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Abstract We study a single machine lot-sizing problem,
where n types of products need to be scheduled on the ma-
chine. Each product is associated with a constant demand
rate, maximum production rate and inventory costs per time
unit. Every time when the machine switches production be-
tween products, sequencing costs are incurred. These se-
quencing costs depend both on the product the machine just
produced and the product the machine is about to produce.
The goal is to find a cyclic schedule minimizing total av-
erage costs, subject to the condition that all demands are
satisfied.

We establish the complexity of the problem and we prove
a number of structural properties largely characterizing op-
timal solutions. Moreover, we present two algorithms ap-
proximating the optimal schedules by augmenting the prob-
lem input. Due to the high multiplicity setting, even triv-
ial cases of the corresponding conventional counterparts be-
come highly non-trivial with respect to the output sizes and
computational complexity, even without sequencing costs.
In particular, the length of an optimal solution can be expo-
nential in the input size of the problem. Nevertheless, our
approximation algorithms produce schedules of a polyno-
mial length and with a good quality compared to the optimal
schedules of exponential length.

Keywords Lot-sizing problem · Sequencing costs · High
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1 Introduction

Motivation. In the current competitive economy, companies
need to be aware of multiple objectives such as decreasing
costs and enhancing customer service. Among the core ac-
tivities of many companies and supply chains are mecha-
nisms to match supply with demand, to prevent stock-outs
and to cut back unnecessary overhead costs. Production com-
panies are required to conduct extensive research into cost
reduction to remain competitive within the market. Conse-
quently, a lot of interest has been shown in problems within
the area of operations management.

This paper is motivated by a real-life problem: A multi-
national textile company posed the problem of optimizing
the production schedule of their lycra production operations.
The company employed a single machine to produce syn-
thetic fibers of a few different types of thickness, subject
to (extremely large) fixed daily output rates. In the setting
we have dealt with, there were three to five types of lycra
thickness. Every switch from one thickness type to another
is associated with a setup of the machine, and corresponding
costs occur. The company was interested in finding a cyclic
production schedule of minimum cycle length. A similar set-
ting can be encountered in the automotive manufacturing,
where the cars on the conveyor belt should be colored. Due
to cleansing requirements, changing from one color to an-
other does not only take a fixed amount of setup time, but an
additional amount of time based on the color sequence, e.g.
switching from black to yellow is more costly than switch-
ing from yellow to green.

In the aforementioned industrial setting, the problem of
finding an optimal cycle in which every product is produced
exactly once has been addressed in [19]. In the present pa-
per, we generalize this result to cyclic schedules with no re-
strictions on the number of production periods per product.
We arrive at a lot-sizing problem with sequence-dependent
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setup costs and aim to find a cyclic schedule which mini-
mizes total average costs.

The LOT-SIZING PROBLEM is a well-studied problem in
operations management, where one machine needs to pro-
duce a set of products to minimize average holding and setup
costs. In this problem, the ongoing production can be rep-
resented as the repeated scheduling of a single job on the
machine, enabling a highly compact encoding of the input.
These types of problems are commonly referred to as high
multiplicity scheduling problems. Jobs in the high multiplic-
ity setting are represented by a single job description with
a multiplicity, representing the number of individual jobs to
be processed. It is different from the conventional schedul-
ing setting where every single job, even though identical to
many others, is given as a part of the problem input. In this
case, the input length of the traditional setting can be expo-
nentially larger than the length of the high multiplicity input,
resulting in exponentially slower performance of algorithms
regularly applicable in traditional scheduling. Due to the
compact encoding of the input for the problem at hand, the
optimal schedule can have superpolynomial length, even for
very restricted cases with only 1 or 2 products (see Gabay et
al. [8]). Consequently, finding a polynomially sized certifi-
cate for these types of problems alone can already prove to
be a hard task.

Not only from the computational complexity point of
view, it is questionable whether conventional encoding is
practical for high multiplicity problems. For many compa-
nies, the high multiplicity encoding is a natural way to pro-
vide input from real-world data, especially if thousands of
jobs are identical, and is found in numerous practical appli-
cations. In this age of Big Data, in which processing large
amounts of data is becoming more and more important, and
in many cases necessary in order to keep up with competi-
tors, companies are often able to compress large amounts
of data into smaller sized input sets. Algorithms need to be
equipped to cope with this compressed data in such a way
that the original problem is tackled, without resorting to the
usage of excessive processing times in order to process the
underlying information of the reduced input.

In this paper, we address this issue by incorporating high
multiplicity encoding into an extended version of the afore-
mentioned real-life problem, the LOT-SIZING PROBLEM with
sequence-dependent setup costs. In this problem, we have a
single machine that is capable of producing a single prod-
uct at any given time and a set of products that need to be
produced. Each product is associated with a demand rate, a
maximum production rate and inventory holding costs per
unit. The objective is to find a cyclic schedule such that
the demand of every product is met, minimizing the aver-
age costs per cycle. For any schedule, sequence-dependent
setup costs, referred to as sequencing costs, are incurred
each time the machine switches production between two dif-

ferent products. Moreover, input is provided under high mul-
tiplicity encoding.

Contribution. We show NP-hardness of the problem and we
largely characterize optimal solutions by proving a number
of structural properties, which will be of great use for the
algorithm design. Further, we develop an approximation al-
gorithm which slightly perturbs the input instance to get a
polynomial running time and, most importantly, polynomial
size of the output schedule, where the number of products
is fixed. The latter is a reasonable assumption, since in most
real-world applications, the number of distinct product types
is relatively small, while the demand quantities are substan-
tial. The quality of the resulting schedule is relatively close
to that of an optimal schedule.

2 Related work

The earliest research on problems with high multiplicity en-
coding dates back to the sixties; see e.g. Rothkopf [18] who
considers the TRAVELING SALESMAN PROBLEM with mul-
tiple visits to cities. Madigan [16] studies a variant of our
problem where setup times are introduced, setup costs do
not depend on the sequence, and holding costs are product-
independent. He proposes an elegant heuristic for the prob-
lem and compares it to the results previously published in
the literature. Goyal [10] studies the variant of the prob-
lem posed by Madigan where no setup times are involved,
and solves the problem to optimality for a fixed time hori-
zon. Boctor [2] extends the model to incorporate product-
dependent holding costs and setup times, and considers an
infinite time horizon. He presents an exact algorithm for the
case of two products. For a historic overview of economic
lot sizing problems, we refer to Holmbom and Segerstedt [14].

Only in 1991, Hochbaum and Shamir [13] coined the
term high multiplicity and underlined the added complexity
of such encodings. They study single machine high multi-
plicity scheduling problems with different objective func-
tions, and construct algorithms that are strongly polynomial
in the number of types of jobs. At the same time, Narro
Lopez and Kingsman [17] discuss basic solution approaches
to high multiplicity scheduling problems and assess their
quality and use in practice.

Most papers on high multiplicity scheduling consider
discrete variants, in which time and/or quantities are dis-
cretized into units. There has also been some work consider-
ing the continuous setting, in which production can start and
stop at any time, e.g. with fluids. Bertsimas et al. [1] consider
the high multiplicity job-shop problem without sequencing
costs, and use this continuous setting as a relaxation for the
original discrete job-shop problem. They round an optimal
solution for the fluid problem to an asymptotically optimal
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solution for the discrete problem, and provide some compu-
tational experiments. In another work on the continuous set-
ting, Haase [11] discusses a problem very closely related to
ours, where production rates are fixed. He proposes a local-
search heuristic and evaluates it by comparing it to optimal
solutions for small instances. Haase and Kimms [12] con-
sider the same problem and, by making additional assump-
tions on the input instances, solve the problem to optimality.
They present a Mixed Integer Programming formulation for
their model and a fast enumeration scheme, which they eval-
uate by a computational study.

Incorporating sequencing costs substantially adds com-
plexity akin to the TRAVELING SALESMAN PROBLEM. The
techniques we are using in this paper are closely related to
the techniques used in classical single multiplicity schedul-
ing. For instance, Clifford and Posner [5] provide lower bounds
and use these to develop heuristics for minimizing tardi-
ness. They extend the problem to parallel, uniform and un-
related machines in Clifford and Posner [6], where their ob-
jective is to minimize the makespan or the sum of comple-
tion times in either the preemptive, or the non-preemptive
variant of the problem. They prove NP-hardness, develop
polynomial time and pseudopolynomial time algorithms for
special cases, and present heuristics. Filippi and Romanin-
Jacur [7] continue their work and present a two-stage ap-
proach, in which they first fix most jobs in partial schedules
and then solve the residual problem.

Brauner et al. [3] provide a detailed framework for the
complexity analysis of high multiplicity scheduling prob-
lems. We refer the reader to this paper for an excellent sur-
vey of related work in this field. They extend their frame-
work in Brauner et al. [4].

3 The model

We model the general problem for multiple products as fol-
lows. We have a single machine that can produce a single
type of product at any given time and we are given a set
of products J = {1, . . . ,n}. For each product i ∈ J, let pi be
its maximum production rate, i.e. the maximum number of
units produced per time unit. Similarly, let di be its demand
rate and hi its holding costs per time unit. Furthermore, we
are given sequencing costs si, j that need to be paid when
the machine switches from producing product i to produc-
ing product j. The problem we consider is to find an optimal
cyclic schedule S∗ that minimizes the average costs per unit
of time c̄(S∗). Note that for each product i, the rates di and pi
and costs hi are assumed to be constant over time and pos-
itive. Observe that the input is very compact. Let m be the
largest number in the input, then the input size is O(n logm),
where n is typically a small number, or even a constant.

We distinguish two variants of the problem: The con-
tinuous case, in which the machine can switch production

at any time; and the discrete case, in which the machine can
switch production only at the end of a fixed unit of time (e.g.
a day) and produces some product i at a single rate ri ≤ pi
during each unit of time. Herewith we assume that produc-
tion is done in the beginning of the period and demand is
satisfied at the end. Without loss of generality, in both vari-
ants we assume di, pi,hi,si j ≥ 1 for all i, j ∈ J.

We denote by LSP(A,n) with A ∈ {C,D},n ∈ N the lot-
sizing problem of scheduling n products in the continuous or
discrete setting respectively. Let π

[a,b)
i denote the produced

amount of product i during time interval [a,b). Let π t
i =

π
[t,t+1)
i . Let xt

i be an indicator function denoting whether
product i is produced during time interval [t, t + 1). Let qt

i
denote the stock level for product i at time t. We explicitly
refer to the stock of product i at time t in a schedule S as
qt

i(S).
Finally, let H(S) denote the total holding costs and W (S)

the total sequencing costs of a schedule S, and c(S)=H(S)+
W (S) denote the total costs of S. Denote the average costs of
a cyclic schedule S of cycle length ` by c̄(S) = H̄(S)+W̄ (S),
where H̄(S) = H(S)/` and W̄ (S) =W (S)/`.

Formally, we arrive at the following problem.

Input. Let A ∈ {C,D}. Let a set of products J = {1, . . . ,n}
be given, and for each product i ∈ J, a demand rate di ≥
1, a maximum production rate pi≥ 1, and inventory hold-
ing costs hi ≥ 1. Sequencing costs si, j ≥ 1 are given for
every pair of products.

Task. Find a cyclic schedule S which minimizes the average
costs per unit of time, c̄(S) for A.

We represent a cyclic schedule of length ` as a sequence:

[t0, t1)
r0
i0
, [t1, t2)

r1
i1
, . . . , [ts, `)

rs
is ,

where rϕ ≤ piϕ is a production rate of phase ϕ = 0, . . . ,s,
iϕ is the product produced in that phase, and [tϕ , tϕ+1) is a
maximal time interval where only iϕ is produced at a fixed
rate rϕ . A maximal sequence of consecutive phases of the
same product i ∈ J is called a production period, denoted by
[t, t ′)i for some t ′ > t. The complete sequence of phases is
called the (cyclic) schedule, and we call a schedule a sim-
ple cycle if there is exactly one production period for each
product.

4 Structural properties of optimal solutions

We now prove some structural properties of optimal sched-
ules of the problem. We show that all variants are NP-hard,
even when we restrict ourselves to unit demand rates and
unit holding costs. Next, we derive a simple necessary and
sufficient condition for the existence of a feasible cyclic sched-
ule. Furthermore, we characterize the form of production for
the continuous and discrete cases. Also, we show that there
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is no idle time in an optimal schedule and that every prod-
uct has at least one point during the schedule where its stock
level is zero. Finally, in the last subsection, we present a
lower bound on the objective value for the continuous case,
and an upper bound on the objective value and the maximum
stock level for the discrete case. We use these bounds in the
approximation.

4.1 Problem complexity

The following lemma follows directly from a reduction from
the TRAVELING SALESMAN PROBLEM (TSP).

Lemma 1 (Complexity) Both the discrete and the continu-
ous variant of the lot-sizing problem are strongly NP-hard.

Proof We prove NP-hardness for the discrete case by a re-
duction from the TRAVELING SALESMAN PROBLEM (TSP).
Let us consider a TSP instance I = {G = (V,E), [ci, j]V×V}.
From this given TSP instance we construct an instance I′ =
{J,(di, pi,hi)i∈J , [si, j]J×J} of the LOT-SIZING PROBLEM as
follows.
Identify J with V and let si, j = ci, j for each i, j ∈ J. Let
di = 1, pi = |V |= n, and hi = h = ∑ j,k s j,k +1 for each i∈ J.
Additionally, let Wmax = ∑i, j si, j and Wmin = n×mini, j si, j.
Note that for every feasible schedule S, we have sequencing
costs W (S) such that W (S)≥Wmin. Moreover, for all simple
cycles S we have W (S)≤Wmax. We claim that there exists a
TSP tour of length at most B if and only if the corresponding
instance of the lot sizing problem admits a solution of total
cost at most hn(n−1)/2+B/n.

Clearly, since the total demand and production rates match
each other, the total stock level is constant over time. Every
simple cycle of length n, using the same order of products,
can be realised with average holding costs H̄ = hn(n−1)/2
and average sequencing costs Wmin/n ≤ W̄ ≤ Wmax/n. In
fact, this schedule is minimum regarding the holding costs.

Let S′ be a feasible non-simple cycle of length `′ > n
with total costs c(S′) = H(S′) +W (S′). Note that there is
a product of which two consecutive production periods are
separated by at least n+1 time units. Hence, we need at least
one additional unit of that product in stock and thus H(S′)≥
h`′n(n−1)/2+h`′. Thus, for every minimal simple cycle S,
since W (S)≤Wmax < h, we have that the average costs of S′

are c̄(S′)≥H(S′)/`′ > c̄(S). Observe that the value of H̄(S)
is the same for every minimal simple cycle, and therefore
the optimal solution to I is the minimal simple cycle which
minimizes W (S).

Let σ be a sequence of visits in the TSP instance with
costs B. Producing each product for 1 time unit with the
same sequence as σ is a feasible solution for the lot siz-
ing problem with costs hn(n− 1)/2+B/n. Conversely, let
σ be a solution for the lot sizing problem with costs hn(n−

1)/2+B/n. This solution is a simple cycle, and therefore
the production sequence is a tour with costs B. This proves
the NP-hardness of the discrete case.

We prove the continuous case by a similar reduction
from the METRIC TSP. For an instance I of the METRIC

TSP, we let J = V and si, j = ci, j for all i, j ∈ J. Let di = 1,
pi = n and hi = 1 for all i ∈ J.

Let σ be an optimal solution to I with costs c(σ). Let S
be any feasible schedule for the corresponding instance I′ of
the lot sizing problem and let the length of the schedule be
`. Let S∗ be the simple cycle of length `∗ where the products
are produced in the same order as in σ , with production time
`∗/n per product.

Since every product needs to be produced at least once
in a feasible schedule and the triangle inequality holds for
the sequencing costs, S∗ is optimal with respect to the se-
quencing costs, i.e. W (S∗) ≤W (S). Note that compared to
the discrete case, the continuous case has a complication:
We can choose `∗ arbitrarily small. By construction, every
production period in schedule S∗ consists of one phase of
length `∗/n where the product is produced at rate pi = n.
Since hi = 1, the total holding costs for every product i are
given as (cf. Figure 1)

∫ `∗/n

0
qt

idt +
∫ `∗

`∗/n
qt

idt =
n−1

2n
(`∗)2 . (1)

t

qt
i

n−1

0

−1

`∗
n `∗

n−1
n `∗

Fig. 1 An illustration to clarify Equation (1).

Thus, the total holding costs of S∗ are H(S∗) = (`∗)2(n−
1)/2 and the average holding costs are H̄(S∗) = `∗(n−1)/2.
In particular, since holding costs decrease with the cycle
length, we can choose `∗ such that H̄(S∗)≤ H̄(S) and c̄(S∗)≤
c̄(S). Thus we have that the optimal solution to I′ is a simple
cycle S∗ using the sequence of σ .
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The total average costs c(σ)/`∗+ `∗(n−1)/2 are mini-
mized with `∗ =

√
2c(σ)/(n−1). Hence we have

c(σ) =W (S∗) =
n−1

2
(`∗)2 = H(S∗) .

Now, σ is an optimal solution for I with costs c(σ), if
and only if there is an optimal solution for I′ with average
costs

√
2(n−1)c(σ).

A closely related problem with setup times was addressed
in Gallego and Shaw [9], where they show NP-hardness for
multiple special cases of their problem.

4.2 Feasibility condition

Observe that di/pi is the fraction of time product i needs to
be scheduled on the machine, and therefore ∑i∈J di/pi needs
to be at most 1. The following lemma shows that this is a
sufficient condition for feasible schedules.

Lemma 2 (Feasibility, Gabay et al. [8]) For both variants
of the problem, there exists a feasible schedule if and only if

∑
i∈J

di

pi
≤ 1 .

Remark 1 Note that additionally for LSP(F,n), a schedule of
length ` is feasible if and only if

`di

pi
=

`−1

∑
t=0

xt
i ∈ N, and ` mod (pi−di) = 0, ∀i∈J .

4.3 Characterizing optimal production schedules

In this subsection we prove several properties about the pro-
duction in continuous and discrete schedules. We start by
showing that if there is some idle time in a schedule, we
can already start producing the next product at demand rate
during the idle time to decrease the holding costs.

Lemma 3 (No idle time, Gabay et al. [8]) Let S∗ be an
optimal schedule for LSP(C,n) or LSP(D,n), with n ∈ N. S∗

has no idle time.

We now provide a short proof for the claim that in an
optimal schedule for the continuous case, at any time the
production rate is always larger than or equal to the demand
rate of the produced product.

Lemma 4 (Produce at least the demand rate) Let S∗ be an
optimal schedule for LSP(C,n) with n ∈ N. For each phase
[t, t ′)r

i in S∗, we have that r ≥ di.

Proof We prove by contradiction. Let S be a counterexam-
ple, i.e. there is at least one phase [t, t ′)r

i with r < di. Since
S is feasible, we know that qt

i ≥ (di− r)(t ′− t)> 0. Now let

π
[t ′,`)∪[0,t)
i ← π

[t ′,`)∪[0,t)
i − (di− r)(t− t ′) and replace [t, t ′)r

i

by [t, t ′)di
i . Clearly the schedule is feasible and the costs are

decreased, and thus S was not optimal.

The next property ensures that the machine produces ev-
ery product i only at rates di and pi to minimize holding
costs in the continuous case.

Lemma 5 (Two phase production, Gabay et al. [8]) Con-
sider LSP(C,n) for any n ≥ 2. There is an optimal cycle S∗

such that for every product i ∈ J, every production period of
i in S∗ consists of at most two phases. For every production
period, in the first phase the machine produces i at a rate of
di. During the second (non-empty) phase i is produced at a
rate of pi.

Note that in a tight schedule, i.e. ∑i∈J di/pi = 1, in or-
der to meet demand for each product, the machine needs to
continuously produce at maximum speed. Therefore, in an
optimal schedule S for a tight instance of the problem, each
production period consists of a single phase where product
i is produced at rate pi. Furthermore, the proof of Lemma 5
also proves that in an optimal schedule for LSP(C,n), for
each phase [t, t ′)r

i , we have that r = di or r = pi.
Following the same reasoning as in the previous two

lemmata, we can achieve a similar result for the discrete case
of the problem and prove that in an optimal schedule, pro-
duction periods consist of at most four phases.

Lemma 6 (Four phase production) Consider LSP(D,n) for
any n ≥ 2. There is an optimal cycle S∗ such that for every
product i ∈ J, every production period of i in S∗ consists of
at most four phases. For every production period, in the first
phase the machine produces i at a rate of r1 < di and this
phase has length at most 1. During the second phase i is
produced at a rate of di. During the third phase, i is pro-
duced at rate di < r2 < pi and this phase again has length
at most 1. Finally, during the fourth phase, i is produced at a
rate of pi. Phases can be empty, but the first and third phase
cannot occur sequentially.

Proof We prove by contradiction. We claim, following ar-
guments similar to those in the proofs of the previous two
lemmata, that phases within the production period can be or-
dered such that for every pair of phases [t j, t j+1)

r1
i , [t j′ , t j′+1)

r2
i

with j′ > j we have that r1 < r2 in order to minimize costs
whilst retaining a feasible schedule. To see this, note that a
swap similar to the swap in the proof of Lemma 4 yields
lower holding costs, as it is always favourable to produce
demand at the latest possible time.

Suppose we have an optimal schedule S with two con-
secutive phases [t j, t j+1)

r j
i , [t j+1, t j+2)

r j+1
i . By definition of a
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phase, r j 6= r j+1. Since S is optimal, 0 < r j < r j+1 ≤ pi must
hold. Clearly, if t j+2 = t j+1 + 1 = t j + 2, the lemma holds.
Otherwise, we construct a new schedule S∗ and we start this
construction by initializing S∗ := S.

We split [t j, t j+1)
r j
i , [t j+1, t j+2)

r j+1
i in S∗ into five new

phases as follows. We first deplete the stock by q◦ and con-
secutively increase the stock by q∗, where these values de-
pend on the case distinction below. We introduce the indica-
tor function fN(x) = dxe−bxc which takes on the value 1 if
x 6∈ N and 0 otherwise. The new phases are:

[t j, t1)0
i , [t1, t2)

r1
i , [t2, t3)

di
i , [t3, t4)

r2
i , [t4, t j+2)

pi
i ,

where t1 = t j +

⌊
q◦

di

⌋
, and t2 = t1 + fN

(
q◦

di

)
,

t4 = t j+2−
⌊

q∗

pi−di

⌋
, and t3 = t4− fN

(
q∗

pi−di

)
,

r1 = di−
(

q
t j
i − (t1− t j)di

)
and r2 = di +

(
q

t j+2
i − (t j+2− t4)(pi−di)

)
.

We refer the reader to Figure 2 for a depiction of the new set
of phases.

t

q

q
t j
i

q
t j+2
i

di

r1 r2

pi

t j t1 t2 t3 t4 t j+2

γ

Fig. 2 A depiction of an optimal production period of schedule S∗ for
LSP(C,n) (where phases [t1, t2)

r1
i and [t3, t4)

r2
i must be empty) and for

LSP(D,n), with n≥ 2.

Firstly, suppose di≤ r j < r j+1. Now let q∗= (q
t j+2
i −q

t j
i )

and q◦ = 0, consequently producing stock, which results in
a production period of at most 3 phases.

Secondly, suppose r j < r j+1 ≤ di. Now let q◦ = (q
t j
i −

q
t j+2
i ) and q∗ = 0, consequently depleting stock, which re-

sults in a production period of at most 3 phases.
Lastly, suppose r j < di < r j+1. Now let q◦ = q

t j
i and

q∗ = q
t j+2
i , consequently first depleting and consecutively

producing stock, which results in a production period of at
most 4 phases.

If completely depleting and consecutively producing the
stock takes longer than the production period, we get t2 >

t3. In this case, denote the total amount of stock which was
produced in this production period by q = (t j+2 − t j)di +

(q
t j+2
i −q

t j
i ) = r j(t j+1− t j)+r j+1(t j+2− t j+1). Then let t4 =

t j+2−
⌊

q
pi

⌋
and t1 = t2 = t3 = t j+2−

⌈
q
pi

⌉
and r2 = di +q−

pi

⌊
q
pi

⌋
, resulting in a production period of at most 3 phases.

Clearly, in all cases S∗ is feasible. If S∗ is different from
S then H(S∗)<H(S), and thus S is not optimal. Note that the
phase [t j, t1)0

i is idle and can be removed as in the proof of
Lemma 3 by extending or introducing demand production
for some other product, thereby delaying its stock produc-
tion, leaving a production period of four phases and proving
the lemma.

Note that the proof of Lemma 6 also shows that in an
optimal schedule for LSP(D,n), for each phase [t, t ′)r

i with
t ′ > t +1, we have that r = di or r = pi.

We now show that in the continuous case, the machine
produces product i at rate di only if the stock for i is empty.

Lemma 7 (Level production for continuous case) In an
optimal schedule S∗ for an instance of LSP(C,n), for any
product i ∈ J there exists a non-empty phase [t j, t j+1)

di
i (i.e.

with t j+1 > t j) only if q
t j
i = 0.

Proof We prove by contradiction. Suppose we have an op-
timal schedule S with a phase [t j, t j+1)

di
i with t j+1 > t j and

q
t j
i > 0. Again, we construct a new schedule S∗ starting with

S∗ := S. We split [t j, t j+1)
di
i in S∗ into three new phases:

[t j, t1)0
i , [t1, t2)

di
i , [t2, t j+1)

pi
i ,

where t1 = t j +
q

t j
i

di
and t2 = t j+1−

q
t j+1
i

pi−di
.

If the length of the phase is too short to completely deplete
the stock, and consecutively completely rebuild the stock,
i.e. t1 > t2, then we reduce the stock as much as possible.
In this case, let t1 = t2 = t j+1− t◦, where t◦ = (t j+1− t j)

di
pi

denotes the time required to produce when producing at rate
pi in order to meet demand during the original phase.

Clearly, S∗ is feasible and now we have that H(S∗) <
H(S) and thus S is not optimal.

We now show a similar result for the discrete case, where
the machine produces product i at rate di only if the stock for
i is empty or if the production phase has length 1.

Lemma 8 (Level production for discrete case) In an opti-
mal schedule S∗ for an instance of LSP(D,n), for any prod-
uct i ∈ J there exists a non-empty phase [t j, t j+1)

di
i only if

q
t j
i = 0 or t j+1 = t j +1.
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Proof We prove by contradiction. Suppose we have an opti-
mal schedule S with a phase [t j, t j+1)

di
i with t j+1 = t j +2 and

q
t j
i > 0. Once again, we construct a new schedule S∗ starting

with S∗ := S. We can now split [t j, t j+1)
di
i in S∗ into two new

phases:

[t j, t j +1)r1
i , [t j +1, t j+1)

r2
i .

If q
t j
i < di, let r1 = di−q

t j
i and r2 = di +q

t j
i . Otherwise, let

r1 = max{2di− pi,0} and r2 = min{pi,2di}. Clearly, S∗ is
feasible and we have that H(S∗) < H(S) and thus S is not
optimal.

Next, suppose t j+1 > t j +2. Now split [t j, t j+1)
di
i into the

phases [t j, t j +1)r1
i [t j +1, t j+1−1)di

i [t j+1−1, t j+1)
r2
i , where

r1 and r2 are defined as above. This process can be iteratively
repeated upon the schedule S∗ until either the stock level
reaches 0, or there is at most one phase left of length 1.

We can now show that in an optimal schedule, for every
product there is a time where its stock level is zero.

Lemma 9 (Zero stock level) Let S∗ be an optimal schedule
for an instance of LSP(C,n) or LSP(D,n). Then for each
i ∈ J there exists a time t such that qt

i = 0.

Proof The proof is by contradiction. Let S be an optimal
schedule of length ` with at least one product i such that
qt

i > 0 for all t. Let t∗ be such that qt∗
i = min0≤t≤` qt

i . Now
let S∗ be a copy of S, where we decrease the stock level for
the entire schedule of this product, i.e. qt

i ← qt
i − qt∗

i for all
0 ≤ t ≤ `. Since qt∗

i ≤ qt
i for all t in S, we know that S∗ is

feasible. Clearly, H(S∗) < H(S), and thus S is not optimal.
Note that the stock level can be decreased by producing at
a rate lower than required by the schedule until the desired
level is attained.

4.4 Bounding the average costs

We conclude the basic properties with a lower bound on the
average costs of an optimal continuous schedule, and an up-
per bound on the average costs and maximum stock level of
an optimal discrete schedule. To obtain these, we first derive
optimality conditions for both cases.

Lemma 10 (Continuous cost balancing) An optimal sched-
ule S for an instance of LSP(C,n) has the property that
H(S) =W (S).

Proof We prove by contradiction. Let S be an optimal sched-
ule s.t. H(S) 6=W (S). Scale the length of each phase in S by
a positive factor δ 6= 1, such that for the resulting feasible
schedule S′ it holds that H(S′) = W (S′). Let i be a product,

where without loss of generality we assume that hi = 1. The
holding costs for i in S during a phase [t1, t2)r

i are given as

H(i, [t1, t2)r
i ) = (t2− t1)qmin +

(t2− t1)2

2
(r−di) ,

where qmin is the minimum stock level of i during the phase.
When rescaling, we maintain two inequalities. First of all,
it is clear that (t ′2− t ′1) ≤ (t2− t1)δ . Moreover, considering
Figure 1, we see that rescaling results in similar triangles
of the stock level, implying that q′min ≤ qminδ . Thus for the
corresponding phase [t ′1, t

′
2)

r
i of the scaled schedule S′ we

have

H(i, [t ′1, t
′
2)

r
i ) = (t ′2− t ′1)q

′
min +

(t ′2− t ′1)
2

2
(r−di)

≤ (t2− t1)δ 2qmin +
(t2− t1)2δ 2

2
(r−di)

= H(i, [t1, t2)r
i )δ

2 .

Summing over all phases and products we get

H(S′) = ∑
[t ′1,t
′
2)

r
i∈S′

∑
i∈J

H(i, [t ′1, t
′
2)

r
i )≤ H(S)δ 2 .

Observe that due to scaling the schedule, we have W (S) =
W (S′)=H(S′)≤H(S)δ 2, or equivalently, δ ≥

√
W (S)/H(S).

We now choose δ such that√
W (S)
H(S)

≤ δ <
1
2
+

W (S)
2H(S)

. (2)

Observe that for any values of H(S) and W (S) s.t. H(S) 6=
W (S), there exists a δ satisfying Equation (2). Because of
this particular choice of δ , we have that

c̄(S′) =
1
`′

H(S′)+
1
`′

W (S′) =
1
`δ

H(S′)+
1
`δ

W (S)

≤ δ

`
H(S)+

δ

`
H(S) =

2δ

`
H(S)

<
1
`

H(S)+
1
`

W (S) = c̄(S) ,

and thus S was not optimal, proving the lemma.

We now prove a similar result for the discrete case, tak-
ing into account that low values of δ might create infeasible
schedules.

Lemma 11 (Discrete cost balancing) A schedule S for an
instance of LSP(D,n) is optimal only if W (S)≤ 4 ·H(S).

Proof The lemma follows almost entirely from the proof of
Lemma 10. The difference is that in the discrete case, we
might introduce infeasible schedules S′ by stretching with
any factor δ . Therefore, we restrict ourselves to factors δ ∈
N, δ ≥ 2. The first inequality in Equation (2) now holds only
if W (S)≤ 4 ·H(S).
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t

qt
i

pi−di

q

−di

a b

x

t1 t2 t3

single product block

Fig. 3 An example of a single minimum product block.

To obtain a lower bound on the average costs, we first
fully characterize the optimal continuous schedule for in-
stances where all products are identical.

Lemma 12 (Identical products) For LSP(C,n) with n iden-
tical products, i.e. di = d, pi = p, hi = h and si, j = s for all
i, j ∈ J, the optimal schedule S∗ is a simple cycle of average
costs c̄(S∗) and length `, where

c̄(S∗) = nα

√
2s(p−d)dh

p
and `=

1
α

√
2sp

(p−d)dh
,

where α =

(
1− 1

n
+

d
p

)
.

Proof Since all products are identical, the optimal sched-
ule is defined by a simple cycle where all products are pro-
duced for the same period of time and H(S) = W (S), see
Lemma 10.

We first look at a single product block [t1, t2, t3)i, which
denotes the period for a single item i from the moment it
starts a production period, until it starts another production
period. Here, [t1, t2) denotes the production period for prod-
uct i, and [t2, t3) denotes the period during which i is not
produced. Note that qt1

i = qt3
i = 0. See Figure 3.

The holding costs for a single product i are given as xq
2 h,

where q is the maximum stock level and x is the time where
product i is produced at rate p plus the time it is not pro-
duced, during the product block. Given a slope of p−d dur-
ing production, and a slope of −d during non-production,
since q = a(p−d) = bd, we have a = dx

p , b = x−a, result-
ing in total holding costs of

xq
2

h = x
a(p−d)

2
h = x2 (p−d)d

2p
h .

For each product, the length of the product block is given
as the total length `. Note that 1− dn

p is the fraction of time
during which the machine produces any product at rate d.
Since all products are produced for an equal amount of time,
the fraction of time during which one product is produced at
rate d is 1

n −
d
p . Define α :=

(
1− 1

n +
d
p

)
, yielding x = `α .

Note that in a tight schedule, α = 1.
The optimal schedule S has total sequencing costs W (S)=

ns and total holding costs H(S)= x2 (p−d)d
2p hn= `2α2 (p−d)d

2p hn.
Thus the average costs are given as

ns
`
+ `α2 (p−d)d

2p
hn .

We now find the optimal cycle length ` using that W (S) =
H(S). Given the optimal length, we can calculate the average
total costs c̄(S), yielding

`=
1
α

√
2sp

(p−d)dh
and c̄(S) = nα

√
2s(p−d)dh

p
.

Using the characterization for identical products, we can
construct a lower bound on the average costs of a schedule.

Lemma 13 (Lower bound on average costs) Consider LSP(C,n)
for n > 1. Let S∗ be the optimal schedule. Let i be the prod-
uct minimizing (pi−di)di

2pi
hi and let smin = mini, j∈J si, j be the

minimum sequencing costs. Then

c̄(S∗)≥ nα

√
2smin(pi−di)dihi

pi
,where α =

(
1− 1

n
+

di

pi

)
.

Proof Intuitively, we construct a schedule for n identical
products with d, p and h equal to the corresponding value of
the least costly product. We use the notation from Lemma 12.

In order to lower bound the holding costs, assume that
we produce n times a certain new dummy product k, such
that hk ≤ h j and dk

pk
≤ d j

p j
for all j ∈ J. Furthermore assume

that the stock-level is zero at the beginning and end of the
product block, i.e. qt1

k = qt3
k = 0. From Lemma 12, we know

that the holding costs of a single product block for k are
equal to

xq
2

hk = x2 (pk−dk)dk

2pk
hk .

Now, let x2hmin denote the minimum holding costs for each
product during the block [t1, t2, t3)k, where

hmin = min
i∈J

(pi−di)di

2pi
hi .

Choosing i as the product minimizing hmin and smin =mini, j 6=i∈J si j,
we apply Lemma 12 to prove this lemma.
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The following lemma bounds the length of a specific
class of feasible instances, which we use to create an upper
bound on the average costs in Lemma 15.

Lemma 14 (Upper bound on schedule length for discrete
case) Consider LSP(D,n) for n ≥ 2. Let S be any minimum
length feasible simple cycle such that c(S)=W (S)+H(S) ≤ 5 H(S).
The length of S is bounded by

`max =

(
∏
i∈J

p−i

)√√√√ ∑(i, j)∈T SP si j

2∑i∈J
(p−i −di)di

p−i
hi

,

where p−i = pi ∑ j∈J
d j
p j

and T SP is the shortest possible sim-

ple cycle.1

Proof Since we are interested in a minimum length feasible
schedule, we can assume the schedule is tight by limiting the
maximum production rates. To be precise, for each product
i ∈ J we limit production to

p−i = pi ∑
j∈J

d j

p j
,

yielding ∑i∈J di/p−i = 1, which constitutes a tight schedule.
Now, since S is a simple cycle, we can calculate the total

holding costs H(S) as follows:

H(S) = ∑
i∈J

hi

∫ `

0
qt

idt = ∑
i∈J

`2 (p−i −di)di

2p−i
hi ,

where ` is the length of S. By definition of T SP, we have
that W (S)≥∑(i, j)∈T SP si j. Combining the above with the re-
quirement that c(S) =W (S)+H(S)≤ 5H(S), we get:

`≥ `min =

√√√√ ∑(i, j)∈T SP si j

2∑i∈J
(p−i −di)di

p−i
hi

.

Observe that in a feasible tight schedule for the discrete case,
it must be that ` di

p−i
∈ N+ for each product i ∈ J. Note that

if ` is a multiple of ∏i∈J p−i , this condition is satisfied. Any
feasible schedule of length at least `min now constitutes an
upper bound on the length of S. Combining this condition
with the above inequality yields an upper bound for ` of

`≤ `max =

(
∏
i∈J

p−i

)√√√√ ∑(i, j)∈T SP si j

2∑i∈J
(p−i −di)di

p−i
hi

,

proving the lemma.

We now present an upper bound on the average costs of
an optimal discrete schedule.

1 Note that for practical purposes, the value of n is typically small,
hence, computing the TSP does not pose a problem.

Lemma 15 (Upper bound on average costs) For n ≥ 2
consider LSP(D,n). The average costs of an optimal sched-
ule c̄(S∗) are bounded by

c̄(S∗)≤ 5
2 ∑

i∈J
hi
(pi−di)di

pi
`max ,

where `max is defined as in Lemma 14.

Proof Let S be any minimum length feasible simple cycle
such that c(S) =W (S)+H(S) ≤ 5 H(S). As in Lemma 14,
we know that H(S)≤∑i∈J `

2 (pi−di)di
2pi

hi≤∑i∈J `
max (pi−di)di

2pi
hi`.

Recall that by assumption, c(S) = W (S) + H(S) ≤ 5H(S)
and S has length ` ≥ n. Let S∗ denote an optimal schedule.
Now observe that

c̄(S∗)≤ c̄(S) =
W (S)+H(S)

`
≤ 5H(S)

`
.

Substituting H(S) by its upper bound proves the lemma.

Using the previous lemma, we can now bound the max-
imum stock level.

Lemma 16 (Maximum Stock level) Consider LSP(D,n) for
n≥ 2. The maximum stock level in an optimal schedule S∗ is
bounded by Q = 5

(
∑i∈J hi

(pi−di)di
pi

)
`max.

Proof Observe that for this value of Q we have Q
2 ≥ c̄(S∗),

where c̄(S∗) is in Lemma 15. Also, c̄(S∗) = H(S∗)+W (S∗)
` ≥

H(S∗)
` , which is trivially lower bounded by 1

2 maxt∈S,i∈J qt
i .

The lemma follows.

We now have the necessary lemmata to bound the costs
of an optimal discrete schedule in terms of an optimal con-
tinuous schedule.

Lemma 17 (Pseudopolynomial ratio) Given an instance
of the lot sizing problem, let SD and SC be the optimal sched-
ules for LSP(D,n) and LSP(C,n) respectively. Then, there is
a polynomial ξ ([pi]J , [di]J , [hi]J , [si j]J×J), such that c̄(SD)≤
ξ · c̄(SC).

Proof From Lemmata 13 and 15 we know that c̄(SC) ≥ ϕ1
and c̄(SD) ≤ ϕ2 for given polynomials ϕ1 and ϕ2. Hence
c̄(SD)
c̄(SC)

≤ ϕ2
ϕ1

, which is bounded by a polynomial ξ in [pi]J ,
[di]J , [hi]J , and [si j]J×J .

5 Approximation Algorithms

Already for two products the optimal schedule can have pseu-
dopolynomial length (Gabey et al. [8]). This poses an inher-
ent problem in processing the problem in polynomial time,
particularly in outputting the schedule in polynomial time.
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In this section, we overcome these difficulties and present
two approximation algorithms: First, we augment the prob-
lem and solve this to optimality, yielding an augmented poly-
nomial time approximation algorithm for the discrete case.
Next, we convert the augmented discrete solution into a fea-
sible solution for the continuous case, yielding a polynomial
time approximation algorithm. In both cases, the schedule
produced has polynomial length. The algorithm constructs
solutions in polynomial time given a constant number of
products. Observe that the latter is a reasonable assumption:
in real-life instances the number of products is relatively
small. Throughout this section we assume S∗ is an optimal
cyclic schedule of length ` and qt

i for i∈ J and t = 0, . . . , `−1
denotes the optimal stock level in S∗.

The general idea is to augment the production and de-
mand rates, i.e. we allow for slightly higher production rates
and modestly adjusted demand rates. For a given δ > 0, we
lift the stock levels qt

i for all i and t to powers of (1+ δ ),
and use augmentation to keep the schedule feasible. For ev-
ery time unit t we generate states, which are defined by stock
levels qt

i for each product i ∈ J and the product being pro-
duced. By Lemma 16, the maximum stock level is bounded
by Q, yielding a polynomial number of states. With these
states, we create a state-graph and find a minimum mean cy-
cle using Karp’s algorithm in Karp [15], in order to get an
optimal schedule for the augmented version of LSP(D,n).
Finally, we balance the resulting schedule such that it be-
comes a close to optimal solution for LSP(D,n) and a fea-
sible schedule for LSP(C,n), yielding the aforementioned
approximation algorithms. See Algorithm 1 for the pseu-
docode of the algorithm.

Let a state Si = (q1, . . . ,qn) be defined as an ordered set
of stock levels q j for each product j ∈ J, where subscript
i ∈ J denotes the last product which has been produced be-
fore reaching the current state. Let dt

i denote the augmented
demand for a product i∈ J in time unit t. For each time unit t
and a product i which is produced, we allow for augmented
production rates rt

i such that the total augmented produc-
tion is no more than (1+ δ ) times the total production in
a feasible schedule. Specifically, we require that augmented
production satisfies the following conditions:

rt
i < pi +δ (qt

i + pi−di) , (3)

`−1

∑
t=0

(rt
i −dt

i )< `(pi−di)(1+δ ) . (4)

The first equation ensures for each time unit an upper bound
on the augmented production rate, such that the next power
of (1+ δ ) can be reached for the stock level. Note that this
actually augments the stock level rather than the production
rates. In order to limit the total augmentation in terms of

Algorithm 1: Augmentation Algorithm AUGALG

Data: A set J of n products with demand rates di, maximum
production rate pi and holding costs hi for all i ∈ J.

Result: Augmented schedule SD and schedule SC .
1 Create the set S of all states Si = (q1, . . . ,qn);
2 Let E = /0 be the set of state-edges;
3 foreach pair of states Si,S j ∈S do
4 if Si(q j)−d j < S j(q j)≤ (Si(q j)+ p j−d j)(1+δ ) then
5 if (Si(qk)−dk)/(1+δ )≤ S j(qk)≤ (Si(qk)−dk)for

every k 6= j ∈ J then
6 Create directed edge e = (Si,S j) with cost

ce = si j +
1
2 ∑k∈J (Si(qk)+S j(qk));

7 Find the minimum mean cycle C∗ in S using Karp’s
algorithm, cf. Karp [15], discarding edge progressions
which do not admit Equations (3) to (6);

8 Extract augmented schedule SD from C∗;
9 Let SC ← SD be a Continuous schedule with xt the length of

time slot t;
10 Let all demands dt

i ← di and decrease production rates in SC ,
such that rt

i ≤ pi and ∑
`−1
t=0 rt

i −di ≤ 0;
11 For each product i with ∑

`−1
t=0 rt

i < `di, uniformly increase
production rates rt

i < pi until ∑
`−1
t=0 rt

i = `di or rt
i ← pi for all

t;
12 foreach i ∈ J such that ∑

`−1
t=0 rt

i < `di do
13 Simultaneously increase all xt in SC where rt

i > 0 and
decrease all xt ′ where rt

j > 0 for all j 6= j ∈ J such that

∑
`−1
t=0 rt

j ≥ `d j remains true, until ∑
`−1
t=0 rt

i = `di;

14 return SD,SC

the production rates, the latter equation ensures that the to-
tal production in the augmented schedule is not more than
(1+δ ) times the maximum possible production in the non-
augmented schedule. In practice, we get an augmented sched-
ule which is reasonably achievable with respect to the origi-
nal input data.

Additionally, for each time-unit t with product i that is
not produced during t, for augmented demand rates dt

i ≥ 0
the following equation must hold:

qt
i−di

qt
i−dt

i
≤ 1+δ . (5)

This equation ensures that demand rates are not increased
more than necessary in order to retain stock levels within a
factor of (1+δ ). Moreover, for all time units t and products
i, we require the following to ensure that the total demand in
the augmented schedule is not more than (1+ δ ) times the
total demand in the non-augmented schedule:

`di ≤
`−1

∑
k=0

dk
i ≤ (1+δ )`di . (6)

Note that transgressing from one state to the next is equiv-
alent to a single time-unit in a schedule for the discrete case.
Let each edge (Si,S j) have costs si j+

1
2 ∑k∈J hk (Si(qk)+S j(qk)).

Note that here sii = 0.
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We now describe the algorithm (cf. Algorithm 1). In the
first step of AUGALG, an augmented state-graph is con-
structed, with a state for each combination of stock levels
qi for each product i, such that qi ≤ Q(1+ δ ) and qi is a
power of (1+ δ ), where Q is the maximum stock level as
in Lemma 16. Let Si be a state in the optimal schedule with
Si(q j) the stock level for product j in Si.

An edge is added from state Si to S j if and only if Si(q j)−
d j < S j(q j)≤ (Si(q j)+ p j−d j)(1+δ ) and (Si(qk)−dk)/(1+
δ )≤ S j(qk)≤ (Si(qk)−dk) for all k 6= j ∈ J.

Recall Karp’s algorithm for finding a minimum mean cy-
cle in a digraph. The algorithm uses a dynamic program to
compute values Fk(v) for each vertex v and each 0≤ k ≤ n,
where Fk(v) denotes the minimum weight of an edge pro-
gression of length k from some arbitrarily chosen vertex s
to v. Using these values the algorithm computes the mini-
mum mean cycle. We slightly adjust the dynamic program
in Karp’s algorithm: Upon evaluating the computed values
Fk(v), discard any of these edge progressions which do not
admit Equations (3) to (6), ensuring that these conditions
hold for the minimum mean cycle returned by the algorithm.
Observe that the minimum mean cycle returned by Karp’s
algorithm constitutes a feasible augmented schedule to the
problem.

Lemma 18 Let S be a schedule for LSP(D,n) and let ε > 0.
There exists an augmented schedule S′ such that c̄(S′)≤ (1+
ε)c̄(S).

Proof Let S be a schedule for LSP(D,n) and let qt
j(δ ) ≥

qt
j(S) be the nearest power of (1+ δ ) greater than or equal

to qt
j(S). Note that by Lemma 9, each product i in the aug-

mented, as well as in the non-augmented solution must have
at least one point where its stock level is zero. Denote this
point as time-unit 0i with q0i

i (S
′) = q0i

i (S) = 0. For each
product i ∈ J, starting at zero stock level q0i

i (S) successively
change rates rt

i(S) and di to rt
i(S
′) and dt

i (S
′) for each time-

unit t as follows.

– If qt
i(δ ) = qt

i(S) then let rt
i(S
′) remain the same as in S.

– Otherwise, if product i is produced, let the production
rate be rt

i(S
′)← rt

i(S)+qt
i(δ )−qt

i(S). However, since we
want to bound the increase of the costs of the augmented
schedule, we bound the stock level throughout the aug-
mented schedule. For every product, for each of its pro-
duction periods, we ensure that the cumulative amount
of stock up to that point is no more than (1+δ ) times the
corresponding original stock. Thus, if ∑

t−1
k=0

(
rk

i (S
′)−di

)
+

(qt
i(δ )− qt

i(S)) ≥ t(pi− di)(1+ δ ), then choose rt
i(S
′)

such that qt
i(S
′) becomes the largest power of (1+ δ )

such that qt
i(S
′)< qt

i(δ ).
– If i is not produced, choose the smallest dt

i (S
′)≥ di such

that qt
i(S
′) is a power of (1+δ ).

Observe that every stock level in S is a power of (1+
δ ) and the schedule is feasible. Since every stock level in-
creased by at most (1+ δ ), the total costs for the schedule
are increased by at most c(S)δ . Choosing ε = δ proves the
lemma.

Applying the above lemma to an optimal schedule and
bounding the running time of AUGALG yields the follow-
ing result. Recall that n is typically a constant, and thus we
can assume the number of products to be fixed, yielding a
polynomial running time.

Theorem 1 Let S∗ be an optimal schedule for LSP(D,n) and
let ε > 0. AUGALG finds an augmented schedule SD for
LSP(D,n) such that c(SD) ≤ (1+ ε)c(S∗) in running time
O
((

log1+δ (Q)
)n n2

)
.

Proof Consider AUGALG and observe that the algorithm
finds a schedule SD such that c̄(SD) ≤ (1+ ε)c̄(S∗), where
S∗ is the optimal schedule, as in Lemma 18.

Note that there are O((log1+δ (Q))nn) states in S , and
thus at most O((log1+δ (Q))nn2) edges. Karp’s algorithm works
in O(m+ n) time, where m is the number of edges in the
graph, proving the theorem.

We can now prove that AUGALG is a polynomial time
approximation algorithm for the continuous problem.

Theorem 2 Let S∗ be an optimal schedule for LSP(C,n) and
let ε > 0. AUGALG finds a feasible schedule SC for LSP(C,n)
of polynomial length such that c(SC)≤ (1+ε)ξ c(S∗) in time
O
((

log1+δ (Q)
)n n2

)
.

Proof Ensure that ∑i∈J
di
pi
≤ 1, otherwise there exists no fea-

sible schedule. Run AUGALG to get an augmented schedule
SD for the corresponding instance of LSP(D,n). Observe that
the schedule is a feasible augmented schedule for LSP(C,n).

First, lower the demand and production rates to feasible
values, i.e. let all demands dt

i ← di and decrease production
rates such that rt

i ≤ pi. Next, for each product i for which
total production does not cover total demand, i.e. for which
∑
`−1
t=0 rt

i < `di, uniformly increase production rates rt
i < pi

until demand is satisfied, i.e. ∑
`−1
t=0 rt

i = `di, or until rt
i = pi

for all t. If the former is not the case, we cannot satisfy total
demand for product i and the lengths of production periods
will need to be adjusted. Denote the schedule obtained af-
ter this transformation by S′D. Since demand and production
rates are decreased by at most a factor of (1+ δ ), overpro-
duction in S′D is no more than (1+ δ )`(pi− di), therefore
the costs are bounded as c(S′D)≤ (1+δ )c(SD).

Let xt denote the length of time slot t. Clearly, there are `
time slots. For each product i∈ J such that ∑

`−1
t=0 rt

i < `di, we
will increase all production lengths xt where rt

i > 0 to meet
the demand of product i. To retain feasibility for all prod-
ucts j 6= i ∈ J, we increase production rates and shorten pro-
duction periods where possible, whilst keeping the schedule
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length constant. For each product j ∈ J such that ∑
`−1
t=0 rt

j ≥
`d j, we consider the following three numbered categories:

1 For all t where 0 < rt
j < p j, we will increase rt

j and
decrease xt such that total production in xt remains un-
changed, at most up to the point where rt

j = p j.
2 If ∑

`−1
t=0 rt

j > `d j and rt
j ∈ {0, p j} for all t, we will de-

crease lengths of production periods xt with rt
j > 0, at

most up to the point where ∑
`−1
t=0 rt

j = `d j.
3 If ∑

`−1
t=0 rt

j = `d j and rt
j ∈ {0, p j} for all t, the schedule is

tight for this product.

For each i ∈ J such that ∑
`−1
t=0 rt

i < `di, simultaneously
increase all xt where rt

i > 0, increase rt
j and decrease xt for

all products j as in Category 1, and decrease xt for all prod-
ucts j as in Category 2, while keeping the schedule length `

constant. Note that the category number of a production pe-
riod can only be increased by applying the transformation.
Hence, since ∑i∈J

di
pi
≤ 1, and each production period can

be categorised as above, this transformation terminates suc-
cessfully. Finally, for any product which is produced more
than the total demand throughout the cycle, we uniformly
decrease production rates for this product - without altering
the length of the production period - until demand is met
exactly. We denote the resulting schedule by SC. For the re-
mainder of this proof we assess the quality of SC.

First look at a single increment of length α ≤ δ for a
time-unit t where i is produced and ∑

`−1
t=0 rt

i(S
′
D) < `di. Let

ct
j(S) denote the costs for a product j ∈ J during time slot

t in a schedule S. Since the production rate is increased in
the transformation by a factor (1+α), the costs for prod-
uct i at time slot t are bounded by (1+α)ct

i(S
′
D). Similarly,

the cost for each product j 6= i ∈ J is increased to at most
(1+α)ct

j(S
′
D). At the end of every production period, stock

levels in SC are not increased compared to stock levels in SD.
Secondly, look at a single decrement of α for a time-unit

t where i is produced. Clearly, the costs ct
i(SC) do not in-

crease. Furthermore, the costs ct
j(S) for each product j 6= i∈

J are neither increased. Since the production period is short-
ened, the stock level for each product j 6= i at the end of the
production period is increased. In a worst case scenario, this
extra stock needs to be carried throughout the entire sched-
ule. Hence, for each decrement of α , for each product j 6= i,
total costs for the product in the entire schedule can be in-
creased by at most αd jh j`. Observe that αd jh j`≤ δc j(S).

Recall that the maximum increment for a single time-
unit is at most δ . Each product for which time units are
increased, increases total costs for all products by at most
δc(S′D). Furthermore, for each product for which time-units
are decreased, costs increase by at most δc(S′D) in total.
Thus AUGALG produces a feasible schedule S for LSP(C,n)
of costs at most (1+ nδ )c(S′D). From Lemma 17 we know
that c̄(SD)≤ ξ c̄(S∗).

Hence, c(SC)≤ (1+nδ )c(S′D)≤ (1+nδ )(1+δ )c(SD)≤
(1 + nδ )(1 + δ )2ξ c(S∗). Choosing ε such that (1 + ε) =

(1+nδ )(1+δ )2 proves the theorem.

6 Discussion and future work

This article combines the hardness of high multiplicity en-
coding with sequence-dependent setup costs, both of which
are natural properties of real-life problems. Not only does
this introduce hardness akin to the TRAVELING SALESMAN

PROBLEM, but due to the compact encoding it is not clear
whether or not a polynomially sized certificate can be con-
structed, even for very restricted cases. We discussed the
complexity of the problem and presented structural proper-
ties largely characterizing optimal schedules, which can be
used for future algorithms and computational experiments.
We presented a polynomial time augmented approximation
algorithm, which finds (1+ ε)-approximate augmented so-
lutions for the discrete variant of the problem, and (1+ε)ξ -
approximate solutions for the continuous case. In contrast to
the known complexity of the problem, the algorithm runs in
polynomial time and yields schedules of polynomial length.

It is unclear whether it can be guaranteed that an opti-
mal schedule exists at all. Consider the case of LSP(C,2)
in Gabay et al. [8], where the optimal schedule is already
irrational even under rational input values. Now consider
LSP(C,3). Is it possible that due to the irrationality of the
cost-balance, the optimal schedule has infinite length? Can
it nevertheless be approximated with a finite schedule? Con-
sidering instances with 2 products, can we characterize the
optimal solutions for the discrete case? We conjecture this is
possible to achieve using techniques similar to the ones used
in this paper.

Alternatively, consider the settings where we explicitly
make assumptions concerning the input instances. For in-
stance, if the sequence is given, e.g. using a TSP-oracle, is it
possible to find an (approximately) optimal solution for both
cases in polynomial time? Or if the sequencing costs have a
lexicographical ordering (e.g. when the products only dif-
fer in colour and setting up the machine when switching be-
tween two similar colours costs less), can we obtain stronger
results?

Regarding the complexity of the problem, we conjec-
ture that this problem is contained in a higher complexity
class than NP: Already for LSP(F,1) and LSP(C,2), the op-
timal schedule can be of non-polynomial length. Although
the schedule for these cases can still be represented in poly-
nomial time, it is uncertain if this can be done for arbitrary
numbers of products. Furthermore, consider the following
decision problem: Does there exist an optimal cyclic sched-
ule of average costs k? It is unclear whether this decision
problem is contained in NP, and how an adequate polyno-
mial certificate for a NO-instance can be constructed.
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