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Network Analysis of Genome-Wide Association
Studies for Chronic Obstructive Pulmonary Disease
in the Context of Biological Pathways

To the Editor:

Chronic obstructive pulmonary disease (COPD) is a common
respiratory disease projected to be the third leading cause of death by
2020 (1). The main risk factor is tobacco smoking, but other

environmental exposures may also contribute (1). Furthermore, host
factors including genetic abnormalities, abnormal lung development,
and accelerated aging increase susceptibility to COPD (1). However,
the causal mechanisms remain poorly understood (2).

As a result of genome-wide association studies, many
interesting genetic variations, including SNPs, have been discovered.
However, the interpretation of these large amounts of data
within the context of biological systems, disease processes, and
unknown gene functions remains difficult. Considering genes in
a biological context may aid in the elucidation of SNP function.
Network analysis provides a way of deciphering the biological
relationships among SNPs, genes, and pathways by providing a
framework that allows for the integration, analysis, and display
of these complex data (3).

We used data from a recent meta-analysis to identify and
extract all genetic variants published in pooled and meta-analysis
studies related COPD risk (Prospero CRD4201705; May 2018).
We extracted the 181 significant genetic variants (regardless of
linkage disequilibrium) mapped to 99 genes that included 176
SNPs with reference SNP cluster identifier (rs) and other variants
such as multiple SNP combinations, insertions and deletions, or
length polymorphisms.

Genes and variants were represented in a SNP–gene network
using Cytoscape version 3.6. Second, the genes were used to
retrieve the biological pathways from WikiPathways Human
curated collection (10 July 2018). Genes present in one or more
pathways were displayed in a Cytoscape gene–pathway network.
The SNP–gene and gene–pathway networks were then
consolidated by merging them. This yielded a SNP–gene–pathway
network that was used as a basic reference for the biological
interpretation of the connected elements. Finally, genes were
classified according to their function and potential effect, using
the variant effect predictor analysis in Ensembl (4).

Our analysis produced four different visualizations. In Table 1,
an overview of the main characteristics of the networks is reported.
In each network title, the digital object identifier to the Network
Data Exchange visualization is provided and the main features of
the networks and nodes codes are reported, all of which are fully
downloadable and interactive.

The networks consist of 181 variant nodes, 99 gene nodes, and
315 pathway nodes, and 735 connections between them. Of the
original set of 99 genes, 74 genes are present in pathways from the
curated WikiPathways collection. The basic version, Gene–pathway
network, highlights the three elements: SNPs, genes, and pathways
in different colors.

The Functional gene map visualization presents functional
classes in the network. Here we show 13 nonoverlapping functional
classes: Addiction, Cellular interaction, Cellular metabolism,
Cellular structure, Detoxification, Development, Homeostasis
organismal, Inflammation, Lung function, Metabolism
organismal, Regulation, Tissue remodeling, and Unknown.
Interestingly, some of the gene functional classes are dispersed,
whereas in others all are connected. Cellular metabolism (forest
green) shows dispersion: 15 genes are not connected in the major
central network, and 7 of the 15 do not present any pathway
connections. Comparatively, all five genes related to Detoxification
cluster in a specific area (refer to online visualization, pink-nodes).
Similarly, all 15 genes involved in Inflammation are intensely
connected to genes and other pathways and are grouped in the
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central area of the major network (magenta). This network
visualization thus gives an indication of the biological process in
which the 26 unlinked genes are involved.

We show that most genes within a functional class group
together, indicating that they share common pathways, whereas
other genes tend to be more dispersed, perhaps dictated by

pleiotropic gene roles. The distinctions have been made in the
functional classes based on the (probable) function of the genes.
These classifications are subjective but help to guide the important
functions of the gene/protein product in the context of COPD.

The Variant-effect network visualization shows the potential
effect of the variants on the gene sequence. The resulting network

Table 1. Overview of the Four SNP–Gene–Pathway Networks

Network Title Weblink Features Node Color

Gene–pathway network http://doi.org/10.18119/N9SW2N This is the result of the merged
“SNP–gene” and “gene–pathway”
networks. This is the basic set for
the other two network
visualizations.

SNP=green; gene =blue;
pathway= red

Functional-gene-map http://doi.org/10.18119/N9JC76 Genes belonging to a specific
functional class listed and color
coded.

SNP=gray triangle; gene= squared
colored node according to the
description; pathway =gray circle

Variant-effect network http://doi.org/10.18119/N9P301 SNPs with different type of gene
impact are highlighted.

SNP low=green; SNP moderate = blue;
SNP modifier = orange; gene = gray
triangle; pathway =gray circle

Clicking the three weblinks presented in Table 1 will bring you to the interactive open access network visualizations. The Gene–pathway network shows
the result of the merged “SNP–gene” and “gene–pathway” networks. The second visualization, Functional-gene-map, is the functional gene map and
highlights the groupings of the different functional classifications of the genes. Finally, the Variant-effect network visualization shows the predicted effect of
the gene mutations. The color coding system can be found in the tables and is further explained on the web-based visualization by clicking on the nodes
or lines. Available information varies according to the visualization but includes node ID, name, matching attribute, functional network area classification,
GeneCard external link, synthetic function, general classification, label, Polyphen, Sorting Intolerant from Tolerant, mutation type, consequence, impact,
smoking status, and interaction.
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Figure 1. A SNP–gene–pathway subnetwork is presented, highlighting only the connections related to the seven genes represented with bold borders
(AK9, SERPINA1, IL27, CYP1A1, EPHX1, SLC22A11, and TESMIN) carrying the deleterious missense SNPs.
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contains 149 modifiers (or noncoding variants) and 19 moderate (or
missense) and two low-impact (or synonymous) SNPs. Polyphen (5)
and Sorting Intolerant From Tolerant (6) prediction scores,
presented in the network table as attributes, were also consulted to
elucidate the deleteriousness of the 19 missense variants. The
Polyphen resulted in five probably damaging (rs141159367,
rs1051740, rs10499052, rs146043252, and rs28929474) and two
possibly damaging (rs1048943 and rs181206) SNPs. Sorting
Intolerant from Tolerant indicated that only three (rs1051740,
rs10499052, and rs146043252) of the seven SNPs identified by
Polyphen are predicted to be deleterious. Because of this
discrepancy, we considered the more extensive list. In Figure 1, a
SNP–gene–pathway subnetwork is presented, highlighting only the
connections related to the seven genes carrying the deleterious
missense SNPs.

The variant effect predictor analysis showed that the vast
majority of the SNPs associated with COPD are modifiers. Nineteen
of the 181 variants were missense SNPs mutations. Of these, seven
SNPs (rs10499052, rs28929474, rs181206, rs1048943, rs1051740,
rs141159367, and rs146043252) showed alterations predicted to
be deleterious in the associated proteins for SLC22A11 (solute
carrier family 22 member 11), AK9 (adenylate kinase 9), SERPINA1
(serpin family A member 1), IL27, CYP1A1 (cytochrome P450
family 1 subfamily A member), EPHX1 (epoxide hydrolase 1), and
TESMIN (testis-expressed metallothionein-like protein),
respectively. Figure 1 displays the interactions of those seven genes
with the missense SNPs and pathways. Interestingly, all but two of
the deleterious alterations, located in AK9 and TESMIN, are in
genes that are either directly or indirectly involved in inflammatory
pathways. The AK9 gene mutation is involved in cellular metabolic
processes and in extrapulmonary tissues (7), whereas TESMIN is
involved in heavy metal ion binding and sequestering.

IL27 and SERPINA1 encode proteins directly involved
in inflammation. The leucine to proline substitution caused by
rs181206 (IL27) was predicted to be possibly damaging by Polyphen,
indicating a strong change in protein structure. Proline is known to
have an exceptional conformational rigidity, often causing structural
changes. SERPINA1 mutations account for around 2% of all COPD
cases (8); however, the PiMZ variant associated with this gene was
only observed in crude estimates and disappeared after adjusting
for smoking (9). Two deleterious SNPs, rs1048943 and rs1051740,
associated with CYP1A1 and EPHX1, are involved in detoxification
pathways and, under some circumstances, may be directly linked,
as in benzo(a)pyrene-metabolism (WikiPathways identifier:
WP696). n
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Resistance Heterogeneity and Small Airway
Asthma Phenotype

To the Editor:

We read with interest the elegant modeling data of Foy and
colleagues (1), who reported a 40% narrowing of small airways was
associated with clinically relevant alterations in asthma control and
quality of life. Such effects were commensurate with observed
responses to biologics on the frequency-dependent heterogeneity of
the resistance component of respiratory impedance measured by
impulse oscillometry (IOS), where the mean pooled effect on
resistance at 5 Hz (R5)2 resistance at 20 Hz (R20) was 20.04
(95% confidence interval [CI], 20.03 to 20.05) (kPa/L) $ s.

This article is open access and distributed under the terms of the Creative
Commons Attribution Non-Commercial No Derivatives License 4.0
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