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Resumo

Actualmente, com o avanco de tecnologias high throughput, como next generation
sequencing, informagio ¢ gerada diariamente. Organizd-la e analisé-la de forma a poder
recolher informagio til para aplicagoes médicas e farmacéuticas continua a ser um desafio.
Para este fim ¢ vital compreender tanto para genes como para proteinas caracteristicas
como: i) as suas fun¢des bioquimicas, ii) a localizagio celular, iii) a extensio de participagao
nos processos celulares, iv) as interac¢des com outros genes ¢ proteinas e também v) a
estrutura, uma vez que esta se encontra intimamente relacionada com a fungio. A
abordagem bioinformdtica continua a ser a Unica vidvel para esta situagio, uma vez que

experimentalmente, é impossivel validar toda esta informacio de forma expedita.
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Entre as mais variadas dreas de trabalho da bioinformitica, a anotacio de funcio de
proteinas continua a ser essencial para compreender e definir o papel das proteinas. Neste
trabalho apresenta-se uma nova abordagem a anotagio automidtica de proteinas através da

andlise da sequéncia. Para tal propoe-se um modelo de feature learning.

Numa primeira fase, é executado um Position Specific Iterated BLAST - PSI-
BLAST. Este algoritmo permite construir um perfil de probabilidades de cada aminoacido
se encontrar numa dada posicio da proteina, designado por position specefic scoring matrix
(PSSM). E construido através de uma compilagio iterativa de proteinas com baixa
identidade de sequéncia, isto é homdlogos distantes, permitindo assim perceber de uma
forma mais clara a relevincia efectiva de cada aminodcido para a fun¢io da proteina. Neste
processo, 0 PSSM gerado em cada iteragdo ¢ utilizado para apurar a busca na base de dados
para a préxima iteragio. O processo continua até que mais nenhum homdélogo distante seja

acrescentado ao perfil.

Seguidamente, estes PSSMs, ou seja, as probabilidades de cada aminoédcido numa
dada proteina, sio analisados com um algoritmo de clustering, k-means, que tem por
objectivo particionar n observagdes por k grupos predefinidos, onde cada observagio ¢
associada ao grupo mais préximo pela distAncia euclidiana; encontrando, desta forma,

padrées de probabilidades idénticos.



Posteriormente, ¢ utilizado um terceiro algoritmo de exploragio de regras de
associacio (association rule mining), com o objectivo de encontrar associagoes entre os
clusters que representam os padroes probabilisticos de aminodcidos de cada posigio e os
termos do Gene Ontology Consortium (GOC). O dltimo trata-se de um diciondrio de
expressoes para descrever fungio de proteina, organizado em tés categorias: fungio

molecular, processo biolégico e componente celular a que pertence a proteina.

Desenvolveu-se uma fase de prova de conceito com um menor nimero de
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proteinas, nio sé para verificar se o método proposto era vidvel para um modelo de
aprendizagem ndo supervisionada, mas também para resolver problemas e limita¢oes que o
método podesse apresentar, bem como para estabelecer os parAmetros a serem utilizados em
cada um dos algoritmos na fase de treino do modelo. Nesta fase, verificou-se que alguns
dos padroes de frequéncia dos aminodcidos em determinadas posi¢des (PAFPs) eram
irrelevantes para o modelo, uma vez que analisando os resultado dos PSI-BLASTS, se
verificava que a probabilidade para qualquer um dos 20 aminodcidos era igual ou muito
idéntica naquela posi¢io em especifico. Assim, estabeleceram-se varios limiares (entre 500 e
100) para o somatério dos valores de cada PAFP, a que este tinha que ser superior para ser

considerado.

Uma vez completa esta fase e verificando-se que o método tinha potencial para ser
usado como modelo de aprendizagem, sequéncias de proteinas com termos GO
experimentalmente anotados foram obtidas da Swiss-Prot ¢ o método acima descrito foi
aplicado sobre cada uma. O k-means, com o algoritmo de inicializ¢io de Forgy e k igual a
65, foi iterado sobre os 5 limiares assim como o arules, com variados parAmetros de suporte
e confianga. Verificou-se que o limiar de 500 seria demasiado exigente, eliminando
demasiados padroes que poderiam ser de interesse, diminuindo o campo de aprendizagem
do modelo, ao passo que tanto o limiar de 100 como o de 200 eram demasiado laxos,
incluindo demasiados padrées irrelevantes e toldando o modelo, pois desviaria o valor dos

centrdides determinado pelo k-means.



O modelo gerou para o limiar de 300, o maior nimero de regras com uma
confianga de 40% e com um suporte equivalente a cerca de 30 proteinas, tendo identificado
280 termos GO para essas regras. O nivel destes termos GO varia entre 1 ¢ 10, sendo por
isso termos de alto nivel e com baixo contetdo de informgao; cerca de 516591 proteinas, da

versio da Swiss-Prot de Julho de 2015, continham estes termos na sua anotagio.

Para validar o modelo, 2591 sequéncias de proteinas com anotagdes experimetais
foram obtidas, também da versio de Julho de 2015 da Swiss-Prot, versio seguinte a de
onde foram retiradas as sequéncias de proteinas para treinar o modelo. Destas, tendo em
conta os 280 termos GO acima referidos, o modelo foi capaz de inferir termos GO a todas.
Verifica-se com frequéncia que o modelo atribui mais proteinas a um termo GO do que as
que estdo originalmente anotadas com este termo. Contudo, nao hd informagio disponivel
para perceber se de facto as proteinas nao desempenham aquela fungio ou se simplesmente
desempenham mas ainda nio foi experimentalmente validado. Por outro lado, o modelo
falha em atribuir algumas proteinas que contém o GO na anotagio. Novamente ¢ dificil
perceber se estes resultados sio uma falha do modelo ou se o termo se encontra
incorrectamente atribuido a uma proteina. Uma vez que o modelo foi baseado numa base
de dados que, apesar de ser considerada a referéncia contém algumas inconsiténcias, ¢
compreensivel que o modelo seja fragilizado pelas Gltimas. Também deve ser notado que
para o pardmentro de suporte utilizado para o algoritmo de association rule learning e para
o limiar seleccionado, existem 7271 termos GO suportados por pelo menos 30 proteinas,
assim seria expectdvel que o numero de termos GO identificado fosse mais perto deste
valor. Contudo, alguns dos termos identificados conferem, de facto, poder de inferéncia ao
modelo. Estes, curiosamente, sio termos GO com baixa representatividade na Swiss-Prot,

usualmente os mais dificeis de identificar por modelos de inferéncia.

De qualquer forma, vdrias melhorias ao modelo sio vidveis. Actualmente, as
proteinas seleccionadas para o modelo necessitariam apenas que um termo GO da sua
anotagio fosse experimental para que a proteina fosse incluida no treino do modelo,
contudo em muitos casos nem todos os termos GO tinham sido anotados com evidéncia
experimental pelo que seria interessante considerar este pormenor, talvez com um métrica

que penalizasse estes termos face aos que foram anotados com evidéncia experiemental.



Também, neste trabalho nio se separou os termos GO de acordo com as categorias
definidas pelo GOC, seria interessante verificar se ao realizar esta separagio e correndo o k-
means tendo em conta estes grupo,s se seria possivel inferéncias categorizadas. Outra
melhoria possivel, e necessdria, é inclusio um maior nimero de proteinas para treino do

modelo.

Palavras-chave: anota¢io automitica de proteinas; PSI-BLAST; k-means clustering;

association rule learning; Gene Ontology



Abstract

Today most proteins contained in protein data bases have been annotated through
electronic inference. Due to the amount of data being generated by high throughput
methods, electronic inference remains the only viable path to understand proteins’
biochemical function(s), cellular location(s), participation in cellular processes, as well as, its

structure and interactions.

The feature learning model here proposed aims to introduce a new perspective on
protein function annotation problem at a positional amino acid level. Initially, the
probabilistic scores for each amino acid at each protein position is acquired, via a
traditional PSI-BLAST search; this generates a PSSM with said information. Each protein’s
positional amino acid frequency pattern (PAFP) is sieved through a threshold to decrease
the number of PAFPs irrelevant to the protein’s function. Afterwards, these are clustered to
their Euclidean closer relatives, via k-means algorithm; identifying, in this manner, s sort of
fingerprint of amino acid score patterns. These are then associated to Gene Ontology terms
retrieved for the training proteins, using arules package from R, i. ., establish association

rules between the resulting k-means clusters of PAFPs and the GO terms.

The 300 threshold for the sum of PAFPs generated 280 GO terms, with a support of
0.0005, about 30 proteins, and a confidence of 40%. These terms were used to describe
516591 proteins out of 549008 in Swiss-Prot the release of July 2015. Most GO terms
were, not leaf level, but higher. The model infers far more proteins to each GO term than
the ones annotated to it, however it also fails to allocate proteins annotated with the GO
term, resulting in high recall levels, but not equivalently high precision. However, note that
these results do not mean the inference is incorrect but in fact that there is no evidence to
support it one way or the other. Also, in the training set there are 7271 GO terms with a
support of at least 30 proteins, it would be expectable for the model to return a similar
number of identified GO terms. Despite, falling short of what was expected, the results
strongly suggest that the existence of certain PAFPs within proteins may be important for

their function. It is also interesting that the strongest signal was found on terms for which
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the positive ratio is very low, which are typically very difficult classification problems.
Results strongly suggest that it may be possible to find annotation clues by looking on
amino acids substitution patterns alone. The results however were not perfect and more

work will certainly be required to further validate the initial findings.

Keywords: Automatic protein annotation; PSI-BLAST; k-means clustering;

association rule learning; Gene Ontology.
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1 Introduction

Cell and Molecular Biology aim to understand and define cellular roles for all proteins
encoded in the Genome. This means that for each protein one must describe, among other
characteristics, its biochemical function(s), cellular location(s), participation in cellular
processes, structure and interactions. Previously, these characteristics were experimentally

determined.

However, with the development of high-throughput technologies, able to sequence a
whole genome or analyze thousands of genes/proteins simultaneously, the amount of
information being produced is overwhelming. Public databases are constantly being
updated and currently include over 7000 completely sequenced genomes of cellular
organisms [1] contributing to more than fifty million unique protein sequences [2]. While
this data holds enormous potential for biological and medical discovery, its amount, breath
and complexity makes it extremely challenging to organize, store and analyze. Moreover,
due to time and financial constraints it is only possible to experimentally
validate/characterize a small fraction, rendering the computational approach vital. A clear
representation of these situation is the fact that, UniProt/Swiss-Prot, a gold standard
database for protein annotation, only has approximately 10% of its proteins annotated
backed by experimental information; the remaining 90% have been annotated based on

electronical methods.

Several organizational strategies, analysis and interpretation algorithms, in the fields of
pattern recognition, machine learning and visualization, were developed by the
bioinformatics community, so that the said data can be accurately characterized. Today,
sequence alignment, gene finding, genome assembly, drug design, drug discovery, protein
structure alignment, protein function and structure prediction, prediction of gene
expression, protein—protein interactions, genome—wide association studies and evolution

modeling are some of the most rapidly progressing bioinformatics research areas.



In an attempt to store all the data being generated, a huge number of databases were
created, covering almost everything from DNA and protein sequences, molecular structures
to phenotypes and biodiversity. Each database used its own vocabulary to store
information. Therefore, when the annotation of four small genomes was examined [3,4] in
an attempt to estimate genome annotation error, the outcome was that at least 8% of the
molecular function annotations were incorrect. Others, went further and suggest that

depending on the definition of function used, misannotation level could be as high as 37%.

To circumvent this problem, several classification systems were proposed to
standardize annotation and to facilitate computation. Seldom have these classification
systems taken the structure of hierarchical ontologies. Enzyme Commission (EC) numbers
[5] and Munich Information Center for Protein Sequences (MIPS) functional catalog [6]

are two well accepted schemes; however the most commonly used functional classification

is the Gene Ontology (GO).

The Gene Ontology Consortium (GOC) is a collaborative effort to address the need
for consistent descriptions of gene products across data bases in a species-independent
manner [7]. With time GOC has grown to include several databases, providing an
extensive classification of functions, based on a dictionary of well-defined terms divided
into three main categories: i) molecular function (MF), ii) biological process (BP) and iii)
cellular component (CC) [8]. This way, biological databases are unified by sharing the same
vocabulary. Allowing researchers to query any database with a gene/protein name or
accession number and retrieve associated Gene Ontology (GO) terms or annotations based

on computational or experimental evidence.

On one hand, it is undeniable that these efforts to unify the vocabulary were vital to
standardize computation. On the other, they do not suffice. More recent studies that
modeled annotation error based on Gene Ontology database, estimated that up to 49% of
the computationally annotated sequences could be misannotated. Furthermore, several
models of error propagation have shown that with sufficient initial error in the databases,
error propagation can significantly degrade the quality of the annotations. This

misannotation is not inherent to the vocabulary used; instead it is mainly because the



computational methods are based on previous annotations. And, while annotations remain

an issue, the models for automatic annotation will remain, as well.

1.1 Rationale

The rationale for this project is to understand whether a given positional amino acid
frequency pattern, perpetuated throughout various distantly related proteins at the same or

equivalent position, may enable protein function prediction.

Today it is known that an amino acid at a given protein position, in itself, is not
enough to learn its role in the said protein’s function. This is the traditional idea behind a
multiple alignment (MA), where several sequences are aligned in order to identify
conserved amino acids or motifs. When using MA tools, typically the result is a conserved
region description for which the likelihood of finding each amino acid is present. Yet one
fundamental property of MA is that each conserved protein region is found and defined as
block. The actual contribution of each amino acid is lost in the context. The specific role of
one amino acid is most of the times irrelevant if the amino acid is considered by itself.
However, if several similar proteins share a similar substitution pattern for that specific
position, this may imply that this conserved position may have in itself a specific biological
meaning, without which certain biological functions or behaviors may not occur. This type
of observation may be difficult to observe in MA, again due to the fact that only contiguous
regions of amino acids are detected. Furthermore, the discovery of individual substitution
patterns may prove to be ubiquitous even if the compared proteins are totally dissimilar

allowing the identification of functional relationships between them.

Also, with PSI-BLAST, the MA issue in aligning distantly related proteins, becomes
obsolete, because the latter beyond identifying distant relatives, also produces a quantitative
profile of the probability of each amino acids at each position of the protein is compiled
from distant relatives. These profiles will henceforth, for the sake of simplicity, be addressed
a positional amino acid frequency patterns - PAFPs. In this manner, the amino acid

patterns at certain positions, truly relevant to said proteins’ function, are laid bare.



What is here proposed, is a feature learning method to identify recurrent PAFPs by
analyzing the PSSMs of various experimentally annotated proteins, generating a sort of
probabilistic score fingerprint for protein function, by clustering PAFPs and by using a
machine learning/statistical method (association rule learning) to associate these

fingerprints to protein function.

This idea is innovative and no significant studies have been found in the literature.
Nonetheless, the use of PSI-BLAST and PSSMs have been used in automatic protein
functional and structural annotation. Previously, it has been demonstrated the ability to use
PSSMs to predict protein molecular function [9]. It is noteworthy, in this case, that the
PSSMs were generated based on structural alignments and obtained for each potential
molecular function GO term present among the initial protein structures. Here, all three
categories established by GOC are considered and no structure is taken into account.
Afterwards, a few improvements and, consequently, a widening of the predicting scope is
obtained by using GO to direct the function prediction process, by splitting sets of
sequences identified by PSI-BLAST into sub-alignments according to GO annotations
[10]. Each GO term sub-alignment is then used to identify conserved residues within
group, for which a PSSM profile is generated. This combination of steps enables the
identification of conserved residues potentially associated with a particular function and
produces a set of feature derived profiles from which protein function is predicted. Despite,

the different step, the model here proposed aims for a similar outcome.



Function 1 - cerebrospinal fluid carrier of

the thyroid hormone thyroxine

Funtion 2 - retinol-binding

Would it be possible for sequence b and ¢ to

have the same function since they have the
same PAFPs?

Figure 1 - Representation of the same PAFDPs
(grey box) in three distinct proteins, according
to two randomly selected PAFPs from Table
2. The colour of the amino acids in the
PAFDPs, represents the likelihood of the amino
acid in said position; ranging between dark
green — very likely to be found at that
position, bright red very unlikely to be found
at that position. The project here proposed,
aims to group these PAFPs and macth them to
a putative protein function.







2 Methods for in silico automatic protein

annotation

Accurately understand and annotate "anything that happens to or through a protein” [11]
is key to understand life at molecular level. Maybe because this is quite a complex concept,
presently there is no unified computational answer that is able to accurately characterize

any given protein.

Protein function annotation can be predicted by several methods. Most traditional
approach consist on identifying whole sequences or small pieces of these among proteins
with experimentally determined function, inferring annotation from closest relatives.

However, other strategies have also been developed.

2.1 Sequence alignment based methods

Proteins with similar sequence are often homologous [12] and, therefore, are estimated to
have similar function. Consequently, proteins from a newly sequenced genome are
commonly annotated by transference, i.e., based on similar protein sequences from
previously annotated genomes, independent if annotation is experimentally or electronically
inferred.

Several studies indicate that at least 60% sequence identity, and more likely closer to
80%, is required for accurate transfer of the third level of EC classification [11-16].
However, many cases of closely related proteins that do not share the same function have
been reported [17]. Currently, there is no sequence-similarity threshold that guaranties
function similarity. Furthermore, it is estimated that below 30% protein sequence identity,
commonly called twilight zone, detection of a homologous relationship is not guaranteed
by sequence alone [18].

Overall, the type of alignment applied and its outcome strongly depend on the

characteristics of the query protein and on the characteristics of the ones in the query

database. Notwithstanding, the use of BLAST (Basic Local Alignment Search Tool) [19]
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and PSI-BLAST (position-specific iterated BLAST) [20] remains a common first step for
inferring protein function through alignment of sequences. Thus, for a newly identified
uncharacterized protein, without any further knowledge of similarity percentage to proteins
in the database, this methods may not suffice.

However, because understanding protein alignment is vital to understanding the

rationale for this project these methods are here described in further detail.

2.1.1 Global Alignment by Needleman-Wunsch

This alignment is better suited for closely related sequences which are of same length. Here,
the alignment is carried out from beginning till end of the sequence to find out the best
possible alignment by using optimal alignments of smaller subsequences.

This algorithm is divided into three separate steps:

i) Initialization of the matrix with the scores possible;
ii) Matrix filling with maximum scores;
iif) Trace back the residues for appropriate alignment.

The initialization step consist on building a matrix with the two sequences being
aligned, where each of the amino acids of one sequence corresponds to the columns and the
amino acids of the remaining one, correspond to the rows. The first column and row are

filled with the scores for each of the amino acids.

Take the alignment of the two small sequences SEND and AND. The cells of the score
matrix are labelled C(i,j), where i and j integer number between 1 and the length of each

sequence.

S E N D

C(1,1) | C(1,2) | C(1,3) |Ca4 |Ca.s)

C(2,1) |C2,2 |C23 |C24 |C@25)

C3,1) | C(3B2) | C3B3) | CB4 | CGBS)

C(4,1) | C4,2) | C43) |C44) |CH4)5)




Z

S E N D
0 -10 20 -30 -40
-10
-20
-30

maximum of the following is selected:

i) qdiag = C(i-1, j-1) + S(i, j)

>

S E N D
done | left left left left
up
Ly
Ly

ii) qup=C(@-1,j) +¢g

Afterwards, this matrix is filled by row starting at cell C(2,2). For any cell C(i,j) the

i) qleft= C@, j-1) + g

where S(i, j) is the substitution score for those letters and g is the gap penalty. Once the

matrix is complete, the trace back process, which in this case starts at C(4,5) is carried out

according to the value and origin of that value.

S E N D
0 -10 -20 -30 -40
-10 1 -9 -19 -29
-20 -9 -1 -3 -13
30 19 11 2 3
S E N D
done left left left left
up diag ¢ left left left
up diag diag diag o | left
up up diag | diag | diag

z >

S E N D
done left left left left
up diag left left left
up diag | diag | diag left
up up diag | diag | diag

Sequences are aligned backwards, and according to the values in the backwards path

established: diag, represents the letters from the two sequences are aligned; left, means that




a gap must be introduced to the left in the row sequence; up, represents that a gap is

introduced in the column sequence. Hence, the result for this small example would be:
SEND

A-ND

The Needleman—Wunsch algorithm is still widely used for optimal global
alignment, particularly when the quality of the global alignment is of the utmost
importance. However, the algorithm is expensive with respect to time and space,
proportional to the product of the length of two sequences making it unsuitable for long
sequences. Recent development has focused on improving the time and space cost of the
algorithm while maintaining quality. Fast Optimal Global Sequence Alignment Algorithm
(FOGSAA), achieves a time gain of 70-90% for highly similar nucleotide sequences (with

> 80% similarity), and 54-70% for sequences having 30-80% similarity [21].

2.1.2 Local Alignment by Smith-Waterman

This alignment is better suited for suspected similar sequences or even dissimilar sequences.
It finds local regions with high level of similarity through an adaption of the previously
described global alignment.

One of the alterations to the Needleman-Wunsch algorithm, occurs at the first stage,
where the negative scoring matrix cells are set to zero, which renders the (thus, positively
scoring) local alignments visible. The process is the carried out as previously described,
except for the tracing back step. This, instead of starting at the last filled position starts at
the highest scoring matrix cell and proceeds until a cell with score zero is encountered,

yielding the highest scoring local alignment.

It is noteworthy, that the algorithm used for BLAST is an optimization suggestion for
a less time-consuming form of the algorithm used for Smith-Waterman. BLAST employs
an alignment which finds "local alignments between sequences by finding short matches

and from these initial matches (local) alignments are created", as well.
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2.1.3 Basic Local Alignment Search Tool

Also using a heuristic method, BLAST finds similar sequences, by locating short matches —

words, between the two sequences, instead of comparing sequences in full.

To identify relevant words a window, with user defined size, is slid across the sequence
generating words that are then compared with database sequences. These comparisons are
scored according to a scoring matrix - a commonly used one, for protein alignment, is

BLOSUMG62 - BLOcksSUBstitutionMatrix. Only words above the matrix determined

threshold are kept. This process is called seeding.

Afterwards building an alignment is then possible. To do so, neighbouring words are
also assembled, i. e., the alignment is extended in both directions of the original word in an
attempt to extend it. However, each extension impacts the score of the alignment. Should
this score be higher than a previously determined threshold, the alignment will be included
in the results; should it be lower, the alignment will cease to extend, preventing areas of

poor alignment from being included in the BLAST results.

Those alignments whose score is above the empirically determined cut-off S score are
called High Scoring Segment Pair (HSP). The S score is determined by examining the
distribution of the alignment scores modelled in comparison with the distribution or
random alignment. The HSPs' scores of the extended regions are then created by using a i)

substitution matrix, as before and ii) a gap penalty system.

Seldom more than one HSP is found in the same sequence, this may be due to loss of
some sequence regions that would have been joined before determined evolutionary
process, it is then imperative to consider them all in the alignment. The gap penalty system

enables this situation by scoring the insertion and/or removal of gaps.

Once the alignment process is completed for a query and each subject sequence in the
database, a report is generated, providing a list of those alignments with a value greater than

the cut-off score S.
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Despite being used to identify homologous sequences by searching and comparing a
query sequence with those in the databases, Smith-Waterman and BLAST are quite
different. BLAST is based on a heuristic algorithm, its results, in terms of hits found, may
not be the best possible ones, as it will not identify remote homologs. The Smith-
Waterman algorithm is a better alternative to identify these homologs. However, this

accuracy comes at the expense of time and computer power.

2.1.4 Position Specific Iterated — BLAST (PSI-BLAST)

Database searches using position specific scoring matrices are often much better at
detecting weak relationships between proteins than database searches that use a simple
sequence as query, therefore PSI-BLAST is substantially more sensitive than the

corresponding BLAST program.

PSI-BLASTs first step is to create a list of all closely related proteins using a standard
BLAST. These proteins are, then, combined into a general "profile” sequence — a position
specific score matrix (PSSM), which summarises significant features present in these

sequences. This matrix is the length of the query protein * 20 matrix.

Analogously to BLAST, a query against the protein database is then run using this
profile, instead of the 20*20 substitution matrix. A larger group of proteins is found and

aligned to the query sequence.

In order to transform this alignment into another profile, several data manipulation
stages take place: i) Only one row (alignment pair query-database sequence) above 98%
identity is kept; ii) gaps are dismissed, meaning all sequences are the same length and iii)
cach alignment is attributed a weight, i. e, because a large set of closely related sequences
carries about as much information as a single sequence, but due to its size it may easily
“outvote” a small number of more divergent sequences, different weights are then assigned
to the various sequences, with those having many close relatives receiving smaller weight
[20]. This weighting process is based on a modified version of the Henikoff-Henikoff

method [22]. Initially, for each column, a total weight of 1 is divided evenly among the
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letter types that occur at that position, then the weight assigned to each letter type is
divided evenly among the sequences that have that letter, afterwards for each sequence the

weights from all sequences a summed.

Table 1 — Layman’s summary of the Henikoff-Henikoff weighting method. Adapted
from[22].

Sequence calculation results
GCGTTAGC 1/4+1/3+1/3+1/4+1/4+1/3+114+1/2 21/2 0.31250
GAGTTGGA 1/4+1/3+1/3+1/4+1/4+1/3+1/4+1/4 2 1/4 0.28125
CGGACTAA 1/2+1/3+1/3+1/2+1/2+1/3+1/2+1/4 31/4 0.40625

Posteriorly, to estimate the probability of a residue to be found at that column a data
dependent pseudocount method, introduced by Tatusov [23], is applied. This method uses
prior knowledge of the aa relationships embodied in the substitution matrix to generate

residue pseudocount frequencies which are averaged with the observed frequencies.

This process is repeated until no new sequences are added to the alignment, hence no

new information is added to the resulting PSSM.
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Queryseq aaposition| A C D E F G H 1 K L M N P Q R S T Vv W Y ]
G 1 0 -3 1 -2 -3 6 -2 4 -2 -4 -3 o -2 -2 -2 0 -2 -3 -3 -3
P 2 0 2 1 -1 -3 -2 -2 -3 -1 -3 -2 -1 6 -1 -2 2 1 2 -3 -2
T 3 0 2 1 -1 -2 -2 6 -1 01 -2 A 0 2 0 -1 0O 2 0 -3 0
G 4 0 -3 - o 3 5 -2 -4 -1 -4 -3 o -2 -1 -2 0 -2 -3 -3 -3
T 5 2 -1 4 1 -2 0 -1 -1 0 2 -1 o -1 o0 -1 2 2 0 2 -2
G 6 1 -2 1 2 -2 3 1 -1 1 -2 -1 -1 1 0 1 o0 -1 -1 -2 =2
E 7 -1 -3 4 3 -3 -2 2 -3 0 -3 -2 1 2. -1 0 -1 -3 -3 2
S 8 1 -1 o -3 0 -1 -2 0 -3 -2 0 1 0 -1 4 1 2 -3 -2
K 9 -1 -3 -1 1 -3 -2 -1 -3 5 -3 - 0 -1 3 2 D =k =X G R
C 10 -1 9 4 4 3 -3 -3 -1 3 1 -2 -3 -3 -3 4 -1 -1 -1 -2 -3
P 11 1 -3 -2 -1 -4 -2 -2 -3 41 -3 -3 -2 7 -1 -2 -1 -1 -2 -4 -3
L 12 2 -1 4 -3 0 -4 -3 1 -3 4 2 3 3 -2 -2 -3 -1 1 2 -1
M 13 1 -2 3 -2 0 -3 -2 1 -1 2 6 2 -3 -1 -2 -2 -1 1 2 -1
Vv 14 0 -1 3 -3 1 -3 -3 3 -2 1 1 3 2 -2 -3 -2 0 4 -3 -1
K 15 -1 -3 -1 i 3 -2 -1 -3 5 -3 -1 0 -1 L 2 0 =k =2 =3 22
Vv 16 0 1 -3 -3 -1 -3 -3 3 -2 1 1 3 -2 -2 -3 -2 0 4 -3 -1
L 17 2 -1 4 -3 0 -4 -3 1 -3 4 2 -3 3 -2 -2 -3 -1 1 2 -1
D 18 2 -4 6 1 4 1 -1 -3 -1 -4 -3 i -2 0 -2 0 -1 -3 -4 -3
A 19 4 1 -2 -1 -2 o0 -2 -1 -1 -2 -1 -1 -1 -1 -1 1 0 0 -3 -2
Vv 20 0 1. =3 3 1 -3 -3 3 -2 1 1 3 -2 -2 -3 -2 0 4 -3 -1
R 21 -1 -3 -2 0 3 -2 0 -3 2 2 -1 g 2 2. 6 A I 8 3 2
G 22 0 3 -1 -2 -3 6 -2 4 -2 -4 -3 -1 -2 -2 -2 0 -2 -3 -3 -3
S 23 0 -1 1 0 -2 -1 1 0 0 2 -1 0: =< @ xE [ 1 1 -3 -2
P 24 1 -3 -2 -1 -4 -2 -2 -3 -1 -3 -3 -2 7 -1 -2 -1 -1 -2 -4 -3
A 25 4 0 2 -1 2 0 -2 -1 -1 -2 -1 -2 -1 -1 -2 1 0 0 -3 -2

Figure 2 — Example of an PSSM output for a peptide of homotetrameric plasma protein -
transthyretin, whose structure was defined by x-ray crystallography [24].

2.2 Sequence motif-based methods

Evidence for function can also be inferred from known protein domains by matching a
query sequence to a protein domain database, like Pfam - Protein Families Database. Other
databases, such as dcGO, go further and include annotations referring to individual
domains (evolutionary units that comprise proteins) and supra-domains (domain
combinations that recur in different protein contexts with different partner domains) [25].
Aspects of a protein's function can be predicted without comparison to other full-
length homologous protein sequences. Within protein domains there are shorter signatures,
known as motifs, associated with particular functions [26]. These can be associated to

function by querying motif databases such as PROSITE [27].
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2.3 Structure-based methods

Structural similarity is thought to be a good indicator of function similarity since it is
generally more well conserved than its sequence [17,26]. Many programs have been
developed to screen an unknown protein structure against the Protein Data Bank [28]
(PDB) and report similar structures. FATCAT (Elexible structure AlignmenT by Chaining
AFPs (Aligned Fragment Pairs) with Twists) [29] CE (combinatorial extension) [30]) and
DeepAlign (protein structure alignment beyond spatial proximity) [31] are some of the

programs created towards the referred ending.

2.4 Homology modelling

However, due to the fact that many protein sequences have no x-ray crystallography or
NMR solved structures, some function prediction servers, such as RaptorX, have also been
developed to firstly predict the 3D model of a sequence and afterwards use a structure-
based method to predict functions based on the predicted 3D model. In many cases instead
of the whole protein structure, the 3D structure of a particular motif representing an active
site or binding site can be targeted [26]. Databases such as Catalytic Site Atlas [32] have
been developed that can be searched using novel protein sequences to predict specific
functional sites.

In all instances, some prior knowledge of sequence or structural similarity is essential

for any inference. Other methods escaping the prior paradigms have also been developed.

2.5 Genomic context-based methods

Recent methods for protein function prediction are not based on comparison of sequence
or structure as the previous, instead they are based on some type of correlation between
novel genes/proteins and those that already have annotations. This is known as

phylogenetic profiling and is based on the observation that two or more proteins with the
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same pattern of presence or absence in many different genomes most likely have a
functional link [26,33]. Whereas homology-based methods are more often used to identify
molecular functions of a protein, genomic context-based approaches are used to predict
cellular function or the biological process in which a protein acts [33,34]. For example,
proteins involved in the same signal transduction pathway are likely to share a genomic

context across all species.

2.5.1 Gene fusion

Gene fusion occurs when two or more genes encode two or more proteins in one organism
and have, through evolution, combined to become a single gene in another organism (or
inverse for gene fission) [34,35]. This can occur as a result of: translocation, interstitial

deletion, or chromosomal inversion.

A. Chromosomal Translocation B. Interstitial Deletion C. Chromosomal Inversion
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Figure 3 — Graphical representation of the various processes giving way to gene fusion.
Adapted from [56].

Gene Fusion has been used to search all E. coli protein sequences for homology in other
genomes. Over 6000 pairs of these protein sequences shared homology to proteins in other
genomes, indicating the potential interaction between each of the pairs [35]. The latter
would not have been predicted through homology-based methods, because the two

sequences in each protein pair are non-homologous.
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2.5.2 Co-location/Co-expression

In prokaryotes, clusters of genes that are physically close together in the genome are often
conserved together through evolution, and tend to encode proteins that interact or are part
of the same operon [34]. Thus, chromosomal proximity, also known as the gene neighbor
method [36], can be used to predict functional similarity between proteins in prokaryotes.
Genes involved in similar functions are also often co-transcribed, so that an
unannotated protein can often be predicted to have a related function to proteins with
which it co-expresses [26]. The guilt by association algorithms developed based on this
approach can be used to analyze large amounts of sequence data and identify genes with
expression patterns similar to those of known genes [37,38]. In other words, a group of
candidate genes, with an unknown function, are compared to a target group - genes known
to be associated with a particular disease; the candidate genes are then ranked by their
likelihood of belonging to the target group. Recently, however, some problems with this
type of analysis have been reported. For instance: many proteins are multifunctional, thus

the genes encoding them may belong to several target groups [39].

2.6 Network-based methods

Guilt by association type algorithms may be used to produce a functional association
network for a given target group of genes or proteins. These networks serve as a
representation of the evidence for shared/similar function within a group of genes, where

nodes represent genes/proteins and are linked to each other by edges representing evidence

of shared function [40].

2.6.1 Integrated networks

Several networks based on different data sources can be combined into a composite

network, which can then be used by a prediction algorithm to annotate candidate genes or
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proteins [41]. Many algorithms have been developed to predict function based on the

integration of several data sources (e.g. genomic, proteomic, protein interaction, etc.).

Testing on previously annotated genes indicates a high level of accuracy [40,42]. However,

some function prediction algorithms are not directly interpretable and many require

extremely high computational resources. Faster, more accurate algorithms such as

GeneMANIA (Multiple Association Network Integration Algorithm) have been developed

in recent years [41] in an attempt to surpass the aforementioned disadvantages.

Table 2 — Summary of the gains and limitations of the in silico methods described

in this Chapter.

Method

Advantages

Disadvantages

Sequence aligment

based methods

commonly used
many fast tools available
most mature and reliable [43]

no sequence-similarity threshold that
guarantees function similarity

type of alignment to be applied depends on
the characteristics of the query protein and
database

Sequence  motif-

based methods

Its sequence alignment based
but considers several proteins,
hence evolution — conserved

blocks

Its sequence alignment based

aligning distant relatives remains an issue
patterns from closely related sequences
amino acid contribution is lost in the
context

Structure-based

good indicator of function
similarity (more conserved)

Computationally demanding
Scarcity of crystallographic evidence,

methods .
undermines confidence
Homology considers several proteins, sequence or structural similarity is essential
. hence evolution — conserved for any inference
modelling

blocks
only models the catalytic
conserved block

again scarcity of crystallographic evidence,
undermines confidence

Genomic context-

not based on sequence or
structure similarity

used for cellular function or the biological
process, instead of molecular function

based methods
used for cellular function or genes encoding multifunctional proteins
the biological process, instead may belong to several target groups
of molecular function
prediction for non-
homologous proteins
Network-based high level of accuracy d%fﬁcult to interpret
high computational resources
methods
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Overall, the above in silico methods, despite complementing each other in to
automate protein annotation, do not seem to be able to do it in full. What is here proposed
is an idea that offers a new approach to address this problem at a positional amino acid
level, not yet considered by any of the aforementioned methods. Also, it is not expected for
this model to fully automate protein annotation but it is hoped that in association with

other methods it may in fact allow for it and/or reduce the range of existing possibilities.
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3 Methods

Overview

As previously mentioned, the feature learning model here proposed to identify recurrent

PAFPs to generate a sort of probabilistic score fingerprint for protein function, consists on:

i) Retrieving, from Swiss-Prot, for each protein annotated with an experimental evidence
code, both the sequence and the GO annotation;

ii) with the retrieved sequences, acquiring quantitative information on the relevance of
each amino acid at a given position - a typical PSI-BLAST search generates a PSSM,
containing such information - PAFPs;

iii) clustering the closest PAFPs by their characteristics;

iv) using rule association to establish relations between the resulting clusters and protein
function given by GO terms;

v) validating the resulting rules.

Therefore, it is necessary to understand if it has potential to become an annotation
attribution model as well as to resolve issues that may arise throughout its implementation.

Thus, a proof of concept, with a small scale data set will be carried out (Chapter 4).
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Figure 4 — Schema of the feature learning method here proposed. Initially, proteins with
GO terms annotated with experimental evidence codes will be retrieved. PSI-BLAST will
be run over sequences and only the PAFPs with sum of probabilities above a determined
threshold are kept. These will then be clustered. Afterwards, proteins represented by GO
terms and proteins represented by clusters will be, analysed in order to identify association

rules among both data sets.

3.1 Data Clustering

In order, to identify PAFPs to train the model, it is necessary to group them by their
similarities, since it is not expectable for them to be exactly equal throughout the data,

clustering methods provide an approach to do so.

3.1.1 k — means

k-means [44] is one of the simplest flat unsupervised learning algorithms used to solve the
clustering problem. The procedure follows a simple and easy way to classify a given data set

through a certain number of clusters (assume k clusters) fixed a priori.
g p

This algorithm was elected mainly due to the nature of the project and also for its

case of implementation. Because, the data patterns being searched are not known and
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cannot, at this point, be defined it is clear that an unsupervised learning method is

necessary.

k-means, is, in fact, the simplest for grouping instances into clusters based on all
variables without any target one. Most of the clever algorithms are much harder to
implement efficiently and have a higher number parameters to set; on one other hand, they
can be 100x faster. This is not relevant for the data being analysed, k-means is expected to
perform reasonably fast. Also, because there is no evidence whether flat or hierarchical

clustering methods are better at classifying, a simpler approach is favourable.

k-means’ main idea is to define k centroids, one for each cluster. These centroids
should be placed in a cunning way, since different location causes different outcomes. Some
implementations are done as to place them far apart as possible, such is the case of
MacQueen and Hartigan-Wong [45]; others, like Lloyd-Forgy [46] algorithm, simply
select for initial centroid values random points thorough out the data. The next step is to
take each point belonging to a given data set and associate it to the nearest centroid. This
association is performed by calculating the Euclidean distance between the data point and
the centroid. When all points have been associated, the first step, commonly denominated
as seeding, is completed and an early groupage is done. At this point, k new centroids are
re-calculated as barycentre of the clusters resulting from the previous step. Having these k
new centroids, a new association between the same data set points and the nearest new
centroid occurs. The k centroids change their location in each iteration until no more

changes occur.

3.2 Association Rules

arules package for R [47] will be used to establish a priori association rules between clusters

representing amino acid probability patterns and protein known annotations in the form of

GO terms.

Mining association rules from transaction data, can be introduced [48], as follows:

i)  LetI={il,i2...in} be a set of n binary attributes called items.
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ii) Let D = {tl, t2. .. tm} be a set of transactions called the database.

iii) Each transaction in D has an unique transaction ID and contains a subset of the
items in I.

iv) A rule is defined as an implication of the form X = Y where X, YE and X N Y =
@.

The sets of items X and Y are called antecedent (left-hand-side or LHS) and consequent

(right-hand-side or RHS) of the rule.

Take into the account the following example, an over simplification of the data expected

for this project.

Protl  Clusterl, Cluster4, Cluster6, GO1, GO4, GO6
Proc2  Clusterl, GO3, GO5, GO6

Prot3  Cluster2, Cluster4, GO1, GO4, GO6

Prot4  Clusterl, Cluster5, Cluster6, GO3, GO5

The proteins can be considered the transaction identifiers and, both, the clusters and
GO terms can be considered as the subset of items; clusters summarizing the amino acid

probability patterns are introduced as LHS and the GO terms as RHS.

To select interesting rules from the set of all possible rules, constraints on various
measures of significance and interest can be used. The best-known constraints are
minimum thresholds on support and confidence. The latter is defined conf(X = Y) = sup
(X U Y)/ sup (X) and can be interpreted as an estimate of the probability P(Y|X), i.e., the
probability of finding the RHS of the rule in transactions under the condition that these

transactions also contain the LHS.

Returning to the example, the probability of finding cluster] in a transaction that also
contains the GO3 should 2/3, since clusterl is present in 3 different transactions but only
twice is it accompanied by GO3. This is performed for all clusters and all GO terms,
rapidly increasing of generated rules. Therefore, association rules are required to satisfy

both a minimum support and a minimum confidence constraint at the same time. The
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generated rules should also have a maximum length, including LHS and RHS, depending

on the information to be retrieved.

3.3 Model Validation

In order to validate the model, an updated version of Swiss-Prot, will be retrieved. Again,
only proteins whose annotation contain any of the experimental evidence codes will be
used. Subsequently, the new relevant entries will be run on PSI-BLAST. Afterwards, each
protein position will be allocated, by Euclidean distance, to the previously calculated k-
means clusters. Posteriorly, they will be matched to the GO terms previously identified in

the rules resulting from the previous learned data.

For each of the newly selected proteins all GO terms, including ancestral GO terms,
will be retrieved. The latter will be obtained, for each of the terms annotated for each
protein, from Gene Ontology Database, using an altered version of the program [49]
available at Annex 2. For each GO term it will be determined: i) the number of the selected
proteins annotated with it - Positives; ii) the remaining number of proteins not annotated
to it — Negatives; iii) the number of proteins inferred to it — Inferred Positives; iv) the
number of proteins inferred to it, excluding the true positives - False Positives; iv) the
number of false positives, excluding the inferred ones — True Positives; v) different between
the positives and the true positives — False Negatives; and vi) the negatives minus de false
positives. From these counts, recall (TP/(TP+FN)), precision (TP/IP) and F1 score -
2*(recall * precision/(recall + precision)) metrics are also calculated as well as Matthews

correlation coefficient (MCC) for each GO term. The latter is given by

TP xTN — FP x FN
V(TP +FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

The MCC is in essence a correlation coefficient between the observed and predicted binary
classifications; it returns a value between -1 and +1. A coeflicient of +1 represents a perfect
prediction, 0 no better than random prediction and -1 indicates total disagreement

between prediction and observation.
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4 Proof of Concept

Initially, because this project was expected to be extremely strenuous in terms of computer
processing, the previously described model was implemented over a small sample of
proteins. This will also allow to i) understand if the model is indeed viable, ii) identify
limitations of the method that are, otherwise, unpredictable and adapt to them, if possible
at this stage and iii) define a set of parameters for the algorithms being used to train the

model.
4.1 Data retrieval and processing

For this purpose, a set of 360 protein sequences in FASTA format were downloaded from
Swiss-Prot/UniProt, 240 of which belong to the E.C. 1.1.1.1 family and 120 belonging to
the E.C. 1.1.1.38 family. PSI-BLAST, from the ncbi-blast-2.2.30+ suit, was executed over
cach of the sequences using Swiss-Prot (uniprot_sprot.fasta) as Blast database; a cutoff E-
value of 0.01 was used to select the PSI-BLAST’s training sequences; the process ceased
once no more new sequences were added to the training sequences or else until it reached

21 iterations.

The resulting outputs where then processed in order to obtain a PSSM, describing the
probability of each position of each protein having a determined amino acid in it. For this
purpose the program at Annex 1 was used. Resulting matrix contains log-odds, these were
then transformed into exponential probabilities, to better distinguish between them, and
summed by position in the protein, i. e., each element in the probability vector for each

amino acid was summed.
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4.2 k-means

4.2.1 k selection

In order to select the number of centroids with which to start the k-means algorithm several
k-means, with Hartigan-Wong implementation (by default), were run, in R, varying the
number of centroids between 1 and 200, with a step of 5, until the within groups sum of

squares did not vary.

Several thresholds were established, ranging from 100 to 5000 in order to understand
which would be an optimal threshold to select relevant PAFPs to be further analyzed. The
k-means algorithm was then run with 65 centroids and the Hartigan-Wong

implementation. This was all carried out in R.

4.2.2 Verifying cluster coherence

k-means starts, despite the seeding algorithm, by selecting random PAFPSs from the data
set as initial centroids. As previously mentioned, depending on the seeding algorithm this
might be completely random or pseudo-random, in the sense that the data can be
previously compartmentalized and the initial centroids selected from each of these
compartments, in a way that guaranties maximum distance among them. Nevertheless,
because this process is essentially random, every time k-means is run the initial centroid are
different as well the numbering attributed to the clusters, because the latter is done
according to the initial centroid selection. To understand if throughout the iterations the
PAFPs are assigned coherently to the initial centroids through various k-means runs,
despite the randomly selected initial centroids and their numbering, a 100 different k-
means were run over the data, with the Hartigan-Wong algorithm. In order to have an
intersection control value, the following procedure was also applied to 10 k-means,

generated from random values. For each cluster in each pair of k-means an intersection
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value was obtained, in an attempt to identify the most similar k-means, generating a matrix
of 65 by 65 clusters; in total 4950 of these matrixes. For each of this matrixes an altered
Hungarian algorithm was executed in order to obtain the highest intersection value
between clusters, i. e., the highest the intersection value the more similar two k-means are,

despite the numbering of the clusters.

The Hungarian algorithm, also known as the Kuhn-Munkres algorithm, is a
combinatorial optimization algorithm that solves the assignment problem in polynomial
time. This algorithm is based on the following theorem: If a number is added to or
subtracted from all of the entries of any one row or column of a cost matrix, then an
optimal assignment for the resulting cost matrix is also an optimal assignment for the

original cost matrix [50,51].

As previously mentioned, for the purpose of this project, it was necessary to obtain
maximum intersection values for each input matrix, in analogy maximum cost, instead of
minimum cost. Therefore, the numbers in the input matrix were reversed and the same

algorithm was run over the data.

4.3 Results

Initially, 360 proteins, 240 from the EC 1.1.1.1 and 120 from EC 1.1.1.38 families, were
randomly selected. Moreover, they were also selected at random from a wide range of
species within the mentioned families. Hence, providing proteins with very similar
sequences within each family but diverse sequences between the two families. This along

with inclusion of several species is expected to widen the scope of the learning algorithm.

As expected, running PSI-BLAST on an Intel Core duo CPU P8600 @ 2.40GHz with
3 GB ram, was a rather time consuming, yet not computational heavy. Each protein took

on average 5 minutes to process. The selected proteins have a total of 150070 amino acids.

At this point, several k-means were run with a varying k values in order to determine
optimal number of clusters. However the results were rather incoherent and the algorithm

did not converge. In order to surpass this problem a rationale was established: not every
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position in a protein is highly relevant to its structure and/or function. By observing the
matrixes originated from the PSI-BLASTS this is quite conspicuous; on one hand, certain
protein positions are highly conserved, therefore only specific amino acids are permitted at
that position, having very high probabilistic values when compared to the remaining amino
acids. On the other hand, positions that are not relevant have quite indistinguishable low
probabilistic values for whichever amino acid, meaning that in that position any amino acid
is acceptable, for it will have little impact on the proteins’ structure and/or function. For

this reason these PAFPs were excluded from further analysis.

As to understand which would be the adequate probabilistic threshold, that would
distinguish between relevant and none relevant positions, several were established and the

number positions and information in those positions was evaluated.

Table 3 — Evaluated thresholds and corresponding number of selected PAFDs.

Threshold values # Selected PAFPs
5000 457
500 2404
400 3486
300 3928
250 3972
200 4310
100 5707

The 5000 threshold was too strict: only PAFPs that included scores higher than 8 were
selected with this value, hence skewing the data and dismissing several potential PAFPs,

whose relevance to the study, at this point, was not understood.
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4.3.1 k-means

Having figured out which range of thresholds would be adequate to carry out the study, it
then became possible to determine the k value. This, was selected once the within groups

sum of squares did not vary, this was verified for k = 65 for the every threshold.

Despite the stabilization of the within groups sum of squares, the k-means results
could not be checked across the various thresholds, since the algorithm starts with random
k vectors every run, which means that a cluster named 32 in one run can actually be named
1 in the next. To address this issue, a 100 k-means were run over the whole data (no
threshold was applied) with k = 65 and another 10 were run over similarly structured but
random data. Both these data were treated as having the same common origin. Each cluster
of each k-means was then compared with remaining clusters of each remaining k-means,
generating for each pair of k-means a matrix of intersections among clusters. Over the
latter, an altered Hungarian algorithm was run in search of maximum overlap/intersection
between clusters, i. e. matching the clusters across the k-means, so that that it would be
possible to verify the closest matches between the generated clusters. Because this process
was executed over the total data and the number of PAFPs amounted to 27624 altogether.
It was expected that among the 100 k-means of real data the Hungarian output would sum
up to values close to the number of PAFPs when in comparison to the random data, that
would generate much lower values. In fact, it was verified that for the real data the values
were between 19000 and 22000. In contrast, the values for the random data never exceeded
the value 800. Meaning that despite the first step of k-means being random and potentially
generating different results for each run, it is safe to say that it is fairly coherent.
Furthermore, one must keep in mind that this experiment was carried out with all the data,
none of the least conserved positions were discarded at this point, contributing with a lot of
irrelevant PAFPs and even so the results were reasonably coherent. This essay was not
repeated for the thresholds previously mentioned due to its high time consumption.
However, this is not detrimental to the study since even with all the data, coherence was

verified.
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4.3.2 Association rule learning

At this point, because this was merely a proof of concept and in order to understand if the
rationale was indeed correct and the project should continue to be carried out as previously
envisioned, only the 500 threshold was run for the posterior phase. The resulting PAFPs
were allocated to each of the 65 centroids, making it possible to create a sparse matrix that
contained each protein (line) and the clusters (column) that represent it, i. e., if a
determined protein is represented by a cluster that intersection has a non-zero value. This
data was then introduced into the a priori rule association algorithm — R’s arules package,
having the protein’s name and family (either EC 1.1.1.1 or EC 1.1.1.38) as right hand side
of the rules and the latter matrix as left hand side rules; keeping the length of the rules at a

maximum of 3; a maximum support of 30% and a minimum confidence of 80%.

The resulting rules were in fact able to distinguish between the two families, however
due to the small number of proteins used for training, the results had very little relevance.
On the other hand, the model used did produce expected discerning of protein
characteristics, i. e. certain clusters number were only present in one of the families and
absent in the other. Other not so flagrant presences and absence of clusters are also

verifiable.
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5 Results and Discussion

5.1 Data Retrieval and Processing

Once the concept was corroborated by the data, a larger training set was also retrieved from
Swiss-Prot. From the 547357 protein sequences in Swiss-Prot, release 2015_07 on
February 2015, the ones annotated with any of the experimental evidence codes: Inferred
from Experiment — EXP, Inferred from Direct Assay - IDA, Inferred from Physical
Interaction — IPI, Inferred from Mutant Phenotype — IMP, Inferred from Genetic
Interaction — IGI and Inferred from Expression Pattern — IEP, were kept has training set.
Approximately a tenth of the proteins contained in Swiss-Prot - 57047 proteins were

selected to be used as training set.

The decision to use proteins annotated with experimental evidence codes is due to fact
that for over two decades, now, the majority of sequences found in public data bases have
been annotated using computational prediction methods alone, which raises awareness for

annotation accuracy and database quality.

PSI-BLAST were then run for the aforementioned protein sequences on a server with
CentOs, version 5.11, 8 Gb of RAM and a Intel “Xeon E5630 2.53Ghz processor. And as
described previously, the resulting PSSM outputs where then processed (Annex 1) in order
to obtain a matrix of probabilities. Again, several thresholds were established, this time

ranging between 100 and 500 with a step of a 100, to eliminate negligible PAFDs.

As previously mentioned this work aims to establish a relation between located amino
acid probability patterns within proteins and their functions. Therefore, in order to
generate a training model to conceptually prove the hypothesis, GO terms for the relevant
proteins were also retrieved from Swiss-Prot. Analogously to the proof of concept, ancestral
terms for each of the terms annotated for each protein were also obtained from Gene

Ontology Database, using an altered version of the program [49] available at Annex 2.
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5.2 Protein data and annotation

The retrieved proteins were annotated with a total of 22793 distinct GO terms. Afterwards,
ancestral terms were also obtained and the GO terms’ count increased to 26762.

The GO terms obtained directly from the annotations (for the sake of simplicity,
henceforth designated originals) were not leaf terms, some were constant in many proteins’
annotations. The most frequent terms refer to cellular location; being nucleus, cytoplasm
and integral membrane component the highest rating ones; over 10000 proteins contain
these annotations. However, it is important to keep in mind that no information over the
evidence code of that GO term is taken into consideration in this model.

On the other end of the spectrum (not shown), there were 10372 GO terms that
were represented by less than five proteins and 3840 represented by only one protein.

These terms are in general in closer to leaf level, hence richer in detail content.

For the ancestral terms, retrieved in association with the previous 22793 terms, the
most frequent terms are biological_process, cellular_component, representing above 50000
proteins; molecular_function only appears in forth position, below cell part. According to a
critical assessment of protein function annotation [52], for the existing available tools, there
is a substantial difference in the ability to predict the two GO categories: molecular
function versus biological process. This is can be partly explained by the fact that biological
process has a larger number of terms, branching factor, maximum depth and number of
leaf terms, than the molecular function category. Therefore, the former is more represented
than the latter in data sets used to train the models, it would not surprising then that the

model here proposed suffers from the same bias.

On the other side of the spectrum, 9460 GO ancestral terms represent less than five
proteins and 3427 GO terms represent one single protein. In comparison, with the
homologous results for the original GO terms only, it is visible a decrease in the number of
proteins represented. Moreover, from 3840 proteins with original terms and the 3427

ancestral terms, only 2886 are the same.
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5.3 PSI-BLAST

When PSI-BLAST was run over the sequences, surprisingly 169 of these did not generate
any output, essentially because no distant homolog relatives exist in the Swiss-Prot

database. Thus, the rest of the learning process was carried out with 56878 sequences.

Despite the PSI-BLAST process being run on much powerful machines than the one
used for the proof of concept, it was still a very time consuming process; the all process
took up approximately 3 months, even though the sequences were processed in parallel.
Had they been run without parallelism on a single machine, the process would have taken

approximately 10 months.

5.4 k-means and arules

Due to the amount of data being processed it was not feasible to use R, due to its memory
limitations. The k-means algorithm was then implemented, using a Forgy initialization
method, in Python 2.7, where the first 65 k vectors were randomly selected throughout the
data. This implementation of k-means was run for all 5 thresholds, maintaining 65

centroids, until it converged.

Contrary to R, instead of loading all the information to the machine’s memory, in
Python the calculations were done in segments, defined by the proteins’ length; such is the

case of the located PAFPs selection for each of the previously established thresholds.

As stated, the seeding process was done according to the Forgy method, i. e., the initial
vectors were chosen at random, and the new centroids were calculated through the
Euclidean distances to the previous centroids. This was preferred over the Hartigan-Wong
algorithm for its simplicity and swiftness of implementation. Since it was previously verified
that the data was quite coherent, it is inferable that the difference in seeding process should

have little impact on the outcome.
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From this point onwards all thresholds were run both in k-means and arules. The a
priori algorithm from arules package was run over the data, establishing association rules
between the clusters summarizing the located patterns (LHS) and GO terms (RHS). A
combination of various parameters were tested: i) maximum length of the rules generated
was kept at 4; ii) the minimum support, varying between 0.05 and 0.0005 and iii) an
interval from 90 to 70% of minimum confidence; for the thresholds of 500 and 300, the
length of the rules generated was widened to a maximum length of 5 and the confidence
was lowered even further to 40%, with a step of 10. All possible combinations of the three

referred parameters were executed.

Because ancestral GO terms were also included in this analysis, many of the resulting
association rules where referent to them, hence limiting the scope of the project. Therefore,
in order to obtain rules regarding the lower level GO terms, the eighteen highly recurring

ancestral GO terms, were removed from the analysis.

The most stringent threshold (T500) selected approximately 4 million PAEPs, as for
the least restricting threshold (1T100) selected about 15.3 million PAFPs. The T400, T300
and T200 generated between 7 million and 9 million PAFPs. The abrupt increase in PAFPs
between the T200 and T100 is rather conspicuous, implying that last threshold is too lax
and is including too many PAFPs of little relevance, i. e., that it is unimportant for
function whichever amino acid is found at that position. Nevertheless, all combinations of

the previously mentioned arules/a priori algorithm parameters were tested.

Table 4 — Summary of the number of selected proteins and PAFPs for each of the
thresholds.

T500 T400 1300 T200 T100

#selectedProts 56856 56877 56877 56877 56878
#selectedPAFPs 4 006 821 7 044 490 7 382 181 8929717 15278 788

Keeping the support at a2 minimum of 5.0% and varying the confidence between 90%

and 80% generated no rules for most of the thresholds. For confidence levels of 75% to
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70% a reasonable amount of rules, approximately between 300 and 800 from T500 to the
T100, were generated but only 15 GO terms were actually referenced (Tab. 4), even
posterior to the removal of the 18 most incident and ancestral ones. As expected, these were
the same across the 5 thresholds. However, since this GO terms were closer to leaf level

they were not removed, as they could be significant to understand protein function.

Table 5 — Resulting 15 GO terms from the arules with a minimum support of 0.05 at 70%

confidence.

Id Name supp  conf Id name supp  conf
GO:0043168  anion binding 0.073  0.70 | GO:0001883  purine nucleoside binding 0.058 0.72
GO:0044238  primary metabolic process 0.092 0.72 | GO:0032549  ribonucleoside binding 0.059 0.74
GO:0035639  purine ribonucleoside  0.059  0.72 | GO:0032555  purine ribonucleotide binding 0.057 0.72

triphosphate binding
GO:0097367  carbohydrate derivative binding  0.060  0.72 | GO:0017076  purine nucleotide binding 0.059 0.73
GO:0000166  nucleotide binding 0.070  0.70 | GO:0032550  purine ribonucleoside binding 0.059 0.73
GO:0036094  small molecule binding 0.071  0.70 | GO:1901265  nucleoside phosphate binding 0.069 0.70
GO:0032553  ribonucleotide binding 0.059 0.74 | GO:0001882  nucleoside binding 0.059 0.74
GO:0065007  biological regulation 0.052  0.70

Note: by order of occurrence in a priori algorithm output, no sort was applied.

Lowering the support, to 0.005, and testing for the same interval of confidence did
increase the number of rules generated but did not significantly improve the amount GO
terms identified. For the three highest thresholds, within the confidence interval of 90-
80%, the number of rules was significantly lower in comparison when the confidence is
dropped to 75-70%. And again, the identified GOs coincide with the above specified. At
the 70-75% several new GOs are identified, nevertheless the number of GOs is still quite
low, narrowing the scope of the learning model. For the two lowest thresholds, the 90-80%
confidence interval generates no rules at all, this is very likely due to the amount of
uninteresting PAFPs still included in the data, lowering significantly the support and

confidence for the relevant PAFDPs.
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In an attempt to circumvent the aforementioned issues, the minimum support level
was again lowered to 0.05% with the same range of confidence values. At this support level,
and for the T500, T400 and T300, with 90-80% confidence there was slight increase in
the rules generated and identified GOs as the confidence is decreased. However, at lower
confidence levels, 75-70%, a significant increase in the rules generated was verified, this is
true for the identified GOs as well. Identifying approximately double the GO terms
identified at the support of 0.5% with the 70% confidence level. This was not the case for
the lowest thresholds T200 and T100. Indeed it is verifiable an increase both in rules and
GO terms identified, however this is not comparable to the results obtained for the highest
thresholds. The same pattern is verifiable: at 90-80% confidence the rules generated and
GO terms identified are in number equal to the obtained with the 0.005 support
(corresponding to approximately 30 proteins) and 75-70% confidence. Again at lower

support levels the number of rules increase and the GO terms duplicate.
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Figure 5 — Logarithmic representation of the number of resulting rules for thresholds
500, 400, 300, 200 and a 100, at a support of 0.0005 (=30 proteins) and confidence
ranging between 90 and 40% and a maximum rule length of 4; except for the T300, where
maximum length of 5 is also represented.
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Figure 6 - Logarithmic representation of the number of rule-found GO terms for
thresholds 500, 400, 300, 200 and a 100, at a support of 0.0005 (=30 proteins) and
confidence ranging between 90 and 40% and a maximum rule length of 4; except for the

T300, where maximum length of 5 is also represented.

Notwithstanding, the number GO terms identified by this combination of parameters
are in the tens, in contrast to the numbers of GO terms identified with the same
combination of parameters for the higher thresholds, which in the hundreds. As previously
mentioned, this is very likely due to the PAFPs that are not well conserved and are included

in the data at this thresholds.

Overall, T300 generated the largest number of relevant GO terms independently of
support and confidence. Nevertheless, 124 identified GOs, remains a very low number
when compared with the number GO terms with a support of 0,05%, i. e., when
compared with the number GO terms that are contained in the annotation of at least 30

proteins, considering the 57047 proteins in the training set.
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Table 6 — Summary table of conditions tested in arules and outputs.

T500 T400 T300 T200 T100
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0.75 13 5 50 14 24 5

5107
10295
20297

0.5 1,10E+7 230

04 | 5532000 252 5,00E+6 280

Note: grey shaded cells refer to rules with a maximum length of 4 and the blue shaded

cell refer to rules with a maximum length of 5.

In order to understand if this results could be surpassed a compromise in terms of
confidence was made. The latter was lowered to 40% in steps of 10%. Predictably, the
number of rules generated increases inversely to the confidence level and so does the
number of identified GOs. However, the number of rules generated is within the tens of

thousands and the number of identified GOs reaches a maximum at 280 GOs.
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By analysing the results, the T300 is least strict threshold that manages to exclude the
highest number irrelevant PAFPs. Also, T300 includes PAFPs from all the proteins in the
training set except for one (Tab. 5), this avoids restraining the model at this step, allowing a
wider basis for the learning process. Therefore, this was the threshold selected for model

validation.

Crosschecking the generated rules selected to train the model, with the clusters, it is
verifiable that not all clusters are significant. The 280 rules generated had several
combinations of the clusters, ranging from one GO term identified by one cluster to one
GO term identified by 4 clusters (Annex 4). However, and despite being the vast majority,
only some clusters were used to generate rules, clusters 7, 12, 20, 28, 30, 33, 47, 50 are

missing, this represents they were not used in any rules.

Table 7 — Number of proteins contained in the clusters not used for rule association in
comparison with some clusters, selected at random, from the ones used for rule association.

Unused clusters some used Clusters
cluster  #proteins cluster #proteins

7 31566 1 30869
12 19035 22 10460
20 12399 24 16420
28 52254 35 15587
30 42627 45 42039
33 40175 64 11944
47 40614

50 26104

Out of the 65 predefined k clusters, only 57 of them generate rules for the set of
parameters tested. It is interesting, to verify that despite not contributing to generate rules,
these centroids coordinates were calculated from several PAFPs, hence proteins (Tab. 7).
One could argue that they were not used to generate rules either because many proteins did

not contain those clusters or because many proteins did contain those clusters, however by
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comparing with the second half of table 7, one can verify that is not the case, the unused

clusters have a similar occurrence in proteins to the used ones.

Due to time constraints the k-means with this parameter alteration were not run again.
Notwithstanding, it would be interesting to verify if the resulting rules were identical, or if
the lines spread through the remaining 8 clusters, that would then have to be spread across

the 57, would change the average of the cluster vectors, resulting in different rules.

5.5 Validation

A superficial analysis, indicates that the 280 GO terms selected by the T300 with a
support of 0.05%, and a confidence of 40% are used in the annotation of 516,591 proteins
out of 549,008, the current number of proteins contained in Swiss-Prot’s release 2015_08.
It is noteworthy that 28,530 of these proteins have no attributed GO terms in their
annotation. Translating into a total of 3887 proteins that are not annotated with any of
these GO terms. This indicates that the 280 identified GO terms are not leaf level on the
GO tree, but higher level GO terms. There are 13 GO terms with a level of 1, with
information content circa 8.5, and only 6 GO terms shared among level 9 and 10 with an
information content circa of 11 (Annex 7), incidentally the lower terms are the least

represented in Swiss-Prot, with only 0.3 to 1% of the proteins containing this annotation.

In order to further validate the model, proteins” sequence whose annotation contained
any of the aforementioned experimental evidence codes were retrieved, as well as, their GO
terms and ancestral, as previously described. The previous 57047 relevant proteins were

subtracted from the 59145 newly retrieved ones.

Removing the proteins previously used as training set 57047 (56878+169), from the
59145 proteins, resulted in 2591 proteins to constitute the validation set. However, this
result is rather odd, since difference between the two sets should result in 2098 proteins,
not 2591; there is an excess of 493 proteins. In order to understand these results the
proteins in the training set were crosschecked with the newly retrieved ones and, where in

fact, there should be 57047 proteins common to both sets, there is only 56554. By
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subtracting the latter from the training set, it is then possible to identify these 493 odd

proteins and justify the discrepancy.

The selection of the training and validation set was done using the following regular

expression was used (code snippet at Annex 5):
("¥EXP:.*| XIDA:*| IPL.*| X IMP:.*| XIGL:*| *TEDP:.*)

each of the terms within parenthesis corresponding to experimental evidence codes. Hence,
as previously described, it would be enough for a protein to have a single one of these codes
to be selected. Analysing the Swiss-Prot release 2015_07, 57047 proteins had at least one of
these terms in its annotation; analyzing the Swiss-Prot release 2015_08, 59145 proteins had
at least one of these terms. However, 493 of the proteins selected in the training set had
their annotations changed and proteins that once, in the 7% release, had at least GO term
annotated with an experimental evidence code, no longer had, in the 8" release; this is true

for both the GO term as well as for the experimental annotation (annex 9).

Nevertheless, the newly found 2591 proteins were treated as previously described: i) a
PSSM was obtained for each; ii) the PAFPs were exponentiated to better distinguish them,
iii) a threshold of 300 was applied to each of the proteins selecting the interesting PAFPs;
iv) each protein position is then attributed to the previous calculated clusters (Annex 3), by
Euclidean distance. Posteriorly, they were matched to the GO terms previously identified

and to the rules resulting from the previous learned data.

Similarly to the training set, not every protein generated a PSSM, but in this case only
one protein did not generate a PSSM for lack of identifiable distant relatives. A total of

2590 PSSMs were obtained. The model managed to allocate the 2590 proteins to the 57

clusters based on the previously established rules.

So far, in this project, it has not been considered to differentiate between molecular
functions, biological process or cellular component (the GOC function defining
categories), this is, mainly, because the method aimed to include as much information
about the proteins’ function as possible, and, has stated previously, function is described by
these categories. Nevertheless, it seems this approach might have been too eager; by not

developing a GOC-category-specific GO term algorithm, conservation patterns that might
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more directly match one of these GOC-category-specific GO term, might be lost in the
process, i. e. a cluster that might accurately describes a GO term from one of the categories,
to instantiate: a cluster that accurately describes the biological process category GO term,
might in the method here used be clustered to a wider group, because all categories are

clustered together, preventing the identification of that GOC-category-specific GO term.

Also, according to the algorithm here used, it would be enough for one protein to be
selected if only one evidence code was established experimentally, independently of the GO
term that had been annotated with that evidence term. This represents that some proteins
were annotated with GO terms other than the ones experimentally established. In other
words, even if a protein only has one single experimentally annotated GO term and has
several others with evidence codes of electronic inference, the protein would still be selected
for the training set. In this way, the model inference capability is further degraded, because
some of the annotations might indeed be erroneous since they are not experimentally
annotated in full. Also, because no difference between these annotations is made, i. e., no
weight is set for experimental and non-experimental annotated GO terms; and because
arules is parameterized with confidence and support levels, the rules are generated with
both in an undifferentiated manner. These electronical annotated GO terms skews the

confidence and support values for the rules, requiring these parameters to be lowered.

Considering the number of ancestral GO terms included in the training set, it is
expectable for these to be more frequent the more proteins they represent, they will
therefore contribute with very little relevant information but because they are so frequent
most of the rules with higher support will be referent to these. To diminish this effect, the
higher recurrent terms were removed, however, the prevalence of rules with ancestral GO
terms, is not expected to have been completely eliminated. In other words, it is expectable
that the rules with higher confidence and support levels be referent to ancestral GO terms
higher in the GO tree. This is the reason why lowering the parameters enables finding rules
with GO terms not included in the more rules generated with higher percentages of

support.

After obtaining for each GO term the relevant classification statistics (Positives,

Negatives, Inferred Positives, False Positives, True Positives, False Negatives, True
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Negatives, recall, precision and F1 score as well as MCC - tab. 8, 9 and annex 8), it is
evident that the model hardly ever infers exactly the same number of proteins to each GO

term as the ones truly annotated to it.

In some situations, the model infers more proteins to a GO term than the ones
annotated to it, resulting in high counts of false positives (tab. 9); in others, it infers less
proteins than the ones annotated to a GO term, resulting in high counts of false negatives.
Some of the worst situations: term GO:0016866 [intramolecular transferase activity]
(annex 8) where all the proteins inferred with the GO term by the model were not
annotated to it; another example is GO:0048869 [cellular developmental process], where
only 3 proteins, out of hundreds effectively annotated to the term, were inferred. In such
cases, it is not possible to obtain neither recall nor precision or F1 values, since there are no
true positives and these metrics are calculated upon this value; expectedly, the MCC has
values slightly lower than zero, implying there is not a positive correlation between
inference and truth values, in other words, the model results are indistinguishable from a
random estimation. There are other cases where the model had no discriminatory
capability, for instance the term GO:0031559, where all proteins were inferred to the term.
In this situations (tab. 8, fig. 7), recall values are generally high, while precision values are
lower, this is due to the fact that all existing proteins are inferred to the GO term,
contributing to the high recall values, but since half of them are erroneously inferred, the
precision values are lower. It is also, noticeable that F1 values vary proportionally to the
number of inferred proteins. Furthermore, it is noteworthy that this GO term, and the
remaining ones where this oocurs, are indeed very common in the Swiss-Prot annotations
of the 2590 validation proteins, suggesting these are ancestral terms, which contribute with
very little relevant information. Crosschecking with the information on annex 7, it is visible

that these GO terms have very high level and low information content.
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Table 8 — GO terms with the lowest MCC.

GO term P N IP FP TP FN TN Recall Prec F1 MCC

GO:0006807 680 1910 1667 1207 460 220 703 0,676 0,276 0,392 0,0401

GO:0016020 798 1792 1874 1275 599 199 517 0,751 0,32 0,449 0,040

GO:0044422 837 1753 1558 1033 525 312 720 0,627 0,337 0,438 0,036

GO:0043170 800 1790 1876 1297 579 221 493 0,724 0,309 0,433 -0,001

GO:0044260 740 1850 1623 1160 463 277 690 0,626 0,285 0,392 -0,001

GO:0050789 1165 1425 2583 1422 1161 4 3 0,997 0449 0,619 -0,013

GO:0050794 1075 1515 2542 1494 1048 27 21 0,975 0,412 0,579  -0,041
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Figure 7 — Model evaluation in terms of F1 score and positives.

Notwithstanding, by selecting the highest F1 along with the highest MCC values it is
possible to identify the GO terms that indeed grant inference capability to the model (tab.
9); these are more specific GO terms that contribute with more meaningful information for
function annotation, it is verifiable that the recall values are rather high as well as the MCC
values. On the other hand, the precision values are somewhat low. To instatiate:
GO:0005231 [excitatory extracellular ligand-gated ion channel activity] and GO:0009069
[serine family amino acid metabolic process] (tab. 9) correspond to the highest information

content values described at annex 7 and are represented by a small amount of Swiss-Prot
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proteins; nevertheless, the model managed to infer proteins correctly to these go terms with

high recall values and moderate precision, resulting in high F1 and MCC values.

Table 9 — GO terms with the highest F1 scores and Matthews’ correlation coefficient, in
decreasing order of MCC.

GO term p N IP FP TP FN TN  Recall Prec F1 MCC
GO:0005506 29 2561 86 64 22 7 2497 0,759 0,256 0,383 0,431
GO:0020037 34 2556 88 65 23 11 2491 0,676 0,261 0,377 0,409
GO:0005231 2586 6 4 2 2 2582 0,5 0,333 0,4 0,407
GO:0009069 2586 7 5 2 2 2581 0,5 0,286 0,364 0,377
GO:0004930 51 2539 171 134 37 14 2405 0,725 0,216 0,333 0,376
GO:0046906 41 2549 88 65 23 18 2484 0,561 0,261 0,356 0,369
GO:0004713 6 2584 42 37 5 1 2547 0833 0,119 0,208 0,312
GO:0004888 86 2504 388 328 60 26 2176 0,698 0,155 0,254 0,285
GO:0005230 8 2582 25 21 4 4 25061 0,5 0,16 0,242 0,279

These results strongly suggest that the proposed approach was able to find relevant
terms, even when the number of positives is very low, which makes the problem very
difficult. Low precision values imply that several false positives are being found, however
due to the incompleteness of most annotations, it is difficult to assess the importance of this

statistic.

Assessing protein function annotation is complicated by the complex nature of protein
function, it is likely, that functional annotations do not fully describe a protein’s function
[10]. Annotations can be too general, in some cases proteins are annotated with a general
GO term when a more specific GO term better describes its function. Some proteins,
especially the multi-domain ones, may also have more functions than those they are
annotated with. It is, therefore, plausible to consider that predictions are more specific than
the existing annotations and even those which are apparently completely different from
existing annotations might actually be correct. Furthermore, as previously mentioned, the
model is trained with annotations that include some GO terms with non-experimental

evidence codes, if any of these is incorrectly annotated, which is likely [53] , then the model
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might be skewed. For example, the controversial protein E1V4Y0 that was, until 2010,
annotated, by electronic inference, with galactonate dehydratase, when in fact its sequence
similarity score is well below the cutoff trusted for proteins of that family, in fact by
sequence similarity alone the protein should have been annotated with gluconate
dehydratase (GO:0047929); only, after experimental validation was the protein annotated
as such. It is noteworthy, that despite being annotated experimentally as gluconate
dehydratase, its record name, in Swiss-Prot, remains associated to the galactonate
dehydratase (GO:0008869) family. Moreover, in the same Swiss-Prot annotation where the
above information can be found, in the subsection Function it is stated that this protein has
low dehydratase activity both with D-mannonate (GO:0008927) and D-gluconate
(GO:0047929), it has no significant role in the in vivo degradation of these compounds
and has no detectable activity with a panel of 70 other acid sugars (in vitro) [54].
Evidencing that experimental validation previously obtained is not a 100 % reliable. Other

examples are evidenced by [53].

Furthermore, the fact that the Swiss-Prot, the gold standard for protein annotation, is
not static in relation to the annotation content, it makes it quite difficult to truly
understand the extent of the error of the model. For example, the set of 493 proteins of the
56878, that were used as training set of this model, retrieved from an older release of Swiss-
Prot, which upon validation of the model, with a more recent release of Swiss-Prot, ceased
having at least one experimentally annotated GO term and being annotated with several
different electronically inferred GO terms, some of this proteins and their GO terms can be
found at annex 9, they were not all included in this document because it would be an

overwhelming amount of information, instead a few representative examples are shown.
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6 Concluding Remarks

The model here proposed for automatic protein annotation using positional amino acid
frequency patterns, does manage to identify GO terms for protein annotation with high
recall values, but not equivalent precision. As with most protein annotation methods, these
values are not perfect. Also, from the 7271 GO terms annotated to 30 or less proteins, the
model only managed to identify 280. Despite, falling short of what was expected, the
results strongly suggest that the existence of certain PAFPs within proteins may be
important for their function. It is also interesting that the strongest signal was found on
terms for which the positive ratio is very low, which are typically very difficult classification
problems. Results strongly suggest that it may be possible to find annotation clues by
looking on amino acids substitution patterns alone. The results however were not perfect

and more work will certainly be required to further validate the initial findings.

To circumvent the multilabel classification limitation, some groups [9,10] have
described methods where the models are trained separately for each of the GO terms
specific families, i. e., after selecting the proteins experimentally annotated, these are
separated into groups according to their GO term annotations. Afterwards, they are aligned
and the resulting functional subalignment is used to construct PSSMs. It would be
interesting, in the future, to take an identical approach. Especially, because it may allow to
predict functions that would otherwise be lost, for instance, by identifying a molecular
function GO term, one might be able to infer, in an unrelated manner, the cellular
component where the said protein could be found. This sort of information is valuable
when attempting to design a wet lab experiment, diminishing the number of possible paths
to procure, by indicating a more likely route; if not invalidating some, at least enabling a

sort of hierarchy when establishing what to experiment first.

Also, it would be interesting to take into account, that some of the GO terms included
were not all experimentally annotated and understand to what extent they influence the
model. These could be considered in the model by incorporating a weight system, where

the experimentally annotated would have higher weight than the non-experimental. Also,
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quality analysis could be carried out with two different sets of data: i) only the terms
experimentally annotated, ii) with the electronic annotated terms. This analysis would also
allow to understand if the data set could be enriched by including the latter, widening the
support range of the model. Previously, it has been demonstrated that using more extensive
electronic annotations results in improved precision compared to a set of non-electronic

annotations [10].
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Annex 1 - Pssmreader.py

import os

def read asn(fname) :

## 0|-1|Gap

## 1|A|Alanine

#4 2|B|Asp or Asn

#4 3|C|Cysteine

#4 4|D|Aspartic Acid

#4 5|E|Glutamic Acid

## 6|F|Phenylalanine

## 71G|Glycine

## 8|H|Histidine

## 9|I|Isoleucine

## 10|K|Lysine

## 11|L|Leucine

#4# 12 |M|Methionine

#4 13 |N|Asparagine

## 14|P|Proline

## 15|Q|Glutamine

#4 16|R|Arginine

## 17|S|Serine

#4# 18|T|Threoine

#4# 19|V|Valine

## 20 |W|Tryptophan

## 21|X|Undetermined or atypical

#4 22|Y|Tyrosine

## 231Z|Glu or Gln

#4 24 |U|Selenocysteine

## 25| * | Termination

#4 26|0|Pyrrolysine

#4# 27|J|Leu or Ile
fil = file(fname, "rt")
lins = fil.readlines()

fil.close ()

inscores = False



matrix = []

numCols = 0
numRows = 0
col =0
row = 0

matrix.append([])

#will only use the cols for the 20 amino acids

good cols=[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22]

for lin in lins:
slin=lin.strip()
if inscores==True:
if col in good cols: matrix[-1].append(int(slin[:-1]))
if col<numRows-1: col+=1
else:
col=0
row+=1
if row==numCols:
#print "finished!"
break
matrix.append([])
else:
if slin=="scores {": inscores =True
elif slin[:7]=="numRows":
txt, res=slin.split(" ")
numRows=int (res[:-11])
#print "N rows", numRows
elif slin[:7]=="numColu":
txt, res=slin.split(" ")
numCols=int (res[:-11)
#fprint "N columns", numCols

return matrix

inpath = "ckpsSelectedPsiBlast 56878\\ScorematFiles”
if not os.path.exists (path):

os.makedirs (path)

for fname in os.listdir (path):
if fname.endswith(".ckp"):
print fname

mat = read asn(path + "\\" + fname)



scorematf = " ckpsSelectedPsiBlast 56878\\ScorematFiles\\"
+ fname[0:6] + ".txt"

fil = open(scorematf , "wt")
fil.write("A CDEFGHIKLMNPOQRSTVWY\n")
i=1
for m in mat:
s="%d %$3d" % (i,m[0])
for ¢ in m[1l:]:
s+=" %3d" % c
fil.write(s+"\n")
i+=1

fil.close ()






Annex 2 - GOUtils.py

based on #http://telliott99.blogspot.pt/2010/12/go-gene-ontology.html

import os

import pickle

def load data (fn):
FH = open(fn,'r'")
data = FH.read () .strip()
FH.close ()

return data

def l1loadGODB (fn=None) :
if not fn:
fn = 'db/gene ontology ext.obo'
#fn = 'db/short.txt'
FH = open(fn,'r")
data = FH.read()
FH.close ()
L = data.strip() .split('\n\n")
D = dict ()
for e in L:
if not '[Term]' == e[:6]: continue
lines = e.split('\n")
goD = dict ()
for line in lines[1l:]:
k,v.= line.split(':',1)
v = v.strip()
# easier if they're all lists
if k == 'id':
k = 'go_id'
if k in goD:
goD[k] .append (v)
else:
goD[k] = [vV]
D[goD['go_id'][0]] = goD



return D

def alt id match(D, go id):
for k, v in D.items{():
if 'alt id' in wv:
if go_id in v['alt id']:
match = k

return match

def descend (D, go_id, seen, pairs):
seen.append(go_id)

if go id in D.keys():

goD D[go_id]
else:
goD = alt id match(D, go_ id)
if not 'is a' in goD:
#pairs.append((go_id, 'None'))
return pairs
L = goD['is a']
L = [item.split () [0] for item in L]
for item in L:
pairs.append((go_id, item))
if not item in seen:

descend (D, item, seen, pairs)

return pairs

def show item(D, target):
goD = D[target]
print target
for k in sorted(goD.keys()):
print k
for item in goD[k]:
print ' ' + item[:50],
if len(item) > 50:
print '..'
else:

print

def handle request (D, target,debug=False) :

if debug:

Vi



show_item(D, target)

pairs = list()
seen = list()
pairs = descend(D,target, seen,pairs)
#4 if debug:
#4 print len (pairs)
#4# print len(list (set(pairs)))
#4 for pair in pairs:
#4 for item in pair:
#4 print D[item] ['go id'][0], D[item]['name'][0]
## print '-'*10
#4 print '-'*50

return pairs

def dictGOToProt (dicti, key, value):
if not dictGOProt.has key(key):
dictGOProt[key] = [value]
else:
if value not in dictGOProt[key]:
dictGOProt [key] .append (value)

return dicti

D = 1loadGODB ()

queryGOFolder = "GOsCorrigido 57047 Orig+Ancs\\"
outf = "dictGOProt Orig+Ancs.txt"
output = open (outf, "w")

dictGOProt = {}

for c,fname in enumerate (os.listdir (queryGOFolder)) :
#print str(c+l) + " --> " + str(queryGOFolder + fname)
with open (queryGOFolder+fname, "a+") as f:
content = f.readlines()
f.write ("\n" + "ANCESTRAIS por GOTerm:" + "\n")
for line in content:
target = line.split("; ") [0]
Prot = fname.split(".") [0]
if "GO:" in target:
dictGOToProt (dictGOProt, target, Prot)
#show item(D, target)

pairs = handle request (D, target,debug=False)

vii



f.write(str(target) + " ",)

for t in pairs:
#fprint t
dictGOToProt (dictGOProt, t[0], Prot)
dictGOToProt (dictGOProt, t[l], Prot)
f.write(str(t))

f.write ("\n")

ks = dictGOProt.keys ()
ks.sort ()
for 1 in ks:
output.write(str(i) + " --> " + str(dictGOProt[i]) + "\n")

output.close ()
dictfile = "Object dictGOProt"

with open (dictfile, "wb") as df:

pickle.dump (dictGOProt, df)

viii



Annex 3 - k-means centroid means for the T300, from left to right
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Annex 4 - Resulting rules for T300, minimum of confidence of 40%

and minimum support of 0,0005

clusters conf GO term description #rules w/ hits_spdb
GO
22,3,56 1.000 GO:0004252  serine-type endopeptidase activity 8074 3184
22,3,56 1.000 GO:0070011 peptidase activity, acting on L-amino acid 8689 28392
peptides
22,3,57 1.000 GO:0008236 serine-type peptidase activity 8179 4246
27,41,9 1.000  GO:0000166 nucleotide binding 335780 227918
13,18,25,37 1.000 GO:0016740 transferase activity 100615 119322
22,3,56 1.000  GO:0017171  serine hydrolase activity 8179 4256
27,41,9 1.000  GO:0097367  carbohydrate derivative binding 262375 210010
27,41,9 1.000  GO:0032549 ribonucleoside binding 244932 103294
27,41,9 1.000 GO:0017076 purine nucleotide binding 240097 206028
27,41,9 1.000 GO:0005524 ATP binding 171435 86706
22,3,56 1.000  GO:0016787 hydrolase activity 37554 117856
27,41,9 1.000  GO:0032559 adenyl ribonucleotide binding 172212 87776
27,41,9 1.000  GO:0032555 purine ribonucleotide binding 237491 102681
27,41,9 1.000  GO:0032553 ribonucleotide binding 244265 104903
27,41,9 1.000  GO:0035639 purine ribonucleoside triphosphate binding 235635 101195
22,3,56 1.000  GO:0008233  peptidase activity 8690 18134
39,41,9 1.000 GO:0043168 anion binding 396053 123883
14,22,23,3 1.000  GO:0043169 cation binding 102974 123562
27,419 1.000  GO:0030554  adenyl nucleotide binding 174173 88416
22,3,56 1.000  GO:0004175 endopeptidase activity 8334 9808
27,41,9 1.000 GO:0036094 small molecule binding 380270 234291
27,41,9 1.000 GO:0001883 purine nucleoside binding 236592 102352
27,41,9 1.000 GO:0001882 nucleoside binding 245604 205732
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32,53,56,62
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0.949

0.949

0.949

0.949
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GO:2001141

GO:0009889

GO:0006355

GO:0010556

GO:0051171

GO:0051252

G0O:0031326

GO:2000112

GO:0010468

nucleoside phosphate binding

purine ribonucleoside binding

nucleic acid binding

organelle

regulation of primary metabolic process
regulation of metabolic process

regulation of macromolecule metabolic process
intracellular organelle

DNA binding

regulation of biological process

biological regulation

regulation of cellular process

regulation of cellular metabolic process
macromolecule metabolic process
single-organism metabolic process
oxidoreductase activity

intracellular membrane-bounded organelle
membrane-bounded organelle

regulation of RNA biosynthetic process
regulation of biosynthetic process

regulation of transcription, DNA-templated

regulation of macromolecule biosynthetic process

regulation of nitrogen compound metabolic

process
regulation of RNA metabolic process

regulation of cellular biosynthetic process

regulation of cellular macromolecule biosynthetic

process

regulation of gene expression

335797
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554651
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336799
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metabolic process
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nitrogen compound metabolic process
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small molecule metabolic process

membrane part
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transport
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organic substance transport
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nucleus
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oxoacid metabolic process

organic acid metabolic process

carboxylic acid metabolic process

organic cyclic compound metabolic process
heterocycle metabolic process
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process

cellular aromatic compound metabolic process
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transmembrane transporter activity
extracellular ligand-gated ion channel activity
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ligand-gated ion channel activity
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substrate-specific  transmembrane

activity

transporter activity

ion channel activity

gated channel activity

ion transmembrane transporter activity
substrate-specific channel activity
ligand-gated channel activity

channel activity

passive transmembrane transporter activity
RNA metabolic process

organic cyclic compound biosynthetic process
cellular biosynthetic process

aromatic compound biosynthetic process
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nucleic acid-templated transcription

organic substance biosynthetic process

nucleobase-containing compound biosynthetic

process

cellular nitrogen compound biosynthetic process

transcription, DNA-templated

RNA biosynthetic process

cellular macromolecule biosynthetic process
biosynthetic process

macromolecule biosynthetic process
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guanyl ribonucleotide binding

guanyl nucleotide binding

plasma membrane part

transporter

2259

2479

1099
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G0O:0050660

GO:0006357

GO:0046907
GO:0010628

GO:0008610

cellular lipid metabolic process

zinc ion binding

GTPase activity

coenzyme binding

extracellular region

negative regulation of RNA metabolic process
negative regulation of biosynthetic process
macromolecule

negative regulation of

biosynthetic process

negative regulation of nucleic acid-templated

transcription

negative regulation of cellular biosynthetic

process
negative regulation of cellular metabolic process

negative regulation of cellular macromolecule

biosynthetic process

negative regulation of nucleobase-containing

compound metabolic process
negative regulation of RNA biosynthetic process
negative compound

regulation of nitrogen

metabolic process

negative regulation of transcription, DNA-

templated
oxidosqualene cyclase activity
flavin adenine dinucleotide binding

regulation of transcription from RNA polymerase

II promoter
intracellular transport
positive regulation of gene expression

lipid biosynthetic process

518
60

135
12
482
1079
1149

1149

1079

1149

2056

913

1123

1079

1123

913

29

6674

173
260

45

41954
23177
8977

18720
24021
9253

21204

18772

8729

19231

30229

9765

10339

8800

10984

8813

44
4117

9976

26533
10847

31347

XiX



13,18,32,63
23,48,52,61
18,24,29,32
18,2,23,63

18,2,23,63

18,2,23,63
18,2,23,63
18,2,23,63
18,2,23,63
24,3,31,57
13,18,29,35
21,4,41,6
23,48,52,61
23,48,52,61
23,48,52,61
18,5,56,62
0,15,41,63
24,3,31,57

24,3,31,57

24,3,31,57
23,48,52,61
23,48,52,61

24,3,31,41

24,3,31,41
24,3,31,41

24,3,31,41

0.495

0.494

0.492

0.492

0.492

0.492

0.492

0.492

0.492

0.486

0.484

0.484

0.481

0.468

0.468

0.462

0.460

0.458

0.458

0.458

0.456

0.456

0.447

0.447

0.447

0.447

GO:0007186

GO:0044248

GO:0048583

GO:0044700

GO:0005231

GO:0023052

GO:0007268

GO:0007154

GO:0007267

G0O:0031325

GO:0004713

GO:0009069

GO:0003995

GO:0044282

GO:0044712

G0O:0031090

GO:0006950

GO:0009891

GO:0010557

G0O:0031328

G0:0046395

G0:0016054

G0:0045893

GO:0051254

G0O:1902680

G0O:1903508

G-protein coupled receptor signalling pathway
cellular catabolic process

regulation of response to stimulus

single organism signaling

excitatory extracellular ligand-gated ion channel

activity

signaling

synaptic transmission

cell communication

cell-cell signaling

positive regulation of cellular metabolic process
protein tyrosine kinase activity

serine family amino acid metabolic process
acyl-CoA dehydrogenase activity

small molecule catabolic process
single-organism catabolic process
organelle membrane

response to stress

positive regulation of biosynthetic process

positive regulation of macromolecule biosynthetic
process

positive regulation of cellular biosynthetic process
carboxylic acid catabolic process

organic acid catabolic process

DNA-

positive regulation of transcription,

templated
positive regulation of RNA metabolic process
positive regulation of RNA biosynthetic process

positive regulation of nucleic acid-templated

54

16

18

65

65

65

65

68

65

414

40

15

23

74

74

74

52

52

52

52

5285
66633
67838
2394

266

2412
1254
9092
2202
39512
1012
10408
225
13608
31131
37243
57048
22551

10529

11418
11044
10843

8417

8550
8112

8026

XX



24,3,31,42

24,3,31,42

10,29,43,60
3,37,45,53
13,18,32,63
13,14,35,37
3,37,45,53
13,21,23,36
0,14,22,63

3,31,55,64

10,3,37,45

15,29,32,41
13,14,35,37
29,43,59,60
18,23,40,56
18,29,31,37
13,14,21,37
13,14,35,37
14,15,36,60
18,29,37,38
18,29,37,38
18,23,24,56

14,15,36,48

0.447

0.447

0.446

0.446

0.444

0.443

0.435

0.429

0.426

0.426

0.425

0.425

0.423

0.420

0.420

0.419

0.417

0.412

0.408

0.407

0.407

0.406

0.403

GO:0045935

GO:0051173

GO:0051246

G0O:0050793

GO:0065008

GO:0016192

G0O:0051239

GO:1901135

GO:0044428

GO:0000122

GO:0009653

GO:0005829

G0O:0031982

G0O:0032268

GO:0006508

G0O:0048869

G0O:0098588

G0O:0031988

GO:0006259

GO:0022610

GO:0007155

GO:0005615

GO:0006996

transcription

positive regulation of nucleobase-containing 54

compound metabolic process

positive regulation of nitrogen compound 54

metabolic process

regulation of protein metabolic process
regulation of developmental process
regulation of biological quality
vesicle-mediated transport

regulation of multicellular organismal process
carbohydrate derivative metabolic process

nuclear part

negative regulation of transcription from RNA

polymerase I promoter

anatomical structure morphogenesis
cytosol

vesicle

regulation of cellular protein metabolic process
proteolysis

cellular developmental process
bounding membrane of organelle
membrane-bounded vesicle

DNA metabolic process

biological adhesion

cell adhesion

extracellular space

organelle organization

12

94

34

26

13

28

12

9903

11460

39461
41651
36463
7563
34531
172418
30031

2585

15056
14482
23624
30538
8560
19490
17778
11370
40685
6260
6508
5564

37867
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Annex 5 - Snippet of code used to run over Swiss-Prot

(uniprot_sprot.dat) one protein annotation at a time, to

identify experimentally annotated ones

anot = ""
for textlin in open(SwissProtTxt):
fimbloco = re.findall ("*//",textlin)
if len(fimbloco) > 0:
anot += textlin

m =
re.findall ('.*EXP:.*|.*IDA:.*|.*IPI:.*|.*IMP:.*|.*IGI:.*|.*IEP:.*",
anot)

add = False
if len(m) != 0:
for GO in m:
if not add and GO[0:8] == 'DR GO; ':
add = True
if add:
selectedSeqgs (anot [60:75] .split('; ") [0])
anot = ""
#print anot
else:

anot += textlin

xXXiii
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Annex 6 - Most frequent, in decreasing order, ancestral GO terms in

the 57047 training set; these were obtained via the code

snippet at Annex 2 — GOUgtils.py. Only GO terms

representing over 10000 proteins are included.

GO term

count

Name (or association)

GO:0008150
GO:0005575
GO:00444064
GO:0003674
GO:0009987
GO:0044424
GO:0044699
GO:0005488
GO:0008152
G0O:0043226
GO:0044763
GO:0071704
GO:0044237
G0O:0043229
GO:0043227
GO:0044238
GO:0065007
G0:0043231
G0:0044444
G0O:0050789
G0:0003824
GO:0050794
G0:0044422
G0:0043170
G0:0044446
G0:0043167
G0O:0097159
GO:1901363
G0:0044260

52940
52495
48439
47136
43250
41792
37666
34622
32251
31215
31049
29874
29145
28855
28322
27633
27059
25941
25434
25110
23953
23309
21372
20871
20798
20521
20296
20124
19319

biological_process
cellular_component

cell part

molecular_function

cellular process

intracellular part

single-organism process

binding

metabolic process

organelle

single-organism cellular process
organic substance metabolic process
cellular metabolic process
intracellular organelle
membrane-bounded organelle
primary metabolic process
biological regulation

intracellular membrane-bounded organelle
cytoplasmic part

regulation of biological process
catalytic activity

regulation of cellular process
organelle part

macromolecule metabolic process
intracellular organelle part

ion binding

organic cyclic compound binding
heterocyclic compound binding

cellular macromolecule metabolic process

XXV



GO:0016020
GO:0006807
GO:0044425
G0O:0044710
G0O:0050896
GO:1901360
GO:0005634
G0:0032991
GO:0034641
GO0:0019222
GO:0009058
GO:0006725
GO:1901576
GO:0046483
GO:0071840
G0O:0044249
G0:0032502
G0O:0016043
G0:0031323
GO:0060255
GO:0080090
GO:0006139
GO:0044767
G0O:0005737
G0:0043169
G0:0046872
GO:0031224
G0:0043234
GO:0051179
G0:0048518
GO:0016021
GO:0090304
GO:0003676
GO:0036094
GO:0005515
G0O:0043168

18882
17061
16223
16119
15657
15444
15369
15232
15112
15086
15025
14587
14528
14401
14293
14155
13957
13903
13562
13267
13255
13186
13045
12809
12578
12348
12337
12275
11931
11881
11829
11088
10997
10982
10868
10844

membrane

nitrogen compound metabolic process
membrane part

single-organism metabolic process

response to stimulus

organic cyclic compound metabolic process
nucleus

macromolecular complex

cellular nitrogen compound metabolic process
regulation of metabolic process

biosynthetic process

cellular aromatic compound metabolic process
organic substance biosynthetic process
heterocycle metabolic process

cellular component organization or biogenesis
cellular biosynthetic process

developmental process

cellular component organization

regulation of cellular metabolic process
regulation of macromolecule metabolic process
regulation of primary metabolic process
nucleobase-containing compound metabolic process
single-organism developmental process
cytoplasm

cation binding

metal ion binding

intrinsic component of membrane

protein complex

localization

positive regulation of biological process
integral component of membrane

nucleic acid metabolic process

nucleic acid binding

small molecule binding

protein binding

anion binding
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GO:0051234
GO:0048519
GO:0006810
GO:0019538
GO:0009889
GO:0048522
GO:1901265
GO:0000166
G0O:0031326
GO:0010468
GO:0006950

10783
10728
10439
10295
10277
10274
10163
10162
10153
10064
10039

establishment of localization

negative regulation of biological process
transport

protein metabolic process

regulation of biosynthetic process
positive regulation of cellular process
nucleoside phosphate binding

nucleotide binding

regulation of cellular biosynthetic process
regulation of gene expression

response to stress
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Annex 7 - Description, level, information content (obtained from

[55]) and representation in Swiss-Prot of the 280 GO

terms selected by the T300 with a support of 0.0005 and

a confidence of 40%

# SP prot % SP prot
GO Name level IC w/ GO w/ GO
GO:0004252 serine-type endopeptidase activity 6 7,06 3184 0,58
G0:0004497 monooxygenase activity 3 6,79 3595 0,65
GO:0008104 protein localization 3 7,67 21940 4
GO:0080090 regulation of primary metabolic process 4 6,57 63857 11,63
GO0:0019222  regulation of metabolic process 3 4,15 344577 62,76
G0:0044444 cytoplasmic part 6 3,68 170466 31,05
negative regulation of cellular macromolecule biosynthetic
GO:2000113 process 7 10 9765 1,78
GO:0060089 molecular transducer activity 1 4,98 20818 3,79
GO:0007165  signal transduction 4 7,25 33581 6,12
GO:0007166 cell surface receptor signalling pathway 5 9,54 9831 1,79
G0:0044283 small molecule biosynthetic process 4 6,89 63376 11,54
GO:0016866 intramolecular transferase activity 3 6,57 5392 0,98
GO:1901362 organic cyclic compound biosynthetic process 4 5,65 154687 28,18
G0:0044707 single-multicellular organism process 2 7,46 23343 4,25
G0:0030054 cell junction 1 8,39 7169 1,31
GO:0097060 synaptic membrane 6 10,49 1119 0,2
G0O:0044710 single-organism metabolic process 2 3,05 504592 91,91
GO:0044711 single-organism biosynthetic process 3 5,67 181296 33,02
GO:0010605 negative regulation of macromolecule metabolic process 5 8,38 37082 6,75
GO:0031982 wvesicle 2 6,73 23624 4,3
GO:0048869 cellular developmental process 3 8,41 19490 3,55
GO:0016021 integral component of membrane 4 3,92 74452 13,56
GO:0016829 lyase activity 2 4,55 26792 4,88
GO:0031988 membrane-bounded vesicle 3 7,47 11370 2,07
GO:0016740 transferase activity 2 2,55 119322 21,73
GO:0004713  protein tyrosine kinase activity 6 8,86 1012 0,18
GO:1901575 organic substance catabolic process 3 4,53 74400 13,55
G0:0048518 positive regulation of biological process 3 7,55 121108 22,06
G0:0048519 negative regulation of biological process 3 6,71 94328 17,18
GO:0033036 macromolecule localization 2 7,33 24034 4,38
GO:1902495 transmembrane transporter complex 5 8,07 6003 1,09
GO:0017171 serine hydrolase activity 3 6,36 4256 0,78
GO0:0060255 regulation of macromolecule metabolic process 4 5,43 186498 33,97
G0:0098588 bounding membrane of organelle 4 7,72 17778 3,24
GO:0004672 protein kinase activity 5 5,55 10241 1,87
G0:0003924 GTPase activity 7 6,76 8977 1,64
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GO:0045184
GO:0007155
GO:2001141
GO:0043436
GO:0043231
GO:0043234
GO:0044700

GO:0016818
GO:0016192
GO:1901566
GO:0031559
GO:0019538
GO:0005829
GO:0016817
GO:0097367
GO:0044428
GO:0006259
GO:0003995
GO:0019438
GO:0018130
GO:0051253
GO:0044422
GO:0001071
GO:0017076
GO:0009892
GO:0009893
GO:0009890
GO:0009891
GO:0006950
GO:0051254
GO:0043229
GO:00100628
G0:0034702
GO:0003676
GO:0003677
G0O:0035556
GO:0016772
G0:0043227
GO:0050789
GO:0097659
GO:1901576
GO:0004930
GO:0046914
GO:0006357
GO:0046483

establishment of protein localization

cell adhesion

regulation of RNA biosynthetic process
oxoacid metabolic process

intracellular membrane-bounded organelle
protein complex

single organism signaling

hydrolase activity, acting on acid anhydrides, in phosphorus-

containing anhydrides

vesicle-mediated transport

organonitrogen compound biosynthetic process
oxidosqualene cyclase activity

protein metabolic process

cytosol

hydrolase activity, acting on acid anhydrides
carbohydrate derivative binding

nuclear part

DNA metabolic process

acyl-CoA dehydrogenase activity

aromatic compound biosynthetic process
heterocycle biosynthetic process

negative regulation of RNA metabolic process
organelle part

nucleic acid binding transcription factor activity
purine nucleotide binding

negative regulation of metabolic process
positive regulation of metabolic process
negative regulation of biosynthetic process
positive regulation of biosynthetic process
response to stress

positive regulation of RNA metabolic process
intracellular organelle

positive regulation of gene expression

ion channel complex

nucleic acid binding

DNA binding

intracellular signal transduction

transferase activity, transferring phosphorus-containing groups

membrane-bounded organelle
regulation of biological process
nucleic acid-templated transcription
organic substance biosynthetic process
G-protein coupled receptor activity

transition metal ion binding

regulation of transcription from RNA polymerase II promoter

heterocycle metabolic process
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8,07
9,86
7,06
5,53
4,15
4,89
7,24

3,84
8,79
6,13
13,72
6,31
7,44
3,65
2,77
6,42
6,96

5,74
5,67
10,02
3,89
5,03
3,18
7.4
8,25
8,68
9,8
7,51
10,75
3,27
10,72
9,6
3,28
3,87
8,65
3,43
3,71
3,66

4,37
7,37
4,59
10,62
3,07

21083
6508

52267
99722
70265
83868
2394

40750
7563
197213
44
133686
14482
54734
210010
30031
40685
225
125786
147976
9253
140661
12267
206028
60060
71866
21204
22551
57048
8550
126687
10847
1196
136633
51904
9115
69940
89232
474851
29239
587283
3746
46452
9976
401433

3,84
1,19
9,52
18,16
12,8
15,28
0,44

7,42
1,38
35,92
0,01
24,35
2,64
9,97
38,25
5,47
7,41
0,04
22,91
26,95
1,69
25,62
2,23
37,53
10,94
13,09
3,86
4,11
10,39
1,56
23,08
1,98
0,22
24,89
9,45
1,66
12,74
16,25
86,49

106,97
0,68
8,46
1,82
73,12
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GO0:0016043
GO:0065007
GO:0071840
GO:0005886
GO:0032549
G0:0022803
GO:0065008
GO:0007186
G0O:0005230
GO:0005524
GO:0005525
GO:0016787
GO:0006810
GO:0006629
GO:0020037
GO:0006139
GO:0050793
G0:0009889
GO:0006811
GO:0005231
GO:1990351
GO:0016788
GO:0050794
GO:0019637
GO:0043412
GO:0036211
GO:0051239
GO:0044425
GO:0034654
GO:0044282
GO:0051234
GO:0010604
G0:0022891
GO:0008652
G0:0022892
G0:0044271
GO0:0046907
GO0:0046906
GO0:0016773
G0:0046395
GO:0050896
GO:0016301
G0:0009058
GO0:0015075
GO:0019001

cellular component organization

biological regulation

cellular component organization or biogenesis
plasma membrane

ribonucleoside binding

passive transmembrane transporter activity
regulation of biological quality

G-protein coupled receptor signaling pathway
extracellular ligand-gated ion channel activity

ATP binding

GTP binding

hydrolase activity

transport

lipid metabolic process

heme binding

nucleobase-containing compound metabolic process
regulation of developmental process

regulation of biosynthetic process

ion transport

excitatory extracellular ligand-gated ion channel activity
transporter complex

hydrolase activity, acting on ester bonds

regulation of cellular process

organophosphate metabolic process

macromolecule modification

protein modification process

regulation of multicellular organismal process
membrane part

nucleobase-containing compound biosynthetic process
small molecule catabolic process

establishment of localization

positive regulation of macromolecule metabolic process
substrate-specific transmembrane transporter activity
cellular amino acid biosynthetic process
substrate-specific transporter activity

cellular nitrogen compound biosynthetic process
intracellular transport

tetrapyrrole binding

phosphotransferase activity, alcohol group as acceptor
carboxylic acid catabolic process

response to stimulus

kinase activity

biosynthetic process

ion transmembrane transporter activity

guanyl nucleotide binding
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6,73
3,61
6,3
4,56
3,88
6,35
6,88
10,02
9,29
4,01
6,12
2,57
5,12
6,87
5,97
3,43
8,69
5,53
6,57
10,29
8,07
4,26
5,2
3,71
7,07
7,99
9,45
3,02
5,99
8,8
5,02
9,33
3,65
7,18
3,6
5,68
8,35
5.9
4,96
8,95
5,4
4,43
3,51
3,96
6,08

92937
243778
70229
54764
103294
4756
36463
5285
538
86706
14478
117856
109392
66824
5455
273483
41651
113533
38971
266
6069
33881
283128
176192
44035
25841
34531
139234
100448
13608
105802
39472
39901
49918
35964
196364
26533
6995
17316
11044
173170
25294
649027
43102
14909

16,93
44,4
12,79
9,98
18,81
0,87
6,64
0,96
0,1
15,79
2,64
21,47
19,93
12,17
0,99
49,81
7,59
20,68
7,1
0,05
1,11
6,17
51,57
32,09
8,02
4,71
6,29
25,36
18,3
2,48
19,27
7,19
7,27
9,09
6,55
35,77
4,83
1,27
3,15
2,01
31,54
4,61
118,22
7,85
2,72
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GO0:0010557
GO:0015267
G0:0032559
GO:0006351
GO:0032555
G0O:0010558
GO:0032553
GO:0016020
GO:0032774
GO:0051246
GO:0035639
GO:0016310
GO:0051649
GO:0044248
GO:0044249
GO:0016627
GO:0023052
GO:0016054
GO:0034645
GO:0008233
GO:0000166
GO:0031224
G0O:0008236
GO:0005737
GO:0043169
GO:0052689
GO:0031090

GO:0000122
GO:0005634

GO:0016705
GO:0008270
GO:0015276
G0:0032561
GO:0044456
GO:0006508
GO:0005506
G0:0022610
GO:0044459
GO:1901607
GO:1903508
GO:0016070
G0:0032501
GO:0044281
GO:0010556

positive regulation of macromolecule biosynthetic process
channel activity

adenyl ribonucleotide binding

transcription, DNA-templated

purine ribonucleotide binding

negative regulation of macromolecule biosynthetic process
ribonucleotide binding

membrane

RNA biosynthetic process

regulation of protein metabolic process

purine ribonucleoside triphosphate binding
phosphorylation

establishment of localization in cell

cellular catabolic process

cellular biosynthetic process

oxidoreductase activity, acting on the CH-CH group of donors
signaling

organic acid catabolic process

cellular macromolecule biosynthetic process

peptidase activity

nucleotide binding

intrinsic component of membrane

serine-type peptidase activity

cytoplasm

cation binding

carboxylic ester hydrolase activity

organelle membrane
negative regulation of transcription from RNA polymerase 11
promoter

nucleus
oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen

zinc ion binding

ligand-gated ion channel activity
guanyl ribonucleotide binding
synapse part

proteolysis

iron ion binding

biological adhesion

plasma membrane part

alpha-amino acid biosynthetic process
positive regulation of nucleic acid-templated transcription
RNA metabolic process

multicellular organismal process
small molecule metabolic process

regulation of macromolecule biosynthetic process
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10,53
6,35

7,38
3,89
9,39
3,85
2,42
7,21
8,5

3,9

7,21
8,12
4,39
4,3

6,28
7,24
8,95
6,43
4,38
2,47
3,87
6,36
3,27
3,51
7,31
5,43

12,38
5,7

6,68
5,41
9,01
6,09
9,72
8,01
5,63
8,92
6,12

6,02
7,43
3,5

6,29

10529
7007
87776
29372
102681
18772
104903
117656
33819
39461
101195
11853
18663
66633
613402
3704
2412
10843
102282
18134
227918
84772
4246
147574
123562
5834
37243

2585
32457

3515
23177
1089
14895
3213
8560
12817
6260
20187
31198
8026
129759
22304
263832
98664

1,92
1,28
15,99
5,35
18,7
3,42
19,11
21,43
6,16
7,19
18,43
2,16
3.4
12,14
111,73
0,67
0,44
1,98
18,63
3,3
41,51
15,44
0,77
26,88
22,51
1,06
6,78

0,47
5,91

0,64
4,22
0,2

2,71
0,59
1,56
2,33
1,14
3,68
5,68

23,64
4,06

48,06
17,97
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GO:0005215
GO:0005216
GO:0006725
GO:1903506
GO:1903507
GO:0045211

GO0:0045892
GO0:0045893
GO:0044712
GO:0005975
GO0:0044255
GO:0055085
GO:0032268
GO:0016853
GO:0006082
GO:0030554
GO:1901605
GO:1901135
GO:0051252
GO:0010629
GO0:0016053
GO0:1902680
GO0:0046394
GO:0032550
G0O:0022836
GO:0005515
GO:0022834
G0O:0022838
GO:0032502
GO:0004175
G0O:0038023
GO0:0016887
GO:0031328
GO0:0031327
GO:0031326
GO:0031325
GO:0031324
GO0:0031323
G0:0019752
GO:0090304
GO:0036094
GO:0004872
GO:0004871
GO:0009069
G0O:0001883

transporter activity
ion channel activity
cellular aromatic compound metabolic process
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Annex 8 - Statistics per GO term identified in the association rule

learning step

GO term P N 1P FP TP FN TN  recall prec F1 MCC
GO:0031559 0 2590 9 9 2581 0 0 0 NA
GO:0044444 950 1640 2590 1640 950 0 0 1 0,367 0,537 NA
GO:0043231 964 1626 2590 1626 964 0 0 1 0,372 0,542 NA
GO:0043227 1005 1585 2590 1585 1005 0 0 1 0388 0559 NA
GO:0043229 1093 1497 2590 1497 1093 0 0 1 0,422 0,594 NA
GO:0043226 1159 1431 2590 1431 1159 0 0 1 0447 0618 NA
GO:0065007 1254 1336 2590 1336 1254 0 0 1 0,484 0,652 NA
GO:0005506 29 2561 86 64 22 7 2497 0,759 0,256 0,383 0,431
GO:0020037 34 2556 88 65 23 11 2491 0,676 0,261 0,377 0,409
GO:0005231 4 2586 6 4 2 2582 0,5 0,333 0,4 0,407
GO:0009069 4 2586 7 5 2 2581 0,5 0,286 0,364 0,377
GO:0004930 51 2539 171 134 37 14 2405 0,725 0,216 0,333 0,376
GO:0046906 41 2549 88 65 23 18 2484 0,561 0,261 0,356 0,369
GO:0004497 32 2558 81 62 19 13 2496 0,594 0,235 0,337 0,361
GO:0016705 35 2555 81 62 19 16 2493 0,543 0,235 0,328 0,344
GO:0004713 6 2584 42 37 5 1 2547 0833 0,119 0208 0312
GO:0004888 86 2504 388 328 60 26 2176 0,698 0,155 0,254 0,285
GO:0005230 8 2582 25 21 4 4 2561 0,5 0,16 0,242 0,279
GO:0003924 30 2560 7 3 4 26 2557 0,133 0,571 0,216 0,272
GO:0004674 68 2522 591 529 62 6 1993 0,912 0,105 0,188 0,267
GO:0017111 114 2476 259 206 53 61 2270 0,465 0,205 0,285 0,261
GO:0016310 90 2500 362 307 55 35 2193 0611 0,152 0243 0,258
GO:0006468 69 2521 351 305 46 23 2216 0,667 0,131 0,219 0,257
GO:0016462 118 2472 286 231 55 63 2241 0,466 0,192 0,272 0,248
GO:0038023 111 2479 393 330 63 48 2149 0,568 0,16 0,25 0,245
GO:0016887 61 2529 68 51 17 44 2478 0,279 0,25 0,264 0,245
GO:0016818 120 2470 286 231 55 65 2239 0,458 0,192 0,271 0,245
GO:0016817 120 2470 286 231 55 65 2239 0,458 0,192 0,271 0,245
GO:0004672 99 2491 780 696 84 15 1795 0,848 0,108 0,192 0,238
GO:0005524 288 2302 1496 1235 261 27 1067 0,906 0,174 0,292 0,235
GO:0030554 295 2295 1500 1234 266 29 1061 0,902 0,177 0,296 0,234
GO:0032559 294 2296 1496 1232 264 30 1064 0,898 0,176 0,294 0,232
GO:0004872 129 2461 412 344 68 61 2117 0,527 0,165 0,251 0,23
GO:0032553 353 2237 1689 1364 325 28 873 0,921 0,192 0,318 0,224
GO:0004871 145 2445 444 369 75 70 2076 0,517 0,169 0,255 0,223
GO:0001883 333 2257 1667 1361 306 27 896 0,919 0,184 0,307 0,221
GO:0032550 333 2257 1667 1361 306 27 896 0919 0,184 0,307 0,221
GO:0007268 30 2560 6 3 3 27 2557 0,1 0,5 0,167 0,22
GO:0032549 333 2257 1672 1366 306 27 891 0919 0,183 0,305 0,22
GO:0035639 333 2257 1663 1358 305 28 899 0916 0,183 0,305 0,219
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Annex O _ Proteins whose annotation changed in two sequential

Swiss-Prot releases

GO term Q61618
A . GO:0005887; C:integral component of plasma membrane; IMP:MGI, GO:0042629;
nnotation

C:mast cell granule; IDA:GOC,

in GO:0005886; C:plasma membrane; IDA:MGI,

Swiss-Prot GO:0001609; F:G-protein coupled adenosine receptor activity; IDA:MGI,
GO:0001973; P:adenosine receptor signaling pathway; IMP:MGI, GO:0002553;

release P:histamine secretion by mast cell; IDA:MGI,

2015_07 GO:0050850; P:positive regulation of calcium-mediated signaling; IDA:MGI,
GO:0050729; P:positive regulation of inflammatory response; IMP:MGI, GO:0002687;
P:positive regulation of leukocyte migration; IMP:MGI, GO:0043306; P:positive regulation
of mast cell degranulation; IDA:MGI, GO:0070257; P:positive regulation of mucus
secretion; IMP:MGI, GO:0014068; P:positive regulation of phosphatidylinositol 3-kinase
signaling; IDA:MGI

Annotation GO:0016021; C:integral component of membrane; [EA:UniProtKB-KW, GO:0005886;
C:plasma membrane; IEA:UniProtKB-SubCell, GO:0001609; F:G-protein coupled

in adenosine receptor activity; IEA:InterPro

Swiss-Prot

release

2015_08

GO term Q39147

Annotation GO:0008725; F:DNA-3-methyladenine glycosylase activity; IGI:TAIR

in

Swiss-Prot

release

2015_07

Annotation G0:0005634; C:nucleus; IEA:UniProtKB-SubCell,

in GO:0003677; F:DNA binding; IEA:InterPro,

Swiss-Prot GO0:0008725; F:DNA-3-methyladenine glycosylase activity; IEA:UniProtKB-EC,

release GO:0052822; F:DNA-3-methylguanine glycosylase activity; IEA:UniProtKB-EC,

2015_08 GO0:0052821; F:DNA-7-methyladenine glycosylase activity; IEA:UniProtKB-EC,

GO:0043916; F:DNA-7-methylguanine glycosylase activity; IEA:UniProtKB-EC,
G0O:0006284; P:base-excision repair; [EA:InterPro
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GO term

Q7GHN1

Annotation GO:0004415; F:hyalurononglucosaminidase activity; IDA:RGD, GO:0008219; P:cell
in death; IDA:RGD,

Swiss-Prot GO:0030214; P:hyaluronan catabolic process; IDA:RGD,

release GO:0008285; P:negative regulation of cell proliferation; IDA:RGD

2015_07

Annotation GO:0005737; C:cytoplasm; ISS:UniProtKB,

in GO:0031410; C:cytoplasmic vesicle; ISS:UniProtKB,

Swiss-Prot GO:0005615; C:extracellular space; 1SS:UniProtKB,

release GO0:0036117; C:hyaluranon cable; ISS:UniProtKB,

2015_08 GO:0005764; C:lysosome; 1SS:UniProtKB, GO:0050501; F:hyaluronan synthase activity;

ISS:UniProtKB,

GO:0004415; F:hyalurononglucosaminidase activity; IEA:UniProtKB-EC, GO:0008134;
F:transcription factor binding; ISS:UniProtKB, GO:0005975; P:carbohydrate metabolic
process; IEA:InterPro, GO:0051216; P:cartilage development; 1SS:UniProtKB,
GO:0071347; P:cellular response to interleukin-1; ISS:UniProtKB, GO:0071467; P:cellular
response to pH; ISS:UniProtKB,

GO:0036120; P:cellular response to platelet-derived growth factor stimulus; ISS:UniProtKB,
GO:0071493; P:cellular response to UV-B; ISS:UniProtKB,

GO0:0030213; P:hyaluronan biosynthetic  process; 1SS:UniProtKB, GO:0030212;
P:hyaluronan metabolic process; ISS:UniProtKB, GO:0006954; P:inflammatory response;
ISS:UniProtKB,

GO:0030308; DP:negative regulation of cell growth; ISS:UniProtKB, GO:0045766;
P:positive regulation of angiogenesis; 1SS:UniProtKB, GO:0045785; P:positive regulation of
cell adhesion; 1SS:UniProtKB, GO:0030307; P:positive regulation of cell growth;
ISS:UniProtKB, GO:0010634; P:positive regulation of epithelial cell migration;
ISS:UniProtKB,

GO:0050679; P:positive regulation of epithelial cell proliferation; ISS:UniProtKB,
GO:0045927; P:positive regulation of growth; 1SS:UniProtKB, GO:1900106; P:positive
regulation of hyaluranon cable assembly; ISS:UniProtKB,

GO:0046677; P:response to antibiotic; ISS:UniProtKB,

GO:0000302; P:response to reactive oxygen species; 1SS:UniProtKB, GO:0009615;
P:response to virus; [SS:UniProtKB

xlvi



