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A novel approach based on the local entropy generation rate, also named as the second law analysis (SLA), is proposed
to compute and visualize the flow resistance in mass transfer through pipe/channel with a sudden contraction component
(SCC) at low Reynolds number (Re) featuring velocity slip. The linear Navier velocity slip boundary condition is
implemented using the explicit scheme. At small Reynolds number, i.e. Re≤ 10.0, the flow resistance coefficient of the
SCC, KSCC, is found to be a function of the dimensionless velocity slip length L∗slip and Re−1, and gradually increase
to a constant value at contraction ratio Rarea ≥ 8, reaching a formula KSCC = (0.4454L∗3

slip− 1.894L∗2
slip + 2.917L∗slip +

8.909)/Re. Over this range of Re, the equivalent length of the flow resistance is almost independent on Re, while out
of this range, the equivalent length increases monotonically with Re. Moreover, the dimensionless drag force work
around the SCC is negative and reaches a minimum at a critical L∗slip. The SLA reveals that the regions affected by
the SCC mainly concentrate around the end section of the upstream pipe/channel rather than the initial partition of the
downstream section reported in large Re turbulent flow, and this non-dimensional affected upstream length increases
with L∗slip. The fluid physics are further examined using SLA to evaluate the energy loss over the entire domain,
decomposed as the viscous dissipation inside the domain and the drag work on the wall boundary.

I. INTRODUCTION

The determination of the flow resistance in low Reynolds
number (Re) mass transfer through micro and nanoscale pipes
and channels with sudden contraction components (SCC) is a
vital issue in the process of design and fabrication of efficient
microfluidic devices (i.e., micro-electro-mechanical systems1,
heat exchangers2 and cooling of electronic chips3). For fully
developed laminar pipe flow without velocity slip, it is known
that the Darcy friction factor (flow resistance coefficient is
proportional to the friction factor in a straight pipe/channel)
is 64/Re4–8. This value was also reported in the well-known
Moody diagram, stressed by Moody as independent on the
wall relative roughness in laminar flow9. Kim10 reported that
this value can be predicted by the classic macroscopic theory
in microscale flow and concluded that scale effects do not in-
fluence the flow resistance coefficient.

However, a number of experimental measurements of the
flow resistance in the laminar flow regime do not agree with
each other and even show significant discrepancies11. After
performing a series of experiments, Qu et al.12 observed that
the friction factor of laminar flow in microchannels with var-
ious shapes and dimensions is larger than the one obtained
from the macroscale theory. On the contrary, the friction fac-
tor was found to be less than its macroscale counterpart by
other researchers13–17. There have been no conclusive ex-
planations of these significant discrepancies. Some works at-
tributed these to the flow separation18, the dependence of vis-
cosity on the channel size or other physical effects which be-
come significant in small-scale ducts19 and so on. We believe
that the following factors are also involved:

Firstly, the non-slip boundary condition on the wall be-
comes less valid as a significant velocity slip has been
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observed20–23 when the characteristic length of the channel
is reduced. This is because the fluid slips when the molec-
ular attraction between the fluid and the solid surface is re-
duced as the free surface energy of the solid becomes very
low. Watanabe et al.24 conducted experiments on water flow
through square and rectangular ducts and pipes with highly
water-repellent walls producing velocity slip boundary condi-
tions and observed the maximum drag reduction ratio could
reach up to 20% for square ducts and 14% for pipes. This
observation offers potential explanations on the overestima-
tion of the friction factor at extremely small scales by the
macroscale theory aforementioned in the literature.

Also, the friction factor of laminar flow in micro-level ducts
has been reported to be dependent on the relative roughness of
the solid wall25, contradicting the Moody diagram9. Gloss et
al.25 conducted experiments to test laminar flow in microchan-
nels with length 130 µm, height from 20 µm to 400 µm and
relative roughness ranging from 0 to 1. Their outcomes
demonstrate that the classic macroscale no-slip theory under-
estimates the friction factor because an increased dissipation
rate near the roughness element causes more pressure loss
compared with smooth wall surfaces.

Flow resistance is also dependent on the geometry varia-
tions, such as an SCC, as has been investigated in macroscale
flow with applications including injection moulding, extru-
sion, thermoforming and polymer melt processing. A wide
range of investigations including theoretical analyses26, nu-
merical simulations27 and experiments28 were conducted for
flow in an SCC with various contraction ratios. It should be
pointed out that almost all these studies were on the effects
of contraction ratio or wall slip on the flow behaviors (i.e.,
size and intensity of vortex, vortex shape and streamlines) of
non-Newtonian fluids. No studies on the flow resistance co-
efficient of contraction pipe/channel flow of Newtonian fluids
with a wall slip boundary condition have been performed to
the best knowledge of the authors.

The flow resistance coefficient is commonly computed
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from pressure loss by solving the Bernoulli or Navier-Stokes
(NS) equations. Celata et al.29 observed that the viscous heat-
ing could be applied to determine the resistance coefficient of
microchannel no-slip flow and validated this in their experi-
ments. Naterer et al.30 reported that the loss of available work
could be directly related to the entropy generation by com-
paring the viscous dissipation term in the mechanical energy
equation with the volumetric rate of entropy generation equa-
tion firstly proposed by Bejan31. The method based on the
entropy generation is called the second law analysis (SLA),
referring to the second law of thermodynamics. The SLA
has been widely used in the optimal design of fluid engineer-
ing systems32, analyzing the flow resistance for no-slip flow,
where the drag work on the surface is zero33. Compared with
the common NS method, the SLA gives a direct physical in-
terpretation of the flow resistance by revealing the distribution
of the energy loss over the entire flow domain, as well as the
drag work along the surface.

The main objective of the present study is to quantitatively
examine the flow resistance coefficient and reveal the physics
in flow through a microscale SCC with a linear Navier veloc-
ity slip boundary condition (SBC). In Section II, we illustrate
the details of the mathematical formulation of the linear SBC
and the analytical results of the resistance coefficient of flow
in a plane parallel channel from the view of exact solutions of
the NS and SLA approaches, followed by validations by nu-
merical simulations. Corresponding simulation details, flow
resistance coefficients and two factors causing flow resistance
(the wall drag force work and the fluids viscous dissipation)
for flow through an SCC are then described in Section III. Fi-
nally, conclusions are drawn in Section IV.

II. RESISTANCE OF VELOCITY SLIP FLOW IN A 2D
PLANE CHANNEL

A. The Navier velocity slip wall boundary condition

The incompressible steady Newtonian flow through a plane
parallel channel as shown in Fig.1a is governed by the NS
equations34:

∇•U = 0 , (1)

∇• (U ⊗U) =−∇
p
ρ
+∇• (µ

ρ
∇U) . (2)

where U is the velocity vector, U ⊗U = U •UT , p is the
pressure, ρ is the density and µ is the dynamic viscosity.

Considering that the mass flow rate is small enough to acti-
vate the partial boundary velocity slip, the normal component
ofU on the wall is zero (see Fig.1b ), and the tangential com-
ponent on the wall, denoted as Uwt , is a function of the stress
vector tangent to the wall τwt :

Uwt =

{
−Sl τwt , linear

−Snl τwt ‖τwt‖n−1, nonlinear

(3a)

(3b)

where ‖τwt‖ represents the l2 norm of τwt , the negative signs
indicate Uwt and τwt are in opposite directions, and Sl and Snl
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FIG. 1: Sketches of (a) the plane parallel channel and (b) the
near wall velocity slip.

are the linear and nonlinear slip coefficients, respectively35,36.
The present work will focus on the linear SBC, while the non-
linear counterpart commonly used for non-Newtonian fluids
where the viscosity is dependent on shear rate37 can be imple-
mented similarly.

For Newtonian flow, the fluid motion near the wall can be
assumed as local Couette flow, therefore, the tangential wall
stress vector τwt is

τwt = µ
∂Ut

∂δCZ,⊥
= µ

Uwt −UCt

δCZ •n
= µ

(I−n⊗n)• (Uw−UC)

δCZ •n
,

(4)

where µ is the dynamic viscosity, C is the central point of the
mesh cell next to the wall, Z is the central point of a boundary
face, δCZ is the vector between this two points and δCZ,⊥ is
the projection of δCZ in the direction of n. Uw andUC are the
velocity vector at Z and C, respectively and Uwt and UCt are
their tangential components . I is the third-order unit matrix
and n is the normal vector to the boundary face.

Substituting Eq. (4) into Eq. (3a), the linear SBC can be
obtained as

Uwt =−Lslip
(I−n⊗n)• (Uw−UC)

δCZ •n
, (5)

where Lslip (Lslip = Sl µ) is the velocity slip length38,39.
The tangential velocity of the fluid in the vicinity of the

wall representing the Navier slip boundary conditions can be
modelled via the following explicit scheme:

U i
wt =−Lslip

(I−n⊗n)•
(
U i−1

w −U i−1
C

)
δCZ •n

, (6)
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where the superscripts i and i−1 denote values of correspond-
ing quantities at the current or former time step, respectively.
In the explicit scheme, relaxation is commonly implemented
to improve the stability and convergence property when using
large spatial or temporal intervals.

B. Resistance coefficient derived from the exact solution of
the NS equations

The velocity profile for fully developed laminar flow
through a plane parallel channel as shown in Fig.1a with linear
SBC can be obtained from Eq. (1) and Eq. (2):

Ux =−
1

2µ

dp
dx

(
H2

4
+LslipH− y2

)
, (7)

where H is the height of the channel, and this velocity profile
is in agreement with references40. Then the average velocity
can be calculated from

Um =

∫ H
2
−H

2
Uxdy

H
=− 1

12µ

dp
dx

(
H2 +6LslipH

)
. (8)

In general, the pressure loss over a streamwise length L for
all types (laminar or turbulent, circular or noncircular, smooth
or rough surfaces, horizontal or inclined pipes) of fully devel-
oped internal flows can be represented as41

∆p = K
ρU2

m

2
, (9)

where K is named the flow resistance coefficient, which mea-
sures the efficiency of the mass transfer.

Considering that the pressure gradient is constant, or
∆p/L = dp/dx and combining Eq. (8) and Eq. (9), K for fully
developed laminar flow in a plane parallel channel with linear
SBC can be obtained as

K =
24

Re
(

1+6 Lslip
H

) L
H

, (10)

where Re is the Reynolds number based on the average veloc-
ity and the channel height H.

Similarly the flow resistance coefficient in a fully developed
laminar pipe flow with SBC can be obtained:

K =
64

Re
(

1+8 Lslip
D

) L
D

. (11)

The first factor on the right of Eq. (10) and Eq. (11) repre-
sents the friction factor. Clearly in Eq. (11) when the no-slip
condition is imposed (Lslip = 0), there is K = 64/Re, a well
known formula for the macro-scale laminar pipe flow. More-
over, the wall friction coefficient ( f ) can be defined as the
ratio of the shear stress and fluid velocity at the wall, and sub-
sequently there is f = µ/Lslip from Eq. (4) and Eq. (7). This
indicates the wall friction coefficient is inversely proportional
to the velocity slip length at constant fluid viscosity, in agree-
ment with the experimental work42.

C. Resistance coefficient calculated from SLA

As an alternative to the definition, it has been proposed that
K can be obtained from SLA for non-slip flow33:

K =
T Ṡirr,D

ρ
U3

m
2 A

, (12)

where T is the temperature, Ṡirr,D is the generation rate of
entropy due to thermodynamic irreversibility, and T Ṡirr,D
corresponds to the rate of the exergy loss according to the
Gouy–Stodola theorem43.

When the SLA method is used to calculate K for the slip
flow from the view of the balance of energy, the skin fric-
tion drag does negative work on the fluid (which is zero at the
no-slip condition). In other words, the head loss of fluid is
caused by two factors: viscous dissipation and skin friction
drag. Therefore, the definition of the resistance coefficient
should be adjusted to take into account this term as

K =
T Ṡirr,D +Wdrag

ρ
U3

m
2 A

, (13)

where Wdrag represents the contribution of the wall skin fric-
tion on fluid, and it can be calculated from Eq. (4) and Eq. (7)
as

Wdrag =

∣∣∣∣∫S
τwt •Uwt dS

∣∣∣∣= 72µU2
mLWH2Lslip(

H2 +6LslipH
)2 . (14)

Bejan44 proposed that the volumetric rate of entropy gen-
eration consists of the volumetric rate of the heat transfer ir-
reversibility and the fluid friction irreversibility. For steady,
isothermal and incompressible channel flow without or with
linear SBC considered in the present work, the local entropy
generation rate is only from the fluid friction irreversibility
and can be computed from

Ṡ′′′irr,D =
1
T
τ :∇U = 144

µ

T
y2(

H2 +6LslipH
)2 U2

m . (15)

The overall entropy production rate can be obtained by in-
tegrating the local entropy generation rate:

Ṡirr,D =
∫

V
Ṡ′′′irr,D dV =

12µWL
T

H3U2
m(

H2 +6LslipH
)2 . (16)

Substituting Eq. (14) and Eq. (16) and into Eq. (13), the
flow resistance coefficient is

K =
24
Re

1

1+6 Lslip
H

L
H

, (17)

the same as Eq. (10) derived from the NS equations. Sim-
ilarly the resistance coefficient in a fully developed laminar
pipe flow with SBC can be obtained and it also matches that
from the NS method (see Eq. (11)).
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TABLE I: Resistance coefficient for plane channel and
circular pipe flow

method NS SLA

channel theoretical 0.2427 0.2427
simulational 0.2403 0.2431

pipe theoretical 0.6009 0.6009
simulational 0.5986 0.6024

FIG. 2: Velocity profile in a channel flow, where y∗ = y/H
and U∗x =Ux/Um.

D. Validation

Numerical simulations are performed to validate the deriva-
tions in Section II C. The plane parallel channel shown in
Fig.1a with L= 30mm, W = 0.2mm and H = 2mm is adopted.
A circular pipe with length and diameter L = 30mm and
D = 2mm, respectively, is also considered. The density of
water is ρ = 997.05kg/m3, and its dynamic viscosity is µ =
8.90×10−4 Pa ·s. The average velocity for no-slip or slip flow
is Um = 0.50929m/s and the slip length is Lslip = 10−4 m.
∆t = 10−4 s was chosen as the time step to ensure that the
maximum Courant number is less than 1. The coupling of
pressure and velocity is addressed by the PISO algorithm.

The streamwise velocity and coordinate system are non-
dimensionalised by average velocity Um and channel height
H, respectively. Fig. 2 shows the dimensionless streamwise
velocity profiles along the height direction of the plane chan-
nel (velocity distributions in a circular pipe are not shown here
for conciseness). The simulation results are in excellent agree-
ment with the analytical outcomes. Furthermore, the explicit
scheme leads to well agreed velocity distributions. The re-
sistance coefficients for fully developed slip flow in the plane
parallel channel and the circular pipe calculated from the NS
equations and the SLA approach are in good agreement with
each other, as shown in Table I. This validates the analyti-
cal derivations presented in Section II C and demonstrate the
accuracy of the aforementioned explicit scheme of the linear
SBC.

III. FLOW RESISTANCE IN A CHANNEL WITH AN SCC

A. Problem descriptions

After investigating the efficiency of mass transfer in a
straight channel, the flow resistance coefficient through an
SCC as schematically illustrated in Fig. 3 will be examined
using both the NS and the SLA approaches. The total flow
resistance consists of the loss in the upstream large channel,
downstream small channel and the SCC.

By definition, the flow resistance coefficient KSCC induced
by the SCC can be written as

KSCC =
1

ρ
U2

2
2

[
∆p−∆pup,◦−∆pdown,◦+

ρ
(
U2

1 −U2
2
)

2

]
,

(18)

where ∆pup,◦ and ∆pdown,◦ denote the pressure loss of fully
developed laminar flow in the upstream and downstream chan-
nel without SCC, respectively, and they can be determined
from Eq. (9) and Eq. (10). U2 is the average velocity at the
outlet and will be used as the characteristic velocity, and ∆p
is the pressure difference between inlet and outlet.

KSCC can also be obtained from the SLA method through
re-writing Eq. (13)

KSCC =
1

ρ
U3

2
2 A

(
T Ṡirr,D,SCC +WD,SCC

)
=

1

ρ
U3

2
2 A

[
(T Ṡirr,D,total +WD,total)−

(
T Ṡirr,D,up,◦+

WD,up,◦)− (T Ṡirr,D,down,◦+WD,down,◦)
]
. (19)

where T Ṡirr,D,up,◦ and T Ṡirr,D,down,◦ represent the entropy pro-
duction rate of flow that is not affected by the SCC in the
upstream and downstream channel, respectively. These terms
are calculated from Eq. (16) when considering no-slip or lin-
ear SBC. WD,up,◦ and WD,down,◦ are the work contributed by
wall skin friction, and can be obtained from Eq. (14). A is the
area of the cross section of the downstream channel. Also, the
overall flow resistance coefficient Ktotal of this SCC could be
determined directly from Eq. (13).

The height of the downstream channel H2 is set to 2×
10−5 m and used as the characteristic length, resulting in
L∗slip = Lslip/H2. H1/H2 represents the contraction ratio and
will be denoted as Rarea. The upstream and downstream
lengths of the channel are Lup/H2 = 25 and Ldown/H2 =
50, respectively, which have been found to be long enough
to accommodate the flow affected by the SCC. Moreover,
the wall shear stress and the drag force work will be non-
dimensionalised by ρU2

2 and ρU3
2 H2

2 , respectively. The time
step for each case is adjusted to ensure that the maximum
Courant number is less than 1.
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FIG. 3: Schematic of flow through an SCC.

FIG. 4: Flow resistance coefficient of the SCC calculated
from the SLA method at various Re and L∗slip. (a)

Rarea = 2 : 1, (b) L∗slip = 0.2.

B. The flow resistance coefficient

The flow resistance coefficient KSCC of the SCC computed
from Eq. (18) and Eq. (19) is shown in Fig. 4. Unlike the resis-
tance coefficient in the macro turbulent flow which is only de-
pendent on the cross section ratio and insensitive to Re, KSCC
in the present micro channel drops rapidly with increasing Re.
Fig. 4b shows the effect of the contraction ratio Rarea on the
flow resistance coefficient KSCC. At prescribed Re and L∗slip,
one can find that KSCC increases slightly with the contraction
ratio Rarea. Through data fitting, the resistance coefficient over

low Re (e.g., Re≤ 10) can be modelled as

KSCC ≈
aL∗3

slip +bL∗2
slip + cL∗slip +d

Re
, (20)

where coefficients (a,b,c,d) are constants at pre-
scribed Rarea, and are (1.401,−5.518,7.299,5.488) and
(0.2283,−1.338,2.747,8.35) for Rarea = 2 : 1 and 4 : 1,
respectively. At Rarea ≥ 8 : 1, (a,b,c,d) converges to
(0.4454,−1.894,2.917,8.909), offering a formula for quick
estimation of the resistance coefficient at small Reynolds
numbers and large contraction ratios with a given veloc-
ity slip length. One should note that the fitting equation
underestimates the resistance coefficient at larger Re.

In addition, KSCC can be transformed to the equivalent
length of undisturbed fully developed downstream flow with
the same flow resistance

L∗equi =
Lequi

H2
=

1
24

ReKSCC
(
1+6L∗slip

)
. (21)

The dimensionless equivalent length L∗equi increases with re-
spect to L∗slip, but is insensitive to Re when Re is small enough
as shown in Fig. 5, where Rarea is fixed at 4:1 and the numer-
ically computed KSCC is adopted. This can be also demon-
strated analytically by substituting Eq. (20) into Eq. (21),
which results in a Re-independent L∗equi. However at higher
Re (e.g. Re ≥ 10), the analytical fitting equation underesti-
mates the resistance coefficient KSCC and consequently L∗equi,
as confirmed by the numerical results in Fig. 5. Variations of
L∗equi at other Rarea are similar and are not shown here.

Above we reported effects of Re, L∗slip and Rarea on the
flow resistance coefficient KSCC and dimensionless equivalent
length L∗equi. In the following sections, the fluid physics will
be explored and efforts will be focused on the two sources of
the flow resistance, i.e., drag force work and viscous dissipa-
tion loss.

C. Wall shear stress vector and drag force work

The dimensionless drag force work of the SCC, W ∗D,SCC,
increases with Re number for velocity slip flow as shown in
Fig. 6. Furthermore, there is a critical dimensionless velocity
slip length (L∗slip,cri ≈ 0.4 for all the four Rarea studied) where
W ∗D,SCC reaches its minimum. One should note that W ∗D,SCC is
almost always less than 0 (the reason will be illustrated later),
indicating that the drag force work tends to reduce the flow
resistance coefficient of the SCC according to the definition
in Eq. (19).

Fig. 7 describes how L∗slip affects the dimensionless wall
velocity and shear stress distributions for the upstream, mid-
stream and downstream of the SCC shown in Fig. 3 at Rarea =
4 : 1 (results for other contraction ratios are similar and are not
shown here for brevity). Away from the SCC, the dimension-
less velocity and wall shear stress maintain constant values
that match the velocity and shear stress in the straight chan-
nel flow from analytical calculations. The magnitude of near
wall velocity enlarges with increasing L∗slip. Conversely, the
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FIG. 5: The equivalent length of the resistance coefficients at
various Re and L∗slip at Rarea = 4 : 1.

FIG. 6: Wall shear tangential stress work of the SCC at various
Re and L∗slip at Rarea = 4 : 1.

amplitude of the upstream and downstream wall shear stress
τ ∗x for slip flow are far less than |τ ∗x | for no-slip flow at a
prescribed Re, and this is in agreement with the experimental
observation42.

The dimensionless drag force work per unit area w∗d for the
SCC with Rarea = 4 : 1 is plotted in Fig. 8 to explain the nega-
tive value of W ∗D,SCC mentioned above. In terms of the dimen-
sionless tangential wall shear stress work of the SCC in Fig. 6,
W ∗D,SCC can be rewritten as

W ∗D,SCC =
(
W ∗D,up−W ∗D,up,◦

)
+W ∗D,mid +

(
W ∗D,down−W ∗D,down,◦

)
.

(22)

The region of the downstream channel affected by the SCC
is very small according to Fig. 8 and w∗d,down is almost constant
rendering the third term of the right side of Eq. (22) close to
0. Furthermore, W ∗D,mid is essentially very small resulting in
W ∗D,SCC ≈W ∗D,up−W ∗D,up,◦. From Fig. 8 , one can observe that
w∗d,up affected by the SCC is equal to w∗d,up,◦ at most part of
the upstream channel, and becomes smaller than w∗d,up,◦ at the
end of the upstream channel. This leads to a negative value of
W ∗D,SCC, as observed before in Fig. 6.

FIG. 7: Streamwise (upstream and downstream sections) and
vertical (midstream section) velocity on the wall (a) and

shear stress (b) profiles at various L∗slip at Rarea = 4 : 1,Re = 1
(the shallow green edges represent upstream, midstream and

downstream channel as illustrated in Fig. 3).

D. Disturbed region and local entropy generation rate

To examine the range of regions affected by the SCC, a non-
dimensional surface integral of the local entropy production
rate is defined as

Ṡ′,∗irr,D =
Ṡ′irr,D

Ṡ′irr,D,◦
=

∫
A Ṡ′′′irr,DdA∫

A Ṡ′′′irr,D,◦dA
, (23)

where A is an arbitrary cross section area. Ṡ′′′irr,D,◦ represents
the local entropy production rate of flow without SCC and its
surface integral can be formulated based on Eq. (16).
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FIG. 8: Drag work per unit area at various L∗slip when
Rarea = 4 : 1 and Re = 1 (the shallow green edges represent

upstream, midstream and downstream channel as illustrated in
Fig. 3).

The non-dimensional length of upstream and downstream
channel domain affected by the SCC can be defined as

L∗up,dist =

∣∣0− xup,dist
∣∣

H2
,L∗down,dist =

∣∣xdown,dist −0
∣∣

H2
, (24)

where xup,dist and xdown,dist are x coordinates of the disturbed

points where Ṡ′,∗irr,D

∣∣∣
x=xup,dist

= 0.95 and Ṡ′,∗irr,D

∣∣∣
x=xdown,dist

=

0.95, respectively33. 0 represents the x coordinate of the po-
sition of the SCC, where the area of the cross section changes
abruptly. As shown in Fig. 9, L∗up,dist and L∗down,dist are al-
most independent on Re and increase with L∗slip. In addition,
L∗up,dist rises conspicuously and L∗down,dist remains almost con-
stant with increasing Rarea.

Contours of T Ṡ′′′irr,D are shown in Fig. 10 from which we can
observe the viscous dissipation loss of fluid at every point in
the flow field and the effects of Re, L∗slip and Rarea. Compar-
ing Fig. 10a with Fig. 10b, the viscous dissipation loss further
concentrates on the corner as marked by the green circles in
these two subfigures at larger Re. One interesting observation
is that an "ear" type dissipation loss region appears at the be-
ginning section of the downstream channel for slip flow, as
marked by the green circle in Fig. 10c.

Moreover, the local entropy production rate of fluid in the
SCC consists of six sections, mainly including upstream and
downstream channels and 90◦ corners, etc (see Fig. 10d).
Conspicuously, T Ṡ′′′irr,D for flow of the upstream and down-
stream channel affected by the SCC increases from the center
line of the SCC and peaks at the wall (see the arrow 1© and 6©
in Fig. 10d), suggesting that the viscous dissipation loss mini-
mizes at the center line and enlarges along the height direction
of upstream and downstream channels. T Ṡ′′′irr,D for the 90◦ cor-
ner 4© increases along the direction departing from the corner,

FIG. 9: Dimensionless length of the disturbed domain at
Re = 0.5. (a) upstream, (b) downstream.

and the variation trend is opposite to the other 90◦ corner 5©
where the local entropy generation rate or flow resistance is
the maximum in the whole flow field. The growth gradient for
T Ṡ′′′irr,D at these two corners rises dramatically at larger Re. An
interesting point is that there is a "source" (surrounded by the
green circle in Fig. 10d) of T Ṡ′′′irr,D, from which the flow resis-
tance increases along with opposite directions ( 2© and 3© in
Fig. 10d).

IV. CONCLUSIONS

This work addresses the flow resistance coefficient in flow
passing through a pipe or channel with or without a sudden
contraction component at low Reynolds number conditions
with a slip wall velocity boundary condition which is imple-
mented using the explicit scheme.

The resistance coefficients of the fully developed channel
and pipe flow at low Re with linear Navier velocity slip bound-
ary condition are solved with the NS equations and the second
law analysis (SLA) approach which is extended to determine
and visualize the flow resistance loss of velocity slip flow after
considering the work contributed by wall drag force.

Then, numerical simulations are also performed for these
two geometry models and the obtained resistance coefficients
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FIG. 10: Contours of local entropy generation rate Ṡ′′′irr,D at per unit temperature non-dimensionalised by ρU3
2 /H2 at various Re,

Lslip and Rarea. (a) Re = 0.5, L∗slip = 0.0, Rarea = 2 : 1, (b) Re = 4.0, L∗slip = 0.0, Rarea = 2 : 1, (c) Re = 4.0, L∗slip = 0.5,
Rarea = 2 : 1, (d) Re = 0.5, L∗slip = 0.0, Rarea = 4 : 1, (e) Re = 4.0, L∗slip = 0.0, Rarea = 4 : 1, (f) Re = 4.0, L∗slip = 0.5,
Rarea = 4 : 1, (g) Re = 0.5, L∗slip = 0.0, Rarea = 8 : 1, (h) Re = 4.0, L∗slip = 0.0, Rarea = 8 : 1, (i) Re = 4.0, L∗slip = 0.5,

Rarea = 8 : 1, (j) Re = 0.5, L∗slip = 0.0, Rarea = 16 : 1, (k) Re = 4.0, L∗slip = 0.0, Rarea = 16 : 1, (l) Re = 4.0, L∗slip = 0.5,
Rarea = 16 : 1.
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are in good agreement with analytical outcomes.
Effects of Re and dimensionless velocity slip length (L∗slip)

on the flow resistance coefficient of laminar flow through the
SCC with various contraction ratios (Rarea) are revealed based
on the aforementioned NS equations and SLA method after
conducting a series of numerical simulations.

At Re ≤ 10, the flow resistance coefficient for the SCC,
denoted as KSCC, increases monotonously with L∗slip and
1/Re and nonlinearly with Rarea, and at Rarea ≥ 8, the resis-
tance coefficient can be modelled as KSCC = (0.4454L∗3

slip−
1.894L∗2

slip +2.917L∗slip +8.909)/Re.
Physically, the flow resistance of fluids results from two

factors: wall drag force work (equal to 0 for no-slip flow) and
viscous dissipation in the flow field related to the local en-
tropy generation rate. These two terms are computed and ana-
lyzed individually to illustrate the fluid physics underpinning
the flow resistance.

The amplitude of the negative drag work (W ∗D,SCC) de-
creases monotonously at larger Re. Also, there is a critical
velocity slip length at which the amplitude of W ∗D,SCC reaches
maximum. In terms of fluid internal viscous dissipation, it
minimizes at the center line and peaks at the wall of the up-
stream and the downstream channel. Moreover, the dissipa-
tion loss concentrates around the end section of the upstream
channel of the SCC.

Both the dimensionless lengths of the disturbed region of
the upstream and downstream channels are almost indepen-
dent on Re and enlarge at larger L∗slip. With increasing Rarea,
the former rises remarkably while the latter remains nearly a
constant value.
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