Ciências ULisboa

Role of RHBDD2 in Membrane Trafficking Regulation

Mestrado em Biologia Evolutiva e do Desenvolvimento

Tianyi Hu

Dissertação orientada por:
Dr. Colin Adrain
Prof. Dr. Gabriela Rodrigues

Summary

RHBDD2 é parcialmente relacionada com romboides, protéases intra-membranares que degradam substratos na via secretora. Curiosamente, um subgrupo da família romboide, incluindo a RHBDD2, não tem resíduos catalíticos essenciais. Estas "pseudo-proteases" são conservadas, o que implica uma pressão seletiva para manter a sua função durante a evolução. Recentemente, uma mutação pontual (R85H) foi identificada no gene humano que codifica para a proteína RHBDD2, e está associada a uma doença neuro-degenerativa chamada Retinitis Pigmentosa (RP). Esta mutação pontual de G para A, alterou o aminoácido codificado de arginina para histidina no códão 85 do Segundo exão. No entanto a relevância fisiológica da RHBDD2 e a sua contribuição para a doença acima referida não é clara.

Os dois maiores focos deste estudo foram (1) a investigação de como a mutação R85H na RHBDD2 contribui para a doença a nível celular; (2) investigar a função da RHBDD2 nativa a nível da célula e do organismo.

Vários programas de alinhamento (Clustal0, muscle, tcoffee ferramentas de alinhamento) foram usados para prever a topologia da RHBDD2. Com base na comparação com outros membros da superfamília romboide, os domínios transmembranares (TMD) da RHBDD2 foram previstos. Após identificar cuidadosamente todos os aminoácidos chave nos alinhamentos, eu previ que a RHBDD2 é uma proteína transmembranar com 6 TMD, com ambas as terminações N - e C- presentes na face citoplasmática.

Devido ao conhecimento prévio de que a RHBDD2 é expressa em níveis elevados na retina, consistente com a expressão a nível do mRNA na base de dados bioGPS, células de ratinho RPE foram selecionadas como materiais essenciais para as seguintes experiências. Plasmídeos para a sobre-expressão da RHBDD2 WT e da mutação R85H com uma tag de HA no C-terminal foram gerados no vector pLEX MCS, e usados para gerar células estáveis por transdução
lentiviral. Estas linhas celulares juntamente com a linha celular com o vector vazio (EV) foram usadas para investigar a função da RHBDD2 a nível bioquímico e da biologia celular.

Surpreendentemente, a expressão da forma mutante da RHBDD2 em células RPE, não induziu um stress constitutivo do retículo endoplasmático (RE). Não houce degradação da proteína mutante na linha celular R85H. Isto permitiu-me propor de forma preliminar, que o fenótipo da mutação R85H não é causado por stress do (RE).

Por forma a analisar a localização do Et e mutante R85H, células RPE foram marcadas com um anticorpo anti-HA (para detectar RHBDD2 WT e mutante R85H) e com o marcador de stress do RE Calreticulin ou o marcador do cis-Golgi GM130. Imagens de imuno-fluorescência e co-localização mostraram que tanto a WT como a mutante RHBDD2 localizam predominantemente no aparelho de Golgi. Indicando que a mutante R85H localiza-se no mesmo compartimento celular que a proteína nativa, sugerindo que o fenótipo da doença não é causado por stress do RE ou por falta de folding da proteína.

Ratinhos com deleção genética (KO) na RHBDD2 foram gerados pelo sistema CRISPR/Cas9 para definir a função da RHBDD2 e o fenótipo dos animais mutantes. Infelizmente, 5 animais fundadores morreram no primeiro dia de vida. Analise do tecido revelou que dois deles tinham INDELs e três deles eram nativos. Logo, a morte dos animais é pouco provável estar relacionada com o genótipo RHBDD2. A experiência foi repetida e 17 potencias fundadores foram obtidos. Resultados de sequênciaçao indicaram que dois animais fundadores tinham a mutação desejada, provavelmente como quimeras. Identificamos também animais fundadores com INDELs de 6 e 9 pares de bases.

Experiências de imuno-precepitação acopladas a espectrometria de massa foram realizadas para identificar novos interactores da RHBDD2. Três IPs foram efetuados em diferentes condições (com ou sem crosslinker, acoplado com diferentes tampões de lavagem). Golgins (GM160, Golgin-84, Golgin-45), que atuam como plataformas de acoplamento membranar, foram co-immuno-precepitadas coma RHBDD2 em ambas as experiências com cross-linker, indicando que a RHBDD2 pode ter um papel na manutenção da estrutura do aparelho de Golgi. Componentes chaves das vesículas COPII foram
também capturados nos IPs crosslinked e não crosslinked, indicando que a RHBDD2 pode contribuir para o transporte ER para Golgi dependente de COPII. Estes dois grupos apareceram tanto nos IPs da proteína RHBDD2 nativa como mutante R85H. De notar, o número total de identificações de peptídeos está diminuído em IPs de R85H em condições de crosslinking ou na sua ausência, indicando talvez que o mutante R85H, exibe uma alteração conformacional que resulta numa mudança de repertório de interactores.

De acordo com as IPs, experiências de fragmentação do Golgi e da sua reorganização, foram efectuadas com RNA de interferência curto (siRNA) para fazer a atenuação da expressão (KD) de RHBDD2 em células HeLa. /2 horas após a transfecçao, as células foram tratadas com BFA, e depois a droga foi removida do meio. De seguida, as células foram fixadas a diferentes pontos de incubação. Esta experiência não resultou em nenhuma diferença óbvia, na cinética de da morfologia do aparelho de Golgi entre as células tratadas control ou com o KD, mas é importante notar que o siRNA não promove a atenuçao complete da expressão da RHBDD2, logo a presença de alguma RHBDD2 residual pode ter prevenido a observação de um fenótipo mais marcado.
O papel fisiológico da RHBDD2 permanece desconhecido. Considerando os possíveis parceiros de ligação da RHBDD2 e a localização da RHBDD2, eu proponho que trabalho future se deva focar no teste do tráfego celular e da glicosilação em células sem expressão de RHBDD2 (KO). Também seria útil gerar um mutante R85H endógeno nas células RPE para avaliar a patologia da mutação, e claro, para avaliar o fenótipo dos ratinhos mutantes.

Palavras chave: RHBDD2, superfamília romboide, controlo de qualidade do RE, fragmentação do Golgi, Retinitis Pigmentosa

Index

1. Introduction 3
1.1 The Secretory pathway 3
1.2 Protein quality control in the early secretory pathway 4
1.3 Excessive accumulation of misfolded proteins triggers ER stress 7
1.4 Golgi Apparatus 9
1.5 The Rhomboid family contains several catalytically inactive homologs 12
1.5.1 Tmem115 13
1.5.2 iRhoms. 13
1.5.3 UBAC2 14
1.5.4 RHBDD1 14
1.5.5 RHBDD3 14
1.5.6 RHBDD2 15
1.6 RHBDD2 is mutated in Retinitis Pigmentosa 15
2. Material and Methods 18
2.1 Mice 18
2.2 Cell culture 18
2.3 Sequence data 18
2.4 Generation of RPE cell lines expressing empty vector (EV), WT RHBDD2 and RHBDD2 R85H mutant. 19
2.5 Cell lysis 19
2.6 Western blot 20
2.7 Induction of ER stress 20
2.8 Golgi fragmentation and Golgi reassembly 20
2.9 Image acquisition and analysis. 21
2.10 CRISPR/Cas9 21
2.11 Genotyping of CRISPR mice 23
2.12 Immunoprecipitation (IP) 23
2.13 siRNA knockdown (KD) 24
2.14 Reverse transcription PCR 25
3. Results 26
3.1 Prediction of the transmembrane topology of RHBDD2 26
3.2 Disease Mutation R85H in RHBDD2 30
3.3 Localization of WT and R85H RHBDD2 33
3.4 Generation of Knockout Mice 35
3.5 Identification of RHBDD2 interactors 39
3.6 Role of RHBDD2 in homeostasis of the Golgi apparatus 43
4. Discussion 49
5. Abbreviation 52
6. References 53
7. Supplemantary Information 62

1. Introduction

1.1 The Secretory pathway

About one third of all proteins enter the secretory pathway, a route that allows a cell to regulate delivery of newly synthesized proteins, carbohydrates, and lipids to the cell surface and intracellular vesicular organelles. In brief, secretory cargoes are synthesized and assembled in the endoplasmic reticulum (ER); subsequently they are transported to the Golgi apparatus for further processing and maturation. After that, these proteins are distributed to their final destination (Fig.1). This directional membrane flow is called membrane trafficking ${ }^{1}$.

Figure 1 The secretory pathway
The secretory molecules are synthesized and assembled in the ER, then further modified in Golgi. Afterwards, they are distributed to their final destination (for example, the plasma membrane). The ER is the first line of defense in quality control, a mechanism that prevents the transit of misfolded folded proteins to the later secretory pathway. If any of the misfolded proteins inadvertantly escaped, they can be retrieved by retrograde transport from the Golgi apparatus to ER.

One of the most important roles of secretory proteins is to serve in cell signaling, which governs fundamental cellular activities and coordinates cell actions. Basically, the signal-sending cells produce secretory proteins that
change the cellular behavior of other cells (the signal-receiving cells) ${ }^{30}$. For instance, fibroblast growth factor (FGF) can induce limb development in specific tissues; Notch signaling can inhibit their neigbouring cells from becoming neurons; the Ephrin-Eph signaling can lead to repulsion and segregation of cells and tissues etc.

The receptors on the surface of the signal-receiving cells in the signaling pathway are transmembrane proteins. They are physically attached to the membrane and span across the entire lipid bilayer with their transmembrane domains at least once. As a result, they can perceive the information carried by extracellular signaling molecules and transfer it to the intracellular side, and vice versa.

The EGFR signaling pathway in Drosophila is a prominent example of how membrane proteins are used to control signaling. Spitz, a membrane-tethered EGFR ligand is synthesized in the ER and is transported to Golgi by the help of a chaperone, called star. Thereafter, Rhomboid-1, a serine protease that localizes to the Golgi, cleaves Spitz within the upper part of its transmembrane domain with the help of the serine-histidine catalytic dyad. Subsequently, Spitz is secreted from the cell. Now it can bind to the EGF receptor on the surface of a neighboring cell and activate the EGFR².

1.2 Protein quality control in the early secretory pathway

Protein folding in the ER involves complex folding intermediates and is therefore intrinsically error prone ${ }^{3}$. Namely, if the folding capacity of the ER is exceeded, or a mutant protein is expressed, they risk misfolding and aggregation of proteins. In severe cases, the stress to the ER caused by misfolded protein results in apoptosis of the secretory cell in question, which can impact on the functionality of the secretory tissue or organ. Therefore a robust quality control of protein folding, which is monitored by the ER at the first stage, is critical in organisms to ensure that nascent cargo is retained and not recognized by the export machinery until the cargo is fully folded and assembled.

Figure 2 The calreticulin/calnexin ER folding cycle
Calreticulin and calnexin assist the folding of glycoproteins in the ER. They bind to monoglucosylated proteins during their synthesis and then associate with the thiol-disulphide oxidoreductase ERp57 to allow it form interchain disulphide bonds with bound glycoproteins. Cleavage of the remaining glucose by glucosidase II terminates the interaction with calreticulin and calnexin. On their release, correctly folded glycoproteins can exit ER, otherwise, a single glucose would be put back on the glycan and thereby promotes another calreticulin/calnexin cycle. (Adapted from Ellgaard \& Helenius et al., 20034)

For example, glycoprotein quality control is fulfilled by the calreticulin and calnexin ER folding cycle. Glycoprotein synthesis proceeds via sequential addition and and removal of glycans (Fig.2). Calreticulin interacts with a monoglucosylated protein in the early steps. Cleavage of glucose in later step terminates the interaction with calreticulin. At this moment, if the protein is correctly folded, it would be released from the ER. By contrast, if the protein is not correctly folded, it is be recognized by glycoprotein glucosyltransferase, which places a single glucose back on the glycan and thereby promotes a renewed association with calreticulin. Calnexin is a similar quality-control molecular chaperone that performs the same service for soluble glycoproteins as does calreticulin ${ }^{4}$.

Proteins that pass ER quality control are transported to the Golgi apparatus by anterograde transport in COPII (coat protein complex II) vesicles (Fig.3). However unfolded or misfolded proteins are retained in the ER and degraded by ER-associated degradation (ERAD)(Fig.4). Some partially folded proteins may escape from the ER; some proteins need export chaperones or export receptors to enable their transport from ER to Golgi. These export factors and escaped misfolded proteins must all be retrieved from the Golgi apparatus ${ }^{6}$. This so called
'retrograde transport' is achieved by the COPI (coat protein complex I) vesicles to balance the anterograde transport7 (Fig.3). Thus, although the ER is the major center of secretory protein quality control, the COPII, COPI vesicles and cis-Golgi compartments also contribute.

Figure 3 COPI and COPII mediated bidirectional transport between ER and Golgi apparatus COPII vesicles mediate ER-to-Golgi anterograde transport. COPI vesicles facilitate Golgi-to-ER retrograde transport, including retrieval of escaped ER resident proteins. (Adapted from Brandizzi \& Barlowe et al., 20135)

During ERAD, the molecular chaperones and associated 'sensors' in the ER recognize and target their client proteins for retrotranslocation into the cytoplasm, where the proteins are degraded by the ubiquitin-proteasome machinery ${ }^{8}$. Thus, ERAD counteracts the possibility of ER stress by removing misfolded proteins from the ER lumen and targeting them for degradation. In general, ubiquitination of proteins is a multistep process, involving activation, conjugation and ligation, performed by ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3), respectively. In the ubiquitination cascade, E1 can bind with dozens of E2s, which can bind with hundreds of E3s in a hierarchical way, hence the E3s involved in recognition and ubiquitination of highly specific target proteins ${ }^{9}$. In the specific case of ERAD, dedicated membrane-tethered E3 ligases (eg Hrd1, gp78) mediate ubiquitylation of ERAD substrates, acting on the cytoplasmic side of the membrane.

Derlin, a catalytically inactive member of the rhomboid family, is required for the extraction of certain aberrantly folded proteins from the ER ${ }^{10}$ and has been proposed, based on yeast mutant studies to serve as a central component of the ERAD machinery. Specifically, Derlin has been proposed to provide a channel
for misfolded proteins to be retrotranslocated into the cytoplasm ${ }^{11}$. Derlins form heteromultimeric complexes with E3 ligases. During ERAD, the dislocation of proteins that contain one or several hydrophobic transmembrane domains, from the ER into the cytoplasm is clearly thermodynamically unfavourable. Therefore, transit across the ER membrane and into the cytoplasm is difficult, so needs to be fuelled by p97/VCP, an ATPase that binds to Derlins and the E3 ligases. Eventually, the dislocated proteins undergo proteasomal degradation in the cytoplasm ${ }^{10,12}$ (Fig.4).

Figure 4 ERAD model
This is a simplified schematic diagram illustrating ERAD of a misfolded client protein (left red, x indicates misfolding that could occur within the ER lumen, ER membrane or cytoplasm). Right side is the multimeric membrane protein complex consisting of Derlin, E3 ligase and p97 ATPase. Ultimately, the ERAD substrate will be degraded by the proteasome.

1.3 Excessive accumulation of misfolded proteins triggers ER stress

If the ERAD machinery is insufficient, unfolded proteins accumulate in the ER
lumen, undermine the function of the organelle, and initiate ER stress. The term "unfolded protein response (UPR)" is a protective mechanism against ER stress in cells. At least four ER stress response outcomes have been identified. Three of them are designed to alleviate stress: upregulation of folding chaperones, translational attenuation and enhancing ERAD. However, the sustained or excessive stress will result in apoptosis ${ }^{13}$.

There are three arms in the ER stress response pathway. First, the protein kinase RNA-like ER kinase (PERK)-mediated phosphorylation of eukaryotic translation initiator factor 2α (elF2 α) can block translation and selectively upregulate the activating transcription factor 4 (ATF4) as well. Afterward, ATF4 enters the nucleus and activates ER stress response target genes. Second, during ER stress, the activating transcription factor 6 (ATF6) is cleaved, releasing an N-terminal cytosolic domain (p50ATF6), which thereafter enters the nucleus. Third, IRE1 is a kinase and endoribonuclease that dimerizes and autotransphosphorylates under ER stress conditions. Activated IRE1 catalyses the excision of a 26 nucleotide unconventional intron from the transcription factor X box-binding protein 1 (XBP1) mRNA, shifting the coding reading frame to generate an active transcription factor that translocates to the nucleus to induce the upregulation of its target genes ${ }^{14}$.

Given the importance of the secretory pathway, it is unsurprising that many diseases are associated with membrane trafficking defects. The ER quality control machinery can contribute to diseases in diverse ways. (1) ER retention of mutated protein prevents the protein from reaching its final destination, thus causes diseases. Cystic fibrosis(CF) where a single point mutation results in a failure to traffic CFTR, a chloride channel, to the plasma membrane in CF patients. CFTR is instead retained in the ER and degraded ${ }^{15}$. (2) Misfolded proteins triggers ER stress that causes diseases. A prominent example is Retinitis Pigmentosa (RP) ${ }^{16}$, in which misfolding mutations in important photoreceptor proteins trigger ER stress, causing photoreceptor death and thus blindness. (3) Chronic ER stress in particular has been implicated in numerous human diseases. In type II diabetes, the excess nutrient intake demands increased insulin secretion. This large amount of insulin secretion pushes the ER folding and quality control capacity to the limit ${ }^{17}$. In summary, the discovery of many
diseases that are associated with trafficking defects, ER quality control and ER stress highlights the importance of this pathway. ${ }^{1}$

1.4 Golgi Apparatus

The Golgi apparatus is one of the most important organelles in membrane trafficking. It is a huge network that consists of stapled cisternae, the membranous stacks, which contain a variety of resident enzymes that modify the secretory proteins by addition of carbohydrates (glycosylation) and phosphates (phosphorylation). Thus, Golgi plays a key role in intracellular trafficking, processing and secretion of glycoproteins, glycolipids and proteoglycans (proteins that are heavily glycosylated).

Based on the distribution of different resident proteins appearing in the Golgi stacks, it can be divided into three regions: cis, medial and trans. The movement and maturation of cisternae from cis to trans is called anterograde membrane flow. On the contrary the transport of cargoes from the Golgi to ER is referred as retrograde transport (Fig.1).

Figure 5 Two Golgi apparatus models
(a) The cisternal maturation model. (b) The anterograde vesicular transport model (Adapted from Malhotra and Mayor et al., 200618)

There are two models of intra-Golgi transport (Fig.5): Anterograde vesicular transport and cisternal maturation. The major difference is the movement of resident and cargo proteins. In the first model, cargo molecules will move through the stack passively as the cisternae move forward, while resident proteins will be recycled by retrograde transport to establish differential concentrations across the stack. In the second model, molecules will move forward in transport vesicles, while resident proteins are specifically retained. These two models are not mutually exclusive and may occur simultaneously ${ }^{19}$.

At the cis-Golgi, where incoming vesicles undergo fusion with the cisterna COPII and COPI vesicles mediate the anterograde transport and retrograde transport respectively between the ER and the Golgi apparatus. The trans-Golgi, the exit point of the Golgi, is the major site of sorting secretory proteins and lipids to various cellular locations: another key role of the Golgi apparatus. It still remains to be established how many types of distinct vesicular trafficking destinations there are ${ }^{20}$.

In addition to the enzymatic and sorting activities of the Golgi, a cohort of resident Golgi proteins maintain the Golgi structure, and also play an important role in the disassembly and reassembly of Golgi during mitosis, such as golgins ${ }^{21}$.

Figure 6 Schematic golgins model
All of the molecules shown are golgins. They appear to tether the different sets of vesicles arriving at the Golgi. (Adapted from Wong and Munro et al., 201422)

The fractionation experiments of Golgi apparatus suggested the presence of a Golgi matrix ${ }^{23}$. Golgin and GRASP family membranes are identified as the major components of this putative matrix ${ }^{24}$. Golgins usually are anchored to the Golgi
by their C termini with the majority of the protein exposed to the cytoplasm ${ }^{24}$. Golgins are membrane tethers throughout the whole Golgi apparatus that capture transport vesicles and help them attach to the Golgi apparatus, which drive membrane fusion ${ }^{22}$. Specific golgins can tether specific classes of vesicles more efficiently (Fig.6), thus leads to a selective transfer of contents between Golgi cisternae ${ }^{22}$.

Following the tethering of the captured vesicles, SNARE proteins mediate fusion between donor and acceptor membranes. SNAREs are soluble NSF (N-ethyl-maleimide-sensitive fusion protein) attachment protein receptors, which have been implicated as central in most intracellular membrane trafficking events. SNAREs were initially considered to confer specificity of intracellular membrane trafficking, which now remains controversial ${ }^{25}$. And intuitively it is most likely to be defined at the tethering stages, by golgins described above.

Figure 7 Model of SNARE-mediated lipid fusion
The SNARE core complex forms the "zippers" to overcome energetically unfavourable lipid fusion. (Adapted from Chen and Scheller et al., 2014 ${ }^{25}$)

The current model of SNARE mediated model is the "zipper" model (Fig.7) ${ }^{25}$. The SNARE core complex "zips" two membrane compartments from the membrane-distal amino termini to the membrane-proximal carboxyl termini to overcome the energetically unfavourable process. Once two membranes are close enough, the hemifusion occurs. Afterward, the membrane breakdown (fusion pore) is induced by the lateral tension of the "zippers". In the end, the fusion pore expands and the membrane relaxes.

1.5 The Rhomboid family contains several catalytically inactive homologs

The Rhomboid gene was first discovered in genetic screens in Drosophila ${ }^{26}$. Subsequently, Rhomboids were found to exist in almost all species, and they are highly conserved throughout evolution from archaea to humans, implying selective pressure (Fig.8). Until now, Rhomboids are discovered to have diverse biological functions ${ }^{27}$. Rhomboids are intramembrane-cleaving proteases, whose unique property is that their active sites are buried in the lipid bilayer of cell membranes, which is unsatisfactory for the water-requiring hydrolysis reaction. Crucially, structural studies revealed the presence of a central cavity that allows water molecules to access and converge near the critical serine ${ }^{28}$. Rhomboids are serine proteases that cleave other transmembrane proteins within their transmembrane domains ${ }^{27,29}$. The Rhomboid-1 protease mentioned above is a typical example for this.

Figure 8 Evolutionary model for inactive enzyme evolving from a catalytically active ancestor
Through gene duplication, the enzyme guarantees its original function and gains an extra copy to have the potential evolving force. Once the enzyme acquired novel pseudoenzyme function that was favored by nature selection, it could be fixed in the population. (Adapted from Adrain and Freeman et al., 201230)

Intriguingly, bioinformatic analysis identified that some members of the rhomboid family lack the amino acid residues essential for proteolysis (Fig.11A green asterisk position) ${ }^{31}$. Derlins, TMEM115, UBAC2, iRhoms and RHBDDs belong to these "pseudoproteases". However, they are conserved in mammals (and some in yeast), implying a selective pressure to retain them during evolution (Fig.8). There are other dead enzymes that have atypical catalytic mechanisms. For example, WNK1 is a mammalian protein kinase that lacks the catalytic lysine, which in most cases functions to anchor and orient ATP ${ }^{32}$. As mentioned before, Derlin is heavily implicated in ERAD. Although the roles of the other rhomboid pseudoproteases are only now emerging, below I summarize known functions and highlight the emerging themes.

1.5.1 Tmem115

TMEM115 predominantly localizes to the Golgi apparatus. It is shown to interact with the conserved oligomeric Golgi complex (COG), which is implicated in the tethering of retrograde transport vesicles ${ }^{33}$. It is experimentally proved that knockdown or overexpression of TMEM115 would delay Brefeldin A induced Golgi-to-ER retrograde transport ${ }^{33}$. Thus it is likely to regulate Golgi-to-ER retrograde transport and perhaps other Golgi functions. TMEM115-deficient cells also showed a decline in the binding of lectins (peanut agglutinin and Helix pomatia agglutinin), which highly specific for glycoprotein binding, indicating defects in the Golgi glycosylation machinery ${ }^{33}$.

1.5.2 iRhoms

iRhoms have diverse roles in different species. They are essential for ADAM17/TACE maturation and trafficking in mammals ${ }^{34}$. Meanwhile in Drosophila, they bind EGF ligands and direct them towards ERAD ${ }^{35}$.

1.5.3 UBAC2

UBAC has a ubiquitin-binding motif and it is identified as a central element in the gp78 complex ${ }^{36}$. This is interesting because gp78 is an E3 ligase associated with ERAD. This predicts an ERAD-like role for UBAC2 similar to Derlins, although this remains to be fully investigated ${ }^{37}$. Interestingly, there appears to be a genetic association between UBAC and Behçet's disease, an inflammatory condition ${ }^{38}$.

1.5.4 RHBDD1

RHBDD1, also known as RHBDL4, localizes in ER. RHBDD1 has been shown to cleave ERAD substrates with unstable membrane helices; it interacts with the ATPase p97. This role has been proposed to assist in conventional ERAD by cleaving membrane ERAD substrates, thus making their dislocation via the conventional ERAD pathway more efficient ${ }^{39}$.

1.5.5 RHBDD3

RHBDD3 directly binds the modulator NEMO via the ubiquitin-binding-association (UBA) domain. Afterward, it is modified by an unknown E3 ligase to recruit the deubiquitinase, A20. Thus RHBDD3 facilitates the interaction of A20 with NEMO, which suppresses the transcription factor NF-kB in dendritic cells, whose overactivation can cause autoimmune and inflammatory diseases ${ }^{40}$.

The focus of this thesis is on RHBDD2, which as the name suggests is related to RHBDD3 and more distantly, to RHBDD141. Little is known about RHBDD2, except that it is overexpressed in breast cancer ${ }^{42}$ and colorectal cancer patients ${ }^{43}$. It is however not yet clear whether elevated RHBDD2 expression plays a role in the development, maintenance or progression of tumors. Or even if it is rather a consequence of tumor development.

Notably, a mutation ${ }^{16}$ in RHBDD2 has been observed in patients suffering from Retinitis Pigmentosa (Fig.11C). The function of RHBDD2 is still unknown. However, Ahmedli reported that RHBDD2 locates to the cis-Golgi ${ }^{16}$, which implies a role in trafficking or quality control in the early secretory pathway.

In summary, the rhomboid superfamily members interact with membrane proteins and control the fate of these binding partners. Their diverse functions are implicated in Golgi-to-ER retrograde transport, glycosylation, TACE trafficking, and ERAD. This is what we know so far about the biological role of rhomboids. However, the biological role of RHBDD2 remains obscure and many questions remain unanswered.

1.6 RHBDD2 is mutated in Retinitis Pigmentosa

As mentioned above, Ahmedli and colleagues reported a point mutation in human RHBDD2, the G to A transition changed arginine to histidine at codon 85 at the second exon (Fig.11C) leads to Retinitis Pigmentosa (RP), a disease that causes photoreceptor death ${ }^{16}$. This mutation is homozygous in Retinitis Pigmentosa patients, but not all patients have this mutation, meaning RP can be caused by mutations in several other genes. Consistent with a role in the retina, Ahmedli and colleagues reported the RHBDD2 expression pattern in adult mouse

Figure 9 RHBDD2 expression pattern in adult mouse retina
Upper panel shows the vertical section of ONL, labeled with 7RC (anti-RHBDD2 antibody). The arrows point to the irregularly shaped heterochromatin, one of hallmarks of mature cone photoreceptors. Lower panel shows the horizontal section of mouse retina. Images show the RHBDD2 localization (green), glutamine synthetase (GS, a marker for Müller glial cells) localization (red), and their co-localization in the somas of many Müller glial cells (arrows) and some of their processes (arrowheads). OS, outer segments; ONL, the outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, the ganglion cell layer. (Adapted from Ahmedli et al., 2013 ${ }^{16}$)

Retinitis pigmentosa is a common name given to a group of genetically and clinically heterogeneous inherited retinal dystrophies presented with a loss of photoreceptors and retinal pigment deposits. Retinitis pigmentosa first affects rod photoreceptors (retinal cells that detect dim light) and cone photoreceptors (retinal cells that detect light and color) in the retina. Patients usually begin with night blindness then experience progressive vision loss because of the gradual breakdown of rods and cones ${ }^{44}$.

More than 45 genes were identified to be associated with retinitis pigmentosa. Among those genes, rhodopsin is the capital one in which more than 140 mutations have been identified ${ }^{45}$. Mutations can have a variety of effects on gene
function, which can be difficult to predict a priori. For example, mutations can partially reduce normal gene function (in the case of a hypomorph) or completely (in the case of a null). In addition some mutations can result in increased WT gene function (for example, rendering a molecule constitutively active), whereas neomorphic mutations can create a new function not encoded by the WT gene. This is examplified by rhodopsin, a transmembrane glycoprotein with 7 TMDs, the T17, P23, G51, T58, V87, G89, G106, C110, L125, A164, C167, P171, Y178, E181, G182, C187, G188, D190, H211, C222, P267, S270, K296 mutants are all misfolding and retained in the ER ${ }^{46}$.

Why does R85H mutation cause Retinitis Pigmentosa? What is the normal physiological role? Does RHBDD2 play an ER quality control role? Does it control trafficking in the early secretory pathway? Since it is not a protease, what kind of molecules does it bind to to exert its function? Does this reveal any common themes about the role of the mammalian rhomboids in the secretory pathway? This master thesis is dedicated to answer these questions.

2. Material and Methods

2.1 Mice

C57BL/6J mice were obtained from Instituto Gulbenkian de Ciência (IGC) and maintained at the IGC animal facility.

2.2 Cell culture

The HeLa-GalT-GFP stable cell line was a gift from Dr. Jack Rohrer (Friedrich Miescher Institut, Basel, Switzerland). Mouse RPE cell line was a gift from Professor Heping Xu (Centre for Experimental Medicine, Queen's University Belfast).

HEK cells, Hela cells were cultured in Dulbecco's modified Eagle's medium (DMEM; Biowest) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at $37^{\circ} \mathrm{C}$ and 5% CO2. RPE cells were cultured in the same conditions with additional $116.6 \mathrm{mg} / \mathrm{ml}$ sodium bicarbonate.

2.3 Sequence data

Rhomboid sequences were retrieved from Uniprot ${ }^{61}$. These sequences of the full-length proteins were automatically aligned by online multiple sequence
alignment tools, including Clustal0 ${ }^{58}$, Muscle ${ }^{59}$ and Tcoffee ${ }^{60}$. The alignments were then manually corrected to remove gaps. The Rhomboid topology models were constructed by TMD predictions from Uniprot database ${ }^{61}$.

2.4 Generation of RPE cell lines expressing empty vector (EV), WT RHBDD2 and RHBDD2 R85H mutant.

R85H point mutagenesis was executed by K0D Hotstart DNA polymerase from Novagen (using primers: GAAGTTGCCAGCAAAGTGCCAGATGATGATGGC and GCCATCATCATCTGGCACTTTGCTGGCAACTTC) based on the WT RHBDD2 construct with a triple HA tag on C termini. Both constructs were cloned into the lentiviral expression vector pLEX MCS. After verification of the nucleotide sequences, these constructs, plus the empty vector, were used to produce lentivirus in HEK cells. The resultant virus was then used to infect RPE cells, which were selected for puromycin resistance.

2.5 Cell lysis

Cells were washed twice in PBS, pH $7.2(137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM}$ $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 1.8 \mathrm{mM} \mathrm{KH} \mathrm{KO}_{4}$) lysed on ice for 10 min in lysis buffer (1% Triton X-100, $150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.4$). Following centrifugation to remove insoluble material, and other manipulations (such as immunoprecipitations), samples were denatured in LDS buffer (LDS from Novex®\#NP0007, 141mM Tris base, 106 mM Tris $\mathrm{HCl}, 2 \%$ LDS, 10% Glycerol, 0.51 mM EDTA, 0.22 mM SERVA Blue G, 0.175 mM Phenol Red, $\mathrm{pH} 8.5,50 \mathrm{mM}$ DTT).

2.6 Western blot

Samples were loaded in SDS-Page gels, which were prepared according to "GEL CASTING INSTRUCTIONS" from Novex® by life technologies (Pub.no. MAN0001660). Proteins were subsequently transferred to PVDF membranes. The membranes were blocked for 45 min in 5% non fat dried milk in TBST (100 mM Tris $\mathrm{pH} 7.4,3.0 \mathrm{M} \mathrm{NaCl}, 1 \%$ Tween). Incubation with primary antibodies were done in 5% milk at $4^{\circ} \mathrm{C}$ overnight. Membranes were then washed 5 x for 6 minutes each in TBST and incubated with secondary antibodies labeled with HRP for 1 hour if necessary. Enhanced chemiluninescence (ECL) was used to reveal signals, which were captured on photographic film.

Used antibodies:
anti-HA-HRP antibody (Roche, 12013819001)
7RC (a gift from Ahmedli et al., 2013 ${ }^{16}$)
anti- β-actin (Abcam, Ab8227)
anti-CHOP (GADD153, santa cruz, sc-7351)

2.7 Induction of ER stress

RPE cells were incubated in $1 \mu \mathrm{~g} / \mathrm{ml}$ thapsigargin (Tg) (Santa Cruz, \#sc-24017), $0.33 \mu \mathrm{~g} / \mathrm{ml}$ tunicamycin (Tm) (Santa Cruz, \#sc-3506) or $1 \mu \mathrm{~g} / \mathrm{ml}$ Brefeldin A (BFA) (Santa Cruz, \# sc-200861) for 8h to induce ER stress.

2.8 Golgi fragmentation and Golgi reassembly

Hela cells were treated with $0.25 \mu \mathrm{~g} / \mathrm{ml}$ BFA and fixed with 4% Formaldehyde (made from Bio-Connect BV, \#PIER28908) at different time points. After an one
hour incubation with BFA, cells were rinsed twice in complete medium (DMEM, supplemented with 10% FBS and 1% penicillin/streptomycin) to washout the BFA and fixed with 4\% Formaldehyde at different time points.

2.9 Image acquisition and analysis

Fluorescent images were obtained on Leica DMRA2 microscopy. In order to be semi-quantified by the colocalization program Imaris, images were deconvoluted by Huygens Workstation. The image shown in Figure 3 is one representative stack out of the 20 Z stacks. The brightness and contrast is adjusted by Fiji to visualize the signals. Note the statistical analysis was done on the original signal.

2.10 CRISPR/Cas9

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system is a genome engineering machinery endogenous to bacteria. The discovery of CRISPR originates with the identification of repetitive palindromic elements in bacteria, juxtaposed beside so called 'spacer' sequences which were found to often match sequences of bacteriophages, viruses that infect bacteria. It was subsequently discovered that bacteria incorporate phage DNA into their own genomic CRISPR loci (the spacers); in turn these are a template for transcription of RNA, which can destroy the foreign DNA from phage ${ }^{47}$. In bacterial immune defense, these spacers and palindromic DNA are transcribed, then processed to produce short spacer-derived RNAs, called tracrRNA, which subsequently works with Cas9 (an RNA-guided endonuclease specialized for cutting DNA) to produce the crRNA ${ }^{48}$, the element that confers the sequence specificity. Later, Jinek and colleagues combined the tracrRNA and spacer RNA into a "guide RNA", achieving the goal to enables a nuclease (Cas9) to be programmable by only editing of this sequence specific guide RNA ${ }^{49}$. Jinek and
colleagues also found that Cas9 can only bind to the DNA target if it is followed by the PAM sequence ($5^{\prime}-\mathrm{NGG}-3^{\prime}$) and the cleavage site is at three base pairs upstream of the PAM sequence ${ }^{49}$.

Figure 10 Overview of the CRISPR/Cas9 invader defense pathway
In the adaptation phase, short fragments of foreign DNA (protospacer, adjacent to PAMs) are acquired. In the crRNA biogenesis phase, CRISPR locus transcripts are processed to release individual mature crRNAs. In the invader silencing phase, crRNA-Cas protein effector complexes recognize foreign DNA and cleave it. (Adapted from Terns and Terns et al., 201165)

Taking advantage of the versatility of CRISPR/Cas9 system, a strategy was devised to generate mice null for RHBDD2. A gRNA sequence (CGACACCAGCAGCGAGAGCA) was designed using a CRISPR prediction resource ${ }^{63}$ and one of these was chosen for cloning into the gRNA basic plasmid (a gift from Dr. Moises Mallo, IGC) (Supplementary Fig.S1). The 200 bp homology template was synthesized by IDT DNA Ultramer Oligos (Fig.17A).

The microinjection was done by Ana Nóvoa in IGC transgenics facility. 52 occytes were injected, and 34 of them were survived and transferred into pseudopregnant females at the 1-cell stage.

2.11 Genotyping of CRISPR mice

Screening primers (Fig.17B primer 1 - AAATTGAGGAGGGAGGCGGGGAGT, primer 2 - ATCCCCGCCCCGCCTCTTCTCACCT, primer 3 ACCGCCCTGTAATGATAGGGTACCCT, primer 4 AGGGTACCCTATCATTACAGGGCGGT) were used to genotype the putative founder animals. PCR products were loaded on 4\% agarose gel. A part of PCR products were heated to $95^{\circ} \mathrm{C}$ and slowly cool down to room temperature, then loaded on 8\% acrylamide gel.

Emma Burbridge was using another outer primer 2 (TGAGGAAGCGCGCCATCCCCGCC) for the screening procedure.

2.12 Immunoprecipitation (IP)

HEK cells transduced with pLEX empty vector or pLEX plasmid containing iRhom1, iRhom2, iRhom1 N termini, RHBDD2, RHBDD3, UBAC2, unc93b1 by lentiviral transduction were used in IP experiments. Live cells were exposed to the crosslinker DSP(Thermo \#22585) in the first and second experiments but not the third one. After making lysates, irrelevant control antibodies conjugated to magnetic beads (Thermo \#21354) were added to the lysates to pre-clear non-specific binding proteins from the extract during a one hour rotation at $4{ }^{\circ} \mathrm{C}$. At this point, the precipitated beads were discarded, the supernatant recovered and 50 ul supernatant was saved as the 'Input' sample. Then the lysates were incubated with anti-HA resin (Thermo \#88837) for 1.5 hour rotation at $4{ }^{\circ} \mathrm{C}$. Subsequently, the precipitated beads were kept and washed four times in different wash conditions (for experiments with crosslinker, using IP wash buffer; for experiment without crosslinker, using RIPA buffer) to remove contaminants that bound non-specifically. Three-quarters of the precipitated beads were put in UREA buffer (8M Urea, 4\% CHAPS, 100mM DTT, 0.05\%SDS)
and sent to Professor Christopher Gerner (University of Vienna) for mass spectrometry analysis. One-quarter of the beads and the Input sample were put in LDS buffer (Novex®\#NP0007, 50mM DTT), then heated to $65^{\circ} \mathrm{C}$ for 15 mins. This part of sample was used in the Western blots.

Used buffer:
IP Lysis buffer: 1% Triton X-100, $150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris-HCl, pH 7.4, 1,10-phenanthroline, protease inhibitor from Roche

SDS/buffer: 5\% Sodium Deoxycholate and 2\% SDS
IP wash buffer: 1% Triton X-100, $300 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.4$, 1,10-phenanthroline, protease inhibitor from Roche

RIPA buffer: 1% Triton X-100, 0.1% SDS, 0.25% deoxycholate, 150 mM NaCl , 50mM Tris-HCl, pH 7.4, 1,10-phenanthroline, protease inhibitor from Roche

2.13 siRNA knockdown (KD)

An siRNA pool of 4 different siRNAs (ON-TARGETplus) was ordered from GE Healthcare to knock down human RHBDD2 (targeting sequences: GGATATCCGTGTTCAAGTA, CCCCATGCCCTGAGAGAAT, ACGGCAGCCCTGTGGAGTA and ATGCAGAAAGCGAGACGTT). A mock siRNA was ordered as well to KD Unc93b1. 5nmol siRNA was solubilized into 250 ul in RNAse-free water. Hela cells were plated one day before transfection on 6-well-plates, as described below.

Transfection for 6 -well-plate (per well scale): 7.5 ul siRNA was mixed with 125ul Opti-MEM (Life Technologies, \#25200-072). 15ul Oligofectamine (Life Technologies, \#LTI 12252-011) was incubated with 60ul Opti-MEM for 5 min at room temperature. There two above were combined and incubated for 20 min at room temperature. Add the solution to each well.

A double knockdown was performed in all experiments; hence a second transfection was executed 19 hours following the first transfection. Experiments were performed post 72 hours after the first transfection.

2.14 Reverse transcription PCR

Reverse transcription PCR was performed by Transcriptor One-Step RT-PCR Kit (Roche, \#04655877001), using primers in Figure 20 (red primers for isoform 1 and 2: AAGGAGCAGAGGACCGGCAG and AGCTTCGGGGTGGATTGAGTG; blue primers for all three isoforms: CTTCAGCCGAGAGGAGGGCAGCCCAGAG and GTTCACAGGCGTGGGGGGCTGGATGCC) PCR products were collected after 30x and 35 x themocycles and loaded on 2% agarose gel.

3. Results

3.1 Prediction of the transmembrane topology of RHBDD2

RHBDD2 is a 39 kDa protein which is highly conserved amongst vertebrate species. However, to date the topology of RHBDD2 is unclear. Based on different transmembrane domain prediction algorithms ${ }^{16}$ RHBDD2 has been proposed to contain five or seven possible transmembrane domains(TMDs) ${ }^{16}$. As an understanding of the RHBDD2 transmembrane topology is an important prerequisite to understand function, we revisited this issue. Based on a careful comparison with residues conserved in other members in Rhomboid superfamily, we predicted that RHBDD2 has six TMDs, with cytoplasmic N and C termini (Fig.11C).

Bioinformatic analysis focused on the transmembrane helices of several mouse Rhomboid-like proteins suggests that all rhomboid-like proteins contain a core of 6 TMDs, with less conservation in the first TMD (Fig.11A). Where present as a C-terminal addition in some Rhomboid-like proteins, the seventh TMD is also poorly conserved (Fig.11B). In addition, the alignment performed using the Tcoffee multiple sequence alignment tool ${ }^{60}$ revealed several highly conserved motifs and hallmark amino acids that were used as a basis to identify the equivalent TMDs in RHBDD2 (Fig.11A) Greenblatt reported a conserved "WR motif" and "GXXXG motif" in Derlins ${ }^{50}$; Lemberg observed the same in active Rhomboids ${ }^{51}$. The "WR motif" is contained in the luminal loop between helices 1 and 2; the "GXXXG motif" appears in TMD6 (Fig.11A blue asterisk). These features were used as a guide to locate the equivalent transmembrane helices, when the RHBDD2 sequence was aligned against a panel of other rhomboid
A

B

C

D
 Seq.
TOPCONS
OCTOPUS octopus Philius SPOCTOPuS

51
RSEALRNWQV YRLVTYIFVY ENPVSLLCGA IIIVRFAGNF ERTVGTVRHC ОООООООООО ООоМММММММ ММММММММММ ММММ ОООООООООО ОООМММММММ ММММММММММ MMM $-i$ iiiii iiiiiiiMM

Figure 11 Topology of RHBDD2 and other rhomboid superfamily members
(A) Tcoffee alignment of the transmembrane domains of rhomboid superfamily members in mice (RHBDF1,Q6PIX5; RHBDF2,Q80WQ6; RHBDL1,Q8VC82; RHBDL2,A2AGA4; RHBDL3,P58873; RHBDL4,Q8BHC7; RHBDD2,Q8VEK2; RHBDD3,Q8BP97; TM115,Q9WUH1; DERL1,Q99J56). TMDs are labeled according to the RHBDL2 topology on UniProtKB ${ }^{61}$. Hallmark amino acids are indicated by black asterisk. A green asterisk indicates the catalytic serine site of Rhomboids. Red asterisks denote the "WR motif", including the highly conserved arginine residue, that is found in the luminal region between TMDs $1 \& 2$. The "GXXXG motif" found in TMD6 is denoted by blue asterisks. The alignment was corrected manually to remove gaps in predicted TMDs and loops. (B) Alignment of RHBDD2 and rhomboid superfamily members that have 7 TMDs was performed by three different programs (clustal0, muscle and tcoffee). The $7^{\text {th }}$ TMD is highlighted according to RHBDL2 topology on UniprotKB. (C) Schematic of the RHBDD2 with 6 TMDs showing "WR motif" and "GXXXG motif" in the first loop and within the sixth TMD respectively. The red asterisk marked the position of the point mutation, R85H. (D) Prediction data from TOPCONS of arginine (red frame) of the R85H mutation.
proteins. Among the aligned proteins including inactive Rhomboids, the arginine residue in the "WR motif" was conserved in all members except TMEM115 and was identified for RHBDD2 (Fig. 11 red asterisk). Notably, the tryptophan in the "WR motif" is substituted by tyrosine, an amino acid that has very close
properties to tryptophan, in iRhoms and RHBDD2 (Fig.11). The "GXXXG motif" in the putative sixth TMD is also conserved in all listed members except TMEM115, but including RHBDD2 (Fig.11). Similar results were obtained by the clustal Omega multiple sequence alignment tool (data not shown).

I then searched for the presence of additional conserved features, specifically a tyrosine adjacent to a leucine, conserved in the third TMD; two glycines in the fourth TMD; and a defined leucine or isoleucine or valine at two position before the "GXXXG motif" in the sixth TMD ${ }^{50}$ (Fig.11). Taken together, this analysis enabled me to locate $1^{\text {st }}$ TMD and $2^{\text {nd }}$ TMD with the arginine in "WR motif" in between; the $3^{\text {rd }}$ TMD by the conserved tyrosine and leucine; the $4^{\text {th }}$ TMD by conserved glycines (indicated with black asterisks) and the $6^{\text {th }}$ TMD by the "GXXXG motif" (Fig.11, black asterisks). This revealed that RHBDD2 contains the hallmark amino acids within the anticipated TMDs and indicates that the protein has a topology similar to Rhomboids containing 6 or 7 TMDs.

Having confidently assigned TMDs 1 to 6, to investigate the presence or absence of the seventh TMD, we aligned the RHBDD2 with the rhomboids known to have 7 TMDs 52 using three different programs (clustalO, muscle and tcoffee)(Fig.11B). ClustalO shows two consensus amino acids (i.e, conserved in the $7^{\text {th }}$ TMD of other rhomboids) in the putative seventh TMD region, however, crucially, the alignment required a 7 amino acid gap in the equivalent region for RHBDD2, making the presence of a $7^{\text {th }}$ TMD implausible. Meanwhile, muscle and tcoffee suggest that RHBDD2 cannot be aligned with the $7^{\text {th }}$ TMD of other Rhomboids within this specific region. Hence, taken together, three difference alignment algorithms failed to identify conserved features of a $7^{\text {th }}$ TMD. To rule out the possibility that a non-conserved $7^{\text {th }}$ TMD was present, the RHBDD2 sequence was submitted to TOPCONS ${ }^{62}$, which also failed to identify a 7th TMD. Hence, no TMD predictors nor aligment tools identify a $7^{\text {th }}$ TMD, making it unlikely that RHBDD2 has a $7^{\text {th }}$ TMD. In summary, I predict that RHBDD2 is a transmembrane protein that has 6 TMDs, with both N - and C-termini embedded in the cytoplasm. This prediction will be tested in future experiments.

I next examined whether the 6 TMD core predicted above applied to all RHBDD2 vertebrate orthologs. Among all vertebrates listed in Figure 12, RHBDD2 is conserved. The R85 residue contained in the $2^{\text {nd }}$ TMD, that was found
to be mutated in RP patients ${ }^{16}$, is also conserved in all species investigated (Fig. 12 red asterisk). TOPCONS ${ }^{62}$ gave the prediction that arginine of the R85H mutation (Fig.11D red frame) is on the boundry of the $2^{\text {nd }}$ TMD, however whether it is marginally inside or outside of the TMD is unclear.

Figure 12 Alignment of RHBDD2 in vertebrates
The red asterisk donates the R85H\{Ahmedli et al., 2013, \#82299\} point mutation position. Tcoffee alignment of RHBDD2 from Anolis carolinensis(Ac_H9GHC3), Ailuropoda melanoleuca(Am_AILME,G1LWT8), Bos taurus(Bt_G3N1D6), Canis familiaris(Cf_CANFA,F1PB04), Callithrix jacchus(Cj_U3FTR3), Cavia porcellus(Cp_H0V399), Chlorocebus sabaeus(Cs_CHLSB,A0A0D9RZY0), Danio rerio(Dr_E9QI41), Felis catus(Fl_M3X518), Gorilla gorilla gorilla(Gg_GORGO,G3RL85), Homo sapiens(Hs_RHBD2,Q6NTF9), Ictalurus punctatus(Ip_W5UJV0), Loxodonta africana(Lo_LOXAF,G3SLX9), Macaca mulatta(Macm_F7E9A,F7E9A1), Myotis lucifugus(Ml_MYOLU,G1PU74), Mus musculus(Mm_RHBD2,Q8VEK2), Oryctolagus cuniculus(Oc_RABIT,G1T655), Papio anubis(Pa_A0A096M,A0A096MVK2), Pongo abelii(Pa_H2PLV5), Pan troglodytes(Pt_H2QUS6), Rattus norvegicus(Rn_D3ZQG3), Sus scrofa(Sc_F1RKC2), Xenopus tropicalis(Xt_F6SXC6), Xenopus tropicalis(Xt_Q6DEX,Q6DEX4). The TMDs are highlighted according to Fig.11.

3.2 Disease Mutation R85H in RHBDD2

Figure 13 Generation of RHBDD2-expressing cell lines and determining the effect of RHBDD2 overexpression on induction of ER stress
(A) WT RHBDD2 and R85H mutant RHBDD2 with a triple HA tag on their C termini were inserted into pLEX MCS plasmid. The point mutagenesis was performed using KOD Hotstart Polymerase. (B) Cell lines were generated by lentiviral transduction. Viruses were made in HEK cells with packaging plasmid psPAX2, envelope plasmid VSVG and 4 different types of long terminal repeat (LTR) plasmids: pLEX MCS plasmid (empty vector), pLEX MCS plasmid inserted with WT RHBDD2 plus triple HA tag (WT), pLEX MCS plasmid inserted with R85H RHBDD2 mutation plus triple HA tag (R85H) and pSin plasmid inserted with GFP linked TGFa. One set of mock experiment without the LTR plasmid was fulfilled as well. Five sets of lentivirus were transfected into mouse RPE cells and HEK cells. The efficiency of transfection was first visualized by GFP. Then to select for the pLEX MCS-based plasmids, the positive cells were selected by adding Puromycin to the growth medium. In the end, three cell lines were generated, harbouring pLEX MCS, WT RHBDD2 and R85H mutation in RPE cells. (C) Western blots of cell line lysates mentioned in (B). (D) Western blots of three RPE cell line lysates after 8 h drug treatment (thapsigargin(Tg), tunicamycin(Tm) and Brefeldin-A(BreA)) to induce ER stress. The blots were probed with antibodies specific to CHOP, transcriptional targets of the UPR. The blots were probed with actin antibody as a loading control.

As described in the Introduction, Almedli and colleagues identified a mutation within RHBDD2, R85H, that is associated with retinitis pigmentosa ${ }^{16}$. I reasoned that understanding the phenotype elicited by mutant RHBDD2 may help to elucidate the basis of its contribution to disease, as well as potentially help reveal the normal function of WT RHBDD2.

To examine how the R85H mutation affects RHBDD2 function, I generated overexpression constructs for WT and Mutant RHBDD2 incorporating a triple HA tag at the C terminus. These were cloned into a lentiviral expression vector pLEX MCS (Fig.13A and Fig.13B). These constructs, plus the empty vector (EV), were used to produce lentivirus in HEK cells; the resultant virus was then used to infect both mouse RPE (retinal pigment epithelium) cells, which were selected for puromycin resistance. RPE cells were selected because Almedli and colleagues showed that RHBDD2 is highly expressed in retina ${ }^{16}$. This is consistent with mRNA expression data from bioGPS ${ }^{64}$, a public gene expression database (Fig.14). Using these cell lines, I could determine whether the R85H mutant is mislocalized, degraded within the ER, and if this results in triggering the UPR. The implication of this hypothesis would be that the pathology in patients harboring the R85H mutation is caused by photoreceptor loss triggered by unscheduled ER Stress.

Comparing the lysates from RPE cells expressing vector, RHBDD2 WT and RHBD2 mutant, probed with α-HA antibody and an α-RHBDD2 antibody 7RC16, the expression of WT RHBDD2 and R85H were equivalent in RPE cells (Fig.13C).

As one possibility is that the R85H mutation may render RHBDD2 misfolded, thereby triggering the UPR(unfolded protein response). To assess the sensitivity to the UPR, I used three different drugs to induce ER stress in the RPE cell lines (Fig.13D). Thapsigargin (Tg) triggers ER stress by interfering with calcium homeostasis (it blocks the SERCA calcium pump) in the ER thereby inducing the UPR; tunicamycin (Tm) inhibits N -glycosylation thereby induces the UPR; Brefeldin A (BFA) blocks ER-to-Golgi transport hence induces ER stress and Golgi fragmentation. The RPE cell lysates were made from cells treated with Tg , Tm or BFA for 8h. The blots were probed for transcriptional target of the UPR (CHOP) and the protein level were normalized by actin. As shown in Fig.13D, there is no evidence of constitutive induction of the UPR in cells expressing the

Figure 14 RHBDD2 expression level in different mouse tissues
The data was obtained from bioGPS ${ }^{64}$ in mouse tissues.

R85H (without drug treatment) compared to vector or WT RHBDD2-expressing cells. CHOP expression levels among these cell lines shows minimal differences
in three drug treatments. A slight difference of CHOP induction was observed in Tm treatment.

All above, there is no degradation of R85H mutated protein or constitutive induction of the UPR in the mutant cell line could cause the disease. The slight difference of CHOP induction needs to be further confirmed by examining other UPR transcriptional target (Park, ATF6, ATF4, etc.). However, as there was no evidence that constitutive expression of the R85H mutant triggered ER stress, this argues against substantial misfolding of the mutant.

3.3 Localization of WT and R85H RHBDD2

I next examined the localization of WT vs mutant RHBDD2 by immunofluorescence. Notably, both WT and mutant protein was detected expressing in virtually 100% of the stably expressing cells (data not shown). EV, WT and R85H RPE cells were fixed and labelled with anti-HA antibodies (to detect RHBDD2 WT or R85H), the ER marker Calreticulin or the cis-Golgi marker GM130. Compared to the Hela cells used below, RPE cells are very flat and extended cells, thus the organelle structures are easier to identify. Twenty stacks were captured in each field, which is enough to cover the depth of the whole cell. Eight decentralized fields on each coverslip were captured to assess the localization of RHBDD2 WT or R85H. Cells were deconvoluted and semi-quantified by colocalization. Images were adjusted by Fiji to visualize the signals. Note that all the statistical analysis was done on the original data.

Imunofluorescence analysis of the localization of WT RHBDD2 and R85H suggested a Golgi-like localization (Fig.15A). In the merge channel, the green signal of GM130 overlapped substantially with the red signal of WT RHBDD2 or R85H; by contrast, there appeared almost no colocalization with calreticulin. To quantitate this observation, I next used Pearson's coefficient (r) to assess the colocalization level (Fig.15B). Compared with the EV cell line and the calreticulin marked cells, it is obvious that WT and R85H RHBDD2 colocalized with GM130 with a high Pearson's coefficient (Fig.15B). These data confirmed that RHBDD2

WT and R85H are colocalized much more substantially with GM130 and hence localize to the Golgi apparatus. Because I was unable to obtain reliable medial and trans-Golgi marker antibodies, I was unable to ascertain whether RHBDD2 is preferentially enriched in a specific sub-compartment of the Golgi apparatus, for example, the cis-Golgi, as reported. Nonetheless, these data suggest that WT and mutant RHBDD2 both localize to the Golgi. Moreover, it implies that the disease phenotype caused by R 85 H is not the result of retention/degradation of the
mutant in the ER. It also suggests that RHBDD2 R85H mutant does not cause ER stress, implying that ER stress is unlikely to be the cause of photoreceptor loss in the RP patients.

3.4 Generation of Knockout Mice

One approach to define the function of RHBDD2 is to generate knockout (KO) mice harbouring a null mutation for RHBDD2 and assess the phenotype of the resulting mutant animals. Although much of this lies outside of the timescale of this thesis, contemporary gene editing techniques based on CRISPR/Cas9 make the initial design and gene targeting approaches feasible. Considering the expression levels of RHBDD2 in different tissues in mice (Fig.14), as RHBDD2 is highly expressed in the retina and brain, phenotypic defects may be anticipated in those tissues in KO mice.

A knockout strategy was designed based on CRISPR to generate mice harboring a null mutation for RHBDD2. As shown in Figure 16A, the mouse RHBDD2 gene has 4 coding exons. To prematurely terminate synthesis of RHBDD2 protein as early in the coding sequence as possible, we designed a homology directed repair based strategy to insert three stop codons, plus a restriction site (KpnI, to aid in genotyping the founder animals), into the first exon. The introduction of premature stop codons more than 50 bp upstream of the last exon-exon boundary is predicted to trigger degradation of the mRNA via non sense mediated decay ${ }^{53}$. However, as an additional failsafe, to avoid the possibility that a stable mutant mRNA may result, a 26 amino acid region was left intact before insertion of the premature stop codons. During translation of a resultant stable mutant mRNA, the presence of this small encoded polypeptide should prevent the ribosome reinitiating at a subsequent downstream initiator methionine ${ }^{54}$. Hence the prediction is that even if the mutant mRNA is stable, a small polypeptide (Figs.16B, 16C) comprising only the cytoplasmic N-terminus of RHBDD2 and a small fragment of the first TMD will be produced. Hence, this fragment completely lacks the core rhomboid domain, is highly unlikely to enter
the sec61 translocon (hence translocate into the membrane), and is therefore highly unlikely to retain significant function.

B
WT RHBDD2 sequence
MAAPGPASRFWCSCPEVPSATFFTALLSLLVSGPRLFLLQPPLAPSGLSLRSEALRN WQVYRLVTYIFVYENPVSLLCGAIIIWRFAGNFERTVGTVRHCFFTLIFTVFSAIIY LSFESVSSLSKLGEVEDARGFTPVAFAMLGVTSVRSRMRRALVFGVVVPSVLVPWLL LCASWLIPQTSFLSNVSGLLIGLSYGLTYCYSLDLSERVALKLDQKFPFSLMRRIPL FKYISGSSAERRAAQSRRLNPAPGSYPTQSCHPHLTPSYPVTQMQHASGQKLASWPP GHMPSLPPYQPASGLCYVQNHFGPNPNASSVYPASAGTSQGVQPPSPISCPGTVYSG ALGTPGATGSKESSKVAMP

KO RHBDD2 remaining sequence
MAAPGPASRFWCSCPEVPSATFF

Remaining sequence

Figure 16 Design of CRISPR KO mice
(A) Schematic of RHBDD2 gene that shows 4 coding exons. Three stop codons and a KpnI restriction site were inserted into the first exon with 26 amino acid region left intact before insertion. (B) Amino acid sequences for WT RHBDD2 and the remaining sequence after RHBDD2 KO. (C) Schematic of WT RHBDD2 protein structure and the remaining structure after RHBDD2 targeting.

Guide RNA (gRNA) sequences were designed using a CRISPR prediction resource ${ }^{63}$ and one of these was chosen for cloning into the gRNA basic plasmid (a gift from Dr. Moises Mallo) (Supplementary Fig.S1). To achieve homology-directed repair, three components were required: the gRNA, which was in vitro transcribed from the gRNA basic plasmid, an mRNA encoding Cas9 protein, plus the 200 bp homology directed repair template mentioned above, synthesized as a single stranded DNA oligo (Fig.17A).

As described above, the combination of Cas9 and gRNA trigger a double stranded DNA break at a site 3-4 base pair upstream of the PAM sequence ${ }^{49}$. The 200 bp homology template incorporating 5' and 3' homology arms on either side of the triple stop codon and KpnI restriction site (Fig.17A). Afterward, the plasmid and homology template were injected into a fertilized egg in the IGC's
transgenics facility.

A

CRISPR Procedure

B

Screening Procedure

Figure 17 Generation of RHBDD2
D
 KO mice
(A) Guide RNA sequences were designed using online prediction tool63 and the most proper one was cloned into gRNA basic plasmid (Supplementary Fig.S1). The 200 bp homology template with three stop codons and KpnI restriction site in the middle was synthesized by IDT DNA Ultramer Oligos. These constructs were microinjected into fertilized oocytes by Ana Nóvoa in IGC transgenics facility and transferred into pseudopregnant mice at 1-cell stage. (B) Four screening primers were designed to genotype the CRISPR mice.
Two outer primers (red) would amplify 244 bp PCR products from WT RHBDD2 and 259 bp PCR products from the mutant RHBDD2 with the specific insertion. Another genotype strategy is to use the inner primers (blue) - primer $1+$ primer 4 and primer 3 + primer 2. These two pairs of primer would only amplify the mutant RHBDD2, namely no PCR products from WT RHBDD2. (C) PCR products of DNA extracted from five putative founder mice were loaded in 4% agarose gel. The arrow heads indicate bands of higher molecular weight in addition to WT bands. (D) The same PCR products in (C) were heated to $95^{\circ} \mathrm{C}$ and slowly cool down to room temperature then loaded in 8% acrylamide gel. (E) Agarose gel shows the PCR products of DNA extracted from nine pups of the second targeting experiment, using primer 3 and primer 2.

Five animals were born and died on the first day of birth. Five tails were collected to extract DNA for the screening test (Fig.17B). The 'outer' pair of screening primers (primer 1 and primer 2) were designed to anneal to an area on either side, outside of the homology template. If targeting were successful, PCR should amplify a 244 bp DNA product in WT mice and a 259 bp product in KO mice (Fig.17B). The inner primer pairs, identical forward and reverse primers identifying the mutant insertion sequences, primer 1 and 4 , detect a 151 bp product in KO mice, while primer 3 and primer 2 produce a 147 product. These two pairs of primers should not produce PCR products from DNA from WT animals. Using the combination of primer pair 1 and 2'outer', on 4\% agarose gel, all five founders had a WT allele band whereas two of them (founder 1 and founder 3) had an additional band of higher molecular weight (Fig.17C). It was not possible to detect the product encoded by the homology template using either combination of the 'inner' and 'outer' primers (data not shown). This suggested that the presence of INDELs accounts for the molecular weight difference. To investigate this possibility further, PCR products were heated to $95^{\circ} \mathrm{C}$ for 5 mins to denature double stranded DNA, then they were slowly cooled down to room temperature to randomly anneal with each other. Hence, products containing a wild type strand annealed to a strand harbouring indels can be created under these conditions. Subsequently, the products were electrophoresed on an 8\% acrylamide gel, which has a very high resolving power for small fragments of DNA (Fig.17D). Consistent with the results above obtained with standard agarose electrophoresis, all five founders had banding patterns identical to the WT products. However, the DNA from founder 1 and founder 3 exhibited different additional bands, indicating they harboured INDELs and were hence heterozygous at the RHBDD2 locus.

The experiment was repeated and 17 putative founders were obtained. These founders were screened by Emma Burbridge (IGC, membrane traffic group). This analysis revealed that two founder animals (№2, №8) harboured the desired mutation, as indicated by the ability of primers 2 \& 3 to recognize the mutant product (Fig 17.E). This was further confirmed by DNA sequencing, which indicated that indeed the correct targeting event had occurred.

Notably, screening genomic DNA from these two founder animals using the
outer primers (Fig.17B, primers 1\&2) revealed only a WT band. This indicates firstly that the animals are certainly heterozygous at the RHBDD2 locus. As the mutant allele cannot be easily amplified with the outside primers $1 \& 2$ (Fig. 17B) that can also recognize the WT allele, this could suggest that the mutant animals are chimeric and that only a minority of the tissue contributing to the genomic DNA sample harbours the mutant allele. Nonetheless, these founders have now been setup to breed with WT mice to screen for germline transmission of the mutant allele, in order to ultimately generate RHBDD2 null animals.

3.5 Identification of RHBDD2 interactors

RHBDD2 is a pseudoprotease, therefore it must function by binding to other proteins. However, to date no RHBDD2 interactors have been reported. As it is possible to detect stable binding of iRhoms-also rhomboid-like pseudoproteases- to their client protein TACE ${ }^{30}$ by immunoprecipitation(IP), we should be able to detect physical interactors of RHBDD2 in the same way. Hence, I reasoned that this approach, in identifying RHDD2 interaction partners, could help reveal the physiological function of RHBDD2.

HEK cell lines harbouring either the pLEX.MCS empty vector plasmid, RHBDD2 WT, RHBDD2 R85H, iRhom1, iRhom2, iRhom1 NT(N-terminus), RHBDD3, UBAC2, Unc93b1 were used in three Immunoprecipitation experiments. All proteins were tagged with a triple HA tag.

Cells were exposed to the crosslinker DSP (dithiobis[succinimidyl propionate]) in the first two experiments. The challenge of IPs is to provide buffer conditions sufficiently stringent to minimize non-specific binding. At the same time, the buffer must be gentle enough to permit specific interactions, which is often fulfilled by many weak non-covalent bonds. Hence, cross-linking with DSP was used, a reversible homo-bifunctional chemical crosslinker, that promotes inter-molecular crosslinkeages via primary amines. When DSP is used, following crosslinking, the wash buffer used can be more stringent since the bait and prey are covalently attached, allowing non-specific interactors to be washed away.

Figure 18 Immunoprecipitation (IP)
(A) The IP procedure (details in material and methods section) (B) Western blots of IP with crosslinker. The input and Co-IP samples were loaded in 6% acrylamide gel and probed with anti-HA and anti-TACE antibodies. The right panel is the same membrane with a longer exposure time. (C) Western blots of IP without crosslinker.

Subsequently, the crosslinks can be reversed by treatment with reducing agents. An alternative approach was adopted in a third experiment: this time, cells were not exposed to a crosslinker and hence the resultant IPs were exposed to much milder wash conditions. This dual approach was rationalized by a desire to balance the fact that chemical cross-linking is limited by the availability of free primary amines within a defined chemical space of $12 \AA$, which may not be fulfilled by all genuine interactions. Hence, such interactions may instead be captured under the milder conditions of the non-crosslinking IPs. As described in methods, one-quarter of the co-IP samples were used in the following western blot experiments (Fig.18A). Three-quarters of the co-IP samples were sent to Professor Christopher Gerner, University of Vienna for mass spectrometry experiment.

With or without crosslinker, the western blots results are similar: they demonstrate expression of all overexpressed proteins with triple HA tag and no expression in EV cell lines in Co-IP samples. Although the iRhom1 and iRhom2 expression in Input samples are not visible in Figure 18B and 18C left panel, the expression can be seen with a longer exposure time (Fig.18B and 17C right panel) Detection of TACE indicates that existed in all lysates, but only been pulled down by IP in iRhom1 and iRhom2 sample, was as a positive control.

The compositions of all the hits that uniquely co-precipitated with RHBDD2 and/or R85H were classified based on the subcellular localization. Most of the RHBDD2 unique hits localize to Golgi apparatus in IPs with crosslinker (Fig.19) Note that the "other" section includes proteins from several organelles and cytoplasm). These hits were further classified by their function. Details in Supplementary Table 1~10.

Comparing the unique hits between first and second IP (both done under cross-linking conditions; Fig.19), the total number of hits in second IP is increased, which may due to an enriched protein sample (the second experiment was scaled up by 3 folds). The rough composition however did not change. Two groups of conserved hits (Supplementary Table 6) caught my attention: golgins that are involved in Golgi organization (golgin-160, golgin-84 and golgin-45) and Sec proteins (Sec24A, Sec24B and Sec24D) that are responsible for the COPII vesicle formation. These findings imply that RHBDD2 may play a role in Golgi
organization and COPII dependent ER-to-Golgi anterograde transport.

Figure 19 Pie charts of IPs
The hits that uniquely co-precipitated with RHBDD2 or R85H were first classified by the subcellular localization. The Golgi localized hits were subsequently classified by their function. (Details see Supplementary Table 1~5)

Several inferences can be made concerning the WT versus RHBDD2 mutant immunoprecipitates. First, as shown in Supplementary Table 2~5, there is a large core cohort of proteins that bind mutually to RHBDD2 WT and to the mutant protein. Second, both proteins exhibit a unique binding profile to different sets of proteins found in the WT but not the mutant, and vice versa. Third, the total number of these hits is greater for the WT than the mutant, both in experiments with and without crosslinker. This allows me to make the tentative observation that the point mutation alters the binding specificity for a cohort of interactors; understanding the difference between these two interactors may help reveal the pathological basis of the R85H disease mutation.

Comparing the experiments with and without crosslinker (Fig.19), the number
of Golgi localized hits are reduced in non-crosslinking IPs. Proteins from the nucleus and cytoplasm (and other organelles) are increased in these IPs. This may be attributable due to a milder wash conditions which could have facilitated more non-specific binding of these molecules. However, the Sec16A, Sec23A and Sec24C were captured by this IP, although they are not the same in the crosslinked IPs, they belong to the same family and are components of COPII dependent ER-to-Golgi anterograde transport. Hence, the presence of these COPII components is a common theme.

3.6 Role of RHBDD2 in homeostasis of the Golgi apparatus

Several golgin proteins were identified as specific putative interactors of WT RHBDD2 in both the first and second PI/mass spectrometry experiments: Golgin-160, Golgin-84, Golgin-45 (Supplementary Table 6). As described in introduction, golgins generally function as membrane tethers that form Golgi cisternae, but also play various respective additional roles. Golgin-160 plays a role in Golgi positioning during cell migration in wound response ${ }^{55}$. Golgin-84 captures cis- and trans-Golgi resident proteins to maintain the Golgi homeostasis ${ }^{22}$. Golgin-45 is a interactor of GRASP55, a medial-Golgi matrix protein, which functions in the stacking of Golgi cisternae ${ }^{56}$. As RHBDD2 binds to several Golgins, we hypothesized that RHBDD2 plays a role in the maintenance of Golgi structure or Golgi homeostasis.

A common way in which the contribution of Golgin proteins to Golgi integrity is assessed, involves triggering the disassembly of the Golgi apparatus using the drug BFA then examining the kinetics of Golgi disassembly or reassembly. BFA blocks anterograde trafficking, leading to the eventual collapse of the Golgi apparatus and its coalescence with ER membranes. There are several physiological contexts where Golgi fragmentation is physiologically relevant: during mitosis, when the Golgi apparatus must be partitioned equally into mother and daughter cells; the Golgi also undergoes fragmentation during apoptosis.
A
Isoform 1 MAASGPGCRSWCLCPEVPSATFFTALLSLLVSGPRLFLLOOPLAPSGLTLKSEALRNWOVY RLVTYIFVYENPISLLCGAIIIWRFAGNFERTVGTVRHCFFTVIFAIFSAIIFLSFEAVSS LSKLGEVEDARGFTPVAFAMLGVTTVRSRMRRALVFGMVVPSVLVPWLLLGASWLIPQTSF LSNVCGLSIGLAYGLTYCYSIDLSERVALKLDQTFPFSLMRRISVFKYVSGSSAERRAAOS RKLNPVPGSYPTOSCHPHLSPSHPVSQTOHASGOKLASWPSCTPGHMPTLPPYOPASGLCY VQNHFGPNPTSSSVYPASAGTSLGIOPPTPVNSPGTVYSGALGTPGAAGSKESSRVPMP
Isoform 2 MGRGLWEAWPPAGSSAVAKGNCREEAEGAEDROPASRRGAGTTAAMAASGPGCRSWCLCPE VPSATFFTALLSLLVSGPRLFLLOOPLAPSGLTLKSEALRNWOVYRLVTYIFVYENPISLL CGAIIIWRFAGNFERTVGTVRHCFFTVIFAIFSAIIFLSFEAVSSLSKLGEVEDARGFTPV AFAMLGVTTVRSRMRRALVFGMVVPSVLVPWLLLGASWLIPQTSFLSNVCGLSIGLAYGLT YCYSIDLSERVALKLDQTFPFSLMRRISVFKYVSGSSAERRAAQSRKLNPVPGSYPTOSCH PHLSPSHPVSOTOHASGOKLASWPSCTPGHMPTLPPYOPASGLCYVONHFGPNPTSSSVYP ASAGTSLGIQPPTPVNSPGTVYSGALGTPGAAGSKESSRVPMP
Isoform 3 MLGVTTVRSRMRRALVFGMVVPSVLVPWLLLGASWLIPQTSFLSNVCGLSIGLAYGLTYCY SIDLSERVALKLDQTFPFSLMRRISVFKYVSGSSAERRAAOSRKLNPVPGSYPTOSCHPHL SPSHPVSQTOHASGQKLASWPSCTPGHMPTLPPYQPASGLCYVQNHFGPNPTSSSVYPASA GTSLGIQPPTPVNSPGTVYSGALGTPGAAGSKESSRVPMP

	\Rightarrow Primer product length	\Rightarrow Primer product length
Isoform 1	373 bp	308 bp
Isoform 2	495 bp	308 bp
Isoform 3	0 bp	308 bp

Figure 20 siRNA mediated human RHBDD2 knockdown
(A) Sequences and schematic of three isoforms of human RHBDD2. (B) Schematic gene structure of three human RHBDD2 isoforms shows four siRNA targeting site with shadowing area. This pool of four siRNAs were transfected into Hela-GalT-GFP cells to KD RHBDD2. DNA was extracted from these cells and tested by rtPCR using following primers. One pair of primers (blue) was used to amplify all three isoforms at the same size (308 bp). Another pair of primers (red) was used to amplify isoform 1 with 373 bp products and isoform 2 with 495 bp products. The PCR products from 30x and 35 x thermocycles of rtPCR using primers mentioned above were loaded in 2% agarose gel. Primers for amplifying GAPDH was used as a loading control. The arrow indicates the isoform 2 band and the arrow head indicates the isoform 1 band. siRNAs for KD Unc93b1 were transfected to the same cells as a control.

Golgi fragmentation experiments were carried out in Hela-GalT-GFP cells, which stably express GalT, a trans Golgi marker, fused to GFP, enabling Golgi disassembly and assembly to be tracked (a gift from Dr. Jack Rohrer). Limited by timescale, instead of using the CRISPR/CAS9-based knockout strategy (described in methods above), siRNA-mediated knockdown of RHBDD2 was performed in

Figure 21 BFA induced Golgi fragmentation
After 72 h of siRNA transfection, RHBDD2 KD Hela-GalT-GFP cells (mentioned in Fig.18B) were treated with BFA $(0.25 \mu \mathrm{~g} / \mathrm{ml})$ and fixed with 4\% formaldehyde at different time points. Unc93b1 KD hela-GalT-GFP cells were used as a control.
human Hela GalT-GFP cells. Human RHBDD2 has three isoforms. Their amino acid sequences, schematic structure and genomic locus are shown in Figure 20A and 19B. All three isoforms have the same sequences near C terminus (Fig.20A black sequences). Both isoforms 1 and 2 have the Rhomboid domain core (Fig.20A black sequences). Isoform 2 has an additional 45 amino acids at the N terminus (Fig.20A black sequences).

Two pairs of primers were designed to detect mRNA expression level of remaining
RHBDD2 after siRNA-mediated knockdown (a pool of four siRNA oligos, whose targeting sites are in the common area of all three isoforms, was delivered to the cells), via reverse transcriptase PCR (RT-PCR) reactions (Fig.20B). The primers indicated with red arrows can simultaneously detect isoforms 1 and 2 (each has a distinct product length). The primers denoted with blue arrows can detect all three isoforms, with the same product length. 72 hours following siRNA transfection, RNA was isolated and subjected to RT-PCR. The mRNA levels of

GAPDH were used as a loading control. RT-PCR results revealed that isoform 2 (white arrow) normally has much lower abundance than isoform 1 expression (arrow head) in control cells. Isoform 1 expression was evidently reduced by approximately 50% after 72 h post siRNA transfection. The total amount of RHBDD2 was reduced by approximately 70% after 72 h post siRNA transfection. However the isoform 2 band following 35x thermocycle steps is even brighter in the knockdown lane. This can be a result that less primers were occupied by

isoform 1, so isoform 2 got more primers to amplify. There appeared to be a reasonable knockdown at the RNA level. Hence, this knockdown approach was used in the subsequent functional experiments.

RHBDD2 KD and unc93b1 KD Hela-GalT-GFP cells were incubated with BFA $(0.25 \mu \mathrm{~g} / \mathrm{ml})$ to induce Golgi fragmentation. Cells were fixed at different time points to assess the extent of Golgi disassembly (Fig.21). There is no observable difference between the Golgi fragmentation of RHBDD2 KD versus unc93b1 KD cells in all time points.

Figure 22 BFA washout following

 Golgi fragmentationThis experiment followed the procedures described for Figure 19. The first two images on the top are the same images of the last two in Figure 19. Cells were rinsed twice in complete medium for BFA washout and fixed at different time points with 4% formaldehyde.

Because BFA induced blocking of ER-to-Golgi transport is reversible, the assay was adapted to examine the ability of Golgi reassembly in these cells; BFA was washed out by normal medium after a one hour incubation. Then cells were fixed at different time points. Again there is no observable difference between RHBDD2 KD and mock cells in all time points (Fig.22).

Figure 23 Immunofluorescent images for Golgi fragmentation cells
Cells mentioned in Figure 19 and 20 were co-labeled with Calreticulin antibody (ER marker, red) after fixation.

In order to examine the Golgi fragmentation and reassembly more detail, cells were labeled by Calreticulin (ER marker) (Fig.23A). During disassembly, the Golgi marker assumed an ER-like staining pattern over time, consistent with the collapse of the Golgi and its coalescence with the ER, as reported ${ }^{57}$. Using the ER marker as a reference, this was assessed based on a scoring system in which the status Golgi fragmentation was assigned to three categories: no fragmentation, partial fragmentation (remaining a little Golgi apparatus structure; having a perinuclear ER like shape) or total fragmentation, where the Golgi and ER
staining coalesced (Fig.24A). Five randomly selected fields from each coverslip were captured by 40 x lens. Cells in these fields were counted manually and classified into the three Golgi morphology types (Fig.24B). This more detailed assessment also indicated no obvious difference in the level of Golgi fragmentation or Golgi reassembly between RHBDD2 KD and unc93b1 KD cells.

In conclusion, RHBDD2 appeared dispensable in controlling BFA induced Golgi fragmentation and Golgi reassembly. However, it is important to note that this result was based on an incomplete knockdown of RHBDD2. Ideally, cells genetically null for RHBDD2 (for example, obtained from RHBDD2 KO mice or from cells targeted via CRISPR/Cas9) will be used in the future to re-examine this within the context of a complete absence of RHBDD2 protein.

A

B

Figure 24
semi-quantification of Golgi fragmentation and reassembly
(A) A scoring system was set based on the Golgi morphology: no fragmentation - the Golgi structure is complete and showing a strong signal; partial fragmentation - the signal shows both Golgi like and ER like morphology; full fragmentation - the signal shows only a ER like morphology. (B) Five decentralized fields of each coverslip were captured by 40x lens on Leica DMRA2
microscopy. Cells were manually classified and quantified to make the histogram.

4. Discussion

In this project, I focused on elucidating the function of RHBDD2. My work began though by revisiting the membrane topology of RHBDD2. A thorough comparison with the sequences of other Rhomboid superfamily proteins enabled me to predict that RHBDD2 contains six putative transmembrane domains, with cytoplasmic N and C termini (Fig.11C). This prediction is at odds with several prior studies that argue that Derlins have six TMDs ${ }^{50}$, iRhoms and active Rhomboids have seven TMDs ${ }^{51}{ }^{52}$. Time-permitting, my prediction would have been tested experimentally. The presence of five versus six TMDs can be distinguished by determining the accessibility of the C terminus of the protein; by permeabilizing cells expressing RHBDD2 with Triton-X100 (which permeabilizes the plasma membrane and internal membranes) versus Digitonin, which can only permeabilize the plasma membrane. If Digitonin permeabilized cells are accessible to staining with anti-HA antibodies, it implies that the C terminus localizes to the cytoplasm, meaning that RHBDD2 has six TMDs. Conversely, if staining is only achieved following TX-100 permeabilization the RHBDD2 C-terminus is should localize to the Golgi lumen implying that RHBDD2 has five TMDs.

Two major foci of this thesis were (1) to investigate how the RHBDD2 R85H mutant found in some retinitis pigmentosa patients causes disease at a cellular level; (2) to investigate the wild type role of RHBDD2 at the cellular and physiological levels. Dealing firstly with how the R85H mutation causes retinitis pigmentosa, I can conclude that the mutant protein, when overexpressed in mouse retinal pigment epithelial cells, does not trigger a constitutive induction of ER stress. Furthermore, I observed minimal differences in drug induced ER stress in cells expressing WT versus mutant RHBDD2. Clearly, the effects on a number of ER stress-induced pathways and their transcriptional targets of the

UPR (Perk, ATF6, ATF4, etc.) would be needed to assemble a fuller picture. Nonetheless, this allows one to tentatively speculate that the defect observed in the patients may not be caused by cell death of photoreceptors, caused by misfolded mutant RHBDD2 R85H. Immunoflurescence analysis and colocalization experiments demonstrated that the R85H mutatant protein exhibited the same localization-the Golgi apparatus-as the WT RHBDD2 (Fig.15A) Ideally, these comparisons would have been based on the endogenous WT versus RHBDD2 R85H mutated proteins (for example, generated at the endogenous locus, using CRISPR/Cas9) rather than the overexpression model used here. Nonetheless, these data add further weight to the notion that the disease in RP patients may not be due to the ER retention of the mutated protein, again suggesting that ER stress may not explain the disease phenotype.

The second goal of the thesis was to attempt to define the physiological role of RHBDD2. One way in which this was approached was at the organismal level, by attempting to make RHBDD2 null mice. As described, a strategy was adopted to make RHBDD2 K0 mice via CRISPR. In the initial experiment, only five putative founder animals were born, an abnormally small yield of pups from this experimental procedure; unfortunately all pups died. Two of these mice genotyped as heterozygous and three of them as wild type (Fig.17C and 17D). Thus, the death of animals probably cannot be attributed to mutation in RHBDD2, but possibly other sporadic reasons. As discussed above, a second targeting attempt identified two chimeric founder animals harbouring the desired mutation; these will be used to establish an RHBDD2-null colony. Further work will involve characterization of the phenotype of these mutant mice.

In an alternative approach to define the function of RHBDD2, IP/mass spectrometry were performed. The rationale was to immunoprecipitate the binding partners of RHBDD2, subsequently identify those proteins and use this information to hypothesize about the possible function of RHBDD2. These experiments revealed that the Golgins (GM160, Golgin-84, Golgin-45) co-immunoprecipitated with RHBDD2 under crosslinker condition (Supplementary Table 6). As Golgins play a key role as membrane tethers, we hypothesized that RHBDD2 may be involved in the maintenance of Golgi structure or Golgi homeostasis. Components of COPII vesicles (Sec24A, Sec24B
and Sec24D in the crosslinking IPs; Sec16A, Sec23A and Sec24C in the non-crosslinking IPs) were captured under both with or without crosslinker conditions, thus indicating RHBDD2 may paly a role in COPII dependent ER-to-Golgi anterograde transport (Supplementary Table 7). Both golgins and Sec proteins didn't show difference between RHBDD2 WT and R85H samples. However, the total hits number is reduced (Supplementary Table 2,3 and 4,5) in mutant samples, indicating a change in its binding properties, possibly caused by a conformational change in the mutant protein.

To address the role of RHBDD2 in the maintenance of the structure of the Golgi apparatus and in Golgi fragmentation and reassembly experiments, RNAi-based knockdown (KD) experiments were performed. The choice of RNAi as the loss of function approach was dictated by the limited time constraints of the master thesis. The results showed no detectable difference in the kinetics of Golgi disassembly, or assembly, between KD cells and cells treated with a control siRNA. However, considering the modest knockdown efficiency of RHBDD2 (Fig.20B), the lack of phenotype could be explained by incomplete ablation of RHBDD2 at the protein level. Further experiments would ideally be conducted using cells in which RHBDD2 was ablated CRISPR, or using cells isolated from RHBDD2 KO mice.

For more precise experiments, addressing the pathological role of the R85H mutation, it is needed to generate endogenous R85H mutant cell line in order to assess the phathology under endogenous expression conditions.

The physiological role of RHBDD2 remains unknown. Considering the components of COPII vesicles in IP samples (Supplementory Table 1-10), it is worth to test the cargo trafficking in the early secretory pathway. In addition, because TMEM115 has an impact on glycolsylation in Golgi apparatus, it is also worth to further test the lectin binding in KO cells.

5. Abbreviation

ER, endoplasmic reticulum
COPII, coat protein complex II
COPI, coat protein complex I
ERAD, ER-associated degradation
UPR, unfolded protein response
RP, Retinitis Pigmentosa
WT, wild type
EV, empty vector
Tg, thapsigargin
Tm, tunicamycin
BFA, Brefeldin A
CRISPR, clustered regularly interspaced short palindromic repeats
IP, immunoprecipitation
KD, knockdown
TMD, transmembrane domain
REP, retinal pigment epithelium

6. References

1. Howell, G. J., Holloway, Z. G., Cobbold, C., Monaco, A. P. \& Ponnambalam, S. 1-69 (Elsevier, 2006).
2. Adrain, C. \& Freeman, M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 6, (2014).
3. Jahn, T. R. \& Radford, S. E. The Yin and Yang of protein folding. FEBS J 272, 5962-5970 (2005).
4. Ellgaard, L. \& Helenius, A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4, 181-191 (2003).
5. Spang, A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5, (2013).
6. Appenzeller-Herzog, C. \& Hauri, H. P. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119, 2173-2183 (2006).
7. Vembar, S. S. \& Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944-957 (2008).
8. Pickart, C. M. Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533 (2001).
9. Greenblatt, E. J., Olzmann, J. A. \& Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18, 1147-1152 (2011).
10. Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129, 943-955 (2007).
11. Schekman, R. Cell biology: a channel for protein waste. Nature 429, 817-818 (2004).
12. Araki, E., Oyadomari, S. \& Mori, M. Endoplasmic reticulum stress and diabetes mellitus. INTERNAL MEDICINE-TOKYO-JAPANESE SOCIETY OF INTERNAL MEDICINE- 42, 7-14 (2003).
13. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13, 89-102 (2012).
14. Ahmedli, N. B. et al. Dynamics of the rhomboid-like protein RHBDD2 expression in mouse retina and involvement of its human ortholog in retinitis pigmentosa. J Biol Chem 288, 9742-9754 (2013).
15. Pelham, H. R. \& Rothman, J. E. The debate about transport in the Golgi--two sides of the same coin? Cell 102, 713-719 (2000).
16. Klumperman, J. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 3, (2011).
17. Alcalde, J., Bonay, P., Roa, A., Vilaro, S. \& Sandoval, I. V. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. The Journal of cell biology 116, 69-83 (1992).
18. Slusarewicz, P., Nilsson, T., Hui, N., Watson, R. \& Warren, G. Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 124, 405-413 (1994).
19. Ramirez, I. B. \& Lowe, M. Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20, 770-779 (2009).
20. Wong, M. \& Munro, S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346, 1256898 (2014).
21. Mayer, U. \& Nusslein-Volhard, C. A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2, 1496-1511 (1988).
22. Urban, S. \& Wolfe, M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proceedings of the National Academy of Sciences of the United States of America 102, 1883-1888 (2005).
23. Lemberg, M. K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. The EMBO journal 24, 464-472 (2005).
24. Lemberg, M. K. \& Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome research 17, 1634-1646 (2007).
25. Ong, Y. S., Tran, T. H., Gounko, N. V. \& Hong, W. TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport. J Cell Sci 127, 2825-2839 (2014).
26. McIlwain, D. R. et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232 (2012).
27. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. \& Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79-91 (2011).
28. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nature cell biology 14, 93-105 (2012).
29. Sawalha, A. H. et al. A putative functional variant within the UBAC2 gene is associated with increased risk of Behçt' disease. Arthritis \& Rheumatism 63, 3607-3612 (2011).
30. Fleig, L. et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol Cell 47, 558-569 (2012).
31. Liu, J. et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat Immunol 15, 612-622 (2014).
32. Lacunza, E. et al. Identification of signaling pathways modulated by RHBDD2 in breast cancer cells: a link to the unfolded protein response. Cell Stress Chaperones 19, 379-388 (2014).
33. Lacunza, E. et al. RHBDD2: a 5-fluorouracil responsive gene overexpressed in the advanced stages of colorectal cancer. Tumour Biol 33, 2393-2399 (2012).
34. Jiang, H., Xiong, S. \& Xia, X. Retinitis pigmentosaassociated rhodopsin mutant T17M induces endoplasmic reticulum (ER) stress and sensitizes cells to ER stress-induced cell death. Mol Med Rep 9, 1737-1742 (2014).
35. Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 103, 27-37 (1999).
36. Hamel, C. Retinitis pigmentosa. Orphanet J Rare Dis 1, 40 (2006).
37. Mendes, H. F., van der Spuy, J., Chapple, J. P. \& Cheetham, M. E. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185 (2005).
38. ZY. The CRISPR Craze. (2013).
39. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
40. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
41. Greenblatt, E. J., Olzmann, J. A. \& Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18, 1147-1152 (2011).
42. Lemberg, M. K. \& Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res 17, 1634-1646 (2007).
43. Urban, S. \& Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11, 1425-1434 (2003).
44. Adrain, C. \& Freeman, M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 13, 489-498 (2012).
45. Short, B. et al. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol 155, 877-883 (2001).
46. Sohda, M. et al. The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8, 270-284 (2007).
47. Klausner, R. D., Donaldson, J. G. \& Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116, 1071-1080 (1992).
48. Howell, G. J., Holloway, Z. G., Cobbold, C., Monaco, A. P. \& Ponnambalam, S. 1-69 (Elsevier, 2006).
49. Adrain, C. \& Freeman, M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 6, (2014).
50. Jahn, T. R. \& Radford, S. E. The Yin and Yang of protein folding. FEBS J 272, 5962-5970 (2005).
51. Ellgaard, L. \& Helenius, A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4, 181-191 (2003).
52. Brandizzi, F. \& Barlowe, C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14, 382-392 (2013).
53. Spang, A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5, (2013).
54. Appenzeller-Herzog, C. \& Hauri, H. P. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119, 2173-2183 (2006).
55. Vembar, S. S. \& Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9, 944-957 (2008).
56. Pickart, C. M. Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533 (2001).
57. Greenblatt, E. J., Olzmann, J. A. \& Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18, 1147-1152 (2011).
58. Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129, 943-955 (2007).
59. Schekman, R. Cell biology: a channel for protein waste. Nature 429, 817-818 (2004).
60. Araki, E., Oyadomari, S. \& Mori, M. Endoplasmic reticulum stress and diabetes mellitus. INTERNAL MEDICINE-TOKYO-JAPANESE SOCIETY OF INTERNAL MEDICINE- 42, 7-14 (2003).
61. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13, 89-102 (2012).
62. He, L., Skirkanich, J., Moronetti, L., Lewis, R. \& Lamitina, T. The cystic-fibrosis-associated DeltaF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3. Dis Model Mech 5, 930-939 (2012).
63. Ahmedli, N. B. et al. Dynamics of the rhomboid-like protein RHBDD2 expression in mouse retina and involvement of its human ortholog in retinitis pigmentosa. J Biol Chem 288, 9742-9754 (2013).
64. Boden, G. Endoplasmic reticulum stress: another link between obesity and insulin resistance/inflammation? Diabetes 58, 518-519 (2009).
65. Malhotra, V. \& Mayor, S. Cell biology: the Golgi grows up. Nature 441, 939-940 (2006).
66. Pelham, H. R. \& Rothman, J. E. The debate about transport in the Golgi--two sides of the same coin? Cell 102, 713-719 (2000).
67. Klumperman, J. Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 3, (2011).
68. Alcalde, J., Bonay, P., Roa, A., Vilaro, S. \& Sandoval, I. V. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. The Journal of cell biology 116, 69-83 (1992).
69. Wong, M. \& Munro, S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346, 1256898 (2014)
70. Slusarewicz, P., Nilsson, T., Hui, N., Watson, R. \& Warren, G. Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 124, 405-413 (1994).
71. Ramirez, I. B. \& Lowe, M. Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20, 770-779 (2009).
72. Chen, Y. A. \& Scheller, R. H. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2, 98-106 (2001).
73. Mayer, U. \& Nusslein-Volhard, C. A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2, 1496-1511 (1988).
74. Urban, S. \& Wolfe, M. S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proceedings of the National Academy of Sciences of the United States of America 102, 1883-1888 (2005).
75. Wu, Z. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol 13, 1084-1091 (2006).
76. Lemberg, M. K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. The EMBO journal 24, 464-472 (2005).
77. Adrain, C. \& Freeman, M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 13, 489-498 (2012).
78. Lemberg, M. K. \& Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome research 17, 1634-1646 (2007).
79. Xu, B. et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem 275, 16795-16801 (2000).
80. Ong, Y. S., Tran, T. H., Gounko, N. V. \& Hong, W. TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport. J Cell Sci 127, 2825-2839 (2014).
81. McIlwain, D. R. et al. iRhom 2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 335, 229-232 (2012).
82. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. \& Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79-91 (2011).
83. Lloyd, S. J., Raychaudhuri, S. \& Espenshade, P. J. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast. J Biol Chem 288, 21043-21054 (2013).
84. Christianson, J. C. et al. Defining human ERAD networks through an integrative mapping strategy. Nature cell biology 14, 93-105 (2012).
85. Sawalha, A. H. et al. A putative functional variant within the UBAC2 gene is associated with increased risk of Behçt' disease. Arthritis \& Rheumatism 63, 3607-3612 (2011).
86. Fleig, L. et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol Cell 47, 558-569 (2012).
87. Liu, J. et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nat Immunol 15, 612-622 (2014).
88. Wang, Y. et al. A novel member of the Rhomboid family, RHBDD1, regulates BIK-mediated apoptosis. Cell Mol Life Sci 65, 3822-3829 (2008).
89. Lacunza, E. et al. Identification of signaling pathways modulated by RHBDD2 in breast cancer cells: a link to the unfolded protein response. Cell Stress Chaperones 19, 379-388 (2014).
90. Lacunza, E. et al. RHBDD2: a 5-fluorouracil responsive gene overexpressed in the advanced stages of colorectal cancer. Tumour Biol 33, 2393-2399 (2012).
91. Hamel, C. Retinitis pigmentosa. Orphanet J Rare Dis 1, 40 (2006).
92. Mendes, H. F., van der Spuy, J., Chapple, J. P. \& Cheetham, M. E. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11, 177-185 (2005).
93. Jiang, H., Xiong, S. \& Xia, X. Retinitis pigmentosaassociated rhodopsin mutant T17M induces endoplasmic reticulum (ER) stress and sensitizes cells to ER stress-induced cell death. Mol Med Rep 9, 1737-1742 (2014).
94. ZY. The CRISPR Craze. (2013).
95. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
96. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
97. Greenblatt, E. J., Olzmann, J. A. \& Kopito, R. R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 18, 1147-1152 (2011).
98. Lemberg, M. K. \& Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res 17, 1634-1646 (2007).
99. Urban, S. \& Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11, 1425-1434 (2003).
100. Lykke-Andersen, J., Shu, M. D. \& Steitz, J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121-1131 (2000).
101. Kozak, M. Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29, 5226-5232 (2001).
102. Darido, C. \& Jane, S. M. Golgi Feels Its Own Wound. Adv Wound Care (New Rochelle) 2(3), 87-92 (2013).
103. Short, B. et al. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol 155, 877-883 (2001).
104. Klausner, R. D., Donaldson, J. G. \& Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116, 1071-1080 (1992).
105. http://www.ebi.ac.uk/Tools/msa/clustalo/
106. http://www.ebi.ac.uk/Tools/msa/muscle/
107. http://www.ebi.ac.uk/Tools/msa/tcoffee/
108. http://www.uniprot.org
109. http://topcons.cbr.su.se
110. http://crispr.mit.edu/
111. http://biogps.org/\#goto=genereport\&id=215160
112. Terns, M. P. \& Terns, R. M. CRISPR-based adaptive immune systems. Curr Opin Microbiol 14, 321-327 (2011).

7. Supplemantary Information

Figure S1 Map of gRNA basic plasmid

```
Dr. Moisés Mallo
Instituto Gulbenkian de Ciência
Rua da Quinta Grande, }
2780-156 Oeiras
Portugal
Email: mallo@igc.gulbenkian.pt
    TYPE:
    BOX:
    POSITION:
Made by: MORSES milllo
Date: 7-10-2013
Plasmid Name: y RNA balic
Description: The sequence contrung the kiad RNit (er CRISPE, cloned into
```



```
                        anb the BuSI site
Size:
```



```
PstI \(\quad\) T7 promoter BbsI BbsI
CTGCAG 1 AATACGACTCACTATAGGGacGTCTTCGAGAAG
CTGCAGMAATACGACTCACTATAGGGacGTCTTCGAGAAGACCtGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTA
```



```
GACGTCATTATGCTGAGTGATATCCCtgCAGAAGCTCTTCTGgaCAAAATCTCGATCTTTATCGTTCAATTTTATTCCGATCAGGCAAT
FspI BamHI
TCAACTTGAAAAAGTGGCACCGAGTCGGTGCGCAGGATCC
```



```
agTtGAactttttcaccgtgactcagccaccoctcctac
General structure of gRNAs
AGGGNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNCAAA

To use it, desing primers with the structure shown above, clone into the BbsI site and confirm by sequencing with SP6. Then cut with FspI and transcribe with T7

\section*{Abbreviation for following tables:}

G, Golgi apparatus; N, nucleus; C, cytoplasm; Ex, extracellular; M, membrane; Mi, mitochondria; IC, intermediate compartment between ER and Golgi; CM, cell membrane; NM, nucleus membrane; A , autophagosome; E , endosome; L , lysosome; Ph , phagosome; SP , spindle pole; P , peroxisome; Me , melanosome
\begin{tabular}{|c|c|c|c|c|c|}
\hline First IP
Accession & Prot & \(|\)\begin{tabular}{c} 
\#Peptides \\
with \\
wross \\
er RHB ink \\
er
\end{tabular} & TuD \({ }^{1}\) & \[
\left|\begin{array}{c}
\text { localizat i } \\
\text { on }
\end{array}\right|
\] & function \\
\hline Q77TS9 & Dymeclin & 1 & \({ }^{6}\) & 6; C & Golgi organization; bone developmer \\
\hline 008378 & Golg in subfamily A menber 3 (golgin-160) & 2 & 0 & 6; C & Golgi organization \\
\hline Q15643 & Thyroid receptor-interacting protein 11 & 2 & 0 & 6; C & Golgi organization; enhances THRB-modulated transcriptic \\
\hline Q887TY3 & Conserved oli gomeric Golgi complex subunit 1 & 1 & 0 & G & Golgi organization; intra-Golgi transport \\
\hline 014746 & Conserved oli gomeric Golgi complex subunit 2 & 1 & 0 & G & Golgi organization; intra-Golgi transport \\
\hline O9Y2V7 & Conserved oli gomeric Golgi complex subunit 6 & 1 & 0 & G & Golgi organization; intra-Golgi transport \\
\hline Q87TBA6 & Golgin subfanily A member 5 (golgin-84) & \({ }^{13}\) & 1 & \(\mathrm{G}^{\text {G }}\) & Golgi organization; intra-Golgi transport \\
\hline Q992299 & Golg in-45 & 3 & 0 & 6 & Golgi organization; anterograde transport \\
\hline P20340 & Ras-related protein Rab-6A & 1 & 0 & Golgi & Goolgi organization; Golgi-to-ER retrograde transport; endosome-to-Golgi retrograde transport \\
\hline 015363 & Transmembrane emp24 domain-containing protein 2 & 1 & 2 & G; ER; IC & Golgi organization; CopI and CopII dependent transport; Golgi-to-plasma menbrane transport \\
\hline 095159 & Zinc finger protein-like 1 & 1 & 1 & \({ }_{6}\) & Golgi organization; interacts with GM1130; ER-to-Golgi transport \\
\hline 994878 & Gol gi reassembly-stacking protein 2 & 2 & 0 & \({ }^{6}\) & Golgi organization; intracellular transport; lipid-anchor \\
\hline Q94446 & Golgi phosphoprotein 3 & 1 & 1 & G; Mi & Golgi organi zation; Golgi-to-plasma menbrane transport; Local ization of Golgi enzyme \\
\hline Q9BeQ3 & Gol gi reassembly-stacking protein 1 & 1 & 0 & & Golgi organization; interacte with GM130, mediate docking of transport vesic les \\
\hline 996L58 & Beta-1,3-galactosyl transferase 6 & 1 & 1 & \({ }_{6}\) & gly cosylation; Beta-1, 4-galactosyltransferase \\
\hline Q94BV7 & Beta-1, 4-galactosy 1 transferase 7 & 1 & 1 & \({ }^{\text {G }}\) & glycosylation; Beta-1, 4-galactosyl transferase \\
\hline Q81752 & Chondroit in sulf fate synthase 2 & 1 & 1 & G & glycosylation; metal binding transferase \\
\hline 075063 & Gly cosamin og l ycan xy losy l k inase & 1 & 1 & \({ }_{6}\) & glycosylation; regulate the amount of mature \(\mathrm{GAG}^{\text {(sulfat }}\) \\
\hline 060476 & Nannosyl1-oli i gosacchar ide 1, 2 -al pha-mannos i dase IB & 1 & 2 & \(\mathrm{G}^{6}\) & gly cosylation; Asn-1i inked oli itosacchar ides \\
\hline 010471 & Poly ypept tide N -acety 1 galac tosaminy 1 trans ferase 2 & 1 & 1 & 6 & glycosylation; 0 -1 inked ol i gosachar ide biosynthes is \\
\hline O6P996 & Pyri doxal-dependent decarboxylase domain-containing prote in 1 & 1 & 0 & \({ }^{\text {b }}\) & gly 1 cosyl lation; carboxy- lyase act ivity \\
\hline Q8ivel & Soluble calc ium-act ivated nucleoti idase 1 & 1 & 1 & ER; G & gly cosylation; calc ium-dependent nucleotidase with a preference for UDP \\
\hline Q12893 & Transmembrane protein 115 & 1 & 6 & 6 & glycosylation; Golgi-to-ER retrograde transport \\
\hline 977392 & Traff ficking protein part icle complex subunit 11 & 1 & 0 & \({ }^{6}\) & ER-to-Golgi transport \\
\hline 093617 & Trafficking protein particle complex subunit 3 & \(\stackrel{2}{1}\) & 1 & \({ }_{\text {ER; }}^{\text {Ef }}\) G & \({ }^{\text {ER-to-Golgi }}\) transport \\
\hline Q8IUR0 & Trafficking protein particle complex subunit 5 & 1 & 1 & ER; 6 & ER-to-Golgi transport \\
\hline Q8TD16 & Protein bicaudal D homolog 2 & 1 & 0 & 6; C & CoPI independent Gol gi-to-ER retrograde transport \\
\hline 095249 & Golg gi SNAP receptor complex member 1 & \(\stackrel{2}{1}\) & 1 & \({ }_{6}\) & intra-Golgi; ER-to-Golgi transport; belongs to t-SXAREs \\
\hline Q96, J3 & Pleckstrin homology domain-containing fanily A member 8 & 1 & 0 & 6; C & Golgi-to-plasma membrane transport \\
\hline Q9P2219 & yntaxin-18 & 1 & 1 & ER; G & Col I i-to-ER retrograde transport \\
\hline P82094 & TATA element modulatory factor & 3 & 0 & G; C; N & RAB6-dependent retrograde transport (Golg i -to-ER and endosome-to-Gol gi retrograde transport) \\
\hline Q5VIR6 & Vacuolar protein sorti ing associated protein 53 homolog & 1 & 0 & 6; E & endosome-to-trans-Gol gi transport; endoytic recycl i ing \\
\hline Q94445 & Gol gi phosphoprotein 3-1 ike & 1 & 1 & 6 & antagoize Golgi-to-plasma menbrane transport \\
\hline Q99Z52 & ADP-ribosylation factor-binding protein GGA3 & 1 & 0 & G & protein sorting \\
\hline P98194 & Calc ium-transport ing ATPase type 2C member 1 & 3 & 10 & \({ }^{6}\) & magnes ium-dependent ATPase act ivity coupled with the transport of calcium \\
\hline 092896 & Golgi apparatus protein 1 & 2 & 2 & \({ }_{6}\) & binds fibrobast growth factor and E-selectin \\
\hline 002818 & Nucl eobindin-1 & 2 & 1 & 6; C & calcium honeostasis of Golgi \\
\hline Q8IUH4 & Palmit oyl 1 ransferase Z ZDHCC13 & 1 & 6 & 6 & maagnesium transport; palmi toyltransferase for HD and GAD2 \\
\hline Q98ZC1 & Ras-related protein Rab-34 & 1 & 0 & G; Ph; C & Iocal ization of lysosomes; maturation of phagosomes; protein transport \\
\hline Q8VFAO & Ubi quit in carboxyl-terminal hydrolase 32 & 3 & \({ }^{0}\) & 6; M & ubiquit i inat ion \\
\hline Q8TAD4 & Zinc transporter 5 & 2 & 16 & 6 & zinc transporter that transports zinc into Golgi lumens \\
\hline Q92538 & Gol gi-specific brefeldin A -resistance guanine nucleotide exchange factor & 3 & 1 & 6; IC & Golgi organization; CopI dependent retrograde transport \\
\hline Q12907 & Vesi icular integral-membrane protein VIP36 & 1 & 2 & G; ER; IC & glycosylation; transport and sorting of glycoproteins; interacts with glyc \\
\hline Q96kC9 & N-terminal kinase-1 ike protein & 1 & & 6; IC; C & CopI dependent retrograde transport \\
\hline \({ }^{095486}\) & Protein transport protein Sece24A & 8 & 0 & \({ }_{\text {G; ER; IC }}\) C. & COPII dependent anterograde transport \\
\hline 095487 & Protein transport protein Sec24B & 7 & 0 & G; ER; IC & CopII dependent anterograde transport \\
\hline 094855 & Protein transport protein Sec24D & 1 & 0 & G; ER; IC & CopII dependent anterograde transport \\
\hline P32019 & Type II inositol 1, 4, 5-tri sphosphate 5-phosphatase & 2 & & G; C; IC & metal ion binding; dephosphorylati \\
\hline Q96801 & Endoplasmic ret iculum-Golgi intermediate compartment protein 2 & 1 & 2 & IC; N & transport between ER and Golgi \\
\hline Q5VYK3 & Proteasome-associated prote in ECN29 homolog & 1 & 0 & ER; IC & ERAD; binds compar tment specific proteins, may \\
\hline P55735 & Protein SEC13 homolog & 1 & 0 & ER; IC & CopiI dependent anterograde transport \\
\hline Q8IVT3 & Traff icking protein particle complex subunit 12 & 1 & 1 & IC & ER-to-Golgi transport \\
\hline \(960{ }^{\text {a }}\) & Atlastin-3 & 1 & 2 & ER & GTPase activity; ER organization \\
\hline 990kIVI7 & Endoplasmic ret iculum mannosyl-ol i gosachari ide 1, 2-al pha-manno & 1 & 1 & ER & glycosylation; gly coprote in qual ity contr \\
\hline Q961177 & Vesic le-traffi icking protein SECC2a & 2 & \({ }_{4}\) & ER & transport between ER and Golgi \\
\hline \({ }^{\text {P629213 }}\) & 60S ribosomal protein LII & 1 & 0 & N & rRVA maturation; 60 S ribosomal subunits formation; Promotes nucleolar location of PllL \\
\hline Q99BP3 & Condensin complex subunit 3 & 1 & 1 & N & chromosome assembly and segregation during cell division \\
\hline Q99829 & Copine-1 & 1 & 0 & N; C & menbrane traffick \\
\hline 097669 & Cytoplasmic dynein 1 light intermediate chain 1 & 1 & 0 & N: C & microtubule motor act ivity \\
\hline P33992 & DVA repli ication licensi ing factor MCW5 & 1 & 0 & \({ }^{\text {N }}\) & APTase coupled with DNA replication, initiation and elongation \\
\hline P29692 & Elongation factor 1-del ta & 1 & 0 & \({ }^{\text {N }}\) & activate transcription factor binding; direct DNA-binding at HSE \\
\hline P26641 & Elongation factor 1-gama & 1 & 1 & : C; E; & probably anchor the complex to other cellular components \\
\hline 000839 & Heterogeneous nuclear ribonucleoprotein U & 1 & 0 & \(\mathrm{N}: \mathrm{C} ; \mathrm{CM}\) & promotes WYC mRNA stabil ization; the circadian regulation of the core clock component \\
\hline Q92830 & Histone acetyl transferase KAT2A & 1 & 0 & V & promote transcriptional act ivation \\
\hline P39880 & Homeobox protein cut-1 ike 1 & 2 & 0 & \({ }^{\text {N }}\) & regulates mammal ian development \\
\hline \({ }^{\text {Q9BZD4 }}\) & Kinetochore protein Nuf2 & 1 & 0 & N & chromosome segregation and spindle checkpoint activity \\
\hline Q9BV20 & Nethylt hior i bose-1-phosphate ismerase & 1 & 1 & N: C & Catalyzes the interconvers ion of MTR-1-P into MTRu-1-P; promotes cell invasion \\
\hline 095248 & Nyotubular in-related protein 5 & 1 & 2 & , & phosphatase regulator activity; GTPase activity \\
\hline Q9Y217 & Uyotubular in-related protein 6 & 4 & 0 & N & Phosphatase that acts on lipids with a phosphoinositol headgroup \\
\hline 000308 & NEDD4-1 ike E3 ubiquit in-protein 1 i gase WIPP2 & 1 & 0 & N & ubiquit inat ion \\
\hline \({ }^{\text {Q8M1F7 }}\) & Nuclear pore complex protein Nup93 & \({ }^{6}\) & 2 & \({ }_{\text {N }}\) & plays a role in the nuclear pore complex assembly \\
\hline Q6bRJ4 & Nucleoredoxin & 1 & 0 & C; N & regulator of the Wht signal ing pathway \\
\hline P11171 & Protein 4.1 & 1 & 0 & C; N & major structural element of the membrane skeleton \\
\hline Q69Y4 & Protein virili izer homolog & 1 & 0 & \({ }^{\mathrm{N}}\) & meVA splicing regulation \\
\hline  & Putative pre-mRNA-splicing factor ATP-dependent RNA hel i case DHX32 & 1 & 0 & \(\frac{\mathrm{N} ; \mathrm{Mi}}{\mathrm{Ni}}\) & ATP binding \\
\hline Q993310 & trNA-spl ic ing 1 ligase RtcB homolog & 1 & 0 & N: C & joins spli iced trVA halves to mature-s \\
\hline \({ }^{\text {Q6Pr I48 }}\) & Aspart ate-tRNA li gase, mit ochondrial & 1 & 0 & \({ }_{\text {Mi }}\) & aspartate-tRNA (Asn) 1 i gase act ivit \\
\hline P56556 & NADH dehydrogenase [ubioui inone] 1 al han subcompl ex subunit 6 & 1 & 0 & Mi & calcium binding; transporter activity \\
\hline Q94974 & Queuine tRNA-ribosylt ransferase subunit QTRTDI & 1 & 0 & C; Mi & interacts with ¢TRT1 to form an active queuine tRVA-ribosyl transferase \\
\hline Q13637 & Ras-related protein Rab-32 & 2 & 0 & Ni; Ph & anchor specific protein to mitochondrion; maturation of phagosomes \\
\hline 043464 & Serine protease HTRA2, mit tochondrial & 1 & 1 & Mi & proteolytic activity \\
\hline Qabivo & Acetyl-CoA acety ltransferase & 1 & 0 & c & acetyl-CoA C -acetyl transferase activity \\
\hline Q13085 & Acetyl-CoA carboxylase 1 & \(\stackrel{2}{2}\) & 0 & c & biotin carboxyl carrier protein; biotin c \\
\hline Q44235 & Acyl-CoA synthe tase fani iy member 4 & 1 & 0 & ? & fatty acid metaboli ism \\
\hline Q94444 & Amin opepettidase B & 1 & 0 & Ex & exopeptidase \\
\hline \({ }^{096018}\) & Amyl Oid beta 44 precursor prote in-binding family A member 3 & 1 & 1 & c & formation of beta-APP; inhibit activity of HIFIAN \\
\hline \({ }^{964112}\) & Ankyrin repeat domain-containing protein 40 & \(\stackrel{2}{2}\) & 0 & ? & ? \\
\hline \({ }_{\text {Q9VVTI }}\) & Calmodul in-1 ike protein 5 & 1 & 0 & Ex & calcium binding \\
\hline 996PU5 & E3 ubiquit in-protein ligase NEDD4-1ike & 1 & 0 & c & ubiquit ination \\
\hline Q81Y16 & Exocyst complex component 8 & 1 & 0 & c & docking of exocytic vesicles on plasma membrane \\
\hline 000178 & GTP-binding protein 1 & 1 & 0 & c & promotes degradation of mRNA; GTPase activity \\
\hline \({ }^{\text {P27816 }}\) & Microtubule-associated protein 4 & 1 & 0 & c & promotes mi crotubule assembly \\
\hline \({ }^{\text {Q866Y6 }}\) & N-al pha-acety 1 transferase 40 & \(\stackrel{1}{1}\) & 0 & ? & acetylation \\
\hline \({ }^{\text {Q88VE9 }}\) & Phosphat idyl inositol 3 -kinase cataly tic subunit type 3 & \(\frac{1}{1}\) & 0 & A & mult iple menbrane traff icking pathways: autophagosome format ion, endocy tic trafficking \\
\hline 015102 & Platelet-acti vating factor acety yhydrolase IB subunit gamm & 1 & 0 & c & catalytic subunit that plays an important role during the development of brain \\
\hline Q2KH73 & Protein ClLEC16A & 2 & 3 & E: L & regulates mitochondrial qual ity control \\
\hline Q9MY5 & Protein FaM114A2 & 1 & 0 & ? & purine nucleotide binding \\
\hline Q4ADV7 & Protein RIC1 homolog & 1 & 2 & c & fusion of endosome-derived vesicles with the Golgi compartment \\
\hline 9966x2 & Putative ataxin-7-1i ike protein 3 B & 1 & 0 & ? & \(?\) \\
\hline \({ }_{\text {P08134 }}^{\text {P23921 }}\) & Rho-related GTP-binding protein Rhoc & 1 & 0 & \({ }^{\text {c, }}\) & myosin contractile ring formation; apical junction formation \\
\hline \({ }^{\text {P23921 }}\) & Ribonucleoside-di iphosphate reductase large subunit & 1 & \(\stackrel{0}{10}\) & \(\stackrel{\text { c }}{ }\) & provides the precursors necessary for DNA synthes is \\
\hline 09254 & Transmembrane 9 superfanily member 4 & 1 & 10 & 1 & ? \\
\hline Q8vEV3 & Transmembrane protein 87A & 1 & 8 & " & ? \\
\hline \(\frac{\mathrm{Q} 966 \mathrm{FW} 1}{08 \mathrm{ISS} 2}\) & Ubiquit in thioesterase otUB1 & 1 & 0 & c & ubiquit inat ion \\
\hline \({ }^{\text {Q88152 }}\) & Uncharact er ized protein K1A22013 \({ }^{\text {U }}\) Vacuolar protein sorting-associated protein 11 homolog & 1 & \[
\frac{2}{0}{ }^{2}
\] & 4. 11 & SVARE-mediated membrane \\
\hline 996R17 & Vacuolar protein sorting-associated protein 13A & 1 & 0 & \({ }^{\text {c }}\) & post-Golgi transport \\
\hline \({ }^{\text {07777c8 }}\) & Vacuolar protein sort ing-associated protein 13B & 2 & 0 & ? & sort ing in post Golgi menbrane traffic \\
\hline a512\% & Vid repeat domain phosphoinosit ide-interact ing protein 3 & 3 & 0 & C; A & autophagosome assembly \\
\hline Q9月104 & (ii) repeat-containing protein 41 & 2 & & L & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Second IP
Accession & Protein name &  & TXD & \[
{\underset{\text { on }}{ }}_{\text {localizati }}
\] & function \\
\hline 008379 & Gol gin subfamily A member 2 (GM130) & , & 0 & 6; SP & Golgi organization; spindle pole assembly; centrosome organization \\
\hline 008378 & Goll gin subfamily A member 3 (gol gin-160) & 2 & 0 & G; C & Golgi organization \\
\hline 015643 & Thyroid receptor-interacting protein 11 & 1 & 0 & 6; \({ }^{\text {c }}\) & Golgi organization; enhances THRBB-modulated transcription \\
\hline Q9H8Y8 & Gollgi reassembly-stacking protein 2 & 3 & 0 & G & Golgi organization; intracellular transport; lipid-anchor \\
\hline Q87PA6 & Gol gin subfanily A member 5 (goolg in-84) & 9 & 1 & \(\mathrm{G}^{-}\) & Golgi organizat ion; intra-Golgi transport \\
\hline Q94269 & 6 Col gin-45 & 1 & 0 & 6 & Golgi organization; anterograde transport \\
\hline P20340 & Ras-related protein Rab-6A & 5 & 0 & \({ }_{6}\) & Golgi organization; Golgi-to-ER retrograde transport; endosome-to-Golgi retrograde transport \\
\hline 095159 & Zinc finger protein-like 1 & 3 & 1 & 6 & Golgi organization; interacts with GM130; ER-to-Golgi transport \\
\hline 014617 & Ap-3 complex subunit del la-1 & 1 & 0 & 6; C & post-Golgi transport; budding of vesicles from the Golgi membrane \\
\hline 060763 & General vesicular transport factor pl15 & 7 & 0 & 6; \({ }^{\text {c }}\) & intra-Golgi transport; docking of transport vesicles \\
\hline Q94445 & Gol gi phosphoprote in 3-1 ike & 2 & 1 & \({ }^{6}\) & antagoize Golgi-to-plasma membrane transport \\
\hline 014653 & Golgi SNAP receptor complex menber 2 & 3 & 1 & 6 & intra-Golgi transport \\
\hline Q8ILH4 & Palmit oyl transferase \(\mathrm{ZDHHCL13}\) & 4 & 6 & G & magnesium transport; palmi toyltransferase for HD and GAD2 \\
\hline 981LH5 & Palmit oy 1 trans ferase Z ZDHHC17 & 3 & 6 & 6; C & involved in sorting or target ing proteins and initiating events of endocytosis; Mg2+ transp \\
\hline 013948 & Prote in CASP & 3 & 1 & 6 & intra-Golgi transport \\
\hline P53992 & Protein transport protein Sec24C & 12 & 0 & G; ER; C & CopiI dependent anterograde transport \\
\hline P61106 & Ras-related protein Rab-14 & 1 & 0 & G; E; Ph & transport between Golgi and endosomes \\
\hline P8294 & TATA element modulatory factor & 1 & - & 6; C; N & RAB6-dependent retrograde transport (Golg i -to-ER and endosome-to-Gol gi retrograde transpor \\
\hline Q88TAD 4 & Zinc transporter 5 & 3 & 16 & 6 & zinc transporter that transports zinc into Golgi lumens \\
\hline Q10469 & Alpha- 1,6 - mannosy 1 -gl y coprote in 2 -beta- N -acety 1 l 1 cocosaminy 1 transferase & 2 & 0 & & gly cosylation; conversion of ligo-mannose to complex \(\mathrm{N}-\mathrm{g}\) y y cans \\
\hline 966996 & Pyridoxal-dependent decarboxylase domain-containing protein 1 & 4 & 0 & 6 & gly cosylation; carboxy-1yase act ivity \\
\hline Q887VQ1 & Soluble calc ium-act ivated nucleot idase 1 & 1 & 1 & ER; \({ }^{\text {G }}\) & gly cosylation; calcium-dependent nucleotidase with a preference for UDP \\
\hline P78381 & UDP-galact ose translocator & 1 & 8 & \({ }^{6}\) & gly cosylation; transports nucleotide sugars from the cytosol into Golgi \\
\hline Q98XS5 & AP-1 complex suburit mu-1 & 2 & 0 & 6; C & protein sort ing in trans-Golgi and endosomes \\
\hline P01111 & GTPase Nras & 1 & 0 & 6; CU & binds GDP/GGP and possess intrinsic GTPase activity \\
\hline 015027 & Protein transport protein Secl 16 A & 1 & 0 & ER; \(\mathrm{G}^{\text {G }}\) & def ines endoplasmic reticulum exit sites; ER-to-Golgi transport; transit ional ER organization \\
\hline 092974 & Pho guanine nucleot ide exchange factor 2 & 2 & 0 & 6; C & act ivates Rho-GTPases by promoting the exchange of GDP for GTP \\
\hline 966, \({ }^{\text {V7 }} 9\) & Phomboid domain-containing protein 2 & 1 & 6 & 6 & RHBDD2 \\
\hline Q95579 & UbiA prenyltransferase domain-containing protein 1 & 1 & 9 & \[
\begin{array}{|c|}
\hline \text { ER; G; Mi } \\
\text { C; } N
\end{array}
\] & mediates the formation of menaquinone-4 (MK-4) and coenzyme Q10 \\
\hline 99VZC7 & wVI domain-contai ining oxidoreductase & 1 & 0 & \[
\underset{\mathrm{N}}{\mathrm{C} ; \mathrm{G}_{\mathrm{N}} \mathrm{Mi} ;}
\] & a tumor suppressor and plays a role in apoptosis; bone development \\
\hline 99, \(2 \times 7\) & 1-acyl-sn-gl ycerol-3-phosphate acyl lransferase gamma & 1 & 5 & ER & acyl donor for fatty acid \\
\hline & Dehydrogenase/reductase SDR family member 7 7 & 1 & \({ }^{2}\) & ER & oxidoreductase act ivity \\
\hline Q99K177 & Endopl asmic ret iculum mannosyl-oli igosacchar ide 1, 1 -al pha- mannos idase & 1 & 1 & ER & glycosylation; glycoprotein qual ity control \\
\hline Q98326 & Endoplasmic reti culum resident protein 44 & 1 & 0 & ER & mediates thiol-dependent retention \\
\hline 095864 & Fatty acid desaturase 2 & 2 & 4 & \(\frac{\mathrm{ER}}{\text { ER; }}\) N: & 1 i id me tabol ic pathway \\
\hline 000165 & HCLS1-associated protein X-1 & 1 & 0 &  & involved in cell survival and migration; endocytosis pathway; regulates calcium pools \\
\hline \(\underline{99 Y 555}\) & Peroxisomal menbrane protein PEx16 & , & 0 & ER; P & \(\frac{\text { peroxisome menbrane biogenesis; peroxi some assembly }}{\text { lipid metabol ism }}\) \\
\hline \({ }^{\text {P55084 }}\) & Trifunct ional enzyme subunit beta, mitochondrial & 3 & 0 & Mi; ER & 1 1ipid metabol i sm; fatty acid beta-oxidation pathway \\
\hline Q966117 & Vesi icle-traff icking protein SEC22a & 2 & 4 & ER & transport between ER and Golgi \\
\hline \({ }^{\text {O96RR11 }}\) & Endoplasmic reticulum-Golgi intermediate compartment protein 2 & 1 & 2 & IC; N & transport between ER and Golg \\
\hline \({ }^{0095486}\) & Protein transport protein Sece24 & \({ }^{2}\) & 0 & G; ER; IC & CopII dependent anterograde transport \\
\hline \({ }^{095487}\) & Protein transport protein Sec24B & 6 & 0 & G; ER; IC & \\
\hline 094855 & Protein transport protein Sec24D & 2 & 0 & \({ }_{\text {G; ER }}\) I IC & copiI dependent anterograde transport \\
\hline \({ }^{\text {P61019 }}\) & Ras-related protein Rab-2A & 4 & 0 & ER; G; IC & ER-to-Gol gi transport \\
\hline \({ }^{\text {Q9Y6V8 }}\) & SEC23-interacting protein & 4 & 0 & ER; IC & organization of endoplasmic reticulum exit sites \\
\hline \({ }^{\text {Q13190 }}\) & Syntaxin-5 & 2 & 1 & 6; IC & Golgi organization; ER-to-Golgi transport \\
\hline Q99303 & Transmembrane emp24 domain-containing protein 3 & 1 & & G; ER; IC & vesicular protein trafficking \\
\hline \({ }^{\text {P32019 }}\) & Type II inositol 1, 1, 5-tri sphosphate 5-phosphatase & 5 & 0 & 6; C; IC & metal ion binding; dephosphorylation \\
\hline \({ }^{\text {Q9Y676 }}\) & \({ }^{28 S}\) ribosomal protein S18b, mit ochondrial & \(\stackrel{2}{1}\) & 0 & Mi & mit ochondrial translation; structural constituent of ribosome \\
\hline \({ }^{\text {Q9, }}\) O520 \({ }^{\text {a }}\) & \({ }^{39 S}\) ribosomal prote in L16, mitochondrial & 1 & 0 & Mi & component of the large subunit of mitochondrial ribosome \\
\hline  & & 1 & 0 & Mi & involved in the pathway glycerol i ipid metaboli ism \\
\hline \({ }^{\text {P30566 }}\) & Adenylosuccinate 1 1 ase & 1 & 0 & C; Mi & catal yzes two non-sequent ial steps in de novo AMP synnthes is \\
\hline \({ }^{\text {P61221 }}\) & ATP-binding cassette sub-family E member 1 & \(\stackrel{2}{1}\) & 0 & \(\mathrm{C}_{\text {; Mi }}\) & interact with Rnase L; regulate miNA turnover; chaperone for post-translational events \\
\hline \({ }^{\text {Q99663 }}\) & ATP-binding cassette sub-fanily F member 2 & 1 & 0 & Mi; M & ATPase activity; transporter activity \\
\hline \({ }^{\text {Q94078 }}\) P4916 & Caseinolyt ic peptidase B protein homolog & 1 & 0 & \(\frac{1 \mathrm{l}}{\text { Mi }}\) & regulate ATPase and be related to secretion/protein trafficking process \\
\hline Q94AV7 & Grrpe prote in homolog 1, mitochondrial & 1 & 0 & Mi & PAM complex; translocation of transit pept ide cocontaining prote ins \\
\hline Q99241 & HIG1 domain family member 1A, mit ochondrial & 1 & 2 & Mi & catalyzes the reduction of oxygen to water in the mitochondrial respiratory \\
\hline 014925 & Niitochondr ial import inner membrane translocase subunit Tim23 & 2 & 3 & Mi & mediates the translocation of transit peptide-containing proteins \\
\hline \({ }^{\text {Q33C08 }}\) & Mi tochondr ial import inner membrane translocase subunit TiM130 & \(\stackrel{2}{1}\) & 0 & Mi & mediates the translocation of transit peptide-containing proteins \\
\hline Q98T17 & Nit ochondr ial ri bosome-associated GTPase 1 & 1 & 0 & Mi & regulates mit ochondrial ribosome assembly and translational activi ity; GTPase activity \\
\hline P56556 & NADH dehydrogenase [ubiquinone] 1 al pha subcomplex subunit 6 & 2 & 0 & Mi & functions in respiratory chain \\
\hline P49821 & MADH dehydrogenase [ubiquinone] flavoprote in 1 , mit ochondr ial & 1 & & Mi & core subunit of the mit ochondrial membrane respiratory chain NADH dehydrogenase \\
\hline P19904 & NADH dehydrogenase [ubiquinone] flavoprotein 2 , mit ochondrial & 1 & 0 & Mi & core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase \\
\hline \({ }^{075251}\) & MADH dehydrogenase [ubiquirone] iron-sul fur prote in 7 , mi tochondr ial & 1 & 0 & \(\frac{\text { Mi }}{\text { Mi }}\) & core subunit of the mit ochondr ial membrane ressiratory chain NADH dehydrogenase \\
\hline 96659 & Probable asparagine-tRNA li gase, mit tochondrial & 1 & 0 & Mi & asparagine-tRVA ligase activity; ATP binding \\
\hline P31040 & Succinate dehydrogenase [ubiqui inone] flavoprotein subunit, mit ochondrial & 2 & 0 & Mi & involved in mit ochondrial electron transport chain; tumor suppressor \\
\hline P62888 & \({ }^{60 S}\) ribosomal protein L30 & 2 & 0 & \[
\underset{M}{C ;} \underset{M}{E_{i} ; N_{i}}
\] & structural constituent of ribosome \\
\hline 014646 & Chromodomain-hel i case-DVA-binding protein 1 & \({ }^{2}\) & 0 & N; C & regulates polymerase I and II transcription; regulates DVA replication: \\
\hline P11802 & Cycl in-dependent kinase 4 & & 0 & C; \(\mathrm{N} ; \mathrm{M}\) & phosphorylates and inhibits members of the retinoblastoma protein famil \\
\hline P0374 & Dihydrofolate reductase & 1 & 0 & C; N & folate metabol ism; contributes to mitochondrial thymidylate biosynthes is pathway \\
\hline P26358 & DNA (cy tos ine-5) -me thy 1 transferase 1 & 3 & 0 & N & preferent ially methylates hemimethylated DNA \\
\hline P18858 & DNA 1 l gase 1 & 2 & 0 & N & seals nicks in double-stranded DNA during DNA replication, DNA recombination and DVA repair \\
\hline P28340 & DNA polymerase del ta catalytic subunit & & 0 & \(N\) & DNA synthesis and an exomucleolytic act ivity \\
\hline Q13642 & Four and a half LIM domains protein 1 & & 0 & C; N & involved in muscle development or hypertrophy \\
\hline \({ }^{\text {Q9B667 }}\) & Glutamate-rich WD repeat-containing protein 1 & 1 & 0 & \({ }^{\text {N }}\) & poly (A) RNA binding \\
\hline Q9VZİ & Insul in-1 i ike growth factor 2 mRNA-binding protein 1 & 3 & 0 & \(\mathrm{N}: \mathrm{C}^{\text {C }}\) & mRNA binding; translation regulator activity \\
\hline \({ }^{\text {Q15046 }}\) & Lys ine--tRNA 1 ligase & 2 & 0 & C; \(\mathrm{N} ; \mathrm{Cu}\) & Catalyzes the specific attachment of an amino acid to its cognate trN \\
\hline Q90KD2 & meVA turnover prote in 4 homolog & 3 & 0 & N; C & ribosome assembly \\
\hline \({ }^{\text {Q9Y217 }}\) & Myotubular in-rel ated protein 6 & 1 & 0 & N & Phosphatase that acts on lipids with a phosphoinosit ol headgroup \\
\hline \({ }^{000308}\) & NEDD4-1 i ike E3 ubiquit in-protein 1i igase wwP2 & 2 & 0 & N & ubiqui it inat ion \\
\hline \({ }^{\text {Q8SVIF7 }}\) & Nuclear pore complex protein Nup93 & 4 & \({ }^{2}\) & N & plays a role in the nuclear pore complex assembly \\
\hline \({ }^{906 \mathrm{KJJ} / 4}\) & Mucl eoredoxin Paired amphipathic hel ix protein Sin3b & 1 & 0 & \(\frac{\mathrm{C} ; \mathrm{N}}{\mathrm{N}}\) & regulator of the Mnt si inal ing pathway \\
\hline Q8IYS1 & Pept idase M20 domain-containing protein 2 & 1 & 0 & Ex; N & ennyme activity \\
\hline 000541 & Pescadillo homolog & & 0 & \({ }^{N}\) & maturation of ribosomeal RNAs and formation of the 60S ribosome \\
\hline 015162 & Phosphol i ipid scramblase 1 & 3 & , & N; M & mediates accelerated bidirectional transtilayer migration; fibrin clot formation \\
\hline Q99080 & Prol i ferat ion-associated protein 264 & 1 & 0 & C; N & a ERBB3-regulated signal transduction pathway; ribosome assembly \\
\hline \({ }^{\text {P46087 }}\) & Putat ive r ibosomal RNA me thyl 1 ransferase NOP2 & \(\stackrel{2}{1}\) & 0 & N & methylates the C5 position of cytosine 4447 in 288 rRNA \\
\hline \({ }^{\text {P56182 }}\) & Ribosomal RNA processing protein 1 homolog A & & 0 & N & generation of 285 S rRVA \\
\hline \({ }^{\text {P54987 }}\) & Serine/threonine-protein phosphatase 6 regulatory subunit 3 & 1 & 0 & C; N & a scaffolding PP6 subunit; maintains immune self-tolerance \\
\hline \({ }^{\text {P623324 }}\) & Snal1 nuclear ribonucleoprote in Sm Dl & , & 0 & C; N & splicing of cellular pre-mRNA \\
\hline \({ }^{\text {P232426 }}\) & Splicing factor, prol ine- and glutamine-rich & 1 & \({ }_{1}^{0}\) &  & DNA- and RVA binding prote in, involved in several nuclear processes \\
\hline P42285 & Superkiller viral i idic activity 2 -like 2 & 1 & , & N & involved in pre-mRNA splicing \\
\hline Q93174 & TNF receptor-associated factor 4 & 1 & 0 & N: C & 1inks members of TNFR fanily to different signal ing pathways \\
\hline \({ }^{P 61088}\) & Ubigui it in-con jugat ing enzyme E2 N & \(\stackrel{2}{2}\) & 0 & N; C & catalyzes the synthesis of polyubiquitin chains; acts with E 31 i gases \\
\hline Q15008 & 265 proteasome non-ATPase regulatory subunit 6 & 1 & 0 & c & ATPase for ubiquitination \\
\hline \({ }^{\text {P1/ }}\) P6527 & 3-oxo-5-beta-steroid 4-dehydrogenase & 1 & 0 & C & catalyzes the reduction of substrate concentration \\
\hline \({ }^{\text {P633220 }}\) P6373 & \({ }^{40 S}\) r ribosomal protein S21 & 1 & 0 & c & structural const ituent of ribosome \\
\hline \({ }^{\text {P633173 }}\) & 60S ribosomal protein L L38 & 1 & 0 & c & structural consti ituent of r ribosome \\
\hline Q98iv1 & Acetyl-CoA acetyltransferase, cytosol ic & 2 & 0 & & acetyl-CoA C-acetylltransferase activity \\
\hline \({ }^{\text {P59998 }}\) & Act in-related protein \(2 / 3\) complex subunit 4 & 1 & 0 & C & regulation of actin poly yer ization; formation of branched act in networks \\
\hline 096018 & Anyl Oid beta A p precursor protein-binding fanily A member 3 & 1 & 0 & C: & format ion of beta-APP; enhance the activity of HIFIA in macrophages \\
\hline P04114 & Apoli i poprotein B-100 & 1 & 0 & & consti tuent of chylomicrons (apo B-48), LDL (apo B-100) and VV.DL (ap \\
\hline P05089 & Argi inase-1 & 1 & & c & synthesizes L-ornithine and urea from L-arginine \\
\hline \({ }^{\text {Q96Pr5 }}\) & E3 ubiquit in-protein li i gase NEDD--1ike & \(\stackrel{2}{1}\) & 0 & c & ubiquit ination \\
\hline & & & & & forms a ternary complex with GTP and initiator tRNA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 000303 & Eukaryotic translation initiation factor 3 subunit F & 1 & 0 & C & component of elF-3 complex, which is required for the initiation of protein synthesis \\
\hline Q92990 & Glomul in & 1 & 0 & C & membrane anchoring protein; development of the vasculature \\
\hline Q06210 & Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 & 1 & 0 & C; Ex & controls flux of glucose into the hexosamine pathway; regulate precursors for glycosylation \\
\hline P49915 & GMP synthase [glutamine-hydrolyzing] & 1 & 0 & C & involved in the de novo synthesis of guanine nucleotides \\
\hline Q86YM7 & Homer protein homolog 1 & 1 & 0 & C & postsynaptic density scaffolding protein; \\
\hline Q6YN16 & Hydroxysteroid dehydrogenase-1 ike protein 2 & 1 & 0 & P & no steroid dehydrogenase activity \\
\hline Q15181 & Inorganic pyrophosphatase & 2 & 0 & C & inorganic diphosphatase activity \\
\hline Q9H9A6 & Leucine-rich repeat-containing protein 40 & 1 & 0 & M & ? \\
\hline Q9H1A3 & Methyltransferase-1ike protein 9 & 1 & 1 & ? & ? \\
\hline P60660 & Myosin light polypept ide 6 & 1 & 0 & C; Ex; M & regulatory light chain of myosin; does not bind calcium \\
\hline Q960G7 & Myotubularin-related protein 9 & 1 & 0 & C & pseudophosphatase \\
\hline 043808 & Peroxisomal membrane protein PMP34 & 1 & 5 & P; C & peroxisomal transporter for multiple cofactors \\
\hline P00558 & Phosphoglycerate kinase 1 & 1 & 0 & C & a glycolytic enzyme; a polymerase alpha cofactor protein \\
\hline 015067 & Phosphor ibosylformylglycinamidine synthase & 1 & 0 & C & purines biosynthetic pathway \\
\hline Q8WWH5 & Probable tRNA pseudouridine synthase 1 & 1 & 0 & ? & synthesis of pseudouridine from uracil in transfer RNAs \\
\hline Q6ZRT6 & Proline-rich protein 23 B & 1 & 0 & ? & \(?\) \\
\hline 060879 & Protein diaphanous homolog 2 & 1 & 0 & C; E & oogenesis; regulates endosome dynamics and motility of early endosomes \\
\hline Q9UBU6 & Protein FAM8A1 & 1 & 3 & M & autosomal highly conserved protein \\
\hline Q8N8P6 & Putative uncharacterized protein FLJ39060 & 1 & 0 & ? & ? \\
\hline Q96C36 & Pyrrol ine-5-carboxylate reductase 2 & 1 & 0 & C & housekeeping enzyme that catalyzes the last step in proline biosynthesis \\
\hline Q15042 & Rab3 GTPase-activating protein catalytic subunit & 1 & 0 & C & GTPase that has specificity for Rab3 subfamily \\
\hline Q14964 & Ras-related protein Rab-39A & 2 & 0 & CM; Ph; L & maturation and acidification of phagosomes \\
\hline P62070 & Ras-related protein R-Ras2 & 1 & 0 & C & GTPase activity; transduces growth inhibitory signals across cell membrane \\
\hline Q92546 & Retrograde Golgi transport protein RGP1 homolog & 2 & 0 & C; M & a GEF that activates Rab6A; fusion of endosome-derived vesicles with Golgi apparatus \\
\hline P08134 & Rho-related GTP-binding protein RhoC & 1 & 0 & CM & myosin contractile ring formation; apical junction formation \\
\hline P60891 & Ribose-phosphate pyrophosphokinase 1 & 1 & 0 & C & catalyzes the synthesis of PRPP that is essential for nucleotide synthesis \\
\hline P49458 & Signal recognition particle 9 kDa protein & 1 & 0 & C & targets secretory proteins to ER \\
\hline P50225 & Sulfotransferase 1A1 & 1 & 0 & C & catalyzes the sulfate conjugation of catecholamines, phenolic drugs and neurotransmitters \\
\hline Q14232 & Translation initiation factor eIF-2B subunit alpha & 1 & 0 & C; CM; M & catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP \\
\hline Q99805 & Transmembrane 9 superfamily member 2 & 1 & 9 & E & functions as a channel or small molecule transporter. \\
\hline Q92544 & Transmembrane 9 superfamily member 4 & 1 & 10 & M & ? \\
\hline P22102 & Trifunctional purine biosynthetic protein adenosine-3 & 4 & 0 & C; Ex & synthesizes glycinamide \\
\hline P23258 & Tubul in gamma-1 chain & 1 & 0 & Centrosome & major constituent of microtubules \\
\hline Q9HA47 & Uridine-cytidine kinase 1 & 1 & 0 & C & phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate \\
\hline Q96A05 & V-type proton ATPase subunit E 2 & 1 & 0 & C & ATPase that is essential for assembly or catalytic function \\
\hline Q5WNZ6 & WD repeat domain phosphoinositide-interacting protein 3 & 4 & 0 & C; A & autophagosome assembly \\
\hline 092536 & Y+L amino acid transporter 2 & 1 & 12 & CM & involved in the sodium-independent uptake of amino acids \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\left|\begin{array}{l|}
\text { Second IP } \\
\text { Accession }
\end{array}\right|
\] & Protein name & \[
\left.\begin{array}{|c|}
\hline \text { \#Peptides } \\
\text { with } \\
\text { crosslink } \\
\text { er R85H }
\end{array} \right\rvert\,
\] & TMD & \[
\left\lvert\, \begin{gathered}
\text { local izati } \\
\text { on }
\end{gathered}\right.
\] & function \\
\hline 008379 & Golgin subfamily A member 2 (GM130) & 7 & 0 & G; SP & Golgi organization; spindle pole assembly; centrosome organization \\
\hline Q08378 & Golgin subfamily A member 3 (golgin-160) & 2 & 0 & 6; C & Golgi organization \\
\hline Q9BSR8 & Protein YIPF4 & 1 & 5 & G & Golgi organization \\
\hline Q15643 & Thyroid receptor-interacting protein 11 & 4 & 0 & G; C & Golgi organization; enhances THRB-modulated transcription \\
\hline Q9H8Y8 & Golgi reassembly-stacking protein 2 & 3 & 0 & G & Golgi organization; intracellular transport; lipid-anchor \\
\hline Q8TBA6 & Golgin subfamily A member 5 (golgin-84) & 9 & 1 & G & Golgi organization; intra-Golgi transport \\
\hline Q9H269 & Golg in-45 & 1 & 0 & G & Golgi organization; anterograde transport \\
\hline P20340 & Ras-related protein Rab-6A & 3 & 0 & \(\mathrm{G}_{6}\) & Golgi organization; Golgi-to-ER retrograde transport; endosome-to-Golgi retrograde transport \\
\hline 060763 & General vesicular transport factor pl15 & 5 & 0 & 6; C & intra-Golgi transport; docking of transport vesicles \\
\hline 014653 & Golgi SNAP receptor complex member 2 & 3 & 1 & G & intra-Golgi transport \\
\hline Q8IUH4 & Palmitoyltransferase ZDHHC13 & 3 & 6 & G & magnesium transport; palmitoy1transferase for HD and GAD2 \\
\hline Q8IUH5 & Palmitoylt transferase ZDHHC17 & 3 & 6 & 6; C & involved in sorting or targeting proteins and initiating events of endocytosis; Mg2+ transport \\
\hline Q13948 & Protein CASP & 2 & 1 & G & intra-Golgi transport \\
\hline P53992 & Protein transport protein Sec24C & 10 & 0 & G; ER; C & CoPII dependent anterograde transport \\
\hline P61106 & Ras-related protein Rab-14 & 2 & 0 & G; E; Ph & transport between Golgi and endosomes \\
\hline Q9Y3E0 & Vesicle transport protein G0T1B & 1 & 4 & G & ER-to-Golgi transport; fusion of ER-derived transport vesicles with Golgi \\
\hline Q8TAD4 & Zinc transporter 5 & 2 & 16 & G & zinc transporter that transports zinc into Golgi lumens \\
\hline Q98XS5 & AP-1 complex subunit mu-1 & 1 & 0 & G; C & protein sorting in trans-Golgi and endosomes \\
\hline Q9VZC7 & WWV domain-containing oxidoreductase & 1 & 0 & \[
\underset{\mathrm{C} ; \mathrm{G} ; \mathrm{Mi} ;}{\mathrm{N}}
\] & a tumor suppressor and plays a role in apoptosis; bone development \\
\hline Q10469 & Alpha-1, 6 -mannosy1-gly yoprotein 2 -beta- N -acet ylglucosaminyltransferase & 1 & 0 & G & glycosylation; conversion of ligo-mannose to complex N -glycans \\
\hline Q96L58 & Beta-1, 3-galactosyltransferase 6 & 1 & 1 & G & glycosylation; Beta-1, 4-galactosyltransferase \\
\hline Q6P996 & Pyridoxal-dependent decarboxylase domain-containing protein 1 & 1 & 0 & G & glycosylation; carboxy-1 yase activity \\
\hline P78381 & UDP-galactose translocator & 1 & 8 & G & glycosylation; transports nucleotide sugars from the cytosol into Golgi \\
\hline P55084 & Trifunctional enzyme subunit beta, mitochondrial & 1 & 0 & Mi; ER & 1 lipid metabol ism; fatty acid beta-oxidation pathway \\
\hline 095486 & Protein transport protein Sec24A & 1 & 0 & G; ER; IC & CoPII dependent anterograde transport \\
\hline 095487 & Protein transport protein Sec24B & 3 & 0 & G; ER; IC & CoPII dependent anterograde transport \\
\hline 094855 & Protein transport protein Sec24D & 2 & 0 & G; ER; IC & CoPII dependent anterograde transport \\
\hline P61019 & Ras-related protein Rab-2A & 3 & 0 & ER; G; IC & ER-to-Golgi transport \\
\hline Q996Y8 & SEC23-interacting protein & 2 & 0 & ER; IC & organization of endoplasmic reticulum exit sites \\
\hline Q13190 & Syntaxin-5 & 2 & 1 & G; IC & Golgi organization; ER-to-Golgi transport \\
\hline P46783 & 40S ribosomal protein S10 & 1 & 0 & C; N & component of the 40S ribosomal subunit \\
\hline P62888 & 60S ribosomal protein L30 & 1 & 0 & \[
\underset{M}{\mid C ; E x ;} \underset{M}{ }
\] & structural constituent of ribosome \\
\hline Q9VRL2 & Bromodomain adjacent to zinc finger domain protein 1A & 1 & 0 & N & component of the ACF complex; facilitate the DVA replication process; transcription repression \\
\hline P28340 & DNA polymerase delta catalytic subunit & 1 & 0 & N & DNA synthesis and an exonucleolytic activity \\
\hline P19474 & E3 ubiquitin-protein ligase TRIM21 & 2 & 0 & C; N & ubiquitination \\
\hline Q13642 & Four and a half LIM domains protein 1 & 1 & 0 & C; N & involved in muscle development or hypertrophy \\
\hline Q98667 & Glutamate-rich WD repeat-containing protein 1 & 1 & 0 & N & poly (A) RNA binding \\
\hline Q9VVN8 & Guanine nucleotide-binding protein-like 3-1ike protein & 1 & 0 & N & prevents ubiquitination; processing of ribosomal pre-rRNA \\
\hline Q99729 & Heterogeneous nuclear ribonucleoprotein \(\mathrm{A} / \mathrm{B}\) & 1 & 0 & N: C & binds single-stranded RNA \\
\hline Q14103 & Heterogeneous nuclear ribonucleoprotein D0 & 2 & 0 & N: C & RNA binding: mRNA turnover; telomere elongation; circadian regulation of translation \\
\hline Q9Y2U8 & Inner nuclear membrane protein Man1 & 1 & 2 & N & a specific repressor of TGF-beta, activin, and BMP signaling \\
\hline Q9VZI8 & Insulin-1ike growth factor 2 mRNA-binding protein 1 & 2 & 0 & \(\mathrm{N}: \mathrm{C}\) & mRNA binding; translation regulator activity \\
\hline P40126 & L-dopachrome tautomerase & 1 & 1 & Melanosome & regulates eumelanin and phaeomelanin levels. \\
\hline Q99V22 & Midasin & 3 & 0 & N & nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits \\
\hline Q96776 & MMS19 nucleotide excision repair protein homolog & 1 & 0 & N; SP & mediates the incorporation of iron-sulfur cluster into apoproteins \\
\hline Q9Y217 & Myotubularin-related protein 6 & 3 & 0 & N & Phosphatase that acts on 1ipids with a phosphoinositol headgroup \\
\hline 075182 & Paired amphipathic helix protein Sin3b & 1 & 0 & N & acts as a transcriptional repressor \\
\hline Q8IYS1 & Peptidase M20 domain-containing protein 2 & 1 & 0 & Ex; N & enzyme activity \\
\hline 015162 & Phospholipid scramblase 1 & 2 & 1 & N; M & mediates accelerated bidirectional transbilayer migration; fibrin clot formation \\
\hline Q9VQ80 & Proliferation-associated protein 264 & 1 & 0 & C; N & a ERBB3-regulated signal transduction pathway; ribosome assembly \\
\hline Q93RX2 & Protein pelota homolog & 1 & 0 & N; C & chromosome segregation; recognizes stalled ribosomes; triggers mRNA endonucleolytic cleavage \\
\hline P46060 & Ran GTPase-activating protein 1 & 1 & 0 & C; N & GTPase activator for the nuclear Ras-related regulatory protein Ran \\
\hline Q9HON0 & Ras-related protein Rab-6C & 1 & 0 & N; C & centrosome duplication \\
\hline P56182 & Ribosomal RNA processing protein 1 homolog A & 1 & 0 & N & generation of 285 rRVA \\
\hline Q15019 & Sept in-2 & 1 & 0 & C: Spindle & filament-forming cytoskeletal GTPase \\
\hline Q5H9R7 & Serine/threonine-protein phosphatase 6 regulatory subunit 3 & 1 & & C; N & a scaffolding PP6 subunit; maintains immune self-tolerance \\
\hline P23246 & Splicing factor, proline- and glutamine-rich & 2 & 0 & C; N & DNA- and RVA binding protein, involved in several nuclear processes \\
\hline Q99TT3 & Structural maintenance of chromosomes protein 4 & 1 & 0 & C; N & conversion of interphase chromatin into mitotic-like condense chromosomes \\
\hline Q96SB8 & Structural maintenance of chromosomes protein 6 & 1 & 0 & N & involved in DNA double-strand breaks by homologous recombination \\
\hline Q6ZRP7 & Sulf fydryl oxidase 2 & 1 & 1 & NM; CM & catalyzes the oxidation of sulfhydryl groups in peptide and protein \\
\hline Q9Y310 & tRNA-splicing ligase RtcB homolog & 1 & 0 & N; C & joins spliced tRNA halves to mature-sized tRNAs; act as an RNA ligase \\
\hline P23258 & Tubul in gamma-1 chain & 1 & 0 & Centrosome & major constituent of microtubules \\
\hline P07101 & Tyrosine 3-monooxygenase & 1 & 0 & C; Mi; N & physiology of adrenergic neurons \\
\hline P61088 & Ubiquit in-con jugat ing enzyme E2 N & 1 & 0 & N; C & catalyzes the synthesis of polyubiquitin chains; acts with E3 ligases \\
\hline Q53H12 & Acylglycerol kinase, mitochondrial & 1 & 0 & Mi & involved in the pathway glycerol i ipid metabol ism \\
\hline P61221 & ATP-binding cassette sub-family E member 1 & 1 & 0 & C; Mi & interact with Rnase L; regulate mRNA turnover; chaperone for post-translational events \\
\hline Q9H078 & Caseinolytic peptidase B protein homolog & 2 & 0 & Mi & regulate ATPase and be related to secretion/protein trafficking process \\
\hline P31930 & Cytochrome b-cl complex subunit 1, mitochondrial & 1 & 0 & Mi & ubiquitination; mitochondrial respiratory chain \\
\hline P99999 & Cytochrome c & 1 & 0 & Mi & electron carrier protein; plays a role in apoptosis \\
\hline 060313 & Dynamin-1ike 120 kDa protein, mitochondrial & 1 & 0 & Mi & mitochondrial fusion and regulation of apoptosis \\
\hline Q3ZCQ8 & Mitochondrial import inner membrane translocase subunit TiM50 & 1 & 1 & Mi & mediates the translocation of transit peptide-containing proteins \\
\hline P56556 & NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 & 2 & 0 & Mi & functions in respiratory chain \\
\hline 075251 & NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 , mitochondrial & 1 & 0 & Mi & core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase \\
\hline Q15008 & 265 proteasome non-ATPase regulatory subunit 6 & 1 & 0 & C & ATPase for ubiquitination \\
\hline P05089 & Arginase-1 & 1 & 0 & c & synthesizes L-ornithine and urea from L-arginine \\
\hline P35613 & Basigin & 1 & 1 & CM & targets the monocarboxylate transporters SLC16A1, SLC16A3 and SLC16A8 to the plasma membrane \\
\hline P07814 & Bifunctional glutamate/prol ine--tRNA 1igase & 1 & 0 & c & catalyzes the attachment of the cognate amino acid to the tRNA; component of the GAIT \\
\hline Q9HC35 & Echinoderm microtubule-associated protein-1ike 4 & 1 & 0 & C & may modify the assembly dynamics of microtubules \\
\hline P05198 & Eukaryotic translation initiation factor 2 subunit 1 & 1 & 0 & c & forms a ternary complex with GTP and initiator tRNA \\
\hline P34932 & Heat shock 70 kDa protein 4 & 1 & 0 & C & ATP binding; chaperone-mediated protein complex assembly; response to UPR \\
\hline Q9YZL4 & Hsp70-binding protein 1 & 1 & 0 & C & interferes with ubiquitination and inhibits chaperone-assisted degradation of immature CFTR \\
\hline Q96FN5 & Kinesin-1ike protein KIF12 & 1 & 0 & C & ATP binding; microtubule motor activity \\
\hline P11279 & Lysosome-associated membrane glycoprotein 1 & 1 & & \(\mathrm{CN}_{\text {; E E L }} \mathrm{L}\) & a receptor for Lassa virus protein; implicated in tumor cell metastasis \\
\hline 96, T16 & MFFS-type transporter SLC18B1 & 1 & 12 & M & transmembrane transport \\
\hline Q8wUY8 & \(N\)-acetyltransferase 14 & 1 & 2 & M & binds the \(5^{\prime}\) - GGACTACAG-3' \({ }^{\prime}\) sequence of coproporphyrinogen oxidase promoter \\
\hline P50897 & Palmitoyl-protein thioesterase 1 & 1 & 0 & , & removes thioester-linked fatty acyl groups during lysosomal degradation \\
\hline Q9Y5Z1 & Probable ATP-dependent RNA hel i case DHX35 & 1 & 0 & C & involved in pre-mRNA splicing \\
\hline 060610 & Protein diaphanous homolog 1 & 2 & 0 & c & assembly of F-actin structures \\
\hline 060879 & Protein diaphanous homolog 2 & 1 & 0 & C; E & oogenesis; regulates endosome dynamics and motility of early endosomes \\
\hline Q9UBU6 & Protein FAM8A1 & 1 & 3 & , & autosomal highly conserved protein \\
\hline Q96AA3 & Protein RFT1 homolog & 1 & 12 & M & glycosylation; N -1 inked oligosacharide assembly; translocation of ol igosaccharide \\
\hline Q6PPL24 & Protein TMED8 & 1 & 0 & M & transport \\
\hline Q96C36 & Pyrrol ine-5-carboxylate reductase 2 & 2 & 0 & C & housekeeping enzyme that catalyzes the last step in proline biosynthesis \\
\hline Q14964 & Ras-related protein Rab-39A & 3 & 0 & CM; Ph; L & maturation and acidification of phagosomes \\
\hline Q96E17 & Ras-related protein Rab-3C & 1 & 0 & C & protein transport \\
\hline P62070 & Ras-related protein R-Ras2 & 1 & 0 & C & GTPase activity; transduces growth inhibitory signals across cell membrane \\
\hline P08134 & Rho-related GTP-binding protein RhoC & 1 & 0 & CM & myosin contractile ring formation; apical junction formation \\
\hline P31153 & S-adenosylmethionine synthase isoform type-2 & 2 & 0 & & catalyzes the formation of S-adenosylmethionine from methionine and ATP \\
\hline P02549 & Spectrin alpha chain, erythrocytic 1 & 1 & 0 & C & major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane \\
\hline P22102 & Trifunctional purine biosynthetic protein adenosine-3 & 5 & 0 & C; Ex & synthesizes glycinamide \\
\hline Q5WVZ6 & WID repeat domain phosphoinositide-interacting protein 3 & 2 & 0 & C; A & autophagosome assembly \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Third IP } \\
& \text { Accession }
\end{aligned}
\] & Pro &  & ти\% & \[
\begin{gathered}
\text { localizati } \\
\text { on }
\end{gathered}
\] & function \\
\hline Q943P7 & Golg gi resident protein GCP60 & 1 & 0 & G; Mi & Golgi organization; transport between ER and Golgi \\
\hline 015027 & Protein transport protein Secl6A & 1 & 0 & ER; \({ }^{\text {G }}\) & def ines endoplasmic reticulum exit sites; ER-to-Golgi transport; transitional ER organization \\
\hline 015436 & Protein transport protein Sec23A & 1 & 0 & ER; G & copil dependent anterograde transport \\
\hline P53992 & Protein transport protein Sec24C & 1 & 0 & G; ER; C & copiI dependent anterograde transport \\
\hline asivul & Secl family domain-containing protein 1 & 1 & 0 & C; ER; 6 & SNARE-pin assembly; Golgi-to-ER retrograde transport \\
\hline Q5VVIR6 & Vacuolar protein sort ing-associated protein 53 homolog & 1 & 0 & 6; E & endosome to Golgi transport; 1ysosomal sorting; endocytic recycling \\
\hline Q14697 & Neutral alpha-glucosidase \(A B\) & 1 & 1 & 6; ER & glycosylation; dleaves glucose residues from oligosaccharide precursor of immature
glycoproteins \\
\hline 012904 & Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 & 2 & 0 & \[
\underset{G}{\mathrm{~N} ; ~ \mathrm{C} ; \mathrm{ER} ;} \underset{G}{ }
\] & binds tRNA; inflammatory cytokine activity; regulates TGF-beta signal ing; glucose homeostasis ; \\
\hline 095197 & Reticulon-3 & 1 & 3 & G; ER & involved in membrane traff icking; ER stress pathy \\
\hline 96, TF9 & Phomboid domain-containing protein 2 & 2 & 6 & 6 & RHBDD2 \\
\hline P27797 & Calreticul in & \({ }^{2}\) & 0 &  & promotes folding, oligomeric assembly and quality control in the ER calreticulin/calnexin cycle \\
\hline 099942 & E3 ubiquitin-protein 1i igase RNF5 & 1 & 3 & ER; M; Mi & E2-dependent E3 ubiquit in-protein ligase activity \\
\hline P35519 & Heme oxygenase 2 & 1 & 1 & ER & cleaves the heme ring at the alpha methene bridge to form biliverdin \\
\hline P33121 & Long-chain-fatty-acid-CoA ligase 1 & 1 & 2 & Mi; ER & act ivates long-chain fatty acids for cellular lipids synthesis and degradation \\
\hline 002264 & Nembrane-associated progesterone receptor component 1 & 1 & 1 & ER & receptor for progesterone \\
\hline Q99693 & Nical in & 2 & 1 & ER & antagorizes Nodal signal ing and subsequent organization of axial structures \\
\hline P13667 & Protein disulf ide-isomerase \({ }^{\text {A }}\) & 1 & 0 & ER; Me & catalyzes the rearrangement of -S-s- bonds in proteins \\
\hline P60468 & Protein transport protein Sec61 subunit beta & 1 & 1 & ER & necessary for protein translocation in the endoplasmic reticulum \\
\hline Q15293 & Reti iculocalbin-1 & 2 & 0 & ER & regulates calcium-dependent activities in \(E R\) \\
\hline 076094 & Signal recognition particle subunit SRP72 & , & 0 & C; ER & targets secretory prote ins to the rough endoplasmic reticulum membrane \\
\hline Q880u8 & Vitamin K epoxide reductase complex subunit 1 -like protein 1 & 1 & 4 & ER & involved in vi tanin K metaboli ism \\
\hline Q9P003 & Protein corni chon homolog 4 & 1 & 3 & ER; IC; M & copli dependent anterograde transport \\
\hline 000231 & 265 proteasome non-ATPase regulatory subunit 11 & 1 & 0 & \(\mathrm{N}: \mathrm{C}\) & involved in the ATP-dependent degradation of ubiquiti inated proteins \\
\hline 00487 & 26S proteasome non-ATPase regulatory subunit 14 & 1 & 0 & C; Ex; N & involved in the ATP-dependent degradation of ubiquitinated proteins \\
\hline 043427 & Acidic fibroblast growth factor intracellular-binding protein & 1 & 0 & \(\mathrm{N} ; \mathrm{M}\) & involved in mit ogenic function of FGF1 \\
\hline P08758 & Annexin A5 & \({ }^{2}\) & 0 & C; N & acts as an indirect inhibitor of the thromboplastin-specific complex \\
\hline 095400 & CD2 antigen cytoplasmic tail-binding protein 2 & 1 & 0 & C: N & involved in pre-mRNA spli icing as component of the U5 snRXP complex \\
\hline 099459 & Cell division cycle 5-like protein & 2 & - & N: C & DNA-binding protein involved in cell cycle control \\
\hline 00299 & Chloride intracellular channel protein 1 & 1 & 0 & N: C; CM & inserts into membranes and form chloride ion channels \\
\hline Q88684 & Cleavage and polyadenylation speci if ic ity factor subunit 7 & 1 & 0 & N & plays a key role in pre-mRNA \(3^{\prime}\)-processing \\
\hline P25685 & DnaJ homolog subfamily B member 1 & 2 & 0 & C; N & interacts with HSP70 and can stimulate its ATPase activity \\
\hline P63167 & Dynein light chain 1, cytoplasmic & 1 & 0 & C; \(\mathrm{N} ; \mathrm{Mi}\) & involved in linking dynein to cargos and to adapter proteins that regulate dynein function \\
\hline Q9PBQ5 & Eukaryotic translation initiation factor 3 subunit K & 2 & 0 & C; N & required for several steps in the initiation of protein synthesis \\
\hline P51858 & Hepat oma-der ived growth factor & 1 & 0 & C; N & mitogenic activity for fibroblasts; acts as a transcriptional repressor \\
\hline 968801 & Integrator complex subunit 3 & 1 & 0 & v & involved in the snRVA U1 and U2 transcription and in their \(3^{\prime}\)-box-dependent processing \\
\hline \(0^{096776}\) & MMS19 nucleotide excision repair protein homolog & 1 & 0 & N; SP & mediates the incorporation of iron-sulfur cluster into appoproteins \\
\hline Q7L.914 & MoB kinase activator 1 1B & 1 & 0 & C; N & act ivator of LATS1/2 in the Hippo signal ing pathway \\
\hline Q99217 & Myotubular in-related protein 6 & 1 & & N & Phosphatase that acts on lipids with a phosphoinositol headgroup \\
\hline 988x922 & Negat ive elongation factor B & 1 & 0 & N & negatively regulates the elongation of transcription by RNA polymerase II \\
\hline P43490 & Nicot inamide phosphor ibosyl transferase & , & 0 & C; Ex; N & involved in the rate 1 imit ing component in the mammal ian NaD biosynthesis pathway \\
\hline Q9Y266 & Nuclear mi gration protein nudC & 1 & 0 & C; N & neurogenes is and neuronal mi gration; formation of mit ot tic spindles and chromosome separat \\
\hline 012769 & Nuclear pore complex protein Nupl160 & 2 & & & involved in poly (A) + RVA transport \\
\hline Q9Y5B6 & PAX3- and PAX7-binding protein 1 & 2 & 0 & N & involved in myogenesi is \\
\hline P15259 & Phosphoglycerate mutase 2 & 1 & 0 & C; Ex; N & 2,3-bi sphoshogly cerate-dependent phosphogly ycrate mutase activity \\
\hline 015162 & Phosphol i i id scramblase 1 & 4 & 1 & N: M & \[
\begin{aligned}
& \text { mediates } \\
& \text { formation }
\end{aligned}
\] \\
\hline 09977 & Prefoldin subunit 5 & 1 & 0 & N; C & binds specifically to cytosolic chaperonin (c-CPV) and transfers target proteins to it \\
\hline Q9VHI6 & Probable ATP-dependent RNA hel i case DoX20 & 3 & 0 & \(\mathrm{N} ; \mathrm{C}\) & plays a catalyst role in the assembly of snall nuclear ribonucleoproteins (snRNPs) \\
\hline \({ }^{\text {P34487 }}\) & Ran-speci i fic Gipase-act ivat ing prote in & \(\stackrel{2}{1}\) & 0 & C; N & inhibits GIP exchange on Ran \\
\hline Q13283 & Ras GiPase-activat ing prote in-binding protein 1 & 1 & & C; CM; N & a regulated effector of stress granule assembly \\
\hline P35250 & Repl i cation factor C subunit 2 & 1 & 0 & N & ATP binding; DXA binding \\
\hline P35244 & Repli ication protein A 14 kJa subunit & 1 & 0 & N & binds and stabil izes single-stranded DNA intermediates \\
\hline P27694 & Repl i cation protein A 70 kDa DNA-binding subunit & 1 & 0 & N & binds and stabil i izes single-stranded DNA intermediates \\
\hline 075792 & Ribonuclease H 2 subunit A & 1 & 0 & N & degrades the RVA of RNA: DNA hybrids \\
\hline \({ }^{\text {P36873 }}\) & Serine/threonine-prote in phosphatase PP1-gamma catalytic subunit & 1 & 0 & C; \(\mathrm{N} ; \mathrm{Mi}\) & associates with over 200 regulatory proteins to form highly specific holoenzymes \\
\hline Q993F4 & Serine-threonine kinase receptor-associated protein & 1 & 0 & C; N & plays a catalyst role in the assembly of snall nuclear ribonucleoproteins (snRNPs) \\
\hline P42224 & Signal transducer and activator of transcription 1-alpha/beta & 1 & 0 & C; N & mediates cellular responses to interferons, cytokines and other growth factors \\
\hline P23246 & Splicing factor, prol ine- and glutanine-rich & 2 & O & C: N & DNA- and RVA binding protein, involved in several nuclear processes \\
\hline Q99673 & SRA stem-loop-interacting RNA-binding prote in, mit ochondrial & 1 & 0 & \({ }_{\text {Mi } ; ~}\) N & acts as a nuclear receptor corepressor \\
\hline Q7K7F4 & Staphylococcal nuclease domain-containing protein 1 & 1 & 0 & C; N & functions as a bridging factor between STAT6 and the basal transcription factor \\
\hline Q99NT3 & Structural maintenance of chromosomes protein 4 & 2 & \(\bigcirc\) & C; N & conversion of interphase chromat in into mitotic-1 1 ike condense chromosomes \\
\hline Q9VBT2 & Stulo-act ivat ing enyyme subunit 2 & 2 & 0 & C; N &  \\
\hline P00441 & Superoxide di ismutase [ \([u-Z \mathrm{Zn}]\) & 1 & 0 & C; N & destroys radicals which are normally produced and which are toxic to biological systems \\
\hline Q13148 & TAR DNA--binding protein 43 & 1 & 0 & N & regulates transcription and spli i ing; regulates CFTR spli icing \\
\hline Q99XF1 & Test is-expressed sequence 10 prote in & 1 & 0 & N; C; M & funct ions as a component of the Five Friends of Methylated CHTOP (5FMC) complex \\
\hline \({ }^{\text {P20220 }}\) & Transcription factor BTF3 & 1 & 0 & C; N & prevents inappropr iate target ing of non-secretory poly ypept ides to ER \\
\hline 012923 & Tyros ine-protein phosphatase non-receptor type 13 & 1 & 0 & C; N & regulates negat ively FAS-induced apoptosis and MGFR-mediated pro-apoptotic signal ing \\
\hline Q99449 & V6 snNXA-associated Sm-1 i ke protein LSm 5 & 1 & 0 & N & plays a role in \(\mathrm{U6}\) snRNP assembly and function \\
\hline P61088 & Ubiquit in-conjugat ing enyyme E2 N & 1 & 0 & N; C & catalyzes the synthesis of polyubiquit in chains; acts with E3 ligases \\
\hline 015294 & UDP- N -acety 1 glucosamine--peptide N -acety 1 glucosaminyltransferase 110 kDa subunit & 1 & 0 &  & catalyzes a single N -acetylglucosamine from UDP-GlcNAc transfer to a serine or threonine residue \\
\hline P54727 & OV excision repair protein RAD23 homolog B & 1 & 0 & N; C & mult tiubiquit in chain receptor involved in modulation of proteasomal degradation \\
\hline Q90NX4 & IVI repeat-contai ining protein 3 & & 0 & \({ }^{\mathrm{N}}\) & poly (A) RNA binding; snoNVA binding \\
\hline P61604 & 10 kDa heat shock protein, mit ochondrial & 1 & 0 & Mi & mitochondrial protein biogenesis \\
\hline Q9Y305 & Acyl-coenzyme A thioesterase 9, mit ochondrial & 3 & - & Mi & catalyzes the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A \\
\hline P35566 & Adenylosucci nate lyase & 2 & 0 & C; Mi & catalyzes two non-sequential steps in de novo AMP syythes is \\
\hline 966 P 48 & Aspartate-tRNA 1 i gase, mitochondrial & 1 & 0 & Mi & aspartate-tRNA (Ass) 1 i gase activi ity \\
\hline \({ }^{\text {P30009 }}\) & ATP synthase subunit del ta, mit ochondrial & 2 & 0 & Mi & produces ATP from ADP in the presence of a proton gradient across the membrane \\
\hline 076031 & ATP-dependent Clp protease ATP-binding subunit clpX-1 ike, mit ochondrial & 3 & 0 & Mi & hydrolyzes ATP; targets specific substrates for degradation by the Clp complex \\
\hline \({ }^{\text {P50416 }}\) & Carnit ine 0 -palmi toyltransferase 1 , 1 iver isoform & 2 & 2 & Mi & mit ochondrial uptake of long-chain fatty acids and beta-oxidation in the mit ochondrion \\
\hline 0075390 & Citrate synthase, mit ochondrial & 1 & 0 & \({ }_{\text {Mi }}\) & involved in step 1 of the subpathway that synthes izes isocitrate from oxaloacetate \\
\hline \({ }^{043169}\) & Cytochrome b5 type B & 1 & 1 & Mi & functions as an electron carrier for several membrane bound oxygenases \\
\hline P14406 & Cytochrome c oxi dase subunit 7A2, mi tochondrial & 1 & 1 & Mi & the terminal oxidase in mitochondrial electron transport \\
\hline P10515 & Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mit ochondrial & \({ }^{2}\) & 0 & Mi & catalyzes the overall conversion of pyruvate to acetyl-CoA and C 02 \\
\hline Q96RP9 & Elongat ion factor G, mit ochondrial & 1 & 0 & Mi & catalyzes the GTP-dependent ribosomal translocation step during translation elongati \\
\hline Q8NPF5 & FAD synthase & 1 & 0 & Mi; \({ }^{\text {c }}\) & Catalyzes the adenylation of flavin mononucleotide \\
\hline 092977 & \({ }^{\text {Clutary 1-CoA dehydrogenase, mi tochondr ial }}\) & 1 & 0 & Mi & catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and C 02 \\
\hline \({ }^{\text {9914C38 }}\) & Glyoxalase domain-containing prote in 4 & 1 & 0 & Mi & \\
\hline \({ }^{\text {P26440 }}\) & Isovalery 1-CoA dehydrogenase, mitochondrial & 1 & 0 & Mi & synthesizes (S)-3-hydroxy-3-me thyl I Iutary1-CoA from 3 -i sovaleryl-CoA \\
\hline \({ }^{\text {P40926 }}\) & Valate dehydrogenase, mi tochondri ial & 6 & 0 & Mi & malate dehydrogenase (NADP+) activity \\
\hline Q \({ }_{\text {Q13505 }}^{\text {OTLLY }}\) & Netaxin-1 & 1 & 0 & M; Mi & involved in transport of proteins into the mitochondrion \\
\hline \(\frac{\text { QLJOY3 }}{}\) & Nitochondr ial ribonce lease P prote in 1 & 1 & 0 & \({ }_{\text {Mi }}^{\text {Mi }}\) & functions in mit ochondrial trva mauration provides the mi ssing metabolic reaction required to link mit ochondr ia and cytoplasm \\
\hline 016718 & NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 & 1 & 0 & Mi & accessory subunit of the mit ochondrial membrane respiratory chain NADH dehydrogenase \\
\hline P04181 & Orri thine aminotransferase, mit ochondrial & 1 & 0 & Mi & involved in synthesis of L-glutanate 5 -semialdehyde from L-orni thine \\
\hline \({ }^{\text {P30004 }}\) & Peroxiredoxin-5, mit ochondrial & 1 & 0 & Mi; C C P & involved in intracellular redox signal ing \\
\hline \({ }^{\text {Q14409 }}\) & Putative glycerol kinase 3 & 2 & 1 & Mi; \({ }^{\text {c }}\) & regulation of glycerol uptake and metabol ism \\
\hline \({ }^{\text {P459954 }}\) & Short/branched chain specific acyl-Con dehydrogenase, mit ochondr ial & 1 & 0 & Mi & plays a role in controll ing the metabolic flux of valproic acid in the development of tox \\
\hline \({ }^{\frac{98,442}{}{ }^{\text {P62273 }}}\) & Transl lation factor GUFI, mit ochondrial & 1 & 0 & Mi & promotes mit ochondrial protein synthes is \\
\hline \({ }^{\text {P62273 }}\) & 40 S ribosomal protein S29 & , & & \({ }_{\text {Ci Ex }}\) & \(\frac{z i n c}{}\) binding; structural const ituent of ribosone \\
\hline Q16877 & 6 -phosphof fucto-2-kinase/fructose-2, 6 -bi sphosphatase 4 & + & 0 & \({ }_{c}^{\text {c }}\) & synthesis and degradation of fructose 2,6 -bisphosphate \\
\hline Q13085 & Acetyl-CoA carboxylase 1 & 1 & 0 & c & catalyzes the rate-1 imiting reaction in the biogenesis of long-chain fatty acids \\
\hline \({ }^{\text {P59998 }}\) & Act in-related protein \(2 / 3\) complex subunit 4 & 1 & & c & regulation of actin polymerization; formation of branched actin networks \\
\hline \({ }^{\text {P07741 }}\) & Adenine phosshor ibosyl transferase \({ }^{\text {Adenylyl }}\) cyclase-associated protein 1 & 2 & 0 & \(\stackrel{\text { C }}{\text { c M }}\) & catalyzes a salvage reaction result ing in the format ion of AMP
regulates filament dynamics; mRNA local Ization; establi shment of cell polarity \\
\hline 000170 & Aff receptor-interact ing protein & 1 & 0 & c & a positive role in AHR-mediated (aromat ic hydrocarbon receptor) signal ing \\
\hline \({ }^{\text {Q9P2R3 }}\) P6010 & Ankyrin repeat and FYVE domain-containing protein 1 & \(\frac{1}{1}\) & \({ }_{0}\) & \(\frac{\mathrm{E}: \mathrm{C}}{\text { Cu; }}\) & proposed effector of Rab5 \({ }_{\text {dunct }}\) (ions in protein transport via transport vesicles in different membr \\
\hline P35613 & Basigin & 2 & & \({ }_{\text {cin }}\) & farctions in protein transport via transport vesicles in in diferent membrane tralfic pathways \\
\hline & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Q9UDT6 & CAP-Gly domain-containing linker protein 2 & 1 & 0 & C & 1inks microtubules to DLB; operates brain-specific organellle translocations \\
\hline 075534 & Cold shock domain-containing protein E1 & 1 & 0 & C & internal initiation of translation of human rhinovirus RNA; involved in mRNA turnover \\
\hline Q14008 & Cytoskeleton-associated protein 5 & 1 & 0 & SP; C & Binds to the plus end of microtubules and regulates microtubule dynamics and organization \\
\hline Q96KP4 & Cytosolic non-specific dipeptidase & 1 & 0 & C & hydrolyzes a variety of dipeptides; tumor suppressor \\
\hline Q2NKX8 & DNA excision repair protein ERCC-6-1ike & 1 & 0 & centromere & acts as an essential component of the spindle assembly checkpoint \\
\hline P24534 & Elongation factor 1-beta & 2 & 0 & C & translation elongation factor activity \\
\hline Q14152 & Eukaryotic translation initiation factor 3 subunit A & 1 & 0 & C & required for several steps in the initiation of protein synthesis \\
\hline Q99613 & Eukaryotic translation initiation factor 3 subunit C & 1 & 0 & c & required for several steps in the initiation of protein synthesis \\
\hline 000303 & Eukaryotic translation initiation factor 3 subunit F & 1 & 0 & C & required for several steps in the initiation of protein synthesis \\
\hline Q04637 & Eukaryotic translation initiation factor 4 gamma 1 & 1 & 0 & C; M & involved in the recognition of the mRNA cap \\
\hline Q9UPT5 & Exocyst complex component 7 & 1 & 0 & C; CM & involved in the docking of exocytic vesicles with fusion sites on the plasma membrane \\
\hline Q96PY5 & Formin-like protein 2 & 1 & 0 & C & plays a role in the regulation of cell morphology and cytoskeletal organization \\
\hline Q96@A5 & Gasdermin-A & 1 & 0 & C & induces apoptosis \\
\hline Q06210 & Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 & 1 & 0 & C; Ex & controls the flux of glucose into the hexosamine pathway; regulate precursors for glycosylation \\
\hline P47897 & Glutamine--tRNA ligase & 2 & 0 & C & brain development \\
\hline P34932 & Heat shock 70 kDa protein 4 & 1 & 0 & C & ATP binding; chaperone-mediated protein complex assembly; response to UPR \\
\hline Q9VZL4 & Hsp70-binding protein 1 & 1 & 0 & C & interferes with ubiquitination and inhibits chaperone-assisted degradation of immature CFTR \\
\hline P49441 & Inositol polyphosphate 1-phosphatase & 1 & 0 & C & involved in the pathway phosphatidylinositol signaling pathway \\
\hline 075449 & Katanin p60 ATPase-containing subunit A1 & 1 & 0 & C; SP & severs microtubules in an ATP-dependent manner \\
\hline Q04760 & Lactoylglutathione lyase & 2 & 0 & C; Ex & involved in regulates TNF-induced transcriptional activity of NF-kappa-B; osteoclastogenesis \\
\hline Q99538 & Legumain & 2 & 1 & L & hydrolysis of asparaginyl bonds \\
\hline Q8IVV2 & Lipoxygenase homology domain-containing protein 1 & 1 & 0 & C; M & involved in hearing \\
\hline P13473 & Lysosome-associated membrane glycoprotein 2 & 1 & 1 & CM; E; L & implicated in tumor cell metastasis \\
\hline P14174 & Macrophage migration inhibitory factor & 1 & 0 & Ex; C & involved in the innate immune response to bacterial pathogens \\
\hline 075352 & Mannose-P-dolichol utilization defect 1 protein & 2 & 6 & M & required for normal utilization of mannose-dolichol phosphate (Dol-P-Man) \\
\hline Q15691 & Microtubule-associated protein RP/EB family member 1 & 1 & 0 & C & promotes cytoplasmic microtubule nucleation and elongation; involved in spindle function \\
\hline P29966 & Myristoylated alanine-rich C-kinase substrate & 1 & 0 & C; M & the most prominent cellular substrate for protein kinase C \\
\hline Q01804 & OTU domain-containing protein 4 & 1 & 0 & ? & deubiquitinating enzyme that specifically hydrolyzes ' 'Lys-48'-1inked polyubiquitin \\
\hline Q9vVE7 & Pantothenate kinase 4 & 1 & 0 & C & physiological regulation of the intracellular CoA concentration \\
\hline Q3KNS1 & Patched domain-containing protein 3 & 1 & 7 & M & sperm development or sperm function \\
\hline Q9UBV8 & Peflin & 1 & 0 & C; M & calcium binding \\
\hline P18669 & Phosphoglycerate mutase 1 & 2 & 0 & C: Ex; M & 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase activity \\
\hline P46020 & Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform & 1 & 0 & CM & catalyzes the phosphorylation of serine in certain substrates, including troponin I \\
\hline A2RTX5 & Probable threonine--tRNA ligase 2, cytoplasmic & 2 & 0 & C & ATP binding; threonine-tRNA ligase activity \\
\hline P07737 & Profilin-1 & 2 & 0 & C & binds to actin and affects the structure of the cytoskeleton \\
\hline Q15185 & Prostaglandin E synthase 3 & 1 & 0 & C & catalyzes the oxidoreduction of prostaglandin endoperoxide H2 (PGH2) to prostaglandin E2 (PGE2) \\
\hline 060678 & Protein arginine N -methyltransferase 3 & 1 & 0 & C & methylates the guanidino nitrogens of arginyl residues in some proteins \\
\hline Q8V9Q2 & Protein SREK1IP1 & 1 & 0 & ? & involved in the control of cellular survival. \\
\hline POC7P4 & Putative cytochrome b-cl complex subunit Rieske-like protein 1 & 2 & 0 & M & metal ion binding \\
\hline Q81ZP2 & Putative protein FAM10A4 & 2 & 0 & C & ? \\
\hline Q9UET6 & Putative tRNA (cytidine (32)/guanosine (34)-2'-0)-methyltransferase & 2 & 0 & C & methylates the \(2^{\prime}-0\)-ribose of nucleotides at positions 32 and 34 of the tRNA anticodon loop \\
\hline Q96C36 & Pyrrol ine-5-carboxylate reductase 2 & 2 & 0 & C & housekeeping enzyme that catalyzes the last step in proline biosynthesis \\
\hline Q6IAA8 & Ragulator complex protein LAMTOR1 & 1 & 0 & E; L; CM & involved in amino acid sensing and activation of mTORC1 \\
\hline Q9Y2Q5 & Ragulator complex protein LAMTOR2 & 1 & 0 & E; L & involved in amino acid sensing and activation of mTORC1 \\
\hline Q0VGL1 & Ragulator complex protein LAMTOR4 & 1 & 0 & L & involved in amino acid sensing and activation of mTORC1 \\
\hline P62491 & Ras-related protein Rab-11A & 2 & 0 & CM; L & key regulators of intracellular membrane trafficking \\
\hline P20339 & Ras-related protein Rab-5A & 1 & 0 & \[
\begin{gathered}
\text { CM; E; C; } \\
\text { M; Me } \\
\hline
\end{gathered}
\] & key regulators of intracellular membrane trafficking \\
\hline P51148 & Ras-related protein Rab-5C & 2 & 0 & CM; E; Me & involved in vesicular traffic \\
\hline A6, IZ1 & Ras-related protein Rap-1b-like protein & 1 & 0 & C; CM & Activated by GEF EPAC2 in a cAMP-dependent manner \\
\hline P13489 & Ribonuclease inhibitor & 2 & 0 & C & inhibits RNASE1, RNASE2 and ANG; plays a role in redox homeostasis \\
\hline Q15019 & Sept in-2 & 3 & 0 & C: Spindle & filament-forming cytoskeletal GTPase \\
\hline Q96K37 & Solute carrier family 35 member E1 & 1 & 10 & M & putative transporter \\
\hline Q01082 & Spectrin beta chain, non-erythrocytic 1 & 2 & 0 & C & involved in secretion, interacts with calmodulin in a calcium-dependent manner \\
\hline P16949 & Stathmin 0S=Homo sapiens GN=STMN1 PE=1 SV=3-[STMN1 HOMAN] & 1 & 0 & C & involved in the regulation of the microtubule (MT) filament system by destabilizing microtubule \\
\hline P26639 & Threonine--tRNA ligase, cytoplasmic & 2 & 0 & C & ATP binding; protein homodimerization activity; threonine-tRNA ligase activity \\
\hline 014545 & TRAF-type zinc finger domain-containing protein 1 & 1 & 0 & ? & negative feedback regulator that controls excessive innate immune responses \\
\hline P37837 & Transaldolase & 2 & 0 & C & balance of metabolites in the pentose-phosphate pathway \\
\hline P54577 & Tyrosine--tRNA ligase, cytoplasmic & 2 & 0 & c & catalyzes the attachment of tyrosine to tRNA (Tyr) \\
\hline P45974 & Ubiquitin carboxyl-terminal hydrolase 5 & 1 & 0 & L & cleaves multiubiquitin polymers with a marked preference for branched polymers \\
\hline Q9HA47 & Uridine-cytidine kinase 1 & 1 & 0 & C & phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Third IP Accession & Protein name & \[
\begin{array}{|c|}
\hline \text { \#Peptides } \\
\text { with } \\
\text { crosslink } \\
\text { er R85H }
\end{array}
\] & TMD & \[
\left\lvert\, \begin{gathered}
\text { localizati } \\
\text { on }
\end{gathered}\right.
\] & function \\
\hline Q15436 & Protein transport protein Sec23A & 2 & 0 & ER; G & COPII dependent anterograde transport \\
\hline P53992 & Protein transport protein Sec24C & 1 & 0 & G; ER; C & CoPII dependent anterograde transport \\
\hline 095197 & Reticulon-3 & 1 & 3 & G; ER & involved in membrane trafficking: ER stress pathway \\
\hline Q14697 & Neutral alpha-glucosidase AB & 1 & 1 & G; ER & glycosylation; dleaves glucose residues from oligosaccharide precursor of immature glycoproteins \\
\hline Q10471 & Polypeptide N -acetylgalactosaminyltransferase 2 & 1 & 1 & G; Ex & glycosylation; catalyzes the initial reaction in 0-1inked oligosaccharide biosynthesis \\
\hline Q6P996 & Pyridoxal-dependent decarboxylase domain-containing protein 1 & 1 & 0 & G & glycosylation; carboxy-lyase activity \\
\hline Q12904 & Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 & 2 & 0 & \[
\begin{gathered}
\mathrm{N} ; \mathrm{C} ; \mathrm{ER} ; \\
\mathrm{G} \\
\hline
\end{gathered}
\] & binds tRNA; inflammatory cytokine activity; regulates TGF-beta signaling; glucose homeostasis; \\
\hline Q6:NTP9 & Rhomboid domain-containing protein 2 & 1 & 6 & G & RHBDD2 \\
\hline P55061 & Bax inhibitor 1 & 1 & 7 & ER & modulates UPR signaling; ER calcium homeostasis; suppressor of apoptosis \\
\hline Q99942 & E3 ubiquit in-protein ligase RNF5 & 1 & 3 & ER; M; Mi & E2-dependent E3 ubiquitin-protein ligase activity \\
\hline Q969N2 & GPI transamidase component PIG-T & 1 & 1 & ER & essential for transfer of GPI to proteins; formation of carbonyl intermediates \\
\hline Q969V3 & Nicalin & 1 & 1 & ER & antagonizes Nodal signaling and subsequent organization of axial structures \\
\hline Q96JJ7 & Protein disulf ide-isomerase TMX3 & 1 & 1 & ER & participates in the folding of proteins containing disulfide bonds \\
\hline Q9HCN8 & Stromal cell-derived factor 2-1ike protein 1 & 1 & 0 & ER & ER-associated misfolded protein catabolic process; regulation of apoptosis process \\
\hline Q8VFQ8 & Torsin-1A-interact ing protein 2 & 2 & 1 & ER; NM & ER organization; ToR1A transport between nucleus and ER; ATPase activity \\
\hline P55084 & Trifunctional enzyme subunit beta, mitochondrial & 1 & 0 & Mi; ER & 1ipid metabolism; fatty acid beta-oxidation pathway \\
\hline Q9P003 & Protein cornichon homolog 4 & 1 & 3 & ER; IC; M & COPII dependent anterograde transport \\
\hline P21953 & 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial & 1 & 0 & Mi & catalyzes the overall conversion of alpha-keto acids to acyl-CoA and C 02 \\
\hline P30566 & Adenylosuccinate lyase & 1 & 0 & C; Mi & catalyzes two non-sequential steps in de novo AMP synthesis \\
\hline Q6PI48 & Aspartate--tRNA ligase, mitochondrial & 1 & 0 & Mi & aspartate-tRNA (Asn) 1igase activity \\
\hline P30049 & ATP synthase subunit delta, mitochondrial & 1 & 0 & Mi & produces ATP from ADP in the presence of a proton gradient across the membrane \\
\hline 076031 & ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial & 3 & 0 & Mi & hydrolyzes ATP; targets specific substrates for degradation by the Clp complex \\
\hline Q8NE86 & Calcium uniporter protein, mitochondrial & 2 & 2 & Mi & calcium uniporter that mediates calcium uptake into mitochondria \\
\hline P31327 & Carbamoy1-phosphate synthase [ammonia], mitochondrial & 1 & 0 & Mi; N & involved in the urea cycle of ureotelic animals \\
\hline P50416 & Carnitine 0-palmitoyltransferase 1, liver isoform & 2 & 2 & Mi & mitochondrial uptake of long-chain fatty acids and beta-oxidation in the mitochondrion \\
\hline 043169 & Cytochrome b5 type B & 1 & 1 & Mi & functions as an electron carrier for several membrane bound oxygenases \\
\hline Q8NFF5 & FAD synthase & 1 & 0 & Mi; C & Catalyzes the adenylation of flavin mononucleotide \\
\hline Q92947 & Glutary1-CoA dehydrogenase, mitochondrial & 2 & 0 & Mi & catalyzes the oxidative decarboxylation of glutary1-CoA to crotonyl-CoA and C02 \\
\hline P26440 & Isovaleryl-CoA dehydrogenase, mitochondrial & 1 & 0 & Mi & synthesizes (S) -3-hydroxy-3-methylglutaryl-CoA from 3-isovaleryl-CoA \\
\hline Q8IXI2 & Mitochondrial Rho GTPase 1 & 1 & 1 & Mi & involved in mitochondrial trafficking \\
\hline Q6UB35 & Monofunctional C1-tetrahydrofolate synthase, mitochondrial & 1 & 0 & Mi & provides the missing metabolic reaction required to link mitochondria and cytoplasm \\
\hline Q16718 & NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 & 1 & 0 & Mi & accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase \\
\hline Q14318 & Pept idyl-prolyl cis-trans isomerase FKBP8 & 2 & 1 & Mi & inactive Ppiase; becomes active when bound to calmodulin and calcium \\
\hline Q9GZT3 & SRA stem-loop-interacting RNA-binding protein, mitochondrial & 1 & 0 & Mi; N & acts as a nuclear receptor corepressor \\
\hline 000231 & 26 S proteasome non-ATPase regulatory subunit 11 & 1 & 0 & \(\mathrm{N} ; \mathrm{C}\) & involved in the ATP-dependent degradation of ubiquitinated proteins \\
\hline Q13363 & C-terminal-binding protein 1 & 1 & 0 & C; N & corepressor targeting diverse transcription regulators such as GLIS2 or BCL6 \\
\hline Q16527 & Cysteine and glycine-rich protein 2 & 1 & 0 & N & drastically down-regulated in response to PDGF-BB or cell injury \\
\hline P28340 & DNA polymerase delta catalytic subunit & 1 & 0 & N & DNA synthesis and an exonucleolytic activity \\
\hline Q9UHV5 & GPN-1oop GTPase 3 & 1 & 0 & N & required for proper localization of RNA polymerase II (RNAPII) \\
\hline Q15477 & Helicase SKI2W & 1 & 0 & N: C & involved in exosome-mediated RNA decay and associates with transcriptionally active genes \\
\hline P02788 & Lactotransferrin & 1 & 0 & Ex; C; N & iron binding transport proteins which can bind two Fe3+ ions \\
\hline Q96776 & MMS19 nucleotide excision repair protein homolog & 4 & 0 & N; SP & mediates the incorporation of iron-sulfur cluster into apoproteins \\
\hline Q81XX92 & Negative elongation factor B & 1 & 0 & N & negatively regulates the elongation of transcription by RNA polymerase II \\
\hline Q9B1127 & Nuclear pore complex protein Nup85 & 1 & 0 & \(\mathrm{N}: \mathrm{C}\) & essential component of the nuclear pore complex (NPC) \\
\hline 015162 & Phospholipid scramblase 1 & 2 & 1 & N; M & mediates accelerated ATP-independent bidirectional transbilayer migration; fibrin clot formation \\
\hline Q14558 & Phosphoribosyl pyrophosphate synthase-associated protein 1 & 1 & 0 & N & plays a negative regulatory role in 5 -phosphoribose 1 -diphosphate synthesis \\
\hline Q9UHI6 & Probable ATP-dependent RNA hel icase DDX20 & 4 & 0 & \(\mathrm{N} ; \mathrm{C}\) & plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs) \\
\hline P15056 & Serine/threonine-protein kinase B-raf & 1 & 0 & N: C; CM & involved in the transduction of mitogenic signals from the cell membrane to the nucleus \\
\hline 015084 & Serine/threonine-protein phosphatase 6 regulatory ankyrin repeat subunit A & 1 & 0 & N & involved in the recognition of phosphoprotein substrates \\
\hline P62306 & Small nuclear ribonucleoprotein F & 1 & 0 & C; N & core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs) \\
\hline Q13148 & TAR DNA-binding protein 43 & 1 & 0 & N & regulates transcription and splicing; regulates CFTR splicing \\
\hline Q8NI27 & THO complex subunit 2 & 1 & 0 & N & required for efficient export of polyadenylated RNA and spliced mRNA \\
\hline Q9UBB9 & Tuftel in-interacting protein 11 & 2 & 0 & C; N & involved in pre-mRNA splicing; spliceosome disassembly during late-stage splicing events \\
\hline P11172 & Uridine 5'-monophosphate synthase & 3 & 0 & C; N & orotate phosphoribosyltransferase activity; orotidine-5' -phosphate decarboxylase activity \\
\hline Q9BZH6 & WV) repeat-containing protein 11 & 1 & 0 & M; C; N & \(?\) \\
\hline Q9UNX4 & WV repeat-containing protein 3 & 1 & 0 & N & poly(A) RNA binding; snoRNA binding \\
\hline Q9NU02 & Ankyrin repeat and EF-hand domain-containing protein 1 & 2 & 0 & ? & calcium binding \\
\hline Q9P2R3 & Ankyrin repeat and FYVE domain-containing protein 1 & 2 & 0 & E; C & proposed effector of Rab5 \\
\hline Q7L1Q6 & Basic leucine zipper and W2 domain-containing protein 1 & 1 & 0 & C; M & enhances histone H 4 gene transcription but does not seem to bind DNA directly \\
\hline P35613 & Basigin & 1 & 1 & CM & targets the monocarboxylate transporters SLC16A1, SLC16A3 and SLC16A8 to the plasma membrane \\
\hline Q9UDT6 & CAP-Gly domain-containing linker protein 2 & 1 & 0 & C & links microtubules to DLB; operates brain-specific organellle translocations \\
\hline Q96KP4 & Cytosolic non-specific dipeptidase & 1 & 0 & C & hydrolyzes a variety of dipeptides; tumor suppressor \\
\hline P60981 & Destrin & 1 & 0 & C; Ex & severs actin filaments (F-actin) and binds to actin monomers (G-actin) \\
\hline P24534 & Elongation factor 1-beta & 1 & 0 & C & translation elongation factor activity \\
\hline Q9UPT5 & Exocyst complex component 7 & 1 & 0 & C; CM & involved in the docking of exocytic vesicles with fusion sites on the plasma membrane \\
\hline Q96QA5 & Gasdermin-A & 1 & 0 & C & induces apoptosis \\
\hline Q06210 & Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 & 1 & 0 & C; Ex & controls the flux of glucose into the hexosamine pathway; regulate precursors for glycosylation \\
\hline P47897 & Glutamine--tRNA ligase & 2 & 0 & C & brain development \\
\hline Q8vEV9 & Interleukin-27 subunit alpha & 1 & 0 & Ex & fuctions in innate immunity \\
\hline Q99538 & Legumain & 1 & 1 & L & hydrolysis of asparaginyl bonds \\
\hline Q9H9A6 & Leucine-rich repeat-containing protein 40 & 1 & 0 & M & ? \\
\hline Q9P260 & LisH domain and HEAT repeat-containing protein KIAA1468 & 1 & 0 & ? & , \\
\hline 075352 & Mannose-P-dolichol utilization defect 1 protein & 1 & 6 & M & required for normal utilization of mannose-dolichol phosphate (Dol-P-Man) \\
\hline Q9MVE7 & Pantothenate kinase 4 & 1 & 0 & C & physiological regulation of the intracellular CoA concentration \\
\hline P56589 & Peroxisomal biogenesis factor 3 & 2 & 1 & P & involved in peroxisome biosynthesis and integrity \\
\hline \({ }^{\text {A2RTX5 }}\) & Probable threonine--tRNA ligase 2, cytoplasmic & 1 & 0 & C & ATP binding; threonine-tRNA ligase activity \\
\hline 060678 & Protein arginine N -methyltransferase 3 & 1 & 0 & & methylates the guanidino nitrogens of arginyl residues in some proteins \\
\hline Q8WUH1 & Protein Churchill & 1 & 0 & \(?\) & mediates FGF signaling during neural development \\
\hline Q8TCG1 & Protein CIP2A & 1 & 0 & C; M & inhibits PP2A and stabilizes MYC in human malignancies \\
\hline Q9H7Z3 & Protein NRDE2 homolog & 1 & 0 & ? & ? \\
\hline Q5JSZ5 & Protein PRRC2B & 1 & 0 & ? & poly (A) RNA binding \\
\hline Q8V9Q2 & Protein SREK1IP1 & 1 & 0 & ? & involved in the control of cellular survival. \\
\hline P51148 & Ras-related protein Rab-5C & 1 & 0 & CM; E; Me & involved in vesicular traffic \\
\hline A6NIZ1 & Ras-related protein Rap-1b-like protein & 1 & 0 & C; CM & Act ivated by GEF EPAC2 in a cAMP-dependent manner \\
\hline P13489 & Ribonuclease inhibitor & 1 & 0 & C & inhibits RNASE1, RNASE2 and ANG; plays a role in redox homeostasis \\
\hline Q9VSD5 & Sodium- and chloride-dependent GABA transporter 2 & 1 & 11 & CM & sodium-dependent GABA and taurine transporter \\
\hline P19623 & Spermidine synthase & 1 & 0 & C & catalyzes the production of spermidine from putrescine and dcSAM \\
\hline Q6YHU6 & Thyroid adenoma-associated protein & 1 & 0 & ? & \(?\) \\
\hline Q9UI30 & tRNA methyltransferase 112 homolog & 1 & 0 & Ex & participates both in methylation of protein and tRNA species \\
\hline P54577 & Tyrosine--tRNA ligase, cytoplasmic & 1 & 0 & C & catalyzes the attachment of tyrosine to tRNA (Tyr) \\
\hline Q9H269 & Vacuolar protein sorting-associated protein 16 homolog & 1 & 0 & E; L; A & vesicle-mediated protein trafficking to lysosomal compartments; autophagic pathways \\
\hline Q9UN37 & Vacuolar protein sorting-associated protein 4A & 2 & 0 & E & involved in late steps of the endosomal multivesicular bodies (MVB) pathway \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Accession & Protein name & TMD & \[
\begin{gathered}
\text { local izati } \\
\text { on }
\end{gathered}
\] & function \\
\hline Q08378 & Golgin subfamily A member 3 (golgin-160) & 0 & G; C & Golgi organization \\
\hline Q15643 & Thyroid receptor-interacting protein 11 & 0 & G; C & Golgi organization; enhances THRB-modulated transcription \\
\hline Q9H8Y8 & Golgi reassembly-stacking protein 2 & 0 & G & Golgi organization; intracellular transport; lipid-anchor \\
\hline Q8TBA6 & Golgin subfamily A member 5 (golgin-84) & 1 & G & Golgi organization; intra-Golgi transport \\
\hline Q9H269 & Golg in-45 & 0 & G & Golgi organization; anterograde transport \\
\hline P20340 & Ras-related protein Rab-6A & 0 & G & Golgi organization; Golgi-to-ER retrograde transport; endosome-to-Golgi retrograde transport \\
\hline 095159 & Zinc finger protein-like 1 & 1 & G & Golgi organization; interacts with GM130; ER-to-Golgi transport \\
\hline Q9H4A5 & Golgi phosphoprotein 3-1ike & 1 & G & antagonize Golgi-to-plasma membrane transport \\
\hline Q8IUH4 & Palmitoyltransferase ZDHHC13 & 6 & G & magnesium transport; palmitoyltransferase for HD and GAD2 \\
\hline P82094 & TATA element modulatory factor & 0 & G; C; N & RAB6-dependent retrograde transport (Golgi-to-ER and endosome-to-Golgi retrograde transport) \\
\hline Q8TAD4 & Zinc transporter 5 & 16 & G & zinc transporter that transports zinc into Golgi lumens \\
\hline Q6P996 & Pyridoxal-dependent decarboxylase domain-containing protein 1 & 0 & G & glycosylation; carboxy-1yase activity \\
\hline Q8IVV1 & Soluble calcium-activated nucleotidase 1 & 1 & ER; G & glycosylation; calcium-dependent nucleotidase with a preference for UDP \\
\hline Q9UKN7 & Endoplasmic reticulum mannosyl-ol igosaccharide 1, 2-alpha-mannosidase & 1 & ER & glycosylation; glycoprotein quality control \\
\hline Q961W7 & Vesicle-trafficking protein SEC22a & 4 & ER & transport between ER and Golgi \\
\hline 095486 & Protein transport protein Sec24A & 0 & G; ER; IC & COPII dependent anterograde transport \\
\hline 095487 & Protein transport protein Sec24B & 0 & G; ER; IC & COPII dependent anterograde transport \\
\hline 094855 & Protein transport protein Sec24D & 0 & G; ER; IC C & COPII dependent anterograde transport \\
\hline P32019 & Type II inositol 1, 4, 5-trisphosphate 5-phosphatase & 0 & G; C; IC & metal ion binding; dephosphorylation \\
\hline Q96RQ1 & Endoplasmic reticulum-Golgi intermediate compartment protein 2 & 2 & IC; N & transport between ER and Golgi \\
\hline Q9Y217 & Myotubularin-related protein 6 & 0 & N & Phosphatase that acts on lipids with a phosphoinositol headgroup \\
\hline 000308 & NEDD4-1 ike E3 ubiquit in-protein ligase WYP2 & 0 & N & ubiquitination \\
\hline Q8N1F7 & Nuclear pore complex protein Nup93 & 2 & N & plays a role in the nuclear pore complex assembly \\
\hline Q6DKJ4 & Nucleoredoxin & 0 & C; N & regulator of the Wnt signaling pathway \\
\hline P56556 & NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 & 0 & Mi & functions in respiratory chain \\
\hline Q9BVID 1 & Acetyl-CoA acetyltransferase & 0 & C & acety1-CoA C-acetyltransferase activity \\
\hline Q96PU5 & E3 ubiquit in-protein ligase NEDD4-1ike & 0 & C & ubiquitination \\
\hline P08134 & Rho-related GTP-binding protein RhoC & 0 & CM & myosin contractile ring formation; apical junction formation \\
\hline Q92544 & Transmembrane 9 superfamily member 4 & 10 & M & ? \\
\hline Q5WNZ6 & WID repeat domain phosphoinositide-interacting protein 3 & 0 & C; A & autophagosome assembly \\
\hline
\end{tabular}

Table 7 Conserved RHBDD2 WT hits between second IP and third IP (with and without crosslinker)
\begin{tabular}{|c|c|c|c|c|}
\hline Accession & Protein name & TMD & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { localizati } \\
\text { on }
\end{array} \\
\hline
\end{array}
\] & function \\
\hline 015027 & Protein transport protein Sec16A & 0 & ER; G & defines endoplasmic reticulum exit sites; ER-to-Golgi transport; transitional ER organization \\
\hline P53992 & Protein transport protein Sec24C & 0 & G; ER; C & COPII dependent anterograde transport \\
\hline Q66TP9 & Rhomboid domain-containing protein 2 & 6 & G & RHBDD2 \\
\hline P30566 & Adenylosuccinate lyase & 0 & C; Mi & catalyzes two non-sequential steps in de novo AMP synthesis \\
\hline Q9Y217 & Myotubularin-related protein 6 & 0 & N & Phosphatase that acts on lipids with a phosphoinositol headgroup \\
\hline 015162 & Phospholipid scramblase 1 & 1 & N; M & mediates accelerated bidirectional transbilayer migration; fibrin clot formation \\
\hline P23246 & Splicing factor, proline- and glutamine-rich & 0 & C; N & DNA- and RNA binding protein, involved in several nuclear processes \\
\hline P61088 & Ubiquitin-conjugating enzyme E2 N & 0 & N; C & catalyzes the synthesis of polyubiquitin chains; acts with E3 ligases \\
\hline P59998 & Actin-related protein \(2 / 3\) complex subunit 4 & 0 & C & regulation of actin polymerization; formation of branched actin networks \\
\hline 000303 & Eukaryotic translation initiation factor 3 subunit F & 0 & C & component of eIF-3 complex, which is required for the initiation of protein synthesis \\
\hline Q06210 & Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 & 0 & C; Ex & controls flux of glucose into the hexosamine pathway; regulate precursors for glycosylation \\
\hline Q96C36 & Pyrrol ine-5-carboxylate reductase 2 & 0 & C & housekeeping enzyme that catalyzes the last step in proline biosynthesis \\
\hline Q9HA47 & Uridine-cytidine kinase & 0 & C & phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate \\
\hline
\end{tabular}

Table 8 Conserved R85H mutation hits between second IP and third IP (with and without crosslinker)
\begin{tabular}{|c|c|c|c|c|}
\hline Accession & Protein name & TMD & \[
\begin{array}{|c|}
\hline \text { localizat } \\
\text { on }
\end{array}
\] & function \\
\hline Q6P996 & Pyridoxal-dependent decarboxylase domain-containing protein 1 & 0 & G & glycosylation; carboxy-lyase activity \\
\hline P53992 & Protein transport protein Sec24C & 0 & G; ER; C & CoPII dependent anterograde transport \\
\hline P55084 & Trifunctional enzyme subunit beta, mitochondrial & 0 & Mi; ER & 1ipid metabolism; fatty acid beta-oxidation pathway \\
\hline P35613 & Basigin & 1 & CM & targets the monocarboxylate transporters SLC16A1, SLC16A3 and SLC16A8 to the plasma membrane \\
\hline P28340 & DNA polymerase delta catalytic subunit & 0 & N & DVA synthesis and an exonucleolytic activity \\
\hline Q96776 & MWS19 nucleotide excision repair protein homolog & 0 & N; SP & mediates the incorporation of iron-sulfur cluster into apoproteins \\
\hline 015162 & Phospholipid scramblase 1 & 1 & N; M & mediates accelerated bidirectional transbilayer migration; fibrin clot formation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Accession & Protein name & TMD & \[
\left\lvert\, \begin{gathered}
\text { localizat i } \\
\text { on }
\end{gathered}\right.
\] & function \\
\hline Q08379 & Golgin subfamily A member 2 (GM130) & 0 & G; SP & Golgi organization; spindle pole assembly; centrosome organization \\
\hline Q08378 & Golgin subfamily A member 3 (golgin-160) & 0 & G; C & Golgi organization \\
\hline Q15643 & Thyroid receptor-interacting protein 11 & 0 & G; C & Golgi organization; enhances THRB-modulated transcription \\
\hline Q9H8Y8 & Golgi reassembly-stacking protein 2 & 0 & G & Golgi organization; intracellular transport; lipid-anchor \\
\hline Q8TBA6 & Golgin subfamily A member 5 (golgin-84) & 1 & G & Golgi organization; intra-Golgi transport \\
\hline Q9H269 & Golg in-45 & 0 & G & Golgi organization; anterograde transport \\
\hline P20340 & Ras-related protein Rab-6A & 0 & G & Golgi organization; Golgi-to-ER retrograde transport; endosome-to-Golgi retrograde transport \\
\hline 060763 & General vesicular transport factor p115 & 0 & G; C & intra-Golgi transport; docking of transport vesicles \\
\hline 014653 & Golgi SNAP receptor complex member 2 & 1 & G & intra-Golgi transport \\
\hline Q8IUH4 & Palmitoyltransferase ZDHHC13 & 6 & G & magnesium transport; palmitoyltransferase for HD and GAD2 \\
\hline Q8IUH5 & Palmitoyltransferase ZDHHC17 & 6 & G; C & involved in sorting or targeting proteins and initiating events of endocytosis; Mg2+ transport \\
\hline Q13948 & Protein CASP & 1 & G & intra-Golgi transport \\
\hline P53992 & Protein transport protein Sec24C & 0 & G; ER; C & COPII dependent anterograde transport \\
\hline P61106 & Ras-related protein Rab-14 & 0 & G; E; Ph & transport between Golgi and endosomes \\
\hline Q8TAD4 & Zinc transporter 5 & 16 & G & zinc transporter that transports zinc into Golgi lumens \\
\hline Q10469 & Alpha-1, 6-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase & 0 & G & glycosylation; conversion of ligo-mannose to complex N -glycans \\
\hline Q6P996 & Pyridoxal-dependent decarboxylase domain-containing protein 1 & 0 & G & glycosylation; carboxy-1yase activity \\
\hline P78381 & UDP-galactose translocator & 8 & G & glycosylation; transports nucleotide sugars from the cytosol into Golgi \\
\hline Q9BXS5 & AP-1 complex subunit mu-1 & 0 & G; C & protein sorting in trans-Golgi and endosomes \\
\hline Q9NZC7 & WV domain-containing oxidoreductase & 0 & \[
\begin{gathered}
\hline \mathrm{C} ; \mathrm{G} ; \mathrm{Mi} ; \\
\mathrm{N} \\
\hline
\end{gathered}
\] & a tumor suppressor and plays a role in apoptosis; bone development \\
\hline 095486 & Protein transport protein Sec24A & 0 & G; ER; IC & COPII dependent anterograde transport \\
\hline 095487 & Protein transport protein Sec24B & 0 & G; ER; IC & COPII dependent anterograde transport \\
\hline 094855 & Protein transport protein Sec24D & 0 & G; ER; IC & COPII dependent anterograde transport \\
\hline P61019 & Ras-related protein Rab-2A & 0 & ER; G; IC & ER-to-Golgi transport \\
\hline Q9Y6Y8 & SEC23-interacting protein & 0 & ER; IC & organization of endoplasmic reticulum exit sites \\
\hline Q13190 & Syntaxin-5 & 1 & G; IC & Golgi organization; ER-to-Golgi transport \\
\hline P55084 & Trifunctional enzyme subunit beta, mitochondrial & 0 & Mi; ER & 11pid metabolism; fatty acid beta-oxidation pathway \\
\hline Q53H12 & Acylglycerol kinase, mitochondrial & 0 & Mi & involved in the pathway glycerolipid metabolism \\
\hline P61221 & ATP-binding cassette sub-family E member 1 & 0 & C: Mi & interact with Rnase L; regulate mRNA turnover; chaperone for post-translational events \\
\hline Q9H078 & Caseinolytic peptidase B protein homolog & 0 & Mi & regulate ATPase and be related to secretion/protein trafficking process \\
\hline Q3ZCQ8 & Mitochondrial import inner membrane translocase subunit TIM50 & 1 & Ni & mediates the translocation of transit peptide-containing proteins \\
\hline P56556 & NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 & 0 & Mi & functions in respiratory chain \\
\hline 075251 & NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial & 0 & Ni & core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase \\
\hline P62888 & 60 ribosomal protein L30 & 0 & \[
\begin{gathered}
\text { C; Ex; } \mathrm{N} ; \\
\mathrm{M}
\end{gathered}
\] & structural constituent of ribosome \\
\hline P28340 & DNA polymerase delta catalytic subunit & 0 & N & DNA synthesis and an exonucleolytic activity \\
\hline Q13642 & Four and a half LIM domains protein 1 & 0 & C; N & involved in muscle development or hypertrophy \\
\hline Q9BQ67 & Glutamate-rich WD repeat-containing protein 1 & 0 & N & poly (A) RNA binding \\
\hline Q9VZ18 & Insulin-like growth factor 2 mRNA-binding protein 1 & 0 & \(\mathrm{N} ; \mathrm{C}\) & mRNA binding; translation regulator activity \\
\hline Q9Y217 & Myotubularin-related protein 6 & 0 & N & Phosphatase that acts on lipids with a phosphoinositol headgroup \\
\hline 075182 & Paired amphipathic helix protein Sin3b & 0 & N & acts as a transcriptional repressor \\
\hline Q8IYS 1 & Peptidase M20 domain-containing protein 2 & 0 & Ex; N & enzyme activity \\
\hline 015162 & Phospholipid scramblase 1 & 1 & N; M & mediates accelerated bidirectional transbilayer migration; fibrin clot formation \\
\hline Q9UQ80 & Proliferation-associated protein 2 G4 & 0 & C; N & a ERBB3-regulated signal transduction pathway; ribosome assembly \\
\hline P56182 & Ribosomal RNA processing protein 1 homolog A & 0 & N & generation of 288 S rNNA \\
\hline Q5H9R7 & Serine/threonine-protein phosphatase 6 regulatory subunit 3 & 0 & C; N & a scaffolding PP6 subunit; maintains immune self-tolerance \\
\hline P23246 & Splicing factor, proline- and glutamine-rich & 0 & C; N & DNA- and RNA binding protein, involved in several nuclear processes \\
\hline P61088 & Ubiquit in-con jugat ing enzyme E2 N & 0 & N; C & catalyzes the synthesis of polyubiquitin chains; acts with E3 ligases \\
\hline Q6ZRP7 & Sulfhydryl oxidase 2 & 1 & \(\mathrm{MM} ; \mathrm{CM}\) & catalyzes the oxidation of sulfhydryl groups in peptide and protein \\
\hline P23258 & Tubul in gamma-1 chain & 0 & Centrosome & major constituent of microtubules \\
\hline Q15008 & 26 S proteasome non-ATPase regulatory subunit 6 & 0 & C & ATPase for ubiquitination \\
\hline P05089 & Arginase-1 & 0 & C & synthesizes L-ornithine and urea from L-arginine \\
\hline Q9HC35 & Echinoderm microtubule-associated protein-like 4 & 0 & C & may modify the assembly dynamics of microtubules \\
\hline P05198 & Eukaryotic translation initiation factor 2 subunit 1 & 0 & C & forms a ternary complex with GTP and initiator tRNA \\
\hline 060879 & Protein diaphanous homolog 2 & 0 & C; E & oogenesis; regulates endosome dynamics and motility of early endosomes \\
\hline Q9UBU6 & Protein FAM8A1 & 3 & M & autosomal highly conserved protein \\
\hline Q96C36 & Pyrrol ine-5-carboxylate reductase 2 & 0 & C & housekeeping enzyme that catalyzes the last step in proline biosynthesis \\
\hline Q14964 & Ras-related protein Rab-39A & 0 & CM; Ph; L & maturation and acidification of phagosomes \\
\hline P62070 & Ras-related protein R-Ras2 & 0 & C & GTPase activity; transduces growth inhibitory signals across cell membrane \\
\hline P08134 & Rho-related GTP-binding protein RhoC & 0 & CM & myosin contractile ring formation; apical junction formation \\
\hline P22102 & Trifunctional purine biosynthetic protein adenosine-3 & 0 & C; Ex & synthesizes glycinamide \\
\hline Q5MNZ & WD repeat domain phosphoinositide-interacting protein 3 & 0 & C; A & autophagosome assembly \\
\hline
\end{tabular}

Table 10 Conserved RHBDD2 WT and R85H hits in third IP (without crosslinker)
\begin{tabular}{|c|c|c|c|c|}
\hline Accession & Protein name & TMD & \[
\begin{array}{|c|}
\hline \begin{array}{c}
\text { localizat i } \\
\text { on }
\end{array} \\
\hline
\end{array}
\] & function \\
\hline Q15436 & Protein transport protein Sec23A & 0 & ER; G & COPII dependent anterograde transport \\
\hline P53992 & Protein transport protein Sec24C & 0 & G; ER; C & COPII dependent anterograde transport \\
\hline 095197 & Reticulon-3 & 3 & G; ER & involved in membrane trafficking; ER stress pathway \\
\hline Q14697 & Neutral alpha-glucosidase AB & 1 & G; ER & glycosylation; cleaves glucose residues from oligosaccharide precursor of glycoproteins \\
\hline Q12904 & Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 & 0 & \[
\underset{\mathrm{G}}{\mathrm{~N} ; \mathrm{C} ; \mathrm{ER} ; \mathrm{b}}
\] & binds tRNA; inflammatory cytokine activity; regulates TGF-beta signaling; glucose homeostasis; \\
\hline Q6, TP9 & Rhomboid domain-containing protein 2 & 6 & G & RHBDD2 \\
\hline P13489 & Ribonuclease inhibitor & 0 & C & inhibits RNASE1, RNASE2 and ANG; plays a role in redox homeostasis \\
\hline Q9P003 & Protein cornichon homolog 4 & 3 & ER; IC; M & COPII dependent anterograde transport \\
\hline Q969V3 & Nicalin & 1 & ER & antagonizes Nodal signaling and subsequent organization of axial structures \\
\hline Q99942 & E3 ubiquit in-protein ligase RNF5 & 3 & ER; M; Mi & E2-dependent E3 ubiquitin-protein ligase activity \\
\hline P30566 & Adenylosuccinate lyase & 0 & C; Mi & catalyzes two non-sequential steps in de novo AMP synthesis \\
\hline Q6PI48 & Aspartate--tRNA ligase, mitochondrial & 0 & Mi & aspartate-tRNA(Asn) ligase activity \\
\hline P30049 & ATP synthase subunit delta, mitochondrial & 0 & Mi & produces ATP from ADP in the presence of a proton gradient across the membrane \\
\hline 076031 & ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial & 0 & Mi & hydrolyzes ATP; targets specific substrates for degradation by the Clp complex \\
\hline P50416 & Carnitine 0-palmitoyltransferase 1, liver isoform & 2 & Mi & mitochondrial uptake of long-chain fatty acids and beta-oxidation in the mitochondrion \\
\hline 043169 & Cytochrome b5 type B & 1 & Mi & functions as an electron carrier for several membrane bound oxygenases \\
\hline Q8NFF5 & FAD synthase & 0 & Mi; C & Catalyzes the adenylation of flavin mononucleotide \\
\hline Q92947 & Glutaryl-CoA dehydrogenase, mitochondrial & 0 & Mi & catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and C02 \\
\hline P26440 & Isovaleryl-CoA dehydrogenase, mitochondrial & 0 & Mi & synthesizes (S) -3-hydroxy-3-methylglutaryl-CoA from 3-i sovalery1-CoA \\
\hline Q6UB35 & Monofunctional C1-tetrahydrofolate synthase, mitochondrial & 0 & Mi & provides the missing metabolic reaction required to link mitochondria and cytoplasm \\
\hline Q16718 & NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 & 0 & Mi & accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase \\
\hline Q9GZT3 & SRA stem-loop-interacting RNA-binding protein, mitochondrial & 0 & Mi; N & acts as a nuclear receptor corepressor \\
\hline 000231 & 26 S proteasome non-ATPase regulatory subunit 11 & 0 & N; C & involved in the ATP-dependent degradation of ubiquitinated proteins \\
\hline Q96776 & MWS19 nucleotide excision repair protein homolog & 0 & N; SP & mediates the incorporation of iron-sulfur cluster into apoproteins \\
\hline Q8WX92 & Negative elongation factor B & 0 & N & negatively regulates the elongation of transcription by RNA polymerase II \\
\hline 015162 & Phospholipid scramblase 1 & 1 & \(\mathrm{N} ; \mathrm{M}\) & mediates ATP-independent bidirectional transbilayer migration; fibrin clot formation \\
\hline Q9UHI6 & Probable ATP-dependent RNA heli case DDX20 & 0 & N; C & plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs) \\
\hline Q13148 & TAR DNA-binding protein 43 & 0 & N & regulates transcription and splicing; regulates CFTR splicing \\
\hline Q9UNX4 & WV repeat-containing protein 3 & 0 & N & poly(A) RNA binding; snoRNA binding \\
\hline Q9P2R3 & Ankyrin repeat and FYVE domain-containing protein 1 & 0 & E; C & proposed effector of Rab5 \\
\hline P35613 & Basigin & 1 & CM & targets the monocarboxylate transporters SLC16A1, SLC16A3 and SLC16A8 to the plasma membrane \\
\hline Q9UDT6 & CAP-Gly domain-containing linker protein 2 & 0 & C & links microtubules to DLB; operates brain-specific organellle translocations \\
\hline Q96KP4 & Cytosolic non-specific dipeptidase & 0 & C & hydrolyzes a variety of dipeptides; tumor suppressor \\
\hline P24534 & Elongation factor 1-beta & 0 & C & translation elongation factor activity \\
\hline Q94PT5 & Exocyst complex component 7 & 0 & C; CM & involved in the docking of exocytic vesicles with fusion sites on the plasma membrane \\
\hline Q96QA5 & Gasdermin-A & 0 & C & induces apoptosis \\
\hline Q06210 & Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 & 0 & C; Ex & controls flux of glucose into the hexosamine pathway; regulate precursors for glycosylation \\
\hline P47897 & Glutamine--tRNA ligase & 0 & C & brain development \\
\hline Q99538 & Legumain & 1 & L & hydrolysis of asparaginyl bonds \\
\hline 075352 & Mannose-P-dolichol utilization defect 1 protein & 6 & M & required for normal utilization of mannose-dolichol phosphate (Dol-P-Man) \\
\hline Q9NVE 7 & Pantothenate kinase 4 & 0 & C & physiological regulation of the intracellular CoA concentration \\
\hline A2RTX5 & Probable threonine--tRNA 1igase 2, cytoplasmic & 0 & C & ATP binding; threonine-tRNA ligase activity \\
\hline 060678 & Protein arginine N -methyltransferase 3 & 0 & C & methylates the guanidino nitrogens of arginyl residues in some proteins \\
\hline Q8V9Q2 & Protein SREK1IP1 & 0 & ? & involved in the control of cellular survival. \\
\hline P51148 & Ras-related protein Rab-5C & 0 & CM; E; Me & involved in vesicular traffic \\
\hline A6NIZ1 & Ras-related protein Rap-1b-like protein & 0 & C; CM & Activated by GEF EPAC2 in a cAMP-dependent manner \\
\hline P54577 & Tyrosine--tRNA ligase, cytoplasmic & 0 & C & catalyzes the attachment of tyrosine to trNa (Tyr) \\
\hline
\end{tabular}```

