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Chapter 1

Introduction

“He who sees things grow from the beginning will have the finest view of them.”

- Aristotle (384 - 322 BC)

In recent years, the availability of large datasets has become increasingly common in

a wide variety of fields. Indeed, the term ‘Big Data’ is ubiquitous in both industry

and academics, and especially prominent in the fields of computer science and econo-

metrics (Diebold, 2012). While the term’s exact definition remains ambiguous, and as

a result is occasionally smirked upon by those strongly attached to the exact sciences,

the general consensus is that ‘Big Data’ refers to the challenges of, and opportuni-

ties provided by, the analysis of increasingly large datasets. However, the origin and

complexity of large datasets varies strongly across disciplines. As an example in the

field of physics, the Large Hadron Collider (LHC) is the world’s largest and most

powerful particle accelerator, in which numerous detectors track the paths and ener-

gies of particles to provide digital summaries on collision events. The LHC produces

roughly 25 Gigabytes of data per second, thereby posing a major challenge in terms

of data processing. In time series econometrics, the field closest to this thesis, the

growth in datasets commonly stems from increased institutional monitoring of finan-

cial and economic activity, and the measurement of variables at higher frequencies or

lower levels of aggregation. While storage limitations are less troublesome for typical

datasets in time series econometrics, their statistical analysis remains challenging as

a result of data intricacies and the inability to manipulate the process that gener-

ates the data. Furthermore, ambitious model requirements such as the pursuit of

simultaneous strong predictive power, interpretability and valid statistical inference,

add an additional layer of complexity to the analysis. Particularly troublesome from
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1 Introduction

a statistical perspective are datasets in which the number of variables, henceforth

referred to as the dimension of the dataset, is relatively large in comparison to the

number of observational units. To distinguish this type of ‘Big Data’, we refer to such

datasets as high-dimensional and the statistical methods tailored to the analysis of

such datasets are referred to as high-dimensional statistics.

The literature on high-dimensional statistics is growing rapidly, and penalized re-

gression has arisen as a promising method to model large datasets (e.g. De Mol et al.,

2008; Kim and Swanson, 2014; Li and Chen, 2014). Penalized regression is a least-

squares fitting procedure that imposes shrinkage to control the model complexity in

high dimensions by penalizing the magnitude of estimated parameters. Contrary to

ordinary least-squares regression (OLS), the added penalization enables estimation in

high dimensions, even when the number of variables exceeds the number of observa-

tional units. Moreover, penalized regression is often praised for its ability to trade off

a small increase in bias with a large reduction in variance of the estimates, a property

that is particularly useful for prediction. In addition, certain variants of penalized

regression, such as the ‘least absolute shrinkage and selection operator’ (lasso) by

Tibshirani (1996), perform variable selection by setting coefficients equal to zero. As

parsimonious models are easier to interpret, this property is especially relevant for

applications aimed at describing relationships between variables in the data.

While early applications of penalized regression demonstrate favourable perfor-

mance in high-dimensional settings (e.g. Hastie et al., 2008, Chapter 1), they are

quite distant from those encountered in the field of time series econometrics. In time

series analysis, issues such as cross-sectional correlation, serial dependence and, espe-

cially, non-stationarity, are known to affect the properties of statistical estimators. For

example, spurious regression, which occurs when regressing unrelated unit root non-

stationary variables on each other, invalidates standard forms of inference. Equally

important is the related concept of cointegration, developed by Engle and Granger

(1987), which describes how unit root non-stationary time series that share common

stochastic trends may be linearly combined into a stationary process. Based on the

plethora of tests for unit roots and cointegration proposed in the time series litera-

ture, along with the fact that Engle and Granger were awarded the Nobel Prize in

economics for their work, it is hard to overstate the academic and practical relevance

of these topics. Because the estimation procedure of penalized regression depends on

a least-squares component, there is no a priori reason to believe that these estima-

tors are unaffected by the (co)integration properties of the data. Clearly, application

of penalized regression to (non-stationary) time series settings demands a separate

analysis of its theoretical properties and empirical performance.
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1.1 Challenges in High-Dimensional Time Series Analysis

This thesis theoretically and empirically analyses penalized regression methods

in realistic time series settings and develops a novel estimator tailored to high-

dimensional applications based on (co)integrated datasets. The methods are analysed

from an asymptotic perspective, with an emphasis on properties related to estima-

tion accuracy and variable selection. In several empirical applications, the predictive

performance of penalized regression methods is analysed and compared to popular

alternative modelling procedures. The objective of the thesis is to validate the use of

penalized regression to (non-)stationary time series applications, as well as to extend

the toolbox of the applied time series researcher.

Let us now go into more detail. First, we formally introduce penalized regression

and discuss several important concepts such as sparsity, selection consistency and

the oracle property. Afterwards, we briefly review the most prominent challenges of

time series analysis in high dimensions. Next, we motivate penalized regression as a

potential solution to these challenges and highlight the contribution of the thesis with

links to the following chapters. Finally, we discuss some limitations to this thesis and

propose several interesting avenues for future research.

Notation

Throughout the thesis, we follow the notation proposed by Abadir and Magnus (2002)

as closely as possible. In particular, a scalar is denoted by a lowercase letter (x), a

vector by a boldface lowercase letter (x) and a matrix by a boldface uppercase letter

(X). By convention, a vector is interpreted as a column-vector. Additional relevant

notation is introduced separately in the consecutive chapters.

1.1 Challenges in High-Dimensional Time Series Anal-

ysis

The extraction of information from a collection of time series is central to time se-

ries econometrics, and much effort is devoted to accommodate for datasets of larger

dimensions. Insightful examples of time series in econometrics are those of a finan-

cial analyst that uses daily closing prices of stocks to empirically verify the CAPM

model, or of an economist considering monthly inflation rates to explore the effects of

changes in economic policy. Classical time series analysis concerns the specification

and estimation of models that best capture the dynamic features of the data, with a

particularly important consideration being whether the time series at hand are inte-

grated or stationary. Indeed, one of the first decisions a researcher faces is whether to

5



1 Introduction

correct for possible unit root non-stationarity by differencing the data, or by adopting

a model that explicitly incorporates the integrating properties. This is non-trivial in

low dimensions and several additional challenges arise in the high-dimensional setting.

First, the process of pre-testing for unit roots is substantially more complicated

in high dimensions. At the early stages of the model building process, the decision on

the correct dynamic specification is commonly based on a procedure that tests each

time series for the presence of a unit root. Consequently, among the first issue to

arise in high dimensions, is that naively pre-testing a large number of individual time

series quickly accumulates the probability of making a false rejection. The literature

on multiple hypothesis testing proposes several solutions, often designed to control

the family-wise error rate or the false discovery rate (see Romano et al., 2008b, for a

review). However, the decision of which metric to focus on, as well as the preferred

strategy by which to optimize this metric, is often unclear and data-dependent, as

illustrated in Chapter 5. Furthermore, the impact of misspecification of the order

of integration depends on the robustness and purpose of the subsequent estimation

procedure. Accordingly, the effect of potential errors in the pre-testing procedure is

an important consideration in this thesis.

Second, model estimation in high dimensions adds computational challenges. The

use of simple least-squares routines without imposing additional regularization to con-

trol for model complexity exhausts the degrees of freedom and, consequently, provides

inaccurate estimates. Shrinkage estimators solve this issue by regularizing the solu-

tions, but can be computationally demanding when no analytic expression exists and

numerical optimization is required. Indeed, computational simplicity is an important

motivation behind our shrinkage estimator developed in Chapter 3.

Finally, classic theory for time series models is often not well-suited to high-

dimensional applications. Popular time series models, such as the vector autoregres-

sive model (VAR) for stationary data or the vector error-correction model (VECM) for

integrated data, are typically motivated in a fixed-dimensional asymptotic framework;

asymptotic results are derived under the assumption that the number of variables N

is kept fixed while the time series dimension T diverges. Such a setting, however, is

in stark contrast with high-dimensional datasets in which N is relatively large to T ,

resulting in poor quality asymptotic approximations. Thus, an asymptotic framework

that accounts for the effect of dimensionality is required, and constitutes the central

topic of Chapter 4.

Evidently, the challenges brought forward by the increasing dimensionality of mod-

ern datasets necessitate alternative modelling strategies. An approach that has long

6



1.2 Penalized Regression

been dominant in the time series econometrics literature consists of factor models,

which rely on the assumption that the data is driven by a small number of unobserved

common components (see Bai and Ng, 2008b, for an elaborate survey). However, one

may believe that only a subset of the observed data is required for accurately explain-

ing the variation in the variables of interest. Since factor models are incompatible

with this philosophy, we consider the use of penalized regression methods as a solution

instead.

1.2 Penalized Regression

In this section, we formally introduce the method of penalized regression. For illustra-

tive purposes, assume that we observe a sample x1, . . . ,xn, where xi = (xi,1, . . . , xi,p)
′.

Additionally, suppose we wish to use this sample to explain the variation in a depen-

dent variable yi, whose true (unobserved) data-generating process (DGP) is described

by

yi =

s∑
j=1

βjxi,j + εi = β′xi + εi, (1.1)

where s < p, β = (β1, . . . , βs,0
′)′ and εi is a random error term with E(εi) = 0.

Furthermore, we use βSβ = (β1, . . . , βs)
′ to denote the support of β and βScβ denotes

its complements, i.e. a (p− s)-dimensional vector of zeroes. A characterizing feature

of DGP (1.1) is that only a subset of all variable is relevant to explaining the variation

in yi. We refer to such DGPs as sparse.1

Penalized regression imposes regularization on top of the standard least squares

fitting procedure to control for model complexity, thereby enabling application to

high-dimensional datasets. The regularization is introduced through the addition of

a penalty to the standard least squares objective function:

β̂ = arg min
β

n∑
i=1

yi − p∑
j=1

xi,jβj

2

+ Pλ (β) , (1.2)

where Pλ

(
β̂
)

represents the penalty function that regularizes model complexity by

shrinking the coefficients. A large variety of penalty terms are proposed in the litera-

ture, and the estimators enjoy different properties depending on the specific form of

1Clearly, sparsity of a DGP only makes sense in reference to the data on which the analysis is
conditioned.
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1 Introduction

Figure 1.1: This figure corresponds to Figures 2.2 and 2.6 in Hastie et al. (2015).
The first panel displays the estimation of the lasso (left) and ridge regression (right).

The blue shaded area corresponds to the constraint regions ‖β‖1 ≤ k and ‖β‖22 ≤ k,
respectively. The red ellipses are the contours of the residual sum of squares. Panel
2 displays the contraint regions corresponding to |β1|q + |β2|q ≤ k for different values
of q.

the penalty (e.g. Hastie et al., 2015). Most commonly, the penalty corresponds to a

scaled Lq-norm, such as

Pλ (β) = λ ‖β‖q , (1.3)

where λ is a tuning parameter that regulates the degree of shrinkage and ‖β‖q =(∑p
j=1 |βj |

q
)1/q

. Among the most familiar variants are the lasso, which uses an L1-

norm, and ridge regression, which incorporates a squared L2-norm. The use of an

Lq-norm with q ≥ 1, has the benefit that the objective function in (1.2) is convex,

thereby simplifying computations and guaranteeing uniqueness of the minimizer. Al-

ternatively, while being computationally more challenging, the use of an Lq-norm with

q ≤ 1 results in sparse estimates in which some coefficients are shrunken to be exactly

8



1.2 Penalized Regression

equal to zero.2 An intuitive explanation for this sparsity inducing property is visual-

ized in Figure 1.1. For an artificial dataset with p = 2, the first panel in Figure 1.1

displays the contours of the sum of squared residuals (red lines) and the constraint

regions of different penalty functions (blue shaded areas). The solution that mini-

mizes the objective function (1.2) is located at the point where the contours touch

the boundary of the constraint region. It is intuitively clear that for sharp-cornered

and diamond-shaped constraint regions, the solution is likely to lie at a corner point

with one of the coefficients set equal to zero. As displayed in panel 2, such constraint

regions correspond to Lq-norms with q ≤ 1. The lasso, therefore, is a unique form

of penalized regression in the sense that it relies on the only Lq-norm that induces

sparsity while maintaining convexity of the objective function.

Fitting procedures that perform simultaneous estimation and variable selection

are often desired to possess several attractive asymptotic properties. A requirement

that is familiar from the fixed-dimensional literature is that of estimation consistency,

i.e. the estimates converge in probability to the true values as the sample size grows:

P
(∣∣∣β̂j − βj∣∣∣ > ε

)
→ 0, (1.4)

for each j = 1, . . . , p as n → ∞. It is important to note that (1.4) does not imply

that for any finite sample some coefficients are in fact estimated as exactly zero;

convergence in probability requires the estimated coefficients to grow closer to the

true values with high probability, without necessarily ever being exactly equal to the

true value. However, when the estimator is to be used as a variable selection device,

a natural requirement is that the set of relevant variables is correctly identified with

high probability when the sample size grows large. This is captured by the notion of

selection consistency, which states that

P
({
j : β̂j 6= 0

}
= {j : βj 6= 0}

)
→ 1, (1.5)

as n → ∞. Zhao and Yu (2006) introduce the stronger notion of sign consistency,

which also requires the signs of the non-zero coefficients to be estimated correctly in

the limit:

P
(

sign
(
β̂
)

= sign (β)
)
→ 1, (1.6)

as n→∞, with (1.6) holding element-wise. Establishing estimation consistency and

2This variable selection property is especially relevant when the DGP is believed to be sparse,
although we show in Chapter 2 that sparse methods may perform well in certain non-sparse settings.
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1 Introduction

selection consistency is an essential part of providing asymptotic justification for the

use of penalized regression, provided that the assumptions under which these results

hold are realistic for the specific application considered.

Remark 1.1. The probabilistic statements thus far presented rely on shorthand

notation. Formally, we assume that {(x′i, εi)′}∞i=1 is a sequence of
(
Rp+1,Bp+1

)
-

valued random variables defined on some underlying probability space (Ω,F ,P),

such that β̂(ω) : Ω → Rp is a function of the events in this space. Then, for example,

(1.6) ought to be interpreted as

P

 p⋂
j=1

{
ω : sign

(
β̂j(ω)

)
= sign(βj)

}→ 1,

as n → ∞. As this notation may become unnecessarily technical at times, we rely

on shorthand notation without reference to the underlying probability space when

possible to do so without ambiguity.

Among all fitting procedures that deliver consistent estimation and selection, one

may desire to choose the most accurate estimator. Since, by selection consistency,

Var
(
β̂Scβ

)
= 0 on a set with probability converging to one as n → ∞, an efficiency

argument is necessarily based on Var
(
β̂Sβ

)
. Fan and Li (2001), and later Zou (2006),

define the oracle property as a criteria by which to evaluate the optimality of a fitting

procedure that performs simultaneous estimation and variable selection. Formally,

the estimator β̂ possesses the oracle property if

1. P
(
β̂Scβ = 0

)
→ 1, and

2.
√
n
(
β̂Sβ − βSβ

)
d→ N (0,Σ∗),

as n→∞, where Σ∗ is the asymptotic variance of the ordinary least-squares (OLS)

estimator applied directly to the true subset of relevant variables.3 Intuitively, an

estimator that possesses the oracle property consistently selects the correct subset of

relevant variables and estimates their coefficients with the same efficiency as if the

relevant variables were known beforehand. For some variants of penalized regression,

such as the adaptive lasso introduced in Chapter 2, it is possible to derive this oracle

property, although one typically needs to restrict the parameter space for such results

to hold uniformly.

3In the context of penalized maximum-likelihood estimation, one can define Σ∗ as the Cramer-
Rao lower bound based on the true subset of relevant variables.
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1.3 Penalized Regression in Time Series: Contribu-

tion of This Thesis

The properties of penalized regression described in Section 1.2 offer prospective solu-

tions to the challenges in high-dimensional time series analysis laid out in Section 1.1.

For example, on sparse DGPs, the estimation and selection consistency of the lasso

allow for fast and efficient estimation in high dimensional settings without exhaust-

ing the degrees of freedom. Moreover, the asymptotic theory of penalized regression

methods can be altered to accommodate for high-dimensional settings, thereby pro-

viding more realistic asymptotic approximations. These and other contributions of

this thesis are summarized below.

In Chapter 2, we consolidate separately proposed lasso-type estimators4 for sta-

tionary time series data and we systematically compare their predictive and selective

performance in controlled settings, as well as on empirical applications. The analysis

largely focusses on comparisons between a variety of penalized regression methods

and factor models. The key insights are that penalized regression methods are more

robust than factor models; they display superior predictive performance on sparse

DGPs, while performing only marginally worse than factor models on DGPs with a

factor structure. Moreover, when the idiosyncratic component of the factor model is

not sufficiently ‘well-behaved’, penalized regression actually outperforms the factor

models. In addition, we obtain some anecdotal evidence that lasso-type estimation in

non-stationary setting may bring forecast improvements over traditional OLS estima-

tors, but simultaneously observe a high sensitivity to the (co)integrating properties

of the data in higher dimensions.

In recognition of the sensitivity of lasso-type methods in non-stationary settings,

we develop an intuitive lasso-type estimator designed to properly take into account

the (co)integrating properties of the data in Chapter 3. The estimator, referred to as

the Single-equation Penalized Error Correction Selector (SPECS), relies on penalized

estimation of a conditional error correction model, and is shown to posses the ora-

cle property in a fixed-dimensional asymptotic framework. Importantly, this property

holds without requiring any pre-testing for unit roots. Simulations demonstrate supe-

rior performance compared to alternatives that ignore the (co)integration properties

and an empirical application in which we nowcast Dutch unemployment with the use

of Google Trends confirms these findings.

4The term ‘lasso-type estimators’ loosely refers to variants of penalized regression that involve an
L1-penalty.
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Chapter 4 extends the theory for SPECS to a high-dimensional asymptotic frame-

work, allowing the cross-sectional dimensions of both short-run and long-run dynamics

to diverge alongside the time series dimension. The results confirm that estimation

and selection consistency are attainable in a high-dimensional setting, although the di-

mension and the convergence rate of the estimator are inversely related. Furthermore,

the generality of the theoretical framework is restricted by the absence of knowledge

on the behaviour of the minimum eigenvalues of high-dimensional sample covariance

matrices containing integrated processes.

Following the advent of new high-dimensional methods that allow for direct ap-

plication to non-stationary datasets, Chapter 5 reviews and compares two main high-

dimensional modelling approaches: (i) identifying unit roots and transforming all data

to stationarity versus (ii) explicitly modelling any unit roots and cointegrating rela-

tionship. We provide a detailed illustration of common pitfalls of unit root testing in

high dimensions and evaluate methods designed to deal with issues such as poor size

and power of unit root tests, as well as controlling appropriate error rates in multiple

testing. In two empirical applications, we incorporate specialized factor models and

penalized regression methods that accommodate both modelling approaches and we

examine their comparative predictive performance. We find that no method of mod-

elling cointegration arises as superior and that the potential gains from taking into

account cointegration for forecasting remains data-dependent. We are led to conclude

that model specification will always require careful consideration, although the prac-

titioner benefits from access to an increasingly large set of reliable tools to model unit

roots and cointegration.

Finally, we comment on some relevant topic this thesis does not consider. First,

the methods in this thesis are solely motivated from the frequentist point of view.

While many methods included in our comparative analyses have Bayesian counter-

parts (c.f. Park and Casella, 2008), the large collection of penalized regression methods

and factor models prevents us from drawing from the large pool of Bayesion methods

without losing focus on the main research questions. Second, the lasso can be seen as

part of a larger class of estimators referred to as folded non-concave penalized maxi-

mum likelihood estimators (Fan and Li, 2001). While this class of estimators contains

penalty functions that lead to attractive theoretical properties, such as the smoothly

clipped absolute deviation (SCAD) penalty, many result in non-convex objective func-

tions that lead to more complicated estimation procedures. Hence, we only take into

account Lq-penalized regression with q = 1, 2. Third, we do not discuss post-model

selection inference. It is now well-recognized that such inference is complicated by

the issue of post-selection bias and numerous solutions, such as post-double selection
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(Belloni et al., 2014) or the desparsified lasso (Van de Geer et al., 2014), are available.

However, none of these approaches extend easily to general stationary time series sett-

tings, and extensions to the unit root setting are expected to be highly complicated.

Nonetheless, the theoretical results of Chapter 3-4 may prove useful as intermediary

results in the pursuit of uniformly valid post-model selection inference. We consider

this an exciting avenue for future research.
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Chapter 2

Macroeconomic Forecasting

Using Penalized Regression

Methods

“Recent advances in information technology make it possible to access in real time, at

a reasonable cost, thousands of economic time series for major developed economies.

This raises the prospect of a new frontier in macroeconomic forecasting, in which a

very large number of time series are used to forecast a few key economic quantities,

such as aggregate production or inflation.”

- Stock and Watson (2002)
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2 Macroeconomic Forecasting Using Penalized Regression Methods

Abstract†

In this chapter, we investigate the suitability of lasso-type penalized regression tech-

niques when applied to macroeconomic forecasting with high-dimensional data sets.

We consider the performance of lasso-type methods when the true data generating

process (DGP) is a factor model, contradicting the sparsity assumption underlying

penalized regression methods. We also investigate how the methods handle unit roots

and cointegration in the data. In an extensive simulation study we find that penal-

ized regression methods are more robust to mis-specification than factor models, even

if the underlying DGP possesses a factor structure. Furthermore, the penalized re-

gression methods are demonstrated to deliver forecast improvements over traditional

approaches when applied to non-stationary data containing cointegrated variables,

despite a deterioration of the selective capabilities. Finally, we also consider an em-

pirical application to a large macroeconomic U.S. dataset and confirm the competitive

performance of penalized regression methods.

†This chapter is based on Smeekes and Wijler (2018b).
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2.1 Introduction

In this chapter we provide a thorough analysis of the forecasting capabilities of pe-

nalized regression in macroeconomic conditions. We study the performance of these

methods in a simulation study when the true DGP is a factor model and when the

data contain stochastic trends and may be cointegrated. We also provide a systematic

comparison with factor models, the mainstream method used in macroeconomic fore-

casting, using both Monte Carlo simulations and an empirical application to macroe-

conomic data.

Despite the vast size of the forecasting literature, comprehensive comparisons be-

tween factor models and penalized regression remain scarce. Traditionally, the ma-

jority of the forecasting literature seems to have implicitly assumed the prevalence

of a latent factor structure in economic datasets and therefore has mainly consid-

ered the performance of methods based on factor estimation. While very popular

in statistics, only recently L1-penalized regression techniques, such as the lasso from

Tibshirani (1996), are being explored as a viable alternative to traditional estimators

such as low-dimensional VARs or factor models, in macroeconometrics. Applications

in forecasting in particular show that the use of penalized regression, potentially in

combination with traditional techniques such as principal components (PC), delivers

promising performance (e.g Kim and Swanson, 2014; Garcia et al., 2017), though it is

not yet really understood why. By providing a comprehensive study of penalized re-

gression in ‘adverse’ macroeconomic conditions, we complement the existing literature

with a fresh perspective on these methods and a direct link to factor models.

Specifically, we address the apparent contradiction between the premise of fore-

casting with shrinkage estimators to identify a small subset of variables responsible for

the variation in the dependent variable and the assumption that the variation in the

dependent variable is best explained through aggregates of all available time series.

The good empirical performance of penalized regression methods despite this contra-

diction gives rise to a number of practically relevant questions; (1) Is the common

factor assumption really valid in practice? (2) Are the results due to sample-dependent

data idiosyncrasies? (3) Are other mechanisms at play such as an inherent robustness

of shrinkage estimators to alternative DGP specifications?

We aim to shed light on these previously unexplored questions by conducting a

detailed simulation study in which we compare the performance of a selection of the

most popular and well understood variants of L1-shrinkage estimators and factor ex-

traction methods. The novelty in these simulations comes from the wide range of
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DGPs considered, chosen such that no method is consistently favoured over another

based on a priori expectations and to closely resemble the types of data that occur in

empirical applications. The former goal is maintained through varying both the pres-

ence of common factors in the data as well as the degree of sparsity in the parameter

space, while the latter goal is maintained through introducing levels of non-sphericity

frequently encountered in empirical work.1 In addition, we explore the potential of pe-

nalized regression in the non-stationary setting by generating a number of time series

containing unit roots, some of which are cointegrated, and employ penalized regres-

sion directly on these series without any form of preprocessing. We complement the

simulations with a comparison of the pseudo out-of-sample forecasting performance

on a recently updated U.S. macroeconomic dataset available through the Fred-MD

database (McCracken and Ng, 2016).

The results show that penalized regression performs remarkably well when there is

at least some degree of sparsity in the parameter space and is relatively robust against

alternative DGP specifications. Factor models perform slightly better than penalized

regression when the predictors possess an approximate factor structure with low de-

pendence in the errors, but their performance deteriorates substantially when increas-

ing the level of non-sphericity in the idiosyncratic component. Penalized regression

naturally does better than factor models on sparse DGPs, but more surprisingly also

provides forecast improvements on DGPs containing a factor structure with strongly

serially and cross-sectionally correlated idiosyncratic components. In addition, penal-

ized regression shows promising results on cointegrated data, producing substantially

lower forecast errors compared to standard OLS, despite failing to identify the exact

cointegrating vector at relatively high frequencies. Finally, the empirical application

highlights that the forecast performance differentials between factor-based methods

and shrinkage methods are sensitive to the target variable being forecast.

Our contribution complements the vast existing macroeconomic forecasting liter-

ature that is dominated by methods that exploit a latent factor structure, such as

static factor models (e.g. Stock and Watson, 2002a,b; Bai and Ng, 2008a), dynamic

factor models (Eickmeier and Ziegler, 2008; Forni et al., 2005a, 2018; Doz et al., 2012),

weighted principal components (Boivin and Ng, 2006), sparse principal components

(Kristensen, 2017) or factor augmented vector autoregressions (Bernanke et al., 2005b;

Pesaran et al., 2011; Bai et al., 2016). The conjecture that a small set of factors drives

the variation in economic time series finds strong support through impressive forecast-

ing performance of factor models on macroeconomic datasets from the U.S. (Stock

1Throughout this chapter the term non-sphericity refers to the presence of cross-sectional and/or
serial correlation in the idiosyncratic component of a data generating process.
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and Watson, 2002a, 2012), the U.K. (Artis et al., 2005) and the Euro area (Mar-

cellino et al., 2003). Spurred by theoretical developments, such as the extension of

the adaptive lasso to general time series frameworks by Medeiros and Mendes (2016),

L1-penalized regression has gained more appeal and the body of applied literature

taking into account these shrinkage estimators has grown considerably. Recent work

covers penalized regression (Gelper and Croux, 2008; De Mol et al., 2008; Kim and

Swanson, 2014; Li and Chen, 2014), reduced-rank vector autoregressions (Bernardini

and Cubadda, 2015), Bayesian vector autoregressions (Bańbura et al., 2010) and pe-

nalized vector autoregressions (Hsu et al., 2008; Callot and Kock, 2014; Kascha and

Trenkler, 2015; Barigozzi and Brownlees, 2019). While some include a direct com-

parison between at least some form of factor models and penalized regression and

demonstrate predictive capabilities of L1-penalized regression that are competitive to

traditional factor models, the analysis is typically based on empirical data or simula-

tions that do not provide detailed insights into the sensitivity of each method to its

underlying assumptions.

The remainder of this chapter is organized as follows. Section 2.2 describes the

notation and reviews the methods considered. In section 2.3 we perform the simulation

based analysis of the forecasting performance, followed by the empirical application

in section 2.4. In section 2.5 we conclude and suggest a number of interesting avenues

for future research.

2.2 Methods

Suppose a researcher is interested in predicting an economic time series h-steps ahead

with information available through time t = 1, . . . , T . The researcher desires to

include a pre-determined set of variables such as lags of the dependent variable or

variables motivated through economic theory. In addition, she faces a large set of

candidate variables that are potentially relevant to the dependent variable. This

results in the following generic model:

yt+h = w′tβw + x′tβx + εt+h (2.1)

where yt+h is the scalar valued dependent variable to forecast and h is the forecast

horizon. Furthermore, wt is the (p× 1) predetermined vector of variables which the

researcher requires to be in the model, xt is the (N × 1) vector containing candidate

variables that are potentially related to yt+h, and εt+h is a disturbance term. The

forecast of the response at time T is defined as ŷT+h|T = w′T β̂w +x′T β̂x. Letting y =
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(y1+h, . . . , yT+h)′, W = (w1, . . . ,wT )′, X = (x1, . . . ,xT )′ and ε = (ε1+h, . . . , εT+h)

the model can be rewritten as

y = Wβw +Xβx + ε. (2.2)

When the number of variables in the candidate set X is large relative to the num-

ber of available observations, modelling the dependent variable as a linear combination

of all candidate variables will amount to the estimation of a large number of parame-

ters and is likely to result in a large forecasting variance. For example, assuming the

explanatory variables follow a Gaussian distribution, Stock and Watson (2006) show

that the OLS forecast is normally distributed with a variance proportional to the

number of variables included in the model divided by the total number of available

observations. In the more extreme case where the cross-sectional dimension exceeds

the time series dimension inverting the matrix of second moments becomes infeasible

and as a result the OLS estimator does not have a (unique) solution. Accordingly,

methods that perform regularization are required in order to obtain accurate forecasts

and reliable model estimates in the high-dimensional setting.

The methods we consider can broadly be categorized as shrinkage estimators and

factor models. Shrinkage estimators aim to reduce the forecast variance by shrinking

the parameter estimates in the traditional linear model, possibly up to a point where

some parameters are exactly equal to zero and, thus, removing the corresponding

variables from the candidate set. Factor models, on the other hand, do not remove

variables from the candidate set, but rather aim to reduce the dimensionality of the

data by summarizing the data in relatively few factors with the hope of capturing

the bulk of the variation in the candidate set. In the following section we formally

introduce these methods and describe the mechanisms by which they estimate our

generic model (2.1).

2.2.1 Shrinkage estimators

The shrinkage estimators employed in this chapter estimate the parameters according

to the following objective function:

(β̂w, β̂x) =arg min
(βw,βx)

T∑
t=1

(yt+h −w′tβw − x′tβx)2

+ λ

α N∑
j=1

|βx,j |
ωj

+ (1− α)

N∑
j=1

|βx,j |2

ωj

 , (2.3)
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with different settings of (λ, α, ωj) leading to various well-established methods. We

consider:

1. Ridge regression (ridge: λ > 0, α = 0, ωj = 1 ∀j)

2. Lasso (las: λ > 0, α = 1, ωj = 1),

3. Adaptive Lasso (adalas: λ > 0, α = 1, ωj =
∣∣∣β̂Init,j∣∣∣),

4. Elastic Net (en: λ > 0, 0 < α < 1, ωj = 1 ∀j), and

5. Adaptive Elastic Net (adaen: λ > 0, 0 < α < 1, ωj =
∣∣∣β̂Init,j∣∣∣),

where β̂Init,j is an initial estimate such as the OLS or ridge coefficient. All methods

impose shrinkage (λ > 0) that enables model estimation in situations where the

number of potentially relevant variables exceeds the number of observations, i.e. N >

T . Moreover, the methods for which α ∈ (0, 1], from here on referred to as lasso-

type estimators, perform subset selection by shrinking coefficient estimates to zero.

They are potentially able to further improve forecasting performance by reducing

the added variance of estimating parameters of irrelevant variables. The weights

ωj , j = 1, . . . , N , allow for differential shrinkage on the parameters. Zou (2006)

demonstrates that the use of cleverly chosen initial estimators as weights improves

the selection performance by penalizing irrelevant variables to a higher degree than

relevant variables. Common choices for initial estimators are the absolute values

of OLS or ridge coefficients from a preceding estimation. Furthermore, it can be

directly observed from (2.3) that the pre-determined set of relevant variables wt is

free of regularization and is therefore ensured to be included in the final model.

Following Friedman et al. (2010), the solution to (2.3) can be efficiently obtained

using a coordinate descent algorithm.

Whereas the earlier theory for the lasso has been developed in rather restrictive

frameworks such as fixed designs (e.g. Knight and Fu, 2000; Zou, 2006), the properties

of the lasso and its variants are becoming increasingly well understood in time series

settings. One strand of time series related literature focusses on a framework with

a fixed number of independent variables. This includes, among others, the work of

Wang et al. (2007) who apply the (adaptive) lasso to models with autoregressive er-

rors and derive estimation and selection consistency, and Yoon et al. (2013) who build

on these results by estimating the autoregressive order directly from the data and by

considering additional penalization methods. Hsu et al. (2008) derive the asymp-

totic theory for the lasso estimator under vector autoregressive (VAR) processes, and
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Kock (2016) considers application of the lasso to both stationary and nonstationary

autoregressive processes.

Others have explored the realm of double-asymptotics, allowing the number of

candidate variables to grow along with the sample size. Nardi and Rinaldo (2011)

consider the estimation of autoregressive (AR) models where the number of lags in-

crease with the sample size. Song and Bickel (2011) consider the (group-)lasso to

estimate VAR models where the number of candidate variables is allowed to increase,

but the number of relevant variables is kept fixed. Kock and Callot (2015) also use

the lasso for VAR estimation, while allowing the number of relevant variables to in-

crease. They provide non-asymptotic bounds and sufficient conditions for asymptotic

consistency of the predictions, parameter estimates and variable selection. Unfor-

tunately the generality of their results comes at the cost of imposing independence

and normality on the errors. Medeiros and Mendes (2016) show that the adaptive

lasso estimator maintains its consistency under substantially weaker assumptions and

that the estimates are asymptotically normal even under weakly dependent errors.

These results hold for (conditionally) heteroskedastic processes as well, although effi-

ciency gains can be made through the use of alternative weighting (e.g. Wagener and

Dette, 2013; Ziel, 2016). Thus, research has progressed to a point where lasso-type

estimators are theoretically justifiable in a stationary time series context and the ap-

plied econometrician is now required to choose between two appealing, though rather

contrasting, approaches to modelling high-dimensional data.

Tuning

The implementation of lasso-type estimators requires the user to provide an a priori

choice on the tuning parameters (λ, α). In the simulation exercises and the empirical

application to follow, the tuning parameters are determined by obtaining the solution

to (2.3) on a (100 × 1) grid of λ-values for the methods with a pre-determined α

value or a (100× 6) dimensional grid with (λ, α)-tuples for the (adaptive) elastic-net.

We then use an information criterion (BIC or AIC) or time series cross-validation

(CV) to select the optimal value(s). Time series CV is performed by reserving the

first part of the sample to estimate the model under various settings of the tuning

parameters after which the resulting models’ fit are compared in a pseudo out-of-

sample evaluation (Hyndman and Athanasopoulos, 2018). To illustrate, we adopt the

threshold cT = d 2
3 × T e and let ZcT = (WcT ,XcT ), where WcT = (w1, . . . ,wcT )′

and XcT = (x1, . . . ,xcT )′. For a given value of the tuning parameter, say λj for j =

1, . . . , 100, the model is estimated on ZcT to obtain the coefficient vector β̂(λj). Next,

a pseudo out-of-sample mean squared forecast error is calculated as MSFE(λj) =
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1
T−cT

∑T
t=cT+1(yt+h − z′tβ̂(λj))

2. This procedure is executed for all values of the

tuning parameter in the predefined grid and the final tuning parameter is chosen as

λ̂ =arg min
λj

MSFE(λj).

In time series settings, this method is often preferred over traditional k-fold CV,

because the time structure of the data is kept intact.2

2.2.2 Factor models

The literature on factor models is vast, their use being motivated through the con-

ceptualization of factors as unobserved and possibly dynamic processes related to the

state of the economy that drive a large set of observed economic time series. Factor

models attempt to summarize the candidate set X by a smaller number of factors

and, in the dynamic case, their lagged realizations. In this factor framework, the

variables in the candidate set admit the following representation

xt = Λ(L)f∗t + et, (2.4)

where Λ(L) = (λ1(L), . . . ,λN (L))′, λi(L) = (λi,1(L), . . . , λi,s(L))′ and λi,j(L) is a lag

polynomial of possibly infinite order describing how variable i loads onto the dynamic

factor j. The symbol f∗t refers to an (s × 1) vector containing the common factors

and et is a vector of idiosyncratic disturbances.

The majority of the literature on forecasting with factor models has, either explic-

itly or implicitly, relies on the assumption of finiteness of the lag polynomials λi,j(L).

This assumption allows the model to be cast in a static form with the representation

xt = Λft + et. (2.5)

where Λ contains the coefficients in Λ(L), ft = (f∗′t , . . . ,f
∗′
t−q)

′ is a vector of size

r with s ≤ r ≤ (q + 1)s and et = (e1t, . . . , eNt)
′. The extension to the purpose of

forecasting our generic model (2.1) follows naturally by substituting the candidate

2While standard k-fold CV is valid for purely autoregressive models with uncorrelated errors
(Bergmeir et al., 2015), we observe time series CV to perform similarly in the simulations and
superior in the empirical application.

23



2 Macroeconomic Forecasting Using Penalized Regression Methods

variables for their factor representation:

yt+h = w′tβw + x′tβx + εt+h

= w′tβw + f ′tΛ
′βx + e′tβx + εt+h

= w′tβw + f ′tβf + ut+h,

(2.6)

with βf = Λ′βx and ut+h being the composite error that includes the innovation

εt+h and the loss of information from summarizing the data e′tβx. The reduction in

dimension from N to r allows this model to be estimated with OLS and the dependent

variable to be forecast as ŷT+h|T = w′T β̂w + f̂ ′T β̂f̂ . Estimating the factors f̂T can be

done with a wide variety of algorithms, the most common of which we discuss next.

The method of principal components (PC) is a popular means of extracting static

factors. For any given k, which need not be equal to the true number of static factors

r, the standard method of principal components (PC) obtains a (T × k) matrix of

factor estimates and a (N × k) matrix of estimated loadings by solving the objective

function(
Λ̂k, F̂ k

)
=arg min

Λk,F k

∑
t

(xt −Λkfkt )′Ω−1(xt −Λkfkt ) (2.7)

with Ω = IN and subject to the normalization Λk′Λk/N = Ik and F k = (f1, . . . ,fT )
′

with F k′F k being diagonal.

A drawback of forecasting with standard PC is that the quality of the estimated

components that serve as inputs for the forecasting equation strongly depends on the

structure inherent to the original data. For example, Boivin and Ng (2006) demon-

strate that cross-sectional correlation in the idiosyncratic component of (2.5) is highly

detrimental to the quality of the component estimates. In search for a more robust

form of component estimation, they propose the use of weighted principal components

(WPC) by replacing the unobserved inverted population covariance matrix Ω−1 in

(2.7) with a feasible estimate Ω̂−1. Boivin and Ng (2006, p. 185) propose several

weighting rules to obtain feasible estimates such as their weighting ‘rule SWa’, where

Ω̂−1 is diagonal with the ith diagonal element equal to
(

1
T

∑T
t=1 ê

2
i,t

)−1

. We explore

the additional rules ‘SWb’, ‘Rule1’ and ‘Rule2’ proposed in their original paper as

well and refer to them by their original names respectively.

Another cited disadvantage of principal component analysis is that every compo-

nent is a linear combination of all variables, while a common empirical observation

is that for any given component large groups of variables may carry small, non-zero
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loadings (e.g. Stock and Watson, 2002b; Croux and Exterkate, 2011). Similar to the

premise underlying the lasso, it may be favourable to estimate factors that depend

only on a subset of the variables to reduce forecast variability and, when of interest,

improve interpretability of the model. The solution brought forward in the litera-

ture takes the form of sparse principal component (SPC), variants of which occur in

Jolliffe et al. (2003), Zou et al. (2006) and Shen and Huang (2008). More recently,

Kristensen (2017) considers the use of SPC for macroeconomic forecasting and shows

that, under suitable restrictions on the amount of shrinkage, the SPC estimator is

consistent under assumptions similar to those in Stock and Watson (2002a). While

no additional assumption on the sparseness of the loadings is required for its consis-

tency, the use of SPC implicitly favours a sparse representation from the perspective

of the classical bias/variance tradeoff. In this chapter we adopt the computationally

beneficial approach of Shen and Huang to estimate the sparse principal components

and refer the reader to their original paper for details.

An alternative method of imposing sparsity is proposed by Bai and Ng (2008a)

who argue for forecasting with factor-augmented regressions by applying principal

components to a subset of the predictors selected with the use of shrinkage estimators

such as the lasso. Given the intuitive appeal of this approach and the documented

improvement in performance by Bai and Ng, we include their PC(LA)-approach by

applying the lasso for the purpose of subset selection in the first stage and extracting

factors from that subset using standard PC in the second stage.3

Rather than casting the dynamic factor model (2.4) in the static framework (2.5),

one may want to estimate the dynamic specification directly. Forni et al. (2000) pro-

pose a method to directly estimate (2.4) by obtaining the s dynamic factors on the

basis of a consistent estimate of the population spectral density matrix. However,

since the recovery of the dynamic factor relies on the estimation of a two-sided trun-

cated filter, this approach does not work well for forecasting at the end of the sample.

Accordingly, Forni et al. (2005a) propose an alternative approach that decomposes

the long run variance of the candidate set into contributions by the common and

idiosyncratic components and estimates the factor loadings such that the share of

the long rung variance attributable to the common component is maximized. This

method is henceforth referred to as FHLR (Forni, Hallin, Lippi and Reichlin).

3Others have also considered the reverse order, i.e. first extracting principal components from
the data and then performing shrinkage on those components (e.g. Stock and Watson, 2012; Kim
and Swanson, 2014). Yet another possibility is to apply shrinkage alongside factor estimation by
sparsely estimating the idiosyncratic component (e.g. Luciani, 2014; Hansen and Liao, 2019). These
approaches, however, are not pursued here as they are less related to the central questions examined
in this chapter and since their theoretical properties and empirical performance are well documented
in the cited papers.
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2 Macroeconomic Forecasting Using Penalized Regression Methods

An alternative approach of explicitly modelling the dynamics in a factor model

is to explicitly incorporate them into a likelihood function. The idea of estimating

static factors by maximum likelihood dates back to the early work of Chamberlain and

Rothschild (1983). More recently, however, Doz et al. (2011) and Doz et al. (2012)

derive the theory for maximum likelihood estimation of factor models under much less

restrictive assumptions on the dynamic structure of the factors and the idiosyncratic

component. While their model estimation procedure relies on the use of the Kalman

filter and a relatively strict set of assumptions, such as a diagonal covariance matrix of

the idiosyncratic component,Doz et al. show that certain deviations away from these

assumptions are asymptotically negligible, thereby justifying the method for a much

broader class of data generating processes. We incorporate the maximum likelihood

procedure in Doz et al. (2012) and will henceforth refer to this method as DGR (Doz,

Giannone and Reichlin).

Finally, in recent contributions Forni et al. (2015, 2018) develop a method to

obtain estimates of the dynamic components without imposing finiteness on the factor

space. Under general assumptions, the authors derive one-sided representation of the

dynamic factor model that can be estimated and used for forecasting. Throughout

the chapter we will refer to this method of forecasting as FHLZ (Forni, Hallin, Lippi

and Zaffaroni), while referring the interested reader to the cited papers for details.

Tuning

All of the methods described above require an a priori choice for the number of factors.

As such, much attention has been given to the development of data driven criteria

that may aid the researcher in this choice absent of knowledge of the true number of

factors. The reference criteria for static factor models in most contributions are those

provided by Bai and Ng (2002), who propose two classes of information criteria that

minimize the variance of the idiosyncratic component subject to a penalty depending

on both N and T . This method, however, is often documented to overestimate or

underestimate the true number of factors (e.g. Forni et al., 2009), on the grounds

of which we employ several alternative criteria in the comparisons to follow. We

consider methods that use the same type of information criteria with an extra tuning

parameter (Alessi et al., 2010) or that directly exploit the structure of the eigenvalues

in the sample covariance matrix (Onatski, 2010; Ahn and Horenstein, 2013). For the

dynamic factor models we employ the criteria of Hallin and Lǐska (2007) to select the

number of dynamic components s. The DGR approach requires specification of the

autoregressive order of the dynamic factors. This is determined by obtaining initial

estimates of the factors by principal components and fitting a VAR model on these
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2.3 Simulation study

estimates with the lag order being selected by the AIC. Finally, we implement the

FHLZ method by randomly dividing the cross section of N time series in b N
q+1c blocks

on which we: (1) estimate VARs with their order determined by the AIC, (2) recover

the dynamic components and (3) use these dynamic components and their lags to

predict the dependent variable by an OLS projection.4 This three-step process is

repeated 50 times and the predictions are averaged over all iterations to remove the

added noise from the cross-sectional sampling.

In the remainder of the chapter we will stick to the convention of tabulating

results only for the tuning method that obtains the best performance on the factor

model under consideration. Additional comments on the performance of other tuning

methods are provided whenever deemed informative.

2.3 Simulation study

Our simulation study can broadly be categorized into three main sections, namely

simulations on a DGP with (1) stationary observable variables with a sparse coefficient

vector, (2) stationary common factors driving a large set of time series, and (3) non-

stationary and cointegrated variables. In every category, we vary additional DGP

characteristics such as the level of non-sphericity in the error, the number of common

factors and the strength of the cointegration relationship.

Stationary observable variables

We generate the first set of DGPs as stationary processes where the dependent variable

depends on five observable explanatory variables and a possibly autoregressive error

term:

yt+1 = x′tβx +
√
θεt+1

(1− αL)εt+1 = vt+1

(2.8)

with xt ∼ N(0,ΣN ) and vt+1 ∼ N(0, 1). Let ι5 be a (5×1) vector of ones and 0N−5 an

((N−5)×1) vector of zeros, then βx = (ι′5,0
′
N−5)′. The population covariance matrix

takes on the form ΣN = (σi,j)
N
i,j=1 with σi,j = ρ|i−j|. Hence, ΣN is a Toeplitz-matrix

that allows for regulation of the degree of pairwise correlation between variable i and

j by varying the single parameter ρ. In addition, we randomize the cross-sectional

4To take into account the complete dynamic structure, predictions ought to be obtained by
filtering the estimated factors as in Forni et al. (2018). However, we find that the direct OLS
projection frequently outperforms the filtered predictions, especially for multi-step predictions in the
empirical application, which motivates our choice of implementation.
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2 Macroeconomic Forecasting Using Penalized Regression Methods

order of the newly generated variables prior to the construction of y in order to avoid

a clustering of correlation in neighbouring variables. Furthermore, the signal-to-noise

ratio is controlled by setting θ = 1−α2

10 β′xΣNβx, which keeps the population signal-

to-noise ratio constant for changes in dimensionality of the model, as well as changes

in the degree of serial correlation.

At every trial we generate T = 100 observations to which we apply all of the

methods covered in section 2.3. For the shrinkage estimators we generate the 1-step

ahead forecast as ŷT+1|T = x′T β̂x, whereas the predictions from factor models are

obtained as ŷT+1|T = f̂ ′T β̂F . This procedure is repeated over J = 1, 000 trials and

we evaluate the forecast performance of model i by the mean squared forecast error

(MSFE)

MSFEi =
1

J

J∑
j=1

(yj,T+1 − ŷij,T+1|T )2. (2.9)

The MSFE is reported relative to the MSFE of the optimal, though infeasible, OLS

oracle method which forecasts the dependent variable by applying OLS to the five

relevant variables only. As a measure of the estimation accuracy we calculate the

mean squared error as

MSEi =
1

J

J∑
j=1

∥∥∥β − β̂ij∥∥∥2

2
, (2.10)

and, again, report the MSE relative to the OLS oracle procedure. Given the misspec-

ified nature of the factor models on the current set of DGPs, this metric is reported

for the shrinkage estimators only.

The selection performance of the shrinkage estimators is evaluated according to

two standard metrics; the metric consistent depicts the fraction of trials in which the

shrinkage estimators exactly identify the sparsity pattern by selecting the five relevant

variables only, whereas conservative depicts the fraction of trials in which at least

all five relevant variables are included. Finally, we also report the average number

of variables included by each method as #variables. Detailed results regarding the

shrinkage estimators are gathered in Table 2.1 - 2.2. The performance of the factor

models is tabulated in Table 2.3.

The results in Table 2.1 emphasize the effect of changes in dimensionality by

leaving out any cross-sectional and serial correlation (ρ = α = 0). Panel A reports

results for the low-dimensional case (N = 10). In terms of the mean squared forecast
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2.3 Simulation study

Table 2.1 Stationary observed variables: the effect of dimensionality

OLS ridge las adalas en adaen
BIC CV BIC CV BIC CV BIC CV BIC CV

Panel A: N = 10

RMSFE 1.05 1.11 1.13 1.08 1.08 1.01 1.05 1.08 1.08 1.01 1.05
RMSE 2.13 2.47 2.91 2.07 2.35 1.21 1.84 2.07 2.46 1.21 1.95
consistent 0% 0% 0% 27% 13% 84% 52% 27% 11% 84% 35%
conservative 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
#variables 10.00 10.00 10.00 6.45 7.91 5.21 6.10 6.45 8.10 5.21 6.89

Panel B: N = 50

RMSFE 1.92 1.75 1.85 1.20 1.20 1.04 1.12 1.20 1.21 1.04 1.13
RMSE 19.09 16.15 17.91 5.05 4.74 1.65 3.42 5.06 4.81 1.65 3.95
consistent 0% 0% 0% 12% 3% 60% 23% 12% 3% 60% 15%
conservative 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
#variables 50.00 50.00 50.00 8.31 15.69 5.85 11.98 8.32 15.82 5.85 16.42

Panel C: N = 100

RMSFE - - 7.78 1.28 1.24 1.08 1.09 1.28 1.24 1.08 1.10
RMSE - - 139.42 6.85 5.90 2.69 3.01 6.85 5.96 2.67 3.25
consistent - - 0% 8% 3% 33% 15% 8% 3% 33% 12%
conservative - - 100% 100% 100% 100% 100% 100% 100% 100% 100%
#variables - - 100.00 9.75 19.47 6.56 10.51 9.76 19.70 6.58 11.04

Notes: Numerical entries in this table are averages obtained over 1,000 simulations relative
to the OLS oracle method for all evaluation metrics described in section 2.3. Results are
given for the low, mid and high-dimensional case in panel A,B and C respectively.

error penalized regression performs at least as well as OLS, with the exception of ridge

regression. The latter is unsurprising given that ridge regression does not impose

sparsity and is a biased estimator that aims to reduce the MSE through a favourable

bias-variance trade-off. The ability to do so, however, hinges on the presence of

multi-collinearity, which is not an issue in the current set-up. Focussing on the lasso-

type methods, we observe that the forecast performance of the adaptively weighted

variants is superior to their non-weighted counterparts and, with RMSFEs of 1.01, is

comparable to the infeasible oracle estimator. Concerning the selection performance,

three results stand out. First, selection of the tuning parameter(s) by the BIC seems

to lead more frequently to exact identification of the five relevant explanatory variables

compared to cross-validation. Second, an adaptive weighting of the tuning parameter

substantially improves the consistent selection scores and results in smaller models on

average. Third, all methods considered are able to include the five relevant variables

in all trials.

While promising, the results so far are derived in a low-dimensional setting where

the gain relative to traditional OLS is small and the often cited ‘curse of dimen-

sionality’ is far from an issue. Accordingly, panel B-C display the performance for
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2 Macroeconomic Forecasting Using Penalized Regression Methods

Table 2.2 Stationary observed variables: the effect of correlation

OLS ridge las adaLas en adaen
ρ α BIC CV BIC CV BIC CV BIC CV BIC CV

Panel A: RMSFE

0.0 0.0 1.92 1.75 1.85 1.20 1.20 1.04 1.12 1.20 1.21 1.04 1.13
0.6 0.0 1.94 1.52 1.56 1.12 1.16 1.02 1.12 1.12 1.18 1.02 1.14
0.6 0.6 1.88 1.49 1.51 1.13 1.14 1.03 1.09 1.13 1.15 1.03 1.11

Panel B: Consistent

0.0 0.0 0% 0% 0% 12% 3% 60% 23% 12% 3% 60% 15%
0.6 0.0 0% 0% 0% 4% 2% 44% 16% 4% 2% 44% 11%
0.6 0.6 0% 0% 0% 4% 2% 48% 16% 4% 2% 48% 11%

Panel C: # variables

0.0 0.0 50.00 50.00 50.00 8.31 15.69 5.85 11.98 8.32 15.82 5.85 16.42
0.6 0.0 50.00 50.00 50.00 9.28 15.45 6.24 11.49 9.30 16.22 6.26 15.48
0.6 0.6 50.00 50.00 50.00 9.20 15.63 6.16 11.55 9.20 16.40 6.17 16.15

Notes: see notes in 2.1. The metrics considered are: (A) the RMSFE , (B) Consistent, and
(C) the number of variables. Within each panel the different rows correspond to different
settings of the degree of cross-sectional correlation (ρ) and serial correlation (α).

N = 50 and N = 100. The relative forecasting performance of OLS and ridge regres-

sion deteriorates and the difference in RMSFE with the sparsity inducing methods

becomes more pronounced, despite the unreported MSFEs of the latter methods in-

creasing along with the dimensionality as well. The detrimental effects of an increase

in dimensionality are perhaps most apparent in the selection performance, with ex-

act identification of the sparsity pattern occurring at substantially lower frequencies.

Given that the conservative selection remains 100%, the drop in consistent selection

necessarily stems from the inclusion of additional irrelevant variables, most likely due

to randomly induced collinearity. Indeed, the increase in the number of variables

selected in the higher dimensional settings supports this conjecture.

A well-known problem for the lasso is the presence of multi-collinearity in the data,

especially between relevant and irrelevant variables, which can lead to inconsistencies

in the selection of the correct variables (e.g. Zhao and Yu, 2006; Zou, 2006). As

such, we examine the forecasting and selection performance under varying degrees of

cross-sectional and serial correlation in Table 2.2, whilst keeping the dimension fixed

at N = 50. Noteworthy is that while the MSFE increases for all methods when intro-

ducing a higher degree of cross-sectional correlation (unreported), the relative MSFE

decreases for ridge regression and varies only marginally for the lasso-based regres-

sions. The former finding is in line with the proclaimed benefits of L2-penalization

under multi-collinearity, whereas the latter finding hints that the presence of cross-

sectional correlation does not seem to affect the forecasting performance of lasso-type

estimators more than OLS. Panel B clearly depicts the deterioration in selection per-
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2.3 Simulation study

Table 2.3 Stationary observed variables: factor models

PC WPC SPC PC(LA)FHLR FHLZ DGR
SWa SWb Rule1 Rule2

Panel A: N = 50, ρ = 0

RMSFE 9.06 9.44 9.17 9.85 9.85 9.10 9.16 9.82 9.75 9.68
nvar 3.40 1.92 2.48 1.00 1.01 3.40 3.30 1.00 1.00 1.00

Panel B: N = 50, ρ = 0.6

RMSFE 2.57 2.69 2.67 3.24 4.17 2.59 3.39 4.66 4.79 4.68
nvar 10.00 9.79 9.96 7.17 4.89 9.98 5.16 1.00 1.00 1.00

Notes: see notes in 2.1. Panel A lists results for a DGP with uncorrelated variables,
whereas panel B lists results for a DGP allowing for a maximum population correlation of
0.6 between variables.

formance after the introduction of cross-sectional correlation. While the unreported

metric for conservative selection remains 100% for all methods, the consistent selec-

tion is strongly affected by the presence of cross-sectional correlation. In line with the

aforementioned reasoning on the selection performance in high-dimensional settings,

this implies that high levels of collinearity lead to larger models with irrelevant vari-

ables being erroneously included at higher frequencies. Finally, the method by which

we scale the idiosyncratic noise term controls for the increased variance induced by

serial correlation and, consequently, the introduction of serial correlation has little

effect on the relative forecasting or selection performance.

Finally, in Table 3 we examine the predictive capabilities of factor models in the

current framework. For each factor model, the results are reported for the factor se-

lection method that delivers the best performance. Unsurprisingly, on a DGP absent

of common components the factor models display inferior performance compared to

the shrinkage estimators in Table 2.2. While the forecast accuracy worsens less when

the variables in the dataset are correlated (Panel B) and when the information crite-

rion selects a higher number of components, failure to include as many components

as there are variables in the original dataset inevitably leads to a loss of information

that negatively affects the forecasting performance. As a result, the PC-type criteria

of Bai and Ng (2002) tend to deliver the best forecast accuracy here as they select

more components on average. On the contrary, the dynamic factor models demon-

strate relatively poor performance mainly as a result of the Hallin and Lǐska criterion

selecting only a single dynamic factor in all simulation trials.

Stationary common factors

We next turn to the case where a small number of common factors drive a larger set

of time series. The data-generating process contains an approximate factor structure
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2 Macroeconomic Forecasting Using Penalized Regression Methods

and is a simplified version of the Stock and Watson (2002a) set-up recently employed

by Kristensen (2017):

xit = λ′ift + eit

(1− αL)eit = (1 + θ2)vit + θvi+1,t + θvi−1,t

(2.11)

with λi, ft
iid∼ N (0, Ir). The random variable vi,t drives the idiosyncratic component

and is generated from a standard normal distribution. We impose sparsity in the

loadings by setting a fraction τ of them equal to zero. While sparsity here simply

refers to the presence of exact zero elements in the loadings, our approach of setting

a fraction of all loadings equal to zero does not contradict the classic assumption of

dense factor loadings, i.e. Λ′Λ/N → Ir. As a result, even though the method of

sparse principal components is expected to be more efficient here, the use of ‘non-

sparse’ factor models remains theoretically justifiable. The variable to forecast is

generated as

yt = f ′tβf + εt (2.12)

where βf is an (r × 1) vector of ones and εt is a standard normal error term. Recall

that the shrinkage estimators attempt to forecast yT+1 as ŷT+1|T = x′tβ̂x, whereas

the factor models use the extracted factors to construct the forecast ŷT+1|T = f̂ ′tβ̂f̂ .

Forecasting performance is measured on the basis of the MSFE relative to the factor-

augmented regressions with the true number of factors, calculated by standard PC.

The two-step procedure calls for an additional metric measuring the estimation preci-

sion of the factor estimates in the first step. Following Doz et al. (2012) and Kristensen

(2017), we report the trace R2 as a measure to determine how well the estimated fac-

tors span the space of the true factors, calculated as

R2
F =

Tr
(
F ′F̂ (F̂ ′F̂ )−1F̂ ′F

)
Tr (F ′F )

, (2.13)

where F̂ = (f̂1, . . . , f̂T )′ and Tr(·) represents the trace function. While the shrinkage

estimators obviously do not extract factors on the observed variables, the trace R2

remains informative when interpreted as a measure of the accuracy with which the

factor space is approximated by the subset of variables chosen by a given shrinkage

estimator. Hence, for the shrinkage estimators we estimate

R2
X =

Tr
(
F ′XS(X ′SXS)−1X ′SF

)
Tr (F ′F )

, (2.14)
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whereXS denotes the subset of variables included by the method under consideration.

The results for the set of DGPs with a single factor driving the time series are reported

in Table 2.4 and for the case of four common factors in Table 2.5. To focus the

comparison on differences between the factor extraction methods, rather than the

factor selection methods, we report the results using the true number of factors only.5

Table 2.4 - panel A reveals that the the factor models manage to slightly outper-

form the shrinkage estimators on a DGP where the population covariance matrix of

the idiosyncratic component is diagonal, i.e. α = 0 and θ = 0. The trace R2s are

close to unity, which for the factor models implies accurate recovery of a rotation of

the unobserved factor. For the shrinkage estimators, the high R2s indicate that the

limited number of variables chosen seems to be sufficient for a reasonable approx-

imation of the factor space. This finding is in accordance with the proposition of

De Mol et al. (2008) who reason that the factor-induced collinearity in the candidate

set allows for a few appropriately selected variables to capture the majority of the

covariance in the data and to span approximately the same space as the common fac-

tors. Finally, ridge regression performs slightly worse than the lasso-type estimators

and the OLS estimator displays the lowest forecast accuracy of all methods, despite

obtaining the highest R2. This illustrates that on the kind of non-sparse DGPs here

considered, in which each individual variable possesses only little explanatory power

over the dependent variable of interest, the application of shrinkage reduces model

complexity by favouring the effect of those variables with high predictive power. Our

results demonstrate that in such cases, the forecasting performance can benefit from

a favourable bias-variance trade-off.

According to De Mol et al. (2008), forecasts from lasso-type estimators should not

be expected to outperform correctly specified factor-augmented regressions, since the

subset of the data proposed by methods employing an L1-penalty offers merely an ap-

proximation to the factor space and variable selection under high degrees of collinear-

ity is known to be unstable. Indeed, panel B of Table 2.4 shows that the shrinkage

estimators still underperform the factor models even when the component loadings

are sparse. However, in panel C we observe that, after the introduction of substantial

non-sphericity in the idiosyncratic component, the forecasting performance is tilted

in favour of the shrinkage estimators. Under high levels of non-sphericity the factor

models have difficulty in accurately estimating the unobserved factors, as indicated

5While the performance differentials between factor extraction methods remain qualitatively simi-
lar under the use of factor selection criteria, we do note the general finding that under strong forms of
non-sphericity and a DGP with four latent factors all criteria tend to understimate the true number
of factors, with the exception of the PC-type criteria which heavily overestimate the true number of
factors. All factor selection methods are more accurate under spherical idiosyncratic disturbances.

33



2 Macroeconomic Forecasting Using Penalized Regression Methods

T
a
b

le
2
.4

D
G

P
w

ith
on

e
com

m
on

factor

P
C

W
P

C
S

P
C

P
C

(L
A

)F
H

L
R

F
H

L
Z

D
G

R
la

s
a
d

a
la

s
en

ad
aen

rid
ge

ols
S

W
a

S
W

b
R

u
le1

R
u

le2
P

a
n

el
A

:
α
/
θ/τ

=
0/

0/0
R

M
S

F
E

1
.0

0
0
.9

8
0.96

1.12
1.36

1.00
1.09

0
.9

6
1
.0

3
0
.9

6
1
.1

5
1
.1

7
1
.0

9
1.07

1.35
1.87

n
var

1
.0

0
1
.0

0
1.00

1.00
1.00

1.00
1.00

1
.0

0
1
.0

0
1
.0

0
2
0
.1

4
1
5
.8

1
3
7
.55

37.92
50.00

50.00
R

2
0
.9

6
0
.9

7
0.97

0.95
0.92

0.96
0.96

0
.9

7
0
.9

6
0
.9

7
0
.9

8
0
.9

8
0
.9

9
0.99

0.99
0.99

P
a
n

el
B

:
α
/θ/

τ
=

0/
0/0

.4
R

M
S

F
E

1
.0

0
0
.9

5
0.93

1.18
1.54

0.98
1.03

0
.9

2
1
.0

3
0
.9

2
1
.1

1
1
.0

7
1
.1

1
1.06

1.38
1.80

n
var

1
.0

0
1
.0

0
1.00

1.00
1.00

1.00
1.00

1
.0

0
1
.0

0
1
.0

0
1
6
.9

6
1
4
.4

5
2
7
.08

36.29
50.00

50.00
R

2
0
.9

4
0
.9

5
0.95

0.92
0.87

0.94
0.94

0
.9

5
0
.9

3
0
.9

5
0
.9

7
0
.9

6
0
.9

7
0.98

0.98
0.98

P
a
n

el
B

:
α
/θ/

τ
=

0.5/1
/0.4

R
M

S
F

E
1
.0

0
0
.9

7
0.98

1.00
1.06

0.98
1.04

0
.9

5
0
.8

0
0
.9

6
0
.2

6
0
.2

6
0
.2

6
0.26

0.27
0.30

n
va

r
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1
.0

0
1
.0

0
1
.0

0
3
9
.3

5
3
3
.2

3
3
9
.42

33.19
50.00

50.00
R

2
0.41

0.41
0.42

0.42
0.39

0.42
0.40

0
.4

3
0
.5

5
0
.4

4
1
.0

0
0
.9

9
1
.0

0
0.99

1.00
1.00

N
otes:

T
h
e

rep
orted

R
M

S
F

E
s

are
relative

to
th

e
P

C
estim

ator
th

a
t

u
ses

a
sin

g
le

co
m

p
o
n

en
ts

in
th

e
fo

recastin
g

eq
u

ation
.

E
a
ch

p
a
n

el
corresp

on
d

s
to

a
d

iff
eren

t
settin

g
of

th
e

d
egree

of
serial

co
rrela

tio
n

(α
),

cro
ss-sectio

n
a
l

co
rrela

tio
n

(θ)
an

d
sp

arsity
in

th
e

lo
a
d

in
g
s

(τ
).

34



2.3 Simulation study

T
a
b

le
2
.5

D
G

P
w

it
h

fo
u
r

co
m

m
on

fa
ct

or
s

P
C

W
P

C
S

P
C

P
C

(L
A

)F
H

L
R

F
H

L
Z

D
G

R
la

s
a
d

a
la

s
en

a
d

a
en

ri
d

g
e

o
ls

S
W

a
S

W
b

R
u
le

1
R

u
le

2
P

an
el

A
:
α
/θ
/τ

=
0/

0/
0

R
M

S
F

E
1.

00
1.

04
0.

96
1.

23
1.

63
1.

00
1.

11
0
.9

6
1
.2

2
0
.9

6
1
.2

2
1
.2

0
1
.1

6
1
.1

3
1
.2

4
1
.8

8
n
va

r
4.

00
4.

00
4.

00
4.

00
4.

00
4.

00
4.

00
4
.0

0
4
.0

0
4
.0

0
1
9
.8

9
1
6
.1

7
3
8
.4

4
3
9
.8

3
5
0
.0

0
5
0
.0

0
R

2
0.

96
0.

96
0.

97
0.

95
0.

90
0.

96
0.

93
0
.9

7
0
.9

3
0
.9

7
0
.9

3
0
.9

1
0
.9

7
0
.9

7
0
.9

9
0
.9

9
P

an
el

B
:
α
/θ
/τ

=
0/

0/
0
.4

R
M

S
F

E
1.

00
0.

94
0.

92
1.

23
1.

90
1.

00
1.

07
0
.9

3
1
.1

3
0
.9

2
1
.1

7
1
.1

5
1
.1

5
1
.1

1
1
.2

4
1
.6

9
n
va

r
4.

00
4.

00
4.

00
4.

00
4.

00
4.

00
4.

00
4
.0

0
4
.0

0
4
.0

0
2
2
.2

6
1
8
.1

5
3
6
.5

6
3
9
.9

6
5
0
.0

0
5
0
.0

0
R

2
0.

94
0.

95
0.

95
0.

91
0.

81
0.

94
0.

90
0
.9

5
0
.9

1
0
.9

5
0
.9

3
0
.9

2
0
.9

6
0
.9

6
0
.9

8
0
.9

8
P

an
el

B
:
α
/θ
/τ

=
0.

5/
1
/0
.4

R
M

S
F

E
1.

00
0.

98
1.

00
1.

01
1.

16
1.

00
0.

98
0
.9

7
0
.8

4
0
.9

7
0
.3

3
0
.3

3
0
.3

3
0
.3

3
0
.3

3
0
.3

6
n
va

r
4.

00
4.

00
4.

00
4.

00
4.

00
4.

00
4.

00
4
.0

0
4
.0

0
4
.0

0
4
3
.3

0
3
7
.9

2
4
3
.2

6
3
7
.9

0
5
0
.0

0
5
0
.0

0
R

2
0.

51
0.

51
0.

51
0.

47
0.

41
0.

50
0.

48
0
.5

2
0
.5

5
0
.5

2
0
.9

9
0
.9

7
0
.9

9
0
.9

7
1
.0

0
1
.0

0
N

ot
es

:
S
ee

n
ot

es
in

T
ab

le
4.

T
h

e
R

M
S

F
E

is
re

la
ti

ve
to

th
e

st
a
n

d
a
rd

P
C

es
ti

m
a
to

r
th

a
t

ex
tr

a
ct

s
fo

u
r

co
m

p
o
n

en
ts

.

35



2 Macroeconomic Forecasting Using Penalized Regression Methods

●

●

●

●

● ● ● ● ● ●

2 4 6 8 10

2
4

6
8

10
First ten eigenvalues of the sample correlation matrix

Averaged over 1,000 iterations

ei
ge

nv
al

ue
s

●

●

●

●

● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ●

●

●

●

α = 0.0, θ = 0.0
α = 0.5, θ = 0.0
α = 0.5, θ = 1.0

Figure 2.1: Visualization of the explanatory power of the first ten common compo-
nents.

by the decrease in trace R2s, whereas the shrinkage estimators tend to select a higher

number of variables on average and, as a result, are able to maintain accurate ap-

proximation of the factor space. These patterns are similarly observed in the DGP

with four factors, the results of which are displayed in Table 2.5, and provide a clear

argument in favour of lasso-type estimation on data possessing factor structures with

potentially non-spherical idiosyncratic components.

Upon further analysis, the introduction of cross-sectional correlation in the error

term in (2.11) appears to be the main culprit for the deterioration in factor qual-

ity estimates. In the DGP with four factors, the percentage of the variance in the

candidate set X explained by the first four standard estimated principal components

is 72.3% before the introduction of cross-sectional correlation (α = 0.5, θ = 0) and

41.1% afterwards (α = 0.5, θ = 1). This is visualized in Figure 2.1, where we display

the ten largest eigenvalues of the sample correlation matrix corresponding to the first

ten principal components. We conjecture that the correlation between the series in

the candidate set that is induced by the idiosyncratic component obscures the factor-

induced variation, thereby reducing the precision by which the factors are estimated.

Apparently, the large number of non-zero off-diagonal parameters in the covariance

matrix of the errors cannot simply be ignored, or estimated accurately enough by the

weighted principal component estimators, while maintaining precise estimates of the

underlying factors.

36



2.3 Simulation study

Non-stationary and cointegrated variables

The presence and consequences of non-stationary predictors in regression frameworks

are well-understood and numerous tests and solutions have been proposed to correct

for non-stationarity. Accordingly, in the majority of simulations and empirical work

the implicit assumption is maintained that the researcher is able to successfully iden-

tify non-stationarity and all variables found to be integrated of order one or higher

are transformed to stationarity by taking appropriate differences. However, situa-

tions are frequently encountered where the order of integration remains ambiguous

(e.g. fractionally integrated variables or weakly cointegrated variables). In addition,

the act of ”correcting” for non-stationarity by differencing the variables comes at the

cost of losing information captured in the levels of the variables. The literature on

cointegration shows that long-run relationship between non-stationary variables can

exist, relationships that are impossible to recover when using differenced variables.

Here we examine the potential of lasso-type estimators in identifying and utilizing

cointegrating relationships for forecasting in high-dimensional systems.

The potential for penalized regression in recognizing cointegrating relationships

has recently been explored by Wilms and Croux (2016), Liao and Phillips (2015)

and Liang and Schienle (2019) who all consider the use of penalized regression in

automated vector error correction model estimation. These novel and insightful con-

tributions, however, require a non-standard and fairly technical implementation. In

an attempt to avoid placing this burden on the researcher, we focus on the use of an

intuitive single equation model rather than a multivariate model. An investigation of

regularized VECM estimation is postponed to Chapter 5.

We generate the data as an error correction model:

∆yt = α

(
yt−1 −

3∑
i=1

βixi,t−1

)
+ εj,t

xi,t = xi,t−1 + εj+1,t i = 1, 2, 3, j = 1, 2, 3

(2.15)

where the stationarity condition is given by −2 < α < 0 and εt ∼ N(0, I4). In

addition to the three variables xi,t for i = 1, . . . , 3 that cointegrate with yt we add a

number of irrelevant variables to the candidate set X. The high sample correlations

induced by variables that are integrated of order one, i.e. I(1), may have adverse

consequences on the prediction and selection performance of the shrinkage estimators.

Accordingly, we perform two sets of simulations; one in which the irrelevant variables

are generated according to (2.8) with ρ = 0.5, α = 0, and one in which half of
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2 Macroeconomic Forecasting Using Penalized Regression Methods

the irrelevant variables are generated similarly, but the other half are generated as

random walks, i.e. ∆xk,t = εk,t with εk,t ∼ N(0, 1). The two sets of simulations

are simply referred to as ”Stationary” and ”Non-Stationary”. As an example, for a

candidate set X of size N = 50 that is generated in the Non-stationary set, the first

three variables will be I(1) but cointegrated with the dependent variable. In the set

of irrelevant variables, dN−3
2 e = 24 are I(0) and bN−3

2 c = 23 are I(1). In congruence

with the preceding simulations, we generate 1,000 one-step ahead forecasts and report

the metrics RMSFE and RMSE relative to the oracle OLS procedure as measures

of prediction and selection performance respectively. The selection performance is,

again, measured with the metrics consistent, conservative and #variables. The use

of factor models is excluded from this section on the grounds that extracted factors can

contain linear combinations of non-stationary variables and, hence, will be integrated

of order one. Indeed, the presence of stochastic trends in the factors necessitates the

use of alternative methods, such as the factor-augmented error correction model by

Banerjee and Marcellino (2009), the forecasting performance of which is considered

in Banerjee et al. (2014a), or estimation of the factors in a VECM framework in

the spirit of Barigozzi et al. (2016a,b). While these methods are excluded from the

analysis here, they are considered in detail in Chapter 5.

We present the main results for the remaining estimators in Table 2.6, where the

adjustment rate is fixed at α = −1 and all tuning parameters are optimized based on

the BIC. The effect of changes in the adjustment rate are further explored in Table

2.7.

Focussing on the predictive capabilities first, the RMSFEs in panel A of Table

2.6 demonstrate a superior performance of the L1 methods. The minimum RMSFE,

denoted in bold, is always obtained by an adaptively weighted lasso-type estimator.

Notwithstanding an overall decrease in forecasting performance relative to the OLS

oracle procedure, the comparative advantage of lasso-type methods relative to OLS

or ridge becomes more pronounced for higher dimensions. The advantage of adaptive

weighting over non-weighted estimation is substantial for the dimensions N = 10

and N = 50, but seems to diminish at N = 100. This most likely results from a

deterioration in quality of the initial estimator, thereby highlighting the importance

of finding good initial estimators in the high-dimensional setting.6 The estimation

accuracy of the cointegrating vector, as measured by the RMSE, follows the same

pattern as the prediction performance, with adaptively weighted estimation providing

the highest accuracy and outperforming OLS even in the low-dimensional setting.

6This issue is particularly prominent in the theoretical analysis presented in Chapter 4.
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2.3 Simulation study

Table 2.6 Cointegrated variables

Stationary Non-Stationary
N=10 N=50 N=100 N=10 N=50 N=100

Panel A: RMSFE

OLS 1.10 1.83 - 1.11 2.20 -
ridge 1.37 2.10 18.84 1.40 1.74 6.88
las 1.17 1.51 1.74 1.17 1.58 1.82
adalas 1.03 1.09 1.45 1.05 1.34 1.60
en 1.17 1.51 1.74 1.18 1.58 1.81
adaen 1.03 1.09 1.43 1.05 1.34 1.63

Panel B: RMSE

OLS 9.38 106.70 - 7.48 89.98 -
ridge 9.89 64.72 46.26 11.61 51.82 46.61
las 4.22 8.21 10.64 5.31 18.88 26.90
adalas 2.16 3.25 8.37 2.51 16.39 24.86
en 4.22 8.20 10.78 5.33 18.98 27.10
adaen 2.16 3.24 8.08 2.52 16.46 25.14

Panel C: Consistent

las 29.9% 20.1% 18.2% 9.8% 0.2% 0.0%
adalas 81.6% 62.4% 33.8% 63.8% 4.4% 0.2%
en 29.9% 20.0% 18.1% 9.9% 0.2% 0.0%
adaen 81.2% 62.2% 33.5% 63.6% 4.1% 0.2%

Panel D: Conservative

las 99.5% 93.1% 88.5% 99.6% 82.5% 64.1%
adalas 99.8% 99.6% 91.2% 99.9% 79.3% 58.8%
en 99.5% 93.2% 88.5% 99.6% 82.3% 63.8%
adaen 99.8% 99.6% 91.6% 99.9% 79.3% 58.2%

Panel E: #Variables

las 4.53 6.29 6.65 5.35 9.97 12.17
adalas 3.24 3.75 5.71 3.49 7.59 10.17
en 4.53 6.30 6.72 5.35 9.97 12.23
adaen 3.24 3.75 5.66 3.49 7.61 10.13

Notes: Numerical entries in this table are averages obtained over 1,000 simulations relative
to the OLS oracle estimator that estimates the cointegrating vector with the cointegrated
variables only. The methods considered are listed in the first column, whereas the
evaluation metrics are divided across panels A-E. The results under ‘Stationary’ are
derived on a DGP absent of irrelevant I(1) variables, whereas those listed under
‘Non-Stationary’ are derived on DGPs that do contain irrelevant I(1) variables.
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2 Macroeconomic Forecasting Using Penalized Regression Methods

The selection performance is depicted in the remaining three panels of Table 2.6.

Panel C depicts the fraction of trials in which the lasso-type methods identify the

sparse cointegrating relationship exactly. Again, the adaptively weighted variants

show superior performance. Exact identification, however, occurs at considerably

lower rates in higher dimensional settings, with the decline in selection performance

being most notable for the adaptively weighted estimators. A direct comparison

between the scores for the consistent metric obtained on the stationary and non-

stationary sets reveals that the presence of irrelevant I(1) variables negatively affects

the selection performance. We conjecture that the inevitable high correlation between

the non-stationary variables in levels, regardless of their relevance to the dependent

variable, increases the difficulty in identifying the correct subset. Given that exact

identification seems to be overly ambitious in this framework, we turn our attention

to conservative selection. Absent of irrelevant non-stationary variables in the candi-

date set, the lasso-type methods almost always include at least all relevant variables.

With the inclusion of additional I(1) variables, we observe a worsening of the con-

servative selection, especially at higher dimensions, albeit not to levels as inadequate

as observed for the consistent selection. Finally, the reason for conservative selection

staying at reasonable levels can at least partly be attributed to the growing model size

along increases in dimensionality. More irrelevant variables tend to be included when

estimating on a larger candidate set and this effect is particularly apparent when non-

stationary variables are present. Despite the faulty model selection characteristics in

this non-stationary framework, the reduction in variance by excluding at least part

of the irrelevant variables contributes enough to obtain a superior forecasting perfor-

mance. Hence, for the applied researcher whose main interest lies in forecasting rather

than model interpretation this somewhat naive application of lasso-type methods to

cointegrated data in levels delivers substantial benefit.

The results so far are based on the somewhat idealized adjustment rate of α = −1.

If the adjustment rate would be closer to the lower boundary of the stationarity con-

dition, the dependent variable would show signs of negative autocorrelation that often

characterizes an over-differenced time series, whereas a value close to the upper bound-

ary would induce stronger dependence due to a slower adjustment rate. In both cases,

the strength of the cointegrating relationship diminishes and a natural question that

arises is how the lasso-type methods handle such situations. Furthermore, when the

adjustment rate is small in magnitude, e.g. α = −0.1, the equilibrium correction may

be so slow that for the purpose of forecasting it is best to model the data in differ-

ences regardless. In the following analysis we focus on the use of the adaptive lasso

on a candidate set consisting of 50 variables and examine the effect of changes in the
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2.3 Simulation study

Table 2.7 Cointegrated variables: the effect of α.

Stationary Non-stationary
α =
−1.9

α =
−1.0

α =
−0.1

α =
−1.9

α =
−1.0

α =
−0.1

Panel A: Levels

RMSFE 1.21 1.13 1.09 1.34 1.25 0.38
MSFE 25.77 4.68 16.33 30.15 5.53 5.58
Consistent 31.7% 57.3% 14.5% 16.8% 7.9% 0.0%
Conservative 79.1% 97.0% 32.3% 59.8% 89.0% 12.8%
Variables 4.00 3.95 3.00 4.42 6.86 12.66

Panel B: ADF Differences

RMSFE 3.54 2.14 0.14 3.48 1.73 0.14
MSFE 75.34 8.85 2.06 78.52 7.67 2.08
Consistent 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conservative 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%
Variables 0.43 0.42 0.36 0.46 0.50 0.48

Panel C: Oracle Differences

RMSFE 3.64 1.21 0.08 3.58 1.17 0.08
MSFE 77.48 5.03 1.16 80.74 5.18 1.23
Consistent 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Conservative 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Variables 1.95 0.57 0.38 0.41 0.38 0.43

Notes: see notes in Table 2.6. The evaluation metrics considered are listed in the first
column. The models are estimated by the adaptive lasso with either (A) all variables in
levels, (B) transformed variables based on the results of an ADF-test for stationarity or (C)
infeasibly transformed variables based on knowledge of the true DGP.

adjustment rate on both the prediction and selection performance. For every adjust-

ment rate, we examine the performance of the model estimated in three specifications;

(1) all variables in the candidate set enter in levels, (2) some of the variables enter

in differenced form based on the outcome of an Augmented Dickey-Fuller (ADF) test

for stationarity of size 0.05, and (3) all variables that are simulated as I(1) variables

enter the model in differenced form.7 These models are listed in panel A, B and C

of Table 2.7, respectively. The lowest RMSFE for a given adjustment rate across the

three specification is denoted with bold font.

Models estimated in levels (panel A) only attain reasonable selection for an ad-

justment rate of α = −1. Moving the adjustment rate towards the boundaries of

the stationarity condition generally results in an increase in MSFE. However, differ-

ent from the previous experiments, the strength of the adjustment rate also affects

the OLS oracle estimator which serves as benchmark. A surprising finding is that

the adaptive lasso does substantially better than the OLS oracle estimator when the

adjustment rate is slow (α = −0.1) and the candidate set contains irrelevant I(1)

7The effect of different strategies to pre-test for unit roots is examined in Chapter 5.
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2 Macroeconomic Forecasting Using Penalized Regression Methods

variables. We expect that the inclusion of a large number of unrelated random walks

allows for a better in-sample fit resulting in a lower forecast error; since the reported

forecasts are single step forecast, the improved in-sample fit may favour the predic-

tive performance of the resulting spurious models, because the combined effect of

the corresponding random coefficients is unlikely to push the prediction of the de-

pendent variable far from its realized value. However, this statistical artefact cannot

be expected to carry through to forecasts over longer horizons as the the trending

behaviour of the I(1) variables will cause the predictions to drift away from the reali-

sations. Indeed, in unreported analyses we find that the predictive superiority of the

adaptive lasso on weakly cointegrated variables relative to the OLS oracle procedure

vanishes at a forecast horizon of 10 steps and keeps deteriorating for longer horizons,

as one would expect to be the case for forecasts with spurious regressions.

The models estimated on transformed data based on ADF-tests in panel B all

obtain substantially higher RMSFEs, unless the equilibrium correction is small (α =

−0.1). Upon closer inspection, however, it becomes apparent that for these cases the

adaptive lasso hardly incorporates any variables from the dataset, but rather forecasts

the dependent variable by its time series average. The low RMSFEs obtained by this

simple strategy imply that the use of cointegration with a slow adjustment rate has

limited relevance for short-term forecasting purposes. Furthermore, for all adjustment

rates the differenced models almost never contain all relevant variables. This provides

an argument in favour of the use of L1-penalized estimation in levels over the tradi-

tional approach of pre-processing the data, especially on datasets characterized by a

“strong” cointegrating relationship (α = 1). Finally, the infeasible models based on

an oracle differencing procedure in panel C perform similar to the ADF-differenced

data.

In conclusion, the use of lasso-type estimators on a high-dimensional non-stationary

dataset containing cointegrated variables provides forecast gains over the traditional

approach of using OLS on pre-processed data. A caveat to these results is that we

rely on the underlying assumption of cointegration being present in the data. In

practice, the uncertainty surrounding the validity of this assumption possibly affects

the relative performance of the lasso-type methods. Accordingly, in the next chapter

we propose a novel estimator that performs well regardless of whether cointegration

is present.
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2.4 Empirical Application

2.4 Empirical Application

Complementing the simulation results, we perform an empirical application on a pop-

ular U.S. macroeconomic dataset. The dataset consists of 133 time series observed at

a monthly frequency covering January 1959 to June 2015 and is obtained from the

Fred-MD website.8 In consideration of the potentially adverse consequences stem-

ming from uncertainty regarding the presence of cointegration in empirical datasets,

we postpone explicit modelling of cointegration to Chapter 5 and correct all series for

non-stationarity. For the majority of series, this entails taking either log differences

(e.g. real variables) or log second differences (e.g. price indices). Eight series are

forecast, four of which are measures of real economic activity: real production income

(RPI); total industrial production (IP); real manufacturing and trade sales (RMTS);

and number of employees on non-agricultural payrolls (EMP). The remaining four se-

ries are price indices: the producer index for finished goods (PPI); the consumer price

index (CPIA); the consumer price index less food (CPIUL); and the personal con-

sumption expenditure implicit price deflator (PCEPI). These series, including their

transformations, are similar to those frequently used in the seminal and contempora-

neous forecasting literature (e.g. Stock and Watson, 2002b; Ludvigson and Ng, 2009;

Kristensen, 2017).

The forecasts are generated as projections of an h-step-ahead variable yht+h onto

a set of variables observed up to time t that possibly includes lags of the dependent

variable. As a benchmark, we consider a simple univariate AR model that obtains its

forecasts by fitting the forecasting equation

yht+h = α+

p∑
i=1

βiyt−i+1 + εt+h, (2.16)

where yht+h is defined appropriately according to the order of integration, see Stock and

Watson (2002b) for details. The AR lag length p, for p ∈ {0, . . . , 6}, is determined by

the BIC criterion, as is the case for all following methods. The penalized regressions

obtain the forecasts by fitting

yht+h = α+ x′tβx +

p∑
i=1

βiyt−i+1 + εt+h, (2.17)

where the tuning parameters λ, α are selected using either the BIC, AIC or time series

cross-validation. The autoregressive lags enter the model unpenalized across all spec-

ifications, their selection thus being dependent on the use of the BIC criterion rather

8https://research.stlouisfed.org/econ/mccracken/sel/
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2 Macroeconomic Forecasting Using Penalized Regression Methods

than the penalty induced shrinkage. Finally, forecasts based on static representations

of factor models, i.e. all PC-type methods and the FHLR method, fit

yht+h = α+ f̂ ′tβf +

p∑
i=1

βiyt−i+1 + εt+h, (2.18)

where the number of factors r is either kept fixed at five or determined by one of the

information criteria of Bai and Ng (2002). Forecasts with the dynamic factor models

FHLZ and DGR are based on

yht+h = α+

q∑
k=1

f̂∗′t−k+1βf,k +

p∑
i=1

βiyt−i+1 + εt+h, (2.19)

where f̂∗t is a s-dimensional vector of estimated dynamic factors. The number of

lags of the factors that enter the forecast equation, q ∈ {0, . . . , 6}, as well as the

number of lags of the dependent variable are chosen by the BIC. We purposely do not

forecast the target variable by iterated one-step ahead forecasts of the common and

idiosyncratic components as is proposed in for example Forni et al. (2018), because the

empirical performance of the iterated approach towards multi-step forecasts turned

out to be highly inferior to the direct approach when forecasting the four price series.

A similar finding is mentioned in Marcellino et al. (2006a) who consider the same

series and compare direct and iterated forecasts with autoregressive models. While the

detrimental effects of using iterated forecasts are slightly mitigated when modelling

the price series as being I(1), the favourable performance for direct forecasts persists.

Accordingly, we opt to model the price series as I(2) and report the results for the

direct forecasts only.

We simulate real-time forecasting by calculating pseudo out-of-sample forecasts at

horizons h = 1 and h = 12. An initial in-sample period covering 10 years of monthly

observations is used to estimate the models by which to obtain the first out-of-sample

prediction. For each new prediction, we keep the length of the in-sample period fixed

and move the estimation sample forward by one period, i.e. we adopt a rolling win-

dow approach. The model is re-estimated prior to each prediction, including tuning

parameter optimization, lag length selection, shrinkage and factor estimation. The

forecasting performance is reported as the mean squared forecast error relative to

the benchmark AR model. The comparison of forecasts is established based on the

computation of Model Confidence Sets (MCS), as proposed by Hansen et al. (2011).

We largely follow their original implementation with the TR,M -statistic and α = 0.25.

However, we do not adopt the moving-block bootstrap (MBB) procedure, given that
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2.4 Empirical Application

the time series of forecast errors display clear signs of unconditional heteroskedasticity

over the full sample. Rather, we opt for the autoregressive wild bootstrap (AWB)

which maintains its validity under the presence of both serial dependence and het-

eroskedasticity (Smeekes and Urbain, 2014a). The autoregressive coefficient (γ) that

governs the amount of dependence captured in the AWB is determined by fitting in-

dividual MA models to the series of forecast errors with their individual order being

chosen by the AIC criterion. We use the median order of the MA models (q) as a

criterion for determining an appropriate block length, which we convert into the au-

toregressive coefficient with the conversion formula γ = 0.01
1
q as proposed in Smeekes

and Urbain (2014a, p.8). In a preliminary analyisis, however, we find that the use of

the MBB generally results in model confidence sets that contain the same models as

those generated with the AWB.

We visualize the Model Confidence Sets graphically for the 12-month ahead fore-

casts in Figure 2.2 while providing additional means of model comparisons with the

use of the Diebold-Mariano tests in Figure 2.3. Comparisons of the monthly fore-

casts and a summary of the best performers are listed in the Appendix 2.A. The blue

coloured bars in Figure 2.2 represent the models contained in the MCS, while the

red bars are removed and are thus considered to be models with statistically inferior

predictive capability for the respective series-horizon. In absolute terms, we observe

that for the real series (left column) the factor models seem to outperform the lasso-

type methods with PC, SPC, and FHLR showing strong performance in particular,

whereas the lasso-type methods are comparable to the factor models for the nominal

series (right column). The comparisons based on MCS almost always leaves all models

in the set, seemingly suggesting that the variability in the forecast errors is too large

to make any conclusive statements about the inferiority of certain models within the

adopted 95% confidence level. The only exceptions to this are the exclusion of the

lasso-type estimators for forecasts of Real Production Income (RPI) and occasionally

some of the dynamic factor models FHLZ or DGR. An apparently counter-intuitive

finding is that some of the methods removed from the MCS, e.g. the lasso in RPI,

can have lower forecast losses than some of the models included in the MCS, e.g.

”WPC-SWa” in RPI. The intuition behind this curiosity is that the series that, de-

spite their higher MSFEs, are included in the MCS display higher variability in their

forecast errors which prevents one from concluding that the method performs worse

than other methods with certainty, although one may rightfully wonder whether it is

desirable to consider models with higher average loss superior simply because they

display larger variation in their loss. Additionally, by controlling the familywise error

rate (FWE), that is, the probability of making a single false rejection, the power of the
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Figure 2.2: Blue coloured bars represent members of the Model Confidence Sets.
Results are for 12-month ahead forecasts.
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Diebold-Mariano tests
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Figure 2.3: Blue coloured bars represent models with RMSFEs significantly less
than 1. Results are for 12-month ahead forecasts.
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2 Macroeconomic Forecasting Using Penalized Regression Methods

MCS is highly dependent on the number of models considered. Our relatively large

set of models is therefore detrimental in that respect. For this reason we also consider

pairwise Diebold-Mariano tests which, by not controlling FWE, are not sensitive to

this issue.

The Diebold-Mariano tests show frequent rejections of the null hypothesis of equal

predictive capabilities in reference to the AR benchmark. The dominance of factor

models on the real series and of the lasso-type estimators on the (consumer) price

indices is immediately notable; on the real series most of the factor models are con-

sidered to obtain MSFEs significantly lower than the AR benchmark, whereas for the

consumer price indices rejection only occurs for the methods involving L1-shrinkage

which is partially attributable to the lower variability in forecast errors of these meth-

ods. Finally, the dynamic factor methods FHLZ and DGR tend to perform slightly

worse than the static variants, although we cautiously note that this may be a some-

what unfair comparison given the availability of a larger range of factor selection

approaches for the static models. Indeed, during simulations we observed the Hallin

and Lǐska criterion to occasionally deliver sub par performance. Given that the main

comparison of interest, however, is the difference in predictive capability between

shrinkage and factor methods we do not consider this caveat to impede our conclu-

sions.

Hyperparameters and factor selection

We briefly comment on the performance of individual tuning methods for each model.

The best performance by the shrinkage estimators is most frequently attained by

tuning with the BIC criterion and CV coming in second place. For the static factor

methods, the criteria most frequently leading to the best forecasting performance

tend to be one of the Alessi et al. (2010) criteria, their IC3 criteria showing strong

performance in particular. For the dynamic factor methods the use of a single dynamic

factor performs best, followed by the use of four dynamic factors and the Hallin and

Lǐska (2007) performs worst, possibly explaining the suboptimal predictive capability

of the dynamic factor methods.9 Lastly, the PC(LA) approach based on a preliminary

lasso estimation performs similar when the lasso is tuned with either the BIC-criterion

or the AIC-criterion.
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Variables selected by the lasso tuned by BIC
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Figure 2.4: The percentage of times a variable is included in the forecast equation,
separated by economic category.
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Variables selected by the lasso tuned by BIC
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Figure 2.5: An overview of the temporal selection properties per variable.
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2.4 Empirical Application

Variable selection and sparsity patterns

The documented performance of the lasso-type methods may leave one wondering

whether the assumption of latent factors driving the variation in observable economic

time series is justified. We explore the proposition of De Mol et al. (2008) where the

collinearity induced by latent factors allows for approximation of the factor space with

relatively few observable variable, while simultaneously resulting in highly unstable

variable selection. In figure 2.4 we display the fraction of 12-month ahead forecast

equations in which each variable in the data is selected by the lasso tuned with the

BIC criterion. Strikingly, the pattern of frequently chosen variables is fairly consis-

tent across the different forecast series, in particular when considering the group of

nominal and real target variables separately. For example, in the Prices category,

the ”ISM Manufacturing: Price Index” (NAPMPRI) seems to capture the majority

of the variation, whereas for the housing category the variables seem to substitute

each other based on the low frequencies with which they are selected.10 Not a single

variable, however, is chosen consistently over all forecast periods. In line with the

proposition of De Mol et al. (2008), this could be due to temporal instability result-

ing from collinearity induced by latent factors. Alternatively, structural changes may

occur over the complete sample causing the relevance across variables to shift over

time. To distinguish between these contrasting explanations we plot an overview of

the variable selection over time in Figure 2.5, where a green bar indicates that the

variable was included in the forecast while a red bar indicates exclusion. The verti-

cal axis contains the 515 12-month ahead forecasts performed. Directly observable

is the persistence in the selection of the most frequently included variables in the

consumption, employment and prices categories, for which the structural change ex-

planation seems most applicable. For other categories, such as housing or interest,

factor-induced collinearity may offer an appropriate description, however.

The housing category provides a particularly suitable subset to examine whether

the overlap in informational content of individual time series allows for approximation

of the factor space with only a few cleverly selected variables. We focus on the 12-

month ahead forecasts of Total Industrial Production (INDPRO) and consider the

five most frequently chosen housing variables. We construct five new binary time

series that indicate whether a variable for a given forecast at time t+ h was included

and we refer to these as the selection series. Under the conjecture that the selection

is unstable because the individual variables approximate the same space, one would

9We evaluate the Hallin and Lǐska criterion at three different sample points, i.e. (Nc, Tc) with
c ∈ {1, 2, 3}, which is not necessarily optimal for the current empirical application.

10An overview of the most frequently chosen variable per economic category is provided in Table
2.8 in the Appendix.
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Figure 2.6: Plots of correlations in the selection series (left) and absolute correlations
in the realizations (right) of the housing series most frequently selected in ”INDPRO”
forecasts.

expect to observe negative correlation between the selection series due to substitution

effects and this negative correlation between the selection series should be stronger

for time series that exhibit strong correlation in their realizations. Accordingly, we

list two correlation plots in Figure 2.6. Evidence in favour of this conjecture would

match up large negative correlation in the selection series, i.e. dark red boxes in

the left plot, with large absolute correlations in the realizations of the respective

series, i.e. dark blue boxes in the right plot. However, we observe that the selection

series exhibit only mild negative correlation and the strongest correlated variables,

i.e. ”HOUSTNE” and ”PERMITNE”, actually tend to be selected together rather

than substitute each other. We interpret these findings as anecdotal evidence that the

variables selected by the lasso each contribute unique information and that structural

change in the underlying DGP offers a feasible explanation of the temporal instability

in the selection properties alongside the proposition of factor-induced collinearity in

the observed time series.

2.5 Conclusion

In this chapter we examine the forecasting performance of (i) static, weighted and

dynamic factor models, (ii) shrinkage estimators including ridge regression, the (adap-

tive) lasso and (adaptive) elastic-net and (iii) hybrid models in the form of a sparse

principal components estimator and post-selection static factor models. Compre-

hensive simulations based on a wide variety of data generating processes indicate

that lasso-type estimators are relatively robust against alternative DGP specifica-

tions; they naturally perform well on sparse and stationary models driven by ob-
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2.A One-Month Ahead Forecasts

served variables, but they also show strong forecasting performance on data driven

by approximate factor structures, even when the latter models contain a high degree

of non-sphericity in the idiosyncratic component. An empirical application on eight

macroeconomic time series confirms the strong performance of factor-based models

that is frequently covered in the forecasting literature. However, for certain target

series such as the Consumer Price Index the lasso-type methods offer comparable if

not better forecasting performance, while simultaneously displaying fairly persistent

variable selection behaviour. We take this as further evidence that the assumption

of common factors being persistent in macroeconomic data may not always be valid

or, at a minimum, is not always relevant for forecasting purposes given the flexibility

with which lasso-type estimators can handle this type of data.

A direct application of lasso-type estimators to a high-dimensional non-stationary

dataset, in which the dependent variable is cointegrated with a small subset of the

data, is shown to provide forecast improvements over the OLS estimator. However,

we additionally find that a large number of irrelevant integrated variables are included

when the model is specified in levels. Alternatively, when the data is transformed to

stationarity by differencing, the estimators tend to exclude nearly all variable from

the model. Hence, it is likely that the correct model specification lies somewhere in

between these two extremes. This consists the topic of the next chapter.

Appendix 2.A One-Month Ahead Forecasts
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Figure 2.7: Blue coloured bars represent members of the Model Confidence Sets.
Results are for 1-month ahead forecasts.
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Figure 2.8: Blue coloured bars represent models with RMSFEs significantly less
than 1. Results are for 1-month ahead forecasts.
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Appendix 2.B Selected Variables

Table 2.8 Most Frequently Selected Variables

Forecast ConsOrdInv Emp Housing Interest

RPI NAPMSDI USWTRADE PERMITS BAAFFM
INDPRO BUSINVx USWTRADE HOUSTNE BAAFFM
CMRMTSPLx M2REAL USFIRE PERMITNE BAAFFM
PAYEMS M2REAL USGOVT PERMITS T10YFFM
PPIFGS M2REAL CES1021000001 PERMITS TB6SMFFM
CPIAUCSL M2REAL CES1021000001 PERMITMW TB3SMFFM
CPIULFSL NAPMSDI CES1021000001 PERMITMW TB3SMFFM
PCEPI NAPMSDI CES1021000001 PERMITMW TB3SMFFM
Forecast Money Output Prices Stock

RPI CONSPI IPBUSEQ NAPMPRI DTCOLNVHFNM
INDPRO S.P.PE.ratio W875RX1 NAPMPRI INVEST
CMRMTSPLx CONSPI W875RX1 NAPMPRI INVEST
PAYEMS S.P.div.yield IPBUSEQ NAPMPRI DTCOLNVHFNM
PPIFGS FEDFUNDS CMRMTSPLx NAPMPRI INVEST
CPIAUCSL S.P.PE.ratio DPCERA3M... NAPMPRI INVEST
CPIULFSL S.P.PE.ratio CMRMTSPLx NAPMPRI INVEST
PCEPI S.P.PE.ratio W875RX1 NAPMPRI INVEST

Notes: this table report the most frequently selected variables in 12-month ahead forecast by the
lasso tuned with the BIC criterion. For an overview of all the variables and their abbreviations, see
the appendix in McCracken and Ng (2016)
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Chapter 3

An Automated Approach

Towards Sparse

Single-Equation Cointegration

Modelling

“Goodness is often defined in terms of prediction accuracy, but parsimony is another

important criterion: simpler models are preferred for the sake of scientific insight into

the x-y relationship.”

- Efron, Hastie, Johnstone and Tibshirani (2004)
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3 An Automated Approach Towards Sparse Single-Equation
Cointegration Modelling

Abstract†

In this chapter we propose the Single-equation Penalized Error Correction Selec-

tor (SPECS) as an automated estimation procedure that directly incorporates the

(co)integrating properties of the data. In Chapter 2, we documented favourable per-

formance of penalized regression methods applied to stationary time series. However,

by transforming the data to stationarity, we may lose predictive power and model

interpretability by ignoring potential cointegration among the variables. Therefore,

by extending the classical single-equation error correction model, SPECS enables the

researcher to model large cointegrated datasets without necessitating any form of pre-

testing for the order of integration or cointegrating rank. We show that SPECS is

able to consistently estimate an appropriate linear combination of the cointegrating

vectors that may occur in the underlying DGP, while simultaneously enabling the cor-

rect recovery of sparsity patterns in the corresponding parameter space. A simulation

study shows strong selective capabilities, as well as superior predictive performance

in the context of nowcasting compared to high-dimensional models that ignore coin-

tegration. An empirical application to nowcasting Dutch unemployment rates using

Google Trends confirms the strong practical performance of our procedure.

†This chapter is based on Smeekes and Wijler (2018a).

58



3.1 Introduction

3.1 Introduction

In this chapter we propose the Single-equation Penalized Error Correction Selector

(SPECS) as a tool to perform automated modelling of a potentially large number of

time series of unknown order of integration. In many economic applications, datasets

will contain possibly (co)integrated time series, which has to be taken into account

in the statistical analysis. Traditional approaches include modelling the full system

of time series as a vector error correction model (VECM), estimated by methods

such as maximum likelihood estimation (Johansen, 1995a), or transforming all vari-

ables to stationarity before performing further analysis. However, both methods have

considerable drawback when the dimension of the dataset increases.

While the VECM approach allows for a general and flexible modelling of poten-

tially cointegrated series, and the optimality properties of a correctly specified full-

system estimator are theoretically attractive, these estimators suffer from the curse

of dimensionality due to the large number of parameters to estimate. In practice

they therefore quickly become difficult to interpret and computationally intractable

on even moderately sized datasets. As such, to reliably apply such full-system esti-

mators requires non-trivial a priori choices on the relevance of specific variables to

keep the dimension manageable. Moreover, in many cases of practical relevance, one

only has a single variable of interest, and estimating the parameter-heavy full system

is not necessary. On the other hand, the alternative strategy of prior transformations

to stationarity is more easily compatible with single variables of interest and larger

dimensions, but requires either a priori knowledge of the order of integration of indi-

vidual variables, or pre-testing for unit roots, which is prone to errors in particular

if the number of variables is large. Additionally, this approach ignores the presence

of cointegration among the variables, which may have detrimental effects on the sub-

sequent analysis. In an attempt to resolve these issues, we propose SPECS as an

alternative approach towards intuitive automated modelling of large non-stationary

datasets.

SPECS is a form of penalized regression designed to sparsely estimate a condi-

tional error correction model (CECM). We demonstrate that SPECS possesses the

oracle property as defined in Fan and Li (2001) in a fixed-dimensional asymptotic

framework.1 In particular, SPECS simultaneously allows for consistent estimation of

1The choice for a fixed-dimensional framework is based on expositional simplicity. This framework
allows us to introduce our estimator under a set of intuitive assumptions and to elaborately discuss
additional issues such as weak exogeneity and mixed orders of integration. In Chapter 4 we extend
the results to a high-dimensional framework.
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the non-zero coefficients and the correct recovery of sparsity patterns in the single-

equation model. It therefore provides a fully data-driven way of selecting the relevant

variables from a potentially large dataset of (co)integrated time series. Moreover, due

to the flexible specification of the single-equation model, SPECS is able to take into

account cointegration in the dataset without requiring any form of pre-testing for unit

roots or testing for the cointegrating rank, and can thus be applied “as is” to any

dataset containing an (unknown) mix of stationary and integrated time series. As a

companion to this chapter, ready-to-use R code is available online that implements

an intuitive and easy-to-interpret algorithm for SPECS estimation.2

Single-equation error correction models are frequently employed in tests for coin-

tegration (e.g. Engle and Granger, 1987; Phillips and Ouliaris, 1990; Boswijk, 1994;

Banerjee et al., 1998) as well as in forecasting applications (e.g. Engle and Yoo, 1987;

Chou et al., 1996), but require a weak exogeneity assumption for asymptotically effi-

cient inference (Johansen, 1992a). Weak exogeneity entails the existence of a single

cointegrating vector that only appears in the marginal equation for the variable of in-

terest. If this assumption holds, our procedure can be interpreted as an alternative to

cointegration testing in the ECM framework (Boswijk, 1994; Palm et al., 2010). How-

ever, weak exogeneity may not be realistic in large datasets and we provide detailed

illustrations of the implications of failure of this assumption and demonstrate that

absent of weak exogeneity our procedure consistently estimates a linear combination

of the true cointegrating vectors. While this impedes inference on the cointegrating

relations, when the main aim of the model is nowcasting or forecasting, our procedure

remains theoretically justifiable and provides empirical researchers with a simple and

powerful tool for automated analysis of high-dimensional non-stationary datasets. In

addition, for modeling a single variable of interest using a large set of potential re-

gressors, SPECS provides a variable selection mechanism, allowing the researcher to

discard variables that are irrelevant for this particular analysis. Our simulation results

demonstrate strong selective capabilities in both low and high dimensions. Further-

more, a simulated nowcasting application highlights the importance of incorporating

cointegration in the data as our proposed estimators obtain higher nowcast accuracies

in comparison to a penalized autoregressive distributed lag (ADL) model. This find-

ing is confirmed in an empirical application, where SPECS is employed to nowcast

Dutch unemployment rates with the use of a dataset containing Google Trends series.

Recent literature has also seen the development of methods for analyzing high-

dimensional (co)integrated time series. Kock (2016) proposes the adaptive lasso to

2https://sites.google.com/view/etiennewijler
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estimate an augmented Dickey-Fuller regression. While this univariate model is inher-

ently different from ours, it provides an insightful demonstration of how the lasso may

be used as an alternative to testing for non-stationarity, paralleling our suggestion to

consider SPECS as an alternative for cointegration testing under the assumption of

weak exogeneity.

For VECM systems, Wilms and Croux (2016) propose a penalized maximum likeli-

hood approach, with shrinkage performed on the cointegrating vectors, the coefficients

regulating the short-run dynamics and the covariance matrix. While their method is

shown to obtain forecast gains relative to the traditional Johansen method, no theo-

retical results are provided. Liao and Phillips (2015) provide an automated method of

joint rank selection and parameter estimation with the use of an adaptive penalty and

derive oracle properties in a fixed-dimensional framework. Next to this theoretical

limitation on its applicability to large datasets, practical implementation is further

complicated due to reliance on the eigenvalue decomposition of an asymmetric ma-

trix, which introduces complex values into the corresponding objective function. As

noted by Liang and Schienle (2019, p. 424), this results in a non-standard harmonic

function optimization problem. Liang and Schienle (2019) propose joint parameter

estimation and rank determination by employing a penalty that makes use of the QR-

decomposition of the long-run coefficient matrix. This method possesses oracle-like

properties under a high-dimensional asymptotic regime, but it requires the availability

of an initial OLS estimator, thereby preventing applications on datasets in which the

number of variables exceeds, or is close to, the number of available time series observa-

tions. Additionally, estimation of the long-run and short-run dynamics is performed

sequentially rather than simultaneously, necessitating a two-step procedure.

In a single-equation setting, Lee et al. (2018) derive fixed-dimensional oracle prop-

erties for the adaptive lasso applied to predictive regressions where the regressors are

allowed to be of mixed orders of integration. However, as a consequence of their

model formulation in which all variables enter in levels, their estimator appears to be

susceptible to spurious regression when the regressors are not cointegrated.

Finally, outside the penalized regression framework, Zhang et al. (2019a) propose

an eigenvalue decomposition to estimate the cointegrating space in the presence of any

integer and fractional order of integration of the variables. However, the estimation

procedure proposed by Zhang et al. does not perform variable selection, nor does

it provide explicit estimates of the transient dynamics in a VECM. Onatski and

Wang (2019) develop a novel inference procedure for the cointegrating rank in high

dimensions. Similar to the Johansen procedure, their test is based on the squared
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canonical correlations, for which they derive the limit spectral distribution under

joint asymptotics with the use of arguments from random matrix theory.

Our proposed method provides several contributions to this existing literature.

First, unlike many of the penalized regression methods surveyed above, the practical

implementation of SPECS is straightforward for large datasets, including cases where

the number of parameters is larger than the time dimension. Second, our method com-

pletely removes the need for pre-testing for the order of integration or cointegrating

rank, and is not sensitive to spurious regression. Third, to the best of our knowledge,

our paper is the first to explicitly allow for the presence of deterministic components

in the theory, a crucial feature for many applications. Fourth, in the next chapter

we extend our theoretical results to a high-dimensional framework where the number

of parameters is allowed to grow with the sample size. This requires non-standard

theoretical results on bounds of the smallest eigenvalue of a matrix of (co)integrated

regressors, similar to those in Zhang et al. (2019a), which are further developed in

Chapter 4.

The chapter is structured as follows. In Section 3.2 we discuss the data generating

process and describe the SPECS estimator. The main theoretical results of the chapter

are presented in Section 3.3. Section 3.4 contains several simulation studies, followed

by an empirical application in Section 3.5. We conclude in Section 3.6. Proofs of the

main results are presented in Appendix 3.A and additional results are contained in

Appendix 3.B.

Notation

Finally, a word on notation. We use ‖·‖p to denote the Lp-norm, i.e. ‖v‖p =

(
∑n
i=1 |v|

p
i )

1/p
for a vector v ∈ Rn and ‖V ‖p =

(∑m
j=1

∑n
i=1 |v|

p
ij

)1/p

for a ma-

trix V ∈ Rn×m. The maximum (minimum) elements of a matrix A is denoted by

amax (amin), and we use A � 0 to denote that the matrix is positive definite. In

addition, we let A⊥ denote the orthogonal complement of A, such that A′⊥A = 0.

If v is a sparse vector and u is another vector of similar dimension, we define the

support index of v as Sv = {i|vi 6= 0} and uSv as the sub-vector of u indexed by

Sv. Similarly, for a matrix A, we use ASv to denote the matrix derived from A,

containing the columns indexed by Sv. We use a similar notation for the complement

of the support, i.e Scv, uScv and AScv
. Finally, convergence in distribution (probability)

is denoted by
d→ (

p→).
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3.2 The Single-Equation Penalized Error Correc-

tion Selector

3.2.1 Setup

Throughout the chapter we let our single variable of interest be denoted by yt, which

we aim to model dynamically with the use of an N -dimensional time series zt =

(yt,x
′
t)
′, described by

zt = µ+ τ t+ ζt, (3.1)

with the stochastic component given by

∆ζt = AB′ζt−1 +

p∑
j=1

Φj∆ζt−j + εt, (3.2)

where εt = (ε1,t, ε
′
2,t)
′. The model can be rewritten into a VECM form by substituting

(3.1) into (3.2) to obtain

∆zt = AB′ (zt−1 − µ− τ (t− 1)) + τ∗ +

p∑
j=1

Φj∆zt−j + εt, (3.3)

where τ∗ = (I −
∑p
j=1Φj)τ . From this representation, it can directly be observed

that the presence of a constant in (3.1) results in a constant within the cointegrating

relationship ifB′µ 6= 0. Furthermore, the linear trend in (3.1) appears as a constant in

the differenced series and may additionally appear as a trend within the cointegrating

vector if B′τ 6= 0, the latter implying that the equilibrium error B′zt is a trend

stationary process.

We impose the following assumption on the innovations.

Assumption 3.1. {εt}t≥1 is an N -dimensional martingale difference sequence with

E (εtε
′
t) = Σ � 0 and E |εt|2+η

<∞ for η > 0.

Under this assumption, the innovations satisfy the multivariate invariance princi-

ple

T−1/2

[T ·]∑
t=1

εt → B(·), (3.4)

where B(·) represents a vector Brownian motion with covariance matrix Σ (Phillips

and Solo, 1992, p. 983).
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For the VECM model to admit a vector moving average (VMA) representation

we maintain the following assumptions.

Assumption 3.2. Define A(z) := (1− z)−AB′z −
∑p
j=1Φj(1− z)zj .

(i) The determinantal equation |A(z)| has all roots on or outside the unit circle.

(ii) A and B are N × r matrices with r ≤ N and rank(A) = rank(B) = r. For

r = 0, we adopt the convention that AB′ = 0 and A⊥ = B⊥ = IN .

(iii) The ((N − r)× (N − r)) matrix A′⊥

(
IN −

∑p
j=1Φj

)
B⊥ is invertible.

The importance in deriving a single-equation model for yt, our main variable of

interest, is to ensure that the variables modelling the variation in yt remain exogenous.

This is accomplished by orthogonalizing the errors driving the single-equation model,

say εy,t, from the errors driving the marginal equation of the endogenous variables xt.

Orthogonalization is achieved by decomposing ε1,t into its best linear prediction based

on ε2,t and the corresponding orthogonal prediction error. To this end, partition the

covariance matrix of εt as

Σ =

[
σ11 σ12

σ21 Σ22

]
, (3.5)

such that we obtain

ε1,t = (0, π′0)εt + (1,−π′0) εt = ε̂1,t + εy,t (3.6)

where ε̂1,t = π′0ε2,t with π0 = Σ−1
22 σ21 and εy,t = (1,−π′0) εt with E(ε2,tεy,t) = 0 by

construction. Writing out (3.6) in terms of the observable time series results in the

single-equation model

∆yt = (1,−π′0)

AB′ (zt−1 − µ− τ (t− 1)) + τ ∗ +

p∑
j=1

Φj∆zt−j


+ π′0∆xt + εy,t

= δ′zt−1 + π′wt + µ0 + τ0(t− 1) + εy,t,

(3.7)

where δ′ = (1,−π′0)AB′, π = (π′0, . . . ,π
′
p)
′ with πj = (1,−π′0)Φj for j = 1, . . . , p,

wt = (∆x′t,∆z
′
t−1, . . . ,∆z

′
t−p)

′, µ0 = (1,−π′0)(τ ∗ −AB′µ), τ0 = −(1,−π′0)AB′τ ,

and εy,t = (1,−π′0)εt.

Remark 3.1. The single-equation model may alternatively be derived under the as-

sumption of normally distributed errors. In this framework, εy,t has the conditional
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normal distribution from which (3.7) can be obtained (cf. Boswijk, 1994). A benefit

of assuming normality is that, under the additional assumption of weak exogeneity,

the OLS estimates of (3.7) are optimal in the mean-squared sense. However, the as-

sumption of normality is unnecessarily restrictive when the, perhaps overly, ambitious

goal of complete and correct specification is abandoned.

In general, the implied cointegrating vector δ in the single-equation model for yt

contains a linear combination of the cointegrating vectors in B with their weights

being given by (1,−π′0)A. Since the marginal equations of xt contain information

about the cointegrating relationship, efficient estimation within the single-equation

model is only attained under an assumption of weak exogeneity. Johansen (1992a)

shows that sufficient conditions for weak exogeneity to hold are (i) εt
i.i.d.∼ N (0,Σ),

(ii) rank(AB′) = 1, i.e. there is a single cointegrating N -dimensional cointegrating

vector β, and (iii) the vector of adjustment rates takes on the form α = (α1,0
′)′.

However, these conditions are rather restrictive when considering high-dimensional

economic datasets that are likely to possess multiple cointegrating relationships and

complex covariance structures across the errors. Accordingly, we opt to derive our

results without assuming weak exogeneity, while acknowledging that direct interpre-

tation of the estimated cointegrating vector will only be valid in the presence of weak

exogeneity.

3.2.2 Estimation Procedure

We propose to estimate (3.7) with penalized regression based on an L1-penalty to

attain sparse solutions. However, a property of L1-penalized regression is that its

solutions are not equivariant to arbitrary scaling of the variables, which is why the

convention is to standardize the data prior to estimation (see Hastie et al., 2008, p.

8). While this practice is fairly innocuous in the stationary setting, this is not the

case when dealing with non-stationary variables, as the standard variance estimates

are diverging such that care has to be taken when deriving the asymptotic theory.

Let Z−1 = (z0, . . . ,zT−1)′, W = (w1, . . . ,wT )′, and write V = (Z−1,W ), γ =

(δ′,π′)′, θ = (µ0, τ0)′ and D = (ι, t̄), where ι is an N-dimensional vector of ones

and t̄ = (0, . . . , T − 1)′. For any data matrix A, coefficient vector b and diagonal

weighting matrix ΣA, define Ã = AΣ−1
A and bs = ΣAb. Then, we can rewrite (3.7)

in standardized matrix form as

∆y = Z−1δ +Wπ + ιµ0 + t̄τ0 + εy

= Z−1Σ
−1
Z ΣZδ +WΣ−1

W ΣWπ + ιµ0 + t̄τ0 + εy

= Z̃−1δ
s + W̃πs + ιµ0 + t̄τ0 + εy = Ṽ γs +Dθ + εy.

(3.8)
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We then estimate (3.8) with our shrinkage estimator, by minimizing the objective

function

GT (γs,θ) =
∥∥∥∆y − Ṽ γs −Dθ

∥∥∥2

2
+ Pλ(γs). (3.9)

The penalty function in (3.9) takes on the form

Pλ(γs) = λG,T ‖δs‖2 + λδ,T

N∑
i=1

ωkδδ,i |δ
s
i |+ λπ,T

M∑
j=1

ωkππ,j
∣∣πsj ∣∣ , (3.10)

where ωkδδ,i = 1/
∣∣∣δ̂Init,i∣∣∣kδ and ωkππ,j = 1/|π̂Init,j |kπ . The tuning parameters kδ and

kπ regulate the degree to which the initial estimates affect the penalty weights, and

they should satisfy certain constraints that are specified in the theorems to follow.

Throughout this chapter we assume that the initial estimators are
√
T -consistent; for

example we can use δ̂OLS and π̂OLS .3

We denote the minimizers of (3.9) by γ̂s and θ̂ and the de-standardized minimizers

by γ̂ = Σ−1
V γ̂s. The group penalty, regulated by λG,T , serves to promote exclusion

of the lagged levels as a group when there is no cointegration present in the data.

In this case, the model is effectively estimated in differences and corresponds to a

conditional model derived from a vector autoregressive model specified in differences.

The individiual L1-penalties, regulated by λδ,T and λπ,T serve to enforce sparsity in

the coefficient vector δ and π respectively. Furthermore, the penalties are weighted

by an initial estimator to enable simultaneous estimation and selection consistency

of the coefficients. Note that the deterministic components µ0 and τ0 are left un-

penalized, as their inclusion in the model is desirable to enable identification of the

limiting distribution of the estimators. As shown in Yamada (2017), the inclusion

of an unpenalized constant and deterministic trend is equivalent to de-meaning and

de-trending the data prior to estimation.

Remark 3.2. SPECS incorporates an L2 penalty to achieve sparsity on δ at the

group level, while inclusion of L1 penalties ensures sparsity within and outside the

group. The resulting optimization problem resembles that of the Sparse-Group Lasso

(Simon et al., 2013), and the same algorithm can be employed here with only minor

adjustments that account for the presence of just a single group. The R code that we

make available online implements this algorithm to compute SPECS.

Remark 3.3. Standardization of unpenalized components does not affect the esti-

3In principal any consistent estimator would suffice, although the required growth rates of the
penalty parameters in (3.10) are intrinsically related to the rate of convergence of the initial estimator.
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mation of penalized components; a feature that can be directly verified by application

of Lemma 3.A.4 in Appendix 3.A.1. Accordingly, we do not explicitly standardize the

subset D containing the (deterministic) variables that are left unpenalized.

3.3 Theoretical Properties

In this section we derive the theoretical properties of SPECS. First, we establish the

consistency and oracle properties of SPECS in Section 3.3.1. Thereafter, we consider

the implications for particular model specifications in Section 3.3.2.

3.3.1 Consistency and Oracle Properties

Our first aim is to demonstrate that the SPECS estimator attains the same rate of con-

vergence as the conventional least squares estimator.4 Following standard convention

in the cointegration literature, we first derive the consistency for a linear transforma-

tion of the coefficients to avoid singularities in the limits of sample moment matrices

resulting from common stochastic trends (e.g. Lütkepohl, 2005, p. 290). In particular,

under Assumption 3.2, the Granger Representation Theorem as displayed in Johansen

(1995a, p. 49) enables (3.3) to be written as a VMA process of the form

zt = Cst + µ+ τ t+C(L)εt + z0 = Cst + µ+ τ t+ ut, (3.11)

where C = B⊥

(
A′⊥

(
IN −

∑p
j=1Φj

)
B⊥

)−1

A′⊥, st =
∑t
i=1 εi, and ut = C(L)εt +

z0 a stationary process. In matrix notation, we write

Z−1 = S−1C
′ + ιµ′ + t̄τ ′ +U , (3.12)

with S−1 = (s0, . . . , sT−1)′ and U = (u1, . . . ,uT )′. When cointegration is present in

the data, the matrix C will be of rank N − r such that the system may be separated

into a stationary and non-stationary component. More specifically, we can define the

linear transformation

Q :=

B
′ 0

0 IM

A′⊥ 0

 with Q−1 =

[
A(B′A)−1 0 B⊥(A′⊥B⊥)−1

0 IM 0

]
, (3.13)

4As we derive our results for fixed N , we do not need to make an explicit assumption that the
conditional model is sparse. Of course, in practical settings where T and N are of comparable size,
sparsity is required for good performance. We return to this issue in our simulation study in Section
3.4.
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such that we can decompose the system into

Q

[
zt−1

wt

]
=

[
ξ1,t

ξ2,t

]
, ξ1,t =

[
B′zt−1

wt

]
, and ξ2,t = A′⊥zt−1.

Then, ξ1,t and ξ2,t are a stationary and a non-stationary random vector, respectively.

Having defined the appropriate transformation, we are now able to state that

SPECS attains the same rate of convergence as the OLS estimator. The proofs of all

theorems in this section are provided in Appendix 3.A.2.

Theorem 3.1 (Estimation Consistency). Assume that

λG,TσZ,max√
T

p→ 0,
λδ,TσZ,max√

T

p→ 0 and
λπ,TσW,max√

T

p→ 0.

Let DT = diag(TIN ,
√
TIM ) and ST = diag(

√
TIM+r, TIN−r). Then, under As-

sumption 3.1 and 3.2, the estimators γ̂ satisfy:

1. No cointegration: DT (γ̂ − γ) = Op(1).

2. Cointegration: STQ
′−1(γ̂ − γ) = Op(1).

The conditions imposed on the penalty terms limit the amount of shrinkage to

prevent excessive shrinkage bias from impeding consistent estimation. Clearly, the

admissible growth rates of the penalties are dependent on the stochastic order of the

possibly random quantities σZ,max and σW,max. Consequently, the practice of stan-

dardizing the data by scaling each variable by its corresponding estimated standard

deviation may influence the restrictions imposed on the growth rate of the penalty.

To illustrate, consider the case where zt contains N random walks (with no drift

components). Then, for any i ∈ {1, . . . , N}, the estimated standard deviation is

σ̂Z,i =

√∑T−1
t=0 z2

it

T
=
√
T

√∑T−1
t=0 z2

it

T 2
= Op(

√
T ),

such that also σZ,max = Op(
√
T ). As a result, the requirements

λG,TσZ,max√
T

p→ 0 and
λδ,TσZ,max√

T

p→ 0 translate to λG,T → 0 and λδ,T → 0. While theoretically feasible,

the notion of requiring a vanishing penalty to maintain consistent estimation does

not conform with the belief of a sparse DGP. Moreover, the presence of deterministic

components in the variables, such as a trend/drift, impact the stochastic order of the

standard deviation and, hence, the required growth rates of the penalty. Therefore, we

advise against the convention of standardization by the estimated standard deviations.
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In situations where the data is clearly measured on drastically different scales,

one may wish to apply an ’ad-hoc’ standardization of the variables. As long as this

standardization does not change the stochastic order of the data, the requirements

on the amount of penalization remains the same and our theoretical results continue

to go through. Possible choices therefore include to standardize by the standard de-

viations of first differences or AR(1) residuals, if theoretical guidance is not available

(e.g. if variables are measured in different units, a logical standardization is often easy

to find). Such choices result in standardizations that are, or converge to, constants,

thereby not affecting the orders of the data, and allowing one to recover the original

coefficients, if desired. Given the ad-hoc nature of such standardizations, the simula-

tions and empirical application in this paper are conducted without standardization.

Remark 3.4. By construction of Q, the resulting convergence stated in part (2) of

Theorem 3.1 is equivalent to the statements S∗TQ
∗(δ̂− δ) = Op(1) and

√
T (π̂−π) =

Op(1), where S∗T = diag(
√
TIr, TIN−r) and Q∗ =

[
(A′B)−1A′

(B′⊥A⊥)−1B⊥

]
.

SPECS performs continuous model selection by estimating sparse solutions through

the imposition of individual L1-penalties and a group penalty. In addition to con-

sistently estimating the model parameters, an additional natural requirement of the

estimator is to provide consistent selection of the relevant variables. This property is

crucial when one aims to obtain interpretable solutions or even utilize the estimator

as an alternative to classical tests for cointegration. An example of a traditional test

for cointegration is the ECM-test by Banerjee et al. (1998) which looks at the t-ratio

of the ordinary least squares coefficient of the lagged dependent variable. Alterna-

tively, Boswijk (1994) proposes to test for the joint significance of the least squares

coefficients of all lagged levels with a Wald-type test. One could interpret exclusion

of the lagged levels of the dependent variable, or the lagged levels of all variables,

as evidence against the presence of cointegration. However, an assumption of weak

exogeneity is necessary when the aim is a direct interpretation of the estimated coin-

tegration vector. Notwithstanding this caveat, selection consistency allows SPECS

to be used as a screening mechanism that excludes irrelevant variables, even in the

absence of weak exogeneity.5

Theorem 3.2 (Selection Consistency). Assume that

λδ,TσZ,min

T 1−kδ/2
→∞ and

λπ,TσW,min

T 1/2−kπ/2
→∞.

5A more detailed discussion of the interpretation of sparsity absent of weak exogeneity is provided
in Section 3.3.2.

69



3 An Automated Approach Towards Sparse Single-Equation
Cointegration Modelling

Then, under the same conditions as in Theorem 3.1, it holds that whenever γi = 0,

we have P(γ̂i = 0)→ 1.

Whereas the estimation consistency in Theorem 3.1 puts an upper limit on the

amount of permissible shrinkage, the selection consistency in Theorem 3.2 requires

a minimum amount of shrinkage to correctly remove irrelevant variables from the

model. As before, the implied conditions regulating the growth rates of the penalties

depend on the stochastic order of the possibly random quantities in ΣV . Assuming

once more that ΣZ is a diagonal matrix containing the standard deviations of the

columns of Z−1, the condition for selection consistency of the lagged levels translates

to
λδ,T

T 1/2−kδ/2 → ∞, as opposed to the
λδ,T√
T
→ 0 required for estimation consistency.

While any choice of kδ > 0 complies with these conditions from a theoretical point

of view, we observe in simulations that the use of standard deviations as a means

of standardization results in frequent removal of relevant non-stationary variables,

thereby providing another argument against the use of standard deviations.

Remark 3.5. The only restriction imposed on the growth rate of the group penalty

is
λG,TσZ,max√

T

p→ 0, which is necessary to avoid the shrinkage bias induced by the group

penalty from impeding estimation consistency. Since λG,T = 0 is an admissible value,

it follows that SPECS provides both consistent estimation and selection without the

addition of a group penalty as well.

Remark 3.6. A common implementation of the adaptive lasso in the stationary

setting sets kδ = kπ = 1. However, in the presence of cointegration the coefficients

regulating the long-run dynamics are
√
T -consistent, whereas the presence of common

stochastic trends demand a higher rate to stabilize the data. Consequently, assuming

ΣV = IN+M , the conditions on λδ are λδ√
T
→ 0 and λδ

T 1−kδ/2 → ∞. Hence, a choice

of kδ > 1 is needed to maintain consistent selection of the lagged levels. Intuitively,

one may argue that stricter penalization is necessitated by the correlation induced

between the levels of variables through the presence of common stochastic trends.

Next, we establish that the limit distribution for the estimates of the non-zero

population coefficients is the same as that of the oracle OLS estimator. When δ 6= 0,

it follows from (3.11) that the subset of variables indexed by Sδ has the representation

zSδ,t = B⊥,Sδ

A′⊥
IN − p∑

j=1

Φj

B⊥
−1

A⊥st−1 + vSδ,t, (3.14)

where B⊥,Sδ is a (|Sδ| × (N − r))-dimensional matrix. Let B0
Sδ

denote the left
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nullspace of B⊥,Sδ , i.e.

B0
Sδ

=
{
x ∈ R|Sδ||B′⊥,Sδx = 0

}
.

Note that by construction B′⊥,SδδSδ = 0, such that dim(B0
Sδ

) = r2 > 0, where the

dimension of the null space is defined as the number of linearly independent vectors

in a corresponding basis.6 For the case |Sδ| > r2, define BSδ as a basis matrix, i.e.

a (|Sδ| × r2)-dimensional matrix whose columns form a basis for B0
Sδ

. Equivalently,

define BSδ,⊥ as a (|Sδ| × (|Sδ| − r2))-dimensional basis matrix for the orthogonal

complement of BSδ .
7 With the use of these linear transformations, we are able to

confirm the convergence to the appropriate asymptotic distribution in the following

theorem.

Theorem 3.3 (Limit Distribution). Define ST,Sγ = diag(
√
TI|Sπ|+r2 , TI|Sδ|−r2) and

QSγ =

 B
′
Sδ

0

0 I|Sπ|

B′Sδ,⊥ 0

 , such that

Q−1
Sγ

=

BSδ

(
B′SδBSδ

)−1
0 BSδ,⊥

(
B′Sδ,⊥BSδ,⊥

)−1

0 I|Sπ| 0

 .
Under the same assumptions as in Theorem 3.1 and 3.2 it holds that:

1. No cointegration:
√
T (π̂Sπ − π̂OLS,Sπ ) = op(1).

2. Cointegration: ST,SγQ
′−1
Sγ

(γ̂Sγ − γ̂OLS,Sγ ) = op(1).

Remark 3.7. When all variables in zSδ,t are stationary, it must hold that B⊥,Sδ = 0

such that r2 = dim(B0
Sδ

) = |Sδ|. In this special case we define QSγ = I|Sγ | and

ST,Sγ =
√
TIsγ .

As a direct consequence of Theorem 3.3, we obtain the limit distribution of the

SPECS estimator scaled by
√
T .

Corollary 3.1. Under the same conditions as in Theorem 3.3, we have

√
T
(
γ̂Sγ − γSγ

) d→ N

(
0,

[
BSδΣ

−1
U B′Sδ 0

0 ΣWSπ

])
, (3.15)

6For details on the existence of a basis and its relation to the dimension of a finite-dimensional
vector space, see Abadir and Magnus (2005, ex. 3.25, 3.29 and 3.30).

7Hence, B⊥,Sδ are the rows of B⊥ indexed by Sδ, whereas BSδ,⊥ is a matrix whose columns
form a basis for the orthogonal complement of BSδ .
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where ΣU = E
(
B′SδuSδ,tu

′
Sδ,t
BSδ

)
and ΣWSπ

= E
(
wSπ,tw

′
Sπ,t

)
. Furthermore, the

matrix BSδΣ
−1
U B′Sδ is uniquely defined regardless of the choice of basis matrix BSδ .

Remark 3.8. The oracle results in Theorem 3 suggest that one could test for coin-

tegration by applying standard low-dimensional cointegration tests, such as the Wald

test by Boswijk (1994), on the selected variables with the same asymptotic distribu-

tion as if only the selected variables were considered from the start. However, such a

post-selection inferential procedure should be treated with caution, as it is well known

that the selection step impacts the sampling properties of the estimator (see Leeb and

Pötscher, 2005). The convergence results of many selection procedures, SPECS in-

cluded, hold pointwise only, with the resulting implication that the finite-sample dis-

tribution will not get uniformly close to the respective asymptotic distribution when

the sample size grows large. The practical implication is that for certain values of the

parameters in the underlying DGP, relying on the oracle properties for post-selection

test statistics may be misleading. Developing a valid post-selection cointegration test

is certainly of interest. However, the field of valid post-selection inference is, while

rapidly developing, still in its infancy. None of the currently existing methods, such

as those considered in Berk et al. (2013), Van de Geer et al. (2014), Lee et al. (2016)

or Chernozhukov et al. (2018), can easily be adapted to - let alone validated in -

our setting. Developing such a method therefore requires a full new theory which is

outside the scope of the current chapter.

Finally, all results thus far have focussed on the convergence and selection of the

coefficients corresponding to the stochastic component in our model. Based on these

results, we are able to obtain the behaviour of the estimated coefficients governing the

deterministic components. However, the rate of convergence of the trend coefficient

depends on three characteristics of the DGP, namely the presence of cointegration,

the presence of a deterministic trend and whether the trend occurs within the long-

run equilibrium. Consequently, we state the following corollary, the proof of which is

delegated to the supplementary appendix.

Corollary 3.2. Under the assumptions in Theorem 3.1 and 3.2, the estimators of

the coefficients regulating the deterministic component, i.e. µ̂0 and τ̂0, are consistent.

In particular, we have

√
T (µ̂0 − µ̂0,OLS) = op(1),

RT (τ̂0 − τ̂0,OLS) = op(1),
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where RT =


T 3/2 τ = 0

T τ 6= 0,B′τ = 0

T 1/2 τ 6= 0,B′τ 6= 0

.

In summary, under appropriate assumptions on the penalty rates, SPECS is able

to consistently estimate the coefficients of the relevant stochastic variables with the

same rate and asymptotic efficiency as the oracle least squares estimator and the

inclusion of unpenalized deterministic components allows for an invariant limiting

distribution in the same way de-meaning and de-trending is performed in the least

squares case. In addition, the irrelevant variables are removed from the model with

probability approaching one.

Remark 3.9. A possible extension to consider is allowing SPECS to select the ap-

propriate deterministic specification by penalizing the coefficients corresponding to

a set of deterministic components. While this certainly would be straightforward to

implement, the extension of the current theoretical results to this new estimator is

less trivial for two main reasons. The first difficulty is that the presence of a trend

or drift component in a variable dominates its stochastic variation asymptotically,

such that appropriately scaled estimates of sample covariance matrices converge to

reduced rank matrices. This feature becomes problematic in instances where inverses

or positive minimum eigenvalues are required. While the inclusion of unpenalized

deterministic components allows one to effectively regress out the effect of those com-

ponents (Yamada, 2017), this is not the case when the deterministic components are

penalized as well. Secondly, the (pointwise) asymptotic distributions of the estima-

tors are not uniquely identified when the trend coefficient is penalized. Based on the

definition given in (3.9), a specification where τ0 = 0 can be implied by either (i)

τ = 0 or (ii) τ 6= 0 and δ′τ = 0. It is well known that the limit distribution varies

depending on whether a deterministic trend is present in the data (Park and Phillips,

1988, Theorems 3.2 and 3.3), such that identification of the distribution is not ensured

when the data is not first de-trended.

3.3.2 Implications for Particular Model Specifications

To fully appreciate the theoretical results in the preceding section, a detailed under-

standing of the generality provided by the set of imposed assumptions is helpful. For

example, as the results are derived without requiring weak exogeneity, our set of as-

sumptions allows for the presence of stationary variables in the data. However, in the

absence of weak exogeneity, model interpretation becomes non-standard. Therefore,

in this section we elaborate on several relevant model specifications to demonstrate
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the flexibility of the single-equation model and highlight the practical implications of

variable selection in such a general framework.

Mixed Orders of Integration

One of the most prominent benefits of SPECS is the ability to model potentially non-

stationary and cointegrated data without the need to adopt a pre-testing procedure

with the aim of checking, and potentially correcting, for the order of integration or

to decide on the appropriate cointegrating rank of the system. Assumptions 3.1 and

3.2 under which our theory is developed are compatible with a wide variety of DGPs

that include settings where the dataset contains an arbitrary mix of I(1) and I(0)

variables. The dataset is simply transformed according to (3.7) and SPECS provides

consistent estimation of the parameters and consistently identifies the correct implied

sparsity pattern. The purpose of this section is to demonstrate this feature by means

of some illustrative examples.

The central idea underlying the above feature is that a single-equation model can

be derived from any system admitting a finite order VECM representation. In a

VECM system containing variables with mixed orders of integration, each stationary

variable adds an additional trivial cointegrating vector. Such a vector corresponds to

a basis vector that equals one on the index of the stationary variable. For illustrative

purposes, we consider the following general example. Define zt = (z′1,t, z
′
2,t)
′, where

z1,t ∼ I(0) and z2,t ∼ I(1) and possibly cointegrated. Let the dimensions of z1,t and

z2,t be N1 and N2 respectively. Then, zt admits the representation[
∆z1,t

∆z2,t

]
=

[
−IN1

0

0 A

][
z1,t−1

z2,t−2

]
+Φ(L)∆zt−1 + εt

= Bzt−1 +Φ(L)∆zt−1 + εt,

where Φ(L) corresponds to a p-dimensional matrix lag polynomial by Assumption

3.2 and εt satisfies the conditions in Assumption 3.1. In addition, we maintain the

convention that A = 0 when z2,t does not cointegrate. Naturally, the single-equation

derived from this VECM has the same form as in (3.7), with the crucial difference

that some of the variables in zt−1 are stationary. More specifically, let π0 be defined

as in (3.6) with the decomposition π0 = (π′0,1,π
′
0,2)′. Without loss of generality, if

yt ∼ I(0) we let z1,t = (yt,x
′
1,t)
′, whereas if yt ∼ I(1) we let z2,t = (yt,x

′
2,t)
′. The
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single-equation model can then be represented as usual

∆yt = (1,−π′0) (Bzt−1 +Φ(L)∆zt−1) + π′0∆xt + εy,t

= δ′zt−1 + π′wt + εy,t.
(3.16)

or alternatively

∆yt = δ′2z2,t−1 + π∗′w∗t + εy,t, (3.17)

where π∗ = (δ′1,π
′)′ and w∗t = (z′1,t−1,w

′
t)
′. This representation highlights that the

single-equation model can be decomposed into contributions from the non-stationary

variables, i.e. z2,t−1, and stationary variables, i.e. w∗t . Moreover, from our theoretical

results in Theorem 3.3 it follows that

√
T (δ̂1 − δ̂1,OLS) = op(1). (3.18)

In the extreme case, where the DGP consists of a collection of stationary variables

and a collection of variables that are integrated of order one which do not cointegrate,

we have B⊥,Sδ = 0 such that (3.18) follows directly from Remark 3.7.

Finally, in Assumption 3.2 we allow for the case where rank(B) = N . One,

perhaps slightly cumbersome, interpretation of this scenario is a system in which

every variable ‘trivially cointegrates’, which intuitively motivates the applicability of

our theoretical results. However, a more common interpretation follows from noting

that when r = N the system can be appropriately described by a stationary vector

autoregressive model of the form

zt = Φ(L)zt−1 + εt,

where εt complies with Assumption 3.1 and Φ(L) denotes an invertible matrix lag-

polynomial of order p. Following the procedure detailed in section 3.2, the corre-

sponding single-equation model can be derived as

yt = π′xt + (1,−π′)Φ(L)zt−1 + εy,t

= π′xt + (1,−π′)Φ(1)zt−1 + (1,−π′)Φ̃(L)∆zt−1 + εy,t,
(3.19)

where the second equation follows from applying the Beveridge-Nelson decomposition
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to Φ(L). We can rewrite (3.19) as

∆yt = −yt−1 + π′xt−1 + π′∆xt + (1,−π′)Φ(1)zt−1

+ (1,−π′)Φ̃(L)∆zt−1 + εy,t

= δ′zt−1 + π′∆xt +Φ∗(L)∆zt−1 + εy,t,

(3.20)

where δ = (1,−π′) (−I +Φ(1)) and Φ∗(L) = (1,−π′)Φ̃(L). Hence, the single-

equation model that we estimate can be derived from a stationary system as well.

Given that all variables in (3.20) are stationary time series, SPECS can also be shown

to consistently estimate the parameters based on the well-documented properties

of the adaptive lasso in stationary time series settings, such as those considered in

Medeiros and Mendes (2016).

Sparsity and Weak Exogeneity

The benefit of L1-regularized estimation stems from its ability to identify sparse pa-

rameter structures. However, the concept of sparsity in the conditional model here

considered merits additional clarification, as the potential absence of weak exogene-

ity obscures standard interpretability. In Section 3.2 we argue that the coefficients

regulating the long-run dynamics in the conditional model are generally derived from

linear combinations of the cointegrating vectors in the VECM representation (3.3).

By decomposing the matrix with adjustment rates as A =

[
α′1

A′2

]
, with α1 an r-

dimensional column-vector, we obtain

δ = B(α1 −A2Σ
−1
22 σ21).

It follows that δi = 0 if the condition

β′i
(
α1 −A2Σ

−1
22 σ21

)
= 0 (3.21)

is satisfied, where βi is the i-th row-vector of β. While this condition may hold in a

variety of non-trivial ways, some general cases can be derived that lead to sparsity in

δ. For example, a variable xi that does not cointegrate with any of the variables in the

system, i.e. βi = 0, will carry a zero coefficient in the derived long-run equilibrium

in the single-equation model.

An additional special case is the addition of I(0) variables to the system. Consider

the estimation of a standard VECM of the form (3.3) without any short-run dynamics.

Assume, however, that the last variable in the dataset, say zN,t, is a stationary white
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noise series that is mistakenly considered to be integrated of order one. Denote

the non-stationary variables by z1,t = (z1,t, . . . , zN−1,t)
′. Then, the simple VECM

without short-run dynamics is described by the representation[
∆z1,t

∆zN,t

]
=

[
A1 0

0 −1

][
B′1 0

0 1

][
z1,t−1

zN,t−1

]
+

[
ε1,t

εN,t

]
= AB′zt−1 + εt.

Letting the last row-vector of B be denoted by βN = (0, . . . , 0, 1)′, condition (3.21)

then translates to β′NΣ
−1
22 σ21 = 0. A sufficient condition for this to hold is when

E(εN,tε1,t) = 0, implying that exogenous stationary variables will not be considered

as part of the cointegration vector δ. This statement does not come at a surprise,

but it also highlights that stationary variables whose errors are correlated with other

variables in the system might end up being part of the cointegration vector in the

equation for ∆yt. As this correlation contains information about ∆yt, we consider

this property desirable for applications such as nowcasting. It does, however, demon-

strate that care has to be taken when the aim is direct interpretation of the implied

cointegrating vector in the absence of weak exogeneity.

Finally, we explore a somewhat less trivial case by considering a VECM model

in which Σ, the covariance matrix of the errors, follow a Toeplitz structure with

σij = ρ|i−j|. After partitioning Σ as in (3.5), we can rewrite

σ21 =


ρ1

...

ρN

 =


ρ0 . . . ρN−1

...
. . .

...

ρN−1 . . . ρ0



ρ1

0
...

0

 = Σ22π0, (3.22)

thus showing that π0 = Σ−1
22 σ21 = (ρ, 0, . . . , 0)′.8 As δ′ = (1,−π′0)AB′, this implies

that only the long-run equilibria that occur in the equations for ∆yt or its cross-

sectionally neighbouring variable will be part of the linear combination in the derived

the single-equation model. Consequently, any variables in the dataset that are not

contained in the equilibria occurring in these equations will induce sparsity in δ.

8It is straightforward to show that this property carries over to covariance matrices with a block-

diagonal Toeplitz structure, with each block Σ(k) having the form σ
(k)
i,j = ρ

|i−j|
(k)

. The number of

non-zero elements in the resulting vector π0 will equal the number of blocks in the covariance matrix.
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3.4 Simulations

In this section we analyze the selective capabilities and predictive performance of

SPECS by means of simulations. We estimate the single-equation model according to

the objective function (3.9) with the following settings for the penalty rates:

1. Ordinary Least Squares (OLS: λG,T = 0, λδ,T = 0, λπ,T = 0),

2. Autoregressive Distributed Lag (ADL: λG,T = 0, λδ,T =∞, λπ,T > 0),

3. SPECS - no group penalty (SPECS1: λG,T = 0, λδ,T > 0, λπ,T > 0),

4. SPECS - group penalty (SPECS2: λG,T > 0, λδ,T > 0, λπ,T > 0).9

The OLS estimator is only included when feasible according to the dimension of the

model to estimate and we additionally include a penalized autoregressive distributed

lag model (ADL) with all variables entering in first differences. The latter model can

be interpreted as the conditional model one would obtain when ignoring cointegration

in the data and specifying a VAR in differences as a model for the full system. The

resulting conditional model is the same as the CECM that we consider, but with the

built-in restriction δ = 0.

For the sake of computational efficiency we estimate the solutions for λδ,T and

λπ,T over a one-dimensional grid, i.e. both penalties are governed by a single universal

parameter λI,T . We weigh the universal parameter by initial estimates obtained from

a ridge regression. Specifically, we adopt ωkδδ,i = 1/
∣∣∣δ̂ridge,i∣∣∣kδ and ωkππ,j = 1/|π̂ridge,j |kπ ,

where kδ = 2 and kπ = 1 in accordance with the assumptions in Theorems 3.1 and

3.2. We consider 100 possible values for λI,T and choose the final model based on the

BIC criterion. For SPECS2, the model selection takes place over a two-dimensional

grid consisting of 100 values for λI,T and 10 possible values for λG,T . We note that

while the use of the single universal penalty λI,T significantly reduces the dimension

of the search space, this heuristic may negatively impact the performance of SPECS.

Since this choice of implementation does not impact the ADL model, the relative

performance gain of SPECS over the ADL model would likely be underestimated.

We now consider three different settings under which we analyze the performance

of our SPECS estimator.

9As a useful mnemonic, the reader may relate the subscript to the number of penalty categories
included in the estimation; SPECS1 only contains an individual penalty whereas SPECS2 contains
both a group penalty and individual penalty.
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3.4 Simulations

Table 3.1 Simulation Design for the First Study (Dimensionality and Weak Exo-
geneity)

Low Dimension A B δ

WE

[
α1

09×1

] [
ι̃

05×1

]
α1B

No WE α1B

[
ι̃ 05×1

05×1 ι̃

] [
(1 + ρ)α1ι̃

05×1

]
High Dimension A B δ

WE

[
α1

049×1

] [
ι̃

045×1

]
α1B

No WE α1B


ι̃ 05×1 05×1

05×1 ι̃ 05×1

05×1 05×1 ι̃
035×1 035×1 035×1

 [
(1 + ρ)α1ι̃

045×1

]

Notes: The low-dimensional (high-dimensional) design corresponds to a system with
N = 10 (N = 50) unique time series and N ′ = 31 (N ′ = 151) parameters to estimate.
Furthermore, ι̃ = (1,−ι′4)′ and α1 = −0.5,−0.45, . . . , 0 regulates the adjustment rate
towards the equilibrium.

3.4.1 Dimensionality and Weak Exogeneity

In the first part of our simulation study we focus on the effects of dimensionality

and weak exogeneity on a (co)integrated dataset. The general DGP from which we

simulate our data is given by the equation

∆zt = AB′zt−1 +Φ1∆zt−1 + εt, (3.23)

with t = 1, . . . , T = 100, and εt ∼ N (0,Σ) with σij = 0.8|i−j|. Furthermore, Φ1, the

coefficient matrix regulating the short-run dynamics is generated as 0.4 · IN , where

N varies depending on the specific DGP considered. Based on this DGP, the single-

equation model takes on the form

∆yt = δ′zt−1 + π′0∆xt + π′1∆zt−1 + εy,t,

with π0 and π1 as defined in (3.7). We consider a total of four different settings,

corresponding to different combinations of (i) dimensionality (low/high) and (ii) weak

exogeneity (present/absent). The corresponding parameter settings, and their implied

cointegrating vector δ, are tabulated in Table 3.1.

We measure the selective capabilities based on three metrics. The pseudo-power of

the models measures the ability to appropriately pick up the presence of cointegration

in the underlying DGP. For the OLS procedure we perform the Wald test proposed
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by Boswijk (1994). When the OLS fitting procedure is unfeasible due to the high-

dimensionality, we perform the Wald test on the subset of variables included after

fitting SPECS1 and refer to this approach as Wald-PS (where PS stands for post-

selection). Despite the caveats of oracle-based post-selection inference mentioned in

Remark 3.8, the inclusion of Wald-PS still offers valuable insights regarding the per-

formance one may expect of such a procedure in light of the aforementioned limitation.

SPECS is used as an alternative to this cointegration test by simply checking whether

at least one of the lagged levels is included in the model. The percentage of trials in

which cointegration is found is then reported as the pseudo-power.

Second, for each trial the Proportion of Correct Selection (PCS) describes the

proportion of correctly selected variables:

PCS =
|{j : γ̂j 6= 0 and γj 6= 0}|

|{j : γj 6= 0}|
,

where |·| denotes the cardinality. Alternatively, the Proportion of Incorrect Selection

(PICS) describes, as the name may suggest, the proportion of incorrectly selected

variables:

PICS =
|{j : γ̂j 6= 0 and γj = 0}|

|{j : γj = 0}|
.

The PCS and PICS are calculated for SPECS1 and SPECS2 and averaged over all

trials.

Finally, we consider the predictive performance in a simulated nowcasting appli-

cation, where we implicitly assume that the information on the latest realization of

xT arrives before the realization of yT . These situations frequently occur in prac-

tice, see Giannone et al. (2008) and the references therein for an overview as well as

the empirical application considered in Section 3.5. Due to the construction of the

single-equation model, in which contemporaneous values of the conditioning variables

contribute to the contemporaneous variation in the dependent variable, our proposed

method is particularly well-suited to this application. For any of the considered fit-

ting procedures, the nowcast is given by ŷT = δ̂′zT−1 + π̂′∆xT + φ̂′∆zT−1, where

by construction δ̂ = 0 in the ADL model. For each method we record the root mean

squared nowcast error (RMSNE) relative to the OLS oracle procedure fitted on the

subset of relevant variables.

Figure 3.1 visually displays the evolution of our performance metrics over a range

of values for α1, representing increasingly faster rates of adjustment towards the long-
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run equilibrium. The first row of plots shows near-perfect performance of SPECS

over all metrics. The pseudo-size is slightly lower than the size of the Wald test when

the latter is controlled at 5%, whereas the pseudo-power quickly approaches one.

Following expectations, the pseudo-size for SPECS2 is slightly lower as a result of the

additional group penalty. Focussing on the selection of variables, we find that for faster

adjustment rates, SPECS is able to exactly identify the sparsity pattern with very high

frequency, as demonstrated by the PCS approaching 100% and the PICS staying near

0%. Furthermore, the MSNE obtained by our methods is close to the oracle method

and is substantially lower than the MSNE obtained by the ADL model for faster

adjustment rates, while being almost identical absent of cointegration. The picture

remains qualitatively similar when moving away from weak exogeneity while staying

in a low-dimensional framework, although the gain in predictive performance over

the ADL decreases somewhat. We postulate that the ADL may benefit from a bias-

variance tradeoff, especially considering that the correctly specified single-equation

model is sub-optimal in terms of efficiency absent of weak exogeneity compared to a

full system estimator. Nonetheless, SPECS is clearly the preferred method.

The performance in the high-dimensional setting is displayed in rows 3 and 4

of Figure 3.1. When the conditioning variables are weakly exogenous with respect

to the parameters of interest, the selective capabilities remain strong. The pseudo-

power demonstrates the attractive prospect of using our method as an alternative to

cointegration testing, especially when taking into consideration that the traditional

Wald test is infeasible in the current setting. In addition, the nowcasting perfor-

mance remains far superior to that of the misspecified ADL. The last row depicts the

performance absent of weak exogeneity. In this setting, exact identification of the

implied cointegrating vector occurs less frequently, which seems to negatively impact

the nowcasting performance. However, the misspecified ADL is still outperformed,

despite the deterioration in the selective capabilities of our method.

3.4.2 Mixed Orders of Integration

We move on to an analysis of the performance of SPECS on datasets containing

variables with mixed orders of integration. The aim of this section is to gain an

understanding of the relative performance of SPECS when not all time series are

(co)integrated and to compare the performance of SPECS to traditional approaches

that rely on pre-testing. The latter goal is attained by adding an additional penalized

ADL model to the comparison, namely one in which the data is first corrected for

non-stationarity based on a pre-testing procedure in which an Augmented Dickey-

Fuller (ADF) test is performed on the individual series. We refer to this procedure as
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3.4 Simulations

Table 3.2 Simulation Design for the Second Study: Mixed Orders of Integration

Order A B δ

y ∼ I(0)


1 0 01×24

015×1 α1B
∗ 015×24

010×1 010×3 010×24

024×1 024×3 I24




−b 0 01×24

015×1 B∗ 015×24

010×1 010×3 010×24

024×1 024×3 −B24×24


 −1
−ρα1ι̃
044×1


y ∼ I(1)

α1B
∗ 015×25

010×3 010×25

025×3 I25

  B∗ 015×25

010×3 010×25

025×3 −B̃25×25

 [
(1 + ρ)α1ι̃

045×1

]
Notes: see notes in Table 3.1. Additionally, we define b = 1 (b ∼ U(0, 0.2)) and B̃ as a
diagonal matrix with bii = 1 (bii ∼ U(0, 0.2)) in the absence (presence) of persistence,
and B∗ = (13×3 ⊗ ι̃).

the ADL-ADF model. Based on the general DGP (3.23), we distinguish four different

cases, corresponding to: (i) different orders of the dependent variable (I(0)/I(1))

and (ii) different degrees of persistence in the stationary variables (low/high). The

choice to include varying degrees of persistence is motivated by the conjecture that

the performance of the pre-testing procedure incorporated in the ADL-ADF model

may deteriorate when the degree of persistence increases, which in turn translates to

a decrease in the overall performance of the procedure.

The parameter settings for the varying DGPs, displayed in Table 3.2, are chosen

such that they allow for a subset of stationary variables in the system. In particular,

we first consider a scenario in which the dependent variable itself admits a stationary

autoregressive representation in levels. In addition, based on their cross-sectional

ordering, the first 15 variables after y are cointegrated based on three cointegrating

vectors, the next 10 variables are non-cointegrated random walks, and the last 24

variables all admit a stationary autoregressive structure in levels. The degree of

persistence in the stationary variables is regulated by the diagonal matrix B̃ in B,

with elements bii = 1 in the low persistence case and bii ∼ U(0, 0.2) in the high

persistence case. It can be seen from the last column in Table 3.2, that in line

with the stationarity of the dependent variable, the first element in δ will always

be equal to −1, whereas an additional five-dimensional cointegrating vector enters

the single-equation model for positive values of a. For the scenario in which the

dependent variable is integrated of order one, the first 15 variables (including y)

are all cointegrated based on three cointegrating vectors, the next 10 variables are

non-cointegrated random walks, whereas the last 15 variables all admit a stationary

autoregressive representation. The persistence in the stationary variables is regulated

similar to the previous case. Now, however, it is clear from the last column in Table
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3.2 that δ 6= 0 only if a > 0, such that lagged levels only enter the single-equation

when y is cointegrated with its neighbouring variables. We display the performance

of the models in Figure 3.2.

In the first two rows of Figure 3.2, corresponding to y ∼ I(0) and low persistence,

SPECS correctly selects the lagged dependent variable in all simulation trials, such

that the pseudo-power plot displays a constant line at 1. Interestingly, the PCS also

seems constant around 35%. Upon closer inspection, we find that SPECS chooses an

alternative representation of the single-equation model in which the contribution of

the non-trivial cointegrating vector seems to be absorbed in the lagged level of the

dependent variable. While the resulting model differs from the implied oracle model,

which we indeed find to be accurately estimated by the OLS oracle procedure, the

model choice seems to be motivated by a favourable bias-variance trade-off. In line

with this conjecture, the nowcast performance of SPECS occasionally exceeds that

of the oracle procedure in which a larger number of parameters must be estimated.

Focussing on the ADL models, we observe that the standard ADL nowcasts are again

inferior, whereas the ADL-ADF model seems to benefit from correct identification of

the stationarity of the dependent variable, which is particularly relevant given that

the dependent variable itself is a main component in the optimal forecast.10 However,

the nowcast accuracy of SPECS is almost identical to that of the ADL-ADF model,

a finding that we interpret as reassuring and confirmatory of our claim that SPECS

may be used without any pre-testing procedure. Moreover, the absence of strong per-

sistence in the stationary variables idealizes the results of the ADL-ADF procedure.

In typical macroeconomic applications many time series that are considered as I(0)

display much slower mean reversion and, consequently, are more difficult to correctly

identify as being stationary.11 Accordingly, in the second row we display the result for

a DGP where the stationary variables display more persistent behaviour. The perfor-

mance of SPECS remains largely unaffected, whereas the nowcasting performance of

the ADL-ADF model deteriorates drastically. We stress the relevance of this result,

given that this estimation method in combination with a similar pre-testing proce-

dure is fairly common practice. Somewhat surprisingly, the ADL model in differences

nowcasts almost as well as SPECS for this particular setting. Overall, however, the

nowcasts of SPECS remain the most accurate and, equally important, most stable

across all specifications.

10The importance of correctly identifying the order of integration of the dependent variable returns
in Chapter 5 as well.

11For example, the ten time series in the popular Fred-MD dataset which McCracken and Ng (2016)
propose to be I(0), i.e. the series corresponding to a tcode of one, all display strong persistence or
near unit root behaviour, with the smallest estimated AR(1) coefficient exceeding 0.86.
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Table 3.3 Nowcasting performance on a DGP with a non-stationary factor.

Root Mean Squared Nowcast Error
SPECS1 SPECS2 SPECS1 - OLS

No Dynamics 1.07 1.11 0.99
Dynamics 1.02 1.02 1.01

This table reports the root mean squared nowcast errors relative to the ADL model.

Continuing the analysis of mixed order datasets, rows 3 and 4 of Figure 3.2 display

the results for DGPs where the dependent variable is generated as being integrated

of order one. The pseudo-power plot clearly reflects that δ 6= 0 only when α1 > 0.

Furthermore, while SPECS performs well at removing the irrelevant variables, the

relevant variables are not all selected correctly, resulting in somewhat lower values

for the PCS metric. Nevertheless, the nowcast performance remains superior to that

of the ADL model, especially in the presence of cointegration with fast adjustment

rates.

3.4.3 A Dense Factor Model

Finally, to avoid idealizing the results through a choice of DGPs that suits our proce-

dure, we consider a more adverse setting by generating the data with a non-stationary

factor structure, while allowing for contemporaneous correlation and dynamic struc-

tures in both the error processes driving the ‘observable’ data and the idiosyncratic

component in the factor structure. The DGP that we adopt corresponds to setting

III in Palm et al. (2011, p. 92). For completeness, the DGP is given by

zt = λft + ωt,

where zt is a (50×1) time series process and ft is a single scalar factor. Furthermore,

ft = φft−1 + ζt,

ωi,t = θiωi,t−1 + vi,t

and

vt = A1vt−1 + ε1,t +B1ε1,t−1,

ζt = α2ζt−1 + ε2,t + β2ε2,t−1,

where ε1,t ∼ N (0,Σ) and ε2,t ∼ N (0, 1). The comparison focuses exclusively on
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the nowcasting performance for a setting without dynamics (A1 = B1 = 0 and

α2 = β2 = 0) and a setting with dynamics (α2 = β2 = 0.4). The construction of A1

and B1 is analogous to Palm et al. (2011, p. 93). We report the RMSNEs of SPECS

relative to the ADL in Table 3.3. Given that the single-equation model is misspecified

in this setup, it is unreasonable to expect SPECS to outperform. Indeed, we observe

that the RMSNEs are all very close to one and, while in most cases the ADL model

performs slightly better, the difference seems negligible. Hence, the risk of using

SPECS to estimate a misspecified model in the sense considered here, does not seem

to be higher than the use of the alternative ADL model, whereas the relative merits

of SPECS when applied to a wide range of correctly specified models are evident from

the first part of the simulations.

3.5 Empirical Application

Inspired by Choi and Varian (2012), we consider the possibility of nowcasting Dutch

unemployment with our methods based on Google Trends data. Google Trends are

hourly updated time series consisting of normalized indices depicting the volume of

search queries entered in Google originating from a certain geographical area that

were entered into Google. The Dutch unemployment rates are made available by

Statistics Netherlands, an autonomous administrative body focussing on the collection

and publication of statistical information. These rates are published on a monthly

basis with new releases being made available on the 15th of each new month. This

misalignment of publication dates clearly illustrate a practically relevant scenario

where improvements upon forward looking predictions of Dutch unemployment rates

may be obtained by utilizing contemporaneous Google Trends series.

We collect a novel dataset containing seasonally unadjusted Dutch unemployment

rates from the website of Statistics Netherlands12 and a set of manually selected

Google Trends time series containing unemployment related search queries, such as

‘Vacancy’, ‘Resume’ and ‘Unemployment Benefits’. The dataset comprises of monthly

observations ranging from January 2004 to December 2017. While the full dataset con-

tains 100 unique search queries, a number of these contain zeroes for large sub-periods

indicating insufficient search volumes for those particular series. Consequently, we re-

move all series that are perfectly correlated over any sub-period consisting of 20% of

the total sample.13

The benchmark model we consider is an ADL model fitted to the differenced
12http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLEN&PA=80479eng&LA=EN
13The dataset is available with the R code at https://sites.google.com/view/etiennewijler.
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Table 3.4 Number of parameters.

p N ′ ADL-ADF SPECS1 SPECS2

1 262 1.27 0.99 1.07
3 436 1.06 0.82* 0.88
6 697 0.90 0.90 0.84*

This table reports the number of parameters estimated, N ′, as well as the Mean-
Squared Nowcast Error relative to the ADL model for varying number of lagged
differences p. We use * to denote rejection by the Diebold-Mariano test at the 10%
significance level.

data. In detail, let yt and xt be the scalar unemployment rate and the vector of

Google Trends series observed at time t, respectively, and define zt = (yt,x
′
t)
′. The

benchmark ADL estimator fits

∆yt = π′0∆xt +

p∑
j=1

π′j∆zt−j + εt.

However, this estimator ignores the order of integration of individual time series by

differencing the whole dataset, while it is common practice to transform individual

series to stationarity based on a preliminary test for unit roots. Hence, we include

another ADL model where the decision to difference is based on a preliminary ADF

test referred to as ADL-ADF.14 Finally, SPECS estimates

∆yt = δ′zt−1 + π′0∆xt +

p∑
j=1

π′j∆zt−j + εt.

All tuning parameters are obtained by time series cross-validation (Hyndman, 2016)

and we use kδ = 1.1 which performed well based on a preliminary analysis.15 The first

nowcast is made by fitting the models on a window containing the first two-thirds of

the complete sample, i.e. t = 1, . . . , Tc with Tc = d 2
3T e, based on which the nowcast

for ∆yTc+1 is produced. This procedure is repeated by rolling the window forward by

one observation until the end of the sample is reached, producing a total of 54 pseudo

out-of-sample nowcasts. In Table 3.4 we report the MSNE relative to the ADL model

for p = 1, 3, 6.

14We note that none of the time series were found to be integrated of order 2. The outcome of the
ADF test is reported for each time series in Appendix 3.B.2.

15We compared the nowcast accuracy for varying kδ ∈ [0, 2] and observed that the lowest nowcast
accuracy was obtained for kδ = 1.1, whereas for values of kδ > 1.5 almost all lagged levels were
consistently excluded. In the latter case, the nowcast accuracy of SPECS was similar to that of the
ADL benchmark.
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Figure 3.3: Top-left : Selection frequency, measured as the percentage of all nowcasts
the variable was selected. Bottom-left : Selection stability with green indicating a
variable was included in the nowcast model and red indicating exclusion. Right :
Actual versus predicted unemployed labour force (ULF) in levels and differences.

The ADL-ADF estimator does not perform better than the regular ADL model

for p = 1, 3, indicating that the potential for errors in pre-testing might lead to

unfavourable results. SPECS performs well and is able to obtain smaller mean-squared

nowcast errors than the ADL benchmark across almost all specifications, with the

combination SPECS2 and p = 1 being the exception. Moreover, for SPECS1 (p = 3)

and SPECS2 (p = 6), we find the differences in MSNE to be significant at the 10%

level according to the Diebold-Mariano test. The overall (unreported) MSNE is lowest

for the SPECS1 estimator based on p = 3 lagged differences. Given that the addition

of lagged levels to the models improves the nowcast performance, the premise of

cointegrating relationships between Dutch unemployment rates and Google Trends

series seems likely. To further explore the presence of cointegration among our time

series we group our variables in five categories; (1) Application, (2) General, (3) Job

Search, (4) Recruitment Agencies (RA) and (5) Social Security. We narrow down

our focus to the nowcasts of models with three lagged difference included, p = 3,

estimated by SPECS1. In Figure 3.3 we visually display the share of nowcasts in

which the lagged levels of each variable are included in the estimated model. In

addition, it depicts the selection stability of those variables, where a green colour

indicates that a given variables is included in a given nowcast, and red vice versa.

The figure also displays the actual unemployment rates compared to the nowcasted

values.

Figure 3.3 highlights that only few variables are consistently selected for all now-

casts, although in each category we can distinguish some variables that are included at
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higher frequencies. The variable whose lagged levels are always selected is ‘Vakantiebaan’,

which is a search query for a temporary job during the summer holiday. We postulate

that this variable is selected by SPECS to account for seasonality in the Dutch unem-

ployment rates. In an unreported exercise we estimate the model with the addition of

a set of eleven unpenalized dummies representing different months of the year. While

in this experiment the variable ‘Vakantiebaan’ is never selected, the mean squared

nowcast error increases substantially. Hence, we opt to adhere to our standard model

under the caveat that for at least one of the lagged levels included, seasonality ef-

fects rather than cointegration seem a more appropriate explanation for its inclusion.

Other frequently included variables are queries for vacancies (‘uwv.vacatures’, 78%),

unemployment (‘werkloos’, 76%) and social benefits (‘ww uitkering’, 72%), where the

stated percentages indicate the percentage of nowcast models in which the respective

variables are selected. Furthermore, the last bar represents the frequency in which the

lagged level of the Dutch unemployment rate is selected, which occurs for 43 out of

54 nowcasts (80%). The frequent selection of the lagged level of unemployment rates

in conjunction with the other lagged levels is indicative of the presence of cointegra-

tion among unemployment and Google Trends series. However, we do not attach any

structural meaning to the found equilibria based on the difficulty of interpretation

when one does not assume the presence of weak exogeneity.

To gain insights into the temporal stability of our estimator, we visualize the

selection stability in the bottom-left part of Figure 3.3. Generally, for the early and

later period of the sample very few time series enter the model in levels, whereas for

the middle part of the sample the majority of variables are selected. The exact reason

for these patterns to occur is unknown and raises questions on the stability of Google

trends as informative predictors of Dutch unemployment rates. Feasible explanations

include structural instability in the DGP, seasonality effects or data idiosyncrasies.

However, there are additional peculiarities specific to the use of Google trends such as

normalization, data hubris and search algorithm dynamics, all of which might result

in unstable performance (cf. Lazer et al., 2014). Since the focus of this application is

not on a structural analysis of the relation between Google Trends and unemployment

rates, we consider this issue outside the scope of the chapter. Instead, we focus

on the relative empirical performance of our methods, which, notwithstanding the

aforementioned caveats, we deem convincingly favourable for SPECS. Finally, on the

right of Figure 3.3, we display the realized and predicted unemployment rates in

levels and differences. Both the penalized ADL model and SPECS seem to follow the

actual unemployment rates with reasonable accuracy, with the largest nowcast errors

occurring in the first half of 2014. Prior to this period the unemployment rates had
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been steadily rising in the aftermath of the economic recession, whereas 2014 marks

the start of a recovery period. Given that the models are fit on historical data, it

is natural that the estimators overestimate the unemployment rate shortly after the

start of the economic recovery. Perhaps not entirely coincidental, the start of the

period over which the majority of lagged levels are included by SPECS coincides with

this recovery period as well, thereby hinting towards structural instability in the DGP

as a plausible cause for the observed selection instability.

3.6 Conclusion

In this chapter we propose the use of SPECS as an automated approach to cointe-

gration modelling. SPECS is an intuitive estimator that applies penalized regression

to a conditional error-correction model. We show that SPECS possesses the oracle

property and is able to consistently select the long-run and short-run dynamics in

the underlying DGP. A simulation exercise confirms strong selective and predictive

capabilities in both low and high dimensions with impressive gains over a benchmark

penalized ADL model that ignores cointegration in the dataset. The assumption of

weak exogeneity is important for efficient estimation and interpretation of the model.

However, while our estimator is not entirely insensitive to this assumption, the sim-

ulation results demonstrate that the selective capabilities remain adequate and the

nowcasting performance remains superior to the benchmark. Finally, we consider an

empirical application in which we nowcast the Dutch unemployment rate with the use

of Google Trends series. Across all three different dynamic specifications considered,

SPECS attains higher nowcast accuracy, thus confirming the results in our simulation

study. As a result, we believe that our proposed estimator, which is easily imple-

mented with readily available tools at low computational cost, offers a valuable tool

for practitioners by enabling automated model estimation on relatively large and po-

tentially non-stationary datasets and, most importantly, allowing to take into account

potential (co)integration without requiring pre-testing procedures.

The use of a fixed-dimensional asymptotic framework can be considered as a lim-

itation that applies to this chapter. While the fixed-dimensional framework allows

the theoretical results to be derived under fewer and more intuitive assumptions, it

is not informative of the behaviour one may expect in high-dimensional applications.

However, the simulation exercise and the empirical application provide promising re-

sults which seem to indicate that the theoretical properties of SPECS carry over to

a high-dimensional asymptotic framework. We consider this issue in the following

chapter.
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Appendix 3.A Proofs

3.A.1 Preliminary Results

Similar to (3.8), we write the conditional error correction model in matrix notation

as

∆y = Z−1δ +Wπ + ιµ0 + t̄τ0 + εy,

where by construction E(εtεy,t) = 0. Following the discussion in Section 3.3.2, we

may equivalenty write this as

∆y = Z1,−1δ1 +W2π2 + ιµ0 + t̄τ0 + εy,

whereZ1,−1 contains the subset of variables inZ−1 that are I(1) andW2 = (Z2,−1,W )

with Z2,−1 the subset of I(0) variables. For notational convencience we proceed under

the assumption that all variables are integrated of order one such that Z−1 = Z1,−1.

We stress, however, that this assumption is without loss of generality, as one may

replace the matrices in the proof below by their decomposed variants without addi-

tional complications. Under Assumption 3.2, the moving average representation of

the N -dimensional time series zt is given by

Z−1 = S−1C
′ + ιµ′ + t̄τ ′ +U−1, (3.A.1)

where S−1 = (s0, . . . , sT−1)′, with st =
∑t
i=1 εi,

C = B⊥

A′⊥
IN − p∑

j=1

Φj

B⊥
−1

A⊥,

and U−1 = (u0, . . . ,uT−1)′, with ut = C(L)εt+z0 consisting of a linear process plus

initial conditions.

We first present a number of useful intermediary results that will aid the proofs of

our main results. The first of such results details the weak convergence of integrated

processes. Based on Assumption 3.1, the following results are well-known in the

literature.

Lemma 3.A.1. Let B(r) denote a Brownian Motion with covariance matrix Σ and

define D = (ι, t̄) and MD = IT −D(D′D)−1D′. Then, under Assumption 3.1,

(a) T−2S′−1S−1
d→
∫ 1

0
B(r)B(r)′dr
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(b) T−3/2S′−1ι
d→
∫ 1

0
B(r)dr

(c) T−5/2S′−1t̄
d→
∫ 1

0
rB(r)dr

(d) T−1S′−1εy
d→
∫ 1

0
B(r)dBεy (r)

(e) T−3/2S′−1U−1
d→
(∫ 1

0
B(r)dr

)
z′0

(f) T−1U ′−1U−1
p→
∑∞
j=0CjΣC

′
j.

In addition, these results carry through for S∗−1 = MDS−1 by replacing B(r) for

B∗(r) = B(r)−
∫ 1

0
B(s)ds− 12

(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
B(s)ds in the corresponding limit

distributions.

Proof. Under Assumption 3.1, Phillips and Solo (1992) show that εt satisfies a multi-

variate invariance principle. Consequently, the convergence results (a)-(e) are directly

implied by Lemma 2.1 in Park and Phillips (1989), whereas (f) is a standard result

for linear processes (e.g. Brockwell and Davis, 1991, p. 404). The claim that the

convergence holds true after de-meaning and de-trending, i.e. after pre-multiplication

of the data matrix by MD, can be found in most standard time series textbooks, see

for example Davidson (2000, p. 354). �

Absent of cointegration in the data, the matrix C will be of full rank. In this

setting, the following convergence results are well-established in the literature.

Lemma 3.A.2. Let MD be defined as in Lemma 3.A.1. Then, under Assumptions

3.1 and 3.2,

(a) T−2Z ′−1MDZ−1
d→ C

(∫ 1

0
B∗(r)B∗′(r)dr

)
C ′,

(b) T−3/2Z ′−1MDW
p→ 0,

(c) T−1W ′MDW
p→ Σw,

(d) T−1Z ′−1MDεy
d→
∫ 1

0
B∗(r)dBεy (r),

(e) T−1/2W ′MDεy
d→ N

(
0, σ2

εyΣw

)
,

where B∗(r) as in Lemma 3.A.1.

Proof. These results are standard and details of the proof are omitted. Briefly, one

can plug in the definitions of the matrices Z−1 and W based on (3.A.1), and apply

Lemma 3.A.1 to show the results (a)-(d). Result (e) follows from an application

of a central limit theorem for linear process as in Theorem 3.4 in Phillips and Solo

(1992). �
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When cointegration is present in the data, the matrix C will be of rank N − r,
which will be problematic in applications where its inverse is required. A workaround

is to transform the system into a stationary and non-stationary component. From

(3.A.1), it follows that

Z−1B = ιµ′B + t̄τ ′B +U−1B

is a (trend-)stationary process and

Z−1A⊥ = S−1C ′A⊥ + ιµ′A⊥ + t̄τ ′A⊥ +U−1A⊥

contains the stochastic trends.16 Accordingly, define the linear transformation

Q :=

B
′ 0

0 IM

A′⊥ 0

 with Q−1 =

[
A(B′A)−1 0 B⊥(A′⊥B⊥)−1

0 IM 0

]
,

and let V = (Z−1,W ). Then,

V Q =
[
Z−1B W Z−1A⊥

]
=
[
V1 V2

]
,

with V1 = (Z−1B,W ). We maintain the convention that for the case r = N , we

define B⊥ = A⊥ = 0 and V = V1. Based on this decomposition, we recall a number

of convergence results under the remark that the results involving V2 are relevant

only for the case r < N .

Lemma 3.A.3. Let MD be defined as in Lemma 3.A.1. Then, under Assumptions

3.1 and 3.2,

(a) T−2V ′2MDV2
d→ A′⊥C

(∫ 1

0
B∗(r)B∗′(r)dr

)
C ′A⊥

(b) T−3/2V ′2MDV1
p→ 0

(c) T−1V ′1MDV1
p→ ΣV1

(d) T−1V ′2MDεy
d→ A′⊥C

(∫ 1

0
B∗(r)dBεy (r)

)
(e) T−1/2V ′1MDεy

d→ N
(

0, σ2
εyΣV1

)
Proof. These results correspond to Lemma 1 in Ahn and Reinsel (1990) and we refer

the reader to the original paper for their proofs. �

16Note that C′A⊥ simplifies to A⊥ when Φj = 0 for j = 1, . . . , p.
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The final preliminary result that will be used is an extension of the Frisch-Wraugh-

Lovell theorem to penalized regression.

Lemma 3.A.4. Let MD be defined as in Lemma 3.A.1 and consider the solutions to

the following two lasso regressions:(
γ̂′, θ̂′

)′
=arg min

γ,θ
‖∆y − V γ −Dθ‖22 + Pλ(γ), (3.A.2)

γ̆ =arg min
γ

‖MD∆y −MDV γ‖22 + Pλ(γ), (3.A.3)

where

Pλ(γ) = λG

(
N∑
i=1

|γi|2
)1/2

+

N∑
i=1

λ2,i |γi|+
M∑
j=1

λ3,j |γN+j | .

Based on (3.A.2) and (3.A.3) we have

(i) γ̂ = γ̆;

(ii) θ̂ = (D′D)−1D′(∆y − V ′γ̂).

Proof of Lemma 3.A.4. The proof is provided in Yamada (2017) for the standard

lasso. In our case the only difference is the addition of the derivative of the group

penalty in the subgradient vector. Once this contribution is added the proof is entirely

analogous. �

3.A.2 Proofs of Theorems

Proof of Theorem 3.1. The proof largely follows along the lines of Liao and Phillips

(2015). Recall from (3.9) that we obtain the standardized estimates γ̂s by minimizing

GT (γs,θ) =
∥∥∥∆y − Ṽ γs −Dθ

∥∥∥2

2
+ Pλ(γs),

which by Lemma 3.A.4 are equivalent to those obtained from minimizing

GT (γs) =
∥∥∥MD

(
∆y − Ṽ γs

)∥∥∥2

2
+ Pλ(γs), (3.A.4)

where we defined Ṽ = V Σ−1
V and γs = ΣV γ, with ΣV = diag(ΣZ ,ΣW ) a di-

agonal weighting matrix, which results in the decomposition γs = (δs′,πs′)′ =

(δ′ΣZ ,π
′ΣW )′. By construction we have GT (γ̂s) < GT (γs), from which it follows
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that

(γ̂s − γs)′Ṽ ′MDṼ (γ̂s − γs)− 2(γ̂s − γs)′Ṽ ′MDεy ≤ Pλ(γs)− Pλ(γ̂s),

which is equivalent to

(γ̂ − γ)′V ′MDV (γ̂ − γ)− 2(γ̂ − γ)′V ′MDεy ≤Pλ(γs)− Pλ(γ̂s). (3.A.5)

The strategy to derive consistency of the estimators consists of appropriately

bounding both sides of (3.A.5) from which the results in Theorem 3.1 can be obtained.

We first proceed under the assumption that there is no cointegration present in the

underlying DGP, i.e. δ = 0. Define the scaling matrix DT = diag(TIN ,
√
TIM ).

Then, a lower bound for the first left-hand side term of (3.A.5) is given by

(γ̂ − γ)DTD
−1
T V ′MDV D

−1
T DT (γ̂ − γ) ≥ ‖DT (γ̂ − γ)‖22 φmin,

where φmin is the smallest eigenvalue of D−1
T V ′MDV D

−1
T . Let A be a (N × N)

matrix and define ρmin(A) : RN×N → C as the function that extracts its minimum

eigenvalue. Then, by the continuous mapping theorem, it follows that

φmin
d→ ρmin

([
C
(∫ 1

0
B∗(r)B∗′(r)dr

)
C ′ 0

0 ΣW

])
> 0, a.s. (3.A.6)

The almost sure positiveness of the minimum eigenvalue is motivated as follows.

Absent of cointegration, C is full rank and
∫ 1

0
B∗(r)B∗′(r)dr � 0 almost surely by

Lemma A2 in Phillips and Hansen (1990), such that C
(∫ 1

0
B∗(r)B∗′(r)dr

)
C ′ �

0. Additionally, ΣW � 0 as a consequence of Assumption 3.1. Then, as a direct

consequence of (3.A.6), it also holds that P(φmin > 0)→ 1.

The second term in (3.A.5) is bounded by

(γ̂ − γ)′DTD
−1
T V ′MDεy ≤ ‖DT (γ̂ − γ)‖2

∥∥D−1
T V ′MDεy

∥∥
2

= ‖DT (γ̂ − γ)‖2 aT ,

where aT =
∥∥D−1

T V ′MDεy
∥∥

2
= Op(1) by Lemma 3.A.2.

Next, we derive an upper bound for the right-hand side of (3.A.5). For ease of

exposition, we write λ2,i = ωkδδ,iλδ,T and λ3,j = ωkππ,jλπ,T . First, note that

λG,T

(
‖δs‖2 −

∥∥∥δ̂s∥∥∥
2

)
≤ λG,T

∥∥∥δ̂s − δs∥∥∥
2
≤ λG,T ‖γ̂s − γs‖2

≤ T−1/2λG,T ‖DT (γs − γ̂s)‖2 ,
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where T−1/2λG,T → 0 by assumption. To bound the difference between the individual

penalties, we define λγ = (λ′2,λ
′
3)′ and λSγ as an (N +M)-dimensional vector with

λSγ ,i = λγ,i1{γi 6= 0}. Then,

N∑
i=1

λ2,i

(
|δsi | −

∣∣∣δ̂si ∣∣∣)+

M∑
j=1

λ3,j

(∣∣πsj ∣∣− ∣∣π̂sj ∣∣)
≤
∑
i∈Sδ

λ2,i

(
|δsi | −

∣∣∣δ̂si ∣∣∣)+
∑
j∈Sπ

λ3,j

(∣∣πsj ∣∣− ∣∣π̂sj ∣∣)
≤
∑
i∈Sδ

λ2,i

∣∣∣δ̂si − δsi ∣∣∣+
∑
j∈Sπ

λ3,j

∣∣π̂sj − πsj ∣∣ = λ′SγΣVD
−1
T DT |γ̂ − γ|

≤
∥∥D−1

T ΣV λSγ
∥∥

2
‖DT (γ̂s − γs)‖2 .

Furthermore, it is straightforward to see that
∥∥D−1

T ΣV λSγ
∥∥

2
= op(1) if

λ3,jσW,jj√
T

=
λπ,TσW,jj
√
T
∣∣∣π̂kπOLS,j∣∣∣ = op(1),

for all j ∈ Sπ. Since π̂OLS,j
p→ πj by the consistency of the OLS estimator, we require

the condition
λπ,TσW,max√

T

p→ 0.

Combining the bounds obtained thus far we can rewrite (3.A.5) as

φmin ‖DT (γ̂ − γ)‖22 − 2aT ‖DT (γ̂ − γ)‖2
≤
(
T−1/2λG +

∥∥D−1
T ΣV λSγ

∥∥
2

)
‖DT (γ̂ − γ)‖2 ,

from which it follows that

‖DT (γ̂ − γ)‖2 ≤ φ
−1
min2aT + φ−1

min

(
T−1/2λG +

∥∥D−1
T ΣV λSγ

∥∥
2

)
= Op(1),

which demonstrates the consistency of our estimator absent of cointegration.

Next, we assume there exists cointegration between the variables in the DGP,

i.e. δ 6= 0. Let Q be defined as in (3.13) and define the scaling matrix ST =

diag(
√
TIM+r, TIN−r). By arguments analogous to the case without cointegration,

we obtain a lower bound for the first left-hand side term of (3.A.5) as

(γ̂−γ)′Q−1STS
−1
T QV ′MDV Q

′S−1
T STQ

′−1(γ̂−γ) ≤ ψmin

∥∥STQ′−1(γ̂ − γ)
∥∥2

2
,

where ψmin is the smallest eigenvalue of S−1
T QV ′MDV Q

′S−1
T . By Lemma 3.A.3 and
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the continuous mapping theorem, we have

ψmin
d→ ρmin

([
ΣV1

0

0 A′⊥C
(∫ 1

0
B∗(r)B∗′(r)dr

)
C ′A⊥

])
> 0, a.s.

The almost sure positiveness is implied by the fact that the matrix ΣV1 � 0 as a

consequence of Assumption 3.1. Additionally, by Assumption 3.2, A′⊥C is an (r×N)-

dimensional matrix of full-row rank r and
∫ 1

0
B∗(r)B∗′(r)dr � 0 by Lemma A2 in

Phillips and Hansen (1990). Consequently, P(ψmin > 0)→ 1.

The second term of (3.A.5) is bounded by

(γ̂ − γ)′Q−1STS
−1
T QV ′MDεy ≤

∥∥STQ′−1(γ̂ − γ)
∥∥

2

∥∥S−1
T QV ′MDεy

∥∥
2

=
∥∥STQ′−1(γ̂ − γ)

∥∥
2
bT ,

where bT = Op(1) according to Lemma 3.A.3. The bounds for the right-hand side

of (3.A.5) are the same as for the case δ = 0, but with DT replaced by STQ
′−1. In

particular, we obtain

λG,T

(
‖δs‖2 −

∥∥∥δ̂s∥∥∥
2

)
≤ T−1/2λG,T

∥∥STQ′−1(γs − γ̂s)
∥∥

2
,

and

N∑
i=1

λ2,i

(
|δsi | −

∣∣∣δ̂si ∣∣∣)+

M∑
j=1

λ3,j

(∣∣πsj ∣∣− ∣∣π̂sj ∣∣) ≤ ∥∥S−1
T QσV λSγ

∥∥
2

∥∥STQ′−1(γ̂si − γsi )
∥∥

2
.

Furthermore, we can bound

∥∥S−1
T QΣV λSγ

∥∥
2
≤ T−1/2

∥∥λSγ∥∥2
‖ΣV ‖2 ‖Q‖2 ,

which is easily seen to be bounded in probability when
λ3,jσW,jj√

T
= op(1), for j ∈ Sπ,

and

λ2,iσZ,ii√
T

=
λδ,TσZ,ii
√
T
∣∣∣δ̂kδOLS,i∣∣∣ = op(1),

for i ∈ Sδ. Since δ̂OLS,i
p→ δi by the consistency of the OLS estimator, we require the

additional condition
λδ,TσZ,max√

T

p→ 0.
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Combining the bounds for the case δ 6= 0 we can rewrite (3.A.5) as

ψmin

∥∥STQ′−1(γ̂ − γ)
∥∥2

2
− 2bT

∥∥STQ′−1(γ̂ − γ)
∥∥

2

≤
(
T−1/2λG +

∥∥S−1
T QΣV λSγ

∥∥
2

)∥∥STQ′−1(γ̂ − γ)
∥∥

2
,

which can be rewritten as

∥∥STQ′−1(γ̂ − γ)
∥∥

2
≤ ψ−1

min2bT + ψ−1
min

(
T−1/2λG +

∥∥S−1
T QΣV λSγ

∥∥
2

)
= Op(1),

thereby completing the proof for the case of cointegration. �

Proof of Theorem 3.2. We first proceed by deriving the selection consistency for the

case δ = 0. Assume that δ̂si 6= 0 is a minimizer of (3.9) and thus, by application of

Lemma 3.A.4, also minimizes (3.A.4). Let zi denote the i-th column vector of Z−1.

The first order conditions for δ̂si to be a minimum state

∂GT (γs)

∂δsi

∣∣∣
γs=γ̂s

= z̃′iMD

(
∆y − Ṽ γ̂s

)
− λG

2
δ̂si

∥∥∥δ̂s∥∥∥−1

2
− λ2,isign(δ̂si )

2
= 0.

After multiplying by
σZ,ii
T we get

z′iMD

(
∆y −Zδ̂ −Wπ̂

)
T

−
λGσZ,iiδ̂

s
i

∥∥∥δ̂s∥∥∥−1

2

2T
− λ2,iσZ,iisign(δ̂si )

2T
= 0 (3.A.7)

The first term can be rewritten as

z′iMD

(
∆y −Zδ̂ −Wπ̂

)
T

=
z′iMD

(
εy − V D−1

T DT (γ̂ − γ)
)

T
= Op(1),

where the stochastic boundedness follows from the convergence in Lemma 3.A.2 and

the result that DT (γ̂−γ) = Op(1) under the assumptions in Theorem 3.1. Regarding

the second term in (3.A.7), note that δ̂si

∥∥∥δ̂s∥∥∥−1

2
= Op(1), because all estimates share

the same rate of convergence. Then,

λGσZ,iiδ̂
s
i

∥∥∥δ̂s∥∥∥−1

2

2T

p→ 0,

since by our assumptions in Theorem 3.1,
λGσZ,max√

T
→ 0. Finally, for the last term in
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(3.A.7) we obtain

λ2,iσz,ii
2T

=
λδ,TσZ,ii

2T
∣∣∣δ̂OLS,i∣∣∣kδ =

λδ,TσZ,ii
T 1−kδ

1

2
∣∣∣T δ̂OLS,i∣∣∣kδ →∞

under the assumption that
λδ,TσZ,min

T 1−kδ →∞. This implies that

P(δ̂si = 0) = 1− P(δ̂si 6= 0) ≥ 1− P
(
∂GT (γs)

∂δsi

∣∣∣
γs=γ̂s

= 0

)
→ 1. (3.A.8)

Then, by noting that P(δ̂si = 0) = P(δ̂i = 0), the selection consistency for δ̂i absent of

cointegration follows.

Next, assume π̂sj 6= 0 while πj = 0 and let wj be the j-th column of W . For π̂sj to

be a minimum of (3.A.4) the first order conditions, after appropriate scaling, state

w′jMD (∆y − V γ̂)
√
T

−
λ3,jσW,jjsign(π̂sj )

2
√
T

= 0. (3.A.9)

The first term can be rewritten as

w′jMD (∆y − V γ̂)
√
T

=
w′jMD

(
εy − V D−1

T DT (γ̂ − γ)
)

√
T

= Op(1),

where the stochastic boundedness follows from the Lemma 3.A.2 and DT (γ̂ − γ) =

Op(1) by Theorem 3.1. For the second term in (3.A.9) we have

λ3,jσW,jj

2
√
T

=
λπ,TσW,jj

2
√
T |π̂OLS,j |kπ

=
λπ,TσW,jj
T 1/2−kπ/2

1

2
∣∣∣√T π̂OLS,j∣∣∣kπ →∞ (3.A.10)

under the assumption that
λπ,TσW,min

T 1/2−kπ/2 → ∞. The selection consistency for π̂j then

follows by the same argument used in (3.A.8).

The strategy for showing selection consistency in the presence of cointegration is

analogous, albeit algebraically slightly more tedious. Let δsi = γsi = 0. Then the

first order condition for δ̂si 6= 0 to be a minimum of the objective function, after pre-

multiplying by
σZ,ii
T , are again given by (3.A.7). Letting ei denote the i-th column of

IN+M , the first term can be rewritten as

z′iMD (εy − V (γ̂ − γ))

T
=
e′iV

′MD (εy − V (γ̂ − γ))

T

=
e′iQ

−1ST
T

S−1
T QV ′MD

(
εy − V Q′S−1

T STQ
′−1(γ̂ − γ)

)
= Op(1),
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because
e′iQ

−1ST
T = O(1), S−1

T QV ′MDεy = Op(1) and S−1
T QV ′MDV Q

′S−1
T = Op(1)

by Lemma 3.A.3, and STQ
′−1(γ̂ − γ) = Op(1) by Theorem 3.1. The second term

in (3.A.7) again converges to zero in probability and for the third and final term we

obtain

λ2,iσZ,ii
2T

=
λδ,TσZ,ii

2T
∣∣∣δ̂OLS,i∣∣∣kδ =

λδ,TσZ,ii
T 1−kδ/2

1

2
∣∣∣√T δ̂OLS,i∣∣∣kδ →∞,

under the assumption that
λδ,TσZ,ii
T 1−kδ/2 →∞. Then, by the same argument as in (3.A.8)

we can conclude that P(δ̂i = 0)→ 1.

Similarly, letting πj = 0, the first order conditions for π̂j 6= 0 to be a minimum of

(3.A.4) when πj = 0 are again given by (3.A.9). The first term can be rewritten as

w′jMD (εy − V (γ̂ − γ))
√
T

=
w′jMD

(
εy − V Q′S−1

T STQ
′−1(γ̂ − γ)

)
√
T

= Op(1),

because
w′jMDεy√

T
= Op(1) by Lemma 3.A.2,

w′jMDV Q
′S−1
T√

T
=
[
T−1w′jZ−1B T−1w′jW T−3/2w′jZ−1A⊥

]
= Op(1),

by Lemma 3.A.3 and STQ
′−1(γ̂ − γ) = Op(1) by Theorem 3.1. Furthermore, we

again have that
λ3,jσW,jj

2
√
T

→ ∞ based on (3.A.10). Consequently, it follows that

P(π̂j = 0)→ 1 by the same argument used for (3.A.8), thus completing the proof. �

Proof of Theorem 3.3. Without loss of generality we impose an ordering on the vari-

ables such that V = (VSγ ,VScγ ) = (ZSδ ,WSπ ,ZScδ ,WScπ
), where the variables col-

lected in VSγ carry non-zero coefficients in the true DGP, whereas VScγ contains all

irrelevant variables. The de-standardized estimate γ̂Sγ is defined as σ−1
VSγ
γ̂sSγ . Since

γ̂s are the minimizers of (3.A.4), they must set the subgradient equations equal to

zero:

Ṽ ′MD(∆y − Ṽ γ̂s)− 1

2
ŝ (γ̂s) = 0,

or after pre-multiplication with ΣV by

V ′MD(∆y − V γ̂)− 1

2
ΣV ŝ (γ̂s) = 0, (3.A.11)
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where we let ŝ (γ̂s) denote the sub-gradient of the penalty function Pλ(γ̂s). In par-

ticular, define Λ = diag(λ2, λ3), then

ŝ (γ̂s) = λGŝG(δ̂s) + ΛŝI (γ̂s) ,

where ŝG(δ̂s) is a (N +M)-dimensional vector with the first N elements being given

by δ̂/
∥∥∥δ̂∥∥∥

2
, whenever at least one of the δ̂j 6= 0, or by a N -dimensional vector x

with ‖x‖2 ≤ 1 otherwise, and the remaining M elements of ŝG(δ̂s) are equal to zero.

Furthermore, ŝI (γ̂s), has element j equal to sign(γ̂sj ) when γ̂sj 6= 0 and can be any

scalar x ∈ [−1, 1] otherwise. Below we will additionally refer to the vector

ŝ
(
γ̂sSγ

)
= λGŝG(γ̂sSγ ) + ΛSγ ŝI

(
γ̂sSγ

)
,

which is the sub-gradient of the penalty function for the coefficients indexed by

Sγ . Important to note is that given our assumptions on the penalty terms, i.e.
λG,TσZ,max√

T

p→ 0,
λδ,TσZ,max√

T
→ 0 and

λπ,TσW,max√
T

→ 0, it immediately follows that

T−1/2ΣV,Sγ ŝ
(
γ̂sSγ

)
→ 0. (3.A.12)

We proceed by rewriting the first order conditions (3.A.11) in terms of γ̂Sγ as

0 =V ′SγMD

(
∆y − VSγ γ̂Sγ − VScγ γ̂Scγ

)
− 1

2
ΣV,Sγ ŝ

(
γ̂sSγ

)
=V ′SγMD

(
ε̂OLS − VSγ

(
γ̂Sγ − γ̂OLS,Sγ

)
− VScγ γ̂Scγ

)
− 1

2
ΣV,Sγ ŝ

(
γ̂sSγ

)
=− V ′SγMD

(
VSγ

(
γ̂Sγ − γ̂OLS,Sγ

)
+ VScγ γ̂Scγ

)
− 1

2
ΣV,Sγ ŝ

(
γ̂sSγ

)
,

(3.A.13)

where ε̂OLS = MD(∆y − VSγ γ̂OLS,Sγ ) such that V ′SγMDε̂OLS = 0 by construction.

Reordering terms in (3.A.13) gives

γ̂Sγ − γ̂OLS,Sγ =
(
V ′SγMDVSγ

)−1

V ′SγMDVScγ γ̂Scγ

− 1

2

(
V ′SγMDVSγ

)−1

ΣV,Sγ ŝ
(
γ̂sSγ

)
.

(3.A.14)

We now separately consider the cases without and with cointegration in the underlying

DGP. Absent of cointegration we have VSγ = WSπ and γSγ = πSπ such that after
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appropriately scaling (3.A.14) we obtain

√
T (π̂Sπ − π̂OLS,Sπ ) =−

(
T−1W ′

SπMDWSπ

)−1
T−1/2W ′

SπMDVScγ γ̂Scγ

− 1

2

(
T−1W ′

SπMDWSπ

)−1
T−1/2ΣW,Sπ ŝ

(
γ̂sSγ

)
= op(1),

where the stated convergence follows, because P(γ̂Scγ ,i = 0) → 1, for all i ∈ Scγ , such

that

(
T−1W ′

SπMDWSπ

)−1
T−1/2W ′

SπMDVScγ γ̂Scγ

vanishes in probability and

1

2

(
T−1W ′

SπMDWSπ

)−1
T−1/2ΣW,Sπ ŝ

(
γ̂sSγ

)
= op(1)

by Lemma 3.A.2 and (3.A.12). Alternatively, when cointegration is present in the

data we make use of ST,Sγ and QSγ as defined in Theorem 3.3. Observe that

QSγvSγ ,t =

 B
′
Sδ
zSδ,t−1

wSπ,t

B′Sδ,⊥zSδ,t−1

 =

[
vSγ1 ,t

vSγ2 ,t

]
,

where vSγ1
,t = (z′Sδ,t−1BSδ ,w

′
t)
′ ∼ I(0) and vSγ2

,t = zSδ,t−1B⊥,Sδ ∼ I(1). In matrix

form, we write

VsγQ
′
Sγ =

[
VSγ ,1 VSγ ,2

]
,

with VSγ ,1 =
[
Z−1,SδBSδ WSπ

]
and VSγ ,2 = Z−1,SδBSδ,⊥. By a straightforward

adaptation17 of Lemma 3, it then follows that

S−1
T,Sγ

QSγV
′
SγMDVSγQ

′
SγS

−1
T,Sγ

d→

[
ΣVSγ,1

0

0 B′Sδ,⊥CSδ

(∫ 1

0
B∗Sδ(r)B

∗
Sδ

(r)′
)
C ′SδBSδ,⊥

]
,

(3.A.15)

where

ΣVSγ,1
=

[
E
(
B′SδuSδ,tu

′
Sδ,t
BSδ

)
0

0 E
(
wSπ,tw

′
Sπ,t

)] ,
17The adaptation of Lemma 3.A.3 follows from replacing A⊥, ΣV1 and C with BSδ,⊥, ΣVSγ,1

and CSδ , respectively.
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and CSδ = B⊥,Sδ (A′⊥B⊥)
−1

. Then, it follows that

ST,SγQ
′−1
Sγ

(
γ̂Sγ − γ̂OLS,Sγ

)
= −

(
S−1
T,Sγ

QSγV
′
SγMDVSγQ

′
SγS

−1
T,Sγ

)−1

S−1
T,Sγ

QSγV
′
SγMDVScγ γ̂Scγ

− 1

2

(
S−1
T,Sγ

QSγV
′
SγMDVSγQ

′
SγS

−1
T,Sγ

)−1

S−1
T,Sγ

QSγΣV,Sγ ŝ
(
γ̂sSγ

)
= op(1),

where the convergence follows because(
S−1
T,Sγ

QSγV
′
SγMDVSγQ

′
SγS

−1
T,Sγ

)−1

S−1
T,Sγ

QSγV
′
SγMDVScγ γ̂Scγ

vanishes in probability since P(γ̂Scγ ,i = 0)→ 1, for all i ∈ Scγ , and

1

2

(
S−1
T,Sγ

QSγV
′
SγMDVSγQ

′
SγS

−1
T,Sγ

)−1

S−1
T,Sγ

QSγΣV,Sγ ŝ
(
γ̂sSγ

)
= op(1)

because of (3.A.15) and (3.A.12). This completes the proof. �

Proof of Corollary 3.1. We first show that

ST,SγQ
′−1
Sγ

(γ̂Sγ ,OLS − γSγ )
d→ N

(
0, σ2

εyΣ
−1
VSγ,1

)
(
B′Sδ,⊥CSδ

(∫ 1

0
B∗Sδ(r)B

∗
Sδ

(r)′
)
C ′SδBSδ,⊥

)−1

B′Sδ,⊥CSδ

(∫ 1

0
B∗Sδ(r)dBε(r)

)
 ,

(3.A.16)

where σ2
εy = E(ε2y,t). Note that

ST,SγQ
′−1
Sγ

(γ̂Sγ ,OLS − γSγ ) = STSγQ
′−1
Sγ

(
V ′SγMDVSγ

)−1

V ′SγMDεy

=
(
S−1
T,Sγ

QSγV
′
SγMDVSγQ

′S−1
T,Sγ

)−1

S−1
T,Sγ

QSγV
′
SγMDεy.

By a straightforward adaptation of Lemma 3.A.3 it follows that

S−1
T,Sγ

QSγV
′
SγMDεy

d→

 N
(
0, σ2

εyΣVSγ,1

)
B′Sδ,⊥CSδ

(∫ 1

0
B∗Sδ(r)dBε(r)

) ,
such that by (3.A.15) in combination with the continuous mapping theorem for func-

tionals and Slutsky’s theorem, the result in (3.A.16) follows.
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As a direct consequence, we have

T 1/2Q′−1
Sγ

(
γ̂Sγ − γSγ

) d→ N

(
0, σ2

εy

[
Σ−1
VSγ,1

0

0 0

])
,

such that

√
T
(
γ̂Sγ − γSγ

) d→ N

(
0, σ2

εyQ
′
Sγ

[
Σ−1
VSγ,1

0

0 0

]
QSγ

)

= N

(
0, σ2

εy

[
BSδΣ

−1
U B′Sδ 0

0 Σ−1
WSπ

])
,

with ΣU and ΣWSπ
as defined in Corollary 3.1. This proves the part of Corollary 3.1

on the convergence of the estimator.

We proceed by showing that the matrixBSδΣ
−1
U β′Sδ is uniquely defined, regardless

of the choice of the basis matrix BSδ . Naturally, the basis matrix BSδ itself is not

unique, as any matrix whose columns form a basis for the left nullspace of B⊥,Sδ
may be used in the construction of QSγ . Accordingly, assume that another matrix

satisfying this condition is given by B∗Sδ with the i-th column vector given by β∗Sδ,i =

BSδxi, where xi are the coordinates of β∗Sδ,i with respect to the basis BSδ . Then, we

can represent our new basis as

B∗Sδ = BSδX,

where X =
[
x1 . . . xr2

]
. Moreover, X must be linearly independent, because

otherwise there exists a u ∈ Rr2 with u 6= 0 and

B∗Sδu = BSδXu = 0,

thereby contradicting the claim that B∗Sδ is a basis matrix. Consequently, X is an

invertible linear transformation and it follows that

B∗SδΣ
∗−1
U B∗′Sδ = B∗Sδ

(
E
(
B∗′SδuSδ,tu

′
Sδ,t
B∗Sδ

))−1
B∗′Sδ

= BSδX
(
E
(
X ′B′SδuSδ,tu

′
Sδ,t
BSδX

))−1
X ′B′Sδ

= BSδ

(
E
(
B′SδuSδ,tu

′
Sδ,t
BSδ

))−1
B′Sδ = BSδΣ

−1
U B′Sδ ,

thereby validating the claim that BSδΣ
−1
U B′Sδ is uniquely defined regardless of the

choice of basis. �
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Appendix 3.B Supplementary Material

3.B.1 Proof of Corollary 3.2

Proof of Corollary 3.2. The proof of the consistency of the estimated deterministic

components is straightforward, though algebraically tedious. Recall that θ = (µ0, τ0)′.

Based on Lemma 3.A.4 it follows that

θ̂ = (D′D)
−1
D′ (∆y − V γ̂) = (D′D)

−1
D′
(
ε̂y,OLS − V (γ̂ − γ̂OLS) +Dθ̂OLS

)
= θ̂OLS − (D′D)

−1
D′V (γ̂ − γ̂OLS) ,

such that

θ̂ − θ̂OLS = − (D′D)
−1
D′V (γ̂ − γ̂OLS) . (3.B.1)

Note that

(D′D)−1 =
1

|D′D|

[
t̄′t̄ −ι′t̄
−ι′t̄ T

]
,

where

|D′D| = T t̄′t̄− (ι′t̄)2 = O(T 4).

The analytical expression for the constant can be derived from (3.B.1). Assuming for

the moment that µ 6= 0, τ 6= 0 and δ = 0, we obtain

µ̂0 − µ̂0,OLS =
1

|D′D|

[
(t̄′t̄ι′ − ι′t̄t̄′)V

] [
γ̂ − γ̂OLS

]
=

1

|D′D|

[
(t̄′t̄ι′ − ι′t̄t̄′)Z−1 (t̄′t̄ι′ − ι′t̄t̄′)W

] [ δ̂ − δ̂OLS
π̂ − π̂OLS

]

= O(T−4)
[
Op(T

9/2) Op(T
4)
] [ op(T−1)

op(T
−1/2)

]
= op(T

−1/2).

(3.B.2)

This may be verified by writing out each term and applying Lemma 3.A.2. We

demonstrate this for this particular instance. Note that

(t̄′t̄ι′ − ι′t̄t̄′)Z−1 = (t̄′t̄ι′ − ι′t̄t̄′) (S−1C
′ + ιµ′ + t̄τ ′ +U−1)

= (t̄′t̄ι′ − ι′t̄t̄′)S−1C
′ +
(
T t̄′t̄− (ι′t̄)2

)
µ′ + (t̄′t̄ι′ − ι′t̄t̄′)U−1

= Op(T
9/2) +O(T 4) +Op(T

7/2).
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Hence, regardless of whether µ 6= 0 or τ 6= 0, it holds that (t̄′t̄ι′ − ι′t̄t̄′)Z−1 =

Op(T
9/2). Similarly, for the term in (3.B.2) involving W , we note that

W =
[
∆X ∆Z−1 . . . ∆Z−p

]
=
[
∆Z . . . ∆Z−p

] [01×((P+1)N−1)

I(P+1)N−1

]
,

where ∆Z−j = ιτ ′ +U−j with

U ′−j = (C +C(L)(1− L))
[
0N×j ε1 . . . εT−j

]
.

Then, since

(t̄′t̄ι′ − ι′t̄t̄′) ∆Z−j = (t̄′t̄ι′ − ι′t̄t̄′) ιτ ′ + (t̄′t̄ι′ − ι′t̄t̄′)Uj = O(T 4) +Op(T
7/2),

it follows that W = Op(T
4) when τ 6= 0 and W = Op(T

7/2) when τ = 0. However,

when τ = 0 the rate of µ̂0 will be determined by the term in (3.B.2) involving Z−1 and

the convergence rate is thus invariant to the presence of a constant or deterministic

trend.

In the remainder of the proof we proceed along a similar strategy by deriving the

stochastic order for varying δ, τ and µ. However, for the sake of brevity, we refrain

from writing out each individual term and rather refer to each term’s stochastic order

directly. We start by deriving a similar result to (3.B.2), but for the case δ 6= 0.

Then, (3.B.1) can be written as

θ̂ − θ̂OLS = − (D′D)
−1
D′V Q′Q′−1 (γ̂ − γ̂OLS)

= − (D′D)
−1
D′
[
Z−1B W Z−1A⊥

] (A′B)−1A′(δ̂ − δ̂OLS)

π̂ − π̂OLS
(B′⊥A⊥)−1B′⊥(δ̂ − δ̂OLS)

 ,
(3.B.3)
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from which follows that,

µ̂0 − µ̂0,OLS =
1

|D′D|

[
(t̄′t̄ι′ − ι′b̄tb̄t′)Z−1B (t̄′t̄ι′ − ι′t̄t̄′)W (t̄′t̄ι′ − ι′t̄t̄′)Z−1A⊥

]

×

 (A′B)−1A′(δ̂ − δ̂OLS)

π̂ − π̂OLS
(B′⊥A⊥)−1B′⊥(δ̂ − δ̂OLS)



= O(T−4)
[
Op(T

4) Op(T
4) Op(T

9/2)
]op(T

−1/2)

op(T
−1/2)

op(T
−1)

 = op(T
−1/2).

Again, one may verify that the rate of convergence holds irrespective of whether µ = 0

or τ = 0.

Next, we move on to the expression for the trend coefficient. For the cases with

B = 0, we will rely on the expression

τ̂0 − τ̂0,OLS =
1

|D′D|

[
(T t̄′ − ι′t̄ι′)Z−1 (T t̄′ − ι′t̄ι′)W

] [ δ̂ − δ̂OLS
π̂ − π̂OLS

]
, (3.B.4)

whereas for B 6= 0 we will use the equivalent expression

τ̂0 − τ̂0,OLS =
1

|D′D|

[
(T t̄′ − ι′t̄ι′)Z−1B (T t̄′ − ι′t̄ι′)W (T t̄′ − ι′t̄ι′)Z−1A⊥

]

×

 (A′B)−1A′(δ̂ − δ̂OLS)

π̂ − π̂OLS
(B′⊥A⊥)−1B′⊥(δ̂ − δ̂OLS)

 .
(3.B.5)

Then, for the case τ = 0 and B = 0, (3.B.4) gives

τ̂0 − τ̂0,OLS = O(T−4)
[
Op(T

7/2) Op(T
5/2)

] [ op(T−1)

op(T
−1/2)

]
= op(T

−3/2).

For the case τ = 0 and B 6= 0, (3.B.5) gives

τ̂0− τ̂0,OLS = O(T−4)
[
Op(T

3) Op(T
5/2) Op(T

7/2)
]op(T

−1/2)

op(T
−1/2)

op(T
−1)

 = op(T
−3/2).
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Next, assuming that τ 6= 0 and β = 0, it follows from (3.B.4) that

τ̂0 − τ̂0,OLS = O(T−4)
[
Op(T

4) Op(T
3)
] [ op(T−1)

op(T
−1/2)

]
= op(T

−1).

Alternatively, if τ 6= 0, B 6= 0 and B′τ = 0, then (3.B.5) gives

τ̂0 − τ̂0,OLS = O(T−4)
[
Op(T

3) Op(T
3) Op(T

4)
]op(T

−1/2)

op(T
−1/2)

op(T
−1)

 = op(T
−1).

Finally, assume that τ 6= 0, and B′τ 6= 0. Then, (3.B.5) gives

τ̂0 − τ̂0,OLS = O(T−4)
[
Op(T

4) Op(T
3) Op(T

4)
]op(T

−1/2)

op(T
−1/2)

op(T
−1)

 = op(T
−1/2).

This completes the proof of Corollary 3.2. �

3.B.2 Data Description

Variable groups Translation Inclusion Differenced

vakantiebaan Job Search holiday job 100% N

Unemployment Y Unemployment 80% Y

uwv vacatures Job Search uwv vacancies 78% Y

werkloos Social Security unemployed 76% Y

ww uitkering Social Security ww benefits 72% Y

Ww Social Security Ww 69% Y

nationale vacaturebank RA nationale vacaturebank 59% Y

cv maken Application training CV write 57% Y

indeed RA indeed 52% Y

jobtrack RA jobtrack 52% Y

motivatiebrief Application training motivation letter 52% Y

sollicitatiebrief schrijven Application training write application letter 50% Y

voorbeeld cv Application training example cv 48% Y

tempo team RA tempo team 48% Y

ontslagvergoeding Social Security severance pay 46% Y

ww uitkering aanvragen Social Security request unemployment benefits 46% Y

aanvragen uitkering Social Security request benefits 44% N

interin RA interin 44% Y

manpower RA manpower 44% Y

randstad General randstad 44% Y

werkzoekende Social Security job seeker 43% Y

job General job 43% Y

uwv Social Security uwv 43% Y

werk.nl Job Search werk.nl 41% Y

job vacancy Job Search job vacancy 41% Y

uitkering Social Security benefits 41% Y

ontslag Social Security resignation 41% N

vacature Job Search vacancy 41% Y

sollicitatiebrief voorbeeld Application training application letter example 39% Y

sollicitatie Application training application 39% Y

sollicitatiebrief Application training application letter 39% Y

uitzendbureau RA employment agency 39% Y

vakantiewerk Job Search holiday job 37% N

tence RA tence 37% Y
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vacaturebank Job Search vacaturebank 37% Y

sollicitatiegesprek Application training application interview 37% N

tempo team uitzendbureau RA tempo team employment agency 35% N

motivatiebrief voorbeeld Application training motivation letter example 35% Y

bijstand Social Security social benefits 35% Y

open sollicitatiebrief Application training open application letter 35% Y

vrijwilligerswerk General volunteer work 35% N

werk nl Job Search werk nl 35% N

adecco RA adecco 33% N

creyfs RA creyfs 33% Y

randstad uitzendbureau Job Search randstad employment agency 33% Y

cv maken voorbeeld Application training write CV example 31% Y

werkbedrijf Job Search werkbedrijf 31% Y

tempo-team RA tempo-team 31% Y

werkloosheidsuitkering Social Security unemployment benefits 31% N

tempo team vacatures RA tempo team vacancies 31% Y

curriculum vitae voorbeeld Application training CV Example 31% Y

cv Application training cv 31% N

solliciteren Application training applying 31% Y

indeed jobs RA indeed jobs 30% Y

motivation letter Application training motivation letter 30% N

resume example Application training resume example 28% N

olympia uitzendbureau RA olympia employment agency 28% Y

tempoteam RA tempoteam 28% Y

randstad vacatures Job Search randstad vacancies 26% Y

banen General jobs 26% N

vrijwilliger General volunteer 26% N

baan General job 26% N

start uitzendbureau RA start employment agency 24% Y

jobnet RA jobnet 24% N

monsterboard Job Search monsterboard 24% Y

baan zoeken Job Search job search 20% N

functieomschrijving General job position description 20% N

resume template Application training resume template 19% N

omscholen Application training retraining 19% Y

job interview Application training job interview 19% N

werken bij General working at 19% Y

vacatures Job Search vacancies 19% Y

uwv uitkering Social Security uwv benefits 17% Y

job description General job description 17% Y

werk zoeken General job search 17% Y

jobs General jobs 17% Y

resumé Application training resume 15% Y

bijscholen Application training retraining 15% N

curriculum vitae template Application training CV Template 13% N

curriculum vitae Application training CV 11% Y

sollicitaties Application training applications 9% Y

werkeloos Social Security unemployed 9% N

werkloosheid Social Security unemployment 4% N

resume Application training resume 2% N

arbeidsbureau RA employment office 2% N

uitzendbureaus RA employment agencies 2% Y

werkloosheidswet Social Security unemployment law 0% N
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Chapter 4

High-Dimensional

Single-Equation Cointegration

Modelling

“Although modern computer technology helps us in so many respects, it also brings a

new and urgent task to the statistician; that is, whether the classical limit theorems

(i.e., those assuming a fixed dimension) are still valid for analyzing high dimensional

data and how to remedy them if they are not.”

- Bai and Silverstein (2010)
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Abstract†

In this chapter, we extend the asymptotic theory for single-equation cointegration

analysis from Chapter 3 to a high-dimensional framework. Sufficient conditions are

derived under which the Single-equation Penalized Error Correction Selector attains

simultaneous estimation and selection consistency. As the results strongly rely on the

availability of suitable weights, we derive the consistency of the ridge estimator in

our framework and illustrate how ridge may be used as an initial estimator for the

construction of these weights. While consistency is attained, we demonstrate that the

theoretically admissible growth rate of the integrated variables is slower than that of

the stationary variables.

†This chapter is based on joint work with S. Smeekes.
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4.1 Introduction

In this chapter, we extend the asymptotic theory for single-equation cointegration

analysis to a high-dimensional framework. The theoretical properties of the Single-

equation Penalized Error Correction Selector (SPECS) proposed in Chapter 3 are

based on fixed-dimensional asymptotics. However, a key benefit of SPECS is that

it enables estimation on high-dimensional datasets in which the cross-sectional di-

mension N is relatively large to the time series dimension T . In an attempt to ob-

tain better asymptotic approximations in this setting, we demonstrate that SPECS

maintains its attractive features, such as estimation and selection consistency, in an

asymptotic framework in which the number of variables diverges. Moreover, we show

that the fixed-dimensional results from Chapter 3 follow as a special case from the

results presented in the current chapter.

The theoretical analysis of high-dimensional estimators frequently relies on the use

of finite-sample bounds in which the dependence on the sample size and dimension

are made explicit. In a stationary setting, the theory for L1-penalized regression

in high-dimensional settings is increasingly well-understood (e.g. Kock and Callot,

2015; Medeiros and Mendes, 2016). A popular method to gain insights into the

theoretical properties of the lasso is to derive so-called oracle inequalities, which are

sharp bounds on its prediction error and estimation error. To obtain these oracle

inequalities, it is necessary to impose conditions that are strongly related to the

eigenvalues of the scaled Gram matrix. Among the most used conditions are the

restricted eigenvalue condition by Song and Bickel (2011) and the slightly more general

compatibility condition that first appeared in Van de Geer (2007). An elaborate

overview of these and related conditions, henceforth simply referred to as eigenvalue

conditions, are provided in Van De Geer and Bühlmann (2009) and Bühlmann and

Van De Geer (2011). While these eigenvalue conditions come in different levels of

generality, they tend to be complicated to verify directly when the Gram matrix is

random. A rather successful approach to circumvent this issue has been to assume an

eigenvalue condition to hold on a simpler approximating matrix. It turns out that,

when the approximation error vanishes sufficiently fast, the compatibility condition

carries over to the scaled Gram matrix and the oracle inequalities can be derived in

the usual fashion (e.g. Bühlmann and Van De Geer, 2011, Lemma 6.17). However,

this approach does not extend easily to the non-stationary setting due to the lack of a

simple non-random approximating matrix. Therefore, a key theoretical contribution

in this chapter is related to the extension of eigenvalue conditions in the non-stationary

setting.
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The chapter proceeds as follows. In Section 4.2 we define the estimator and lay

out our assumptions regarding the underlying DGP, the design and the required

regularization. The main theoretical results for our estimator are presented in Section

4.3. In particular, the theoretical properties of SPECS and ridge are derived in

Sections 4.3.1 and 4.3.2, respectively, and an illustrative example is provided in Section

4.3.3. Finally, we conclude in Section 4.4.

Notation

For any an N -dimensional vector x, ‖x‖p =
(∑N

i=1 x
p
i

)1/p

denotes the `p-norm, while

for any matrix D with N columns, ‖D‖p = max
x∈RN

‖Dx‖p
‖x‖p

is the corresponding induced

norm. For an index set S ⊂ {1, . . . , N}, let xS be the vector containing the elements

of x corresponding to S. Similarly, for a matrix D with N rows, DS is the sub-

matrix containing the rows of D indexed by S. The orthogonal complement of D

is denoted by D⊥, such that D′⊥D = 0. When D is a square matrix, we denote

its N ordered eigenvalues by λ1(D) ≥ . . . ≥ λN (D) and we use D � 0 to denote

that the matrix is positive definite. We use ιN to denote a vector of ones of length

N and IN to denote the N -dimensional identity matrix. We use
p→ (

d→) to denote

convergence in probability (distribution) and
d
= denotes equivalence in distribution.

Finally, we frequently make use of an arbitrary positive and finite constant K whose

value may change throughout the paper, but is always independent of the time and

cross-sectional dimensions.

4.2 Model, Estimator and Assumptions

The model that we consider here is analogous to that of Chapter 3. For convenience,

we repeat the essential details. Assume that a researcher is interested in modelling a

single variable of interest, say yt, based on a N -dimensional time series zt = (yt,x
′
t)

that is observed for the periods t = 1, . . . , T . Furthermore, let zt be described by the

vector error correction model (VECM)

∆zt = AB′zt−1 +

p∑
j=1

Φj∆zt−j + εt, (4.2.1)

where A and B are (N × r)-dimensional containing the adjustment rates and coin-

tegrating vectors, respectively, and εt = (ε1,t, ε
′
2,t)
′. Under suitable assumptions,

defined in Section 4.2.3, the Granger Representation Theorem (e.g. Johansen, 1995a,

p. 49), enables (4.2.1) to be written as a vector moving average (VMA) process of
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the form

zt = Cst +C(L)εt +Cz0, (4.2.2)

where C = B⊥

(
A′⊥

(
IN −

∑p
j=1Φj

)
B⊥

)−1

A′⊥, st =
∑t
s=1 εs, C(L)εt is a sta-

tionary linear process and z0 are initial values. Without loss of generality, we assume

henceforth that z0 = 0. Typically, the finite-order VECM process is easier to esti-

mate than the infinite order VMA process. Nonetheless, the number of parameters to

estimate in (4.2.1) is at least 2Nr+N2p, such that the system quickly grows too large

to accurately estimate based on traditional methods. Hence, from a computational

perspective, an alternative lower-dimensional model formulation would be preferred.

4.2.1 Model

Utilizing that the modelling exercise focusses on a single variable of interest, the first

form of dimension reduction that the researcher may wish to consider is to define a

single-equation model for yt. The importance in deriving a single-equation model for

yt is to ensure that the variables modelling the variation in yt remain exogenous. This

is accomplished by orthogonalizing the errors driving the single-equation model, say

εy,t, from the errors driving the marginal equation of the endogenous variables xt.

Orthogonalization is achieved by decomposing ε1,t into its best linear prediction based

on ε2,t and the corresponding orthogonal prediction error. To this end, partition the

covariance matrix of εt as

Σε =

[
σ11 σ′21

σ21 Σ22

]
,

such that we obtain

ε1,t = (0,σ′21Σ
−1
22 )εt +

(
1,−σ′21Σ

−1
22

)
εt = ε̂1,t + εy,t. (4.2.3)

Define π0 = Σ−1
22 σ21. Then, writing out (4.2.3) in terms of the observable time series

results in the single-equation model

∆yt = (1,−π′0)

AB′zt−1 +

p∑
j=1

Φ′j∆zt−j

+ π′0∆xt + εy,t

= δ′zt−1 + π′wt + εy,t,

(4.2.4)
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where δ′ = (1,−π′0)AB′ and π = (π′0, . . . ,π
′
p)
′ with π′j = (1,−π′0)Φj for j =

1, . . . , p. Note that δ is a vector of length N , whereas π is a vector of length M =

N(p + 1) − 1. Additionally, wt = (∆x′t,∆z
′
t−1, . . . ,∆z

′
t−p)

′ and εy,t = (1 − π′0)εt.

Finally, we write the single-equation model in matrix notation as

∆y = Z−1δ +Wπ + εy = V γ + εy, (4.2.5)

where V = (Z−1,W ), Z−1 = (z0, . . . ,zT−1)′, W = (wt, . . . ,wT )′ and γ = (δ′,π′)′.

In deriving the theoretical properties of our estimator, it is useful to partition

and rotate the data. Without loss of generality, we partition the data matrix as

V = (VSγ ,VScγ ), with VSγ = (Z−1,Sδ ,WSπ ) representing the time series carrying

non-zero coefficients in the population single-equation model, henceforth referred as

the set of relevant variables. In the presence of cointegration, it follows from (4.2.2)

that the relevant lagged levels can be written as

zSδ,t = CSδst + uSδ,t,

CSδ = B⊥,Sδ

A′⊥
IN − p∑

j=1

Φj

B⊥
−1

A′⊥

(4.2.6)

where B⊥,Sδ is an (|Sδ| × (N − r))-dimensional matrix containing the rows of B⊥

indexed by Sδ. The left null space of B⊥,Sδ , defined as

B∗ =
{
x ∈ R|Sδ|| B′⊥,Sδx = 0

}
,

contains the linear combinations that convert zSδ,t to a stationary process. Accord-

ingly, we also refer to this null space as the cointegrating space of zSδ,t. By construc-

tion, δSδ ∈ B∗, such that this cointegrating space is non-empty whenever δ 6= 0. In

this case, we defineBSδ as a (|Sδ|×r∗)-dimensional basis matrix ofB∗, with r∗ ≤ |Sδ|
representing the dimension of the cointegrating space.1 Similarly, we define BSδ,⊥

as a basis matrix of the left null-space of BSδ , i.e. a (|Sδ| × (|Sδ| − r∗))-dimensional

matrix of full column rank with the property that B′Sδ,⊥BSδ = 0. Then, we are able

to define a Q-transformation that decomposes the reduced system into a stationary

1The matrix BSδ is not uniquely defined. However, in most instances, including those contained
in the current chapter, identification of the span of BSδ is sufficient.
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and non-stationary contribution. Define,

Q =

 B
′
Sδ

0

0 I|Sπ|

B′Sδ,⊥ 0

 , with

Q−1 =

BSδ

(
B′SδBSδ

)−1
0 BSδ,⊥

(
B′Sδ,⊥BSδ,⊥

)−1

0 I|Sπ| 0

 .
(4.2.7)

Post-multiplication of the data matrix by Q gives

VSγQ =
[
Z−1,SδBSδ WSπ Z−1,SδBSδ,⊥

]
(4.2.8)

which we refer to as the Q-transformed version of VSγ .

Remark 4.1. In an attempt to simplify the proofs in this chapter, we proceed under

the assumption that δ 6= 0, i.e. |Sδ| ≥ 1. We believe that this assumption does

not harm the generality of our results, as in a high-dimensional non-stationary time

series setting it seems unrealistic that no cointegration appears in the single-equation

model. In Chapter 3, however, we do allow for the case δ = 0, by defining a separate

rotation and scaling matrix. A similar strategy is possible, though not pursued, in

the current setting.

4.2.2 Estimator

Despite the dimension reduction obtained from moving towards a single-equation

representation, regularization remains a necessity in high dimensions. The single-

equation model (4.2.4) contains a total of N(p+ 2)− 1 parameters, compared to the

2Nr+N2p parameters in the full-system VECM in (4.2.1), resulting in a substantial

reduction in dimensionality. However, the dimension may still grow large when either:

(i) the number of potentially relevant variables is large or (ii) when the number of

lagged differences required to appropriately model the short-run dynamics is large.

Therefore, similar to Chapter 3, we consider the use of a shrinkage estimator for (4.2.4)

that enables estimation in high-dimensions. In the previous chapter, the proposed

version of SPECS incorporates a combination of both an L1-penalty on the individual

coefficients and an L2-penalty on δ. While the latter penalty is intuitively motivated

to enforce sparsity in the absence of cointegration, i.e. δ = 0, the results in Chapter

3 demonstrate that the L2-penalty makes little difference. Moreover, the theory

in this chapter is derived under the assumption that δ 6= 0. Therefore, we proceed

without the additional L2-penalty, simplifying the theoretical derivations and enabling
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4 High-Dimensional Single-Equation Cointegration Modelling

emphasis on the key issues in the high-dimensional analysis of non-stationary time

series.

The estimator, for convenience still referred to as SPECS throughout this chapter,

is defined as the minimizer of the following objective function:

GT (γ) = ‖∆y − V γ‖22 + λT

N+M∑
i=1

ωi |γi| . (4.2.9)

Indeed, this is the adaptive lasso, as defined in Zou (2006), applied to the conditional

error correction model. The weights ωi in (4.2.9) are typically derived from an initial

estimation procedure, although to maintain generality we do not propose a particular

construction at this stage. As demonstrated by Zou (2006), under certain assump-

tions on the weights, the adaptive lasso attains simultaneous selection and estimation

consistency, without the necessity for the rather stringent irrepresentability condition

in Zhao and Yu (2006). In pursuit of similar theoretical properties for SPECS, we

define the appropriate assumptions on the weights, among others, in the following

section.

4.2.3 Assumptions

In this section we define and discuss the assumptions required for the main results in

this chapter. First, the following assumptions are imposed on the innovations.

Assumption 4.1. The sequence of innovations {εt}t≥1 is an N -dimensional mar-

tingale difference sequence (m.d.s.) with E (εtε
′
t) = Σε. Furthermore, we assume

that

1. there exists a m > 2, such that max1≤i≤N,1≤t≤T E |εi,t|2m ≤ Km, and

2. there exist φmin, φmax > 0, such that φmin ≤ λmin (Σε) < λmax (Σε) ≤ φmax.

The first part of Assumption 4.1 is required for the application of a high-dimensional

law of large numbers in Lemma 4.4 in the Appendix. In the second part, the lower

bound on the minimum eigenvalue of the covariance matrix is necessary to ensure that

the eigenvalues of the sample covariance matrix are bounded away from zero, whereas

the upper bound on the maximum eigenvalue is helpful in showing convergence of

certain sample covariance matrices.

Next, we require that the VECM model admits the vector moving average (VMA)

representation displayed in (4.2.2). By the Granger Representation Theorem, the

following assumptions are sufficient.
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Assumption 4.2. Define A(z) := (1− z)IN −AB′z −
∑p
j=1Φj(1− z)zj .

(i) The determinantal equation |A(z)| has all roots on or outside the unit circle.

(ii) A and B are N × r matrices with 1 ≤ r ≤ N and rank(A) = rank(B) = r.

(iii) The ((N − r)× (N − r)) matrix A′⊥

(
IN −

∑p
j=1Φj

)
B⊥ is invertible.

The existence of a VMA representation alone is not sufficient for the convergence

of our high-dimensional sample covariance matrices. A further restriction on the

dependency over time is required, in the form of the following assumption.

Assumption 4.3. There exists a finite K such that the matrix C in (4.2.2) satis-

fies ‖C‖∞ ≤ K. In addition, the matrix lag polynomial C(L) is given by C(z) =∑∞
l=0Clz

l and satisfies
∑∞
l=0 l ‖Cl‖∞ ≤ K.

Assumption 4.3 is particularly useful in ensuring norm-summability of the coef-

ficients in the Beveridge-Nelson decomposition. More precisely, we may decompose

C(z) = C(1) + (1 − z)C∗(z), where C∗(z) =
∑∞
l=0C

∗
l with C∗l = −

∑∞
k=l+1Cl. It

follows that,

∞∑
l=0

‖C∗l ‖∞ =

∞∑
l=0

∥∥∥∥∥
∞∑

k=l+1

Cl

∥∥∥∥∥
∞

≤
∞∑
l=0

∞∑
k=l+1

‖Cl‖∞ =

∞∑
l=1

l ‖Cl‖∞ <∞.

This property is used to bound several quantities of interest in the proofs of our

theoretical results.

The ability of our estimation procedure to consistently select and estimate the

coefficients of the relevant variables hinges on the behaviour of the eigenvalues of

the sample covariance matrices. Under Assumptions 4.1-4.3, it is possible to ensure

eigenvalue conditions on the sample covariance matrices, by imposing them on simpler

approximating matrices. Accordingly, we make the following assumption.

Assumption 4.4. Define v1,t =
(
z′Sδ,tBSδ ,w

′
Sπ,t

)′
, v2,t = B′Sδ,⊥zSδ,t, sπ = |Sπ|+r∗

and sδ = |Sδ|−r∗. Furthermore, let Σ̂11 = 1
T

∑T
t=1 v1,tv

′
1,t and Σ̂22 = sδ

T 2

∑T
t=1 v2,tv

′
2,t.

Then, we assume that

1. There exists a constant φ > 0, such that

inf
x∈Rsπ

x′Σ̂11x

x′x
≥ φ. (4.2.10)

2. Similarly, it holds that,

inf
x∈Rsδ

x′Σ̂22x

x′x
≥ φ, (4.2.11)
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4 High-Dimensional Single-Equation Cointegration Modelling

with probability converging to 1 as T,N, sπ, sδ →∞.

The first part of Assumption 4.4 applies to stationary data and is known to hold

when the minimum eigenvalue of the corresponding population covariance matrix is

bounded away from zero (e.g. Medeiros and Mendes, 2016, Section B.2). The second

part, however, applies to integrated variables and requires arguments that are unique

to the non-stationary setting. In particular, we note the necessity of applying a scaling

by sδ
T 2 , rather than the usual 1

T 2 one may expect from the fixed-dimensional literature,

cf. Remark 4.2. In Appendix 4.A.3, we show several cases under which Assumption

4.4 is satisfied.

Remark 4.2. As an illustration of the problems with adopting the usual scaling by

T−2, consider the simple example of an s-dimensional white noise sequence ut
i.i.d.∼

N (0, Is) and define ht =
∑t
j=1 uj . Then, in Lemma 4.5 in Appendix 4.A.3 we show

that P
(
λmin

(
1
T 2

∑T
t=1 hth

′
t

)
> φ

)
→ 0, as s, T → ∞, regardless of their relative

rates. Hence, even in this simple case we cannot assume that the minimum eigenvalue

is bounded away from zero if we stick to the T−2 scaling.

Remark 4.3. There are several noteworthy instances in which λmin

(
Σ̂22

)
is

bounded away from zero with arbitrarily high probability without the need for As-

sumption 4.4. In particular, assume that the dimension of the orthogonal complement

of the cointegrating space in the subset of relevant non-stationary variables converges

to a finite constant, i.e. sδ(T )→ K as T →∞. Then, based on the functional central

limit theorem

Σ̂22
d→ KB′Sδ,⊥CSδ

(∫ 1

0

B(r)B′(r)dr

)
C ′SδBSδ,⊥

d
=

∫ 1

0

B∗(r)B∗′(r)dr,

where B∗(r) is an sδ-dimensional Brownian Motion with E (B∗(r)B∗′(r)) =

rK2B′Sδ,⊥CSδΣεC
′
Sδ
BSδ,⊥. By Lemma A.2 in Phillips and Hansen (1990), it fol-

lows that
∫ 1

0
B∗(r)B∗′(r)dr is positive-definite almost surely. Then, by continuity of

the eigenvalue, we may choose φ(ε) > 0 such that

P
(
λmin

(
Σ̂22

)
≥ φ(ε)

)
→ P

(
λmin

(∫ 1

0

B∗(r)B∗′(r)dr

)
≥ φ(ε)

)
≤ ε,

for any ε > 0. A straightforward case in which sδ remains finite is to simply assume

that the number of relevant integrated variables, i.e. |Sδ|, stays finite. However,

a more general example occurs when the dimension of the cointegrating space of

zSδ,t diverges at the rate |Sδ|. This occurs in the case of a non-stationary factor

model with idiosyncratic components, as proposed by Banerjee et al. (2014a). Further

illustrations are provided in Remark 4.8.
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Finally, to ensure simultaneous recovery of the correct sparsity patterns and con-

sistent estimation of the non-zero coefficients, we impose a set of conditions on the

tuning parameter λT and the weights ω = (ω1, . . . , ωN+M )′.

Assumption 4.5. Assume that the following claims hold.

1. The smallest population coefficient is allowed to decrease to zero, as long as

|γmin|
√
T

(sδ ∨
√
sπ)
→∞.

2. The penalty parameter grows sufficiently slow, such that

λT
(√
sδ ∨

√
sπ
)(

sδ ∨
√
sπ
)
T 1/2−ξ → 0,

for some constant ξ > 0.

3. The weights corresponding to the relevant variables satisfy

ωSγ ,max ≤ T ξ,

with probability approaching one.

4. The weights corresponding to the irrelevant variables and the penalty parameter

grow sufficiently fast:

ωScδ ,min(√
sδ ∨

√
sπ
)
T 1/2+ξ

√
N
→∞,

λTωScδ ,min

(sδ ∨
√
sπ)T

√
N

→∞,

ωScπ,min(√
sδ ∨

√
sπ
)
T ξ
√
M
→∞,

λTωScπ,min

(sδ ∨
√
sπ)
√
TM

→∞.

The first part of Assumption 4.5 determines the fastest rate at which the popu-

lation coefficient is allowed to decrease, as a function of the growth rates of sδ and

sπ. Intuitively, the faster the number of relevant variables diverges, the slower the

minimum coefficient may go to zero to ensure identification of small non-zero coeffi-

cients. The maximum rates of sδ and sπ are specified in Theorem 4.1. The second

part puts an upper bound on the admissible growth rate of the penalty. Exceeding

this bound result in an excess of shrinkage bias that impedes estimation consistency.

For the same reason, the third part requires that the weights of the relevant variables

do not grow too fast. Finally, part four states that the penalty parameter and the

weights of the irrelevant variables grow sufficiently fast in order to guarantee that
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4 High-Dimensional Single-Equation Cointegration Modelling

irrelevant variables are removed from the model with probability converging to one.

The required minimum growth rate of the penalty parameter is inversely related to

the growth rate of the weights of the irrelevant variables; faster diverging weights

require less penalization to identify irrelevant variables.

4.3 Theoretical Results

In this section we derive the asymptotic properties of SPECS, describe the construc-

tion of the weights and provide illustrative examples in which we implement SPECS

and obtain specific rates of convergence.

4.3.1 Main Theorems

The first result that we pursue is the selection consistency of our estimator, described

in the following theorem.

Theorem 4.1. Assume that sδ
T 1/4 → 0 and sπ√

T
→ 0. Then, under Assumptions

4.1-4.5, it holds that

P (sign (γ̂) = sign (γ))→ 1,

as T,N, p, sδ, sπ →∞.

Theorem 4.1 states that the identified set of relevant variables corresponds to the

true set with probability converging to one. This result provides an asymptotic jus-

tification for implementing SPECS as a high-dimensional variable selection device.

Since the set of variables included is strictly smaller than the time series dimension,

it is possible to apply a traditional consistent estimator to the selected set of vari-

ables (e.g. Belloni and Chernozhukov, 2013). However, ideally SPECS would contain

desirable properties that omit the need of a second estimation procedure. For this

reason, we establish the simultaneous consistency of the estimated coefficients in the

following theorem.

Theorem 4.2. Let ST = diag
(√

TIsπ ,
T√
sδ
Isδ

)
and Q as defined in (4.2.7). Under

the same assumption as in Theorem 4.1, it holds that

∥∥STQ′−1
(
γ̂Sγ − γSγ

)∥∥
2

= Op (sδ ∨
√
sπ) . (4.3.1)

In the case where sδ, sπ ≤ K, for some constant K that is independent of T ,

Theorem 4.2 is equivalent to Theorem 3.1. However, the current setting does not

require that N,M ≤ K, i.e. the number of irrelevant variables are allowed to diverge
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without affecting the convergence rate of the estimator. Consequently, the current

results nest those of Chapter 3 as a special case, while allowing for a more general

asymptotic framework.

Remark 4.4. By the assumption on sδ, it holds that T√
sδ
≥
√
T for sufficiently large

T , such that

∥∥STQ′−1
(
γ̂Sγ − γSγ

)∥∥
2
≥
√
T
∥∥Q′−1

(
γ̂Sγ − γSγ

)∥∥
2
.

Moreover, since the basis matrices BSδ and BSδ,⊥ are not uniquely defined, we may

impose a normalization such that ‖Q‖2 ≤ 1. Then,∥∥γ̂Sγ − γSγ∥∥2
=
∥∥Q′Q′−1

(
γ̂Sγ − γSγ

)∥∥
2

≤ ‖Q‖2
∥∥Q′−1

(
γ̂Sγ − γSγ

)∥∥
2
≤
∥∥Q′−1

(
γ̂Sγ − γSγ

)∥∥
2
,

such that

∥∥STQ′−1
(
γ̂Sγ − γSγ

)∥∥
2
≥
√
T
∥∥γ̂Sγ − γSγ∥∥2

.

Thus, it follows from Theorem 4.2 that

∥∥γ̂Sγ − γSγ∥∥2
= Op

((
sδ ∨

√
sπ
)

√
T

)
.

It is immediate that SPECS attains
√
T -consistency when sδ, sπ ≤ K, i.e. the conver-

gence rate in a fixed-dimensional framework is equivalent to that of the OLS estimator.

4.3.2 Initial Estimates

In this section, we propose the use of the ridge estimator for the construction of

initial weights, and derive its consistency under a further restriction of the asymptotic

framework. Recall that the ridge estimator is defined as the minimizer of the following

objective function:

GR(γ) := ‖∆y − V γ‖22 + λR ‖γ‖22 . (4.3.2)

The properties of the ridge estimator are well-studied in the stationary setting (e.g

Hastie et al., 2008, Section 3.4.1). However, to the best of our knowledge, no explicit

results are available in the high-dimensional non-stationary case considered here.

A crucial assumption for the main theorems to hold, is the availability of suitable

weights. Intuitively, the weights corresponding to the relevant variables should not
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increase too fast to maintain estimation consistency, whereas those corresponding to

the irrelevant variables should increase sufficiently fast to ensure selection consistency.

To construct the weights, one commonly relies on initial estimates, say γ̂I , obtained

from a consistent estimator (e.g. Zou, 2006; Huang et al., 2008; Kock, 2016; Smeekes

and Wijler, 2018a). Similar to the construction in Chapters 2 and 3, we define the

weights as ωi = 1
|γ̂I,i|k

. This specification allows for substantial flexibility in the

regulation of the divergence rate of weights corresponding to irrelevant variables. To

illustrate, assume that γ̂I,i = γi+Op (T−a) for all i. Then, it is clear that ωi = Op(1)

when γi 6= 0 and ωi = Op
(
T ka

)
when γi = 0. Therefore, larger values of k will increase

the rate at which the weights corresponding to the irrelevant variables diverge. Based

on this principle, the availability of a consistent initial estimator allows us to construct

weights that satisfy the conditions in Assumption 4.5.

Remark 4.5. While the idea of adjusting divergence rates through imposing varying

values of k seems theoretically attractive, large values of k result in substantial ampli-

fication of finite-sample estimation error. As a result, the finite-sample performance

of the lasso becomes unstable for large k, such that in practice one may want to set

the value for k as low as theoretically admissible.

Demonstrating the availability of a consistent initial estimator in the high-dimensional

setting considered here requires the development of novel theoretical results. In an

application where N is small relative to T , initial OLS estimates can be used and when

N is close to or exceeding T , initial ridge estimates are a sensible choice. However,

the properties of these estimators are unknown in the high-dimensional framework

considered here. As an alternative, Huang et al. (2008) propose the use of marginal

regression under a so-called ‘partial orthogonality condition’, which puts a restriction

on the degree of correlation between the relevant and irrelevant variables. Unfor-

tunately, in the non-stationary setting, such an assumption is unlikely to hold as a

result of the correlation induced by common stochastic trends. A different promising

option is to rely on initial (unweighted) lasso estimates. To validate this approach,

however, the consistency and convergence rate of the lasso estimator needs to be de-

rived in the current framework. The fastest way to derive consistency of the lasso, is

through the use of a compatibility condition as in Bühlmann and Van De Geer (2011,

Ch. 6). However, in addition to the difficulty of showing the theoretical validity of

a compatibility condition in the non-stationary setting considered here, the use of a

compatibility condition is further complicated by the fact that the stochastic trends

asymptotically dominate the variation. More specifically, in order to attain a non-

singular limit matrix, a rotation similar to Q is required that separates the stationary

and non-stationary components in the full dataset. Accordingly, the standard com-
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patibility condition needs to be adjusted in a non-trivial manner to account for such

a rotation. Consequently, we prefer to rely on the ridge estimator, while postponing

the use of initial lasso estimates based on a compatibility condition to future research.

In order to derive consistency of the ridge estimator, we extend the minimum

eigenvalue bound in Assumption 4.4 as follows.

Assumption 4.6. Let Nδ = N − r, Mπ = M + r, vR1,t = (z′tB,w
′
t)
′

and vR2,t =

B′⊥zt. Furthermore, define Σ̂R,11 = 1
T

∑T
t=1 vR1,tv

′
R1,t and Σ̂R,22 = Nδ

T 2

∑T
t=1 vR2,tv

′
R2,t.

Then, we assume that

1. There exists a constant φR > 0, such that

inf
x∈RMπ

x′Σ̂R,11x

x′x
≥ φR. (4.3.3)

2. Similarly, it holds that,

inf
x∈RNδ

x′Σ̂R,22x

x′x
≥ φR, (4.3.4)

with probability converging to 1 as T,N, p→∞.

After controlling the minimum eigenvalue of the covariance matrices, we are able

to derive the rate of convergence of the ridge estimator under a further restriction on

the growth rates of N,M . The consistency of the ridge estimator is described in the

following theorem.

Theorem 4.3. Define the scaling and rotation matrices SR = diag
(√

TIMπ ,
T
Nδ
INδ

)
and

QR =

 (B′B)
−1/2

B′ 0

0 IM

(B′⊥B⊥)
−1/2

B′⊥ 0

 .
Assume that Nδ

T 1/4 → 0, Mπ√
T
→ 0, and λR ≤

(Nδ∨
√
Mπ)

√
T

(
√
sδ∨
√
sπ)

. Then, under Assumptions

4.1-4.3 and 4.6, it holds that

∥∥SRQ′−1
R (γ̂R − γ)

∥∥
2

= Op

(
Nδ ∨

√
Mπ

)
. (4.3.5)

The attentive reader may note that the admissible growth rates of Nδ,Mπ on The-

orem 4.3 are the same as those initially assumed on the subsets of relevant variables,
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i.e. sδ, sπ, in Theorem 4.1. Ideally, we would like to allow for faster rates of diver-

gence for the set of the irrelevant variables. Unfortunately, without the availability

of a compatibility condition that could justify the plain lasso as an initial estimator,

this restriction seems unavoidable. Nonetheless, several interesting and practically

relevant settings exist where the generality provided by the asymptotic framework of

Theorem 4.3 is sufficient, as is illustrated in the following section.

Remark 4.6. Similar to Remark 4.4, it follows from Theorem 4.3 that

‖γ̂R − γ‖2 = Op

((
Nδ ∨

√
Mπ

)
√
T

)
.

Based on the assumption that Nδ
T 1/4 → 0 and Mπ√

T
→ 0 in Theorem 4.3, it follows

directly that ‖γ̂R − γ‖2 = op(1).

Remark 4.7. Theorem 4.3 imposes no minimum growth rate of the penalty term

λR in (4.3.2). Therefore, in the case where M + N < T , the choice λR = 0 is both

theoretically admissible and computationally feasible, such that consistency of the

OLS estimator follows as a by-product of our result.

4.3.3 An Illustrative Example

We conclude our theoretical results by providing an illustrative example of a general

DGP in an asymptotic framework that complies with the assumptions in Theorems

4.1-4.3. The required weights are explicitly constructed by means of an initial ridge

estimator and particular rates of convergence of both the initial and final estimator

are provided.

Assume that the researcher observes the N -dimensional time series

zt = (z′1,t, z
′
2,t)
′ = (yt,x

′
t)
′,

from time t = 1, . . . , T , where z1,t = (yt,x
′
1,t)
′ is an N1-dimensional time series and

z2,t is an N2-dimensional time series. Moreover,[
∆z1,t

∆z2,t

]
=

[
Π11 Π12

Π21 Π22

][
z1,t−1

z2,t−1

]
+

p∑
j=1

[
Φj,11 Φj,12

Φj,21 Φj,22

][
∆z1,t−j

∆z2,t−j

]
+

[
ε1,t

ε2,t

]

= Πzt−1 +

p∑
j=1

Φj∆zt−j + εt,

(4.3.6)

where Π11 = A1B
′
1 is an (N1 × N1)-dimensional matrix with rank (Π11) = r1. In
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addition, assume that Σε = E (εtε
′
t) satisfies Assumption 4.1 and can be decomposed

as

Σε =

[
Σε,11 0

0 Σε,22

]
, with Σε,11 =

[
σ1,11 σ′1,21

σ1,21 Σ1,22

]
and

Σε,22 =

[
σ2,11 σ′2,21

σ2,21 Σ2,22

]
.

(4.3.7)

Then, the quantities appearing in the construction of the single-equation model in

(4.2.4) take on the form

π0 =

[
Σ−1

1,22 0

0 Σ−1
ε,22

][
σ1,21

0

]
=

[
π0,1

0

]
,

δ =

[
Π ′11 Π ′21

Π ′12 Π ′22

][
1

−π0

]
=

[
Π ′11

Π ′12

][
1

−π0,1

]
=

[
δ1

δ2

]
,

πj =

[
Φ′j,11 Φ′j,21

Φ′j,12 Φ′j,22

][
1

−π0

]
=

[
Φ′j,11

Φ′j,12

][
1

−π0,1

]
=

[
πj,1

πj,2

]
.

(4.3.8)

The definitions in (4.3.8) demonstrate that, under the restriction that the errors

driving z1,t and z2,t are uncorrelated, sparsity in the single-equation model arises

when (a subset of) z2,t does not Granger-Cause z1,t. For example, in the extreme

case, where Π12 = 0 and Φ12 = 0, it follows that δ2 = 0 and πj,2 = 0, respectively.

Consequently, in this set-up the single-equation model reads as

∆yt = δ′zt−1 + π′0xt +

p∑
j=1

π′j∆zt−j + εy,t

= δ′1z1,t−1 + π′0,1∆x1,t +

p∑
j=1

π′1,j∆z1,t−j + εy,t,

(4.3.9)

such that |Sδ| ≤ N1 and |Sπ| ≤ N1(p+ 1).

Remark 4.8. The VECM in (4.3.6) can be rewritten into a non-stationary fac-

tor model with stationary idiosyncratic components, in the spirit of Banerjee et al.

(2014a). Based one the VMA representation of zt defined in (4.2.2), with C being a

matrix of reduced rank, we can rewrite the process as

zt = Cst + ut = Λft + ut, (4.3.10)

where Λ = B⊥

(
A′⊥

(
I −

∑p
j=1Φj

)
B⊥

)−1

, ft = A′⊥st and ut = C(L)εt + z0.
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Table 4.1 Dimensions, Penalties, Weights and Convergence Rates

N p r |Sδ| |Sπ| kδ kπ λR, λT ‖γ̂ − γ‖2
fixed fixed fixed fixed fixed 2 1 KT 2/5 Op

(
T−1/2

)
T 1/4 fixed fixed fixed fixed 3 1 KT 2/5 Op

(
T−1/2

)
T 1/4 T 1/4 fixed fixed fixed 3 2 KT 2/5 Op

(
T−1/2

)
T 1/4 T 1/4 T 1/4 fixed fixed 3 2 KT 2/5 Op

(
T−1/2

)
T 1/4 T 1/4 T 1/4 fixed T 1/4 4 2 KT 2/5 Op

(
T−3/8

)
T 1/4 T 1/4 fixed T 1/4 T 1/4 4 2 KT 2/5 Op

(
T−1/4

)
T 1/4 T 1/4 T 1/4 T 1/4 T 1/4 4 2 KT 2/5 Op

(
T−3/8

)
This table displays possible settings for the weights (kδ, kπ) and penalty parame-
ters (λT , λR) that satisfy Assumption 4.5 under a variety of asymptotic frameworks
(N, r, p, |Sδ| , |Sπ|). The convergence rate of SPECS is displayed in the last column.

This representation is particularly relevant in relation to the growth rate of Nδ =

N − r. Typically, the theory for consistent estimation of (4.3.10) is derived under

the assumption that the Nδ factors remain fixed, while letting both N and T go

to infinity. Hence, in this framework, noting that sδ ≤ Nδ, the assumptions that
sδ
T 1/4 → 0 and Nδ

T 1/4 → 0 in Theorems 4.1-4.3 are automatically satisfied. Consequently,

the convergence rates of the initial and final estimators are given by ‖γ̂R − γ‖2 =

Op

(√
Mπ

T

)
and ‖γ̂ − γ‖2 = Op

(√
sπ
T

)
.

The rates of convergence of γ̂R and γ̂, as well as the specific construction of the

initial weights, are dependent on the growth rates of N, p, r, |Sδ| and |Sπ|. Because

of the trade-off between the dimension and the rate of convergence, the choice of the

desired asymptotic framework is likely dependent on the specific application. For ex-

ample, typical macro-economic applications are characterized by short panel datasets

which would require a framework in which the cross-sectional dimension grows as fast

as theoretically admissible. On the other hand, in applications with a large number

of time series observations, such as forecasting based on high-frequency data, the as-

sumption that the number of (potentially) relevant variables grows slow relative to

the available time periods seems reasonable. Therefore, to aid interpretation of our

results, we provide an overview with different asymptotic frameworks and the corre-

sponding penalty parameters, weight constructions and convergence rates of the initial

estimator in Table 4.1. The weights for δi and πj are constructed as ωi =
∣∣∣δ̂R,i∣∣∣−kδ

and ωN+j = |π̂R,j |−kπ .

The first row of Table 4.1 corresponds to the classic fixed-dimensional case. It is

reassuring that, similar to the OLS estimator, SPECS obtains
√
T -convergence, with

128



4.4 Conclusion

the additional benefit of allowing for consistent recovery of the sparsity pattern. In

fact the next three rows highlight that when N , p or r diverge, while the number of

relevant variables remains fixed, SPECS maintains its
√
T -convergence as long as the

penalty weights kδ and kπ are adjusted appropriately. In the fifth row, we allow the

number of relevant stationary variables, i.e. |Sπ| to diverge as well. This setting may

be preferred when the integrated time series remain persistent after being transformed

to stationarity by differencing. We observe that consistency is maintained, although

even sharper weights are required and the rate of convergence has reduced to T−3/8. In

the sixth row we additionally allow the number of relevant non-stationary, i.e. |Sδ|, to

increase, whereas the number of cointegrating vectors remains fixed. The increased

number non-zero coefficients corresponding to non-stationary variables reduces the

rate of convergence to T−1/4. Interestingly, in the last row we let the dimension

of the cointegrating subspace r grow at the same rate. Following Remark 4.8, this

setting naturally occurs when the data is modelled by a non-stationary factor model

with idiosyncratic components. In this framework, the number of stochastic trends

driving the subset of relevant variables, i.e. sδ, remains fixed, which positively affects

the convergence rate of SPECS.

We consider the theoretical results presented in this section to be of a double

nature. On the one hand, it is reassuring that consistent estimation remains feasible

in growing dimensions and that suitable weights are available. On the other hand,

we acknowledge that the required restrictions on the growth rate of the number of

variables seem to caution against application of penalized regression in very high-

dimensional settings. However, it is worth noting that the restrictions on N and p

largely result from the use of ridge regression as an initial estimator. Indeed, the

availability of a novel compatibility condition could justify the use of the lasso as

an initial estimator and will allow for generalization of our theoretical results to

even higher dimensional asymptotic frameworks. Accordingly, we consider this an

interesting avenue for future research.

4.4 Conclusion

In this chapter, we show that SPECS may be used as an automated procedure for

sparse single-equation error correction modelling in high-dimensional settings. We

derive sufficient conditions under which SPECS attains simultaneous selection and

estimation consistency. These results, however, strongly rely on the availability of

suitable weights that aid in the identification of the subset of relevant variables. By

deriving the consistency of the ridge estimator, we demonstrate how ridge regression
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may be used to construct these weights, albeit under more stringent restrictions on

the admissible growth rates of the irrelevant variables. On a more cautionary note,

the theoretical results presented in this paper, as well as the necessary assumptions

under which these results are derived, display a clear trade-off between the dimension

and the estimation accuracy. This inverse relationship is more prominent in the non-

stationary setting, as a result of the collinearity inducing properties of a diverging

number of integrated time series.

The theoretical contributions brought forward in this chapter provide an impor-

tant generalization over the fixed-dimensional case, as they justify the use of SPECS

in settings in which traditional estimators perform poorly, or are rendered infeasible,

as a result of the curse of dimensionality. Furthermore, we highlight several important

sources through which the assumptions and asymptotic framework may be general-

ized even further. In particular, sharper and more direct bounds on the minimum

eigenvalue of a sample covariance matrix of integrated processes can be utilized to

cast SPECS into an even higher-dimensional setting. Similarly, a suitable compat-

ibility condition can be used to validate the lasso as an initial estimator, resulting

in improved weights and, again, less restrictive asymptotic frameworks. These topics

remain subject to our continuing investigation.

Appendix 4.A Proofs

The proofs of our theoretical results are presented in this appendix. We start by

defining several quantities of interest, some of which are simply repeated for the sake

of convenience. As these quantities appear frequently throughout the remainder of

the appendix, we define them here once and refer the reader to this section for a

recollection of their definitions, if so needed.

First, recall that, under the assumption that z0 = 0, the moving average repre-

sentation of the observed time series is given by

zt = Cst +C(L)εt,

where C = B⊥

(
A′⊥

(
IN −

∑p
j=1Φj

)
B⊥

)−1

A′⊥. From this representation, one can

derive the stationary processes

B′zt = B′C(L)εt = Cβ(L)εt,
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and

∆zt = Cεt + (1− L)C(L)εt = C∆(L)εt.

Then, letting Ĩ = (0, IN−1), where 0 is an N -dimensional column vector of zeroes, a

compact moving average representation for wt =
(
∆x′t,∆z

′
t−1, . . . ,∆z

′
t−p
)′

is given

by

wt =


ĨC∆(L)

C∆(L)L
...

C∆(L)Lp

 εt = Cw(L)εt. (4.A.1)

An additional useful representation follows from partitioning the data as V =

(V1,V2), where V1 = (Z−1,Sδ ,WSπ ) contains the relevant variables. In congruence

with Section 4.3, the (|Sδ|×r∗)-dimensional matrixBSδ is defined as a basis matrix for

the cointegrating space of zSδ,t and BSδ,⊥ is an (|Sδ| × |Sδ| − r∗)-dimensional matrix

for its left null space, i.e. B′Sδ,⊥BSδ = 0. Moreover, without loss of generality, we

assume that the columns of BSδ,⊥ are standardized to have unit L1-norms. The

Q-transformation is defined as

Q =

 B
′
Sδ

0

0 I|Sπ|

B′Sδ,⊥ 0

 ,
Q−1 =

BSδ

(
B′SδBSδ

)−1
0 BSδ,⊥

(
B′Sδ,⊥BSδ,⊥

)−1

0 I|Sπ| 0

 ,
(4.A.2)

and the Q-transformed data is given by V1Q
′ = (Z−1,SδBSδ ,WSπ ,Z−1,SδBSδ,⊥).

Denote the t-th row of V1Q
′ by vt =

(
v′1,t,v

′
2,t

)′
, where

v1,t =

[
B′SδzSδ,t−1

wSπ,t

]
=

[
B′SδC(L)L

Cw
Sπ

(L)

]
εt = Cv(L)εt,

and

v2,t = B′Sδ,⊥zSδ,t−1 = B′Sδ,⊥CSδst−1 +B′Sδ,⊥CSδ(L)εt−1.

Let sπ = |Sπ|+r∗ and sδ = |Sδ|−r∗ and define the scaling matrix ST = diag
(√

TIsπ ,
T√
sδ
Isδ

)
.
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Then, we define the appropriately scaled sample covariance matrix as

Σ̂ = S−1
T

(
T∑
t=1

vtv
′
t

)
S−1
T =

[
Σ̂11 Σ̂12

Σ̂21 Σ̂22

]
.

Based on these quantities, we proceed to describe a set of lemmas and propositions

that are required for the proofs of the main theorems in this chapter.

4.A.1 Preliminary Results

In this section, we list a set of preliminary results that are used in the proofs of

our main theorems in Section 4.A.2. The first result is a key ingredient for the

proof of Theorem 4.1, as it explicitly describes a set on which SPECS obtains its

selection consistency. The set and its sufficiency for selection consistency are derived

in Proposition 1 in Zhao and Yu (2006). Accordingly, it is stated here without proof.

Proposition 4.1. Partition γ =
(
γ′Sγ ,0

′
)′

where γSγ is an s-dimensional vector

containing all non-zero coefficients and let v0 = sign(γSγ ). Then,

P (sign (γ̂) = sign(γ)) ≥ P(AT ∩BT ),

where

AT =

s⋂
i=1

{∣∣∣[(V ′1V1)
−1
V ′1εy

]
i

∣∣∣ < ∣∣[γSγ ]i∣∣− 1

2
λT

∣∣∣[(V ′1V1)
−1
Ω1v0

]
i

∣∣∣}

and

BT =

N⋂
i=s+1

{∣∣[V ′2Mεy]i
∣∣ < 1

2
λT

[(
Ω2ι−

∣∣∣V ′2V1 (V ′1V1)
−1
Ω1v0

∣∣∣)]
i

}
,

with Ω1 = diag(ωSγ ), Ω2 = diag(ωScγ ), and M = IT − V1 (V ′1V1)
−1
V ′1 .

Next, we derive bounds on the empirical process S−1
T QV ′1εy, which frequently

appears throughout the proofs of the main results.

Lemma 4.1. Under Assumptions 4.1-4.3, the stochastic order of the empirical process

is

∥∥S−1
T QV ′1εy

∥∥
2

= Op (sδ ∨
√
sπ) . (4.A.3)

Proof of Lemma 4.1. We show that
∥∥S−1

T QV ′1εy
∥∥

2
= Op

(
(sδ ∨

√
sπ)
)
. First, note
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that

∥∥S−1
T QV ′1εy

∥∥
2
≤

∥∥∥∥∥T−1/2
T∑
t=1

v1,tεy,t

∥∥∥∥∥
2

+

∥∥∥∥∥
√
sδ
T

T∑
t=1

v2,tεy,t

∥∥∥∥∥
2

≤

∥∥∥∥∥T−1/2
∑
t=1

Cv(L)εtεy,t

∥∥∥∥∥
2

+

∥∥∥∥∥B′Sδ,⊥CSδ
(√

sδ
T

∑
t=1

st−1εy,t

)∥∥∥∥∥
2

+

∥∥∥∥∥BSδ,⊥

(√
sδ
T

T∑
t=1

CSδ(L)εt−1εy,t

)∥∥∥∥∥
2

=:

3∑
i=1

‖di‖2 .

Using that

P
(∥∥S−1

T Q′V ′1εy
∥∥

2
> Kε(sδ ∨

√
sπ)
)
≤

3∑
i=1

P
(
‖di‖2 >

Kε(sδ ∨
√
sπ)

3

)
,

we proceed by bounding the terms separately. First, let ηi,t =
∑∞
l=0 c

v′
l,iεt−l, where

cvl,i is the i-th row vector of Cv
l . Then, using that {ηi,tεy,t} is a martingale difference

sequence, we use a combination of Markov’s and Burkholder’s inequality to derive

P
(
‖d1‖2 >

Kε(sδ ∨
√
sπ)

3

)
≤

9
∑sπ
i=1 E

(∑T
t=1 ηi,tεy,t

)2

TK2
ε (s2

δ ∨ sπ)

≤
K
∑sπ
i=1

∑T
t=1 E (ηi,tεy,t)

2

TK2
ε (s2

δ ∨ sπ)
≤
K∗
(∑∞

l=0 ‖Cv
l ‖1
)

K2
ε

≤ ε,

for Kε ≥
(
K∗(

∑∞
l=0‖C

v
l ‖1)

ε

)1/2

, where we have used that

E (ηi,tεy,t)
2 ≤

∞∑
l1,l2=0

N∑
j1,j2=1

∣∣cvl1,i,j1 ∣∣ ∣∣cvl2,i,j2∣∣E (εj1,t−l1εj2,t−l2ε2y,t)
≤ K

( ∞∑
l=0

‖Cv
l ‖∞

)2

,

by Assumption 4.1. Next, define ai = CSδβSδ,⊥,i. Using the fact that {a′ist−1εy,t}
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is a martingale difference sequence, we employ a similar strategy to show

P
(
‖d2‖2 >

Kε(sδ ∨
√
sπ)

3

)

≤
sδ9
∑sδ
i=1 E

(∑T
t=1 a

′
ist−1εy,t

)2

T 2K2
ε (s2

δ ∨ sπ)
≤
sδKσ

2
y

∑sδ
i=1

∑T
t=1 E (a′ist−1)

2

T 2K2
ε (s2

δ ∨ sπ)

≤
Kφmaxσ

2
y ‖CSδ‖

2
2

K2
ε

≤ ε,

for Kε ≥
(
Kφmaxσ

2
y‖CSδ‖

2

∞
ε

)1/2

, where we use the fact that

E (a′ist−1)
2 ≤ a′i E

(
st−1s

′
t−1

)
ai = a′iΣεai(t− 1)

≤ ‖ai‖22 φmax(t− 1) ≤ ‖CSδ‖
2
2 φmax(t− 1),

by Assumption 4.1 and the normalization imposed on BSδ,⊥. Finally, define ξi,t =

β′Sδ,⊥,iCSδ(L)εt. Then, using that {ξi,tεy,t} is a martingale difference sequence, it

follows that

P
(
‖d3‖2 >

Kε(sδ ∨
√
sπ)

3

)

≤
9sδ
∑sδ
i=1 E

(∑T
t=1 ξi,t−1εy,t

)2

T 2K2
ε (s2

δ ∨ sπ)
≤

9sδKσ
2
y

∑sδ
i=1

∑T
t=1 E (ξi,t−1)

2

T 2K2
ε (s2

δ ∨ sπ)

≤
K∗
∑∞
l=0 ‖CSδ,l‖

2
2

TK2
ε

→ 0,

where we use that

E (ξi,t−1)
2

=

∞∑
l=0

β′Sδ,⊥,iCSδ,lΣεC
′
Sδ,l
βSδ,⊥,i

≤
∞∑
l=0

∥∥C ′Sδ,lβSδ,⊥,i∥∥2

2
φmax ≤

∞∑
l=0

‖CSδ,l‖
2
2 φmax,

with φmax being the upper bound on the maximum eigenvalue ofΣε from Assumption

4.1. This completes the proof. �

Next, we proceed by deriving a minimum eigenvalue bound for the complete sam-

ple covariance matrix Σ̂. Assumption 4.4 bounds the minimum eigenvalues of the

covariance matrices of the stationary and non-stationary subsets, i.e. Σ̂11 and Σ̂22,

away from zero with probability converging to one. To translate this to a bound
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on λmin

(
Σ̂
)

, it is necessary to complement Assumption 4.4 with a result on the

off-diagonal blocks.

Lemma 4.2. Assume that sπ√
T
→ 0 and sδ

T 1/4 → 0. Then, under Assumptions 4.1-4.3,

it holds that∥∥∥Σ̂12

∥∥∥
2

p→ 0,

as T, sδ, sπ →∞.

Proof of Lemma 4.2. First, define ηt = Cv∗(L)εt, where Cv∗(L) is based on the

Beveridge-Nelson decomposition of Cv(L) = Cv(1) +Cv∗(L)(1−L). Then, with the

use of summation by parts, we decompose

Σ̂21 =

√
sδ
∑T
t=2 v2,tv

′
1,t

T 3/2
=

√
sδB

′
Sδ,⊥

∑T
t=2 zSδ,t−1ε

′
tC

v′(L)

T 3/2

=

√
sδB

′
Sδ,⊥CSδ

∑T
t=2 st−1ε

′
tC

v′(L)

T 3/2

+

√
sδB

′
Sδ,⊥

∑T
t=2 uSδ,t−1ε

′
tC

v′(L)

T 3/2

=

√
sδB

′
Sδ,⊥CSδ

∑T
t=2 st−1ε

′
tC

v′(1)

T 3/2
+

√
sδB

′
Sδ,⊥CSδsT−1η

′
T

T 3/2

+

√
sδB

′
Sδ,⊥CSδ

∑T
t=2 εtη

′
t

T 3/2
+

√
sδB

′
Sδ,⊥

∑T
t=2 uSδ,t−1ε

′
tC

v′(L)

T 3/2

=:

4∑
i=1

Ai.

(4.A.4)

Hence, using that
∥∥∥Σ̂12

∥∥∥
2
≤
∑4
i=1 ‖Ai‖2, we proceed by showing that each ‖Ai‖2 con-

verges in probability to zero. First, let ai = CSδβSδ,⊥,i and define bj = cvj (1), where

cvj (z) =
∑∞
l=0 c

v
l,jz

l, with cvl,j being the j-th row of the Cv
l . Note that {a′ist−1ε

′
tbj}

is a martingale difference sequence. Then, for any arbitrary constant a > 0, we

sequentially apply Markov’s, Burkholder’s and the Cr-inequality to obtain

P (‖A1‖2 ≥ a) ≤
sδ
∑sδ
i=1

∑sπ
j=1 E

(∑T
t=2 a

′
ist−1ε

′
tbj

)2

a2T 3

≤
sδK

∑sδ
i=1

∑sπ
j=1

∑T
t=2 E (a′ist−1ε

′
tbj)

2

a2T 3
≤
sδKφ

2
max

∑sδ
i=1

∑sπ
j=1 ‖ai‖

2
2 ‖bj‖

2
2

a2T

≤
s2
δsπKφ

2
max ‖CSδ‖

2
2

(∑∞
l=0 ‖Cv

l ‖2
)2

a2T
→ 0,
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as
s2δsπ
T → 0.

Next, we focus on A2. Define bl,j = cv∗l,j as the j-th row of Cv∗
l . Then, by

sequentially applying Markov’s and Minkowski’s inequalities,

P (‖A2‖2 ≥ a) ≤
sδ
∑sδ
i=1

∑sπ
j=1 E

(∑∞
l=0 a

′
isT−1ε

′
T−lbl,j

)2
a2T 3

=
sδ
∑sδ
i=1

∑sπ
j=1 E

(∑∞
l=0

∑N
k1,k2=1

∑T−1
s=1 ai,k1

bl,j,k2
εk1,sεk2,T−l

)2

a2T 3

≤
sδ
∑sδ
i=1

∑sπ
j=1

(∑∞
l=0

∑N
k1,k2=1

∑T−1
s=1 |ai,k1

| |bl,j,k2
|
(
E (εk1,sεk2,T−l)

2
)1/2

)2

a2T 3

≤
sδK

∑sδ
i=1

∑sπ
j=1 ‖ai‖

2
1

(∑
l=0 ‖bl,j‖1

)2
a2T

≤
s2
δsπK ‖CSδ‖

2
∞
(∑

l=0 ‖Cv∗
l ‖∞

)2
a2T

→ 0.

Next, we focus on ‖A3‖2. Again, using a combination of Markov’s and Minkowski’s

inequalities,

P (‖A3‖2 ≥ a) ≤
sδ
∑sδ
i=1

∑sπ
j=1 E

(∑T−1
t=1

∑∞
l=0 a

′
iεtε

′
t−lbl,j

)2

a2T 3

≤
sδ
∑sδ
i=1

∑sπ
j=1

(∑T−1
t=1

∑∞
l=0

∑N
k1,k2=1 |ai,k1

| |bl,j,k2
|
(
E (εk1,tεk2,t−l)

2
)1/2

)2

a2T 3

≤
sδK

∑sδ
i=1

∑sπ
j=1 ‖ai‖

2
1

(∑
l=0 ‖bl,j‖1

)2
a2T

≤
s2
δsπK ‖CSδ‖

2
∞
(∑

l=0 ‖Cv∗
l ‖∞

)2
a2T

→ 0.

Finally, we consider ‖A4‖2. Define al,i = CSδ,lβSδ,⊥,i. Then,

P (‖A4‖2 ≥ a) ≤
sδ
∑sδ
i=1

∑sπ
j=1 E

(∑T−1
t=1

∑∞
l1,l2=0 a

′
l1,i
εt−1ε

′
t−l2bl2,j

)2

a2T 3

≤
sδ
∑sδ
i=1

∑sπ
j=1

(∑T−1
t=1

∑∞
l1,l2=0

∑N
k1,k2

|al1,i,k1
| |bl2,j,k2

|
(
E (εk1,t−1εk2,t−l2)

2
)1/2

)2

a2T 3

≤
sδK

∑sδ
i=1

∑sπ
j=1

(∑∞
l=0 ‖al,i‖1

)2 (∑∞
l=0 ‖bl,j‖1

)2
a2T

≤
s2
δsπK

(∑∞
l=0 ‖CSδ,l‖∞

)2 (∑∞
l=0 ‖Cv∗

l ‖∞
)2

a2T
→ 0,

thereby completing the argument. �

Combining Assumption 4.4 with Lemma 4.2, we obtain the following immediate
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result.

Corollary 4.1. Under the same assumption as in Lemma 4.2, there exists a constant

φ∗ > 0, such that

P
(
λ1

(
Σ̂
)
≥ φ∗

)
→ 1,

as T, sδ, sπ →∞.

Proof of Corollary 4.1. Let Σ̃ = diag
(
Σ̂11, Σ̂22

)
and Σ̌ = Σ̂ − Σ̃. Note that

λmin

(
Σ̂
)
≥ λmin

(
Σ̃
)

+ λmin

(
Σ̌
)
≥ λmin

(
Σ̃
)
−
∥∥Σ̌∥∥

2
.

Furthermore,

P
(
λmin

(
Σ̃
)
< φ

)
= P

(
min

(
λmin

(
Σ̂11

)
, λmin

(
Σ̂22

))
< φ

)
≤ P

(
λmin

(
Σ̂11

)
< φ

)
+ P

(
λmin

(
Σ̂22

)
< φ

)
→ 0.

Thus, for any ε > 0, we may choose a T1 such that P
(
λmin

(
Σ̃
)
< φ

)
≤ ε

2 for all

T > T1. Moreover, by Lemma 4.2, there exists a T2 such that P
(∥∥Σ̌∥∥

2
≥ φ

2

)
≤ ε

2 ,

whenever T > T2. Then, for all T > max(T1, T2), we have

P
(
λmin

(
Σ̂
)
<
φ

2

)
≤ P

(
λmin

(
Σ̃
)
−
∥∥Σ̌∥∥

2
<
φ

2

)
≤ P

(
λmin

(
Σ̃
)
−
∥∥Σ̌∥∥

2
<
φ

2
,
∥∥Σ̌∥∥

2
<
φ

2

)
+ P

(∥∥Σ̌∥∥
2
≥ φ

2

)
≤ P

(
λmin

(
Σ̃
)
< φ

)
+
ε

2
≤ ε.

Since ε was chosen arbitrarily, the claim is shown for φ∗ = φ
2 . The same proof works

for any 0 < φ∗ < φ. �

Finally, we note that Lemma 4.1 and Corollary 4.1 have natural counterparts

based on the full dataset. This is described in the following corollary.

Corollary 4.2. Let Nδ = N −r and Mπ = M +r and define the scaling and rotation

matrices SR = diag
(√

TIMπ
, TNδ INδ

)
and

QR =

 (B′B)
−1/2

B′ 0

0 IM

(B′⊥B⊥)
−1/2

B′⊥ 0

 .
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Table 4.2 List of conversions

Old sδ sπ BSδ BSδ,⊥ Q vt v1,t v2,t ST
New Nδ Mπ B B⊥ QR vR,t vR1,t vR2,t SR

This table lists the conversions necessary to apply the proofs of Lemmas 4.1-4.2 and
Corollary 4.1.

Furthermore, define Σ̂R = S−1
R QRV

′Q′RS
−1
R . Assume that Nδ

T 1/4 → 0 and Mπ√
T
→ 0.

Then, under Assumptions 4.1-4.3 and 4.6,

1. P
(
λmin

(
Σ̂R

)
≥ φR

)
→ 1, as T,Nδ,Mπ →∞, and

2.
∥∥S−1

R QRV
′εy
∥∥

2
= Op

(
Nδ ∨

√
Mπ

)
.

Proof. First, note that Q′RQR = IM+N by construction. From the VMA representa-

tion (4.2.2), it follows that V Q′R =
[
VR1,VR2

]
, where VR1 is an (T×Mπ)-dimensional

matrix containing stationary processes and VR2 is an (T × Nδ)-dimensional matrix

containing integrated processes. We denote the rows of VR1 and VR2 by vR1,t and

vR2,t, respectively. Then, after a set of suitable replacements, the proof of Corol-

lary 4.2 is entirely analogues to the proofs of Lemma 4.1-4.2 and Corollary 4.1. The

required substitutions are summarized in Table 4.2.

�

4.A.2 Main Theorems

Proof of Theorem 4.1. Based on Proposition 4.1, it is suffices to show that P(AT ∩
BT )→ 1 as T,N →∞ or, equivalently, that P(A c

T )→ 0 and P(Bc
T )→ 0. Thus, we

start by deriving that P(A c
T )→ 0.

Recall the definitions of ST = diag
(√

TIsπ ,
T√
sδ
Isδ

)
and define Q as in (4.A.2),

with ‖Q‖∞ ≤ 1 by the normalization on BSδ and BSδ,⊥. Then, for T large enough,
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we may write the set A c
T as

A c
T =

s⋃
i=1

{∣∣∣[Q′S−1
T

(
S−1
T QV ′1V1Q

′S−1
T

)−1
S−1
T QV ′1εy

]
i

∣∣∣
≥
∣∣γSγ ,i∣∣− 1

2
λT

∣∣∣[Q′S−1
T

(
S−1
T QV ′1V1Q

′S−1
T

)−1
S−1
T QΩ1v0

]
i

∣∣∣}
=

s⋃
i=1

{∣∣∣[Q′S−1
T Σ̂−1S−1

T QV ′1εy

]
i

∣∣∣
≥
∣∣γSγ ,i∣∣− 1

2
λT

∣∣∣[Q′S−1
T Σ̂−1S−1

T QΩ1v0

]
i

∣∣∣}
⊆
{∥∥∥Q′S−1

T Σ̂−1S−1
T QV ′1εy

∥∥∥
2

≥ min
1≤i≤s

∣∣γSγ ,i∣∣− 1

2
λT

∥∥∥Q′S−1
T Q′S−1

T Σ̂−1S−1
T QΩ1v0

∥∥∥
2

}

(4.A.5)

We proceed by bounding the three quantities in (4.A.5) separately. First, by our

assumption on the growth rate of sδ in Theorem 4.1,

sδ
T
≤ 1√

T
⇒
∥∥S−1

T

∥∥
2

=
1√
T
,

for large enough T . Moreover, letting s = (sδ ∨ sπ),

∥∥S−1
T QΩ1v0

∥∥
2
≤
∥∥S−1

T

∥∥
2
‖Q‖2 ‖Ω1‖2 ‖v0‖2 ≤

2
√
s

T 1/2−ξ .

Then, on a set with probability converging to one,∥∥∥Q′S−1
T Σ̂−1S−1

T QV ′1εy

∥∥∥
2
≤
∥∥S−1

T

∥∥
2
‖Q‖2

∥∥∥Σ̂−1
∥∥∥

2

∥∥S−1
T QV ′1εy

∥∥
2

≤
∥∥S−1

T QV ′1εy
∥∥

2√
Tφ

.
(4.A.6)

Furthermore, on the same set,∥∥∥Q′S−1
T Σ̂−1S−1

T QΩ1v0

∥∥∥
2

≤
∥∥S−1

T Q
∥∥

2

∥∥∥Σ̂−1
∥∥∥

2

∥∥S−1
T QΩ1v0

∥∥
2
≤ 2

√
s

φT 1−ξ .
(4.A.7)
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Based on (4.A.6) and (4.A.7), we obtain probability bounds for A c
T as follows:

P (A c
T ) ≤ P

(∥∥∥Q′S−1
T Σ̂−1S−1

T QV ′1εy

∥∥∥
2

≥ |γmin| − λT
∥∥∥Q′S−1

T Σ̂−1S−1
T QΩ1v0

∥∥∥
2

)
≤ P

(∥∥S−1
T QV ′1εy

∥∥
2√

Tφ
≥ |γmin| −

2λT
√
s

φT 1−ξ

)
+ o(1)

= P
(∥∥S−1

T QV ′1εy
∥∥

2
≥ φ |γmin|

√
T − 2λT

√
s

T 1/2−ξ

)
+ o(1).

(4.A.8)

Then, to establish that P (A c
T )→ 0, by Lemma 4.1 it suffices that

|γmin|
√
T

(sδ ∨
√
sπ)
→∞, and

|γmin|T 1−ξ

λT
√
s

→∞. (4.A.9)

The first condition in (4.A.9) correspond to part 1 of Assumption 4.5. Regarding the

second condition, for sufficiently large T ,

|γmin|T 1−ξ

λT
√
s

≥
(
sδ ∨

√
sπ
)
T 1/2−ξ

λT
√
s

→∞,

where the divergence follows from part 2 of Assumption 4.5. Hence, we conclude that

P (A c
T )→ 0.

Next, we show that P (Bc
T )→ 0. Recall from Proposition 4.1,

Bc
T =

N⋃
i=s+1

{∣∣[V ′2Mεy]i
∣∣ ≥ λT

2

[(
Ω2ι−

∣∣∣V ′2V1 (V ′1V1)
−1
Ω1v0

∣∣∣)]
i

}

=

|Scδ |⋃
i=1

{∣∣∣z′Scδ ,iMεy

∣∣∣ ≥ λT
2
ωScδ ,i −

λT
2

∣∣∣z′Scδ ,iV1 (V ′1V1)
−1
Ω1v0

∣∣∣}
⋃

|Scπ|⋃
i=1

{∣∣∣w′Scπ,iMεy

∣∣∣ ≥ λT
2
ωScπ,i −

λT
2

∣∣∣w′Scπ,iV1 (V ′1V1)
−1
Ω1v0

∣∣∣}


= Bc
z,T ∪Bc

w,T .

(4.A.10)

Focussing first on Bc
z,T ,

Bc
z,T ⊆

{∥∥∥Z ′ScδMεy

∥∥∥
2
≥ λT

2
ωScδ ,min −

λT
2

∥∥∥Z ′ScδV1 (V ′1V1)
−1
Ω1v0

∥∥∥
2

}
(4.A.11)

We proceed by bounding each individual term in (4.A.11). First, on a set with
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probability converging to one,∥∥∥Z ′ScδMεy

∥∥∥
2
≤
∥∥∥Z ′Scδεy∥∥∥2

+
∥∥∥Z ′ScδV1 (V ′1V1)

−1
V ′1εy

∥∥∥
2

≤
∥∥∥Z ′Scδεy∥∥∥2

+

∥∥ZScδ∥∥2√
φ

∥∥S−1
T QV ′1εy

∥∥
2
,

(4.A.12)

where the last inequality follows from the fact that∥∥∥V1 (V ′1V1)
−1
V ′1εy

∥∥∥
2

=
(
ε′yV1 (V ′1V1)

−1
V ′1εy

)1/2

=
(
ε′yV1Q

′S−1
T

(
S−1
T QV ′1V1Q

′S−1
T

)−1
S−1
T QV ′1εy

)1/2

=
∥∥∥(S−1

T QV ′1V1Q
′S−1
T

)−1/2
S−1
T QV ′1εy

∥∥∥
2
≤
∥∥S−1

T QV ′1εy
∥∥

2√
φ

by Corollary 4.1. By the same argument, it follows that

∥∥∥Z ′ScδV1 (V ′1V1)
−1
Ω1v0

∥∥∥
2
≤
∥∥ZScδ∥∥2√

φ

∥∥S−1
T QΩ1v0

∥∥
2
≤

2
√
s
∥∥ZScδ∥∥2√

φT 1/2−ξ . (4.A.13)

Then, plugging (4.A.12) and (4.A.13) into (4.A.11), we obtain

P
(
Bc
z,T

)
≤ P

(∥∥∥Z ′Scδεy∥∥∥2
≥
λTωScδ ,min

4
−
λT
√
s
∥∥ZScδ∥∥2

2
√
φT 1/2−ξ

)

+ P

(∥∥S−1
T QV ′1εy

∥∥
2
≥
√
φλTωScδ ,min

4
∥∥ZScδ∥∥2

− λT
√
s

2T 1/2−ξ

)
.

(4.A.14)

We proceed by deriving the stochastic order of the common term
∥∥ZScδ∥∥2

, by

noting that,

P
(∥∥∥T−1N−1/2ZScδ

∥∥∥
2
≥ a

)
≤ P

(∥∥CScδ∥∥2

∥∥∥T−1N−1/2S
∥∥∥

2
≥ Kε

2

)
+ P

(∥∥∥T−1N−1/2UScδ

∥∥∥
2
≥ Kε

2

)
.

Furthermore, by Markov’s inequality and Assumption 4.1,

P
(∥∥CScδ∥∥2

∥∥∥T−1N−1/2S
∥∥∥

2
≥ Kε

2

)
≤

4
∥∥CScδ∥∥2

2

∑N
i=1

∑T−1
t=1 E (si,t)

2

K2
ε T

2N

≤
4
∥∥CScδ∥∥2

2
K

K2
ε

≤ ε,
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for Kε ≥

(
4
∥∥∥CSc

δ

∥∥∥2

2
K

ε

)1/2

, and

P
(∥∥∥T−1N−1/2UScδ

∥∥∥
2
≥ Kε

2

)
≤

4
∑|Scδ |
i=1

∑T−1
t=1 E

(
uScδ ,i,t

)2
K2
ε T

2N

≤
4φmax

∑|Scδ |
i=1

∑∞
l=0

∥∥cScδ ,l,i∥∥2

2

K2
ε TN

≤
4φmax

∑∞
l=0

∥∥CScδ ,l∥∥2

2

K2
ε T

≤ K

T
→ 0.

Hence,
∥∥ZScδ∥∥2

= Op

(
T
√
N
)

, i.e. for all ε > 0 there exist Kε, T
∗, N∗ > 0 such that

P
(∥∥ZScδ∥∥2

≥ T
√
NKε

)
≤ ε for all T > T ∗ and N > N∗. We use this to simplify the

two RHS terms of (4.A.14).

For sufficiently large T , the first RHS term of (4.A.14) is bounded by

P

(∥∥∥Z ′Scδεy∥∥∥2
≥
λTωScδ ,min

4
−
λT
√
s
∥∥ZScδ∥∥2

2
√
φT 1/2−ξ

)

≤ P

(∥∥CScδS′εy∥∥2
≥
λTωScδ ,min

8
− λTKε

√
sT 1/2+ξ

√
N

4
√
φ

)

+ P

(∥∥∥U ′Scδεy∥∥∥2
≥
λTωScδ ,min

8
− λTKε

√
sT 1/2+ξ

√
N

4
√
φ

)
+ ε.

(4.A.15)

Then, using that {si,t−1εy,t} is a m.d.s., it follows from application of Burkholder’s

inequality in combination with the Cr-inequality, that for an ε > 0,

P

(∥∥CScδS′εy∥∥2

T
√
N

≥ Kε

)
≤

∥∥CScδ∥∥2

2

∑N
i=1 E

(∑T
t=2 si,t−1εy,t

)2

K2
ε T

2N

≤
K
∥∥CScδ∥∥2

2
σ2
y

∑N
i=1

∑T−1
t=1 E(si,t−1)2

K2
ε T

2N
≤
K∗
∥∥CScδ∥∥2

2
σ2
y

K2
ε

≤ ε,

(4.A.16)
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for Kε ≥

(
K∗
∥∥∥CSc

δ

∥∥∥2

2
σ2
y

ε

)1/2

, and

P


∥∥∥U ′Scδεy∥∥∥2

T
√
N

≥ Kε

 ≤ ∑|S
c
δ |

i=1 E
(∑T

t=2

∑∞
l=0 c

′
Sδ,l,i

εt−1−lεy,t

)2

K2
ε T

2N

≤
Kσ2

y

∑|Scδ |
i=1

∑T
t=2

∑∞
l=0 E

(
c′Sδ,l,iεt−1−l

)2

K2
ε T

2N

≤
Kσ2

yφmax

∑|Scδ |
i=1

∑∞
l=0 ‖cSδ,l,i‖

2
2

K2
ε TN

≤
Kσ2

yφmax

∑∞
l=0 ‖CSδ,l‖

2
2

K2
ε TN

→ 0.

(4.A.17)

Hence, based on (4.A.16) and (4.A.17),

P

(∥∥∥Z ′Scδεy∥∥∥2
≥
λTωScδ ,min

4
−
λT
√
s
∥∥ZScδ∥∥2

2
√
φT 1/2−ξ

)
→ 0.

if

ωScδ ,min
√
sT 1/2+ξ

√
N
→∞, and

λTωScδ ,min

T
√
N

→∞. (4.A.18)

Both conditions in (4.A.18) are satisfied under Assumption 4.5.

Next, we focus on the second RHS term of (4.A.14). First, again using that∥∥ZScδ∥∥2
= Op(T

√
N), it holds that

P

(∥∥S−1
T QV ′1εy

∥∥
2
≥
√
φλTωScδ ,min

4
∥∥ZScδ∥∥2

− λT
√
s

2T 1/2−ξ

)

≤ P

(∥∥S−1
T QV ′1εy

∥∥
2
≥
√
φλTωScδ ,min

4KεT
√
N

− λT
√
s

2T 1/2−ξ

)
+ ε.

(4.A.19)

Then, based on Lemma 4.1, for the RHS of (4.A.19) to converge to zero, it is sufficient

that

ωcSδ,min√
sT 1/2+ξ

√
N
→∞, and

λTωScδ ,min

(sδ ∨
√
sπ)T

√
N
→∞.

Both conditions are satisfied under Assumption 4.5. Consequently, both RHS terms

of (4.A.14) converge to zero, thereby concluding that P
(
Bc
z,T

)
→ 0.

The last remaining part in proving Theorem 4.1 is to show that P
(
Bc
w,T

)
→ 0,

143



4 High-Dimensional Single-Equation Cointegration Modelling

where Bc
w,T is defined in (4.A.10). First, note that

Bc
w,T ⊆

{∥∥∥W ′
Scπ
Mεy

∥∥∥
2
≥ λT

2
ωScπ,min −

λT
2

∥∥∥W ′
Scπ
V1 (V ′1V1)

−1
Ω1v0

∥∥∥} .
Furthermore, on a set with probability converging to one,

∥∥∥W ′
Scπ
Mεy

∥∥∥
2
≤
∥∥∥W ′

Scπ
εy

∥∥∥
2

+

∥∥WScπ

∥∥
2

∥∥S−1
T QV ′1εy

∥∥
2√

φ
(4.A.20)

and

∥∥∥W ′
Scπ
V1 (V ′1V1)

−1
Ω1v0

∥∥∥
2
≤
∥∥WScπ

∥∥
2

∥∥S−1
T QΩ1v0

∥∥
√
φ

≤
2
√
s
∥∥WScπ

∥∥
2√

φT 1/2−ξ . (4.A.21)

Then, plugging (4.A.20)-(4.A.21) into Bc
w,T from (4.A.10), we obtain

P
(
Bc
w,T

)
≤ P

(∥∥∥W ′
Scπ
εy

∥∥∥
2

+

∥∥WScπ

∥∥
2

∥∥S−1
T QV ′1εy

∥∥
2√

φ

≥
λTωScπ,min

2
−
λT
√
s
∥∥WScπ

∥∥
2√

φT 1/2−ξ

)
+ o(1)

≤ P

(∥∥∥W ′
Scπ
εy

∥∥∥
2
≥
λTωScπ,min

4
−
λT
√
s
∥∥WScπ

∥∥
2

2
√
φT 1/2−ξ

)

+ P

(∥∥S−1
T QV ′1εy

∥∥
2
≥
λT
√
φωScπ,min

4
∥∥WScπ

∥∥
2

− λT
√
s

2T 1/2−ξ

)
+ o(1)

= P
(
Bc
w1,T

)
+ P

(
Bc
w2,T

)
+ o(1).

(4.A.22)

Next, we derive the stochastic order of the common term
∥∥WScπ

∥∥
2
. Recalling that

wi,t =
∑∞
l=0 c

w′
l,iεt−l, it holds that

E (wi,t)
2

=

∞∑
l=0

cw′l,iΣεc
w
l,i ≤ φmax

∞∑
l=0

∥∥cwl,i∥∥2

2
≤ φmax

∞∑
l=0

‖Cw
l ‖

2
2 ,

by Assumption 4.3. Then, for any ε > 0, it follows that

P

(∥∥WScπ

∥∥
2√

TM
≥ Kε

)
≤
∑M
i=1

∑T
t=1 E (wi,t)

2

K2
ε TM

≤
φmax

∑∞
l=0 ‖Cw

l ‖
2
2

K2
ε

≤ ε,

for Kε ≥
(
φmax

∑∞
l=0 ‖Cw

l ‖
2
2

)−1/2

. We use this to further simplify (4.A.22).

144



4.A Proofs

First, we show that Bc
w1,T

converges to zero in probability, by noting that

P
(
Bc
w1,T

)
= P

(∥∥∥W ′
Scπ
εy

∥∥∥
2
≥
λTωScπ,min

4
−
λT
√
s
∥∥WScπ

∥∥
2

2
√
φT 1/2−ξ

)

≤ P

(∥∥∥W ′
Scπ
εy

∥∥∥
2
≥
λTωScπ,min

4
− λTKε

√
sT ξ
√
M

2
√
φ

)
+ ε.

(4.A.23)

It is straightforward to verify that {wi,tεy,t} is a martingale difference sequence. Thus,

by application of the Markov bound combined with Burkholder’s inequality for mar-

tingale difference sequences, it follows that

P
(∥∥∥W ′

Scπ
εy

∥∥∥
2
≥ Kε

√
TM

)
≤

∑M
i=1 E

(∑T
t=1 wi,tεy,t

)2

K2
ε TM

≤
K
∑M
i=1

∑T
t=1 E (wi,tεy,t)

2

K2
ε TM

≤
K
∑M
i=1

∑T
t=1

∑∞
l1,l2=0

∑M
j1,j2=1

∣∣∣cwl1,i,j1∣∣∣ ∣∣∣cwl2,i,j2 ∣∣∣E ∣∣εj1,t−11
εj2,t−12

ε2y,t
∣∣

K2
ε TM

≤
K∗
∑M
i=1

(∑∞
l=0

∥∥∥cwl,i∥∥∥
1

)2

K2
εM

≤
K∗
(∑∞

l=0 ‖Cw
l ‖1

)2
Kε

≤ ε,

for Kε ≥
(
K∗(

∑∞
l=0‖C

w
l ‖1)

2

ε

)1/2

. Thus, P
(
Bc
w1,T

)
→ 0, if

ωScπ,min
√
sT ξ
√
M
→∞, and

λTωScδ√
TM

→∞.

These conditions are ensured by Assumption 4.5. Similarly, we bound the probability

measure of Bc
w2,T

as defined in (4.A.22) as follows:

P
(
Bc
w2,T

)
= P

(∥∥S−1
T QV ′1εy

∥∥
2
≥
λT
√
φωScπ,min

4
∥∥WScπ

∥∥
2

− λT
√
s

2T 1/2−ξ

)

≤ P
(∥∥S−1

T QV ′1εy
∥∥

2
≥
λT
√
φωScπ,min

4Kε

√
TM

− λT
√
s

2T 1/2−ξ

)
+ ε,

(4.A.24)

such that, by Lemma 4.1, sufficient conditions for P
(
Bc
w2,T

)
→ 0 are given by

ωScπ,min
√
sT ξ
√
M
→∞, and

λTωScπ,min

(sδ ∨
√
sπ)
√
TM

→∞.

Both of these conditions are satisfied under Assumption 4.5. Hence, P
(
Bc
w,T

)
→ 0,

thereby concluding the proof of Theorem 4.1. �
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Remark 4.9. Our approach to bounding ‖WSπ‖2 does not put any restrictions on

the growth rate of M . However, the price for this generality is that ωScπ,min needs

to grow by a factor
√
TM faster to account for the potential divergence of ‖WSπ‖2.

An alternative approach is taken in Medeiros and Mendes (2016), who rely on the

Triplex inequality from Jiang (2009) to conclude that max
1≤i≤M

‖wi‖2 = Op(1). While

this approach is less demanding in terms of the initial weights, it puts additional

restrictions on the admissible rates of divergence of N and M . Since the growth rates

of weights based on a consistent initial consistent estimator are easy to manually

adjust (see Section 4.3.2), we proceed without the use of the Triplex inequality.

Proof of Theorem 4.2. First, we recall the definitions V = (V1,V2), V1 = (Z−1,Sδ ,WSπ ),

Ω = diag (ω) and Ω1 = diag
(
ωSγ

)
. Since γ̂ are the minimizers of (4.2.9), they must

set the subgradient equation equal to zero:

V ′ (∆y − V γ̂)− λT
2
Ωs (γ̂) = 0,

where s (γ̂) is the subgradient of ‖γ̂‖1 (see Hastie et al., 2015, p. 9). Focussing on

the first |Sγ | equations, we obtain

V ′1 (∆y − V γ̂)− λT
2
Ω1s (γ̂)

= V ′1

(
εy − V1

(
γ̂Sγ − γSγ

)
− V2γ̂Scγ

)
− λT

2
Ω1s (γ̂) = 0,

from which follows that

γ̂Sγ − γSγ = (V ′1V1)
−1
(
εy − V ′1V2γ̂Scγ −

λT
2
Ω1s (γ̂)

)
(4.A.25)

Pre-multiplying (4.A.25) by STQ
′−1 and taking the Euclidean norm on both sides, it

follows that∥∥STQ′−1
(
γ̂Sγ − γSγ

)∥∥
2

≤
∥∥∥(S−1

T QV ′1V1Q
′S−1
T

)−1
∥∥∥

2

×
∥∥∥∥S−1

T Q

(
V ′1εy − V ′1V2γ̂Scγ −

λT
2
Ω1s

(
γ̂Sγ

))∥∥∥∥
2

≤ φ−1
(∥∥S−1

T QV ′1εy
∥∥

2
+
∥∥∥S−1

T QV ′1V2γ̂Scγ

∥∥∥
2

+
λT
2

∥∥S−1
T QΩ1s

(
γ̂Sγ

)∥∥
2

)
+ op(1),

(4.A.26)

by Corollary 4.1. We derive the stochastic order for the three RHS terms of (4.A.26).
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First,

∥∥S−1
T QV ′1εy

∥∥
2

= Op (sδ ∨
√
sπ) , (4.A.27)

by Lemma 4.1. The second term on the RHS of (4.A.26) vanishes in probability by

Theorem 4.1. Finally, the third term is bounded as

λT
2

∥∥S−1
T QΩ1s

(
γ̂Sγ

)∥∥
2
≤ λT

2

∥∥S−1
T

∥∥
2

∥∥Ω1s
(
γ̂Sγ

)∥∥
2

≤ λT
√
s

T 1/2−ξ = o (sδ ∨
√
sπ) ,

(4.A.28)

where the last equality follows from part 2 of Assumption 4.5. Hence, plugging

(4.A.27)-(4.A.28) into (4.A.26), we conclude that

∥∥STQ′−1
(
γ̂Sγ − γSγ

)∥∥
2

= Op (sδ ∨
√
sπ) ,

as required. �

Proof of Theorem 4.3. The analytic expression for the ridge estimator is given by

γ̂R = (V ′V + λRIN+M )
−1
V ′∆y

= (V ′V + λRIN+M )
−1

(V ′V γ + V ′εy)

= γ + (V ′V + λRIN+M )
−1

(V ′εy − λRγ) .

(4.A.29)

Let SR and QR, after appropriate scaling, (4.A.29) reads as

SRQ
′−1
R (γ̂R − γ) =

(
S−1
R QRV

′V Q′RS
−1
R + λRS

−2
R

)−1

×
(
S−1
R QRV

′εy − λRS−1
R QRγ

)
.

(4.A.30)

We proceed by bounding the norms of the three RHS quantities in (4.A.30) as

∥∥SRQ′−1
R (γ̂R − γ)

∥∥
2
≤
∥∥∥(S−1

R QRV
′V Q′RS

−1
R + λRS

−2
R

)−1
∥∥∥

2

×
(∥∥S−1

R QRV
′εy
∥∥

2
+ λR

∥∥S−1
R QRγ

∥∥
2

) (4.A.31)

Focussing on the first RHS term of (4.A.31), we note that∥∥∥(S−1
R QRV

′V Q′RS
−1
R + λRS

−2
R

)−1
∥∥∥

2

≥ 1

λmin

(
Σ̂R

)
+ λR

T 2

+ op(1) ≥ 1

φR
+ op(1),
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by part 1 of Corollary 4.2. The stochastic order of the second RHS term is given by

part 2 of Corollary 4.2 as

∥∥S−1
R QRV

′εy
∥∥

2
= Op

(
Nδ ∨

√
Mπ

)
.

The third and final RHS is deterministically bounded by

λR
∥∥S−1

R QRγ
∥∥

2
≤ λR√

T

(∥∥∥(B′B)
−1/2

B′δ
∥∥∥

2
+ ‖π‖2

)
≤ λR√

T

(√
|Sδ| ‖δ‖∞ +

√
|Sπ| ‖π‖∞

)
= O

λR
(√
|Sδ| ∨

√
|Sπ|

)
√
T

 .

As a result, we obtain the stochastic order of (4.A.30) as

∥∥SRQ′−1
R (γ̂R − γ)

∥∥
2

= Op

(
Nδ ∨

√
Mπ

)
+Op

λR
(√
|Sδ| ∨

√
|Sπ|

)
√
T


= Op

(
Nδ ∨

√
Mπ

)
where the last equality follows from the assumption that λR ≤

KR(Nδ∨
√
Mπ)

√
T(√

|Sδ|∨
√
|Sπ|

) . �

4.A.3 Satisfying Assumption 4.4

Sample covariance matrices appear on several instances in the sets described in Propo-

sition 4.1. Bounding appropriate norms of (the inverses of) these matrices turns out

to be crucial in the proofs of our main results. One of the norms that has attractive

theoretical properties is the spectral norm, which, when applied to the inverse of a

symmetric positive definite matrix, can be bounded with the use of a lower bound on

the minimum eigenvalue, thereby motivating the use of Assumption 4.4. However, the

feasibility of such minimum eigenvalue bounds is difficult to verify directly on general

sample covariance matrices. One method of verification for the positive lower bound

on the minimum eigenvalue of Σ̂11, i.e. part 1 of Assumption 4.4, is by restricting

the eigenvalues of a simpler approximating matrix. The behaviour of the eigenvalues

of this approximating matrix can be shown to carry over to the sample covariance

matrix, based on either of the following two results.

Lemma 4.3. Let A and B denote two s-dimensional square non-negative definite

matrices. Then,
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(i) for all i = 1, . . . , s, it holds that

|λi (A)− λi(B)| ≤ ‖A−B‖2 ,

(ii) if ‖A−B‖max ≤ δ, then λmin(B) ≥ λmin(A)− sδ.

Proof of Lemma 4.3. Proof of Part (i)

This is a well-known consequence of the additive Weyl inequalities, see for example

Horn et al. (1994, Theorem 3.3.16). Note in particular, that when A is a symmetric

positive definite matrix, it holds that σi(A) = λi(A), i.e. the singular values are

equal to the eigenvalues.

Proof of Part (ii)

This corresponds to Lemma 6.17 in Bühlmann and Van De Geer (2011) and is de-

scribed in similar form in Lemma 3 in Medeiros and Mendes (2016). For the sake of

completion, we repeat the short proof here. Take x ∈ Rs \ {0}. Then,

x′Ax− x′Bx ≤ |x′ (A−B)x| ≤ ‖x‖1 |(A−B)x|∞ ≤ ‖x‖
2
1 δ ≤ x

′xsδ,

from which clearly follows that

x′Bx

x′x
≥ x′Ax

x′x
− sδ.

Taking the infimum on both sides completes the proof. �

An important consequence of Lemma 4.3 is that a bound on the minimum eigen-

value of A, automatically results in a bound for the minimum eigenvalue of B, the

latter depending on the maximum distance between the elements of the two matrices.

We use this to derive the following result.

Lemma 4.4. Define Σ11 = E
(
v1,tv

′
1,t

)
. Furthermore, assume that sπ√

T
→ 0 and

λmin (Σ11) ≥ 2φ for some φ > 0. Then, under Assumptions 4.1-4.3,

P
(
λmin

(
Σ̂11

)
≥ φ

)
→ 1

as T, sδ, sπ →∞.

Proof of Lemma 4.4. We prove Lemma 4.4 by showing that
∥∥∥Σ̂11 −Σ11

∥∥∥
2

p→ 0 as

T, sπ → ∞, after which application of part (i) of Lemma 4.3 leads to the desired

result. Chen et al. (2013) derive the convergence rates for thresholded estimates of

high-dimensional covariance matrices, based on the functional dependence measure
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in Wu (2005). The key feature of this dependence measure is the construction of a

coupled version of the stochastic process, which in our setting results in the process

v∗1,t =
∑∞
l=0C

v
l ε
∗
t−l, where ε∗t = εt for t 6= 0 and ε∗0 is an i.i.d. copy of ε0. By

Assumption 4.1, for any w ≤ 2m, the functional dependence measure for element

v1,j,t is bounded by

θj,t,w =
∥∥v1,j,t − v∗1,j,t

∥∥
w

=

∥∥∥∥∥
N∑
i=1

∞∑
l=0

cvl,j,i
(
εi,t−l − ε∗i,t−l

)∥∥∥∥∥
w

=

∥∥∥∥∥
N∑
i=1

cvt,j,i
(
εi,0 − ε∗i,0

)∥∥∥∥∥
w

≤
N∑
i=1

∣∣cvt,j,i∣∣ ∥∥εi,0 − ε∗i,0∥∥w ≤ ∥∥εi,0 − ε∗i,0∥∥w ∥∥cvt,j∥∥1
≤ K

∥∥cvt,j∥∥1
,

where cvt,j is the j-th row of Cv
t and ‖·‖w = (E(·)w)

1/w
. Then, with the addition of

Assumption 4.3, it holds that

Θk,w = max
1≤j≤N

∞∑
l=k

θj,l,w ≤ K
∞∑
l=k

‖Cv
l ‖∞ = O

(
k−1

)
,

for all k > 0. Therefore, the conditions in Theorem 2.1 of Chen et al. (2013) are

satisfied. From this theorem, it follows that E
∥∥∥Σ̂11 −Σ11

∥∥∥2

F
= O

(
s2π
T

)
, by taking

the limit of the threshold value as it approaches zero. Thus, application of the Markov

inequality shows that
∥∥∥Σ̂11 −Σ11

∥∥∥
2

p→ 0 as T, sπ →∞ with sπ√
T
→ 0. By part (i) of

Lemma 4.3, this implies that
∣∣∣λmin

(
Σ̂11

)
− λmin (Σ11)

∣∣∣ p→ 0. Then,

P
(
λmin

(
Σ̂11

)
≥ φ

)
= P

(∣∣∣λmin

(
Σ̂11

)
− λmin (Σ11) + λmin (Σ11)

∣∣∣ ≥ φ)
≥ P

(
λmin (Σ11)−

∣∣∣λmin

(
Σ̂11

)
− λmin (Σ11)

∣∣∣ ≥ φ)
= P

(∣∣∣λmin

(
Σ̂11

)
− λmin (Σ11)

∣∣∣ ≤ λmin (Σ11)− φ
)

≥ P
(∣∣∣λmin

(
Σ̂11

)
− λmin (Σ11)

∣∣∣ ≤ φ)→ 1,

as required. �

Next we focus on bounding the minimum eigenvalue of

Σ̂22 =
sδ
T 2

T∑
t=1

v2,tv
′
2,t =

sδ
T 2
B′Sδ,⊥

(
T∑
t=1

zSδ,tz
′
Sδ,t

)
BSδ,⊥

Contrary to Σ̂11, the matrix Σ̂22 does not converge in probability to a deterministic

matrix. The following result is used in Remark 4.2 and demonstrates the issues with
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the collinearity inducing property of integrated variables in high dimensions.

Lemma 4.5. Define an s-dimensional white noise sequence ut
i.i.d.∼ N (0, Is) and let

ht =
∑t
j=1 uj. Then, as s, T →∞,

P

(
λmin

(
1

T 2

T∑
t=1

hth
′
t

)
> φ

)
→ 0, (4.A.32)

for any φ > 0.

Proof. We show that λmin

(
1
T 2

∑T
t=1 hth

′
t

)
p→ 0, as T, s → ∞. Let E = {e1, . . . , es}

be the collection of basis vectors. Since E ⊂ Rs, we have for any ε > 0,

P

(
λmin

(
1

T 2

T∑
t=1

hth
′
t

)
> φ

)
≤ P

(
min
x∈E

x′

(
λmin

(
1

T 2

T∑
t=1

hth
′
t

))
x > φ

)

= P

(
min

1≤i≤s

1

T 2

T∑
t=1

h2
i,t > φ

)
= P

(
1

T 2

T∑
t=1

h2
1,t > φ

)s

≤

{
P
(∫ 1

0

W 2(r)dr > φ

)
+

∣∣∣∣∣P
(

1

T 2

T∑
t=1

h2
1,t > φ

)
− P

(∫ 1

0

W 2(r)dr > φ

)∣∣∣∣∣
}s

,

where W (r) is a standard univariate Brownian Motion. First, assume that

P
(∫ 1

0

W 2(r)dr > φ

)
≤ 1− 2ε(φ), (4.A.33)

for some ε(φ) > 0. Then, by the functional central limit theorem, there exists a T ∗

such that∣∣∣∣∣P
(

1

T 2

T∑
t=1

h2
1,t > φ

)
− P

(∫ 1

0

W 2(r)dr > φ

)∣∣∣∣∣ ≤ ε(φ)

for all T > T ∗. Consequently, for large enough T ,

P

(
λmin

(
1

T 2

T∑
t=1

hth
′
t

)
> φ

)
≤ (1− ε(φ))s → 0

as s, T →∞, which is the claim of Lemma 4.5. Hence, all that is left is to verify the

truth of (4.A.33).
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First, note that

P
(∫ 1

0

W 2(r)dr ≥ φ
)
≤ P

(
sup

0≤r≤1
|W (r)| ≥

√
φ

)
= 1−P

(
sup

0≤r≤1
|W (r)| <

√
φ

)
.

We show that for every φ > 0, it holds that P
(

sup
0≤r≤1

|W (r)| <
√
φ

)
≥ 2ε(φ) > 0

for some ε(φ) > 0. Let W1 and W2 denote two independent standard Brownian

motions over the interval [0, 1] and note that we may construct an additional standard

Brownian motion as W∆ = (W1−W2)/
√

2. The sample paths of W1,W2,W∆ lie in the

function space C([0, 1]), which contains all continuous functions from the unit interval

to R and is equipped with the supremum norm ‖f‖∞ = max{|f(x)| | x ∈ [0, 1]}.
It is well-known that C([0, 1]) is a separable metric space (e.g. Davidson, 1994, p.

438). Then, define B(y,
√

2φ) = {x ∈ C([0, 1]) | ‖x− y‖∞ ≤
√

2φ} and note that

by Theorem 5.6 of Davidson (1994) there exists a countable collection of elements

{x1, x2, . . .} ⊂ C([0, 1]) such that C([0, 1]) ⊆
⋃
iB(xi,

√
2φ). By countable additivity,

1 = P (W1 ∈ C([0, 1])) = P

(
W1 ∈

⋃
i

B(xi,
√

2φ)

)
≤
∑
i

P
(
W1 ∈ B(xi,

√
2φ)
)
.

(4.A.34)

Furthermore, it must be true that there exists a B(xi,
√

2φ) with

P
(
W1 ∈ B(xi,

√
2φ)
)

= q > 0, because otherwise the RHS of (4.A.34) would

be zero, resulting in a contradiction. Since W1 and W2 are independent, we conclude

that

P
(

sup
0≤r≤1

|W∆(r)| <
√
φ

)
≥ P

(
W1 ∈ B(xi,

√
2φ),W2 ∈ B(xi,

√
2φ)
)

= q2 > 0.

Since q depends only on φ, we may write 2ε(φ) = q2, thereby completing the proof. �

Hence, we aim to bound Σ̂22, which contains a scaling by sδ
T 2 , under varying

additional assumptions on the DGP and the growth rate of sδ. The first bound that

we derive assumes normality of the errors and requires sδ
T 1/2 → 0.

Lemma 4.6. Let Σ̂22 be as defined in Assumption 4.4 and assume that εt
i.i.d.∼

N (0,Σε). Then, under Assumptions 4.1-4.3, there exists a constant ζ > 0 such that

P
(
λmin

(
Σ̂22

)
≥ ζ
)
→ 1,
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as sδ, T →∞ with sδ
T 1/2 → 0.

Proof. First, letting ut = CSδ(L)εt, we decompose Σ̂22 into

Σ̂22 = B′Sδ,⊥

(
sδ
T 2

T∑
t=1

zSδ,tz
′
Sδ,t

)
BSδ,⊥

= B′Sδ,⊥

(
sδ
T 2

T∑
t=1

(CSδst−1 + ut−1) (CSδst−1 + ut−1)
′

)
BSδ,⊥

= B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1s
′
t−1

)
C ′SδBSδ,⊥

+B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1u
′
t−1

)
BSδ,⊥

+B′Sδ,⊥

(
sδ
T 2

T∑
t=1

ut−1s
′
t−1

)
C ′SδBSδ,⊥

+B′Sδ,⊥

(
sδ
T 2

T∑
t=1

ut−1u
′
t−1

)
BSδ,⊥

=: A1 +A2 +A′2 +A3,

(4.A.35)

such that

λmin

(
Σ̂22

)
≥ λmin(A1)− 2 ‖A2‖2 − ‖A3‖2 . (4.A.36)

We show that there exists a ζ > 0 such that

P (λmin (A1) > ζ)→ 1,

whereas

P (‖A2‖2 > ζ)→ 0 and P (‖A3‖2 > ζ)→ 0

as sδ, T →∞.

By the assumption that εt
i.i.d.∼ N (0,Σε), it holds that

A1 = B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1s
′
t−1

)
C ′SδBSδ,⊥

d
= R1/2

(
sδ
T 2

T∑
t=1

sG,t−1s
′
G,t−1

)
R1/2,
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where R = B′Sδ,⊥CSδΣεC
′
Sδ
BSδ,⊥, and sG,t =

∑t
s=1 εG,s with εG,s

i.i.d.∼ N (0, Isδ)

being an sδ-dimensional Gaussian white noise process. Furthermore, for any x ∈ Rsδ

with x′x = 1,

x′B′Sδ,⊥CSδΣεC
′
Sδ
BSδ,⊥x = y′Σεy ≥ φmin,

where y 6= 0, because C ′SδBSδ,⊥ has full column rank by construction, and the

inequality follows by Assumption 4.1. Thus,

λmin (A1) ≥ λmin (R)λmin

(
sδ
T 2

T∑
t=1

sG,t−1s
′
G,t−1

)

≥ φminλmin

(
sδ
T 2

T∑
t=1

sG,t−1s
′
G,t−1

)
.

Let SG = (sG,1, . . . , sG,T )
′

and EG = (εG,1, . . . , εG,T )
′
. Note that we can rewrite

SG = UEG, where U is a lower triangular matrix with ones on and below the diag-

onal. Furthermore, we can decompose U ′U = V ΛV ′, where Λ = diag(λ1, . . . , λT ).

By Lemma 1 in Akesson and Lehoczky (1998), it holds that

λ−1
t = 4 sin2

(ωt
2

)
= 2(1− cosωt), (4.A.37)

with ωt = (2t−1)π
2T+1 . The second equality in (4.A.37) is based on the identity cos(2α) =

1− 2 sin2(α). It follows that

S′GSG = E′GU
′UEG = E′GV ΛV

′EG = ẼΛẼ,

where Ẽ = V ′EG. Note that, as a result of the rotational invariance of the multivari-

ate normal distribution, Ẽ is again an (T × sδ)-dimensional matrix with independent

standard normal entries. Define RG = {x ∈ Rsδ : x′x = 1}. Let yx = V ′EGx.

Then, following a similar strategy as in the proof of Remark 3.5 in Zhang et al.
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(2019a),

λmin

(
sδ
T 2

T∑
t=1

sG,t−1s
′
G,t−1

)
=

sδ
T 2
λmin (E′GV ΛV

′EG) ,

=
sδ
T 2

min
x∈RG

x′E′GV ΛV
′EGx =

sδ
T

min
x∈RG

y′xyx
T

y′xΛyx
y′xyx

≥ sδ
T

(
min
x∈RG

y′xyx
T

)(
min
x∈RG

y′xΛyx
y′xyx

)
≥ sδ
T
λmin

(
Ẽ′Ẽ

T

)(
min
x∈RG

∑sδ
j=1 y

2
x,jλj

y′xyx

)

≥ ksδ
T 2

λmin

(
Ẽ′Ẽ/T

)
λmax

(
Ẽ′Ẽ/T

) min
x∈RG

1

k

k∑
j=1

y2
x,jλk+1.

(4.A.38)

Furthermore, it holds that

λk+1 =
1

2(1− cosωk+1)
≥ 1

2ω2
k+1

=
(2T + 1)2

8π2k2
≥ T 2

2π2k2
. (4.A.39)

In addition, by Theorem 2.1 in Chen et al. (2013) it follows that, for any ε > 0,

P

(∥∥∥∥∥Ẽ′ẼT − Isδ

∥∥∥∥∥
2

> ε

)
→ 0

as sδ, T → ∞ with sδ
T 1/2 → 0. As a consequence of Weyl’s inequality in Lemma 4.3,

this implies that

P

∣∣∣∣∣∣
λmin

(
Ẽ′Ẽ/T

)
λmax

(
Ẽ′Ẽ/T

) − 1

∣∣∣∣∣∣ > ε

→ 0, (4.A.40)

as sδ, T → ∞ with sδ
T 1/2 → 0. Finally, define V k = (v1, . . . ,vk), and note that(

V k
)′
Ẽ is a (k × sδ)-dimensional matrix with independent standard normal entries.

Then, choosing k such that sδ
k → y ∈ (0, 1), it follows from Theorem 1 in Bai and

Yin (1993) that

limλmin

(
E′GV

K
(
V k
)′
EG

k

)
= (1−√y)2, a.s. (4.A.41)
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Then, plugging (4.A.39)-(4.A.41) into (4.A.38), we obtain

λmin

(
sδ
T 2

T∑
t=1

sG,t−1s
′
G,t−1

)
≥ sδ

2π2k

λmin

(
Ẽ′Ẽ/T

)
λmax

(
Ẽ′Ẽ/T

) min
x∈RG

1

k

k∑
j=1

y2
x,j

=
sδ

2π2k

λmin

(
Ẽ′Ẽ/T

)
λmax

(
Ẽ′Ẽ/T

)λmin

(
Ẽ′V K

(
V k
)′
Ẽ

k

)
→

y(1−√y)2

2π2
,

(4.A.42)

in probability as sδ, T →∞ with sδ
T 1/2 → 0.

It remains to show that ‖A2‖2 and ‖A3‖2 converge in probability to zero as

sδ, T →∞. First, applying the Beveridge-Nelson decomposition toCSδ(L) = CSδ(1)+

C∗Sδ(L)(1− L), and letting ηt = C∗Sδ(L)εt, we can rewrite

B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1u
′
t−1

)
BSδ,⊥

= B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−2ε
′
t−1

)
CSδ(1)BSδ,⊥

+B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

εt−1ε
′
t−1

)
CSδ(1)BSδ,⊥

+B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1 (ηt−1 − ηt−2)
′

)
BSδ,⊥.

(4.A.43)

Furthermore, using summation by parts, we can further simplify the last term on the

RHS of (4.A.43) to

B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1 (ηt−1 − ηt−2)
′

)
BSδ,⊥

= B′Sδ,⊥CSδ

( sδ
T 2
sT−1η

′
T−1

)
BSδ,⊥

−B′Sδ,⊥CSδ

(
sδ
T 2

T−1∑
t=1

εtη
′
t−1

)
BSδ,⊥.

(4.A.44)
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Then, plugging (4.A.44) into (4.A.43), we obtain the lengthy expression

B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−1u
′
t−1

)
BSδ,⊥

= B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

st−2ε
′
t−1

)
CSδ(1)BSδ,⊥

+B′Sδ,⊥CSδ

(
sδ
T 2

T∑
t=1

εt−1ε
′
t−1

)
CSδ(1)BSδ,⊥

+B′Sδ,⊥CSδ

( sδ
T 2
sT−1η

′
T−1

)
BSδ,⊥

−B′Sδ,⊥CSδ

(
sδ
T 2

T−1∑
t=1

εtη
′
t−1

)
BSδ,⊥ =:

4∑
i=1

Di,

(4.A.45)

with each Di corresponding to the i-th term on the RHS of the first equation. Thus,

we may derive the convergence rate of A2 in (4.A.35) based on the rates of the

individual terms Di in (4.A.45). For notational convenience, let ai = C ′SδβSδ,⊥,i and

bj = CSδ(1)βSδ,⊥,j . Starting with the first term, we obtain

P (‖D1‖2 ≥ ζ) ≤ P

 sδ∑
i,j=1

(
sδ
T 2

T∑
t=3

a′ist−2ε
′
t−1bj

)2

≥ ζ2


≤
s2
δ

∑sδ
i,j=1 E

(∑T
t=3 a

′
ist−2ε

′
t−1bj

)2

T 4ζ2
.

(4.A.46)

Then, noting that {a′ist−2ε
′
t−1bj} is a martingale difference sequence, it follows from

Burkholder’s inequality in combination with the Cr-inequality that we can bound the

expectation by

E

(
T∑
t=3

a′ist−2ε
′
t−1bj

)2

≤ K
T∑
t=3

E
(
aist−2ε

′
t−1bj

)2
= K

T∑
t=3

E (a′ist−2)
2 E
(
b′jεt−1

)2
= K

(
b′jΣεbj

)
(a′iΣεai)

T−2∑
t=1

t

≤ T 2K ‖ai‖22 ‖bj‖
2
2 φ

2
max ≤ T 2K ‖CSδ‖

2
2 ‖CSδ(1)‖22 φ

2
max,

(4.A.47)

where we use that, by the column normalization on BSδ,⊥, we have

‖ai‖22 =
∥∥C ′SδβSδ,⊥,i∥∥2

2
≤ ‖CSδ‖

2
2 ‖βSδ,⊥,i‖

2
2 ≤ ‖CSδ‖

2
2
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and

‖bj‖22 ≤= ‖CSδ(1)βSδ,⊥,j‖
2
2 ≤ ‖CSδ(1)‖22 ‖βSδ,⊥,j‖

2
2 ≤ ‖CSδ(1)‖22 .

Plugging (4.A.47) into (4.A.46), we obtain

P (‖D1‖2 ≥ ζ) ≤
s4
δ ‖CSδ‖

2
2 ‖CSδ(1)‖22 φ2

max

T 2ζ2
→ 0,

based on Assumption 4.3 and the assumption that sδ
T 1/2 → 0.

Next, we bound D2 in (4.A.45). By a combination of the union bound, Markov’s

inequality and Minkowski’s inequality,

P (‖D2‖2 > ζ) ≤ P

 sδ∑
i,j=1

(
sδ
T 2

T∑
t=1

a′iεt−1ε
′
t−1bj

)2

> ζ2


≤
s2
δ

∑sδ
i,j=1 E

(∑T
t=1

∑N
s1,s2=1 ai,s1bj,s2εs1,t−1εs2,t−1

)2

T 4ζ2

≤
s2
δ

∑sδ
i,j=1

(∑T
t=1

∑N
s1,s2=1 |ai,s1 | |bj,s2 |

(
E (εs1,t−1εs2,t−1)

2
)1/2

)2

T 4ζ2

≤
s2
δK
∑sδ
i,j=1 ‖ai,s1‖

2
1 ‖bj,s2‖

2
1

T 2ζ2
≤
s4
δK ‖CSδ‖

2
∞ ‖CSδ(1)‖2∞
T 2ζ2

→ 0,

where we have used that E (εs1,t−1εs2,t−1)
2 ≤ K by Assumption 4.1 and the bound-

edness of ‖CSδ‖
2
∞ ‖CSδ(1)‖2∞ follows from Assumption 4.3. We omit repeating this

argument in the following bounds.

Next, we bound D3. Recall that we define ηt = C∗Sδ(L)εt, where C∗Sδ(z) =∑∞
l=0C

∗
Sδ,l

zl with
∑∞
l=0

∥∥∥C∗Sδ,l∥∥∥∞ ≤ K by Assumption 4.3. Defining bj,l = C∗Sδ,lβSδ,⊥,j ,

we follow a similar strategy to obtain

P (‖D3‖2 > ζ)

≤
s2
δ

∑sδ
i,j=1

(∑T−1
k=1

∑∞
l=0

∑N
s1,s2=1 |ai,s1 | |bj,l,s2 |

(
E (εs1,kεs2,T−1−l)

2
)1/2

)2

T 4φ2

≤
s2
δK
∑sδ
i,j=1

(∑
l=0 ‖bj,l‖1

)2 ‖ai‖21
T 2ζ2

≤
s4
δK
(∑∞

l=0

∥∥∥C∗Sδ,l∥∥∥∞)2

‖CSδ‖
2
∞

T 2ζ2
→ 0.
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Finally, for D4, we proceed fully analogously, to obtain

P (‖D4‖2 > ζ) ≤
s2
δ

∑sδ
i,j=1 E

(∑T−1
t=1

∑∞
l=0

∑N
s1,s2=1 ai,s1bj,s2εs1,tεs2,t−1−l

)2

T 4ζ2

≤
s2
δ

∑sδ
i,j=1

(∑T−1
t=1

∑∞
l=0

∑N
s1,s2=1 |ai,s1 | |bj,s2 |

(
E (εs1,tεs2,t−1−l)

2
)1/2

)2

T 4ζ2

≤
s2
δK
∑sδ
i,j=1

(∑∞
l=0 ‖bj , l‖1

)2 ‖ai‖21
T 2ζ2

≤
s4
δK
(∑∞

l=0

∥∥∥C∗Sδ,l∥∥∥∞)2

‖CSδ‖
2
∞

T 2ζ2
→ 0.

Combining the results for D1 to D4, it follows that P (‖A2‖2 ≥ ζ)→ 0 as sδ, T →∞.

The last term to derive the stochastic order for is A3 in (4.A.35). Define ai,l =

C ′Sδ,lβSδ,⊥,i. Then, again by a combination of the union bound, Markov’s inequality

and Minkowski’s inequality,

P (‖A3‖2 > ζ) ≤ P

 sδ∑
i,j=1

 sδ
T 2

T∑
t=1

∞∑
l1,l2=0

a′i,l1εt−1−l1ε
′
t−1−l2aj,l2

2

> ζ2


≤
s2
δ

∑sδ
i,j=1 E

(∑T
t=1

∑∞
l1,l2=0

∑N
s1,s2=1 ai,l1,s1aj,l2,s2εs1,t−1−l1εs2,t−1−l2

)2

T 4ζ2

≤
s2
δ

∑sδ
i,j=1

(∑T
t=1

∑∞
l1,l2=0

∑N
s1,s2=1 |ai,l1,s1 | |aj,l2,s2 |

(
E (εs1,t−1−l1εs2,t−1−l2)

2
)1/2

)2

T 4ζ2

≤
s2
δK
∑sδ
i,j=1

(∑∞
l1=0 ‖ai,l1‖1

)2 (∑∞
l2=0 ‖aj,l2‖1

)2
T 2ζ2

≤
s4
δK
(∑∞

l=0 ‖CSδ,l1‖∞
)4

T 2ζ2
.

Hence, P (‖A3‖2 ≥ ζ) → 0 as sδ, T → ∞ with sδ
T 1/2 → 0, thereby completing the

proof. �

It is possible to extend the result in Lemma 4.6 to general distributions, based on

an argument that relies on strong Gaussian approximations. However, an additional

cost is paid in terms of a further restriction on the maximum growth rate of sδ.

Lemma 4.7. Let Σ̂22 be as defined in Assumption 4.4 and maintain Assumptions

4.1-4.3. In addition assume that εt = Dut, where D is a T -dimensional square

matrix with ‖D‖ ≤ K, for some K > 0, and ui,s ⊥⊥ uj,t for all i, j, s, t with i 6= j.

159



4 High-Dimensional Single-Equation Cointegration Modelling

Let Σu = (σu,ij)
N
i,j=1 and assume that

max
1≤i≤N

E

∣∣∣∣∣
T∑
t=1

(
u2
i,t − σ2

u,ii

)∣∣∣∣∣
2

= O
(
T 1/2

)
.

Then, there exists a constant ζ > 0, independent of sδ, N and T , such that

P
(
λmin

(
Σ̂22

)
> ζ
)
→ 1,

as sδ, N, T →∞ with sδN
T 1/4 → 0.

Proof. Define su,t =
∑t
s=1 us, such that st = Dsu,t. The proof makes use of a

Gaussian approximation of ut, similar to Zhang et al. (2019a) in their proof of Remark

3.4. By the martingale version of the Skorokhod representation theorem (Strassen,

1967, Theorem 4.3), it is possible to extend the probability space such that, for all

i, there exists a standard Brownian motion W (t) and non-negative stopping times

{τi,j} such that for t ≥ 1,

su,it = W

 t∑
j=1

τi,j

 and E [τi,t|Fi,t−1] = E
[
u2
i,t|Fi,t−1

]
, (4.A.48)

where Fi,t is the natural filtration of the stochastic process {ui,s, s ≤ t}. Then, by

the proof of Remark 3.4 in Zhang et al. (2019a) it follows that under Assumption 4.1,

for every sequence {ui,t}, there exists an independent and standard normal sequence

{vi,t}, such that

max
1≤i≤N

max
0≤t≤T

E

[Tt]∑
s=1

(ui,s − σu,iivi,s)

2

= O
(
T 1/2

)
.

Define s̃t =
∑t
s=1 ε̃s, where ε̃s = (ε̃1,s, . . . , ε̃N,s)

′ with ε̃i,j = σiivi,j . In addition,

let

Ã1 = B′Sδ,⊥CSδD

(
sδ
T 2

T∑
t=1

s̃ts̃
′
t

)
D′C ′SδBSδ,⊥.

By the proof of Lemma 4.6, there exist a ζ > 0 such that

P
(
λmin

(
Ã1

)
> ζ
)
→ 1,
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as sδ, T →∞. Recall the decomposition

Σ̂22 = A1 +A2 +A′2 +A3,

given by (4.A.35), such that

λmin

(
Σ̂22

)
≥ λmin

(
Ã1

)
+ λmin

(
Σ̂22 − Ã1

)
≥ λmin

(
Ã1

)
−
∥∥∥A1 − Ã1

∥∥∥
2
− 2 ‖A2‖2 − ‖A3‖2 .

(4.A.49)

In Lemma 4.6, it is shown that for any ζ > 0,

P (‖A2‖2 > ζ)→ 0 and P (‖A3‖2 > ζ) ,

as sδ, T →∞. Therefore, proving Lemma 4.7 is equivalent to showing that

P
(∥∥∥A1 − Ã1

∥∥∥
2
> ζ
)
→ 0, (4.A.50)

as sδ, T →∞ on the extended probability space on which (4.A.48) holds.

We start by deriving the upper bound

∥∥∥A1 − Ã1

∥∥∥
2
≤=

sδ
T 2

∥∥∥∥∥B′Sδ,⊥CSδD
(

T∑
t=1

su,ts
′
u,t −

T∑
t=1

s̃ts̃
′
t

)
D′C ′SδBSδ,⊥

∥∥∥∥∥
2

≤ sδ
T 2

∥∥D′C ′SδBSδ,⊥
∥∥2

2

∥∥∥∥∥
T∑
t=1

su,ts
′
u,t −

T∑
t=1

s̃ts̃
′
t

∥∥∥∥∥
2

,

where

∥∥D′C ′SδBSδ,⊥
∥∥2

2
≤ ‖D‖22 ‖CSδ‖

2
2 ‖BSδ,⊥‖

2
2 <∞,

by the assumption that ‖D‖2 ≤ K, Assumption 4.3 and the normalization on BSδ,⊥.

Furthermore, by the proof of Lemma 9 in the supplementary material of Zhang et al.

(2019a, p. 3), it follows that∥∥∥∥∥
T∑
t=1

su,ts
′
u,t −

T∑
t=1

s̃ts̃
′
t

∥∥∥∥∥
2

= Op

(
NT 7/4

)
,

such that∥∥∥A1 − Ã1

∥∥∥
2

= Op

(
sδN

T 1/4

)
.
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Hence, by (4.A.49) there exist a ζ > 0, such that on an extended probability space

P
(
λmin

(
Σ̂22

)
> ζ
)
→ 1,

as sδ, N, T →∞ with sδN
T 1/4 → 0. �

Finally, we discuss an alternative route to the result in Lemma 4.6, based on a

matrix concentration inequality. Such concentration inequality are becoming increas-

ingly popular in the field of high-dimensional statistics, with excellent recent overviews

provided by Tropp (2012, 2015). In particular, we rely on the matrix Chernoff bound

bound, the following version of which is stated as Theorem 1.1 in Tropp (2012) and

repeated here without proof.

Lemma 4.8. Consider a finite sequence of {Xt} of independent, random, self-adjoint

matrices with dimension N . Assume that each random matrix satisfies

Xt � 0, and λmax (Xt) ≤ R almost surely.

Define

µmin := λmin

(∑
t

E(Xt)

)
.

Then, for δ ∈ [0, 1],

P

(
λmin

(
T∑
t=1

Xt

)
≤ (1− δ)µmin

)
≤ N

(
e−δ

(1− δ)1−δ

)µmin/R

. (4.A.51)

Based on the Chernoff bound in Lemma 4.8, we derive the following lower bound.

Lemma 4.9. Define a (T×N)-dimensional matrix with random walks S = (s1, . . . , sT )′,

where st =
∑t
s=1 εs with εs

i.i.d.∼ N (0, IN ). Assume that N,T →∞, with N
log T →∞

and N logN
T → 0. Then, there exist a constant ζ > 0, independent of N and T , such

that

P

(
λmin

(
N logN

T 2

T∑
t=1

sts
′
t

)
≤ ζ

)
→ 0, (4.A.52)

as N,T →∞.

The lower bound in Lemma 4.9 is less tight than the one derived in Lemma 4.6,

in the sense that a factor logN is used to bound the minimum eigenvalue away from
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zero. However, Lemma 4.9 requires only N logN
T → 0 as opposed to the previous

N
T 1/2 → 0. Nonetheless, it turns out that application of Lemma 4.9 to λmin

(
Σ̂22

)
does not lead to any improvement over Lemma 4.6, at least not without the use of

thus far unknown additional arguments. Therefore, Lemma 4.9 is stated here as a

result that may be of independent interest, while not being used for any of the main

theorems throughout this chapter.

Proof of Lemma 4.9. As in the proof of Lemma 4.6, we can rewrite S = UE,

where U is a lower triangular matrix with ones on and below the diagonal and

E = (ε1, . . . , εT )′. Furthermore, we again decompose U ′U = V ΛV ′, where

Λ = diag(λ1, . . . , λT ) and recall that

λ−1
t = 4 sin2

(ωt
2

)
= 2(1− cosωt),

with ωt = (2t−1)π
2T+1 . It follows that

S′S = E′U ′UE = Ẽ′ΛẼ =

T∑
t=1

λtε̃tε̃
′
t,

where ε̃t
i.i.d.∼ N (0, IN ) by the rotational invariance of the multivariate normal dis-

tribution. Consider the matrix S′φSφ =
∑T
t=1 λφ,tε̃tε̃

′
t, with λ−1

φ,t = 2(1+φT − cosωt),

where φT is a deterministic function decreasing in T . Note that for any φT > 0,

S′S − S′φSφ =

T∑
t=1

(λt − λφ,t)ε̃tε̃′t � 0 ⇒ λmin (S′S) ≥ λmin

(
S′φSφ

)
. (4.A.53)

Let

µφ := λmin

(
T∑
t=1

λφ,t E (ε̃tε̃
′
t)

)
=

T∑
t=1

λφ,t,

and define Rφ = Nλφ,1(1 + σ2). We first show that

P
(

sup
1≤t≤T

λmax (λφ,tε̃tε̃
′
t) ≥ Rφ

)
→ 0, (4.A.54)

as T,N →∞. First, note that by the union bound, the fact that the ε̃t are identically

163



4 High-Dimensional Single-Equation Cointegration Modelling

distributed, the definition of Rφ and the triangle inequality, it holds that

P
(

sup
1≤t≤T

λmax (λφ,tε̃tε̃
′
t) ≥ Rφ

)
≤

T∑
t=1

P
(
λmax (ε̃tε̃

′
t) ≥

Rφ
λφ,t

)
≤ T P

(
λmax (ε̃1ε̃

′
1) ≥ Rφ

λφ,1

)
≤ T P

(
‖ε̃1‖22 ≥

Rφ
λφ,1

)

= T P

 1

N

N∑
j=1

ε̃2j,1 ≥ 1 + σ2


≤ T P

∣∣∣∣∣∣ 1

N

N∑
j=1

ε̃2j,1 − σ2

∣∣∣∣∣∣+ σ2 ≥ 1 + σ2


= T P

∣∣∣∣∣∣ 1

N

N∑
j=1

ε̃2j,1 − σ2

∣∣∣∣∣∣ ≥ 1

 .

(4.A.55)

Since ε̃j,1 ∼ N (0, 1) it follows that ε2j,1 ∼ χ(1), i.e. a Chi-squared distribution with

one degree of freedom. Moreover, the moment generating function of ε̃2j,1 is given by

(e.g. Casella and Berger, 2002, p. 623),

Mε(t) =

(
1

1− 2t

)1/2

, for t < 1/2.

Since there exists a point K at which Mε(K) < ∞ (e.g. Mε(3/8) = 2), it follows

from Proposition 2.7.1 (d) in Vershynin (2018) that ε̃2j,1 is a sub-exponential random

variable. Define the sub-exponential norm of a random variable X as

‖X‖ψ1
= inf {t > 0 : E exp (|X| /t) ≤ 2} . (4.A.56)

It is straightforward to show that ε̃2j,1 − σ2 is a sub-exponential random variable as

well. For the sake of completeness, note that the by definition of ‖·‖ψ1
, we have∥∥σ2

∥∥
ψ1

= σ2 log 2 and
∥∥ε̃2j,1∥∥ψ1

≤ 8/3, where the latter holds based on the previously

stated fact that Mε(3/8) = 2. Then,

∥∥ε̃2j,1 − σ2
∥∥
ψ1
≤
∥∥ε̃2j,1∥∥ψ1

+
∥∥σ2

∥∥
ψ1
≤
∥∥ε̃2j,1∥∥ψ1

+ σ2 log 2 ≤ 8/3 + σ2 log 2 =: Kψ,

thereby proving that ε̃2j,1 − σ2 is a sub-exponential random variable. Accordingly,

we proceed to bound the RHS of (4.A.55) with the use of a variant of the Bernstein
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inequality stated in Corollary 2.8.3. in Vershynin (2018):

T P

∣∣∣∣∣∣ 1

N

N∑
j=1

ε̃2j,1 − σ2

∣∣∣∣∣∣ ≥ 1

 ≤ 2T exp

(
− cN
K2
ψ

)
→ 0. (4.A.57)

as T,N →∞ and under the assumption that N
log T →∞. This confirms the claim in

(4.A.54).

Continuing with deriving the minimum eigenvalue bound, we let

Kδ =
e−δ

(1− δ)1−δ ,

such that 0 < Kδ < 1 for any δ ∈ (0, 1). By the matrix Chernoff bound in Lemma

4.8, it holds that

P

(
λmin

(
T∑
t=1

λφ,tε̃tε̃
′
t

)
≤ (1− δ)µφ

)
≤ NKµφ/Rφ

δ . (4.A.58)

Hence, our goal is to ensure that µφ diverges as fast as possible via our choice of φT ,

while simultaneously ensuring that µφ/Rφ → ∞. First, we derive a lower bound for

µφ as a function of φT as

2µφ =

T∑
t=1

1

1− cosωt + φT
≥

T∑
t=1

1(
(2t+1)π
2T+1

)2

+ φT

=

T∑
t=1

(2T + 1)2

(2t+ 1)2π2 + φT (2T + 1)2
.

(4.A.59)

Let aT be a slowly increasing function such that aT →∞ with NaT
T → 0. Note that

by the assumption that N logN
T → 0, we may set aT = logNK for any K > 0. Next,

set φ
1/2
T = NaT

T and define [x] as the integer part of x. Then, for large enough T we
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have φ
1/2
T ≤ 1, such that

µφ ≥
T∑
t=1

(2T + 1)2

2 ((2t+ 1)2π2 + φT (2T + 1)2)

≥
T∑
t=1

(2T )2

2 ((3t)2π2 + φT (3T )2π2)

=

T∑
t=1

4T 2

18π2 (t2 + φTT 2)
≥

[
Tφ

1/2
T

]∑
t=1

4T 2

18π2 (t2 + φTT 2)

≥
4φ

1/2
T T 3

36π2φTT 2
=

T

9π2φ
1/2
T

=
T 2

9π2NaT
→∞.

(4.A.60)

Next, we focus on µφ/Rφ. Recall the definition Rφ = (1 + σ2)λφ,1N . Then,

µφ
Rφ
≥ T

9π2(1 + σ2)λφ,1Nφ
1/2
T

≥
Tφ

1/2
T

9π2(1 + σ2)N
=

aT
9π2
→∞. (4.A.61)

Finally, setting Kδ = e−δ

(1−δ)1−δ , for some δ ∈ (0, 1), and recalling that aT =

Ka logN , where we now define Ka >
9π2

logKδ
. Then, combining (4.A.53), (4.A.54),

(4.A.60) and (4.A.61), and using the Chernoff matrix bound in Lemma 4.8, we con-

clude that

P
(
λmin

(
N logN

T 2
S′S

)
≤ 1− δ
Ka9π2

)
= P

(
λmin

(
9π2NaT
T 2

S′S

)
≤ 1− δ

)
≤ P

(
λmin

(
1

µφ
S′φSφ

)
≤ 1− δ

)
≤ P

(
λmin

(
1

µφ
S′φSφ

)
≤ 1− δ, sup

1≤t≤T
λmax (λφ,tε̃tε̃

′
t) ≤ Rφ

)
+ P

(
sup

1≤t≤T
λmax (λφ,tε̃tε̃

′
t) > Rφ

)
≤ NKµφ/Rφ

δ + o(1) ≤ NKaT /9π
2

δ + o(1)

= N exp

(
aT logKδ

9π2

)
+ o(1)→ 0,

by our assumption on Ka. Hence, we have proven Lemma 4.9 for ζ = 1−δ
Ka9π2 . �

166



Chapter 5

High-dimensional Forecasting

in the Presence of Unit Roots

and Cointegration

“The modern macro economy is large, diffuse, and difficult to define, measure, and

control.”

- C. Granger (1934-2009)
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Abstract†

In this chapter we investigate how the possible presence of unit roots and coin-

tegration affects forecasting based on high-dimensional datasets. When modelling

(co)integrated data, the researcher is required to either transform the integrated time

series to stationarity or to explicitly model the cointegrating properties of the data.

However, both approaches are complicated by the high-dimensional setting. First,

transformations to stationarity require performing many unit root tests, increasing

room for errors in the classification. Second, modelling unit roots and cointegra-

tion directly is more difficult, as standard high-dimensional techniques such as factor

models and penalized regression are not directly applicable to (co)integrated data and

need to be adapted. In this chapter we provide an overview of both issues and review

methods proposed to address these issues. These methods are also illustrated with

two empirical applications.

†This chapter is based on Smeekes and Wijler (2020).
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5.1 Introduction

In this chapter we investigate forecasting based on high-dimensional datasets in which

the series may contain unit roots and be cointegrated. As most macroeoconomic time

series are at least very persistent, and may contain unit roots, a proper handling of unit

roots and cointegration is of paramount importance in macroeconomic forecasting.

The theory of unit roots and cointegration in small systems is well-developed and

numerous reference works exist to guide the practitioner, see for example Enders

(2008) or Hamilton (1994) for comprehensive treatments.

We discuss the problems that arise when extending the analysis to high-dimensional

data and consider solutions that have been proposed in the literature. In particular,

we discuss the applicability of the proposed methods for macroeconomic forecasting,

reviewing relevant theoretical properties and practical issues. Moreover, by recon-

sidering the two high-dimensional applications of Chapters 2 and 3 —which are very

different in spirit— we illustrate the issues and analyze the performance of the various

methods in practically relevant situations.

The empirical literature dealing with unit roots and cointegration can essentially

be split into two different philosophies. The first approach is to apply an appropriate

transformation to each series such that one can work with stationary time series,

with the most common transformation taking first differences of a series with a unit

root. This is the most common approach in high-dimensional forecasting, as it only

involves ‘straightforward’ unit root or stationarity testing on each series. Indeed,

commonly used high-dimensional datasets such as the FRED-MD and -QD datasets

(McCracken and Ng, 2016) already come with pre-determined transformation codes to

achieve stationarity.1 While this approach appears to be conceptually simple, we will

argue in this chapter that there are seemingly minor issues that are often ignored in

practice, but which can have a big impact on the performance of consequent forecasts,

in particular when working with less established datasets.

The second approach is to model unit root and cointegration properties directly. In

small systems, this is commonly done through vector error correction models (VECM),

often using the popular maximum likelihood methodology developed by Johansen

(1995a). The rationale for this seemingly more complicated approach is that ignoring

long-run relations between the variables, as is done in the first approach, means not in-

corporating all information into the forecaster’s model, which may have a detrimental

1The transformations to stationarity in the empirical application of Chapter 2 were based on
these pre-determined transformation codes.
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effect on the forecast quality. Extending these techniques for modelling cointegration

to high-dimensional settings requires a careful rethink of how cointegration can be

viewed in high dimensions, and is an ongoing area of research. We will discuss recent

contributions in this area and analyze the respective merits and drawbacks of each

method.

While the importance of the concept of cointegration for macroeconometric anal-

ysis cannot be understated, one might argue that for the specific goal of forecasting

it is not crucial. In the low-dimensional time series literature a large body of litera-

ture exists which compares the relative merits of the two philosophical approaches for

forecasting, see for instance Clements and Hendry (1995), Christoffersen and Diebold

(1998), Diebold and Kilian (2000) and the references therein. Generally, the conclu-

sion is mixed, with the performance of each approach varying depending on forecast

horizon, dimensions of the models, estimation accuracy, and even specific applications

and datasets. As this is no different in a high-dimensional context, we make no at-

tempt to classify one of these approaches as superior. Instead, we aim to provide the

practitioner with an overview of tools available to follow either line of thought.

One could discern a third approach to unit roots and cointegration, which is to

ignore unit roots all together and estimate all forecasting models in levels. While this

approach is at first glance close to the first approach and one might have valid reasons

to prefer this approach, we do not recommend this in high-dimensional problems.

If cointegration is not present in (parts of) the data, these methods may be very

sensitive to spurious regression. The higher the dimensions of the data, the more

likely that spurious regression becomes an issue. In particular, given that many

methods discussed in this book perform some sort of dimensionality reduction or

variable selection, this may actually increase the likelihood of obtaining spurious

results. For instance, we observed in Chapter 2 that the variable selection of lasso-

type estimators quickly deteriorated when naively applied to a mix of cointegrated

and spurious regressors. Low-dimensional solutions such as always including lagged

levels to avoid spurious regression are not possible in high-dimensional systems, as it

would require including too many variables, and the applied dimensionality reduction

or variable selection techniques might not be able to retain the lagged levels in the

model. As such, we do not consider the approach of estimating everything in levels

further in this chapter.2

We also illustrate the discussed methods by two empirical applications. In the

2Obviously, this caveat does not mean that forecasting in levels does not yield good results for
specific applications. The applied researcher is free to apply any of the methods discussed in this
chapter directly to (suspected) unit root series, but should simply be wary of the results.
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first we forecast several U.S. macroeconomic variables using the FRED-MD database,

similar to the application considered in Chapter 2. This application tests the methods

in a known macroeconomic context, thus serving as a benchmark. In our second

application, we consider nowcasting unemployment using a dataset constructed from

Google Trends with frequencies of unemployment-related search terms, similar to

the application considered in Chapter 3. This second application not only serves to

highlight the potential of ‘modern’ sources for high-dimensional datasets by which to

forecasting macroeconomic time series, but also illustrates that in such applications,

we have little theoretical guidance to decide on unit root and cointegration properties,

and proper data-driven methods are needed.

Note that, as is common in the related high-dimensional literature, we focus explic-

itly on point forecasts. As distributional theory changes when unit roots are present,

performing interval forecasts in the presence of unit roots and cointegration is a much

more challenging – and largely unresolved – issue in the high-dimensional setting,

especially as it adds to the complications of performing inference in high dimensions

already present without unit roots. Given the sparsity of literature on this topic, we

do not consider interval prediction in this chapter. This is clearly a very important

avenue for future research.

The remainder of this chapter is organized as follows. Section 5.2 describes the

general setup and introduces the cointegration model, along with some useful repre-

sentations for later use. We discuss how to transform high-dimensional datasets to

stationarity in Section 5.3, while Section 5.4 introduces high-dimensional approaches

for modelling cointegration. In Section 5.5 we apply the discussed methods to our

two empirical forecasting exercises. Finally, Section 5.6 concludes.

5.2 General Setup

In this section we describe a general model for cointegration to be used throughout

the chapter. Next to defining the model in the classical error correction form, we also

consider alternative representations that will be useful later in the chapter.

Let zt denote an N -dimensional time series observed at time t = 1, . . . , T . Assume

that we can represent the series as

zt = µ+ τ t+ ζt, (5.2.1)

where µ is an N -dimensional vector of intercepts, τ is an n-dimensional vector of
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trend slopes, and ζt is theN -dimensional purely stochastic time series. This stochastic

component given is by

∆ζt = AB′ζt−1 +

p∑
j=1

Φj∆ζt−j + εt, (5.2.2)

where εt is the N -dimensional innovation vector. Generally the innovations εt will

be a martingale difference sequence, although we abstract from making too specific

assumptions at this point.

We can obtain the classical vector error correction model (VECM) for zt by sub-

stituting (5.2.1) into (5.2.2):

∆zt = AB′ (zt−1 − µ− τ (t− 1)) + τ ∗ +

p∑
j=1

Φj∆zt−j + εt, (5.2.3)

where τ ∗ = (IN −
∑p
j=1Φj)τ . The long-run relations are contained in the (N × r)-

matrix B, while the (N × r) matrix A contains the corresponding loadings. Here the

variable r describes the number of cointegrating relations in the systems. If r = 0, we

adopt the convention that AB′ = 0; in this case zt is a pure N -dimensional unit root

process. If r = N , all series are I(0). To ensure that zt is at most an I(1) process,

the lag polynomial C(z) := (1− z)−AB′z −
∑p
j=1Φj(1− z)zj and matrices A and

B should satisfy Assumption 3.2. Under this assumptions, exactly N − r roots of the

lag polynomial C(z) are equal to unity, while the remaining r roots lie outside the

unit circle.

From the Granger Representation Theorem (cf. Johansen, 1995a, p. 49), we can

obtain the common trend representation of (5.2.3), which is given by

zt = µ+ τ t+Cst + ut, (5.2.4)

where C is an (N ×N) matrix of rank N − r,3 st =
∑t
i=1 εt are the stochastic trends

and ut is a stationary process. This representation show that zt can be decomposed

in a deterministic process, an I(1) part of common trends, Cst, and a stationary part

ut.

To see the commonality of the trends, note that as C is of reduced rank, we can

define (N × (N − r)) matrices Λ and Γ such that C = ΛΓ ′. Then defining the

3If r = 0, we set C = 0.
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((N − r)× 1)-vector ft = Γ ′st, we can write (5.2.4) as

zt = µ+ τ t+Λft + ut. (5.2.5)

We can now see the common trends as common factors, which provides a convenient

way to think about cointegration in high dimensions.

This brings us to an alternative way to represent cointegration through a common

factor structure from the outset. This form was considered by Bai and Ng (2004)

among others to investigate different sources of nonstationarity in a panel data con-

text. In this case we start from (5.2.5), assuming that the elements of both ft and

ut can be I(0) or I(1). The combination of the two then determines the properties

of the series zt. Consider a single series zi,t, which can be represented as

zi,t = µi + τit+ λ′ift + ui,t,

where λ′i denotes the i-th row of Λ. Note that zi,t is I(0) only if both ui,t and λ′ift

are I(0), where the latter occurs if either all factors ft are I(0), or no I(1) factors

load on series i. Similarly, cointegration between series i and j requires that both ui,t

and uj,t are I(0).

Remark 5.1. For expositional simplicity we do not consider I(2) variables here.

While the VECM can be extended to allow for I(2) series, see e.g. Johansen (1995b),

in practice most cointegration analyses are performed on I(1) series. If the data

contains (suspected) I(2) series, these are generally differenced before commencing

the cointegration analysis.

Similarly, one could think of the data generating process (DGP) as being of infinite

lag order, rather than fixed order p. In this case the VECM with fixed order can be

thought of as an approximation to the infinite order model, where p should be large

enough to capture ‘enough’ of the serial correlation. Either way, in applications p is

generally not known and has to be estimated.

5.3 Transformations to Stationarity and Unit Root

Pre-Testing

In this section we discuss how to determine the appropriate transformations —in

particular how often the series need to be differenced— in order to obtain only sta-

tionary time series in our dataset. While established datasets, such as the FRED-MD,
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come with an overview of the appropriate transformation for each series, this is gen-

erally not the case and data-driven methods are needed. Thus, one normally has to

apply unit root or stationarity tests to determine the order of integration, and the

corresponding transformation. In this section we investigate how to approach this

pre-testing problem.

First, we investigate unit root tests in more detail, and highlight some of their

characteristics that one should take into account when considering high-dimensional

macroeconomic forecasting. Second, we discuss how to deal with the multiple testing

problem that arises from the fact that we need to combine unit root tests on many

time series.

5.3.1 Unit Root Test Characteristics

Even though the literature on unit root testing has grown exponentially since the

seminal paper of Dickey and Fuller (1979), discussing at length the characteristics of

various unit root tests, unit root pre-testing is often done in an automatic, routine-

like, way by considering classical tests such as augmented Dickey-Fuller (ADF) tests.

However, these tests have various problematic characteristics which may accumulate

when applied in high-dimensional problems. While we cannot discuss all of these here,

let us briefly mention some of particular relevance for macroeconomic forecasting. An

extensive overview of unit root testing is provided by Choi (2015).4

Size distortions

Standard unit root tests are very prone to size distortions. One source is neglected

serial correlation (cf. Schwert, 1989), while another is time-varying volatility (Cava-

liere, 2005). For both sources, bootstrap methods have proven a successful means to

counteract the size distortions; however, while for serial correlation any ‘off-the-shelf’

time series bootstrap method can be used (see Palm et al., 2008, for an overview and

comparison), dealing with general forms of heteroskedasticity requires a unit root test

based on the wild bootstrap (Cavaliere and Taylor, 2008, 2009).

It should be noted that unconditional volatility changes pose a particular concern

for macroeconomic time series. Many datasets such as FRED-MD span the period

of the Great Moderation, which has significantly affected the volatility of macroeco-

nomic time series (Justiniano and Primiceri, 2008; Stock and Watson, 2003). It would

4Given the greater popularity of tests where the null hypothesis is a unit root over tests with
stationarity as the null, we focus exclusively on unit root tests here. However, most of the discussion
applies to stationarity tests as well.
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therefore appear wise to take potential volatility changes into account when selecting

an appropriate unit root test.

Power and specification considerations

The power properties of the different unit root tests proposed vary considerably,

and generally optimal tests do not exist. One particular source of variation is the

magnitude of the initial condition, where for instance the DF-GLS test of Elliott

et al. (1996) is optimal when the initial condition is zero, but the ADF test is much

more powerful when the initial condition is large (Müller and Elliott, 2003). An even

larger source of variation is the presence or absence of a deterministic trend. Unit root

tests with a trend included (or, equivalently, unit root tests performed on detrended

data) are considerably less powerful than without trend (performed on demeaned

data). On the other hand, if a trend is not included when the data do contain one,

the unit root test is not correctly sized anymore (Harvey et al., 2009).

While dealing with such issues is manageable in unit root testing for a single

series, this changes when considering large datasets. For instance, deciding whether

to include a trend in the unit root test can be based on a combination of theory, visual

inspection, pre-testing, and comparing outcomes of different tests with or without a

trend. However, such an analysis has to be done manually for each series involved,

which quickly becomes problematic if the dimension of the dataset increases. This is

even more problematic for modern high-dimensional datasets, such as Google Trends,

for which no theory exists to guide the practitioner, and where the dimension can

become arbitrarily large.

As such one would like to have an automatic way of choosing good specifications

for the unit root tests, that may differ across series. One easy way is provided by the

union of unit root tests principle proposed by Harvey et al. (2009, 2012), in which

several unit root tests are performed, and the unit root null hypothesis is rejected if

one of the tests rejects (when corrected for multiple testing). In particular, Harvey

et al. (2012) consider a union of the ADF and DF-GLS tests, both with and without

linear trend, to cover uncertainty about both trend and initial condition. Smeekes

and Taylor (2012) consider a wild bootstrap version of this test that is robust to
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time-varying volatility. The test statistic for series i takes the form

URi = min

((
xi

cµ∗i,GLS(α)

)
GLSµi ,

(
xi

cτ∗i,GLS(α)

)
GLSτi ,(

xi
cµ∗i,ADF (α)

)
ADFµi ,

(
xi

cτ∗i,ADF (α)

)
ADF τi

)
,

(5.3.1)

where ADFi and GLSi are the ADF and DF-GLS test performed on series i, while

superscript µ and τ indicate whether the series are demeaned or detrended respec-

tively. The bootstrap critical values such as cµ∗i,GLS(α) used in the scaling factors are

determined in a preliminary bootstrap step as the individual level α critical values of

the four tests. The variable xi is a scaling factor to which the statistics are scaled.

Any xi < 0 suffices to preserve the left-tail rejection region; if one additionally takes

xi the same value for all series i, test statistics become comparable across series, which

facilitates the multiple comparisons discussed in the next subsection.

5.3.2 Multiple Unit Root Tests

Performing a unit root test for every series separately raises issues associated with

multiple testing. In particular, the probability of incorrect classifications rises with

the number of tests performed. If each test has a significance level of 5%, we may

also expect roughly 5% of the I(1) series to be incorrectly classified as I(0). In a

high-dimensional dataset this can quickly lead to a significant number of incorrectly

classified series. It will of course depend on the specific application whether this is

problematic —a priori we cannot say whether the ‘important’ series will be correctly

classified or not— but to avoid such issues one can formally account for multiple

testing.

There is a huge statistical literature about multiple testing; Romano et al. (2008b)

provide an overview with a focus on econometric applications. Here we briefly discuss

the most prominent methods developed for the purposes of unit root testing. Before

discussing the different methods to control for multiple testing, let us set up the

general framework. Let UR1, . . . , URN denote the unit root test statistics for series

1 up to N , assuming they reject for small values of the statistics.5 It is important

to choose the test statistics such that they are directly comparable, in the sense that

their marginal distributions are the same. If this is the case, then the ranking

UR(1) ≤ . . . ≤ UR(R) ≤ UR(R+1) ≤ . . . ≤ UR(N), (5.3.2)

5We can assume this without loss of generality as any test statistic can be modified to indeed do
so.
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where UR(i) denotes the i-th order statistic of UR1, . . . , URN , corresponds to a rank-

ing from ‘most significant’ to ‘least significant’. To ensure the comparability of the

test statistics, one needs to eliminate nuisance parameters from their distribution.

Hence, simply using the bootstrap to absorb nuisance parameters is not sufficient;

instead, one often needs to transform (for instance to p-values) or scale the statis-

tics appropriately. In the union tests of (5.3.1), the scaling is done automatically by

setting xi = −1 for all units.

Given the ranking in (5.3.2), the objective is to find an appropriate cut-off point R

such that for all statistics less than or equal UR(R) the unit root hypothesis is rejected,

and for all statistics larger it is not rejected. How this threshold is determined depends

on how multiple testing is controlled for.

Controlling generalized error rates

Generalized error rates provide multivariate extensions of the standard Type I error.

The most common is the familywise error rate (FWE), which is defined as the proba-

bility of making at least one false rejection of the null hypothesis. This can easily be

controlled by the popular Bonferroni correction. However, this is very conservative as

it is valid under any form of dependence. On the contrary, if the bootstrap is used to

capture the actual dependence structure among the tests, one can control for multiple

testing without the need for being conservative. This approach is followed by Hanck

(2009), who controls FWE in unit root testing by applying the bootstrap algorithm

proposed by Romano and Wolf (2005).

While controlling FWE makes sense when N is small, in typical high-dimensional

datasets FWE becomes too conservative. Instead, one can control the false discovery

rate (FDR) originally proposed by Benjamini and Hochberg (1995), which is defined

as

FDR = E
[
F

R
1(R > 0)

]
,

where R denote the total number of rejections, and F the number of false rejections.

The advantage of the FDR is that it scales with increasing N , and thus is more ap-

propriate for large datasets. However, most non-bootstrap methods are either not

valid under arbitrary dependence or overly conservative. Moon and Perron (2012)

compare several methods to control FDR and find that the bootstrap method of Ro-

mano et al. (2008a), hereafter denoted as BFDR, does not share these disadvantages

and clearly outperforms the other methods. A downside of this method however is
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that the algorithm is rather complicated and time-consuming to implement. Globally,

the algorithm proceeds in a sequential way by starting to test the ‘most significant’

series, that is, the smallest unit root test statistic. This statistic is then compared

to an appropriate critical values obtained from the bootstrap algorithm, where the

bootstrap evaluates all scenarios possible in terms of false and true rejections given

the current progression of the algorithm. If the null hypothesis can be rejected for

the current series, the algorithm proceeds to the next most significant statistic and

the procedure is repeated. Once a non-rejection is observed, the algorithm stops. For

details we refer to Romano et al. (2008a). This makes the bootstrap FDR method a

step-down method, contrary to the original Benjamini and Hochberg (1995) approach

which is a step-up method starting from the least significant statistic.

Sequential testing

Smeekes (2015) proposes an alternative bootstrap method for multiple unit root test-

ing based on sequential testing. In a first step, the null hypothesis that all N series

are I(1) –hence p1 = 0 series are I(0)— is tested against the alternative that (at least)

p2 series are I(0). If the null hypothesis is rejected, the p2 most significant statistics

in (5.3.2) are deemed I(0) and removed from consideration. Then the null hypothesis

that all remaining N −p2 series are I(1) is tested against the alternative that at least

p2 of them are I(0), and so on. If no rejections are observed, the final rounds tests

pK I(0) series against the alternative of N I(0) series. The numbers p2, . . . , pK as

well as the number of tests K are chosen by the practitioner based on the specific

application at hand. By choosing the numbers as pk = [qkN ], where q1, . . . , qK are

desired quantiles, the method automatically scales with N .

Unlike the BFDR method, this Bootstrap Sequential Quantile Test (BSQT) is

straightforward and fast to implement. However, it is dependent on the choice of

numbers pk to be tested; its ‘error allowance’ is therefore of a different nature to error

rates like FDR. Smeekes (2015) shows that, when pJ units are found to be I(0), the

probability that the true number of I(0) series lies outside the interval [pJ−1, pJ+1] is

at most the chosen significance level of the test. As such, there is some uncertainty

around the cut-off point.

It might therefore be tempting to choose pk = k − 1 for all k = 1, . . . , N , such

that this uncertainty disappears. However, as discussed in Smeekes (2015), applying

the sequential method to each series individually hurts power if N is large as it

amounts to controlling FWE. Instead, a better approach is to iterate the BSQT

method; that is, it can be applied in a second stage just to the interval [pJ−1, pJ+1]
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to reduce the uncertainty. This can be iterated until few enough series remain to

be tested individually in a sequential manner. On the other hand, if p1, . . . , pK are

chosen sensibly and not spaced too far apart, the uncertainty is limited to a narrow

range around the ‘marginally significant’ unit root tests. These series are at risk of

missclassification anyway, and the practical consequences of incorrect classification

for these series on the boundary of a unit root are likely small.

Smeekes (2015) performs a Monte Carlo comparison of the BSQT and BFDR

methods, as well as several methods proposed in the panel data literature such as Ng

(2008) and Chortareas and Kapetanios (2009). Globally BSQT and BFDR clearly

outperform the other methods, where BFDR is somewhat more accurate than BSQT

when the time dimension T is at least of equal magnitude as the number of series

N . On the other hand, when T is much smaller than N BFDR suffers from a lack of

power and BSQT is clearly preferable. In our empirical applications we will therefore

consider both BFDR and BSQT, as well as the strategy of performing individual tests

without controlling for multiple testing.

Remark 5.2. An interesting non-bootstrap alternative is the panel method proposed

by Pedroni et al. (2015), which has excellent performance in finite samples. However,

implementation of this method requires that T is strictly larger than N , thus severely

limiting its potential in the high-dimensional setting. Another alternative would be to

apply the model selection approach through the adaptive lasso by Kock (2016) which

avoids testing all together. However, this has only been proposed in a univariate

context and its properties are unknown for the type of application considered here.

Multivariate bootstrap methods

All multiple testing methods described above require a bootstrap method that can

not only account for dependence within a single time series, but can also capture the

dependence structures between series. Accurately modelling the dependence between

the individual test statistics is crucial for proper functioning of the multiple test-

ing corrections. Capturing the strong and complex dynamic dependencies between

macroeconomic series requires flexible bootstrap methods that can handle general

forms of dependence.

Moon and Perron (2012) and Smeekes (2015) use the moving-blocks bootstrap

(MBB) based on the results of Palm et al. (2011) who prove validity for mixed

I(1)/I(0) panel datasets under general forms of dependence. However the MBB

has two disadvantages. First, it can only be applied to balanced datasets where each

time series is observed over the same period. This makes application to datasets such
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as FRED-MD difficult, at least without deleting observations for series that have

been observed for a longer period. Second, the MBB is sensitive to unconditional

heteroskedasticity, which makes its application problematic for series affected by the

Great Moderation.

Dependent wild bootstrap (DWB) methods address both issues while still being

able to capture complex dependence structure. Originally proposed by Shao (2010)

for univariate time series, they were extended to unit root testing by Smeekes and

Urbain (2014b) and Rho and Shao (2019), where the former paper considers the

multivariate setup needed here. A general wild bootstrap algorithm for multivariate

unit root testing looks as follows:

1. Detrend the series {zt} by OLS; that is, let ζ̂t = (ζ̂1,t, . . . , ζ̂N )′ where

ζ̂i,t = zi,t − µ̂i − τ̂it, i = 1, . . . , N, t = 1, . . . , T

and (µ̂i, τ̂i)
′ are the OLS estimators of (µi, τi)

′.

2. Transform ζ̂t to a multivariate I(0) series ût = (û1,t, . . . , ûN,t)
′ by setting

ûi,t = ζ̂i,t − ρ̂iζ̂i,t−1, i = 1, . . . , N, t = 1, . . . , T,

where ρ̂i is either an estimator of the largest autoregressive root of {ζ̂i,t} using

for instance an (A)DF regression, or ρ̂i = 1.

3. Generate a univariate sequence of dependent random variables ξ∗1 , . . . , ξ
∗
N with

the properties that E∗ ξ∗t = 0 and E∗ ξ∗2t = 1 for all t. Then construct bootstrap

errors u∗t = (u∗1,t, . . . , u
∗
N,t)

′ as

u∗i,t = ξ∗t ûi,t, i = 1, . . . , N, t = 1, . . . , T. (5.3.3)

4. Let z∗t =
∑t
s=1 u

∗
s and calculate the desired unit root test statistics UR∗1, . . . , UR

∗
N

from {z∗t }. Use these bootstrap test statistics in an appropriate algorithm for

controlling multiple testing.

Note that, unlike for the MBB, in (5.3.3) no resampling takes place, and as such

missing values ‘stay in their place’ without creating new ‘holes’ in the bootstrap

samples. This makes the method applicable to unbalanced panels. Moreover, het-

eroskedasticity is automatically taken into account by virtue of the wild bootstrap

principle. Serial dependence is captured through the dependence of {ξ∗t }, while de-

pendence across series is captured directly by using the same, univariate, ξ∗t for each

180



5.4 High-Dimensional Cointegration

series i. Smeekes and Urbain (2014b) provide theoretical results on the bootstrap

validity under general forms of dependence and heteroskedasticity.

There are various options to draw the dependent {ξ∗t }; Shao (2010) proposes to

draw these from a multivariate normal distributions, where the covariance between ξ∗s

and ξ∗t is determined by a kernel function with as input the scaled distance |s− t| /`.
The tuning parameter ` serves as a similar parameter as the block length in the MBB;

the larger it is, the more serial dependence is captured. Smeekes and Urbain (2014b)

and Friedrich et al. (2018) propose generating {ξ∗t } through an AR(1) process with

normally distributed innovations and AR parameter γ, where γ is again a tuning

parameter that determines how much serial dependence is captured. They label this

approach the autoregressive wild bootstrap (AWB), and show that the AWB generally

performs at least as well as Shao (2010) DWB in simulations.

Finally, one might consider the sieve wild bootstrap used in Cavaliere and Taylor

(2009) and Smeekes and Taylor (2012), where the series {ût} are first filtered through

individual AR processes, and the wild bootstrap is applied afterwards to the residuals.

However, as Smeekes and Urbain (2014c) show that this method cannot capture

complex dynamic dependencies across series, it should not be used in this multivariate

context. If common factors are believed to be the primary source of dependence

across series, factor bootstrap methods such as those considered by Trapani (2013)

or Gonçalves and Perron (2014) could be used as well.

5.4 High-Dimensional Cointegration

In this section, we discuss various recently proposed methods to model high-dimensional

(co)integrated datasets. Similar to the high-dimensional modelling of stationary

datasets, two main modelling approaches can be distinguished. One approach is to

summarize the complete data into a much smaller and more manageable set through

the extraction of common factors and their associated loadings, thereby casting the

problem into the framework represented by (5.2.5). Another approach is to consider

direct estimation of a system that is fully specified on the observable data as in (5.2.3),

under the implicit assumption that the true DGP governing the long- and short-run

dynamics is sparse, i.e. the number of non-zero coefficients in said relationships is

small. These two approaches, however, rely on fundamentally different philosophies

and estimation procedures, which constitute the topic of this section.6

6Some recent papers such as Onatski and Wang (2018) and Zhang et al. (2019b) have taken
different, novel approaches to high-dimensional cointegration analysis. However, these methods do
not directly lend themselves to forecasting and are therefore not discussed in this chapter.

181



5 High-dimensional Forecasting in the Presence of Unit Roots and
Cointegration

5.4.1 Modelling Cointegration through Factor Structures

In this section, we discuss factor-based modelling of cointegrated datasets. Factor

models are based on the intuitive notion that all variables in an economic system are

driven by a small number of common shocks, which are often thought of as represent-

ing broad economic phenomena such as the unobserved business cycle. On (trans-

formed) stationary macroeconomic datasets, the extracted factors have been success-

fully applied for the purpose of forecasting by incorporating them in dynamic factor

models (Forni et al., 2005b), factor-augmented vector autoregressive (FAVAR) mod-

els (Bernanke et al., 2005a) or single-equation models (Stock and Watson, 2002a,b).

Recent proposals are brought forward in the literature that allow for application of

these techniques on non-stationary and possibly cointegrated datasets. We sequen-

tially discuss the dynamic factor model proposed by Barigozzi et al. (2017, 2018)

and the factor-augmented error correction model by Banerjee et al. (2014b, 2016).

As both approaches require an a priori choice on the number of common factors, we

follow the discussion with some remarks on the estimation of the factor dimension.

Dynamic factor models

A popular starting point for econometric modelling involving common shocks is the

specification of a dynamic factor model. Recall our representation of an individual

time series by

zi,t = µi + τit+ λ′ift + ui,t, (5.4.1)

where ft contains the N − r common factors. Given a set of estimates for the un-

observed factors, say f̂t for t = 1, . . . , T , one may directly obtain estimates for the

remaining parameters in (5.4.1) by solving the least-squares regression problem7

(
µ̂, τ̂ , Λ̂

)
=arg min

µ,τ ,Λ

T∑
t=1

(
zt − µ− τt−Λf̂t

)2

. (5.4.2)

The forecast for the realization of an observable time series at time period T + h can

then be constructed as

ẑi,T+h|T = µ̂i + τ̂i(T + h) + λ̂′if̂T+h|T . (5.4.3)

7Typically, the estimation procedure for f̂t provides the estimates Λ̂ as well, such that only the
coefficients regulating the deterministic specification ought to be estimated.
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This, however, requires the additional estimate f̂T+h|T , which may be obtained

through an explicit dynamic specification of the factors.

Barigozzi et al. (2018) assume that the differenced factors admit a reduced-rank

vector autoregressive (VAR) representation, given by

S(L)∆ft = C(L)νt, (5.4.4)

where S(L) is an invertible ((N − r)× (N − r)) matrix polynomial and C(L) is a

finite degree ((N − r)× q) matrix polynomial. Furthermore, νt is a (q × 1) vector

of white noise common shocks with N − r > q. Inverting the left-hand side matrix

polynomial and summing both sides, gives rise to the specification

ft = S−1(L)C(L)

t∑
s=1

νs = U(L)

t∑
s=1

νs

= U(1)

t∑
s=1

νs +U∗(L)(ut − u0),

(5.4.5)

where the last equation follows from application of the Beveridge-Nelson decomposi-

tion to U(L) = U(1)+U∗(L)(1−L). Thus, (5.4.5) reveals that the factors are driven

by a set of common trends and stationary linear processes. Crucially, the assumption

that the number of common shocks is strictly smaller than the number of integrated

factors, i.e. ft is a singular stochastic vector, implies that rank (U(1)) = q − d for

0 ≤ d < q. Consequently, there exists a full column rank matrix Bf of dimension

((N − r)× (N − r − q + d)) with the property that B′fft is stationary. Then, under

the general assumption that the entries of U(L) are rational functions of L, Barigozzi

et al. (2017) show that ft admits a VECM representation of the form

∆ft = AfB
′
fft−1 +

p∑
j=1

Gj∆ft−j +Kνt, (5.4.6)

where K is a constant matrix of dimension N − r × q.

Since the factors in (5.4.6) are unobserved, estimation of the system requires the

use of a consistent estimate of the space spanned by ft. Allowing idiosyncratic com-

ponents νi,t in (5.4.1) to be either I(1) or I(0), and allowing for the presence of a

non-zero constant µi and linear trend τi, Barigozzi et al. (2018) propose an intuitive

procedure that enables estimation of the factor space by the method of principal
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components. First, the data is de-trended with the use of a regression estimate:

z̃i,t = zi,t − τ̂it,

where τ̂i is the OLS estimator of the trend in the regression of zi,t on an intercept and

linear trend. Then, similar to the procedure originally proposed by Bai and Ng (2004),

the factor loadings are estimated as Λ̂ =
√
NŴ , where Ŵ is the (N × (N − r))

matrix with normalized right eigenvectors of T−1
∑T
t=1 ∆z̃t∆z̃

′
t corresponding to the

N − r largest eigenvalues. The estimates for the factors are given by f̂t = 1
N Λ̂′z̃t.

Plugging f̂t into (5.4.6) results in

∆f̂t = AfB
′
f f̂t−1 +

p∑
j=1

Gj∆f̂t−j + ν̂t, (5.4.7)

which can be estimated using standard approaches, such as the maximum likelihood

procedure proposed by Johansen (1995a). Afterwards, the iterated one-step-ahead

forecasts ∆f̂T+1|T , . . . ,∆f̂T+h|T are calculated from the estimated system, based on

which the desired forecast f̂T+h|T = f̂T +
∑h
k=1 ∆f̂T+k|T is obtained. The final

forecast for ẑi,T+h|T is then easily derived from (5.4.3).

Remark 5.3. Since the idiosyncratic components are allowed to be serially dependent

or even I(1), a possible extension is to explicitly model these dynamics. As a simple

example, each ui,t could be modelled with a simple autoregressive model, from which

the prediction ûi,T+h|T can be obtained following standard procedures (e.g. Hamilton,

1994, Ch. 4). This prediction is then added to (5.4.3), leading to the final forecast

ẑi,T+h|T = µ̂i + τ̂i(T + h) + λ̂if̂T+h|T + ûi,T+h|T .

This extension leads to substantial improvements in forecast performance in the

macroeconomic forecast application presented in Section 5.5.

Factor-augmented error correction model

It frequently occurs that the variables of direct interest constitute only a small subset

of the collection of observed variables. In this scenario, Banerjee, Marcellino, and

Masten (2014b, 2016, 2017), henceforth referred to as BMM, propose to model only

the series of interest in a VECM system, while including factors extracted from the

full dataset to proxy for the missing information from the excluded observed time

series.
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The approach of BMM can be motivated starting from the common trend repre-

sentation in (5.2.4). Partition the observed time series zt = (z′A,t, z
′
B,t)

′, where zA,t

is an NA× 1 vector containing the variables of interest. Then, we may rewrite (5.2.4)

as [
zA,t

zB,t

]
=

[
µA

µB

]
+

[
τA

τB

]
t+

[
ΛA

ΛB

]
ft +

[
uA,t

uB,t

]
(5.4.8)

The idiosyncratic components in (5.4.8) are assumed to be I(0).8 Furthermore, both

non-stationary I(1) factors and stationary factors are admitted in the above repre-

sentation. Contrary to Barigozzi et al. (2017), BMM do not require the factors in

(5.4.8) to be singular.

To derive a dynamic representation better suited to forecasting the variables of

interest, Banerjee et al. (2014b, 2017) use the fact that when the subset of variables

is of a larger dimension than the factors, i.e. NA > N − r, zA,t and ft cointegrate.

As a result, the Granger Representation Theorem implies the existence of an error

correction representation of the form[
∆zA,t

ft

]
=

[
µA

µf

]
+

[
τA

τf

]
t+

[
AA

AB

]
B′

[
zA,t−1

ft−1

]
+

[
eA,t

ef,t

]
. (5.4.9)

To account for serial dependence in (5.4.9), Banerjee et al. (2014b) propose the ap-

proximating model[
∆zA,t

ft

]
=

[
µA

µf

]
+

[
τA

τf

]
t+

[
AA

AB

]
B′

[
zA,t−1

ft−1

]
+

p∑
j=1

Φj

[
∆zA,t−j

∆ft−j

]
+

[
εA,t

εf,t

]
, (5.4.10)

where the errors
(
ε′A,t, ε

′
f,t

)′
are assumed i.i.d.

Similar to the case of the dynamic factor model in Section 5.4.1, the factors in

the approximating model (5.4.10) are unobserved and need to be replaced with their

corresponding estimates f̂t. Under a set of mild assumptions, Bai (2004) shows that

the space spanned by ft can be consistently estimated using the method of princi-

pal components applied to the levels of the data. Assume that ft =
(
f ′ns,t,f

′
s,t

)′
where fns,t and fs,t contain rns non-stationary and rs stationary factors, respec-

tively. Let Z = (z1, . . . ,zT ) be the (N × T ) matrix of observed time series. Then,

8In principle, the proposed estimation procedure remains feasible in the presence of I(1) id-
iosyncratic components. The theoretical motivation, however, relies on the concept of cointegration
between the observable time series and a set of common factors. This only occurs when the idiosyn-
cratic components are stationary.
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Bai (2004) shows that fns,t is consistently estimated by f̂ns,t, representing the eigen-

vectors corresponding to the rns largest eigenvalues of Z ′Z, normalized such that
1
T 2

∑T
t=1 f̂ns,tf̂

′
ns,t = I. Similarly, fs,t is consistently estimated by f̂s,t, representing

the eigenvectors corresponding to the next rs largest eigenvalues of Z ′Z, normalized

such that 1
T

∑T
t=1 f̂s,tf̂

′
s,t = I.

The final step in the forecast exercise consists of plugging in f̂t =
(
f̂ ′ns,t, f̂

′
s,t

)′
into (5.4.10), leading to[

∆zA,t

f̂t

]
=

[
µA

µf

]
+

[
τA

τf

]
t+

[
AA

AB

]
B′

[
zA,t−1

f̂t−1

]
+

p∑
j=1

Φj

[
∆zA,t−j

∆f̂t−j

]
+

[
εA,t

εf,t

]
. (5.4.11)

Since in typical macroeconomic applications the number of factors is relatively small,

feasible estimates for (5.4.11) can be obtained from the maximum likelihood procedure

of Johansen (1995a). The iterated one-step-ahead forecasts ∆ẑA,T+1|T , . . . ,∆ẑA,T+h|T

are calculated from the estimated system, which are then integrated to obtain the de-

sired forecast ẑA,T+h|T .

Estimating the number of factors

Implementation of the factor models discussed in this section requires an a priori

choice regarding the number of factors. A wide variety of methods to estimate the di-

mension of the factors is available. The dynamic factor model of Barigozzi et al. (2017,

2018) adopts the estimation strategy proposed by Bai and Ng (2004), which relies on

first-differencing the data. Since, under the assumed absence of I(2) variables, all

variables in this transformed dataset are stationary, the standard tools to determine

the number of factors in the stationary setting are applicable. A non-exhaustive list

is given by Bai and Ng (2002), Hallin and Lǐska (2007), Alessi et al. (2010), Onatski

(2010) and Ahn and Horenstein (2013).

The factor-augmented error correction model of Banerjee et al. (2014b, 2016)

adopts the estimation strategy proposed by Bai and Ng (2004), which extracts the

factors from the data in levels. While the number of factors may still be determined

based on the differenced dataset, Bai (2004) proposes a set of information criteria that

allows for estimation of the number of non-stationary factors without differencing the

data.

Conveniently, it is possible to combine factor selection procedures to separately

determine the number of non-stationary and stationary factors. For example, the

total number of factors, say rns + rs, can be found based on the differenced dataset
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and one of the information criteria in Bai and Ng (2002). Afterwards, the number

of non-stationary factors, rns, is determined based on the data in levels using one of

the the criteria from Bai (2004). The number of stationary factors follows from the

difference between the two criteria. Recently, Barigozzi and Trapani (2018) propose

a novel approach to discern the number of I(0) factors, zero-mean I(1) factors, and

factors with a linear trend. Their method however requires that all idiosyncratic

components are I(0).

5.4.2 Sparse Models

Rather than extracting common factors, an alternative approach to forecasting with

macroeconomic data is full-system estimation with the use of shrinkage estimators

(e.g. De Mol et al., 2008; Stock and Watson, 2012; Callot and Kock, 2014). The

general premise of shrinkage estimators is the so-called bias-variance trade-off, i.e.

the idea that, by allowing a relatively small amount of bias in the estimation proce-

dure, a larger reduction in variance may be attained. A number of shrinkage estima-

tors, among which the lasso originally proposed by Tibshirani (1996), simultaneously

perform variable selection and model estimation. Such methods are natural consid-

erations when it is believed that the data generating process is sparse, i.e. only a

small subset of variables among the candidate set is responsible for the variation in

the variables of interest. Obviously, such a viewpoint is in sharp contrast with the

philosophy underlying the common factor framework. However, in Chapter 2 it was

demonstrated that even in cases where a sparse data generating process is deemed

unrealistic, shrinkage estimators can remain attractive due to their aforementioned

bias-variance trade-off.

For expositional convencience, we assume in this section that either µ and τ are

zero or that zt is de-meaned and de-trended. Defining Π = AB′, model (5.2.3) is

then given by

∆zt = Πzt−1 +

p∑
j=1

Φj∆zt−j + εt,

which in matrix notation reads as

∆Z = ΠZ−1 + Φ∆X +E, (5.4.12)

where ∆Z = (∆z1, . . . ,∆zT ), Z−1 = (z0, . . . ,zT−1), Φ = (Φ1, . . . ,Φp) and ∆X =

(∆x0, . . . ,∆xT−1), with xt =
(
z′t, . . . ,z

′
t−p+1

)′
.
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Full-system estimation

Several proposals to estimate (5.4.12) with the use of shrinkage estimators are brought

forward in recent literature. Liao and Phillips (2015) proposes an automated approach

that simultaneously enables sparse estimation of the coefficient matrices (Π,Φ), in-

cluding the cointegrating rank of Π and the short-run dynamic lag order in Φ. How-

ever, while the method has attractive (fixed-dimensional) theoretical properties, the

estimation procedure involves non-standard optimization over the complex plane and

is difficult to implement even in low dimensions, as also noted by Liang and Schienle

(2019). Accordingly, we do not further elaborate on their proposed method, but refer

the interested reader to the original paper.

Liang and Schienle (2019) develop an automated estimation procedure that makes

use of a QR-decomposition of the long-run coefficient matrix. They propose to first

regress out the short-run dynamics, by post-multiplying (5.4.12) with M = IT −
∆X ′ (∆X ′∆X)

−1
∆X, resulting in

∆Z̃ = ΠZ̃−1 + Ẽ, (5.4.13)

with ∆Z̃ = ∆ZM , Z̃−1 = Z−1M and Ẽ = EM . The key idea behind the method

proposed by Liang and Schienle is to decompose the long-run coefficient matrix into

Π′ = QR,

where Q′Q = IN and R is an upper-triangular matrix. Such a representation can be

be calculated from the QR-decomposition of Π with column pivoting.

The column pivoting orders the columns in R according to size, such that zero

elements occur at the ends of the rows. As a result, the rank of Π corresponds to the

number of non-zero columns in R. Exploiting this rank property requires an initial

estimator for the long-run coefficient matrix, such as the OLS estimator

Π̂OLS =
(

∆Z̃Z̃ ′−1

)(
Z̃−1Z̃

′
−1

)−1

,

proposed by Liang and Schienle (2019). The QR-decomposition with column-pivoting

is then calculated from Π̂′OLS , resulting in the representation Π̂OLS = R̂′OLSQ̂
′
OLS .9

Since the unrestricted estimator Π̂OLS will be full-rank, R̂OLS is a full-rank matrix

9As part of their theoretical contributions, Liang and Schienle (2019) show that the first r columns

of Q̂ consistently estimate the space spanned by the cointegrating vectors B in (5.2.3), in an asymp-
totic framework where the dimension N is allowed to grow at rate T 1/4−ν for ν > 0.
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as well. However, by the consistency of Π̂OLS and the ordering induced by the

column-pivoting step, the last N − r columns are expected to contain elements that

are small in magnitude. Accordingly, a well-chosen shrinkage estimator that penalizes

the columns of R may be able to separate the relevant from the irrelevant columns.

Let R̂ = (r̂1, . . . , r̂N ), r̂j = (r̂1,j , . . . , r̂N,j)
′
, ‖r̂j‖2 =

√∑N
i=1 r̂

2
i,j and µ̂k =√∑N

i=k r̂
2
k,i. Then, the estimator for R is defined as

R̂ =arg min
R

∥∥∥∆Z −R′Q̂′Z−1

∥∥∥2

2
+ λ

N∑
j=1

‖r̂j‖2
µ̂j

, (5.4.14)

where λ is a tuning parameter that controls the degree of regularization, with larger

values resulting in more shrinkage. Weighting the penalty for each group by µ̂j puts a

relatively higher penalty on groups for which the initial OLS estimates are small. The

estimator clearly penalizes a set of pre-defined groups of coefficients, i.e. the columns

of R, and, therefore, is a variant of the group lasso for which numerous algorithms

are available (e.g. Meier et al., 2008; Friedman et al., 2010; Simon et al., 2013). The

final estimate for the long-run coefficient matrix is obtained as Π̂ = R̂′Q̂′OLS .

The procedure detailed thus far focuses solely on estimation of the long-run rela-

tionships and requires an a priori choice of the lag order p. Furthermore, a necessary

assumption is that initial OLS estimates are available, thereby restricting the admis-

sible dimension of the system to N(p + 1) < T . Within this restricted dimension,

the short-run coefficient matrix Φ can be consistently estimated by OLS and the

corresponding lag order may be determined by standard information criteria such as

the BIC. Alternatively, a second adaptive group lasso can be employed to obtain the

regularized estimates Φ̂ =
(
Φ̂1, . . . , Φ̂p

)
, see Liang and Schienle (2019, p. 425) for

details. The lag order is then determined by the number of non-zero matrices Φ̂i for

i ∈ {1, . . . , p}.

Wilms and Croux (2016) propose a penalized maximum likelihood estimator to

estimate sparse VECMs. Instead of estimating the cointegrating rank and coefficient

matrices for a fixed lag order, the method of Wilms and Croux enables joint estimation

of the lag order and coefficient matrices for a given cointegrating rank. Additionally,

the penalized maximum likelihood procedure does not require the availability of initial

OLS estimates and, therefore, notwithstanding computational constraints, can be

applied to datasets of arbitrary dimension. Under the assumption of multivariate

normality of the errors, i.e. εt ∼ N (0,Σ), the penalized negative log-likelihood is
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given by

L (A,B,Φ,Ω) =
1

T
tr ((∆Z −AB′Z−1 −Φ∆X)′Ω(∆Z −AB′Z−1 −Φ∆X))

− log |Ω|+ λ1P1(B) + λ2P2(Φ) + λ3P3(Ω),

(5.4.15)

where Ω = Σ−1, and P1, P2 and P3 being three penalty functions. The cointegrating

vectors, short-run dynamics, and covariance matrix are penalized as

P1(B) =

N∑
i=1

r∑
j=1

|β|i,j , P2(Φ) =

N∑
i=1

Np∑
j=1

|φi,j | , P3(Ω) =

N∑
i,j=1,i6=j

|ωi,j | ,

respectively. The use of L1-penalization enables some elements to be estimated as

exactly zero. The solution that minimizes (5.4.15) is obtained through an iterative

updating scheme, where the solution for a coefficient matrix is obtained by minimizing

the objective function conditional on the remaining coefficient matrices. The full

algorithm is described in detail in Wilms and Croux (2016, p. 1527-1528) and R code

is provided by the authors online.10

Single-equation estimation

Frequently, the forecast exercise is aimed at forecasting a small number of time series

based on a large number of potentially relevant variables. The means of data reduction

thus far considered utilize either data aggregation or subset selection. However, in

cases where the set of target variables is small, a substantial reduction in dimension

can be obtained through the choice of appropriate single-equation representations for

each variable separately.

In Chapter 3, we first propose the Penalized Error Correction Selector (SPECS) as

an automated single-equation modelling procedure on high-dimensional (co)integrated

datasets. For the sake of completion, we briefly recollect its main features here.

Assume that the N -dimensional observed time series admits the decomposition zt =

(yt,x
′
t)
′, where yt is the variable of interest and xt are variables that are considered as

potentially relevant in explaining the variation in yt. Starting from the VECM system

(5.4.12), a single-equation representation for ∆yt can be obtained by conditioning on

the contemporaneous differences ∆xt. This results in

∆yt = δ′zt−1 + π′wt + εy,t, (5.4.16)

10https://feb.kuleuven.be/public/u0070413/SparseCointegration/
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where wt = (∆x′t,∆z
′
t−1, . . . ,∆z

′
t−p)

′11. The number of parameters to be estimated

in the single-equation model (5.4.16) is 2N(p + 2) − 1 as opposed to the original

2Nr + N2p parameters in (5.4.12). Nonetheless, for large N the total number of

parameters may still be too large to estimate precisely by ordinary least squares, if

possible at all. Therefore, we propose a shrinkage procedure defined as

δ̂, π̂ =arg min
δ,π

T∑
t=1

(∆yt − δ′zt−1 + π′wt)
2

+ Pλ(δ,π). (5.4.17)

The penalty function takes on the form

Pλ(δ,π) = λG ‖δ‖+ λδ

N∑
i=1

ωkδδ,i |δi|+ λπ

N(p+1)−1∑
j=1

ωkππ,j |πj | , (5.4.18)

where ωkδδ,i = 1/
∣∣∣δ̂Init,i∣∣∣kδ and ωkππ,j = 1/|π̂Init,j |kπ , with δ̂Init and π̂Init being some

consistent initial estimates, such as OLS or ridge estimates. The tuning parameters

kδ and kπ regulate the degree to which the initial estimates affect the penalty weights.

SPECS simultaneously employs individual penalties on all coefficients and a group

penalty on δ, the implied cointegrating vector. Absent of cointegration, this cointe-

grating vector is equal to zero, in which case the group penalty promotes the removal

of the lagged levels as a group.12 In the presence of cointegration, however, the im-

plied cointegrating vector may still contain many zero elements. The addition of the

individual penalties allow for correct recovery of this sparsity pattern. This combi-

nation of penalties is commonly referred to as the sparse group lasso and R code is

provided by the author of this thesis.13

In the single-equation model, the variation in yt is explained by contemporane-

ous realizations of the conditioning variables xt. Therefore, forecasting the variable

of interest requires forecasts for the latter as well, unless their realizations become

available to the researcher prior to the realizations of yt. SPECS is therefore highly

suited to nowcasting applications. While not originally developed for the purpose of

forecasting, direct forecasts with SPECS can be obtained by modifying the objective

11Details regarding the relationship between the components of the single-equation model (5.4.16)
and the full system (5.2.3) are provided in Chapter 3.

12As argued in Chapter 3, the group penalty is not formally required for consistent selection and
estimation of the non-zero coefficients.

13https://sites.google.com/view/etiennewijler/code?authuser=0
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function to

T∑
t=1

(∆hyt − δ′zt−1 + π′wt)
2

+ Pλ(δ,π),

where ∆hyt = yt+h − yt. The direct h-step ahead forecast is then simply obtained as

ŷT+h|T = yT + δ̂′zT−1 + π̂′wT .

5.5 Empirical Applications

In this section we evaluate the methods discussed in Sections 5.3 and 5.4 in two

empirical applications. First we forecast several US macroeconomic variables us-

ing the FRED-MD dataset of McCracken and Ng (2016). The FRED-MD dataset

is a well-established and popular source for macroeconomic forecasting, and allows

us to evaluate the methods in an almost controlled environment. Second we con-

sider nowcasting Dutch unemployment using Google Trends data on frequencies of

unemployment-related queries. This application not only highlights the potential

of novel high-dimensional datasets for macroeconomic purposes, but also puts the

methods to the test in a more difficult environment where less theoretical guidance is

available on the properties of the data.

5.5.1 Macroeconomic Forecasting Using the FRED-MD Dataset

We consider forecasting eight US macroeconomic variables from the FRED-MD dataset

at 1, 6 and 12 months forecast horizons, corresponding to the same variables consid-

ered in the empirical application of Chapter 2. We first focus on the strategy discussed

in Section 5.3 where we first transform all series to I(0) before estimating the fore-

casting models. We illustrate the unit root testing methods, and show the empirical

consequences of specification changes in the orders of integration. Next, we analyze

the methods discussed in Section 5.4, and compare their forecast accuracy.

Transformations to stationarity

As the FRED-MD series have already been classified by McCracken and Ng (2016), we

have a benchmark for our own classification using the unit root testing methodology

discussed in Section 5.3. We consider the autoregressive wild bootstrap as described in

Section 5.3.2 in combination with the union test in (5.3.1). We set the AWB parameter

γ equal to 0.85, which implies that over a year of serial dependence is captured by

the bootstrap. Lag lengths in the ADF regressions are selected by the rescaled MAIC
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criterion of Cavaliere et al. (2015), which is robust to heteroskedasticity. To account

for multiple testing, we control the false discovery rate at 5% using the bootstrap

method of Romano et al. (2008a) (labelled as ‘BFDR’) and apply the sequential test

procedure of Smeekes (2015) (labelled as ‘BSQT’) with a significance level of 5% and

evenly spaced 0.05 quantiles such that pk = [0.05(k − 1)] for k = 1, . . . , 20. We also

perform the unit root tests on each series individually (labelled as ‘iADF’) with a

significance level of 5%.

As some series in the FRED-MD are likely I(2), we need to extend the method-

ology to detect these as well. We consider two ways to do so. First, we borrow

information about the I(2) series from the official FRED-MD classification, and take

first differences of the series deemed to be I(2). We then put these first differences

together with the other series in levels and test for unit roots. This strategy ensures

that the I(2) series are classified at least as I(1), and we only need to perform a single

round of unit root testing. Our second approach is fully data-driven and follows a

multivariate extension of the ‘Pantula principle’ (Pantula, 1989), where we first test

for a unit root in the first difference of all series. The series for which the null cannot

be rejected are classified as I(2) and removed from the sample. The remaining series

are then tested in levels and consequently classified as I(1) or I(0). In the results

we append an acronym with a 1 if the first strategy is followed, and with a 2 if the

second strategy is followed.14

As a final method, we include a ‘naive’ unit root testing approach that we be-

lieve is representative of casual unit root testing applied by many practitioners who,

understandably, may not pay too much detailed attention to the unit root testing.

In particular, we use the adf.test function from the popular R package ‘tseries’

(Trapletti and Hornik, 2018), and apply it with its default options, which implies

performing individual ADF tests with a trend and setting a fixed lag length as a

function of the sample size.15 Our goal is not to discuss the merits of this particular

unit root test procedure, but instead to highlight the consequences of casually using

a ‘standard’ unit root test procedure that does not address the issues described in

Section 5.3. Figure 5.1 presents the found orders of integration. Globally the classifi-

14We take logarithmic transformations of the series before differencing when indicated by the
official FRED-MD classification. Determining when a logarithmic transformation is appropriate is a
daunting task for such a high-dimensional system as it seems difficult to automatize, especially as it
cannot be seen separately from the determination of the order of integration (Franses and McAleer,
1998; Kramer and Davies, 2002). Klaassen et al. (2017) propose a high-dimensional method to
determine an appropriate transformation model, but it is not trivial how to combine their method
with unit root testing. Therefore we apply the ‘true’ transformations such that we can abstract from
this issue.

15The lag length is set equal to b(T − 1)1/3c.
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Figure 5.1: Classification of integration order of the FRED-MD dataset.
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cation appears to agree among the different methods, which is comforting, although

some important differences can be noted. First, none of the data-driven methods

finds as many I(2) series as the FRED classification does. Indeed, this may not be

such a surprising result, as it remains a debated issue among practitioners whether

these series should be modelled as I(1) or as I(2), see for example the discussion in

Marcellino et al. (2006b).

Second, although most methods yield fairly similar classifications, the clear outlier

is BFDR2, which finds all series but one to be I(1). The FDR controlling algorithm

may, by construction, be too conservative in the early stages of the algorithm when

few rejections R have been recorded, yet too liberal in the final stages upon finding

many rejections. Indeed, when testing the first differences of all series for a unit

root, the FRED classification tells us that for most of the series the null can be

rejected. When the algorithm arrives at the I(2) series, the unit root hypothesis will

already have been rejected for many series. With R being that large, the number of

false rejections F can be relatively large too without increasing the FDR too much.

Hence, incorrectly rejecting the null for the I(2) series will fall within the ‘margins of

error’ and thus lead to a complete rejection of all null hypotheses. In the second step

the FDR algorithm then appears to get ‘stuck’ in the early stages, resulting in only

a single rejection. This risk of the method getting stuck early on was also observed

by Smeekes (2015) and can be explained by the fact that early on in the step-down

procedure, when R is small, FDR is about as strict as FWE. It appears that in this

case the inclusion of the I(2) series in levels rather than differences is just enough to

make the algorithm get stuck.

Third, even though iADF does not control for multiple testing, its results are fairly

similar to BSQT and FDR1. It therefore appears explicitly controlling for multiple

testing is not the most important in this application, and sensible unit root tests,

even when applied individually, will give reasonable answers. On first glance even

using the ‘naive’ strategy appears not be very harmful. However, upon more careful

inspection of the results, we can see that it does differ from the other methods. In

particular, almost no I(2) series are detected by this strategy, and given that there is

no reason to prefer it over the other methods, we recommend against its use.

Forecast comparison after transformations

While determining an appropriate order of integration may be of interest in itself, our

goal here is to evaluate its impact on forecast accuracy. As such, we next evaluate if,

and how, the chosen transformation impacts the actual forecast performance of the
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BFDR, BSQT and iADF methods, all in both strategies considered, in comparison

with the official FRED classification.

We forecast eight macroeconomic series in the FRED-MD dataset using data from

July 1972 to October 2018. The series of interest consist of four real series, namely

real production income (RPI), total industrial production (INDPRO), real manu-

facturing and trade industries sales (CMRMTSPLx) and non-agricultural employ-

ees (PAYEMS), and four nominal series, being the producer index for finished good

(WPSFD49207), consumer price index - total (CPIAUCSL), consumer price index -

less food (CPIULFSL) and the PCE price deflator (PCEPI). Each series is forecast

h months ahead, where we consider the forecast horizons h = 1, 6, 12. All models are

estimated on a rolling window spanning ten years, i.e. containing 120 observations.

Within each window, we regress every time series on a constant and linear trend and

obtain the corresponding residuals. For the stationary methods, these residuals are

transformed to stationarity according to the results of the unit root testing proce-

dure. Each model is fitted to these transformed residuals, after which the h-step

ahead forecast is constructed as an iterated one-step-ahead forecast, when possible,

and transformed to levels, if needed. The final forecast is obtained by adding the level

forecast of the transformed residuals to the forecast of the deterministic components.

We briefly describe the implementation of each method below.

We consider four methods here. The first method is a standard vector autoregres-

sive (VAR) model, fit on the eight variables of interest. Considering only the eight

series of interest, however, may result in a substantial loss of relevant information con-

tained in the remaining variables in the complete dataset. Therefore, we also consider

a factor-augmented vector autoregressive model (FAVAR) in the spirit of Bernanke

et al. (2005a), which includes factors as proxies for this missing information. We

extract four factors from the complete and transformed dataset and fit two separate

FAVAR models containing these four factors, in addition to either the four real or the

four nominal series. Rather than focusing on the estimation of heavily parameterized

full systems, one may attempt to reduce the dimensionality by considering single-

equation models, as discussed in Section 5.4.2. Conditioning the variable of interest

on the remaining variables in the dataset, results in an autoregressive distributed lag

model with M = N(p+ 1)− 1 parameters. For large N , shrinkage may still be desir-

able. Therefore, we include a penalized autoregressive distributed lag model (PADL)

in the comparison, which is based on the minimization of

T∑
t=1

(
yht − π′wt

)2
+ λ

M∑
j=1

ωkππ,j |π|j , (5.5.1)
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where

yht =

yt+h − yt if yt ∼ I(1),

yt+h − yt −∆yt if yt ∼ I(2).
(5.5.2)

Furthermore, wt contains contemporaneous values of all transformed time series ex-

cept yt, and three lags of all transformed time series. The weights ωkππ,j are as defined

in Section 5.4.2. In essence, this can be seen as an implementation of SPECS with

the build-in restriction that δ = 0, thereby ignoring cointegration. Finally, the con-

cept of using factors as proxies for missing information remains equally useful for

single-equation models. Accordingly, we include a factor-augmented penalized au-

toregressive distributed model (FAPADL) which is a single-equation model derived

from a FAVAR. We estimate eight factors on the complete dataset, which are added

to the eight variables of interest in the single-equation model. This is then estimated

in accordance to (5.5.1), with wt now containing contemporaneous values and three

lags of the eight time series of interest and the eight factors. The PADL and FAPADL

are variants of the adaptive lasso and we implement these in R based on the popular

‘glmnet’ package (Friedman et al., 2010). The lag order for the VAR and FAVAR are

chosen by the BIC criterion, with a maximum lag order of three.

Our goal is not to be exhaustive, but we believe these four methods cover a wide

enough range of available high-dimensional forecast methods such that our results

cannot be attributed to the choice of a particular forecasting method and instead

genuinely reflect the effect of different transformations to stationarity. For the sake

of space, we only report the results based on the FAVAR here for 1 month and 12

months ahead forecasts, as these are representative for the full set of results (which

are available upon request). Generally, we find the same patterns within each method

as we observe for the FAVAR, though they may be more or less pronounced. Overall

the FAVAR is the most accurate of the four methods considered, which is why we

choose to focus on it.

We compare the methods through their relative Mean Squared Forecast Errors

(MSFEs), where the AR model is taken as benchmark. To attach a measure of

statistical significance to these MSFEs, we obtain 90% Model Confidence Sets (MCS)

of the best performing model. We obtain the MCS using the autoregressive wild

bootstrap as in Chapter 2.

The results are given in Figures 5.2 and 5.3. For the one-month-ahead forecast the

results are close for the different transformation methods, but for the twelve-months-

ahead forecasts, we clearly see big differences for the nominal series. Inspection of
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the classifications in Figure 5.1 shows that the decisive factor is the classification of

the dependent variable. For the three price series, the methods that classify these as

I(1) rather than I(2) obtain substantial gains in forecast accuracy. Interestingly, the

FRED classification finds these series to be I(2), and thus deviating from the official

classification can lead to substantial gains. These results are in line with the results

of Marcellino et al. (2006b), who also find that modelling price series as I(1) rather

than I(2) results in better forecast accuracy.

As the outlying BFDR2 classification also classifies these series as I(1), this ‘lucky

shot’ eclipses any losses from the missclassification of the other series. However, for

the real series it can be observed that BFDR2 does indeed always perform somewhat

worse than the other methods, although the MCS does not find it to be significant

everywhere.

Concluding, missclassification of the order of integration can have an effect on the

performance of high-dimensional forecasting methods. However, unless the dependent

variable is miss-classified, the high-dimensional nature of the data also ensures that

this effect is smoothed out. On the other hand, correct classification of the dependent

variable appears to be crucial, in particular regarding the classification as I(1) versus

I(2).

Forecast comparisons for cointegration methods

The forecast exercise for the methods that are able to take into account the cointe-

grating properties of the data proceeds along the same lines as in Section 5.5.1. A

noteworthy exception is that the time series that are considered I(1) in the FRED-

MD classification are now kept in levels, whereas those that are considered as I(2) are

differenced once. The methods included in the comparison are: (i) the factor error cor-

rection model (FECM) by Banerjee et al. (2014b, 2016, 2017), (ii) the non-stationary

dynamic factor model (N-DFM) by Barigozzi et al. (2017, 2018), (iii) the maximum-

likelihood procedure (ML) by Johansen (1995a), (iv) the QR-decomposed VECM

(QR-VECM) by Liang and Schienle (2019), (v) the penalized maximum-likelihood

(PML) by Wilms and Croux (2016), (vi) the single-equation penalized error correc-

tion selector (SPECS) and (vii) a factor-augmented SPECS (FASPECS). The latter

method is simply the single-equation model derived from the FECM, based on the

same principles as the FAPADL from the previous section. It is worth noting that the

majority of these non-stationary methods have natural counterparts in the stationary

world; the ML procedure compares directly to the VAR model, FECM compares to

FAVAR, and SPECS and FA-SPECS to PADL and FAPADL, respectively. Finally,

198



5.5 Empirical Applications

1.00

1.00

1.02

1.00

1.01

1.00

1.00iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Real Production Income

1.00

0.98

1.00

0.99

0.99

0.97

0.97iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Real Manufacturing and Trade Sales

1.00

0.99

1.03

1.00

1.00

0.99

0.99iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Total Industrial Production

1.00

1.00

1.05

1.00

1.00

0.99

0.99iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Employees − non−agricultural

1.00

0.86

0.86

0.87

0.85

0.87

0.87iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Producer Index − Finished Goods

1.00

1.00

0.89

0.99

0.90

1.01

1.01iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Consumer Price Index − Total

1.00

1.00

0.87

0.99

0.88

1.00

1.00iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

Consumer Price Index − Less Food

1.00

1.00

0.90

1.01

0.94

1.00

1.00iADF2

iADF1

BSQT2

BSQT1

BFDR2

BFDR1

FRED

0.5 1.0

PCE Price Deflator

Figure 5.2: MCS and relative MSFEs for 1-month horizon. Methods that are
included in the MCS are depicted as blue and methods that are excluded from the
MCS are depicted in red.
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Figure 5.3: MCS and relative MSFEs for 12-month horizon. Methods that are
included in the MCS are depicted as blue and methods that are excluded from the
MCS are depicted in red.
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all methods are compared against an AR model fit on the dependent variable, the

latter being transformed according to the original FRED codes.

We briefly discuss some additional implementation choices for the non-stationary

methods. For all procedures that require an estimate of the cointegrating rank, we use

the information criteria proposed by Cheng and Phillips (2009). The only exception

is the PML method, for which the cointegrating rank is determined by the procedure

advocated in Wilms and Croux (2016). Similar to Banerjee et al. (2014b), we do not

rely on information criteria to select the number of factors, but rather fix the number

of factors in the implementation of the FECM and N-DFM methods to four.16 In

the N-DFM approach, we model the idiosyncratic components of the target variables

as simple AR models. The ML procedure estimates a VECM system on the eight

variables of interest. In congruence with the implementation of the stationary meth-

ods, the lag order for FECM, N-DFM and ML is chosen by the BIC criterion, with

a maximum lag order of three. The QR-VECM and PML methods are estimated

on a dataset containing the eight series of interest and an additional 17 variables,

informally selected based on their unique information within each economic category.

Details are provided in Table 5.1. We incorporate only a single lag in the QR-VECM

implementation, necessitated by the requirement of initial OLS estimates. SPECS

estimates the model

yht = δ′zt−1 + π′wt + εy,t,

where yht is defined in (5.5.2), with the order of integration based on the original

FRED codes. Note that the variables included in zt are either the complete set of

124 time series or the eight time series of interest plus an additional eight estimated

factors, depending on whether the implementation concerns SPECS or FA-SPECS,

respectively. Finally, all parameters that regulate the degree of shrinkage are chosen

by time series cross-validation, proposed by Hyndman and Athanasopoulos (2018)

and discussed in a context similar to the current analysis in Chapter 2.

Results are given in Figure 5.4-5.6. Considering first the 1-month ahead pre-

dictions, we observe similar forecasting performance on the first three real series

(RPI,CMRMTSPLx, INDPRO) with almost none of the methods being excluded

from the 90% model confidence set. The employment forecasts of the AR benchmark

and the FAVAR approach are considered superior to those of the other methods. On

16In untabulated results, we find that the forecast performance does not improve when the number
of factors is selected by the information criteria by Bai (2004). Neither does the addition of a
stationary factor computed from the estimated idiosyncratic component, in the spirit of Banerjee
et al. (2014b). Both strategies are therefore omitted from the analysis.

201



5 High-dimensional Forecasting in the Presence of Unit Roots and
Cointegration

1.00

0.99

0.98

1.06

0.95

0.95

1.14

0.96

0.99

0.99

1.10

0.97FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Real Production Income

1.00

1.08

1.01

1.09

0.99

0.98

1.11

1.04

1.00

0.98

1.12

1.04FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Real Manufacturing and Trade Sales

1.00

1.03

0.95

1.03

1.00

0.99

1.02

0.97

0.98

0.93

1.12

1.06FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Total Industrial Production

1.00

1.34

1.25

1.51

1.45

1.43

1.20

1.19

1.16

1.01

1.35

1.47FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Employees − non−agricultural

1.00

0.93

0.93

0.94

1.13

1.13

1.49

1.58

1.06

1.08

1.41

1.51FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Producer Index − Finished Goods

1.00

0.96

0.96

0.96

1.07

1.08

1.28

1.39

1.06

1.08

1.28

1.31FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Consumer Price Index − Total

1.00

0.96

0.96

0.97

1.05

1.06

1.21

1.30

1.08

1.08

1.15

1.24FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Consumer Price Index − Less Food

1.00

0.99

0.99

0.98

1.06

1.07

1.26

1.35

1.06

1.08

1.18

1.32FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

PCE Price Deflator

Figure 5.4: MCS and relative MSFEs for 1-month horizon. Methods that are
included in the MCS are depicted as blue and methods that are excluded from the
MCS are depicted in red.

202



5.5 Empirical Applications

1.00

1.05

0.97

1.17

0.97

0.99

0.98

0.95

0.95

0.89

1.01

1.01FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Real Production Income

1.00

1.12

0.91

1.03

0.91

0.94

1.03

0.98

0.99

0.83

1.01

1.01FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Real Manufacturing and Trade Sales

1.00

1.05

0.89

0.93

0.93

0.95

1.00

0.99

1.00

0.83

1.03

1.02FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Total Industrial Production

1.00

1.40

1.18

1.50

1.36

1.40

1.25

1.16

1.21

0.91

1.47

1.50FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Employees − non−agricultural

1.00

0.68

0.77

0.68

1.10

1.09

0.66

0.72

1.04

1.07

0.63

0.66FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Producer Index − Finished Goods

1.00

0.80

0.89

0.78

1.05

1.08

0.82

0.87

1.03

1.06

0.81

0.82FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Consumer Price Index − Total

1.00

0.79

0.91

0.81

1.05

1.07

0.80

0.84

1.04

1.07

0.81

0.80FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

Consumer Price Index − Less Food

1.00

0.92

0.99

0.86

1.07

1.07

0.94

0.96

1.03

1.06

0.93

0.94FAPADL

PADL

FAVAR

VAR

FASPECS

SPECS

PML

QR−VECM

N−DFM

FECM

ML

AR

0.5 1.0 1.5 2.0

PCE Price Deflator

Figure 5.5: MCS and relative MSFEs for 6-month horizon. Methods that are
included in the MCS are depicted as blue and methods that are excluded from the
MCS are depicted in red.
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Figure 5.6: MCS and relative MSFEs for 12-month horizon. Methods that are
included in the MCS are depicted as blue and methods that are excluded from the
MCS are depicted in red.
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Table 5.1 Overview of the variables included for QR-VECM and PML.

FRED code description

R
ea

l

RPI Real Personal Income
CMRMTSPLx Real Manufacturing and Trades Industries Sale
INDPRO IP Index
PAYEMS All Employees: Total nonfarm

N
om

in
al WPSFD49207 PPI: Finished Goods

CPIAUCSL CPI : All Items
CPIULFSL CPI : All Items Less Food
PCEPI Personal Cons. Expend.: Chain Index

A
d

d
it

io
n

al

CUMFNS Capacity Utilization: Manufacturing
HWI Help-Wanted Index for United States
UNRATE Civilian Unemployment Rate
UEMPMEAN Average Duration of Unemployment (Weeks)
HOUST Housing Starts: Total New Privately Owned
PERMIT New Private Housing Permits (SAAR)
BUSINVx Total Business Inventories
M1SL M1 Money Stock
M2SL M2 Money Stock
FEDFUNDS Effective Federal Funds Rate
TB3MS 3-Month Treasury Bill
GS5 5-Year Treasury Rate
GS10 10-Year Treasury Rate
EXJPUSx Japan / U.S. Foreign Exchange Rate
EXUSUKx U.S. / U.K. Foreign Exchange Rate
EXCAUSx Canada / U.S. Foreign Exchange Rate
S.P.500 S&P Common Stock Price Index: Composite

the four nominal series, the sparse high-dimensional methods display relatively poor

performance, regardless of whether they take into account potential cointegration in

the data. Overall, no clear distinction is visible between the non-stationary and sta-

tionary methods, although this may not come as a surprise given the short forecast

horizon. As usual, the AR benchmark appears hard to beat and is not excluded from

any of the model confidence sets here.

The forecast comparisons for longer forecast horizons display stronger differen-

tiation across methods. Our findings are qualitatively similar for the 6-month and

12-month horizons, and, for the sake of brevity, we comment here on the 12-month

horizon only. The results for the first three real series again do not portray a pref-

erence for taking into account cointegration versus transforming the data. Compar-

ing VAR to FAVAR and ML to FECM, incorporating information across the whole

dataset seems to positively affect forecast performance, a finding that is additionally
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confirmed by the favourable performance of the penalized VECM estimators. The

FAVAR substantially outperforms on the employment series, being the only method

included in the model confidence set. On the nominal series, the single-equation meth-

ods perform well, again not showing any gain or loss in predictive power by accounting

for cointegration. The ML and N-DFM procedure methods show favourable forecast

accuracy as well, whereas the two penalized VECM estimators appear inferior on the

nominal series. The AR benchmark is excluded for four out of eight series.

In summary, the comparative performance is strongly dependent on the choice

of dependent variable and forecast horizon. For short forecast horizons, hardly any

statistically significant differences in forecast accuracy are observed. However, for

longer horizons the differences are more pronounced, with factor-augmented or pe-

nalized full system estimators performing well on the real series, the FAVAR strongly

outperforming on the employment series, and the single-equation methods appear-

ing superior on the nominal series. The findings do not provide conclusive evidence

whether cointegration matters for forecasting.

5.5.2 Unemployment Nowcasting with Google Trends

In this section we revisit the nowcasting application of Chapter 3, where we consider

nowcasting unemployment using Google Trends data. One of the advantages of mod-

ern high-dimensional datasets is that information obtained from internet activity is

often available on very short notice, and can be used to supplement official statistics

produced by statistical offices. For instance, internet searches about unemployment-

related issues may contain information about people being or becoming unemployed,

and could be used to obtain unemployment estimates before statistical offices are able

to produce official unemployment statistics.

Google records weekly and monthly data on the popularity of specific search terms

through its publicly available Google Trends service,17 with data being available only

days after a period ends. On the other hand, national statistical offices need weeks to

process surveys and produce official unemployment figures for the preceding month.

As such, Google Trends data on unemployment-related queries would appear to have

the potential to produce timely nowcasts of the latest unemployment figures.

Indeed, Schiavoni et al. (2019) propose a dynamic factor model within a state

space context to combine survey data with Google Trends data to produce more

timely official umemployment statistics. They illustrate their method using a dataset

17https://trends.google.com/trends
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of about one hundred unemployment-related queries in the Netherlands obtained from

Google Trends. In Chapter 3, we consider a similar setup with the same Google

Trends data, but consider the conceptually simpler setup where the dependent variable

to be nowcasted is the official published unemployment by Statistics Netherlands.18

Moreover, they exclusively focus on penalized regression methods. In this section we

revisit their application in the context of the methods discussed in this chapter. For

full details on the dataset, which is available on the website of the author of this

thesis, we refer to Chapter 3.

Transformations to stationarity

As for the FRED-MD dataset, we first consider the different ways to classify the series

into I(0), I(1) and I(2) series. However, unlike for the FRED data, here we don’t have

a pre-set classification available, and therefore unit root testing is a necessity before

continuing the analysis. Moreover, as the dataset could easily be extended to an

arbitrarily high dimension by simply adding other relevant queries, an automated

fully-data driven method is required.

This lack of a known classification also means that our first strategy as used in

Section 5.5.1 has to be adapted, as we cannot differ I(2) series a priori. In particular,

for our first strategy we assume that the series can be at most I(1), and hence we

perform only a single unit root test on the levels of all series. Our second strategy is

again the Pantula principle as in Section 5.5.1. Within each strategy we consider the

same four tests as before.19

The classification results are given in Figure 5.7. Generally they provide strong

evidence that nearly all series are I(1), with most methods only finding very few I(0)

and I(2) series. Interestingly, one of the few series that the methods disagree about

is the unemployment series, which receives all three possible classifications. From our

previous results we may expect this series, our dependent variable, to be the major

determinant of forecast accuracy. Aside from this result, the most striking result is

the performance of the naive tests, that find many more I(0) variables than the other

methods. One possible explanation for this result may be the nature of the Google

Trends data, that can exhibit large changes in volatility. As standard unit root tests

are not robust to such changes, a naive strategy might seriously be affected, as appears

to be the case here.

18Additionally, this means the application does not require the use of the private survey data and
is based on publicly available data only.

19As Google reports the search frequencies in relative terms (both to the past and other searches),
we do not take logs anywhere.
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Figure 5.7: Classification of integration order of unemployment dataset.
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5.5 Empirical Applications

Forecast comparison

We now compare the nowcasting performance of the high-dimensional methods. Given

our focus on forecasting the present, that is h = 0, for a single variable, there is little

benefit in considering the system estimators we used before. Therefore we only con-

sider the subset of single-equation models that allow for nowcasting. Specifically, we

include SPECS as described in Section 5.4.2 as well as its modification FA-SPECS

described in Section 5.5.1 as methods that explicitly account for unit roots and coin-

tegration. Furthermore, we include PADL and FAPADL as described in Section 5.5.1.

For all methods, the modification for nowcasting is done by setting h = 0, where we

implicitly assume that at time t the values for the explanatory variables are available,

but that for unemployment is not. This corresponds to the real-life situation.

For SPECS we model unemployment as (at most) I(1), given that this is its

predominant classification in Figure 5.7. Additionally, we include all regressors in

levels, thereby implicitly assuming these are at most I(1) as well, which is again

justified by the preceding unit root tests. For PADL and FAPADL we transform the

series to stationarity according to the obtained classifications. Again we consider an

AR model as benchmark, while all other implementational details are the same as in

Section 5.5.1.

Our dataset covers monthly data from January 2004 until December 2017 for

unemployment obtained from Statistics Netherlands, and 87 Google Trends series.

We estimate the models on a rolling window of 100 observations each, leaving 64 time

periods for obtaining nowcasts. We compare the nowcast accuracy through relative

Mean Squared Nowcast Error (MSNE), with the AR model as benchmark, and obtain

90% Model Confidence Sets containing the best models in the same way as in Section

5.5.1.

Figure 5.8 presents the results. We see that, with the exception of the PADL

- iADF1 method, all methods outperform the AR benchmark, although the 90%

MCS does not find the differences to be significant. Factor augmentation generally

leads to slightly more accurate forecasts than the full penalization approaches, but

differences are marginal. Interestingly, the classification of unemployment appears

to only have a minor effect on the accuracy, with I(0), I(1) and I(2) classifications

all performing similarly. This does not necessarily contradict the results in Section

5.5.1, as differences were only pronounced there for longer forecast horizons, whereas

the forecast horizon here is immediate. Finally, we observe that the SPECS methods

are always at least as accurate as their counterparts that do not take cointegration
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Figure 5.8: MCS and relative MSNEs for the unemployment nowcasts. Methods
that are included in the MCS are depicted as blue and methods that are excluded
from the MCS are depicted in red.

into account. It therefore seems to pay off to allow for cointegration, even though

differences are again marginal.

5.6 Conclusion

In this chapter we investigated how the potential presence of unit roots and coin-

tegration impacts macroeconomic forecasting in the high-dimensional setting. We

considered both the strategies of transforming all data to stationarity, and of explic-

itly modelling any unit roots and cointegrating relationships.

The strategy of transforming to stationarity is commonly thought of as allowing

one to bypass the unit root issue. However, this strategy is not innocuous as often

thought, as it still relies on a correct classification of the orders of integration of all

series. Given that this needs to be done for a large number of series, there is a lot

of room for errors, and naive unit root testing is not advised. We discussed potential

pitfalls for this classification, and evaluated methods designed to deal with issues of

poor size and power of unit root tests, as well as controlling appropriate error rates

in multiple testing.
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5.6 Conclusion

Next we considered modelling unit roots and cointegration directly in a high-

dimensional framework. We reviewed methods approaching the problem from two

different philosophies, namely that of factor models and that of penalized regression.

Within these philosophies we also highlighted differences among the proposed methods

both in terms of underlying assumptions and implementation issues.

We illustrated these methods in two empirical applications; the first considered

forecasting macroeconomic variables using the well-established FRED-MD dataset,

while the second considered nowcasting unemployment using Google Trends data.

Both applications showed that transforming to stationarity requires careful consid-

erations of the methods used. While the specific method used for accounting for

multiple testing generally only led to marginal differences, a correct classification of

the variable to be forecasted is critically important. We therefore recommend pay-

ing specific attention to these variables by, for example, performing the classification

using multiple approaches to ensure that the classification found is credible.

The applications also demonstrated that there is no general way to model cointe-

gration that is clearly superior. Indeed, the results do not show a clear conclusion on

whether cointegration should be taken into account. This result, perhaps unsurpris-

ingly, mirrors the literature on low-dimensional time series. It therefore remains up to

the practitioner to decide for their specific application if, and if yes how, cointegration

should be modelled for forecasting purposes. Overall, the methods we consider in this

chapter provide reliable tools to do so, should the practitioner wish to do so.

Concluding, several reliable tools are available for dealing with unit roots and coin-

tegration in a high-dimensional forecasting setting. However, there is no panacea; a

single best approach that is applicable in all settings does not exist. Instead, dealing

with unit roots and cointegration in practice requires careful consideration and inves-

tigation which methods are most applicable in a given particular application. We also

note that the field is rapidly developing, and major innovations are still to be expected

in the near future. For instance, interval or density forecasting in high-dimensional

systems with unit roots remains an entirely open issue. As high-dimensional infer-

ence is already complicated by issues such as post-selection bias, extending this to the

unit root setting is very challenging indeed. Such tools however will be indispensable

for the macroeconomic practitioner, and therefore constitute an exciting avenue for

future research.
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Chapter 6

Conclusion

“If you want to assert a truth, first make sure it is not just an opinion that you

desperately want to be true.”

- Neil deGrasse Tyson (1958 - present)

This chapter concludes the thesis as a whole. We first provide some general con-

clusions that can be drawn from this work. As each chapter is annotated with its own

conclusion, we provide a holistic overview here and refer the reader to the individual

chapters for details. The chapter, and therewith the thesis, ends with a discussion of

some limitations and prospective avenues for future research.

The main result brought forward in this thesis, is that penalized regression offers

substantial theoretical and empirical advantages in high-dimensional (non-)stationary

time series settings. Throughout the thesis, it has been demonstrated that penalized

regression techniques offer competitive predictive performance relative to a wide vari-

ety of factor models, which have long constituted the pre-dominant modelling strategy

on large (macro)economic datasets. However, naive application of penalized regression

to non-stationary datasets in levels is not insensitive to the well-known issue of spuri-

ous regression. We show that this problem can be circumvented by choosing an appro-

priate model specification that automatically takes into account the (co)integration

properties of the data. Certain important choices, such as whether to correct for unit

roots or to model cointegration directly, as well as whether a factor model or penalized

regression method is most appropriate, remain application-dependent. Notwithstand-

ing, our results demonstrate that lasso-type estimation may now be considered as a

standard tool with wide applicability by the time series econometrician.
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6 Conclusion

In Chapter 2, we show that penalized regression offers competitive predictive per-

formance relative to factor models on stationary datasets. By means of simulations,

we show in a controlled environment that lasso-type estimators provide superior fore-

cast accuracy on sparse DGPs. Unsurprisingly, when the true DGP contains a ‘well-

behaved’ factor structure, factor models arise as the superior modelling strategy,

although the performance gain over penalized regression is marginal. More inter-

estingly, when the DGP indeed possesses a factor structure, but with strong cross-

sectional correlation in the idiosyncratic component, we observe that (i) the factors

are estimated with poor accuracy, (ii) factor selection criteria fail to choose the cor-

rect number of factors, and (iii) the predictive performance of factor models turns

out inferior to that of penalized regression. An empirical forecasting application to

the famous FRED-MD dataset shows mixed results, with neither modelling philos-

ophy consistently outperforming one another. Finally, our simulation results in the

non-stationary setting highlight that lasso-type estimation on the dataset in levels is

not insensitive to spurious regression, since a large number of irrelevant integrated

variables are frequently included in the estimated model.

In recognition of the documented risk of spurious regression, Chapter 3 devel-

ops the single-equation penalized error correction selector (SPECS) as an automated

estimation procedure for modelling (co)integrated datasets. SPECS is based on a

single-equation model that, contrary to Chapter 2, is obtained from a VECM specifi-

cation, rather than a stationary VAR. Consequently, variables that are stationary or

integrated of order one are both admissible in the model. Our theoretical results, de-

rived in a fixed-dimensional setting, show that SPECS possesses the oracle property.

Furthermore, elaborate simulation results and an empirical application to nowcast-

ing Dutch unemployment based on Google trends provide additional evidence of the

favourable performance of penalized regression in non-stationary settings.

With the aim of providing better asymptotic approximations for high-dimensional

applications, Chapter 4 extends the theoretical results of Chapter 3 to a framework

in which the number of variables diverges along with the sample size. We show that

SPECS maintains selection and estimation consistency in a high-dimensional setting

and describe the inverse relationship between the rate at which the dimension diverges

and the convergence rate of the estimator.

In recognition of the availability of high-dimensional estimators for both stationary

and non-stationary datasets, Chapter 5 examines the issue of unit root testing in

high dimensions and the performance differentials one may expect in both worlds.

In general, the specific multiple hypothesis testing strategy by which to identify unit
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roots only marginally affects the forecast performance of the methods. However,

classification of the order of integration of the dependent variable has a substantial

impact on the predictive performance of all methods included in the comparison,

and therefore merits extra careful consideration by the researcher. The predictive

performance comparisons on two empirical applications are not conclusive on whether

cointegration should be taken into account for forecasting. Moreover, no estimation

method consistently arise as superior. Perhaps unsurprisingly, careful consideration as

to which modelling strategy is most appropriate for a particular application remains

a necessity.

While this thesis offers new insights into the potential of penalized regression in

high-dimensional time series analysis, it is far from complete. Accordingly, we proceed

by suggesting several directions in which to results may be extended.

First, our theoretical results are based on pointwise convergence, thereby prevent-

ing uniformly valid inference. It is now well-recognized that post-model selection

inference is complicated by the issue of post-selection bias and numerous solutions,

such as post-double selection (Belloni et al., 2014) or the desparsified lasso (Van de

Geer et al., 2014), have been proposed. However, none of these approaches extend

easily to general stationary time series setttings, and extensions to the unit root set-

ting are expected to be highly complicated. Nonetheless, the theoretical results of

Chapter 3-4 may prove useful as intermediary results in the pursuit of uniformly

valid post-model selection inference.

Second, the generality of the high-dimensional asymptotic framework in the non-

stationary setting is hampered by the absence of knowledge regarding the behaviour of

the minimum eigenvalues of sample covariance matrices based on integrated variables.

Extending concepts such as the compatibility condition to the non-stationary setting,

may allow for the lasso to be theoretically justifiable in higher-dimensional settings

than the one proposed in Chapter 4.

Third, the shrinkage estimators in this thesis are largely limited to lasso-type es-

timators. While the (adaptive) lasso has arguably developed into the most popular

form of penalized regression for variable selection, recent literature has proposed sev-

eral prospective extensions or alternative estimators that are not considered in this

thesis. For example, Belloni et al. (2011) and Belloni et al. (2014) propose the square-

root lasso, which attains near-optimal oracle rates under less stringent assumptions

than the plain lasso. Perhaps more importantly, the square-root lasso is ‘self-tuning’,

thereby removing the burden of manually selecting the desired degree of penalization.
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6 Conclusion

Their results rely on conditions on the Gram matrix that are similar in spirit to the

compatibility condition, thereby further illustrating the importance of deriving such

conditions for the non-stationary setting. Alternatively, Fan and Li (2001) approach

the topic of variable selection more generally and argue that the lasso can be seen as

part of a larger class of estimators referred to as non-concave penalized maximum like-

lihood estimators. While some penalties result in non-convex estimation procedures

for which multiple local solutions exist, Fan et al. (2014) propose a procedure called

folded non-concave penalization which provides an approximation scheme that is able

to recover the oracle solutions under mild conditions. Since this procedure does not

rely on initial estimates, these methods provide yet another interesting direction in

which to generalize our results.

Fourth, extending the variable selection properties of the lasso to selection of the

deterministic specification allows for even greater automation in the model build-

ing process. Chapter 3 takes into account potential deterministic variables in the

model by de-meaning and de-trending. While this approach results in a limit dis-

tribution that is insensitive to the presence of a non-zero constant or deterministic

trend, it does not necessarily result in the most efficient estimator. Selection of the

trend component, however, is a non-trivial extension, because a deterministic trend

dominates the stochastic variation and leads to asymptotically singular covariance

matrices. Nonetheless, automated selection of the deterministic specification would

clearly benefit the applied researcher.

Finally, we have mainly focussed on a specific form of non-stationarity, namely

variables that are integrated of order one. However, it remains a debated issue whether

certain macroeconomic variables, such as price indices, are integrated of order two

(see for example the discussion in Marcellino et al., 2006a). Therefore, a careful

consideration of the effects of (misspecification of) variables that are integrated of

higher orders, as well as model extensions that accommodate such variables, would

be a valuable contribution to the literature.

Concluding, while shrinkage estimation has already shown great potential in time

series settings, there are still a lot of outstanding issues that could be tackled by de-

veloping new methods, or increasing our understanding of existing methods. We hope

that the results brought forward in this thesis contribute to our general understanding

of penalized regression, and prove useful for the applied researcher in modelling large

time series datasets, as well as the theoretical researcher in further developing the

theory in relevant time series setting.
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Valorization

The central theme underlying this thesis is the analysis of high-dimensional time se-

ries datasets. The current era is characterized by wide availability of larger and less

structured datasets and the process of information extraction from this kind of data

demands a drastically different approach that better accommodates these new fea-

tures. While much progress is being made in the field of high-dimensional statistics

in recent years, the analysis of high-dimensional time series in particular merits addi-

tional treatment. The appeal of high-dimensional time series analysis stems from the

idea of drawing strength from both the time dimension and the (potentially large)

cross-sectional dimension to improve model estimates and corresponding forecasts.

However, time series analysis in high dimensions comes with its own unique set of

challenges. First, the accelerated growth in time series datasets is experienced mostly

along the cross-sectional dimension, as changes in information management allow us to

extract data from more individuals or agents, but the passing of time puts a strict limit

on the growth in the time dimension. Second, even on traditional, smaller datasets the

peculiarities of time series such as serial dependencies, non-stationarity and structural

breaks call for specialized treatment. The addition of high-dimensionality exacerbates

the complexity of the analysis of time series, and the research presented in this thesis

aims to contribute to this problem in several ways.

A strong emphasis in this thesis is placed on rigorous and, especially, honest com-

parison between traditional and state-of-the-art statistical models that have a strong

founding in econometric theory. As often the case in transitional periods, it is easy

to become convinced by ill-founded claims or idiosyncratic success stories of new

methods in exotic applications. Accordingly, the second chapter consolidates semi-

nal and recent literature on prospective statistical methods that are well-suited for

forecasting based on high-dimensional time series datasets, and contains elaborate
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comparisons of their forecast performance in both controlled and real-life settings.

The results provide detailed insights into the relationship between the considered es-

timators’ forecast performance and characteristics of the data (generating process).

These insights can serve as a guideline for practitioners facing a forecasting exercise

or provide useful benchmarks for the development of new estimators. Furthermore,

the value in this chapter is strengthened by our focus on general and realistic data

characteristics that are not necessarily specific to a particular field, thus allowing for

broad applicability. On a personal level, I particularly hope the research presented in

this chapter can be of use to the field of climate science, where temperature forecasts

are often based on large datasets of atmospheric measurements containing time series

that are characterized by strong (seasonal) dependence over time and cross-sectional

dependence due to the proximity between measuring stations. Liberally conjecturing

on potential applications, I consider (1) the use of penalized regression to filter out

irrelevant atmospheric particles types from the data, (2) using principal component

based algorithms to impute missing or faulty measurements and (3) modelling large

cointegrated systems of, for example, land and sea temperatures combined with green-

house gasses as interesting avenues of research that the results in this thesis may be

able to contribute towards.

In the third and fourth chapter we develop the Single-equation Penalized Error

Correction Selector (SPECS), a novel estimator that combines the traditional ap-

proach of cointegration modelling in conditional systems with the dimensionality re-

duction properties of penalized regression. Ever since its development, cointegration

modelling has been an essential tool in the study of economic relationships, with clas-

sical examples including purchasing power parity (Juselius and MacDonald, 2004),

money demand (Johansen, 1992b) and rational expectation models (Johansen and

Swensen, 2004), as well as the study of financial theory such as the present value

model of stock prices (Campbell and Shiller, 1987), market efficiency (Dwyer Jr and

Wallace, 1992) and numerous market linkages such as that between local gasoline

prices and global oil prices (Hendry and Juselius, 2001). More modern applications

examine these kind of phenomena on a global scale based on cointegrated panel data

(e.g. Westerlund, 2007), where the large cross-sectional dimension calls for special-

ized high-dimensional methods. If in this cases, the modelling exercise is focussed

around only a few variables of interest, SPECS can serve as an automated tool to

fit sparse linear single-equation models that incorporate both the long-run and short-

run dynamics in the data. As demonstrated in the empirical application of Chaper

3, in which we nowcast Dutch unemployment based on Google Trends data, SPECS

is particularly well-suited for the purpose of nowcasting economic variables on such
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large macro-economic datasets. Buono et al. (2017) provide an interesting survey of

recent studies incorporating various novel sources of big data, such as Google Trends,

credit card, social media and stock exchange data, to nowcast macro-economic vari-

ables. With the rise of this many sources of big data, the nowcasting potential of

SPECS has clearly not been exhausted in the single empirical application considered

in Chapter 3.

SPECS may also be used for so-called “Artifical Counterfactual Analysis” (ArCo)

in the spirit of Masini and Medeiros (2019). Counterfactual analysis is the exami-

nation of treatment effects in the absence of obvious control groups. For example,

the highest income tax in the Netherlands was changed in 2001 from 60% to 51%. A

natural question to ask is how this has impacted the GDP of the Netherlands. To

disentangle the effect of the tax law change and other variables affecting the DGP,

one may consider the use of neighbouring economies that were not subjected to this

policy change as artificial control groups. Creating artificial controls based on multi-

ple countries and multiple economic indicators quickly gives rise to high-dimensional

models, for which SPECS can be considered as a useful estimator. While some theo-

retical details ought to be worked out, the estimation consistency of SPECS derived

in the high-dimensional framework of Chapter 4 is a valuable pre-requisite for ArCo

based on SPECS to be considered valid.

For many statical models that form the basis for the determination of economic

policy, the ability to perform honest, i.e. uniformly valid, post-selection inference on

large (co)integrated datasets is essential. I acknowledge that the thesis does not con-

tribute to this important topic directly. However, from the post-selection inferential

tools developed in the stationary world, such as the desparsified lasso (Van de Geer

et al., 2014) or post-double selection method (Belloni et al., 2014), it is clear that the

theoretical results derived in Chapters 3 and 4 may serve as starting points for the

development of novel inferential techniques.

It is worth mentioning that, from the start of the development of SPECS, key

considerations have been the intuitiveness of the model and ease of implementation.

I believe that the value of an estimator is ultimately derived from its practical us-

ability and the adoption rate among practitioners, no matter how mathematically

interesting the underlying theory may be. Not only do I believe that the resulting

single-equation model is understandable for a wide audience including non-experts, it

is implementable with readily available, off-the-shelf tools including self-written code

that I have made publicly available online. Moreover, the relatively low requirements

in terms of data pre-processing further reduces the burden on the applied researcher.
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In light of the results in Chapter 5 that demonstrate the complexity of controlling

(family-wise) error rates of unit root tests in high-dimensions, I consider this automa-

tion of the model building process particularly valuable.

Finally, I would like to take the liberty of including an element that is not tradi-

tionally part of the valorisation of a thesis: teaching. The accumulation of knowledge

throughout a PhD would be worthless to society without its subsequent dissemination.

The publication of scientific results tends to reach a rather select audience, whereas

knowledge transfer through direct interaction with students often has much farther

reaching consequences. Having been lost on my academic path for a while myself,

I understand the value of guiding young students in their search for knowledge and

self-development. I have had the fortune to teach students from all over the world,

with equally varying backgrounds, and made it my goal to connect with them and to

convince them of the value of quantitative analysis. Of course, teaching an already

excited econometrics student about the power and generality of maximum likelihood

estimation has been a great pleasure, but witnessing social science students discover-

ing the value of statistical inference within their fields of interest and, often to their

own surprise, becoming excited about statistical theory, felt equally rewarding. I hope

I have achieved my goals of inspiring the new generation to pursue their academic

interests and I look forward to what the future may bring.
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We bevinden ons momenteel in een nieuw tijdperk van data-analyse, dat geka-

rakteriseerd wordt door de beschikbaarheid van grote, ongestructureerde datasets. U

kunt hierbij denken aan data die wordt verzameld door grote tech-bedrijven zoals

Google en Facebook, maar ook gegevens die verzameld worden via de klantenkaart

van de lokale supermarket en de betaalpas waarmee afgerekend wordt. Omdat tra-

ditionele statistische modellen vaak het beste werken wanneer er rekening gehouden

dient te worden met de effecten van slechts enkele variabelen, zijn er de laatste jaren

veel nieuwe statistische methoden ontwikkelt die beter toepasbaar zijn op grote data-

sets. Deze nieuwe methoden worden ook wel hoog-dimensionale statistieken genoemd.

Echter, binnen economische en financiële sectoren, werkt men met name met tijdreek-

sen, zoals bijvoorbeeld de Nederlandse werkloosheidcijfers of het bruto binnenlands

product. Tijdreeksen vertonen vaak unieke eigenschappen, zoals trendmatig gedrag

waarbij toekomstige waardes sterk afhangen van het verleden, waarvan we weten dat

ze de uitkomsten van traditionele statistieken sterk bëınvloeden. Het is daarom niet

verstandig om hoog-dimensionale statistieken toe te passen op grote verzamelingen

van tijdreeksen zonder theoretische verificatie of praktische aanpassingen. Dit onder-

werp staat centraal in mijn proefschrift.

In dit proefschrift, richten we ons enkel op statistische methoden welke onder

te verdelen zijn in drie algemene categorieën: (1) factor modellen, (2) geregulari-

seerde regressie en (3) hybride modellen. Het idee achter factormodellen is dat alle

waargenomen variabelen worden aangedreven door enkele latente (niet geobserveerde)

variabelen. Zo kunnen we bijvoorbeeld werkloosheid observeren binnen verschillende

industrieën, of rentetarieven voor verschillende looptijden, maar worden al deze vari-

abelen mogelijk (deels) verklaard door de onderliggende bedrijfsconjunctuur. Factor

modellen proberen deze latente variabelen, de factoren, te schatten en daarmee de
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data samen te vatten met een minimum verlies aan informatie. Op deze manier hoeft

er geen complex model met honderden geobserveerde variabelen geschat te worden.

Een alternatieve methode is om de data niet samen te vatten, maar om ervan uit

te gaan dat veel variabelen simpelweg irrelevant zijn voor het verklaren van de af-

hankelijke variabele waar men in gëınteresseerd is. Zo is het aannemelijk dat de

grondstofprijzen voor thee van invloed zijn op de verkoop van koffie, maar dat de

grondstofprijzen voor ketchup hier weining in verklaren. Voor dit soort applicaties

is geregulariseerde regressie uitermate geschikt. Deze vorm van regressie schat een

lineair model en zorgt er automatisch voor dat de geschatte bijdrages van irrelevante

variabelen omlaag geschaald worden. Sommige vormen van geregulariseerde regres-

sie, zoals de Least Absolute Shrinkage and Selection Operator (LASSO) welke een

belangrijke rol in dit proefschrift heeft, hebben de wenselijke eigenschap dat ze irrele-

vante variabelen geheel automatisch uit het geschatte model kunnen verwijderen. Als

laatste optie komen in dit proefschrift hybride methoden aan bod, welke irrelevante

variabelen verwijderen en de relevante variabelen middels het schatten van factoren

samenvatten.

In Hoofdstuk 2 vergelijken we de voorspellingsprestaties van statistische methoden

welke onder te verdelen zijn middels de bovenstaande categorisatie. Door het uitvoe-

ren van gecontroleerde simulaties waarin we bepaalde data eigenschappen doelbewust

vastleggen, vinden we dat factor modellen en geregulariseerde regressie goed presteren

in het kader waar ze voor ontwikkeld zijn, maar ontdekken we ook dat geregulariseerde

regressie beter kan voorspellen indien er factoren in de data aanwezig zijn met “veel

ruis”.1 In een empirische toepassing vinden we dan ook dat voor sommige Ameri-

kaanse economische indicatoren geregulariseerde regressie nauwkeuriger voorspelt dan

factor modellen, ondanks dat de aanwezigheid van factoren in een macro-economische

toepassing zeer aannemelijk is.

Gemotiveerd door de gunstige prestaties van geregulariseerde regressie, ontwikke-

len we in Hoofdstuk 3 de Single-equation Penalized Error-Correction Selector (SPECS).

SPECS is een gespecializeerde methode waarmee geregulariseerde lineaire modellen

geschat kunnen worden die rekening houden met het trendmatige gedrag van de be-

schouwde variabelen. Zo komt het in economische toepassingen geregeld voor dat

individuele variabelen een stochastische (willekeurige) trend bevatten, maar dat deze

trend verdwijnt na het nemen van een bepaalde lineaire combinatie. Dit welbekende

fenomeen heet cointegratie en heeft grote invloed op het gedrag van statistieken. Wij

1Dit is een simplificatie ter bevording van de leesbaarheid. De preciezere omschrijving is dat
cross-sectionele correlatie in het idiosyncratische component de nauwkeurige schatting van factoren
belemmert.
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leiden theoretische (asymptotische) resultaten af die laten zien dat onze methode zich

wenselijk gedraagt wanneer de steekproefgrootte groeit. Ter demonstratie van de

toepasbaarheid van SPECS, gebruiken we onze nieuwe methode om de werkloosheid

in Nederland te voorspellen aan de hand van de populariteit van 100 verschillende

Google zoektermen, waaronder bijvoorbeeld “werkloosheidsuitkering” en “sollicite-

ren”. In lijn der verwachtingen, overtreft SPECS de voorspellingsprestaties van hoog-

dimensionale statistieken welke cointegratie negeren.

In Hoofdstuk 4 leiden we vergelijkbare theoretische resultaten af onder minder

restrictieve aannames. Zo laten we toe dat het aantal variabelen in het model mag

toenemen wanneer de steekproefgrootte toeneemt. Dit is van belang om een duidelijk

inzicht te geven in het gedrag van SPECS bij toepassingen op datasets met een groot

aantal variabelen.

Ten slotte, in Hoofdstuk 5 vergelijken we (1) statistische testen om het trendmatig

gedrag van tijdreeksen te classiferen en (2) een selectie aan hoog-dimensionale voor-

spellingsmethoden welke cointegratie al dan niet in acht nemen. Middels simulaties

vinden we dat het uitermate belangrijk is om de trend in de afhankelijke variabele

juist te classificeren, gezien de nauwkeurigheid waarmee deze variabele voorspeld kan

worden sterk van deze classificatie afhangt. In een macro-economische toepassing op

een Amerikaanse dataset vinden we dat geen enkel model consistent het nauwkeurigst

voorspelt en is er ook geen definitief antwoord op de vraag of cointegratie belangrijk

is voor het maken van voorspellingen. Gezien er gevallen zijn waarin SPECS beter

presteert dan de andere methodes in de vergelijking, bevestigen we dat onze methode

zowel theoretische als toegepaste waarde heeft. Echter, zal de keuze voor de optimale

methode altijd van de specifieke toepassing afhankelijk zijn.
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