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Abstract

Subgame perfect equilibrium in stationary strategies (SSPE) is the most important

solution concept used in applications of stochastic games, which makes it imperative to

develop efficient numerical methods to compute an SSPE. For this purpose, this paper

develops an interior-point path-following method (IPM), which remedies a number of

issues with the existing method called stochastic linear tracing procedure (SLTP). The

homotopy system of IPM is derived from the optimality conditions of an artificial

barrier game, whose objective function is a combination of the original payoff function

and a logarithmic term. Unlike SLTP, the starting stationary strategy profile can

be arbitrarily chosen and IPM does not need switching between different systems of

equations. The use of a perturbation term makes IPM applicable to all stochastic

games, whereas SLTP only works for a generic stochastic game. A transformation

of variables reduces the number of equations and variables of by roughly one half.

Numerical results show that our method is more than three times as efficient as SLTP.
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1 Introduction

The concept of stochastic game was introduced by Shapley in 1953 [27]. As a cornerstone

in the area of game theory and economics, a stochastic game enriches the model of repeated

games and has been applied in many economic situations of interest [2, 3, 10]. A stochastic

game models a dynamic process played by a finite number of players in a sequence of stages,

which vary with some observable states. Specifically, at the beginning of the first stage,

all players are in the same initial state. They select their own actions independently and

simultaneously, and get their instantaneous payoffs immediately. Subsequently, each player

is informed about the actions of the other players at this stage and the game moves to the

second stage. The new state is selected with a probability that is based on the outcome

of a chance experiment, which is determined by the previous state and action profile. The

procedure is repeated over an infinite number of stages and a series of such repetitive stage

games gives rise to a stochastic game.

As mentioned in [12], the concept of a subgame perfect equilibrium in stationary strategies

(SSPE) is one of the most important concepts in stochastic games. A stationary strategy only

depends on the current state rather than the entire history of states and action profiles, which

is consistent with the principle that ‘bygones are bygones’ [21]. The existence of stationary

equilibria in stochastic games has been discussed extensively in earlier papers, see [14] and

[19] for wonderful reviews. [27] proved the existence of stationary equilibria for zero-sum

games with finite action and state spaces. [11], [29], and [28] extended Shapley’s model to

general n-person stochastic games. For the model with a finite state and action space they

showed the existence of an SSPE.

The computation of SSPEs is very important in applications of stochastic games [16, 22,

23]. However, computation remains a challenging problem since the structure of stochastic

games is very complicated. Homotopy methods as proposed by [8] and [25] are a class of

powerful methods for solving problems that can be formulated as a fixed point problem. Ex-

amples of such problems are the computation of competitive equilibria in general equilibrium

models [6, 33] and the computation of equilibria in non-cooperative game theory [5, 17].

In [16], the stochastic linear tracing procedure (SLTP) was developed to construct a

differentiable path converging to an SSPE for a finite discounted stochastic game. Their

method is the first globally convergent algorithm to solve for an SSPE in a stochastic game,

indicating that the homotopy method can be applied to stochastic games as well. The purpose

of SLTP is to extend the tracing procedure of Harsanyi and Selten [13], a reasoning process
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to select one particular equilibrium among the set of all equilibria, to the class of stochastic

games. Even though SLTP is an effective method to compute SSPEs, it has not been designed

to achieve the highest numerical efficiency. The starting stationary strategy profile of SLTP

cannot be arbitrarily chosen, but is a combination of solutions to several Markov decision

problems, which have to be computed explicitly. Besides, the path induced by SLTP is only

piecewise differentiable and one has to switch between several different systems of equations

to follow it, which leads to additional computational burden. In [16], it is shown that the

switching between different systems can be avoided by a suitably chosen transformation of

variables, a smoothing technique used in other work as well [15, 18], but also this approach

leads to an increase in computation time. Finally, SLTP only works for generic stochastic

games.

The idea of an ‘interior-point’ method was first proposed and applied in convex opti-

mization, where points on the ‘path’ are restricted to the interior of the feasible set, thereby

by-passing many boundary points. Interior-point methods are very efficient for large-scale

linear and convex quadratic programming problems, see for instance [30, 31, 32]. In the

past decade, this interior-point idea has been applied in market equilibrium problems and

normal-form games [4, 7, 34], which also confirms its excellent numerical performance.

It is therefore natural to ask whether one can extend the ‘interior-point’ idea to stochastic

games and if the performance of ‘interior-point’ methods is preserved in this complicated

class of games. In this paper, we develop an interior-point path-following method (IPM) to

compute SSPEs for finite discounted stochastic games. We achieve this by the incorporation

of a logarithmic barrier term into the original payoff function and formulate an artificial

barrier game, which deforms continuously from a trivial game to the stochastic game of

interest. With this barrier game, a homotopy system is developed, whose solutions induce

an everywhere smooth path. Following the path, an SSPE for the stochastic game of interest

is approximated as t descends to zero. IPM solves the earlier mentioned obstacles related

to SLTP. The starting point of IPM can be arbitrarily chosen and there is no need to solve

optimization problems to obtain it. The barrier term forces the points on the homotopy path

to stay in the interior of its domain and never touch any boundary before t vanishes, that

is, for any given t larger than zero, the equilibria of the artificial game are in totally mixed

strategies. The switching between different systems of equations in SLTP is therefore avoided

by IPM, see Figure 1 for an illustration. IPM makes use of a well-chosen perturbation term,

which enables us to find an SSPE for every stochastic game. Finally, when implementing

IPM to test its numerical performance, we show how a transformation of variables can be
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used to reduce the number of equations and unknowns by about one half.

Figure 1: Different trajectories of the two methods

The remainder of this paper is organized as follows. We introduce some preliminaries

about finite discounted stochastic games and formulate their equilibrium system in Section

2. In Section 3, we construct an artificial barrier stochastic game and propose our interior-

point path-following method. We prove that our method is effective for computing an SSPE

for any stochastic game. Extensive numerical results are reported in Section 4, where we

develop a well-chosen transformation of variables to reduce the number of equations and

variables in IPM by about one half. We compute SSPEs for stochastic games with different

numbers of actions and players. We also compare the performance of IPM to SLTP, which

further illustrates the efficiency of IPM. Finally, this paper is concluded in Section 5.

2 Stationary Equilibria in Stochastic Games

2.1 Some Preliminaries

In this subsection, we introduce some basic notations and describe a finite discounted stochas-

tic game as Γ = 〈N,Ω, {Siω}(i,ω)∈N×Ω, {ui}i∈N , π, δ〉, where

• N = {1, 2, . . . , n} is the set of players.
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• Ω = {ω1, ω2, . . . , ωd} is the state space.

• Siω = {siωj | j ∈ M i
ω} is the set of actions of player i ∈ N in state ω ∈ Ω, where

M i
ω = {1, 2, . . . ,mi

ω} is the index set of actions of player i in state ω.

• Sω =
n∏
i=1

Siω is the set of action profiles in state ω.

• Let S−iω =
∏

k∈N\{i}
Skω. Then, sω = (s1

ωj1
, s2
ωj2
, . . . , snωjn) ∈ Sω can be written as sω =

(siωji , s
−i
ω ) with s−iω ∈ S−iω .

• X i
ω = {xiω ∈ Rmiω

+ |
∑
j∈M i

ω

xiωj = 1} is the set of mixed actions of player i in state ω. For

xiω ∈ X i
ω, the probability assigned to siωj ∈ Siω equals xiωj.

• Xω =
n∏
i=1

X i
ω is the set of mixed action profiles in state ω. If xω ∈ Xω is played, then

the probability that an action profile sω = (s1
ωj1
, s2
ωj2
, . . . , snωjn) ∈ Sω occurs is equal to

n∏
i=1

xiωji .

• Let X−iω =
∏

k∈N\{i}
Xk
ω. Then, xω =

(
x1
ωj1
, x2

ωj2
, . . . , xnωjn

)
∈ Xω can be written as

xω = (xiωji , x
−i
ω ) with x−iω ∈ X−iω .

• Let D = {(ω, sω) | ω ∈ Ω, sω ∈ Sω}. A history up to stage κ ≥ 0 is a sequence

hκ = ((ω0, sω0), (ω1, sω1), . . . , (ωκ−1, sωκ−1), ωκ). Then, the set of possible histories up

to stage κ equals Hκ =
κ−1∏
q=0

(D × Ω).

• ui : D → R is the instantaneous payoff function of player i. We have

ui(ω, xω) =
∑
sω∈Sω

ui(ω, sω)
n∏
i=1

xiωji =
∑
j∈M i

ω

xiωju
i(ω, siωj, x

−i
ω ).

• δ is the discount factor with 0 < δ < 1.

• π(ω̄ | ω, sω) is the probability that the system jumps from state ω to state ω̄ when the

action profile sω is chosen, where π(ω̄ | ω, sω) ≥ 0 and
∑̄
ω∈Ω

π(ω̄ | ω, sω) = 1.

• π(ω, sω) = (π(ω1 | ω, sω), π(ω2 | ω, sω), . . . , π(ωd | ω, sω)) is the state transition proba-

bility map.

• Let X =
∏
i∈N

X i with X i =
∏
ω∈Ω

X i
ω. An element of X has m =

∑
i∈N

∑
ω∈Ω

mi
ω components.
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2.2 Equilibrium System

A strategy of player i ∈ N is a function that assigns a feasible mixed action after each possible

history. A strategy profile is a Nash equilibrium if no player has a profitable deviation from

it, i.e. can choose a strategy that gives strictly higher payoffs given the strategies of the other

players. Each history h ∈ ∪∞κ=0H
κ induces a subgame of Γ. A strategy profile is a subgame

perfect equilibrium if it induces a Nash equilibrium in every subgame of Γ.

The strategy of player i is stationary if it depends only on the current state, so the player

chooses the same mixed action at histories with the same current state. A stationary strategy

of player i ∈ N can therefore be represented by an element xi ∈ X i and a stationary strategy

profile by an element x ∈ X. The most important solution concept that has been used

in applications of stochastic games is subgame perfect equilibrium in stationary strategies

(SSPE). An SSPE is a stationary strategy profile that induces a Nash equilibrium in every

subgame of Γ. No player has a profitable deviation from an SSPE, even when deviations are

not required to be stationary themselves.

We now reformulate the concept of SSPE as the solution to a suitably chosen system of

equations. Given a stationary strategy profile x ∈ X, we denote the present value of player

i ∈ N at state ω ∈ Ω of the expected payoff of the next k stages by µiω(k). The value of µiω(k)

follows from the following system of recursive equations,

µiω(k + 1) = ui(ω, xω) + δ
∑
ω̄∈Ω

π(ω̄ | ω, xω)µiω̄(k).

For any initial state ω ∈ Ω, let µiω = lim
k→∞

µiω(k) be the total expected payoff for player i.

Since µiω(k) is an increasing, uniformly bounded, function of k, µiω always exists. It is the

unique solution to the linear system of equations

µiω = ui(ω, xω) + δ
∑
ω̄∈Ω

π(ω̄ | ω, xω)µiω̄. (1)

For simplicity, for any given stationary strategy profile x ∈ X, we define

ϕi(ω, siωj, x
−i
ω , µ

i(x)) = ui(ω, siωj, x
−i
ω ) + δ

∑
ω̄∈Ω

π(ω̄ | ω, siωj, x−iω )µiω̄(x),

where µi(x) = (µiω(x))ω∈Ω is the unique solution to the linear system (1). Then, for any

stationary strategy profile x ∈ X, given a state ω ∈ Ω, the optimal mixed action of a player

i ∈ N who can only deviate once from xi in state ω can be found as the solution to the
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optimization problem
max
x̂iω∈Xi

ω

∑
j∈M i

ω

x̂iωjϕ
i(ω, siωj, x

−i
ω , µ

i(x))

s.t. x̂iωj ≥ 0, j ∈M i
ω,∑

j∈M i
ω

x̂iωj = 1.

(2)

A direct application of the optimality conditions yields

ϕi(ω, siωj, x
−i
ω , µ

i(x)) + λ̂iωj − β̂iω = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj = 0, λ̂iωj ≥ 0, x̂iωj ≥ 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.
(3)

We multiply both sides of the first group of equations in (3) with x̂iωj, sum each side over

j ∈M i
ω, and obtain that

β̂iω =
∑
j∈M i

ω

x̂iωjϕ
i(ω, siωj, x

−i
ω , µ

i(x)) = ui(ω, x̂iω, x
−i
ω ) +

∑
ω̄∈Ω

π(ω̄ | ω, x̂iω, x−iω )µiω̄(x).

The set of solutions to (3), which is denoted by B(x), consists of best responses to the given

stationary strategy profile x. It follows from the one-stage deviation principle that x̂ is a

subgame perfect equilibrium in stationary strategies (SSPE) if and only if it is a fixed point

of the best response correspondence, i.e. x̂ ∈ B(x̂), see [12]. Then, letting x = x̂ and

µ̂i = µi(x̂), we get

ϕi(ω, siωj, x̂
−i
ω , µ̂

i) + λ̂iωj − β̂iω = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj = 0, λ̂iωj ≥ 0, x̂iωj ≥ 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.

It follows from (1) that β̂iω = µ̂iω. From the above discussion, a stationary strategy profile

x̂ ∈ X is an SSPE if and only if x̂ together with some (λ̂, µ̂) ∈ Rm × Rnd satisfies

ui(ω, siωj, x̂
−i
ω ) + δ

∑̄
ω∈Ω

π(ω̄|ω, siωj, x̂−iω )µ̂iω̄ + λ̂iωj − µ̂iω = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj = 0, λ̂iωj ≥ 0, x̂iωj ≥ 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.
(4)

Thus far, we have reformulated the problem to find an SSPE as the equivalent problem of

solving the nonlinear system of equations (4). In the remainder of this paper, we aim to

explore an effective and efficient algorithm to compute a solution to the system (4).
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3 An Interior-Point Path-Following Method

In general, it is difficult to solve the system (4) directly. [16] extended the linear tracing

procedure of [13] to the class of stochastic games. We refer to the resulting method as

the stochastic linear tracing procedure (SLTP). SLTP is a homotopy method, which starts

from an artificial game where all players optimize against given prior beliefs. The homotopy

variable t corresponds to the weight that is put on the artificial game and the game of interest.

It is shown in [16] that SLTP converges to an SSPE for almost every stochastic game. The

homotopy path of SLTP is piecewise differentiable. To follow it, one either has to switch

between different systems of equations or use a transformation of variables, which makes the

homotopy path smooth. The latter operation comes at the expense of computational speed.

To avoid switching between different systems of equations, we propose an interior-point

path-following method to find an SSPE. By introducing a homotopy variable t ranging from

one to zero, we incorporate a logarithmic barrier term into the payoff functions and formulate

an artificial barrier stochastic game, which continuously deforms from a trivial stochastic

game with a unique solution to the stochastic game of interest as t descends from one to

zero. With this artificial game, we develop a smooth path, which is constructed as the

collection of equilibria for the artificial game at different levels of homotopy variable t. As t

decreases to zero, an SSPE for the stochastic game of interest is obtained. Additionally, due

to the existence of the barrier term, each point on the path is restricted to the interior before

t vanishes.

Consider a player i ∈ N. For any given t ∈ [0, 1] and any given stationary strategy profile

x ∈ X, µi = µi(x) = (µiω(x))ω∈Ω is defined to be the unique solution to the following linear

system,

µiω = (1− t)(ui(ω, xω) + δ
∑
ω̄∈Ω

π(ω̄|ω, xω)µiω̄) + t2, ω ∈ Ω. (5)

Then, for any stationary strategy profile x ∈ X, for every ω ∈ Ω, player i ∈ N solves the

optimization problem,

max
x̂iω∈Xi

ω

(1− t)
∑
j∈M i

ω

x̂iωjϕ
i(ω, siωj, x

−i
ω , µ

i(x)) + t2
∑
j∈M i

ω

x0,i
ωj lnx̂iωj

s.t.
∑
j∈M i

ω

x̂iωj = 1,
(6)

where x0,i
ω is an arbitrarily chosen totally mixed stationary strategy profile with

∑
j∈M i

ω

x0,i
ωj = 1.

The term in front of the logarithmic part is equal to t2 rather than t. The reason will

become clear at the end of this section, where a transformation of variables is introduced to
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reduce the number of equations and unknowns. To guarantee differentiability of the system

of equations after the transformation of variables, the term t2 is needed rather than t. When

t is equal to zero, the logarithmic part is not taken into account. For t positive, we only

maximize over mixed actions without zero components.

The optimality conditions of problem (6) read as

(1− t)ϕi(ω, siωj, x−iω , µi(x)) + λ̂iωj − β̂iω = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj − t2x

0,i
ωj = 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.
(7)

Multiplying both sides of the first group of equations in the system (7) by x̂iωj and summing

over j, we obtain that

β̂iω = (1− t)(ui(ω, x̂iω, x−iω ) + δ
∑
ω̄∈Ω

π(ω̄|ω, x̂iω, x−iω )µiω̄(x)) + t2.

From a fixed point argument and (5), letting x = x̂, we obtain that β̂iω = µ̂iω. The equilibrium

system of the artificial stochastic barrier game is therefore given by

(1− t)(ui(ω, siωj, x̂−iω ) + δ
∑̄
ω∈Ω

π(ω̄|ω, siωj, x̂−iω )µ̂iω̄)

+λ̂iωj − µ̂iω = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj − t2x

0,i
ωj = 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.

(8)

As t = 1, the system (8) becomes a system that is very easy to solve,

λ̂iωj − µ̂iω = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj − x

0,i
ωj = 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.
(9)

Theorem 1. As t = 1, the system (8) has a unique solution (x̂(1), λ̂(1), µ̂(1)) with

x̂iωj(1) = x0,i
ωj , λ̂iωj(1) = 1, and µ̂iω(1) = 1,

where ω ∈ Ω, i ∈ N, and j ∈M i
ω.

Proof. By problem (6), we know that as t = 1, for every i ∈ N , for every ω ∈ Ω, the system (8)

corresponds to the necessary and sufficient conditions of the following optimization problem,

max
x̂iω∈Xi

ω

∑
j∈M i

ω

x0,i
ωj ln(x̂iωj)

s.t.
∑
j∈M i

ω

x̂iωj = 1,
(10)
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which is a strictly convex optimization problem with a unique solution. The solution of

problem (10) is given by x̂iωj = x0,i
ωj . From the system of equations (9), we obtain that for all

ω ∈ Ω, i ∈ N, and j ∈M i
ω, (λ̂iωj, µ̂

i
ω) = (1, 1). This completes the proof.

At t = 0, the definition of µ in (5) is the same as that in (1), and the system (8) resumes

to system (4), the equilibrium system of the stochastic game of interest.

Next, we prove that the set of solutions to the system of equations (8) generates an

everywhere smooth path from the arbitrarily chosen starting point x0 to an SSPE of the

stochastic game of interest.

For the analysis that follows next, we need Mas-Colell’s fixed point theorem [20].

Theorem 2 (Mas-Colell’s fixed point theorem). Let S be a non-empty, compact and

convex subset of R` and let f : S × [0, 1] → S be an upper hemi-continuous correspondence.

Then the set F = {(s, t) ∈ S × [0, 1] | s ∈ f(s, t)} contains a connected subset F c such that

(S × {1})
⋂
F c 6= ∅ and (S × {0})

⋂
F c 6= ∅.

For i ∈ N , ω ∈ Ω and any strategy profile x ∈ X, let σiω(x, t) be all x̂iω ∈ X i
ω that solve

max
x̂iω∈Xi

ω

(1− t)
∑
j∈M i

ω

x̂iωj
(
ui(ω, siωj, x

−i
ω ) + δ

∑̄
ω∈Ω

π(ω̄ |ω, siωj, x−iω )µiω̄(x)
)

+t2
∑
j∈M i

ω

x0,i
ωj ln(x̂iωj)− t(1− t)

∑
j∈M i

ω

αiωjx̂
i
ωj

s.t.
∑
j∈M i

ω

x̂iωj = 1,

(11)

where α ∈ Rm.

For any given (x, t) ∈ X × [0, 1], H(x, t) is defined as the set of all x̂ ∈ X satisfying the

system of equations (12), which correspond to the optimality conditions of problem (11),

(1− t)(ui(ω, siωj, x−iω ) + δ
∑̄
ω∈Ω

π(ω̄|ω, siωj, x−iω )µiω̄(x))

+λ̂iωj − β̂iω − t(1− t)αiωj = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj − t2x

0,i
ωj = 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj = 1, ω ∈ Ω, i ∈ N.

(12)

Compared with problem (6), problem (11) contains an additional term−t(1−t)
∑

j∈M i
ω
αiωjx̂

i
ωj.

When t = 0 or t = 1, this term disappears and the two systems are completely the same. We

use α as a perturbation term to avoid degeneracies. In the numerical implementation of our

algorithm, perturbations were not needed and we could always choose α equal to the zero

vector.

10



We argue next that σiω : X × [0, 1] → X i
ω is an upper hemi-continuous correspondence.

This follows from the fact that the limit of any convergent sequence of solutions to (12) is

a solution to (12), so the graph of σiω is closed, which is equivalent to σiω being an upper

hemi-continuous correspondence. Note that σiω is a continuous function on X × (0, 1] since

the logarithmic term in the objective function of problem (11) is strictly concave. Therefore,

for any t ∈ (0, 1], problem (11) is a strictly convex optimization model with a unique solution,

that is, σiω is single-valued.

From the above discussion, H(x, t) is obtained as a product of σiω for ω ∈ Ω and i ∈ N .

Then, H(x, t) is also an upper hemi-continuous correspondence.

Let Φ be all (x̂, t) ∈ X × [0, 1] satisfying the following system of equations,

(1− t)(ui(ω, siωj, x̂−iω ) + δ
∑̄
ω∈Ω

π(ω̄|ω, siωj, x̂−iω )µ̂iω̄)

+λ̂iωj − µ̂iω − t(1− t)αiωj = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,

λ̂iωjx̂
i
ωj − t2x

0,i
ωj = 0, ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

x̂iωj − 1 = 0, ω ∈ Ω, i ∈ N,

(13)

which is essentially the same as the system (8) regardless of the perturbation term. Then

the following corollary is established.

Corollary 1. The set Φ has a connected subset Φc such that (Rm × {1})
⋂

Φc 6= ∅ and

(Rm × {0})
⋂

Φc 6= ∅.

Proof. Comparing the systems (12) and (13), we find that letting x = x̂, the system (12)

totally resumes to the system (13). Then, Φ can be rewritten as

Φ = {(x̂, t) ∈ Rm × [0, 1] | x̂ = H(x̂, t)}.

The upper hemi-continuity of H, together with a direct application of Mas-Colell’s fixed

point theorem, leads to the conclusion of our corollary.

All equations in (13) are polynomial. The set Φ is therefore a semi-algebraic set, so all

its components are also path-connected, i.e., any two points in a component can be joined

by a path, see [26]. We obtain the following corollary.

Corollary 2. The set Φ has a path-connected subset Φc such that (Rm × {1})
⋂

Φc 6= ∅ and

(Rm × {0})
⋂

Φc 6= ∅.

Denote the left side of the system (13) as p(x, λ, µ, t;α), and for any given α ∈ Rm, let

pα(x, λ, µ, t) = p(x, λ, µ, t;α).

11



Fix some α ∈ Rm. The set of all (x, λ, µ, t) ∈ Rm × Rm × Rnd × [0, 1] satisfying the system

of equations (13) is denoted by ∆. The following theorem states that our method is globally

convergent.

Theorem 3. For a generic choice of α ∈ Rm, there exists a smooth path in ∆, which starts

from the totally mixed stationary strategy profile x0 ∈ X at t = 1 and ends at an SSPE for

the stochastic game of interest at t = 0.

Proof. As proved in Corollary 2, Φ contains a path-connected subset Φc that intersects both

the sets Rm × {1} and Rm × {0}. Moreover, we can choose Φc such that it contains a single

point in Rm × {0}. The second group of equations in (13) determines a unique value for

λ ∈ Rm for each (x, t) ∈ Rm × R. Next, the first group of linear equations in (13) pins down

a unique value for µ ∈ Rnd. Thus ∆ has a path-connected subset that intersects both the

sets Rm × Rm × Rnd × {1} and Rm × Rm × Rnd × {0}. By Theorem 1 there is a unique

starting point at t = 1. We prove in Appendix I that the Jacobian matrix of p0(x, λ, µ, 1)

is of full rank. For every α ∈ Rm, pα(x, λ, µ, 1) = p0(x, λ, µ, 1), so it follows that zero is

a regular value of pα(x, λ, µ, 1) on Rm × Rm × Rnd × {1}. Similarly, zero is also a regular

value of p(x, λ, µ, t;α) since the Jacobian matrix of p(x, λ, µ, t;α) is of full-row rank, for all

(x, λ, µ, t;α) ∈ Rm ×Rm ×Rnd × (0, 1)×Rm, see Appendix I. By a direct application of the

well-known transversality theorem, see [9], zero is a regular value of pα(x, λ, µ, t) for almost

all α ∈ Rm. Then it follows that Φc is a smooth one-dimensional manifold with boundary,

which starts from the unique solution at t = 1 and ends at an SSPE of the stochastic game

of interest at t = 0. This completes the proof.

Theorem 3 illustrates that the solutions to the system of equations (13) together with

the associated Lagrangian multipliers form a smooth path. Clearly, the systems of equations

(13) and (8) coincide at t = 1 and t = 0. When ||α|| is small, the solutions to the system of

equations (13) and (8) are nearly the same as is illustrated in Figure 2. Points on the smooth

Path 1 are approximate equilibria for the artificial stochastic game (6) on Path 2. As t = 0,

the system (13) corresponds to the stochastic game of interest. Thus, the end point of Path 1

is an exact SSPE of the stochastic game of interest. We introduce α into the equilibrium

system to avoid degeneracies. In fact, for a generic choice of α, our method finds an SSPE for

every stochastic game. SLTP does not use an α to perturb the system and only computes an

SSPE for almost every stochastic game. In numerical experiments, we have always obtained

convergence for α = 0.

12



Figure 2: Path 1 and Path 2 represent the solution sets for the systems (13) and (8), respec-
tively.

Finally, we use a suitably chosen transformation of variables to reduce the number of

equations and unknowns by roughly one half, which improves the efficiency of the method.

For every ω ∈ Ω, i ∈ N, and j ∈ M i
ω, we write xiωj and λiωj as a function of a variable yiωj

and the homotopy parameter t,

xiωj(y, t) =

( √
(yiωj)

2+4t
√
x0,iωj+yiωj

2

)2

and λiωj(y, t) =

( √
(yiωj)

2+4t
√
x0,iωj−y

i
ωj

2

)2

.

Clearly, x(y, t) and λ(y, t) are continuously differentiable functions for all y ∈ Rm and t ∈
(0, 1], and it holds that, for every ω ∈ Ω, i ∈ N, and j ∈ M i

ω, λ
i
ωj(y, t)x

i
ωj(y, t) = t2x0,i

ωj . We

substitute these functions in (13) and obtain the following homotopy system,

(1− t)(ui(ω, siωj, x−iω (ŷ, t)) + δ
∑̄
ω∈Ω

π(ω̄|ω, siωj, x−iω (ŷ, t))µ̂iω̄)

+λiωj(ŷ, t)− µ̂iω − t(1− t)αiωj = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,∑

j∈M i
ω

xiωj(ŷ, t)− 1 = 0, ω ∈ Ω, i ∈ N.
(14)

The system of equations (14) corresponds to our proposed interior path-following method

(IPM). The transformation of variables only leads to a different parametrization of the ho-

motopy path defined by (13), so it holds by Theorem 3 that IPM is globally convergent for

a generic choice of α ∈ Rm.
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4 Numerical Performance

We use a predictor-corrector algorithm, see [1] and [9] for details, to trace the smooth path

generated by IPM. Moreover, we compare the numerical performance of IPM with SLTP

based on [16], see Appendix II, to illustrate the efficiency of IPM. All experiments are run

in MatLab software on a 2.00 GHz Windows PC with CORE i7. The stopping criterion is

taken equal to t < 10−6. Each experiment is implemented 10 times and the average number

of iterations (AITER) and average computation time (ATIME) are recorded.

4.1 Fundamental Cases

In this subsection, we implement IPM to solve several basic stochastic games with differ-

ent numbers of players, states, and actions, and compare its performance with SLTP. The

discount factor is always taken equal to δ = 0.95.

Example 1. Assume N = {1, 2}, Ω = {ω1, ω2}, and, for i = 1, 2, Siω1
= {siω11, s

i
ω12} and

Siω2
= {siω21}. The payoff matrices in states ω1 and ω2 are given by

ω1 s2
ω11 s2

ω12

s1
ω11 (1,−1) (0, 0)
s1
ω12 (0, 0) (3,−3)

and
ω2 s2

ω21

s1
ω21 (0, 0)

.

The transition probability matrices in states ω1 and ω2 are given by

π((ω1, ω2) | ω1) s2
ω11 s2

ω12

s1
ω11 (1, 0) (0, 1)
s1
ω12 (0, 1) (1, 0)

and
π((ω1, ω2) | ω2) s2

ω21

s1
ω21 (0, 1)

.

IPM finds the SSPE

(((x1
ω11, x

1
ω12), (x2

ω11, x
2
ω12)), (x1

ω21, x
2
ω21)) = (((0.67, 0.33), (0.67, 0.33)), (1, 1)).

Figure 3 shows the development of the variables y and t in the various iterations of IPM. The

downward sloping (yellow) curve corresponds to t, the non-monotonic (red) curve to y1
ω11,

and the upward sloping (blue) curve to y1
ω12. �

Example 2. Assume N = {1, 2}, Ω = {ω1, ω2, ω3, ω4}, and, for i = 1, 2, Siω1
= {siω11, s

i
ω12},

Siω2
= {siω21, s

i
ω22}, Siω3

= {siω31}, and Siω4
= {siω41}. The payoff matrices are given by

(ωk)k=1,2 s2
ωk1 s2

ωk2

s1
ωk1 (0, 0) (0, 0)
s1
ωk2 (0, 0) (0, 0)

,
ω3 s2

ω31

s1
ω31 (1,−1)

, and
ω4 s2

ω41

s1
ω41 (−1, 1)

.
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Figure 3: Development of the variables t, y1
ω11, and y1

ω12 along the homotopy path.

The transition probability matrix in state ω1 is given by

π((ω1, ω2, ω3, ω4) | ω1) s2
ω11 s2

ω12

s1
ω11 (1, 0, 0, 0) (0, 0, 1, 0)
s1
ω12 (0, 0, 1, 0) (0, 1, 0, 0)

,

and the transition probability matrix in state ω2 is given by

π((ω1, ω2, ω3, ω4) | ω2) s2
ω21 s2

ω22

s1
ω21 (1, 0, 0, 0) (0, 0, 0, 1)
s1
ω22 (0, 0, 0, 1) (0, 1, 0, 0)

.

The states ω3 and ω4 are absorbing. IPM obtains the SSPE

((x1
ω11, x

2
ω11), (x1

ω21, x
2
ω21), (x1

ω31, x
2
ω31), (x1

ω41, x
2
ω41)) = ((0.86, 0.86), (0.14, 0.14), (1, 1), (1, 1)).

Figure 4 shows the development of the variables y and t in the various iterations of IPM. The

downward sloping (yellow) curve corresponds to t, the non-monotonic (red) curve to y1
ω11,

and the upward sloping (blue) curve to y1
ω12. �

Example 3. Assume N = {1, 2}, Ω = {ω1, ω2, ω3}, and, for i = 1, 2, Siω1
= {siω11, s

i
ω12},
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Figure 4: Development of the variables t, y1
ω11, and y1

ω12 along the homotopy path.

Siω2
= {siω21}, and Siω3

= {siω31}. The payoff matrices are given by

ω1 s2
ω11 s2

ω12

s1
ω11 (1,−1) (0, 0)
s1
ω12 (0, 0) (1,−1)

,
ω2 s2

ω21

s1
ω21 (0, 0)

, and
ω3 s2

ω31

s1
ω31 (1,−1)

.

The transition probability matrix in state ω1 is given by

π((ω1, ω2, ω3) | ω1) s2
ω11 s2

ω12

s1
ω11 (1, 0, 0) (0, 1, 0)
s1
ω12 (1, 0, 0) (0, 0, 1)

.

The states ω2 and ω3 are absorbing. IPM generates the SSPE

((x1
ω11, x

2
ω11), (x1

ω21, x
2
ω21), (x1

ω31, x
2
ω31)) = ((1, 0.5), (1, 1), (1, 1)).

�

Example 4. Assume N = {1, 2}, Ω = {ω1, ω2, ω3}, and, for i = 1, 2, Siω1
= {siω11, s

i
ω12},

Siω2
= {siω21}, and Siω3

= {siω31}. The payoff matrices are given by

ω1 s2
ω11 s2

ω12

s1
ω11 (1, 0) (0, 2)
s1
ω12 (0, 1) (1, 0)

,
ω2 s2

ω21

s1
ω21 (0, 2)

, and
ω3 s2

ω31

s1
ω31 (1, 0)

.

16



The transition probability matrix in state ω1 is given by

π((ω1, ω2, ω3) | ω1) s2
ω11 s2

ω12

s1
ω11 (1, 0, 0) (1, 0, 0)
s1
ω12 (0, 1, 0) (0, 0, 1)

.

The states ω2 and ω3 are absorbing. IPM finds that SSPE

((x1
ω11, x

2
ω11), (x1

ω21, x
2
ω21), (x1

ω31, x
2
ω31)) = ((1, 0.5), (1, 1), (1, 1)).

�

Example 5. Assume N = {1, 2}, Ω = {ω1, ω2}, and, for i = 1, 2, Siω1
= {siω11, s

i
ω12, s

i
ω13} and

Siω2
= {siω21}. The payoff matrices are given by

ω1 s2
ω11 s2

ω12 s2
ω13

s1
ω11 (1, 1) (0, 0) (−9,−9)
s1
ω12 (0, 0) (0, 0) (−7,−7)
s1
ω13 (−9,−9) (−7,−7) (−7,−7)

and
ω2 s2

ω21

s1
ω21 (0, 0)

.

Irrespective of the actions chosen, the transition probability between any two states is equal

to 1/2. IPM find the SSPE

(((x1
ω11, x

1
ω12, x

1
ω13), (x2

ω11, x
2
ω12, x

2
ω13)), (x1

ω21, x
2
ω21)) = (((0, 1, 0), (0, 1, 0)), (1, 1)).

�

We also implement SLTP to solve the five examples and present the average number of

iterations (AITER) and computation time in seconds (ATIME) of IPM and SLTP in Tables 1

and 2, respectively. Moreover, we present I-Ratio and T-Ratio, where

I-Ratio =
AITER of IPM

AITER of SLTP
,

T-Ratio =
ATIME of IPM

ATIME of SLTP
.

The five examples illustrate that IPM is an effective and efficient method to compute

SSPEs. IPM generates an everywhere smooth path that is in the interior of the space of

stationary strategy profiles, see Figures 3 and 4. Moreover, Tables 1 and 2 show that the

average number of iterations and computation time for IPM is less than one-third of SLTP,

which indicates that IPM is much more efficient than SLTP.
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Table 1: Average number of iterations

AITER IPM SLTP I-Ratio

Example 1 60 297 20.20%

Example 2 515 1771 29.07%

Example 3 355 844 42.06%

Example 4 497 1389 35.78%

Example 5 258 1227 21.02%

Table 2: Average computation time

ATIME IPM SLTP T-Ratio

Example 1 1.03 5.10 20.20%

Example 2 25.42 99.33 25.51%

Example 3 8.69 24.71 35.16%

Example 4 13.01 40.20 32.36%

Example 5 4.57 25.67 17.80%

4.2 Randomly Generated Cases

In this subsection, we randomly generate stochastic games for varying n, d and m, where

m denotes the number of actions for each player in each state. Payoffs are randomly drawn

from the interval [−10, 10], but are set equal to zero with probability ‘pd0,’ which indicates

the probability density of the payoff matrix. Obviously, the larger pd0, the sparser the payoff

matrix becomes. Here, we let pd0 be equal 0.00, 0.25, 0.50 and 0.75 to induce several groups

of different games and test the performance of the two methods. We take the discount factor

equal to δ = 0.95.

From Table 3, for any given n, d, and m, it follows by inspecting each group of rows that

a smaller ‘pd0’ leads to a more difficult problem. These results from numerous randomly

generated stochastic games illustrate that IPM performs much better both in number of

iterations and computation time than SLTP. This advantage becomes more pronounced as

the scale of the problem gets larger.

4.3 More Complicated Cases

In [16], SSPEs are computed for stochastic games with a scale up to n = 5, d = 5, and

m = 5. The dimension of the homotopy is very sensitive to n, d, and m. For example, if
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Table 3: Numerical Performance and Comparisons

IPM SLTP

(n, d,m) pd0 AITER ATIME AITER ATIME I-Ratio T-Ratio

0.00 2013 24.28 4220 55.58 47.70% 43.68%

(2,2,5) 0.25 1869 24.68 4317 78.70 43.29% 31.35%

0.50 1716 23.52 4228 76.54 40.58% 20.72%

0.75 1461 20.18 2965 51.27 49.27% 39.36%

0.00 3685 100.24 6083 213.30 60.57% 46.99%

(2,5,3) 0.25 2290 78.99 5877 283.45 38.96% 27.86%

0.50 1762 63.07 4563 216.54 38.61% 29.12%

0.75 1275 45.80 4522 219.86 28.19% 20.83%

0.00 3806 125.95 6592 284.56 57.73% 44.26%

(2,5,4) 0.25 3259 137.33 7447 438.66 43.76% 31.30%

0.50 2812 121.28 5914 341.06 47.54% 35.55%

0.75 2050 87.92 6069 337.98 33.77% 26.01%

0.00 3810 179.20 8002 473.60 47.61% 37.83%

(2,5,5) 0.25 3051 113.90 7202 352.21 42.36% 32.33%

0.50 2503 93.47 6704 320.48 37.33% 29.16%

0.75 1847 70.51 4702 237.95 39.28% 29.63%

0.00 2091 58.00 6596 234.03 31.70% 24.78%

(3,3,3) 0.25 2560 90.09 6466 316.41 39.59% 28.47%

0.50 1843 67.50 5596 271.46 32.93% 24.86%

0.75 1066 36.56 3893 178.10 27.38% 20.52%

0.00 2864 130.97 8136 430.92 35.20% 30.39%

(3,3,5) 0.25 2125 112.93 7842 546.24 27.09% 20.67%

0.50 2119 116.46 6919 484.54 30.62% 24.03%

0.75 1376 79.06 5356 371.25 25.69% 21.29%

0.00 1903 78.36 6945 324.50 27.40% 24.14%

(4,2,5) 0.25 1725 77.82 6389 391.71 26.99% 19.86%

0.50 959 47.66 6221 379.53 15.41% 12.55%

0.75 1012 50.51 4348 255.39 23.27% 19.77%

0.00 1287 92.48 6930 571.21 18.57% 16.19%

(5,2,5) 0.25 1039 94.98 8273 735.33 12.55% 12.91%

0.50 787 74.66 10000 869.32 7.87% 8.58%

0.75 757 73.75 6338 530.32 11.94% 13.90%
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(d,m) = (5, 5) and n increases from 5 to 6, then the number of variables in the homotopy

system increases from 150 to 180.

In this subsection, we use IPM to solve problems with a scale up to n = 5, d = 8, and

m = 8. In each experiment, we let pd0=0.95 and generate the payoff matrices and transition

probabilities randomly. The average computation time for all experiments is recorded in

Table 4. It is left blank if the computation time exceeds 3× 104 seconds.

Table 4: Numerical Results IPM

n = 3
H
HHH

HHHd

m
5 6 7 8

5 230.90 358.78 747.82 1108.71

6 602.41 936.39 2162.49 3291.86

7 828.61 1065.73 2303.06 4137.06

8 1430.17 2146.85 3021.24 3117.04

n = 4
HHH

HHHHd

m
5 6 7 8

5 539.80 1021.91 1203.28 2255.70

6 1328.68 1554.25 2536.31 4761.73

7 1440.40 2230.62 2413.82 6202.49

8 1875.36 3681.46 4200.69 8576.12

n = 5
H
HHH

HHHd

m
5 6 7 8

5 1737.74 3377.21 10403.29 27626.37

6 2897.06 10249.51 24284.54

7 4378.30 17669.26

8 10247.18

If follows from Table 4 that the computation of an SSPE becomes much more difficult

as the number of players n, states d, or actions for each player in each state m increases

by a single unit. The variable n is the most influential factor for number of iterations and

computation time, which is consistent with the observations in [16].

5 Conclusion

In this paper, we extend the idea of interior-point methods, which has been proven to be

very efficient for large-scale convex programming problems, to computing a subgame perfect
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equilibrium in stationary strategies (SSPE) in a finite discounted stochastic game. The basic

idea of our method is to incorporate a logarithmic barrier term into the objective function of

the stochastic game of interest and formulate an artificial barrier game. The solutions to the

artificial game at different levels of the homotopy variable generate an everywhere smooth

path. As the homotopy variable descends to zero, our path converges to an SSPE for the

stochastic game of interest.

Our method (IPM) has several advantages over the alternative method (SLTP) presented

in the literature to compute an SSPE. First, the starting point of IPM can be arbitrarily

chosen and there is no need to solve an optimization problem to obtain it. The barrier

function forces the homotopy path to stay in the interior of the strategy space, which avoids

switching between different systems of equations or, alternatively, a computationally expen-

sive transformation of variables. IPM fully exploits the differentiability of the problem and

for every stochastic game the induced homotopy path is everywhere smooth. SLTP has the

same properties only for generic stochastic games and requires a transformation of variables

to obtain smoothness everywhere. The effectiveness and efficiency of IPM is confirmed by

numerous numerical experiments.

Appendix I

This appendix shows that for any (x, λ, µ, t;α) ∈ Rm×Rm×Rnd× (0, 1]×Rm, the Jacobian

matrix of p(x, λ, µ, t;α) is of full-row rank. This result is utilized in the proof of Theorem

3. First, we consider the case where t ∈ (0, 1). For simplicity, for k = 1, 2, 3, we denote the

k-th group of equations in system of equations (13) by pk(x, λ, µ, t;α). The Jacobian matrix

Dp(x, λ, µ, t;α) of p(x, λ, µ, t;α) is given by
(
∂p1

∂x
)m×m Im×m (

∂p1

∂µ
)m×nd (

∂p1

∂t
)m×1 (−t(1− t)I)m×m

(diag(λiωj))m×m (diag(xiωj))m×m 0 (−2x0,i
ωjte)m×1 0

(diag(eiωj))nd×m 0 0 0 0

 ,

where I is the identity matrix, diag(λiωj) and diag(xiωj) are two diagonal matrices, and eiωj =

(1, 1, . . . , 1) is an mi
ωj-dimensional vector, so

diag(eiωj) =

1 · · · 1
. . .

1 · · · 1


Because 0 < xiωj < 1 as 0 < t < 1, diag(xiωj) ∈ Rm×m has full rank. Clearly, −t(1 − t)I ∈
Rm×m is also of full rank and diag(eiωj) ∈ Rnd×m is of full-row rank. Then, the Jacobian
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matrix Dp(x, λ, µ, t;α) is of full-row rank.

Next, we prove that as t = 1, p0(x, λ, µ, 1) has full rank at (x(1), λ(1), µ(1)). We have

that

p0(x, λ, µ, 1) =


λiωj − µiω, ω ∈ Ω, i ∈ N, j ∈M i

ω,

λiωjx
i
ωj − x

0,i
ωj , ω ∈ Ω, i ∈ N, j ∈M i

ω,∑
j∈M i

ω

xiωj − 1, ω ∈ Ω, i ∈ N.

The Jacobian matrix is

Dp0(x, λ, µ, 1) =

 0 Im×m diag(ei>ωj)m×nd

(diag(λiωj))m×m (diag(xiωj))m×m 0

(diag(eiωj))nd×m 0 0


It holds by Theorem 1 that, for every ω ∈ Ω, i ∈ N, and j ∈M i

ω, x
i
ωj(1) = x0,i

ωj and λiωj(1) = 1.

We denote M = Dp0(x(1), λ(1), µ(1), 1), E = diag(eiωj), and X0 = diag(x0,i
ωj).

Let z = (z1, z2, z3) ∈ Rm × Rm × Rnd be such that Mz = 0. We show that z = 0, which

proves that M has full rank. From Mz = 0, it follows that

z2 + E>z3 = 0, (15)

z1 +X0z2 = 0, (16)

Ez1 = 0. (17)

We multiply (15) by z>1 and obtain

0 = z>1 z2 + z>1 E
>z3 = z>1 z2, (18)

where the second equality follows from (17). We multiply (16) by z>2 and obtain

0 = z>2 z1 + z>2 X
0z2 = z>2 X

0z2, (19)

where the last equality follows from (18). Since X0 is a diagonal matrix with strictly positive

elements, (19) implies z2 = 0. Next, (15) implies z3 = 0 and (16) implies z2 = 0.

This completes the proof.

Appendix II

As mentioned in Section 1, [16] proposed SLTP to compute a stationary equilibrium for a

stochastic game. This appendix describes our implementation of SLTP. The starting point

of SLTP consists of the vector of best responses against a given common prior belief p0 ∈ X.
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This vector of best responses can be computed by various methods like the value iteration

algorithm or the policy iteration algorithm, see [24]. Here we follow another approach, where

the computation of the vector of best responses is part of the homotopy. For t ∈ [0, 2], we

define

ζ(t) =

{
0 if t ≤ 1,

(t− 1)2 if t > 1,

and

ν(t) =


t if t ≤ 1 + β0,

t− 1
4
(
(t− 1− 2β0)2

β0

+ 2(t− 1− 2β0) + β0) if 1 + β0 < t < 1 + 3β0,

1 + 2β0 if t > 1 + 3β0,

where β0 is a sufficiently small positive number to guarantee the differentiability of ν(t). The

homotopy system of SLTP reads as

(1− ζ(t))((1− ν(t))(ui(ω, x−iω (y), siωj) + δ
∑̄
ω∈Ω

π(ω̄ | ω, x−iω (y), siωj)µ
i
ω̄)

+ν(t)(ui(ω, p0,−i
ω , siωj) + δ

∑̄
ω∈Ω

π(ω̄ | ω, p0,−i
ω , siωj)µ

i
ω̄))− ζ(t)(xiωj(y)− x0,i

ωj)

+λiωj(y)− µiω − t(2− t)αiωj = 0, ω ∈ Ω, i ∈ N, j ∈M i
ω,∑

j∈M i
ω

xiωj(y)− 1 = 0, ω ∈ Ω, i ∈ N.

As the homotopy variable t descends from 2 to 0, the path approximates an SSPE for the

stochastic game of interest.
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