strains also adapted differently in carbon and maltose-composed media. 

Contrary to HIN strains, however, they had an increase in mean fitness in all maltose 

composed media (EMMM and PMGM) and maintained the same fitness or suffered a 

fitness decrease in all glucose-composed media (PMGG and EMMG, respectively). 

Similarly to the HIN strains, ContHIN also evolved to better exploit a carbon resource (in 

this case, maltose) at the expense of a better usage of an alternative resource. The 

distribution of fitness values was significantly wider after adaptation in EMMM and 

PMGM and significantly narrower in EMMG. This suggests a possible convergence of 
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fitness values in EMMG, similarly to what was observed in adaptation under a constant 

environment (EMMG), but an overall divergence of fitness values in EMMM and PMGM 

that might have been responsible for the general increase in fitness in these media. 

 Within-group variances of ContHIN were equal at T0 for initial and final EMMG 

and PMGG, but significantly differed in the maltose media EMMM and PMGM. This 

means that more phenotypic diversity was present in the ancestral populations regarding 

the exploitation of maltose as a carbon source. This is very important, especially for 

ContHIN strains that have a wild-type mutation rate and strongly depend on the initial 

diversity for the supply of beneficial mutations necessary for adaptation to a rapidly 

changing environment. The between-group variances of ContHIN strains significantly 

increased between T0 and generation 190 in EMMM but significantly decreased in final 

EMMG and remained the same for the other media. The within-group variances were not 

significantly different between ContHIN clones at generation 190 except in PMGG. This 

indicates that there is no clear pattern of convergence or divergence of fitness values but 

rather hints of a complex adaptive landscape at the early stages of adaptation. 

The averaged fitness accross all media was also higher for the evolved ContHIN 

strains, with wider distributions of fitness values, which could suggest that these strains 

might be adapting to intermediate fitness values between the four media transitions. The 

observation that the between-group variance of ContHIN strains decreased between T0 

and evolved strains in EMMG, the only medium in which they decreased in fitness, does 

not support this hypothesis. Instead, this suggests that adaptation to a rapidly changing 

environment is hindered by antagonistic pleiotropy independently of the rate supply of 

mutations in the populations. 

The effect of clone in adaptation of ContHIN strains was not eroded in the evolved 

populations, which reinforces the idea that the genotypic diversity between populations 

at the onset of this experiment is constraining the mutational trajectories during 

adaptation. 

Strangely, the population size of ContHIN strains after the last growth cycle in 

PMGM during the adaptation experiment was significantly lower than population size of 

the ancestors after one growth cycle in the same medium, although fitness of ContHIN 

strains had dramatically increased in this medium. This reveals a previously predicted 

trade-off between growth-rate and yield in heterotrophic organisms that can give rise to 

two ecological strategies: a fast growing, low yield competitive strategy and a slow 
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growing, high yield cooperative strategy [68; 69; 50]. Although strong selection regularly 

favors higher growth rates [69], the populations usually need to have evolved for a 

sufficiently long time in a selective environment for the trade-off to become manifest. As 

can be seen in standard laboratory strains, organisms that are not well adapted might be 

able to improve in growth rate without any associated cost in yield [70]. Therefore, further 

studies are needed to associate the decreased population sizes but increased fitness of 

ContHIN in PMGM to a trade-off between growth rate and yield in this medium. Namely 

the measurement of growth kinetics of the evolved strains in competition for a shared 

resource. It would also be interesting to measure the population size of evolved strains 

after one growth cycle in the other three media (EMMG, EMMM and PMGG) and 

compare them to the ancestor population sizes in the corresponding media to see to what 

extent did this trade-off appear during the short-term adaptation to a rapidly changing 

environment. 

 

 

Effect of the previous environment on current fitness 

Competitions to estimate fitness in the fluctuating environment condition were 

conducted in a cycle of alternate media that began and ended with one growth cycle in 

EMMG. We estimated fitness associated with each medium and also averaged the fitness 

values obtained in all media throughout the competition, but it is possible that individual 

fitness values from a given medium are affected by the previous growth cycle in a 

different medium. In the case of final EMMG, the previous medium in the competitions 

differs both in the carbon and nitrogen source (PMGM). To test for this, we compared the 

fitness values obtained in the initial EMMG with fitness values from the final EMMG. 

The median of fitness values of HIN and ContHIN strains at T0 and at the end of the 

evolution experiment significantly differed between initial and final EMMG (Wilcoxon 

tests: at T0: HIN - V = 51, p-value = 1.29e-07; ContHIN - V = 860, p-value = 2.711e-08; 

at the end of the evolution experiment: HIN - V = 15, p-value = 4.984e-10; ContHIN - V 

= 903, p-value = 4.547e-13). This suggests that we must take into account the previous 

transitions during a competition and cannot assume a given fitness value to reflect 

evolution in that medium alone. In the light of this conclusion, the most accurate fitness 

measurement in this work corresponds to the averaged fitness values between all media. 
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Cost of Adaptation to a fluctuating environment 

 

We wanted to test if strains that were adapted in a fluctuating environment condition 

suffered a fitness cost relative to strains that were adapted in a constant environment 

condition. For that, we compared the mean fitness of strains that were evolved in a 

constant environment (EMMG) with the initial EMMG fitness of strains that evolved in 

a fluctuating environment. As the fitness in initial EMMG was assessed based on the 

change in frequency in the first growth cycle in the competitions, we took the first slope 

of the first growth cycle from the constant environment competitions to assess the 

equivalent of the fitness in initial EMMG from the competitions in a fluctuating 

environment. 

 At the beginning of the adaptation experiment, the fitness in initial EMMG as 

obtained in both competitions (in a constant environment and in a fluctuating 

environment) was equivalent for HIN strains (Wilcoxon: V = 410, p-value = 1), but not 

for ContHIN strains (Wilcoxon: V = 10, p-value = 7.882e-08).  

The median of initial EMMG fitness values of HIN strains that evolved in a 

constant environment was 1.0898, significantly lower than 1.00125, the median of the 

initial EMMG fitness values of HIN strains that evolved in a fluctuating environment 

(Wilcoxon: V = 717, p-value = 1.04e-05). The medians of evolved ContHIN strains from 

both environmental conditions were also significantly different (Wilcoxon: V = 1, p-value 

= 1.819e-12). The medians of ContHIN strains were always higher in competitions under 

a fluctuating environment. 

 It would appear to be a cost of adaptation to a fluctuating environment for the HIN 

strains. However, we must remember that under adaptation in a fluctuating environment, 

HIN strains spent considerably less time in EMMG than they did in the constant 

environment setup. Therefore, we might be comparing fitness values from different stages 

of the adaptive process. To be able to quantify the putative cost of adaptation to a 

fluctuating environment, we should prolong this experiment until HIN strains spent the 

same amount of generations in EMMG as they did during adaptation to a constant 

environment. However, and as the dynamics are so similar between both conditions, we 

can say that there is a strong suggestion for the existence of such a cost in our experiments 

with HIN strains. 
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As for the ContHIN strains, we cannot draw conclusions about such cost because 

at the onset of the experimental evolution there was a significant difference in fitness as 

measured in the two competition setups. 

 

 

The role of selection, history and chance 

 

Both in the short-term adaptation experiments in a constant and fluctuating environment, 

we observed a significant effect of clone in fitness trajectories of HIN and ContHIN 

strains. To better understand the role of history in the divergence of the two strains, we 

quantified the effect of natural selection, history and chance for the two environmental 

conditions by partitioning the overall sum of squares between evolved and ancestral 

strains (Figure13). The effect of selection in the adaptation of each strain was estimated 

as the sum of squared deviations among all population replicates of HIN or ContHIN 

strains. If the initial grand mean fitness of a given strain is I and the final grand mean is 

F, this is equivalent to 𝑛𝑐(𝐹 − 𝐼)2, where n is the number of clones and c is the average 

number of population replicates per clone. The effect of history can be quantified by the 

sum of squared deviations between the mean score of each clone (C) derived from a given 

strain and the grand mean score of that strain: ∑(𝐶 − 𝐹)2 , and the effect of chance can be 

estimated by ∑ ∑(𝑅 − 𝐶)2, where R is the score (mean fitness) of each population 

replicate.  

 In both experimental designs (adaptation in constant and fluctuating 

environments), the largest component of fitness is natural selection (Figure13). The 

effects of drift are barely observable in adaptation to a constant environment, and the 

effect of history is even less noticeable (Figure13-A). Although previous tests have shown 

an effect of clone and cross in fitness trajectories, this effect is small when compared with 

natural selection. In some environments of the fluctuating environment setup, chance had 

a much more prominent role than selection. Namely, in the adaptation of ContHIN strains 

to PMGG and in the adaptation of HIN strains to EMMM and PMGM (Figure13-C and 

D). History also had a lower but evident role in the adaptation of ContHIN strains in 

PMGG and of HIN strains in EMMM. For the average of fitness values across all media 

in the competitions, the predominant force is still natural selection, with ContHIN strains 

being slightly more affected by history than HIN strains (Figure13-B). 
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 Selection can explain almost all the variance reported in this study for the short-

term adaptation of HIN and ContHIN strains under a constant and a fluctuating 

environment. The only exceptions are the rare cases in which we did not see any 

significate differences in fitness between evolved and ancestrals. This was the case with 

the evolution of ContHIN strains in PMGG after 24 growth cycles in a fluctuating 

environment, and the evolution of HIN strains in EMMM in the same conditions. In both 

cases, chance played the most relevant role. The other case is with HIN strains in PMGM, 

the exact medium in which these strains decreased in fitness. It is possible that the reduced 

efficiency of selection and overrepresentation of chance events as the main force behind 

adaptation in these particular examples is a consequence of observed reduction in niche 

breadths in both HIN and ContHIN populations during growth in these media. These 

niche reductions most likely result from antagonistic pleiotropy between advantageous 

mutations in Glucose but disadvantageous in Maltose, in the case of HIN strains, and 

advantageous mutations in Maltose but disadvantageous in Glucose, in the case of 

ContHIN. Further experiments to measure CFUs of evolved strains after two growth 

cycles in these media are necessary to validate the observed reductions in population 

sizes.  
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Figure 13: The contributions of selection, history and chance, measured as the fraction of sum of 

squared differences (Fraction of SS), to the divergence of the evolved HIN and ContHIN strains 

under adaptation to: A) a constant environment; B) a fluctuating environment (average of all 

media); C) of ContHIN strains in a fluctuating environment for all the 5 media of each competition 

(initial EMMG, EMMM, PMGG, PMGM and final EMMG); D) of HIN strains in a fluctuating 

environment for all the 5 media of each competition (initial EMMG, EMMM, PMGG, PMGM 

and final EMMG). 
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CONCLUSION AND FUTURE PERSPECTIVES 
The short-term evolutionary dynamics of mutators for chromosomal structure is highly 

complex and dependent on the environmental conditions. In a constant environment, the 

increased supply of beneficial mutations exceeded the genetic load of these mutator 

strains that had an overall increase in fitness. Adaptation in these conditions was 

accompanied by phenotypic divergence, revealing a complex fitness landscape with many 

local peaks. However, in a fluctuating environment, we observed an antagonistic 

pleiotropy between exploitation of alternative carbon sources. The long-term dynamics 

of these strains remain to be tested. It would be interesting to see what happens as 

populations get closer to an optimum fitness level in the constant environment. It would 

also be interesting to see the extent to which a trade-off between carbon sources in the 

fluctuating environment could lead mutators to extinction. 

In the light of our results in a constant environment, it is fair to ask if there are 

regions in the genome where rearrangements are more likely to be beneficial. Previous 

studies of short-term yeast adaptation to a strong selective pressure reported the 

appearance of repeated, independent chromosomal rearrangements throughout the 

experiments [52]. Next Generation Sequencing methods have been developed that allow 

for a rapidly identification of translocation breakpoints (as well as tandem duplications, 

inversions and other complex events) [71] could be used coupled with experimental 

studies such as the present work to answer this question. 

In the future, we would like to repeat the competitive fitness assays for the 

populations that evolved in a fluctuating environment. As in the competition setup used 

in this study we could not attribute individual fitness values to a single medium, but rather 

to the media transitions during the competition, we would do competitions for each the 

four media used during the evolution experiment. This could help us clarify the patterns 

of divergence and convergence of our mutator and control strains under a fluctuating 

environment condition. 

Our results suggest that in large asexual populations with lower mutation rates, 

adaptation to a constant environment is hindered by clonal interference and reciprocal 

sign epistasis. Whole-genome sequencing would allow us to identify the mutations that 

arose during the evolution and further competitive fitness assays would permit a clear 

distinction between the fitness of individual mutations and the fitness of double mutants. 
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SUPPLEMENTARY INFORMATION 
 

1. Supplementary Methods 

 

Construction of Control strains for the High INstability strains 

(ContHIN) 

 

To use as a control for the genomic instability displayed by the HIN strains, which results 

from the three mutations mentioned above, we used a parental of the HIN strains that does 

not have these mutations – MGF 1255. We wanted a Control strain with the same 

auxotrophic markers and resistance as HIN strains, not only because this allows us to 

control for the effect of all known genetic markers present in the HIN strains, but also 

because sharing the same auxotrophies implies that the same supplements are added to 

the minimal media when growing both HIN and ContHIN strains. However, MGF 1255 

has different auxotrophic markers and antibiotic resistance than HIN strains (see SI-Table 

1). While HIN strains are auxotrophic for leucine and uracil and resistant to kanamycin 

and hygromycin (leu- ura- ℎ𝑝ℎ 𝑟 𝑘𝑎𝑛 𝑟), MGF 1255 is auxotrophic for adenine, leucine, 

uracil, histidine and lysine, and resistant to hygromycin (ade- leu- ura- his- lys- ℎ𝑝ℎ 𝑟). 

Therefore, we crossed MGF 1255 with the wild type strain SPP2 (which is prototrophic 

but is not resistant to hygromycin) to get rid of ade-, his- and lys- and selected the progeny 

with the desired genotype. 

Following a protocol to kill vegetative cells, the remaining spores were 

germinated in YES + Hygromycin plates to select for colonies with resistance to this 

antibiotic (therefore being ℎ𝑝ℎ 𝑟). We replica plated the spores to PMG – Leucine, PMG 

– Uracil, PMG + (Leucine and Uracil) and YES plates. We selected the colonies that were 

white in the minimal media (PMG) plates (an indicative that they are not ade-), that did 

not grow in PMG – Leucine nor in PMG – Uracil, and grew only in PMG + (Leucine and 

Uracil), therefore being leu- and ura-. We arbitrarily picked 20 of the selected colonies 

and retrieved them from the YES plates, where they could be found in the exact position 

that they occupied in all the previous plates for which they were replica plated.  

The colonies were re-streaked in YES plates in order to increase the probability 

that we were selecting isolated colonies that were then re-streaked to obtain more cellular 

material per clone. We used these last cultures to extract DNA and perform a PCR to 
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assess the mating type of the 20 clones using the following primers: mat1-P forward 

primer (MP) and mat1-M forward primer (MM) and the mating type primer (MT1) (SI-

Table5). We also used some of the remaining cellular material to confirm the desired 

auxotrophies by re-streaking each clone again in PMG-Uracil, PMG-Leucine and PMG 

+ (Leucine and Uracil). Three of the 20 isolated clones (clones 1, 11 and 18 from SI-

Figure1) were not a match and we randomly chose three h+ and three h- clones from the 

remaining 17 isolated clones. We grew the clones 2, 3, 4, 11 and 13 (SI-Figure1) in 5mL 

of YES medium, after which the clones were re-suspended in 1,5 mL of Freezing medium 

and stored at -80ºC.  

We were not able to obtain the resistance to kanamycin since none of the parentals 

of the HIN strains carried this resistance. However, we can consider the resulting control 

strain as a stable strain with a common history with the HIN strains, close to the WT and 

with as many as possible markers shared by the HIN strains (the only exception being the 

kanamycin-resistance cassette).  

 

 

Crosses 

All crosses were performed using a 50:50 ratio of h+ and h- strains, previously 

washed in PMG to increase the frequency of mating. Each mixture was inoculated in ME 

plates and incubated for 2 days at 25ºC in order to induce mating [63].  

A protocol for killing vegetative cells (cells that did not mate) was then applied 

using ethanol (20%) and snail juice (Helix pomatia extract) overnight at 25ºC with 

agitation. After that, the remaining meiotic spores were inoculated in YES plates (unless 

otherwise mentioned).  

 

 

PCR analysis 

For PCR applications, DNA was extracted using a Lithium acetate-based protocol 

that involves the lysis of yeast colonies in lithium acetate-SDS solution and the 

subsequent precipitation of DNA with ethanol. Colonies can be retrieved from solid or 

liquid cultures and suspended in 100uL of 200nM LiOAc, 1%SDS solution. They were 

left incubating at 70ºC for 10 minutes in this solution after which we added 300uL of 
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EtOH (100%), spinned down DNA and cell debris at 15000 g for 3 minutes and washed 

the pellet with 500uL of EtOH (70%). We pelleted DNA and cell debris from this last 

wash with ethanol and dissolved it in 100uL of H2O, to spin down cell debris and collect 

supernatant containing genomic DNA that can now be stored at 20ºC and used for PCR. 

We used a PCR cycle for mating-type assay (SI-Table6) and visualized PCR products 

using gel electrophoresis. 

 

 
Supplementary Figure 1: Gel electrophoresis bands of mating type PCR products from 

the 20 clones selected from replica plating the spores from the cross between MGF 1255 

and SPP2. The upper product band corresponds to the h+ mating type (987bp), and the 

lower corresponds to the h- mating type (729bp). Some clones didn’t give a product band. 

The last band (C) corresponds to genomic DNA used as a positive control for the PCR. 

 

 

 

Fitness estimates 

 

The change in frequency of mCherry-labeled ContHIN cells across competition 

timepoints was used to estimate fitness. If we assume exponential growth, then: 

Equation 1  𝑵(𝒕) = 𝑵(𝟎) ∗ 𝑾𝒕 

where N(t) is the number of cells at time t and W is the fitness of those cells. We 

define relative fitness as  

Equation 2 𝑾𝑹 =  
𝑾𝒏

𝑾𝑴
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where WR  is the relative fitness of the unmarked (n) strain when compared to the 

reference marked strain (M). By combining equations 1 and 2 we have 

Equation 3 𝑾𝑹
𝒕 =  

𝒑(𝒕)[𝟏−𝒑(𝟎)]

𝒑(𝟎)[𝟏−𝒑(𝒕)]
 

where p(t) is the frequency of unmarked cells at time t and 1-p(t) is the frequency 

of ContHIN cells. 

Defining the selection coefficient, s, as 

Equation 4 𝒔 =  𝐥𝐧 𝑾 , 

from equation 3 we get 

Equation 5 𝒔𝒕 − 𝐥𝐧  
𝟏−𝒑(𝟎)

𝒑(𝟎)
= 𝐥𝐧  

𝒑(𝒕)

𝟏−𝒑(𝒕)
 . 

Equation 5 defines a linear relationship between the natural logarithm of the ratio 

of frequencies and time (measured as number of generations for each growth cycle of the 

strain of interest: 8 for ContHIN and 5 for HIN strains). By performing least squares linear 

regression we can estimate the slope of this line which gives us s. We can then estimate 

fitness using equation 4.  

All HIN replicates were competed against a ContHIN reference clone and all 

ContHIN replicates were competed against a HIN reference clone. Fitness of ContHIN 

strains was estimated relative to the relative fitness of ContHIN reference when competed 

against the HIN reference clone. Therefore, by definition, ContHIN reference has a fitness 

of 1 and the fitness of all the other replicates, either HIN or ContHIN, can be read in 

comparison to ContHIN reference. 

For the competitions in the fluctuating environment setup, we changed the 

medium at every passage and estimated fitness based on the slope associated with each 

growth cycle separately, corresponding to the fitness values in each medium in the cycle 

of alternate media in these competitions. We then estimated the average of all the fitness 

values measured across all media in each competition. 
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2. Supplementary Tables 

 

Supplementary Table 1: Saccharomyces pombe strains that were used in this study. 

Strain Name Mating type Genotype Parents Creator 

High 

INstability 1 

(HIN1) 

h- leu1-32 ura4-D18 

ctp1::hph 

xlf1.T180A.S192A::lox

P/M taz1::kan (1clone) 

 C.Reis 

 

High 

INstability 2 

(HIN2) 

(4 clones) 

2 clones h+ 

2 clones h- 

leu1-32 ura4-D18 

ctp1::hph 

xlf1.T180A.S192A::lox

P/M taz1::kan 

(4clones) 

 C.Reis 

 

ContHIN 

(5 clones) 

3 clones h+ 

2 clones h- 
leu- ura- ℎ𝑝ℎ 𝑟 MGF 1255 

x SPP 2 

A. C. Morais 

MGF 1255 h+ ade6-M216 his3-D1 

leu1-32 ura4-D18 

lys4-mCherry-

hphMX6R 

 A.T. Avelar 

SPP 2 h- WT  LP - YGRC 

 

 

 

 

 

Supplementary Table 2: Scheme showing the distribution of strains in the deep-well 

plates used to estimate cell density of HIN and ContHIN strains growing in four different 

media (EMMG, EMMM, PMGG and PMGM). The media were distributed according to 

the scheme a) and the strains were distributed according to scheme b). Note that there are 

two replicates of this assay per plate: the first replicate is displayed in the first four lines 

(A-D) and the second one in the last four lines (E-H). The sequence of the media is the 

same in both replicates. ContHIN is marked with mCherry and is therefore represented in 

red. 

a) 1 2 3 4 5 6 7 8 9 10 11 12 

A EMMG  EMMG  

B EMMM  EMMM  

C PMGG  PMGG  

D PMGM  PMGM  

E 

R2 

 

R2 

 

F   

G   

H   
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Supplementary Table 3: Scheme showing the distribution of strains in the deep-well 

plates used during the Evolution Experiment. There are 12 wells distributed evenly 

throughout the plates that were left in blank (no cellular material was inoculated at the 

starting of the experimental evolution, but the wells were always filled with fresh medium 

nonetheless) to control for contaminations during the passages. ContHIN is marked with 

mCherry and is therefore represented in red. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A HIN1 (clone1) ContHIN (clone1) 

B 

C 

D 

E HIN2 (clone2) ContHIN (clone2) 

F HIN2 (clone3) ContHIN (clone3) 

G HIN2 (clone4) ContHIN (clone4) 

H HIN2 (clone5) ContHIN (clone5) 

 

 

 

 

Supplementary Table 4: Random cycle of alternating media used during the evolution 

experiment in a fluctuating environment. 

 

 

 

 

 

 

 

                                    

 

 

 

b) 1 2 3 4 5 6 7 8 9 10 11 12 

A 
H

IN
1

 (
cl

o
n

e1
) 

H
IN

2
 (

cl
o

n
e2

) 

H
IN

2
 (

cl
o

n
e3

) 

H
IN

2
 (

cl
o

n
e4

) 

H
IN

2
 (

cl
o

n
e5

) 

 

C
o

n
tH

IN
 (

cl
o

n
e1

) 

C
o

n
tH

IN
 (

cl
o

n
e2

) 

C
o

n
tH

IN
 (

cl
o

n
e3

) 

C
o

n
tH

IN
 (

cl
o

n
e4

) 

C
o

n
tH

IN
 (

cl
o

n
e5

) 

 

B   

C   

D   

E   

F   

G   

H   

Media: Passage: 

EMMG T0 

PMGM T1 

PMGM T2 

EMMM T3 

PMGG T4 

PMGM T5 

EMMG T6 

PMGM T7 

Media: Passage: 

PMGM T8 

EMMG T9 

PMGG T10 

PMGM T11 

EMMG T12 

PMGG T13 

PMGG T14 

EMMM T15 

Media: Passage: 

EMMG T16 

EMMM T17 

EMMG T18 

PMGG T19 

PMGG T20 

PMGM T21 

EMMM T22 

EMMG T23 

PMGM T24 
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Supplementary Table 5: Primers that will be used in this study for mating-type PCR 

assay. 

Primer name Sequence 5’  3’ 

mat1-P forward (MP) tacttcagtagacgtagtg 
mat1-M forward (MM) acggtagtcatcggtcttcc 
MT1 reverse agaagagagagtagttgaag 
 

 

 

 

Supplementary Table 6: PCR cyles used for PCR-based mating-type assay. 

Temperature Time

1x Hold 92ºC 5min

Nr. of cycles: 30

Denaturation 92ºC 30sec

Annealing 50ºC 30sec

Extension 72ºC 2min

2x Hold 72ºC 10min

4ºC ∞

MT-PCR
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3. Supplementary Data 

 

Supplementary Table 7: Population sizes of HIN replicates after adaptation to a constant 

environment. 

12500000 1800000 2850000 2950000 4100000 5550000 

9300000 700000 4050000 950000 1550000 4550000 

5100000 6400000 3400000 3200000 1200000 2750000 

2850000 6950000 2200000 1000000 1000000 6900000 

6850000 4650000 2900000 9050000 450000 5000000 

3950000 1350000 2000000 3800000 1150000  

4000000 3750000 5600000 600000 1300000  

4900000 3550000 2600000 750000 9250000  

 

 

Supplementary Table 8: Population sizes of HIN ancestors after one growth cycle in 

EMMG. 

390000 1315000 1720000 

3050000 1015000 860000 

1090000 940000 1105000 

630000 3400000 977500 

895000 1750000 2575000 

 

 

Supplementary Table 9: Population sizes of ContHIN replicates after adaptation to a 

constant environment. 

6150000 6850000 1700000 3250000 1900000 5400000 

7700000 4300000 1550000 2250000 3950000 5050000 

7750000 4750000 1750000 4900000 3000000 4600000 

6300000 2400000 4050000 3800000 3150000 850000 

2750000 4650000 2350000 2250000 6500000 2250000 

9200000 2500000 1750000 3350000 7150000 3250000 

8500000 2200000 1500000 3050000 5350000 4700000 
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Supplementary Table 10: Population sizes of ContHIN ancestors after one growth cycle 

in EMMG. 

17000000 7500000 12500000 

8000000 11500000 8750000 

12500000 14500000 11500000 

5000000 19500000 13000000 

15500000 18500000 19000000 

 

 

 

Supplementary Table 11: Population sizes of HIN replicates after adaptation to a 

fluctuating environment. 

6100000 2900000 5550000 4750000 1160000 6800000 

5600000 8350000 3000000 3200000 2400000 3950000 

16500000 10250000 4800000 4950000 896000 5600000 

6500000 6350000 4150000 2000000 5750000 2350000 

6250000 2200000 3450000 1648000 2250000 2650000 

10350000 7000000 6350000 5400000 3500000 4600000 

5150000 6100000 3600000 0 1960  

 

 

 

Supplementary Table 12: Population sizes of HIN ancestors after one growth cycle in 

PMGM. 

82500 8550000 2341250 

4600000 438000 1200500 

251000 950000 4289000 

2150000 4100000 694000 

28000 3900000 4000000 
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Supplementary Table 13: Population sizes of ContHIN replicates after adaptation to a 

fluctuating environment. 

146500 110000 3750000 8550000 1176000 2650000 

275500 5100000 139000 5800000 3350000 11250000 

4850000 8000000 2200000 252000 2550000 5000000 

7700000 8100000 7950000 880000 5600000 6600000 

6450000 3900000 3350000 3300000 2144000 4450000 

5150000 109000 6600000 5200000 6600000 4200000 

241000 206500 4600000 5650000 4350000 4500000 

 

 

 

Supplementary Table 14: Population sizes of ContHIN ancestors after one growth cycle 

in PMGM. 

7000000 15500000 7250000 

7500000 7000000 10000000 

8000000 4000000 12500000 

12000000 25500000 5500000 

9500000 14000000 19750000 

 

 

 


