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Abstract

We present a concise, general and efficient procedure for calculating the cluster integrals that

relate thermodynamic virial coefficients to molecular interactions. The approach encompasses non-

pairwise intermolecular potentials generated from quantum chemistry or other sources; a simple

extension permits efficient evaluation of temperature and other derivatives of the virial coefficients.

We demonstrate with a polarizable model of water. We argue that cluster-integral methods are a

potent yet underutilized instrument for the development and application of first-principles molec-

ular models and methods.

More than a century of effort has been put toward bridging nanoscopic and macro-

scopic behavior, with the aim of predicting and understanding thermophysical properties

quantitatively from molecular considerations. Such a capability can have immense value:

reliable thermophysical models are essential to engineering design, optimization, and con-

trol applications [1]; conversely well-structured thermophysical models provide a conduit

for macroscopic experiments to inform molecular modeling, guiding the development of ab

initio methods and semi-empirical force fields. Only two general approaches are available

to bridge these scales rigorously. The first, molecular simulation, is very widely used. It is

a type of surrogate for experiment, with many of the good and bad features this entails. It

is computationally expensive, and hence cannot be employed on-the-fly as part of a larger

calculation. Also, despite the detailed molecular information it can yield, it is still in some

respects a blunt instrument—when simulation disagrees with experiment, it is difficult to

know what features of the molecular model led to this failure.

The second rigorous nano/macro bridge is much less commonly applied. Cluster integrals

reformulate the partition function into computationally tractable pieces. These integrals en-

ter as parameters in models for the thermodynamic behavior, such as the equation of state, in

which the integrals appear as the familiar virial coefficients [2, 3]. Cluster-integral approaches

are (as yet) inapplicable to condensed or ordered phases, hence they apply primarily to va-

por and supercritical states, but otherwise they are distinct from all other thermophysical

models in being explicit, rigorous, and applicable to arbitrarily complex molecular species.

Moreover, their hierarchical structure, in which 2-, 3-, and generally n-body interactions can

be studied independently, coupled with the information obtainable from their temperature

dependence, provides a rich source of focused information for assessing the strengths and
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weaknesses of molecular models.

Cluster-integral methods received considerable attention in the decades following their

introduction by Mayer and Mayer in the 1930’s and 40’s [4, 5], but in subsequent years

interest waned due to the difficulty in computing coefficients for even the simplest models.

However, the past decade has brought renewed attention, with considerable advances seen

in theory, methods and applications [6–12]. While the approach remains inapplicable to

condensed phases, there is an enormous range of non-trivial and technologically important

behavior encompassed by the supercritical region to which it can apply [13–21]. Considering

that first-principles calculations of ideal-gas properties now routinely outperform experiment

in accuracy and cost [22–26], it should be self-evident that cluster integrals—which proceed

naturally and methodically from the ideal-gas starting point—form the next natural frontier

to advance ab initio computational chemistry. Indeed, in a recent study of helium [27],

virial coefficients computed from first-principles force fields yielded supercritical property

data with accuracy and precision that rivals—and probably exceeds—the best experimental

measurements.

Recently, one of the co-authors of this Communication presented a recursive algorithm

for calculation of the integrand of the cluster integrals for the virial coefficient [11]. The

algorithm drastically reduces the time required to compute the integrand for a given con-

figuration, and consequently it has made possible calculation of virial coefficients to higher

order than previously thought possible. Following convention, the treatment was developed

and derived for pairwise-additive models. Here, we present a fully general algorithm for

calculating arbitrary virial coefficients for non-additive potential energy surfaces. This al-

gorithm provides a better basis for framing the development of cluster integrals—it is not

only more general, it is simpler too. The approach is developed in the form of a recursion,

and it makes no mention of pair bonds or biconnected graphs.

Non-reliance on pairwise additivity is a crucial feature of this scheme. Although the

assumption of pairwise additivity is broadly practiced in molecular simulation, it is wholly

incompatible with a framework that purports to provide first-principles properties with

accuracy that rivals experiment (see, e.g. [27, 28]). Virial coefficients have been computed

for non-pairwise potentials previously [29–34], but no methods for multibody potentials

exploit the recursion developed in [11]. Instead they rely on explicit enumeration of the

clusters that sum to yield the coefficient; while progress has been made in economizing the
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process [35], the approach quickly becomes unwieldy to apply for increasing order of the

virial coefficient. Moreover, important related quantities, and in particular temperature

derivatives of the integrals, are not handled at all.

Each coefficient appearing in density series for thermodynamic properties (see Supporting

Information [36]) is expressible as an integral over configurations of N molecules:

QN =
1

N !Λ3N

∫
fQ(N)drN (1a)

CN =
1

N !

∫
fC(N)drN−1 (1b)

BN =
1−N
N !

∫
fB(N)drN−1 (1c)

where Λ is the de Broglie wavelength. We introduce here a set of functions defined on the

positions (N) of N molecules. fQ(N) is the Boltzmann factor of the potential energy for

N molecules: fQ(N) = exp(−βE(N)), where E(N) ≡ E(rN) is the potential energy of the

set of N molecules in the configuration rN . This energy function is completely arbitrary in

form—it may be additive, or explicitly or implicitly non-additive. The functions fC(N) and

fB(N) are known as the Ursell and Husimi functions, respectively [37, 38]; their integrals

hold the position of one molecule fixed at the origin.

The integrals labeled BN are the conventional virial coefficients, and for a given molecular

model they are computed by evaluating the integral in (1c). Monte Carlo methods can be

used to sample configurations and collect averages [6–8]. The difficulty lies in the evaluation

of fB for each configuration, which depends on fQ and thereby the molecular model as

manifested in E(N). This can in principle be accomplished in two steps—first evaluating

the fC in terms of the fQ, and then the fB from these fC . In practice this is not easy to

do; both fC and fB are defined for a given rN as a complicated sum of products involving

functions on subsets of the coordinates, with a number of terms that grows faster than

exponentially with N . Here we present a means to accomplish these evaluations in a way

that is efficient and easily implemented.

The inversion giving the fC in terms of the fQ is [39]

fC(N) =
∑
λ`N

(−1)p−1(p− 1)!

p∏
i

fQ(λi) (2)

where the sum is over all partitions λ of the set N , with p the number of blocks λi in each
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FIG. 1: Graphical representation of (3c). Green lines and faces (shaded polygons, left-hand

side of equation) represent fC , and red (seen on right-hand side of equation) represents fQ.

partition. The first three formulas are:

fC(r1) = fQ(r1) (3a)

fC(r1, r2) = fQ(r1, r2)− fQ(r1)fQ(r2) (3b)

fC(r1, r2, r3) = fQ(r1, r2, r3)− fQ(r1, r2)fQ(r3) (3c)

− fQ(r2, r3)fQ(r1)− fQ(r1, r3)fQ(r2)

+ 2fQ(r1)fQ(r2)fQ(r3)

It is useful to discuss these functions in reference to a representation as graphs. Equation (3c)

is depicted in Fig. 1 as an example. The faces (and lines) join vertices that represent the

labeled coordinates, with color used to indicate the function.

A computationally expedient means to obtain the fC from the fQ is via the recursion:

fC(N) = fQ(N)−
∑
S

fC(S)fQ(S∗) (4)

where the sum over S includes all possible labelled subsets of sizes 1 to N − 1, from the set

of N molecules, such that every subset S contains a chosen particle (labeled 1), and S∗ is

the complement of S. Since the fQ are known, this expresses fC(N) entirely in terms of fC ’s

for sets of size smaller than N , so the recursion can be started from trivially small subsets,

for example fC = fQ = 1 (Eq. (3a)) for one particle, and the fC ’s then calculated for subsets

of increasingly large size up to the required size N . The proof that (4) is consistent with (2)

is given in the Supporting Information [36].

Stell [40] and Sherman [41] independently derived the “cluster-star inversion” and showed

that fB(N) could be written as a weighted sum over connected tree graphs formed from fC

faces. While in principle this result provides the connection needed to complete the sequence
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FIG. 2: Graphs representing some of the terms that sum to give fB(8). Green regions and lines

represent fC faces. Orange number above and left of each graph is its weight as given by (6).

Beneath each graph is shown the functions to which it contributes (with v ranges shown in square

brackets, when needed).

E(N) → fQ(N) → fC(N) → fB(N) → BN → properties, their result does not suggest an

efficient computational route to realize this connection. We develop this result here, again

using recursion.

The cluster-star inversion may be written as:

fB(N) =
∑

G∈trees

W (G)
∏
λi∈G

fC(λi) (5)

Examples are shown in Fig. 2. Pairs of fC faces may be joined at a single vertex they have

in common, which then represents an articulation point, and the tree structure requires that

no chain of joined faces can form a ring. More than two fC faces can be joined by the same

vertex, and we define the multiplicity p(k) as the number of faces sharing (joined at) vertex

k; p(k) = 1 if k is not an articulation point. The weight associated with each graph G

formed this way is:

W (G) =
N∏
k=1

(−1)p(k)−1(p(k)− 1)! (6)
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Given this result, we propose the following recursion to compute the fB from the fC :

fB(N) = fC(N) +
N∑
v=1

fA,v(N) (7a)

fA,v(N) = −
∑
S

fB,v(S)fB,v−1(S
∗ ∪ v) (7b)

fB,v(N) = fB,v−1(N) + fA,v(N) (7c)

fB,0(N) = fC(N) (7d)

Here we have introduced the auxiliary functions fA,v and fB,v to support the recursion.

These are both W (G)-weighted sums of fC trees, just as fB is, but they have restrictions

on the graphs included in their sum: they both disallow graphs in which any vertex k > v

is an articulation point, and fA,v furthermore includes only graphs in which v itself is an

articulation point (fB,v has no similar restriction on vertex v). The sum in (7b) is over

all subsets S having between 2 and N − 1 nodes that include both node v and the lowest-

numbered node (node 1, or node 2 if v = 1), and v−1 is the node with highest number below

v, or 0 if v is the lowest-numbered node. The recursion for each N involves calculating fA,v

for each node v from information already calculated for smaller subsets, then calculating fB,v

for increasing v from fC , which is already known from (4), and the fA’s. The computation

time taken to calculate the cluster integrand for N particles scales exponentially with N

using this new algorithm. This is close to the theoretical maximum efficiency, since the

number of input (sub-)cluster energies itself scales exponentially with N .

Proof that the recursion (7) yields fB, timings for N = 4 to 12, comparison with the

direct sum over graphs, and links to an implementation in software, are presented in the

Supporting Information [36].

Temperature derivatives of the virial coefficients are needed to describe thermal proper-

ties, such as the heat capacity, the Joule-Thomson coefficient, and the speed of sound [12].

They are also useful in providing an accurate representation of the temperature dependence

of the coefficients, and to aid in interpolation and extrapolation [42]. The conventional

pairwise-additive treatment requires a tedious accounting for the unique irreducible graphs

that can be generated from Mayer bonds and derivative bonds, and the complexity increases

rapidly with derivative order (second derivatives are needed, for example, for the heat capac-

ity). In contrast, these derivatives are given almost trivially from the recursion formulation,

and moreover they remain applicable to the general case involving multibody potentials.
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From (1c),

B
(n)
N =

1−N
N !

∫
f
(n)
B (N)drN−1 (8)

where the superscript in parentheses represents the nth derivative with respect to the inverse

temperature β. For a given configuration, f
(n)
B (N) is determined via straightforward propa-

gation of the derivative via (4) and (7). The sum over products introduces another layer of

recursion. For example, from (4):

f
(n)
C (N) = f

(n)
Q (N)−

n∑
k=0

∑
S

(
n

k

)
f
(n−k)
C (S)f

(k)
Q (S∗) (9)

(7b) is treated similarly. This culminates in the fQ derivative, which we write first for the

general case of a temperature-dependent potential:

f
(n)
Q (N) =

n∑
k=1

(
n− 1

k − 1

)
(−βE(N))(k)f

(n−k)
Q (N) (10a)

and in the more typical case where E is independent of β:

f
(n)
Q (N) = (−E(N))ne−βE(N) (10b)

Many other derivatives of the virial coefficients are of practical interest, and can be

evaluated using an approach analogous to that outlined here for temperature derivatives.

Derivatives with respect to an electric field, for example, are needed to develop virial series

for the dielectric constant [43, 44]. Alternatively, derivatives with respect to intermolecular-

potential parameters can be computed, providing an effective means to adjust molecular

models to better match experimental data [42].

As an example, we consider an application to a model for water. The most widely used

molecular models for water have been formulated to describe behavior in the liquid phase

at ambient conditions, largely due to its biological importance. Almost all such models

are pairwise additive with fixed electrostatic features. Unsurprisingly, such models perform

poorly when describing the vapor or supercritical phases, and are unable to reproduce the

temperature dependence of the lower-order virial coefficients [8, 29, 45]. Explicit two- and

three-body potentials for rigid water molecules have been developed through fits to ab initio

data [46] for water dimers and trimers, and these do very well in describing experimental

second and third virial coefficients [47].

An alternative approach to non-additive interactions is the use of polarizable electrostat-

ics. The Gaussian-charge polarizable model (GCPM) of Pericaud et al. [48] was developed
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using data from both ab initio calculation and from experiment (notably, not experimental

virial coefficients), so its parameterization implicitly includes nuclear quantum effects and

3-body dispersion, induction, and exchange (for water, it has been shown that these effects

contribute at least 50% of the overall 3-body interaction [49], so if they were not already

implicit to the model they would need to be handled explicitly). Virial coefficients up to B5

(but not temperature derivatives) have been computed for GCPM water previously [29–31],

and while these data are not given with the same precision as obtained here, they can serve

to partially validate our methods and calculations.

We computed virial coefficients BN(T ), N = 2, . . . , 6 for this model for several temper-

atures T from 270 K to 1500 K. At each temperature, we computed the coefficient itself

and its first three temperature derivatives. These data were fit to a polynomial form that

provides a convenient analytic expression for BN(T ) for all temperatures in the range (and

beyond, given that extrapolation using a form fit to many derivatives can be very reliable

[42]). Two independent sets of BN values were computed, one based on Mayer sampling [6–

8] and the other using nested sampling [50], both computing fB for sampled configurations

as described above. Details are given in the Supporting Information [36].

We used the coefficients to compute the pressure and the isochoric heat capacity cV as a

function of temperature and density. The pressure can be given via the usual virial equation

of state, and in addition we examine a “parametric approximant” [51]. This is an equation of

state that is formulated to capture the non-analytic behavior known to prevail in the vicinity

of a critical point, while also matching the zero-density limiting behavior as quantified by the

virial series. The model takes the critical temperature Tc and density ρc as input parameters,

and provides a much better and more regular convergence of the virial series; we use “VN”

and “AN” respectively to indicate the virial series and the approximant based on virial

coefficients up to BN . As input parameters, we use Tc = 642.21 K and ρc = 0.3344 g/cm3

previously determined [48] for GCPM; the critical pressure is obtained as an output of the

approximant, and the value from A6 (24.3 ± 0.4 MPa, with error indicating difference from

A5) is in good agreement with molecular simulation for GCPM (24.56 MPa [48]). The

estimated GCPM critical temperature, density, and pressure reported in [48] differ from

experimental values [52] by −0.7%, +3.8%, and +11.3%, respectively.

Figure 3 shows the performance of the VN and AN series for three supercritical isotherms

(viz., 650 K, 700 K, and 800 K, which are, respectively, approximately 1%, 10%, and 25%
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above Tc); data are plotted up to about twice the critical density. Models are compared

to data taken via isobaric Monte Carlo simulations of GCPM water, and also to data for

real water [52, 53]. Uncertainties in the isotherms were determined by propagating the

uncertainties in the coefficients, either analytically (for VN) or via bootstrapping (for AN).

One of the most valuable features of the series-based approaches is their ability to self-

assess their accuracy through comparison of isotherms for successive orders of the series [12].

This feature is demonstrated for the 800 K isotherm, which presents the VEOS estimates for

different orders. We see that each VN curve peels away from those at higher order at about

the point where it deviates from molecular simulation data. Uncertainties in V6 prevent V5

from being assessed this way, highlighting the need to know confidence limits on the VN

isotherms when evaluating series convergence in this manner.

The parametric approximant has a single parameter (labeled ã) that is independent of

T and series order N , and we adjust this parameter to a value that gives the best overall

convergence of the approximant series. Notably, ã is not adjusted via comparison to simu-

lation or experimental data; rather it is given by considerations completely internal to the

parametric-approximant model. We observe that the value of ã that yields the best conver-

gence is also the value that results in the best agreement with molecular simulation data,

for the given values of Tc and ρc. As seen in Fig. 3, both the convergence of the series and

its agreement with simulation data are remarkable. Still, the systematic disagreement at

higher density when using simulation-based critical properties—even when the approximant

apparently is converged—is interesting, and this behavior is worthy of further study.

Isochoric heat capacity is examined in the Supporting Information [36].

The methods presented in this Communication open a new frontier in computational

quantum chemistry, moving beyond single-molecule properties to those that are based in

multi-molecular interactions. Cluster-integral treatments not only provide a full spectrum

of thermodynamic properties for the vapor and supercritical-fluid phases from intermolec-

ular energies, but they can also support systematic development of intermolecular-energy

methods and models via comparison to experimental temperature-dependent virial coeffi-

cients. Condensed-phase properties are still out of reach for the conventional virial series,

but attention is being given to this issue [10, 54, 55]. In the meantime, a reliable way to

predict properties of just supercritical fluids and their mixtures — ultimately to compute

them with accuracy exceeding experiment — would be a major advance for science and
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FIG. 3: Pressure-density isotherms of water for three supercritical temperatures. AEOS lines

represent the parametric approximant [51] using values of Tc and ρc from [48]; curves are shown

for A3 to A6, but are not distinguishable on the plot. Pink lines labeled A6* show the A6

parametric approximant using Tc = 647 K and ρc = 0.37 g/cm3. VEOS lines are shown only for

the T = 800 K isotherm, and are truncated where they start to diverge; this is representative of

behavior at other temperatures. Experimentally derived data are as represented by an accurate

correlation [52, 53] (black dot-dashed lines), and filled symbols are results of NPT Monte Carlo

simulations for GCPM water. Error bars indicate uncertainties at 68% confidence level, and for

AEOS are smaller than the line thickness.

engineering. Supercritical water (as studied here) is itself important to diverse areas such

as geophysics [13] and gasification of biomass [14], while applications of supercritical fluids

more generally encompass a broad range of science and technology, including separations

[15], reaction engineering [16], nanotechnology [17], crystallization [18], power generation

[19], carbon capture [20], and more [21]. These fields could more rapidly advance with
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access to predictive (ideally first-principles) methods for computing properties of arbitrary

compounds and their mixtures.

R.W. and H.D. are grateful to the University of Nottingham and the MidPlus consortium

for granting time on their facilities, and the Leverhulme Trust (Grant No. RPG-2614-326)

for funding. D.K., A.S., and N.G. acknowledge support from the U.S. National Science Foun-

dation (CBET-1510017), and the use of computational facilities provided by the University

at Buffalo Center for Computational Research.

12



[1] Wilhelmsen, Ø, Aasen, A, Skaugen, G, Aursand, P, Austegard, A, Aursand, E, Gjennestad,

M. A, Lund, H, Linga, G, & Hammer, M. (2017) Thermodynamic modeling with equations

of state: Present challenges with established methods. Ind. Eng. Chem. Res. 56, 3503–3515.

[2] McQuarrie, D. (1976) Statistical Mechanics. (Harper & Row, New York).

[3] Hansen, J.-P & McDonald, I. (2006) Theory of Simple Liquids. (Academic Press, London),

3rd edition.

[4] Mayer, J. E. (1937) The Statistical Mechanics of Condensing Systems. I. J. Chem. Phys. 5,

67–73.

[5] Mayer, J & Mayer, M. (1977) Statistical Mechanics. (Wiley, New York).

[6] Singh, J. K & Kofke, D. A. (2004) Mayer sampling: Calculation of cluster integrals using

free-energy perturbation methods. Phys. Rev. Lett. 92, 220601.

[7] Benjamin, K. M, Schultz, A. J, & Kofke, D. A. (2006) Gas-phase molecular clustering of

tip4p and spc/e water models from higher-order virial coefficients. Ind. Eng. Chem. Res. 45,

5566–5573.

[8] Benjamin, K. M, Singh, J. K, Schultz, A. J, & Kofke, D. A. (2007) Higher-order virial

coefficients of water models. J. Phys. Chem. B 111, 11463–11473.

[9] Masters, A. J. (2008) Virial expansions. J. Phys.: Condens. Matter 20, 283102.

[10] Ushcats, M. (2012) Equation of state beyond the radius of convergence of the virial expansion.

Phys. Rev. Lett. 109, 040601.

[11] Wheatley, R. J. (2013) Calculation of high-order virial coefficients with applications to hard

and soft spheres. Phys. Rev. Lett. 110, 200601.

[12] Yang, S, Schultz, A. J, & Kofke, D. A. (2016) Thermodynamic Properties of Supercritical

CO2/CH4 Mixtures from the Virial Equation of State. J. Chem. Eng. Data 61, 4296–4312.

[13] Scott, S, Driesner, T, & Weis, P. (2015) Geologic controls on supercritical geothermal resources

above magmatic intrusions. Nat. Commun. 6.

[14] Peng, G, Vogel, F, Refardt, D, & Ludwig, C. (2017) Catalytic supercritical water gasification:

Continuous methanization of chlorella vulgaris. Ind. Eng. Chem. Res. 56, 6256–6265.

[15] Marcus, Y. (2018) Extraction by Subcritical and Supercritical Water, Methanol, Ethanol and

Their Mixtures. Separations 5, 4.

13



[16] Nasir, N, Daud, W, Kamarudin, S, & Yaakob, Z. (2013) Process system engineering in

biodiesel production: A review. Renew. Sust. Energ. Rev. 22, 631 – 639.

[17] Philippot, G, Elissalde, C, Maglione, M, & Aymonier, C. (2014) Supercritical fluid technology:

A reliable process for high quality BaTiO3 based nanomaterials. Adv. Powder Technol. 25,

1415–1429.

[18] Badens, E, Masmoudi, Y, Mouahid, A, & Crampon, C. (2018) Current situation and per-

spectives in drug formulation by using supercritical fluid technology. J. Supercrit. Fluids 134,

274–283. 12th International Symposium on Supercritical Fluids (ISSF), Antibes, FRANCE,

2018.

[19] Pizzarelli, M. (2018) The status of the research on the heat transfer deterioration in super-

critical fluids: A review. Int. Commun. Heat Mass 95, 132–138.

[20] Burant, A, Lowry, G. V, & Karamalidis, A. K. (2013) Partitioning Behavior of Organic

Contaminants in Carbon Storage Environments: A Critical Review. Environ. Sci. Technol.

47, 37–54.

[21] Knez, Z, Markocic, E, Leitgeb, M, Primozic, M, Hrncic, M. K, & Skerget, M. (2014) Industrial

applications of supercritical fluids: A review. Energy 77, 235–243.

[22] Fabian, W. M. F. (2008) Accurate thermochemistry from quantum chemical calculations?

Monatsch. Chem. 139, 309–318.

[23] Ghahremanpour, M. M, van Maaren, P. J, Ditz, J. C, Lindh, R, & van der Spoel, D. (2016)

Large-scale calculations of gas phase thermochemistry: Enthalpy of formation, standard en-

tropy, and heat capacity. J. Chem. Phys. 145, 114305.

[24] Karton, A, Daon, S, & Martin, J. M. (2011) W4-11: A high-confidence benchmark dataset

for computational thermochemistry derived from first-principles W4 data. Chem. Phys. Lett.

510, 165 – 178.
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