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Resumo 

 

A identificação de novos compostos ativos, passíveis de serem aplicados no 

tratamento de doenças, é a principal preocupação da indústria farmacêutica, que se 

foca em encontrar compostos de atuação altamente específica, evitando assim a 

existência de efeitos secundários. Contudo, este processo nem sempre é fácil, pois 

tem sido comprovado que muitas moléculas têm como alvo mais do que um recetor. 

Estas são moléculas promiscuas que ao se ligarem a diferentes recetores podem 

levar ao surgimento de efeitos inesperados. Este problema recebe o nome de 

polifarmacologia e muitos estudos têm sido desenvolvidos no seu âmbito. 

Na primeira parte deste trabalho, tentou-se estabelecer uma relação entre os 

perfis de ligação de moléculas a diferentes recetores e a sua relação com a 

semelhança entre as sequências proteicas dos mesmos. Verificou-se que não existe 

um padrão constante e que, na maioria dos casos, as moléculas apresentam perfis 

de ligação diferentes, mesmo para recetores muito semelhantes. Este resultado 

mostrou que a polifarmacologia é, de facto, um problema complexo e que é 

necessário investir em diferentes tipos de informação para prever perfis de ligação 

e evitar o surgimento de efeitos secundários indesejados.  

Para prever todos os efeitos resultantes da atuação de uma molécula, é 

necessário ter um conhecimento prévio acerca das interações entre esta e os 

recetores, conhecer os tipos de ligações e também as suas forças. Uma forma de 

obter este conhecimento passa por experiências laboratoriais, no entanto, estes são 

processos muito dispendiosos e que consomem muito tempo. 

Uma forma mais acessível de abordar esta questão foi criando modelos 

computacionais capazes de prever possíveis interações entre moléculas e recetores 

com o objetivo de identificar moléculas alvo para a realização dos ensaios 

experimentais, aumentando assim a probabilidade de sucesso. 

Muitos destes modelos computacionais são baseados em métodos de 

aprendizagem automática, abordagens muito comuns em informática. Estes 

métodos baseiam-se num processo de aprendizagem de entidades, tendo como 

fundamento as suas caraterísticas já conhecidas, para criar um modelo capaz de 

classificar novas entidades. O sucesso destas técnicas tem sido comprovado em 
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vários contextos da bioinformática e são uma aposta promissora na predição de 

interações entre moléculas e recetores.  

Com este trabalho, pretendeu-se utilizar uma abordagem de aprendizagem 

automática para desenvolver um modelo de predição de interações entre moléculas 

e recetores, tendo por base as semelhanças estruturais entre as moléculas e os seus 

respetivos níveis de atividade, já conhecidos, para recetores de serotonina e 

dopamina.  

O interesse nestas duas famílias de recetores recai no facto de fazerem parte da 

superfamília de recetores acoplados à proteína G, uma das mais importantes 

presentes no Sistema Nervoso Central. Para além disso, é conhecido o envolvimento 

de recetores de serotonina e dopamina em doenças neurológicas, como a doença de 

Parkinson e o Distúrbio de Défice de Atenção e Hiperatividade. Assim, surge a 

necessidade de identificar, para estes recetores, moléculas candidatas a serem 

utilizadas como ponto de partida para o desenvolvimento de novos fármacos, a 

serem aplicados no tratamento de algumas destas doenças neurológicas.  

Como técnica de aprendizagem automática, optou-se pela utilização de um 

classificador de Naive Bayes, um método de aprendizagem supervisionada baseado 

no Teorema de Bayes e que tem como pressuposto a independência entre as 

características que classificam uma entidade. 

Para obter a semelhança estrutural entre as moléculas foi utilizado o NAMS 

(Non-contiguous Atom Matching Structural Similarity), um método que identifica o 

alinhamento ótimo entre os átomos de duas moléculas tendo em conta, não só os 

seus perfis topológicos, mas também os próprios átomos e as características das 

ligações entre os mesmos. 

Para a concretização deste trabalho foi obtida informação acerca de moléculas 

com ligações, já identificadas, a recetores de serotonina e dopamina, tendo estes 

dados sido recolhidos com base em informação presente no ChEMBL. 

Adicionalmente, foram também recolhidos os valores de bioatividade de cada 

molécula para cada recetor, sobre a forma de Kis, as constantes de inibição que 

quantificam as forças de interação entre as moléculas e os recetores em estudo. 

No decorrer deste trabalho, foram construídos três modelos de predição de 

interações molécula-recetor. Estes incluíram informação relativa a semelhanças 

estruturais entre moléculas e os seus níveis de bioatividade, perfis de ligação de 
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moléculas para com diferentes recetores e uma combinação de toda a informação 

anterior. 

O primeiro modelo de predição foi construído tendo em conta apenas a 

informação relativa a semelhanças estruturais entre as moléculas e os seus níveis 

de atividade. Para isso, foram identificadas, para cada recetor, moléculas kernel, isto 

é, moléculas muito ativas e estruturalmente distintas das restantes, com as quais as 

moléculas em teste são comparadas. Tendo por base as suas semelhanças 

estruturais a cada molécula kernel, as probabilidades de ligação a cada recetor são 

então calculadas. Apesar deste modelo ter demonstrado resultados promissores 

durante o processo de validação, uma elevada taxa de falsos negativos mostrou que 

se trata de um modelo conservador e que deve ser aplicado quando se pretendem 

resultados mais precisos. 

O segundo modelo foi construído de modo a verificar se a informação relativa ao 

comportamento de ligação de uma molécula para com outros recetores pode ser 

relevante na predição da sua interação com novos recetores. Para isso, foram tidas 

em conta apenas as moléculas comuns entre recetores e os seus níveis de 

bioatividade. Com esta informação, foram construídas duas bases de dados 

contendo as probabilidades usadas aquando do cálculo das probabilidades de 

interação entre as moléculas em teste e os recetores. Durante o processo de 

validação, este modelo evidenciou melhores resultados do que o primeiro modelo. 

Contudo, estes foram considerados como devidos a uma sobrerrepresentação de 

moléculas ativas nos dados recolhidos. No entanto, não querendo descartar a 

informação proveniente de outros recetores, os dois modelos foram integrados para 

construir o terceiro modelo. 

O terceiro modelo, integrando informação relativa a semelhanças estruturais 

entre moléculas, os seus níveis de bioatividade e informação relativa a outros 

recetores, foi o que demostrou melhores resultados, atingindo o maior nível de 

acuidade. Para além disso, foi também o modelo que mostrou um maior equilíbrio 

entre as proporções de falsos positivos e falsos negativos. Consequentemente, este 

modelo mostrou ser a melhor opção na identificação de potenciais interações entre 

um conjunto de moléculas e recetores de serotonina e dopamina.  

Numa tentativa de aumentar o desempenho dos modelos propostos, tentou-se 

identificar, para cada recetor, um valor de probabilidade mais preciso a partir do 
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qual uma molécula deveria ser classificada como ativa. No entanto, apesar de 

aumentar a especificidade e precisão dos modelos propostos, este ajustamento não 

conduziu a um melhor desempenho.  

Em conjunto, os resultados obtidos mostraram que o classificador de Naive 

Bayes é um método passível de ser utilizado na construção de modelos de predição 

de interações entre moléculas e recetores. Também a ferramenta NAMS demostrou 

um bom desempenho durante a comparação estrutural de moléculas, o que se 

tornou evidente pelos resultados obtidos durante o processo de validação dos 

modelos. Adicionalmente, verificou-se que a utilização da semelhança estrutural 

entre moléculas em conjunto com os seus níveis de bioatividade é uma abordagem 

promissora na identificação de moléculas candidatas a validação experimental. 

A nível global, verificámos que a integração de informação de diferentes tipos 

continua a ser a melhor alternativa na previsão de perfis de ligação entre moléculas 

e recetores. Para além disso, comprovámos, mais uma vez, que os métodos de 

aprendizagem automática são uma forma eficiente e pouco dispendiosa de 

selecionar novos compostos candidatos para validação in vitro. 

 

 

Palavras-chave: Polifarmacologia; aprendizagem automática; Classificador de 

Naive Bayes; Recetores acoplados à proteína G; NAMS 
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Abstract 

 

Pharmaceutical industry has been focused on finding highly selective single-

target drugs. However, different studies have been showing that this is not always 

possible since many molecules can bind to more than one receptor. These molecules 

are described as promiscuous compounds and their polypharmacological behavior 

has been case of many studies.  

In the first part of our work, we have investigated the relationship between 

molecules binding profiles and the sequence similarity of their target receptors. We 

have found different patterns but no evident relationship was identified since many 

molecules present different binding patterns for different receptors, even when they 

are very closed. These results show the level of complexity inherent to 

pharmacology and the importance of finding new methods to predict molecules 

binding profiles. 

When binding to different receptors, a drug can led to unpredictable side-effects 

which is a limitation in case of disease treatment.  

To avoid side-effects it is import to get knowledge on molecules’ binding 

profiles. With this purpose, different approaches have been developed to predict 

interactions between molecules and receptors. Many of these approaches rely on 

the use of machine learning techniques to predict drug-target interactions. These 

techniques have been widely used in informatics and have already shown their 

contribute to bioinformatics. 

In this work, we have used a machine learning method to predict interactions 

between molecules and serotonin and dopamine receptors, two of the most 

important families of receptors present in the Central Nervous System. 

To construct our model, we have used the Naïve Bayes classifier, which is a 

supervised learning method based on applying Bayes’ Theorem with the 

assumption of conditional independence between features. 

We have developed three different models that include co-activity data between 

receptors, molecular similarity and a combination of these two. Despite the three 

models have presented promising results, the model integrating all the data has 

shown to be the one with the best performance.  
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Our results have demonstrated that Naïve Bayes is an efficient method to drug-

target interactions prediction. Moreover, it was demonstrated that structural 

similarity between compounds together with their bioactivity levels is a promising 

approach to identify candidate molecules for further in vitro validation. 

 

 

 

Keywords: Polypharmacology; Machine learning; Naïve Bayes classifier; G-protein 

coupled receptors; NAMS 
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1. Introduction 
 

1.1 Polypharmacology: Drug Discovery for the Future 

 

Despite pharmaceutical industry focus on the development of highly selective 

single-target drugs, it has been proved that many compounds can bind to more than 

one receptor. This drug promiscuity or polypharmacology has been referred as one 

of the hottest fields of modern science. Promiscuous compounds can led to 

undesired effects when binding to different targets and this behavior compromises 

their viability as potential drugs to therapy of known diseases (Reddy and Zhang, 

2013). On the other hand, this represents an opportunity not only to discover new 

uses for already known compounds but also to increase the efficacy of already 

known drugs. In fact, efforts have been made to point promiscuous drugs as solution 

for complex diseases (Haupt et al., 2013). 

In order to address this problem, the identification of drug-target interaction 

networks is an area of intense research. This identification of new drug-target 

interactions appears as the key to find new targets to old drugs and also new drug 

candidates for known targets (Cao et al., 2014). Moreover, drug-target interactions 

are pointed to facilitate the process of drug discovery, drug side-effect prediction 

and drug repurposing (Ding et al., 2013). 

Despite the importance of drug-target interactions discovery, the current 

knowledge is very limited. For instance, from the 35 million compounds present in 

the PubChem database, less than 7000 have information relative to target proteins 

(Ding et al., 1013). However, the increasing amount of available data present in 

public databases, during the last years, offers the opportunity to explore and 

integrate the existing knowledge, contributing to the development of more effective 

and efficient methods to predict drug-target interactions (Kuhn et al., 2008). 

In order to face the problems inherent to in vitro prediction methods, which are 

extremely costly and time-consuming, in silico approaches have been developed to 

find potential drug-target interactions that can be validated later through in vitro 

techniques. Docking simulation and machine learning represent two of these major 

in silico approaches (Ding et al., 2013).  
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With some limitations associated to docking simulation, machine learning 

techniques have been widely used to construct models able to predict drug-target 

interactions. With special emphasis on supervised learning techniques, many 

studies show that machine learning is an efficient alternative to in vitro 

experiments, allowing the identification of potential drug candidates for known 

receptors (Ding et al., 2013; Mousavian and Masoudi-Nejad, 2014). 

The G-protein coupled receptors (GPCRs) have been used as target receptors in 

many of these studies not only for being one of the receptors families for which there 

is more available information but also for representing one of the most important 

families of receptors present in the Central Nervous System (CNS) (Shiraishi et al., 

2013). Thus, the identification of potential drugs for these receptors can be a 

starting point to develop new therapies for neurological diseases like Attention-

Deficit Hyperactivity Disorder (ADHD) and Parkinson’s disease (Vallone et al., 2000; 

Fox et al. 2009). 

 

1.2 Objectives  

 

With the present work we expect to contribute with a new machine learning-

based method to predict potential drug-target interactions. Our aim is to develop a 

model integrating information relative to structural similarity between compounds 

and their bioactivity levels for known targets. For that, we will use a Naïve Bayes 

classifier as supervised learning method and NAMS to measure molecular 

similarities. As target receptors we have choosed the Serotonin and Dopamine 

receptors, two families of GPCRs present in the CNS. 

Moreover, we expect to infer the evolutionary relationship between the 

receptors in study and try to relate it with the binding profiles of their common 

binding molecules by using their measured binding affinities. We also expect to 

include this information in our prediction model and improve its performance. 
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1.3 Overview 

 

The present work is subdivided into three independent parts. First, an overview 

over the biological background and the informatics techniques is provided. They are 

described concepts relative to the receptors in study and the drug-receptors 

interactions. The used methodologies in this work are also presented and a 

reference to previous similar studies is made at the end.  

In the second part, all the execution of the work is described with special 

emphasis on the detailed description of the used techniques and the justification of 

all choices made. The construction of models is presented in detail with the 

algorithms implementation detailed step-by-step. 

In the third and final part, all the results obtained through the execution of the 

proposed techniques and different approaches are displayed and discussed. The 

performance of the developed models is analyzed and general conclusions of the 

presented work are provided. 
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2. Concepts and State of The Art 
 

2.1 Drug Interactions with Receptors 

 

Physiological receptors are protein receptors for endogenous regulatory ligands 

and act as target receptors to many drugs. These receptors have evolved to 

recognize and respond with great selectivity to specific signaling molecules, which 

can be primary classified on the basis of their action when coupled with a target 

receptor as agonists, antagonists, partial agonists or inverse agonists (Goodman et 

al. 2011). 

 

Agonists, Partial Agonists and Inverse Agonists 

They are considered as agonistic drugs the ones that once associated with a 

specific physiological receptor mimic the regulatory effects of the endogenous 

signaling molecules (Figure 2.1). Furthermore, agonistic compounds can also be 

classified as primary agonists or allosteric (or allotropic) agonists. Primary agonists 

represent drugs that bind to the same recognition site as the endogenous agonist, 

while allosteric agonists couple to a different region at the target receptor, the 

allosteric (or allotopic) site.  

Compounds that despite the concentration employed are only partly as effective 

as agonists are described as partial agonists, while the inverse agonists are 

represented by compounds that stabilize in an inactive conformation receptors 

whose constitutive activity is exhibited in the absence of a regulatory ligand (Figure 

2.1)(Goodman et al. 2011). 
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Antagonists 

Drugs that block or reduce the action of an agonist with respect to a specific 

receptor are considered as antagonistic compounds. These drugs can compete with 

agonistic molecules for the same overlapping site on the receptor (syntopic 

interaction) or may interact and bind to different sites. In the second case the 

compounds are defined as allosteric antagonists.  

Antagonists can be also combined with agonists to produce a response and this 

type of interaction is termed chemical antagonism. Moreover, agonistic cellular or 

physiological effects can also be indirectly inhibited by functional antagonists 

(Goodman et al. 2011).  

 

2.1.1 Quantifying Binding Activities  

 

In order to better understand a drug-receptor interaction a quantification of 

molecules’ binding affinities is imperative, mostly when trying to find selective 

compounds for target receptors. Despite the fact that different measures for binding 

affinities have been developed, some of them remain more used like the half 

Figure 2.1: Regulation of the activity of a receptor with conformation-selective drugs. The ordinate is the activity of 

the receptor produced by Ra, the active receptor conformation (e.g., stimulation of adenylyl cyclase by a β adrenergic 

receptor) while the coordinate represents the concentration of drug L present at the receptor. Taken from Goodman 

et al. (2011). 
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maximal effective concentration (EC50), the half maximal inhibitory concentration 

(IC50) and the inhibitory constant (Ki).  

EC50 value represents the molar concentration (M = mol/L) of an agonist that 

produces half of the maximal possible effect of that agonist, while IC50 value can 

have different meanings: (1) the molar concentration of an antagonist that reduces 

the response to an agonist by 50%; (2) the molar concentration of an unlabeled 

agonist or antagonist that inhibits the binding of a radioligand by 50%; (3) the molar 

concentration of an inhibitory agonist that reduces a response by 50% of the 

maximal inhibition that can be attained (Cortés et al., 2001; Neubig et al., 2003).  

Ki value is used to quantify a ligand-receptor interaction based on the 

equilibrium dissociation constant (K) and refers to the equilibrium dissociation 

constant of a ligand determined in inhibition studies. It is typically determined in a 

competitive radioligand binding study through the measurement of the inhibition of 

the binding of a reference radioligand by the competing ligand of interest under 

equilibrium conditions and is expressed as a molar concentration. Therefore, the 

smaller the Ki value, the smaller the ligand quantity needed to inhibit the radioligand 

binding, which means that small values of Ki are associated with higher ligand-

receptor binding affinities (Goodman et al., 2011; Neubig et al., 2003).  

Ki values are sometimes represented as pKi values, which are described as the 

negative logarithm to base 10 of the equilibrium dissociation constant, in this case 

the Ki value. The use of the pKi measure instead of the equilibrium constant itself 

allows an easier comparison of binding affinities given the fact that Ki values often 

ranges over many orders of magnitude (from 10-10 M to >10-3 M), while pKi values 

mostly range from about 10 to 3. Moreover, from a statistical vision, concentration 

parameters are generally distributed in a log normal manner. Thus, standard 

deviations are symmetrical for pKi values but not for Ki values (Neubig et al., 2003).   

 

2.2 Serotonin Receptors 

 

Serotonin (5-HT) receptors family remains one of the most complex and 

constantly updated receptors family since new members still being discovered and 

old ones have been reclassified over time (Barnes and Sharp, 1999). In order to 
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avoid misunderstandings, only the new nomenclature will be considered (Figure 

2.2). 

 

 

Figure 2.2: Summary of changes in 5-HT receptor nomenclature. Taken from Barnes and Sharp (1999). 

 

Currently, 5-HT receptors are subdivided, according to the NC-IUPHAR 

subcommittee on 5-HT receptors, into seven distinct classes (5-HT1, 5-HT2, 5-HT3, 

5-HT4, 5-HT5, 5-HT6 and 5-HT7) comprising a total of 14 distinct receptors in 

humans (Pauwels, 2003), which are considered to have evolved from a primordial 

rhodopsin – G-protein-coupled receptor (GPCR) family (Figure 2.3) (Barnes and 

Sharp, 1999). Moreover, splice variants (belonging to 5-HT3, 5-HT4, 5-HT6 and 5-HT7 

classes) and edited isoforms (belonging to 5-HT2C receptor) have also been 

identified, which makes receptors classification and functional studies even harder 

(Barnes and Sharp, 1999; Pauwels, 2003; Nichols and Nichols, 2008). In fact, 5-HT 

receptors classification not only takes into account operational criteria like drug-

related characteristics but also information on intracellular signal-transduction and 

amino acid sequences (Pauwels, 2003). 
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With the exception of 5-HT3 class, all 5-HT receptors belong to the GPCR 

superfamily and have a major role in the regulation of adenylyl cyclase (AC) 

pathway. They can increase or decrease cyclic AMP (cAMP) intracellular levels. 

Additionally, 5-HT2 class is also involved in the stimulation of phosphoinositide 

hydrolysis (Barnes and Sharp, 1999; Pauwels, 2003; Nichols and Nichols, 2008). 

Beyond these main functions, their involvement in other signaling pathways has 

been well described over time (Barnes and Sharp, 1999; Nichols and Nichols, 2008).  

With respect to 5-HT3 class, it represents a serotonin-gated cation channel 

composed by two subunits (5-HT3A and 5-HT3B) and its receptors are classified as 

belonging to the ligand-gated ion channel superfamily (Barnes and Sharp, 1999; 

Pauwels, 2003; Nichols and Nichols, 2008) (Table 2.1). 

 

 

 

 

 

 

 

 

Figure 2.3: Scaled phylogenetic tree comparing all human serotonin receptors with bovine rhodopsin 

(BRHO) which is considered to be the primordial serotonin receptor. Results of bootstrap analysis with 100 

replications are given above the branches. The scale bar corresponds to 0.2 substitutions per position for a 

unit branch length. The tree was constructed using the most current NIH Entrez sequence for each receptor 

with CLC Free Workbench software (CLC bio, Cambridge, MA). Taken from Nichols and Nichols (2008).  
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5-HT 

receptor 

class 

5-HT1 5-HT2 5-HT3 5-HT4 5-HT5 5-HT6 5-HT7 

Subtypes 

5-HT1A, 

5-HT1B, 

5-HT1D, 

5-HT1E, 

5-HT1F 

5-HT2A, 

5-HT2B, 

5-HT2C 

5-HT3A, 

5-HT3B 
- 5-HT5A - - 

Major 

signaling 

pathways 

cAMP IP3 
Ion 

channel 
cAMP cAMP cAMP cAMP 

 

Table 2.1:  Different 5-HT receptor subtypes and major signaling pathways. Adapted from Pauwels (2003). 

 

5-HT receptors are widely distributed in the Central Nervous System (CNS) with 

some of them also present in the periphery. This widespread distribution is closely 

related with the numerous functions performed by this well-known family of 

receptors (Barnes and Sharp, 1999; Nichols and Nichols, 2008). The association of 

5-HT receptors with fundamental mechanisms related to survival of species like 

feeding, reproduction and homeostasis has already been described. In addition to 

that, their role in the regulation of mood states, cognition and memory was also 

verified. In fact, these findings have led to the study of 5-HT receptors involvement 

in psychiatric disorders (Barnes and Sharp, 1999; Nichols and Nichols, 2008) and 

the implication of some serotonin receptors in degenerative disorders has been 

demonstrated, with some serotonergic dysfunctions showing to be on the basis of 

several symptoms associated with Parkinson’s disease (Fox et al., 2009).  

5-HT receptors wide distribution in association with an extensive variety of 

functions and implications in degenerative disorders has made this GPCR family one 

of the most important classes of therapeutic targets (Nichols and Nichols, 2008). In 

fact, the search for selective agonists and antagonist has been a priority, since 

differentiation between related receptors is not an easy process (Barnes and Sharp, 

1999; Nichols and Nichols, 2008). For instance, when comparing the affinity values 

(pKi) of various ligands for 5-HT2 receptor subtypes we verify that despite some 

selective compounds have been identified as selective for one receptor subtype, the 
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differences in pKi values for the remaining receptors are not as high as we expected 

(Barnes and Sharp, 1999). 

 

2.3 Dopamine Receptors 

 

Dopamine receptors (DA-Rs) are among the most well-known receptors present 

in the Central Nervous System (CNS). Their involvement in several signaling 

pathways is already known and their association with some neurological diseases 

like Parkinson’s disease and Attention-Deficit Hyperactivity Disorder (ADHD) has 

been already verified (Vallone et al, 2000).  

Although their main location in the CNS, some receptors are also found in the 

periphery, with their presence being described in kidney and heart (Table 2.2) 

(Civelli et al., 1993; Lachowiczl and Sibley, 1997; Vallone et al., 2000).   

DA-Rs are classified as seven transmembrane domain (7TM) proteins and they 

belong to the G-protein coupled receptors superfamily. DA-Rs interaction with 

heterotrimeric G proteins leads to the activation of adenylyl cyclase (AC) that is 

responsible for increasing or decreasing cyclic AMP (cAMP) intracellular levels. 

Moreover, DA-Rs are also involved in the activation of additional pathways like 

stimulation and inhibition of Ca2+ and K+ currents and modulation of arachidonic 

acid (AA) synthesis (Civelli et al., 1993; Vallone et al, 2000).  

Five different DA-Rs were discovered and subdivided, based on their structural, 

pharmacological and functional similarities, into two distinct subfamilies: the D1-

like subfamily and the D2-like subfamily. The main reason which led to this initial 

separation was the different role played by each receptor in the regulation of the 

cAMP pathway. While D1-like subtype receptors are positive regulators of cAMP 

levels, D2-like subtype receptors are responsible for the inhibition of adenylyl 

cyclase and subsequently for decreasing cAMP intracellular levels.  

The D1-like subfamily includes the D1 and D5 receptors, while the D2-like 

subfamily comprises the D2, D3 and D4 receptors (Table 2.2) (Civelli et al., 1993; 

Lachowiczl and Sibley, 1997; Vallone et al., 2000). 
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Receptor 

subfamily 
D1 – like D2 – like 

Receptor 

subtype 
D1 D5 D2 D3 D4 

Amino acids 446 477 414/443 * 400 387 

Introns in ORF No No Yes Yes Yes 

Effector 

pathways 
cAMP cAMP 

    cAMP 

     K+ channel 

   Ca2+ channel 

K+ channel 

 

Ca2+ channel  

cAMP 

 

 

Distribution 

Caudate 

putamen 

Nucleus 

accumbens 

Hippocampus 

Kidney 

Caudate 

putamen 

Nucleus 

accumbens 

Nucleus 

accumbens 

Hypothalamus 

Frontal 

cortex 

Heart 

 

Table 2.2: Properties of cloned dopamine receptor subtypes. Adapted from Lachowicz and Sibley (1997). 

 

Despite dopaminergic ligands being easily distinguished between D1-like 

ligands and D2-like ligands, their discrimination as selective ligands to the different 

subfamilies members is a more complex process. For instance, when comparing 

binding affinities of several compounds for D1 and D5 receptors we verify that 

differences in the affinity values are minimal and in some cases even inexistent. A 

more heterogeneous scenery is found when comparing compounds affinities for 

each of the D2-like subfamily members, with some compounds showing evident 

differences in their affinity values for different receptors, while for other 

compounds the identification of a target receptor is a harder process (Vallone et al., 

2000). 

 

2.4 Data Mining and Machine Learning 

 

Data mining has emerged to deal with huge datasets, extracting from them 

patterns and relationships (Hand et al., 2001). In this field, machine learning 

algorithms are being used to discover knowledge from this large amount of 

information. These methods are based on the construction of algorithms that can 
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learn from and data and make predictions on it. They can be classified as supervised 

or unsupervised learning methods. Supervised approaches assume that training 

examples are labeled by class labels, while unsupervised ones use unclassified 

examples (Mitchell, 1997). Machine learning has been of great importance in 

bioinformatics field, especially the supervised learning approaches. They have been 

used in genomics, proteomics, microarrays, systems biology, evolution and text 

mining (Larrañaga et al., 2006). Although some of these techniques have become 

more popular than others, like artificial neural networks, support vector machines, 

Markov models, decision trees and random forests (Jensen and Bateman, 2011), 

other approaches have been also used with good results, like the Bayesian classifiers 

(Chinnasamy et al., 2005; Wang et al., 2007).  

 

2.4.1 Naïve Bayes Classifier 

 

Naïve Bayes Classifier is a supervised machine learning method based on 

applying Bayes’ Theorem with the assumption of conditional independence 

between features (Figure 2.4). It is the simplest Bayesian classifier and it is applied 

as a conditional probability model to assign class labels to problem instances. For 

that, the model involves a learning step in which the conditional probabilities are 

estimated, counting the frequency of various data combinations within the training 

set. After this training step in a supervised learning setting, the model is then used 

to classify problem instances. Each instance is described by a combination of 

attribute values. When a new sample is presented, its attributes are used to classify 

it by obtaining the product of the probabilities for the individual features (Mitchel, 

1997; Hand et al., 2001).  

Naïve Bayes is distinguished from other supervised learning methods by its 

assumption of independence between features. However, it has proved its 

usefulness as machine learning method in bioinformatics and chemoinformatics 

studies, performing well when predicting coupling between transmembrane 

domain receptors and G-proteins (Cao et al., 2003) and also in the prediction of 

heterodimeric protein complexes (Maruyama, 2013).  
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Figure 2.4: Structure of a Naïve Bayes Model. 

 

2.5 Molecular Similarity 

 

Similarity between molecules can be obtained based on chemical similarity, 

pharmacological similarity, therapeutic similarity and drug-drug interaction 

similarity (Mousavian and Masoudi-Nejad, 2014). 

 Chemical-based similarity takes into account the size of the shared 

substructures between two molecules and use that information to obtain a 

similarity measure, which can be done using 2D or 3D representations of the 

compounds (Nettles, 2006).    Pharmacological-based similarity is computed by 

encoding each molecule in a binary vector, in which each element represents a 

pharmacological keyword. After, a correlation coefficient between vectors is 

calculated and the obtained value represents the similarity score (Yamanishi et al., 

2010). Alternatively, pharmacological-based similarity can be obtained by 

comparing the number of shared side effects between compounds (Kim et al., 2013). 

The therapeutic-based similarity uses a hierarchical drug classification system, the 

Anatomical Therapeutical Chemical (ATC), to classify each drug with an ATC term 

and measures the similarity between compounds based on their corresponding ATC 

terms (Skrbo et al., 2004). At last, the drug-drug interaction-based similarity uses a 

drug-drug interaction network to obtain the similarity between two drugs, 

calculating the shortest distance between them or obtaining it from the direct 

interaction between the two compounds (Kim et al., 2013). 

In addition to these similarity methods, other studies have used similarity based 

on features to compare different compounds. For that, each drug-target pair is 

represented as a vector of descriptors. In these methods, a set of features represent 

different properties of drugs and targets and allow drug-target interactions (DTIs) 

prediction by using the most discriminative descriptors (Cao et al., 2012). Each drug, 
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target or drug-target pair is characterized as a fixed-length vector representing the 

set of chosen features and this information is then used to infer DTIs in the genome 

scale (Mousavian and Masoudi-Nejad, 2014). Fingerprints are among the most used 

descriptors with the 2D structure of compounds being converted in a vector of bits 

by encoding (hashing) the presence or absence of a defined list of molecular 

substructures (Kuhn et al., 2008).  

 

 

2.5.1 NAMS 

 

Non-contiguous Atom Matching Structural Similarity (NAMS) is a method used 

to obtain the structural similarity between molecules through atom alignment. In 

this method, an annotated molecular graph is created and an optimal atom 

alignment using pairwise matching algorithms is used to obtain the similarity 

measure between two molecules by comparing the bonding profiles of their atoms. 

For that, they are taken into account not only the topological profiles of molecules 

but also their atoms and bonds characteristics.  Despite of a higher computational 

cost, this method has showed good results when distinguishing either different or 

very similar compounds, performing better than other most used similarity 

methods like the Fingerprint-based ones (Teixeira and Falcão, 2013).  

 

2.6 Related Work 

 

Target-based methods and ligand-based methods are two distinct in silico 

approaches that have been widely used in drug-target interaction (DTI) prediction 

studies. Target-based methods or docking simulation relies on receptors 

conformations and molecules chemical structures matches to predict DTIs. For that, 

a knowledge of target proteins’ three dimensional conformations is required. 

However, this is not always possible once that little information about crystallized 

receptors is available. For instance, only a few number of GPCRs have already their 

structural conformation totally described (Ballesteros and Palczewski, 2001; 
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Klabunde and Hessler, 2002). Moreover, this type of simulation has shown not only 

to be time-consuming but also to require a lot of computational resources (Ding et 

al., 2013). Despite docking strategies be powerful tools resulting in strong DTI 

predictions their applicability in a large-scale context is compromised by the 

existence of such limitations. 

Contrariwise, ligand-based methods apply learning-based methods to DTI 

prediction by comparing a new ligand to known ligands of a target receptor. 

Contrarily to docking simulation, these approaches do not need a previous 

knowledge on proteins’ three-dimensional (3D) structures to predict new 

interactions and can be applied even when we do not have information about the 

structural conformation of target receptors. On the other hand, ligand-based 

methods can be compromised by small numbers of known ligands once that it will 

result in inaccurate predictions (Mousavian and Masoudi-Nejad, 2014).  

In this context, learning-based methods can be categorized into supervised and 

semi-supervised methods, with supervised learning methods subdivided into 

similarity-based methods and feature-based methods (Mousavian and Masoudi-

Nejad, 2014). Supervised methods infer a model based on labeled training data and 

use it to infer true labels for unknown instances. For that, both known and unknown 

interactions between drugs and targets are considered as positive and negative 

samples, respectively (Cao et al., 2014). However, the selection of unknown 

interactions as negative samples is taken as an inherent limitation since one does 

not know which of them represent in fact true interactions (Ding et al., 2013). In 

order to face this problem, semi-supervised methods have been applied by using a 

small number of labeled data in conjunction with numerous unlabeled data 

(Mousavian and Masoudi-Nejad, 2014).  

The underlying idea of learning-based methods is that similar drugs are likely to 

interact with similar receptors and DTIs prediction can be performed by using 

similarities among drugs, target receptors or both. 

Many studies have been integrating different types of information in order to 

construct more robust DTIs prediction models. A method using a support vector 

machine algorithm based on chemical-based similarity for ligands and sequence-

based similarity for proteins has been proposed by Jacob et al. (Jacob and Vert, 

2008). A different approach adopted by Yamanishi et al. uses target sequences, drug 
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chemical structures and the topology of a drug-target network not only to identify 

possible drug-target interactions but also to investigate which features become 

more relevant in DTIs prediction studies. For that, the authors have used a new 

method, the bipartite graph learning method (Yamanishi et al., 2008). In another 

study, Yamanishi et al. proposed the use of an algorithm based on distance learning 

to investigate the relationship between the chemical space, the pharmacological 

space and the topology of drug-target network. The authors have showed that 

chemical structure similarity is less correlated with DTIs than pharmacological 

similarity (Yamanishi et al., 2010). Another study using a kernel-based method and 

the information on therapeutic and pharmacological data have been proposed by 

Wang et al. (Wang et al., 2011). More recently, a new approach integrating 

functional data with chemical data, genomic data, pharmacological data, and the 

topology of interaction networks has been developed by Yang et al.. In this study the 

authors have presented a probabilistic graphical model to more accurately predict 

missing interactions between drugs and targets (Yang et al., 2014). 
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3. Material and Methods  
 

3.1 Tools 

 

The data relative to receptors’ binding molecules and their bioactivity values 

were obtained by using the Python v.2.7.6 programming language through the use 

of math, bioservices and numpy libraries (Cokelaer et al., 2013; van der Walt et al., 

2011).  

All the analyses were performed using R v.3.2.1 programming language with the 

R studio as main interface. Moreover, all the graphics and tables present in this study 

were designed by using the available R tools.  

 

3.2 Data Collection and Processing 

 

All the data used in this study was collected from ChEMBL and Uniprot 

databases. First, a search for all the  Serotonin and Dopamine receptors from human 

(Homo sapiens) was carried out and only those present at ChEMBL and for which 

binding molecules affinities information, in the form of inhibitory constant (Ki), was 

available were included in the dataset. In total, we ended with a dataset with 14 

different serotonin receptors and 5 different dopamine receptors. For 5-HT3B 

serotonin receptor only 4 molecules binding affinities records for human were 

collected. Due to its lack of binding molecules information it was considered as part 

of the dataset but it was excluded from some posterior analysis.  

In order to handle with outliers, a correction step was applied to records, from 

different studies, showing different binding affinity levels for the same receptor-

molecule pair. For each case the following process was performed: (i) the mean and 

standard deviation for the registered values were calculated; (ii) all the values above 

or under the mean plus two times the standard deviation were excluded from the 

records; (iii) a new mean was calculated using only the remaining values and it was 
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used as the final receptor-molecule pair binding affinity value. In total, we ended 

with 22690 receptor-molecule records corresponding to 11341 different molecules. 

After, all the Ki values were converted into scaled pKi (spKi) values according to 

the following rules: 

 

If Ki >= 10000, spKi = 0  

If 10000 > Ki > 1, spKi = 
4 – log10 (Ki)

4
 

If 1 ≥ Ki, spKi = 1 

(1) 

where Ki is the inhibitory constant and spKi represents the scaled pKi. 

 

 3.3 Evolutionary Analysis 

 

In total, 14 protein sequences of distinct serotonin receptors (5-HT1A, 5-HT1B, 5-

HT1D, 5-HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3A, 5-HT3B, 5-HT4, 5-HT5A, 5-HT6 

and 5-HT7) belonging to 7 different subfamilies and 5 different ones of dopamine 

receptors (D1, D2, D3, D4 and D5) belonging to the 2 existing subfamilies were 

collected from Uniprot in FASTA format. After, a ClustalW multiple alignment was 

carried out between all the protein sequences. With the obtained alignment a 

phylogenetic Neighbor-Joining Phylogenetic Tree was constructed using MEGA 

version 6 (Tamura et al., 2013).  

A sequence identity matrix was obtained using the same 19 protein sequences 

previously collected. For this purpose, the seqinr R package was used to read the 

ClustalW multiple alignment in FASTA format, comparing pairs of sequences and 

calculating their sequence identity value, scaled between 0 (no sequence identity) 

and 1 (total sequence identity)(Charif and Lobry, 2007). For a better visualization 

of the obtained results, a colour matrix integrating all the information was 

generated.  
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 3.4 Molecular Similarity 

 

The NAMS Webtool was used to obtain the structural similarities between the 

11341 unique molecules based on the structural/topological relationships of their 

atoms. As way to reduce the required computational time of this process only  

molecules with less than 50% of difference between their molecular weights were 

compared since we expect that molecules with great differences in their molecular 

weight may not to be sufficiently similar to become relevant in our study.  

 

 3.5 The Probabilistic Model 

 

The 11341 unique molecules were subdivided into validation set, with 2000 

molecules, and training set, comprising the remaining 9341 molecules. Validation 

molecules were randomly selected from the set of all molecules and their records 

were removed from the receptors’ original data files. Probabilistic models were 

constructed and trained with the training set molecules. 

 

3.5.1 Receptors Database 

 

Taken into account only the information relative to shared binding molecules 

between receptors and their respective bioactivity levels we have constructed a 

database storing the conditional probabilities of a certain molecule bind to a 

receptor given its active behavior towards other receptors. These probabilities were 

obtained for each pair of receptors by calculating the proportion between the 

number of active molecules for the first receptor which are also active for the second 

receptor and the total number of active molecules for the second receptor.  

A second database was constructed to store the same probabilities but 

considering a non-active behavior for the second receptor. For that, the probabilities 

were calculated as the proportion between the number of active molecules for the 

first receptor which are non-actives for the second receptor and the total number of 

non-active molecules for the second receptor. 
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3.5.2 Kernels Selection 

 

For each receptor a group of molecules from the training set was selected to 

represent kernel molecules due its discriminant role among all the molecules. Thus, 

kernels are expected to represent structurally distinct active molecules for a given 

receptor. The selection was made for each receptor according to the following 

process: 

1. The molecules with spKi value under 0.1 are discarded; 

2. The molecule with the highest spKi value is selected as the first kernel; 

3. Structural similarities between the selected kernel and all the other 

molecules are computed by NAMS; 

4. Molecules with similarities above 0.6 to the selected kernel are discarded; 

5. The molecule with the highest spKi value among the remaining molecules is 

selected as the new kernel; 

6. Return to point 3 and end when there are no more molecules. 

In total, they were selected 807 distinct kernel molecules with some of them 

being selected as kernel for more than one receptor. The D2 dopamine receptor 

registered the highest number of kernels with 143 selected molecules. Otherwise, 

5-HT1E, 5-HT1F and 5-HT3B serotonin receptors showed the lowest numbers of 

kernels with only 5, 4, and 3 molecules being selected, respectively.  

 

3.5.3 Kernels Database 

 

All the binding molecules for each receptor were compared with the selected 

kernels for the respective receptors and they were grouped in a database based on 

their spKi values for the receptor and their similarity to the kernels. For that,  

molecules were subdivided into actives, with spKi > 0.1, and less actives, with  spKi 

<= 0.1, and they were classified according to their similarity to each kernel as S1, if 

they showed less than 60% of similarity, S2, if they showed between 60% and 80% 
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of similarity, or S3, if they had more than 80% of similarity to the kernel. This 

information was stored in a database as counts, which are on the basis of the 

probabilities used later during the classification process using the Naïve Bayes 

classifier.  

 

3.5.4 Algorithm Implementation 

 

We have developed three different models in order to predict drug-target 

interactions. The first model uses obtained information on structural similarities 

between molecules and their binding affinities to receptors. The second model is 

based on co-activity data between receptors and the third model was constructed 

as a combination of the first two models.  

 

3.5.4.1 Molecular Similarity vs Bioactivity Levels 

 

The first approach takes advantage on the information from structural similarity 

between molecules and their bioactivity values for the target receptors to compute 

the binding probability between a molecule and a receptor. The following process is 

applied to each molecule in order to predict its behavior with respect to the 

considered receptors: 

1. The structural similarity between the molecule in test and all kernels is 

computed by NAMS; 

2. Kernels with more than 50% of similarity to the test molecule are selected; 

3. The selected kernels are grouped according to their respective receptors. 

They are selected for test the receptors for which at least 3 kernels were 

selected; 

4. For each receptor under test, molecule binding probability is calculated 

based on a Naïve Bayes method using the structural similarities to the 

selected kernels as features: 
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I. For each kernel, the level of similarity to the test molecule is classified 

as S1, S2 or S3 (similarity under 60%, between 60% and 80% or more 

than 80%, respectively); 

II. The conditional probability of the test molecule having the specified 

level of similarity to the kernel given an active behavior is calculated 

using the counts stored in the kernels database:
 
 

P(Sk = Sl | A) =
number of active molecules to R with Sk = Sl

Total of active molecules to R  

(2) 

where Sl is the level of similarity to the kernel Sk, A represents an 

active behavior and R is the receptor under test.  

 

III.  The same process is applied to obtain the conditional probability 

given an non-active behavior: 

 

P(Sk = Sl | NA) =
number of non-active molecules to R with Sk = Sl

Total of non-active molecules to R
  

(3) 

where Sl is the level of similarity to the kernel Sk, NA represents an 

non-active behavior and R is the receptor under test.  

IV. The conditional probabilities for each kernel given an active behavior 

are multiplied as independent events to obtain the probability of the 

test molecule being active for the given receptor: 

𝑃(𝐴) =  ∏ P(Sk = Sl | A)

𝑛

𝑖=1

 

(4) 

where P(A) is the probability of the test molecule being active and n 

represents the number of kernels for which they were obtained the 

conditional probabilities in equation 2. 

V. The conditional probabilities given a non-active behavior are also 

multiplied to achieve the probability of the test molecule being non-

active for the same receptor: 
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𝑃(𝑁𝐴) =  ∏ P(Sk = Sl | NA)

𝑛

𝑖=1

 

(5) 

where P(NA) is the probability of the test molecule being non-active 

and n represents the number of kernels for which they were obtained 

the conditional probabilities in equation 3. 

 

VI. In order to adjust the final probabilities both are individually divided 

by the total of their sum. 

 

3.5.4.2 Integrating Receptors Information 

 

 In an attempt to improve the model based uniquely on molecules similarity 

and bioactivity levels, the information relative to shared receptors was also 

integrated according to the following procedure: 

1. For each molecule, they are selected the receptors for which there is previous 

knowledge about the molecule binding behavior.  This information is 

obtained by consulting real data.  

2. For each receptor in test during the classification process, the information 

relative to other receptors is included. Depending on the molecule behavior, 

one of the following proceedings is applied: 

I. If the molecule is active for other receptor, the conditional probability 

of the molecule being active or non-active to the receptor in test given 

its active behavior for other receptor is extracted from the receptors 

database: 

𝑃(AR1) =  ∏  P(AR1|AR2)

𝑎

𝑖=1

 

(6) 



Material and Methods | 26 

 

 
 

𝑃(NAR1) =  ∏  P(NAR1|AR2)

𝑎

𝑖=1

 

(7) 

where P(AR1) and P(NAR1) represent, respectively, the probability of 

the test molecule being active and non-active to a receptor R1 as the 

product of the conditional probabilities of being active and non-active 

for R1 given being active for other receptor R2. a represents the 

number of receptors for which it is known the test molecule is active.  

II. If the molecule is non-active for other receptor, the same proceeding 

is applied but this time extracting the probability of the molecule to 

be active or non-active to the receptor in test given its non-active 

behavior for other receptor: 

𝑃(AR1) =  ∏  P(AR1|NAR2)

𝑛𝑎

𝑖=1

 

(8) 

𝑃(NAR1) =  ∏  P(NAR1|NAR2)

𝑛𝑎

𝑖=1

 

(9) 

where P(AR1) and P(NAR1) represent, respectively, the probability of 

the test molecule being active and non-active to a receptor R1 as the 

product of the conditional probabilities of being active and non-active 

for R1 given being non-active for other receptor R2. na represents the 

number of receptors for which it is known the test molecule is non-

active.  

3. In the end, the final probabilities of the test molecule to be active or non-

active to a certain receptor are given by multiplying the probabilities 

obtained through the kernel molecules (eqs 4 and 5) by the probabilities 

based on the molecule binding behavior with other receptors (eqs 6, 7, 8 and 

9): 
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𝑃(AR1) =  ∏ P(Sk = Sl | AR1) × ∏ P(AR1|AR2)× ∏ P(AR1|NAR2)

na

i=1

a

i=1

𝑛

𝑖=1

 

(10) 

𝑃(NAR1) =  ∏ P(Sk = Sl | NAR1) × ∏ P(NAR1|AR2)

a

j=1

𝑛

𝑗=1

× ∏ P(NAR1|NAR2)

na

j=1

 

(11) 

where P(AR1)  and P(NAR1)  are the probabilities of the test molecule being 

active and non-active for a receptor R1 as the product of equations 4, 6, and 

8 and 5, 7, and 9, respectively. 

 

4. In order to adjust the final probabilities both are individually divided by the 

total of their sum. 

  

3.5.4.3 Receptors Role during Classification Process 

 

To better understand the impact of including information on known receptors 

during classification process, a new approach comprising only this kind of 

information was developed. For each test molecule, they were used only the 

conditional probabilities from the receptors database, depending on the molecule 

behavior with respect to other receptors, as previously described (eqs 6 – 9).  

Subsequently, the final probabilities of one molecule to be active or non-active to a 

receptor in test are obtained by multiplying only these probabilities as independent 

events. 

 

3.5.5 Classification Process 

 

Initially, it was defined a threshold of 50% to classify a molecule as active or 

non-active for a given receptor, which means that if a molecule has a final probability 

of being active above 0.5 it can be considered as active for the receptor under study. 

In opposition, a probability under 0.5 allows its classification as non-active.  
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Afterward, using the training set classification results, they were calculated the 

False Positive and False Negative rates, for each receptor, which were plotted as a 

function of the used classification thresholds. The used thresholds varied between 

0% and 100% with an increment of 1%. Subsequently, it was selected, for each 

receptor, the threshold value for which the number of False Positives and Negatives 

were smaller and it was used as a new classification threshold.  

 

3.6 Validation  

 

Validation process was performed by classifying the 2000 molecules from the 

validation set.  The classified molecules for each receptor were grouped and 

classified as True Positives (TP), True Negatives (TN), False Positives (FP) or False 

Negatives (FN) according to the real data. 

 

3.7 Results Analysis  

The validation results were analyzed by receptor through a confusion matrix. 

Moreover, Precision-Recall and ROC curves were also plotted for information on the 

quality of the model for each receptor.  Both curves were obtained by varying the 

threshold used during the classification process.  

For the Precision-Recall curve the values of Precision and Recall (or Sensitivity) 

were calculated as 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  and 

𝑇𝑃

𝑇𝑃+𝐹𝑁
, respectively. For the ROC curve they were used 

the False Negative rate,
𝐹𝑁

𝐹𝑁+𝑇𝑃
, and the False Positive rate, 

𝐹𝑃

𝐹𝑃+𝑇𝑁
 (Hand et al., 2001).  

In order to classify models performances they were also used specificity,
𝑇𝑁

𝑇𝑁+𝐹𝑃
 , and 

accuracy, 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, values (Powers, 2011). 
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4. Results and Discussion 
 

4.1 Data Analysis 

 

For the 19 Serotonin and Dopamine receptors, it was collected a total of 22690 

receptor-molecule interactions records, corresponding to 11341 different 

molecules (see Appendix). D2 receptor registered the highest number of measured 

Kis with information for a total of 4634 molecules. In opposition, 5-HT1E, 5-HT1F and 

5-HT3B serotonin receptors recorded the smallest numbers of records with only 86, 

99 and 4 molecules’ binding affinities being collected (Figure 4.1). Little information 

for the 5-HT3B serotonin receptor was expected once that it represents only a 5-HT3 

receptor subunit (Nichols and Nichols, 2008). For this reason, it was excluded from 

the majority of the analysis. 

 

Figure 4.1: Number of molecular binding affinities measured by receptor. Data collected from ChEMBL 

database. 

Through the observation of Ki values distribution, we have identified the 

presence of 4 peaks (around 1, 1000, 5000 and 10000 values) (Figure 4.2). We 

believe this occurrence is due to different criteria used during competitive 

radioligand binding studies. The interest in a specific molecule can vary with its 

binding affinity value once that smaller affinity values correspond to more active 

compounds. Therefore, when considering a threshold Ki value to distinguish 

between relevant and not so relevant compounds, different criteria can be used by 

different groups and during different studies. For this reason, we think these peak 
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values correspond to 4 different thresholds. In fact, this can be a problem since we 

cannot know which values correspond to real Ki values and which ones are 

underestimates of the real values.  

In this study, we have considered a threshold of Ki = 5000, whenever it was 

required. With respect to spKi values, we have choosed a value of 0.1 (Ki = 3981). 

We consider these values a threshold to distinguish between active and non-active 

compounds. 

 

Figure 4.2: Ki values distribution. 

Considering the same graphic, we can also observe a much higher quantity of Ki 

values under 1000, which indicates an overrepresentation of active molecules in our 

records. This occurrence is not a surprise once that our data comes from real studies 

and most of them tend to test molecules for which the suspicion of activity exists, 

either by being related to other active molecules or because they have already been 

tested for other similar receptors.  

This overrepresentation can also be verified when observing the mean Ki and 

spKi values by receptor (Figures 4.3 and 4.4). With the exception of the 5-HT1E 

serotonin receptor, all receptors have a mean Ki value under 5000 and a spKi value 

above 0.1. This overrepresentation is taken into account during the models 

implementation and posterior validation. 
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Figure 4.3: Mean Ki values by receptor. 

 

Figure 4.4: Mean spKi values by receptor. 

 

When analyzing the structural similarity values obtained through a pairwise 

comparison for all molecules present in our dataset, we verify that the majority of 

our similarity values are around 0.4914, which means that a large part of our 

compounds have about 50% of structural similarity to other compounds (Figure 

4.5). In order to confirm the accuracy of these data, we have observed the 

distribution of 4950 structural similarity values obtained through the comparison 

of 100 molecules randomly selected from ChEMBL. What we found in this case was 

the majority of similarity values distributed around 40% (Figure 4.5).  

We consider that the presence of a higher number of structurally similar 

molecules in our dataset is associated with the overrepresentation of active 

molecules. Following the assumption that similar compounds can share similar 

binding behaviors, we believe that a part of the many active molecules present in 

our dataset correspond to structurally similar compounds. This result highlights 

once more the presence of a bias in our data. 
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Figure 4.5: Comparison between the distributions of 5000 structural similarity values obtained through the 

comparison of dataset molecules and 4950 structural similarity values obtained through the comparison of 100 

molecules randomly selected from ChEMBL database. Structural similarity values were obtained by using NAMS. 

 

4.2 Evolutionary Analysis 

 

A Neighbor-Joining phylogenetic tree and a sequence identity matrix allow to 

infer relationships between the serotonin and dopamine receptors under study. At 

first sight we can see that receptors are grouped by subfamily, as expected. 

However, they are notable the similarities of sequence between receptors not only 

from different subfamilies but also from distinct receptor families (Figure 4.6, A and 

B). Three pairs of receptors (5-HT1D and 5-HT1B, 5-HT2C and D1, and D3 and D4) were 

selected in order to infer a relation between their sequences similarity and the 

affinity values of their common binding molecules.   
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Are molecular’ binding affinities related with sequence similarity between 

receptors? 

When using a Spearman coefficient to compare binding profiles for the common 

molecules between pairs of receptors, we have found different patterns. For 

instance, some pairs have shown a high value of correlation between their molecules 

binding patterns e.g. (D1 and D5, ρ = 0.8637), while others have revealed almost a 

total independence between their molecules behaviors e.g. (D3 and D4, ρ = 0.1558). 

Considering the first case, we can think the high spearman coefficient value is 

related with the fact of both receptors belong to the same subfamily. This can be 

true. However, when analyzing the second case, despite both receptors belong to the 

same subfamily, an almost independent behavior was found between their 

molecules’ binding profiles. These results show that molecules not always have 

similar binding behaviors even when considering evolutionary closed receptors. 

This conclusion is not a surprise since molecules have evolved to be receptor-

specific. 

Even so, we have tried to relate the levels of similarity between molecules’ 

binding behaviors and their receptors’ protein sequences. As result, we have found 

Figure 4.6. A) Neighbor-Joining phylogenetic tree for Serotonin and Dopamine receptors. B) Sequence 

identity matrix for Serotonin and Dopamine receptors, where yellow (0.0) means “0% of sequence identity” 

and blue (1.0) means “100% of sequence identity”. The green, pink and red colours identify three pairs of 

analyzed receptors. 
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three distinct cases, corresponding to the three pairs of receptors previously 

identified (Figure 4.6).  

For 5-HT1B and 5-HT1D serotonin receptors, we have found a strong relation 

between their molecules’ binding affinities and their sequences similarity (Figure 

4.7, A1). This would be considered as a normal case since it represents evolutionary 

closed receptors. When analyzing the results for the 5-HT2c and D1 receptors we 

have identified a strong relation between their molecules’ binding behaviors, which 

do not have association with the level of similarity between receptors’ protein 

sequences (Figure 4.7, A2). At last, for the two closely related receptors, D3 and D4, 

no relevant relation was found between their molecules’ binding profiles, which 

have already been noticed before (Figure 4.7, A3). 

Together, these results show that, contrary to what would be desired, no 

significant relationship exists between proteins sequences similarity and molecular 

binding patterns. 
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Figure 4.7: A) Relation between Sequence Identity and Spearman Coefficient (ρ) for molecules’ binding affinities 

from each pair of pairwise compared receptors. Only the significant Spearman coefficient values were plotted. 

The different colours refer to the receptors pairs identified in Figure 4.6. A1) Biactivity values (spKi) 

representation for the same binding molecules from 5-HT1b and 5-HT1d. A2)  Biactivity values (spKi) 

representation for the same binding molecules from 5-HT2c and D1. A3) Biactivity values (spKi) representation 

for the same binding molecules from D3 and D4. Pink dotted lines: fitted line. Green dotted bounds: confidence 

interval. Red dotted bounds: Prediction interval. 

4.3 Kernels Selection 

 

A total of 807 distinct molecules were selected due their discriminant nature as 

kernel molecules (see Material and Methods, section 3.5.2). From these, 308 were 

selected as kernel molecules for more than one receptor, which means they have 
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high binding affinities for more than one receptor. Possibly, this happens as 

consequence of similar receptors or as a result of a low binding specificity of these 

molecules. The D2 dopamine receptor has registered the highest number of kernels 

with 143 selected molecules, which makes sense since it is the receptor with the 

highest number of records. Otherwise, 5-HT1E, 5-HT1F and 5-HT3B serotonin 

receptors have shown the lowest numbers of  kernels with only 5, 4, and 3 molecules 

being selected, respectively (Figure 4.8).  

 

 

Figure 4.8: Number of selected kernel molecules by receptor. 

 

Analyzing the distribution of the similarity values between kernels and also 

their bioactivity values for the respective receptors, we verify that the majority of 

the selected kernels have values of similarity between them around 0.43 and their 

Ki values are near 59.35. These results confirm that our selection of kernels fulfills 

the criterion of being distinct active molecules for each receptor (Figures 4.9 and 

4.10).  
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Figure 4.9: Distribution of kernel molecules Ki values. The Ki values were obtained for the respective receptors. 

 

Figure 4.10: Distribution of structural similarities between kernels. The structural similarities were obtained 

by using NAMS. 

 

4.4 Validation Results 

 

After classification of the 2000 molecules from the validation set, they were only 

considered for validation analysis the receptors for which they were classified at 

least 15 molecules. Due this criterion, they were excluded from validation analysis 

of Similarity vs Bioactivity levels (SvsBl) model the 5-HT1E, 5-HT1F, 5-HT3A, 5-HT3B, 

5-HT4, and 5-HT5A serotonin receptors. 
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The classified molecules for each receptor were grouped as True Positives (TP), 

True Negatives (TN), False Positives (FP) or False Negatives (FN) according to real 

information.   

 

4.4.1 Models Performances 

 

First model, considering only molecules’ structural similarities and bioactivity 

levels (SvsBl model), has shown a mean percentage of correctly classified molecules 

(TP + TN) around 80.59%.  

5-HT1D serotonin receptor has recorded the highest number of correctly 

classified molecules, with the model obtaining an accuracy of 92%. In contrast, the 

smallest number of true predictions was recorded by 5-HT2C serotonin receptor, for 

which the model has registered an accuracy value of 62.22% (Figure 4.11). Taking 

into account the results for all receptors, the model has registered an overall 

accuracy of 77.37%. For the sensitivity (hit rate or recall), specificity (true negative 

rate) and precision (positive predictive value), they were obtained values of 

78.93%, 62.76% and 95.21%, respectively (Table 4.1). 

 

 

Figure 4.11: Accuracy of Similarity vs Bioactivity levels (SvsBl) model for each receptor. 

 

Considering the model including only the information relative to shared 

receptors (R model), the mean percentage of correctly classified molecules was 
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around 87.17%, 6.58% more than when using only the information relative to 

molecular similarity and bioactivity levels.  

The highest level of accuracy was obtained for the 5-HT1B serotonin receptor 

(93.10%), while the D5 dopamine receptor has registered the smallest number of 

correctly classified molecules (80.43%) (Figure 4.12). 

At overall level, R model has obtained an accuracy of 89.05%, 11.68% more than 

SvsBl model. Its values of sensitivity, specificity and precision were 98.45%, 31.4% 

and 89.8%, respectively (Table 4.1). 

 

 

Figure 4.12: Accuracy of Receptors (R) model for each receptor. 

 

After integrating information relative to structural similarity between 

molecules, bioactivity levels and shared receptors (SvsBl+R model), the mean 

percentage of correctly classified molecules was around 90.39%.  

The receptor for which this model has registered the highest accuracy level was 

the 5-HT6 serotonin receptor with 97.44% of the molecules correctly classified. For 

the D5 dopamine receptor it was registered the smallest number of correctly 

classified molecules (84.21%), which also happened when using only the 

information relative to shared receptors (Figure 4.13). 

Analyzing the overall performance after integrate both SvsBl and R models, it 

was achieved a global accuracy level of 90.36%, while sensitivity, specificity and 

precision registered values of 95.54%, 41.84% and 93.90%, respectively (Table 4.1).  
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Figure 4.13: Accuracy of Similarity vs Bioactivity levels plus Receptors (SvsBl+R) model for each receptor. 

 

4.4.2 Comparing Models Performances 

 

Comparing the performances of the three models by receptor, we can conclude 

that Similarity vs Bioactivity levels plus Receptors (SvsBl+R) model has achieved 

the best results, with accuracy levels being increased for almost all the receptors. 

The 5-HT1A and 5-HT2B serotonin receptors and the D2 and D3 dopamine receptors 

were the exception, with Receptors (R) model achieving higher accuracy values for 

these cases. At global level, Similarity vs Bioactivity levels (SvsBl) model has 

obtained the worst performance, overcoming R model results for only 3 receptors 

(5-HT1D, 5-HT6 and D1) (Figure 4.14). 
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Figure 4.14: Comparison of accuracy levels for each receptor and applied model. SvsBl: Similarity vs Bioactivity 

levels model; R: Receptors model; SvsBl+R: Similarity vs Bioactivity levels plus Receptors model. 

SvsBl model has registered the lowest sensitivity value due to a higher quantity 

of False Negatives (FN), when compared with the other models. However, it has also 

achieved the highest values of specificity and precision, showing to be the model 

with the highest proportion of correctly identified negatives and also with the 

largest proportion of positives that correspond to true observations (Table 4.1). 

Based on these results, the SvsBl model appears to be the most conservative one. 

The highest sensitivity value (98.45%) was registered by the R model, which 

means it had the best performance in identifying True Positives (TP) from all the 

true observations. This result is associated with a decreasing in the number of False 

Negatives (FN). However, a classic trade-off is observed since the reduction in the 

number of FN was accompanied by an increasing in the number of False Positives 

(FP). This increase in the number of FP has resulted in the smallest values of 

specificity and precision for R model (Table 4.1). This higher number of FP can be 

associated with the bias present in our dataset since the overrepresentation of 

active molecules for each receptor may have led to the overestimation of the 

conditional probabilities on the basis of this model. 

The SvsBl+R model registered the highest accuracy level (90.36%), followed by 

R model (89.05%) and SvsBl model (77.37%). Results show that the joint model  

obtained intermediate values of sensitivity, specificity and precision when 

compared with the individual ones. These values can be explained by the 

contribution of both SvsBl and R models to the final results (Table 4.1). The number 
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of FN is reduced due to integration of information relative to shared receptors, while 

the decrease in the number of FP is associated with the integration of information 

on molecules’ structural similarities and their bioactivity levels. 

 

 Accuracy Sensitivity Specificity Precision 

SvsBl  77.37% 78.93% 62.76% 95.21% 

R  89.05% 98.45% 31.4% 89.8% 

SvsBl + R  90.36% 95.54% 41.84% 93.90% 

 

Table 4.1: Overall values of accuracy, sensitivity, specificity and precision for the proposed models. SvsBl: 

Similarity vs Bioactivity levels model; R: Receptors model; SvsBl+R: Similarity vs Bioactivity levels plus 

Receptors model. 

 

At overall level, SvsBl+R model seems to be the most accurate model. Moreover, 

it appears to attenuate the trade-off between FP and FN, which improve its 

reliability as prediction model. This model would be the best option to scan a set of 

molecules and find potential candidates to be further validated in vitro.   The SvsBl 

model had more precise results and despite it produces a higher quantity of FN, it 

can be used as a conservative model to, for example, confirm new molecule-receptor 

interactions. R model must be used carefully due to the possible bias in the 

estimation of its conditional probabilities.  

 

4.4.3 Impact of Classification Threshold in Models Performance 

 

We have decided to investigate whether classification threshold influences the 

performance of the models and in which way it can vary by receptor. We expect 

more specific receptors to have higher threshold values since the probability of a 

molecule bind to them is lower, and vice-versa. With this purpose, training set 

molecules were classified by the three presented models. For each receptor and 

model, the optimum classification threshold was selected as the value for which the 

false positive and negative rates values were smaller (Table 4.2).  
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 5-HT1A 5-HT1B 5-HT1D 5-HT2A 5-HT2B 5-HT2C 5-HT6 5-HT7 D1 D2 D3 D4 D5 

SvsBl 0.55 0.82 0.9 0.64 0.64 0.15 0.99 0.73 0.54 0.58 0.4 0.95 0.84 

R 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

SvsBl+R 0.99 0.99 0.99 0.99 0.99 0.94 0.99 0.99 0.93 0.98 0.99 0.99 0.31 

 

Table 4.2: Classification thresholds obtained for each receptor-model pair, through the classification of training 

set molecules. 

 

We verified that for all the three models the results were worst after using the 

calculated classification thresholds, instead of the previously used 0.5 threshold. 

With a few exceptions, all the accuracy levels have stayed under the ones obtained 

when using the 0.5 value as classification threshold (Figure 4.15).   
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Figure 4.15: Comparison between accuracy levels for each receptor and model before and after applying the 

classification thresholds. SvsBl: Similarity vs Bioactivity levels model; R: Receptors model; SvsBl+R: Similarity 

vs Bioactivity levels plus Receptors model. SvsBl + T: Similarity vs Bioactivity levels model plus thresholds; R + 
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T: Receptors model plus thresholds; SvsBl+R+T: Similarity vs Bioactivity levels plus Receptors model plus 

thresholds. 

 

At overall level, accuracy levels for the three models have decreased with the 

variation of the classification thresholds. However, it was registered an increase in 

the specificity values (Table 4.3). This can be justified by the decreasing in the 

number of FP and, subsequently, by the increasing in the number of TN. A slightly 

increase in the values of precision was also verified, once more due to decreasing in 

the number of FP (Table 4.3). In fact, these results make sense once that after 

applying adjusted classification thresholds, we expect to increase the specificity of 

our models. 

 

 Accuracy Sensitivity Specificity Precision 

SvsBl + T 75.06% 75.56% 70.41% 95.99% 

R + T 72.05% 76.56% 41.52% 89.86% 

SvsBl + R + T 72.70% 72.84% 71.43% 95.98% 

 

Table 4.3: Overall values of accuracy, sensitivity, specificity and precision for the proposed models when 

adjusted the classification thresholds. SvsBl+T: Similarity vs Bioactivity levels model plus thresholds; R+T: 

Receptors model plus thresholds; SvsBl+R+T: Similarity vs Bioactivity levels plus Receptors model plus 

thresholds. 

 

At global level, prediction results were not much worse after applying the 

classification thresholdss. However, comparing with results when using the 0.5 

threshold value, we can verify that the performance of our models is diminished by 

the adjustment of the classification thresholds. 
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5. Conclusions and Future Perspectives 
 

In this work, we have proposed three drug-target interactions prediction 

models. First model integrates information relative to structural similarity between 

molecules and their binding affinities for known serotonin and dopamine receptors. 

Despite it has shown promising results during validation process, its greatest 

amount of false negatives makes it a more conservative model, indicated to validate 

specific drug-target interactions. It must be also referred that molecules with low 

values of structural similarity to the selected kernels cannot be classified using this 

model, which limits its spectrum of action in molecular universe. 

The second proposed model was constructed based on the information relative 

to common molecules between receptors and their binding profiles. Individually, 

this model achieved better results than the first one. However, a bias in our dataset 

due to overrepresentation of active molecules was identified and we suspect it is the 

origin of the good results presented by this model. Moreover, this model can only be 

applied to identify binding profiles of molecules for which experimentally verified 

data with respect to other receptors exists. Although this model must be used 

carefully, we believe this information can have a relevant role in the prediction of 

drug-target interactions. For this reason, we have integrated the information from 

the two initial models to construct a third model. 

Our third model, integrating all the information, has achieved the best results 

during validation process. It has shown not only to be the most accurate model but 

also the one with the best proportion between false positives and false negatives. 

We believe this model would be the best option to scan a set of molecules and find 

potential candidates to in vitro validation. Nonetheless, it must be remembered this 

model also share the limitations associated to the individual models, which reduces 

its applicability to molecular universe. 

To increase the performance of our models, we have tried to identify the best 

classification threshold for each receptor. Better specificity and precision values for 

the three models were obtained with the variation of the classification thresholds. 

However, at overall level, the performance of our models was diminished by this 
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variations, showing that the process of identification of classification thresholds 

needs some adjustments. 

We believe that to improve our models performance, we should be able to use a 

dataset without bias. In fact, a more realistic scenario would be obtained with the 

overrepresentation of non-active molecules for each receptor. 

With the present work we show that Naïve Bayes classifier can be a good option 

to construct models able to predict new drug-target interactions. At the same time, 

it is demonstrated that structural similarity between molecules together with 

bioactivity values can be enough to predict new interactions.  

Our evolutionary analysis show that different molecular binding patterns not 

always are associated with similarity between receptors’ protein sequences. 

However, some patterns have emerged and further studies must be conducted in 

order to identify the main factors behind these binding profiles. 

Together, our results show that despite polypharmacology complexity, the 

integration of heterogeneous data and the use of machine learning approaches are 

inexpensive and reliable solutions for drug discovery. 
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Appendix  
 

Summary of collected data for each receptor.  

Serotonin Receptors (Homo sapiens) 

Receptor 
ChEMBL 

Accession Number 

Uniprot 

Accession Number 

Total 

Binding Molecules 

5-HT1a CHEMBL214 P08908 2715 

5-HT1b CHEMBL1898 P28222 811 

5-HT1d CHEMBL1983 P28221 840 

5-HT1e CHEMBL2182 P28566 86 

5-HT1f CHEMBL1805 P30939 99 

5-HT2a CHEMBL224 P28223 1823 

5-HT2b CHEMBL1833 P41595 783 

5-HT2c CHEMBL225 P28335 1546 

5-HT3a CHEMBL1899 P46098 357 

5-HT3b CHEMBL3895 O95264 4 

5-HT4 CHEMBL1875 Q13639 368 

5-HT5a CHEMBL3426 P47898 234 

5-HT6 CHEMBL3371 P50406 1870 

5-HT7 CHEMBL3155 P34969 918 

Dopamine Receptors (Homo sapiens) 

Receptor 
ChEMBL 

Accession Number 

Uniprot 

Accession Number 

Total 

Binding Molecules 

D1 CHEMBL2056 P21728 851 

D2 CHEMBL217 P14416 4634 

D3 CHEMBL234 P35462 2691 

D4 CHEMBL219 P21917 1756 

D5 CHEMBL1850 P21918 304 


