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Abstract
Despite several compounds entering clinical trials for the negative and cognitive symptoms of schizophrenia, few have
progressed beyond phase III. This is partly attributed to a need for improved preclinical models, to understand disease and
enable predictive evaluation of novel therapeutics. To this end, one recent approach incorporates “dual-hit” neurodevelopmental
insults like neonatal phencyclidine plus isolation rearing (PCP-Iso). Glutamatergic dysfunction contributes to schizophrenia
pathophysiology and may represent a treatment target, so we used enzyme-based microsensors to evaluate basal- and drug-
evoked glutamate release in hippocampal slices from rats that received neonatal PCP and/or isolation rearing. 5-HT6 antagonist-
evoked glutamate release (thought to be mediated indirectly via GABAergic disinhibition) was reduced in PCP-Iso, as were
cognitive effects of a 5-HT6 antagonist in a hippocampal glutamate-dependent novel object discrimination task. Yet mGlu7
antagonist-evoked glutamatergic and cognitive responses were spared. Immunohistochemical analyses suggest these findings
(whichmirror the apparent lack of clinical response to 5-HT6 antagonists in schizophrenia) are not due to reduced hippocampal 5-
HT input in PCP-Iso, but may be explained by reduced calbindin expression. This calcium-binding protein is present in a subset
of GABAergic interneurons receiving preferential 5-HT innervation and expressing 5-HT6 receptors. Its loss (in schizophrenia
and PCP-Iso) would be expected to reduce interneuron firing and potentially prevent further 5-HT6 antagonist-mediated disin-
hibition, without impacting on responses of VIP-expressing interneurons to mGlu7 antagonism. This research highlights the
importance of improved understanding for selection of appropriate preclinical models, especially where disease neurobiology
impacts on cells mediating the effects of potential therapeutics.
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Introduction

Neurodevelopmental disorders like schizophrenia, attention
deficit hyperactivity disorder, and autistic spectrum disorder
have a complex etiology, involving combinations of early-life
risk factors that trigger persistent long-term changes and

disease emergence later in life [1]. Relatively poor manage-
ment of negative and cognitive symptoms of schizophrenia by
existing antipsychotics often prevents reintegration into soci-
ety [2], and as a result, this disorder remains one of the top 10
causes of disability worldwide with an annual cost of over
$158 billion in the USA alone [3]. 5-HT6 receptor antagonists
and numerous other receptor- and transporter-selective com-
pounds showed promising activity against seemingly relevant
deficits in preclinical models, but disappointingly very few
progressed beyond phase III clinical trials. This high attrition
is partly attributed to a need for improved preclinical models,
to further elucidate disease neurobiology and enable more
predictive evaluation of novel therapeutics [4].

One approach to producing more comprehensive rodent
models for neurodevelopmental disorders like schizophrenia
involves “dual-hit” combinations of established perinatal and
peripubertal interventions that each mirror different aspects of
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delayed symptom onset and multiple neurotransmitter in-
volvement [5]. For example, neonatal NMDA receptor antag-
onist administration (between postnatal days 7–11 when sen-
sitivity to their pro-apoptotic effects peaks [6]) followed by
postweaning isolation rearing of gregarious rat pups induces
more robust deficits than either manipulation alone [7–10].
Thus, combinedneonatal phencyclidine (PCP) plus isolation
rearing (PCP-Iso) produces more extensive cognitive im-
pairment across a broader array of domains, including spatial
reference and fear-motivated associative memory [7, 10],
plus altered pro-social interaction and concomitant ultrason-
ic vocalizations [11, 12] that appear more akin to negative
symptomatology than the increased aggression seen with
single-hit isolation rearing [13]. These changes are accom-
panied by downregulation of hippocampal genes involved in
glutamate metabolism, dopaminergic neurotransmission,
and GABA receptor signaling, as well as those encoding
parvalbumin and glutamic acid decarboxylase 67 (GAD67)
[14]. Preliminary evidence suggests visual recognition
memory deficits in the dual-hit model have some predictive
validity, being reversed by the dopamine D3-preferring D2/
D3 receptor partial agonist cariprazine [12] which is now
approved by the FDA for management of schizophrenia
[15], the atypical antipsychotic aripiprazole [12] that has
modest cognitive benefit in some patients [16], and
lamotrigine [14] which although not widely used may assist
clozapine-resistant cases [17]. However, further insight into
the molecular and neurochemical basis for differences be-
tween single and dual-hit models is essential to understand
their potential utility in drug discovery for different patient
subgroups or schizophrenia as a whole.

There is clear evidence for glutamatergic dysfunction
in schizophrenia [18–22] and other disorders that feature
cognitive impairment, and marked pharmaceutical interest
in developing glutamate-based treatments [23]. Yet so far
the possibility of more extensive glutamatergic deficits in
combined versus separate neonatal PCP and isolation
rearing models has not been studied at either a functional
or protein expression level, and our initial experiment
therefore focused on both these issues. We used
enzyme-based microsensors to evaluate basal- and drug-
evoked glutamate release in hippocampal slices from neo-
natal PCP-treated and/or isolation-reared rats, because this
technique provides a direct method to selectively monitor
extracellular glutamate on a second-by-second basis [24].
In addition, the ability to use separate slices from each
individual to investigate a range of putative procognitive
drugs that increase extracellular glutamate via different
mechanisms (without the confounding influence of anes-
thesia required for magnetic resonance spectroscopy
(MRS)) represents a marked contribution to the reduction
component of the 3Rs initiative. Similar approaches have
been applied to study epilepsy [25], spinal injury [26],

and infection [27]. We focused on the hippocampus be-
cause glutamate hypofunction has been linked to declara-
tive memory deficits in schizophrenia [28]. Although al-
terations within the dentate gyrus and CA3 are reported
[29], we chose to record from CA1 due to evidence for
volumetric and morphological abnormalities in early
schizophrenia [30, 31], plus synaptic pathology in chronic
cases [32]. We report that the expected glutamate release
evoked by a 5-HT6 receptor antagonist was reduced in our
dual-hit model, whereas glutamatergic responses to depo-
larization, reuptake inhibition, group III metabotropic re-
ceptor (mGlu) blockade, and mGlu7 allosteric antagonism
all remained unaffected. Parallel western blot studies to
investigate the underlying reasons for this focused on pro-
tein expression of vesicular glutamate transporters
(VGLUT) 1–3 (required for presynaptic glutamate re-
lease), excitatory amino acid transporters (EAAT) 1–3
(responsible for glutamate reuptake), GAD67 (the GABA
synthesis enzyme), vesicular GABA transporter (VGAT,
required for presynaptic GABA release), plus 5-HT6 and
mGlu7 receptors (that each regulate glutamate release via
different mechanisms).

To determine the functional correlates of attenuated drug-
evoked glutamate release in the slice preparation, our final
experiment compared the cognitive-enhancing effects of 5-
HT6 and mGlu7 antagonists in rats that received both PCP
and isolation to those in single-hit isolation-only animals.
We focused exclusively on novel object discrimination
(NOD) because of its dependence on hippocampal glutamate
[33–36], our previous findings with cariprazine, aripiprazole,
and lamotrigine suggesting potential predictive validity of this
test when combinedwith this model [12, 14], and the ability to
perform repeated testing using a cross-over design to reduce
animal numbers and further comply with the 3Rs initiative.
Having noted a selective absence of 5-HT6 antagonist-
mediated cognitive effects in the dual-hit model, we per-
formed immunohistochemical analyses of 5-HT input to the
hippocampus, plus the calbindin-positive cells that are its pref-
erential target [37] and the main subset of 5-HT6 receptor-
expressing GABAergic interneurons [38], in an attempt to
provide mechanistic insight.

Materials and Methods

Animals

This research used a total of 113 male Lister-hooded rats
(Charles River UK) maintained under controlled conditions
(21 ± 2 °C, 55 ± 10% humidity, 12-h light-dark cycle; on at
07:00 h). For initial microsensor/western blot characterization
of glutamatergic deficits, 69 pups from 14 litters were obtain-
ed with dams on postnatal day (PND) 3, randomized (by
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drawing lots) to receive saline vehicle (Veh; 1 ml/kg s.c.) or
PCP HCl (10 mg/kg base) on PND 7, 9, and 11 [9], then
housed in mixed treatment groups (3–4; Gr) or isolation from
weaning on PND 21 (with allocation balanced across litters).
Resultant Veh-Gr, PCP-Gr, Veh-Iso, and PCP-Iso were ran-
domized (as above) to microsensor (n = 7–9) or western blot
(n = 8–10) subgroups, with three age-matched drug-naïve
group-housed rats (423–469 g; Charles River UK) for in-
house microsensor validation. Subsequent NOD assessment
of pharmacological sensitivity followed by immunohisto-
chemistry used 41 pups from 6 litters (n = 13–14; Fig. 1).

Dams with litters were housed in individually ventilated
cages with standard environmental enrichment. After
weaning cages (Gr 32 × 51 cm, Iso 25 × 42 cm) contained
only sawdust with grid lids to ensure maintenance of visual,
olfactory, and auditory contact [39]. Handling was restrict-
ed to a single weekly cage change and body weight mea-
surement until behavioral testing. Neonatal injections and
behavioral testing occurred in the light phase (10:00–
11:00 h and 09:00–16:00 h, respectively). All procedures
were conducted in accordance with the Animals (Scientific
Procedures) Act, 1986 and ARRIVE guidelines [40, 41],
with University of Nottingham Local Ethical Committee
approval. Group sizes were based on previous studies
employing these techniques [12, 24, 42]. Data were obtain-
ed by trained observers unaware of neurodevelopmental
history or any acute treatment.

Microsensor and Western Blot Characterization of
Glutamatergic Deficits

Prior Confirmation of Neonatal PCP and Isolation
Rearing-Induced Behavioral Phenotype

To confirm expected development of the previously reported
behavioral phenotype before tissue collection, rats underwent
a short battery of tasks [14] selected for translational relevance
to the positive and cognitive symptoms of schizophrenia
[43–45] and which map to the arousal, cognitive, and senso-
rimotor sections of the Research Domain Criteria (RDoC)
[46]. Tests were ordered from least to most aversive and are
well established within the laboratory (e.g., [10, 12, 14,
47–49]) and described in detail elsewhere [42]. The length
of time required to conduct microsensor recordings meant that
more extensive behavioral evaluation including confirmation
of previously reported deficits in fear-motivated associative
memory [10, 12] was not possible, due to project license limits
on the duration of isolation and weight restrictions for the
required euthanasia method.

Locomotor activity [42, 47] was assessed (PND 56–58,
with a balanced mix of housing and treatment groups each
day) for 1 h in individual photobeam activity chambers
(39 × 23.5 × 24.5 cm: San Diego instruments, CA, USA),
where a single ambulation count was recorded for every two
consecutive adjacent lower beam breaks, a single rearing
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Fig. 1 Summary of the experimental design. Two separate cohorts of
male Lister hooded rats that received saline (1 ml/kg s.c.; Veh) or PCP
(10 mg/kg) on PND 7, 9, and 11 were housed in social groups (Gr) or
isolation (Iso) from weaning on PND 21. The first cohort a underwent
locomotor activity, NOD, and PPI (n = 15–18 per treatment-housing
combination) before balanced allocation to microsensor (n = 7–9) or
western blot (n = 8–10) subgroups. The second cohort b underwent

NOD on three occasions at 1–2-week intervals to receive acute vehicle
(0.5% methylcellulose 1% Tween 80; 1 ml/kg i.p. 30 min before the
familiarization trial), SB-399885 (10 mg/kg), or MMPIP (10 mg/kg) on
separate test days in a pseudorandom order (n = 13–14 per
neurodevelopmental condition), before tissue collection for
immunohistochemistry
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count for every upper beam break, and a single finemovement
count for each repeated lower beam break.

NOD [42, 48] was assessed the following day in the same
arena. Rats received 3 min habituation, then two consecutive
3 min object exploration trials separated by 2 h. In the famil-
iarization trial, rats encountered two identical bottles. For the
choice trial, one was randomly replaced with a novel object
(striped bottle). Object exploration (sniffing, licking, chewing,
or having moving vibrissae while directing the nose towards
and ≤ 1 cm) was timed and used to calculate the choice trial
discrimination ratio (exploration of novel/total choice trial ob-
ject exploration). The 2 h inter-trial interval was chosen to
ensure intact memory in group-housed controls [48] and per-
mit detection of neonatal PCP and/or isolation rearing-evoked
deficits [10, 12, 14, 42]. However, we acknowledge this com-
paratively short interval makes the task less suitable for disso-
ciating the effects of cognitive-enhancing test compounds on
memory acquisition versus consolidation or retention, as can
be performed with longer intervals [48].

Pre-pulse inhibition of the acoustic startle response (PPI
[42, 49]) was assessed (PND 63) in SR-Lab startle response
chambers (San Diego instruments, CA, USA) where rats re-
ceived 5 min acclimatization to background white noise
(62 dB), ten 120 dB startle trials, a pseudorandom mix of 50
trials with or without a preceding sub-threshold 72, 76, 80, or
84 dB prepulse, and then five final startle trials (all separated
by 10–20 s). Individual whole-body startle responses were
recorded for 100 ms after startle pulse onset and used to cal-
culate area under the curve (AUC). For each trial type, the
mean percentage PPI was calculated from mean AUC (after
conditional elimination of values greater than two standard
deviations from the mean, attributed to movement during star-
tle delivery), using the equation % PPI = ((pulse alone AUC −
prepulse AUC)/pulse alone AUC) × 100.

Glutamate Microsensor Recordings

Methods were modified from Oldenziel et al. [24]. Rats were
euthanized by cervical dislocation and brains immersed in ice-
cold artificial cerebrospinal fluid (aCSF; 126 mM NaCl,
3.0 mM KCl, 2.0 mM CaCl2, 2.0 mM MgCl2, 1.2 mM
NaH2PO4, 26 mM NaHCO3, and 10 mM glucose) were
gassed with 95% O2/5% CO2. Transverse hippocampal slices
(400 μm) prepared using a vibrating microtome (Leica
Biosystems, Nussloch, Germany) recovered for at least 1 h
at room temperature in a brain slice prechamber (Harvard
Apparatus, Cambridge, UK). Glutamate and null biosensors
(50 μm diameter × 500 μm length: Sarissa Biomedical Ltd.,
Coventry, UK [50]) were rehydrated (100 mM NaCl, 1 mM
MgCl2, 2 mM glycerol, 10 mM NaPi, pH 7.4 for 10 min then
glycerol for 5 min), polarized (MicroC: WPI, Sarasota, FL,
USA) to 500 mV versus an Ag/AgCl reference electrode in a
brain slice interface chamber (Harvard Apparatus), cycled

from − 500 to 500 mV at 100 mV/s for 10 cycles, and then
checked for initial sensitivity to 10 μML-glutamate (response
> 0.1 nA). Test solutions and potential interfering agents
(10 μM 5-HT, dopamine, glutamine, aspartate, and 100 μM
ascorbic acid) were also examined in the absence of tissue.
Signals were recorded using Clampex 9.2 (Molecular
Devices, Wokingham, UK). Individual slices were transferred
to the interface chamber where they were superfused with
aCSF containing 2 mM glycerol (37 °C) and continuously
aerated by humidified 95% O2/5% CO2. Glutamate and null
sensors were inserted in close proximity (~ 200 μm; V-shaped
form) into CA1 (Fig. 2c) and equilibrated for 30 min.

Validation studies in tissue from drug-naïve group-housed
animals examined stimulation of glutamate by KCl depolari-
zation (30, 60, 120 mM, with corresponding reductions in
NaCl to maintain osmotic balance), the glutamate reuptake
inhibitor DL-TBOA (200 μM), sodium channel activator ve-
ratridine (10, 50, 100 μM), antiport exchange substrate L-
cysteine (50, 100, 500 μM), and α-latrotoxin (300 nM) which
induces exocytosis from presynaptic vesicles, plus inhibition
of basal-, KCl-, and TBOA-evoked release by the voltage-
dependent sodium channel blocker tetrodotoxin (TTX;
20 μM). Responses to KCl depolarization, TBOA inhibition
of glutamate reuptake, the 5-HT6 antagonist SB-399885
(3 μM± 120 mM KCl), group III mGlu antagonist CPPG
(100 μM± 120 mM KCl), and mGlu7 allosteric antagonist
MMPIP (100 μM± 120 mM KCl) were then compared in
slices from the four different neurodevelopmental conditions
(PND 73–112). Antagonist concentrations were similar to pre-
vious in vitro [51, 52] and hippocampal slice [53, 54] studies,
and intentionally higher than achieved in vivo to allow for
slice penetration [55]. Compounds (one per slice) were per-
fused via the aCSF reservoir (10 min or 15 min for 5-HT6/
mGlu antagonists with highKCl) or applied direct to slices (α-
latrotoxin). Point calibration to 10 μM L-glutamate was re-
peated postslice. The difference in current output (nA) be-
tween glutamate and null sensors was calculated off-line and
used with calibration data to determine glutamate concentra-
tion. An average basal extracellular glutamate for each animal
was derived from the five separate slices used to examine
AUC responses to different glutamatergic manipulations, such
that the final n for each neurodevelopmental condition repre-
sents the number of different animals each investigated with
different pair of glutamate and null sensors.

Western Blots

Rats were euthanized on PND 64 by concussion and immedi-
ate decapitation, and western blotting was performed as pre-
viously described [42]. Portions of nitrocellulose membranes
containing proteins > 40 kDa were incubated overnight (4 °C)
with mouse monoclonal or rabbit polyclonal primary antibod-
ies against VGLUT1, VGLUT2 (1:500; Merck Millipore,
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Watford, UK), VGLUT3 (1:500; Abcam, Cambridge, UK),
EAAT1, EAAT2, EAAT3 (1:500; Alpha Diagnostic
International, San Antonio, TX, USA), GAD67 (1:1000;
Merck Millipore), VGAT (1:400; Abcam), 5-HT6 (1:500;
Abcam), or mGlu7 (1:500; Merck Millipore). Corresponding
portions containing proteins < 40 kDa were incubated with
mouse monoclonal or rabbit polyclonal primary antibodies
against the housekeeping protein GAPDH (1:20,000; Sigma-
Aldrich, Poole, UK). After infrared secondary antibody (800
CW anti-mouse or anti-rabbit, 1:10,000; LI-COR, Cambridge,
UK) incubation (1 h in the dark), bands were detected and
quantified using a LI-COR Odyssey system and data
expressed as a percentage of GAPDH.

NOD Assessment of Pharmacological Sensitivity,
Followed by Immunohistochemistry

NOD

Consistent with previous observations [10], behavioral pheno-
typing of our microsensor/western blot cohort found no effect
of single-hit neonatal PCP on NOD (Fig. S1d-e), so to comply
with the 3Rs principle, we did not include a PCP-Gr subgroup
(with predicted intact NOD) in the cohort comparing pharmaco-
logical reversal of NODdeficits in Veh-Iso versus PCP-Iso. Veh-
Gr, Veh-Iso, and PCP-Iso underwent NOD (as described above)
on three occasions at 1–2 week intervals (PND 57–80) to receive
vehicle (0.5%methylcellulose 1%Tween 80; 1ml/kg i.p. 30min
before familiarization), SB-399885 (10 mg/kg), or MMPIP
(10 mg/kg) on separate days in a pseudorandom order and serve
as their own controls. SB-399885 and MMPIP doses were se-
lected from studies demonstrating behavioral activity, including
reversal of NOD deficits in other models for schizophrenia [42,
56], without motor impairment [57–59].

Immunohistochemistry

Rats were euthanized after the final NOD (PND 78–80) by
concussion and immediate decapitation. Brain hemispheres
were immersed fixed in 4% paraformaldehyde then 30% su-
crose (each overnight, 4 °C) and frozen in isopentane on dry
ice. Serial coronal sections (60 μm) were obtained throughout
the dorsal hippocampus using a freezing microtome (Anglia
Scientific, Cambridge, UK) and stored in 30% glycerol, 30%
ethylene glycol (− 20 °C) until free-floating immunohisto-
chemistry. One PCP-Iso was excluded from the rest of the
study due to technical difficulties during slicing. Six evenly
spaced sections were selected from each rat, to span approxi-
mately Bregma − 2.44 to − 4.42 according to a digital atlas
[60]. Sections were washed (4 × 5 min) in phosphate-buffered
saline (PBS), incubated (1 h) in 2% goat or donkey serum in
buffer 1 (0.5% BSA, 0.3% Triton X-100), then (overnight,
4 °C) rabbit or goat polyclonal primary antibodies against

calbindin or 5-HT (Abcam: 1:500 in buffer 1), or buffer alone
for negative control. Sections were washed (3 × 5 min) in
buffer 2 (0.15% BSA, 0.1% Triton X-100), incubated (1 h in
the dark) in Alexa Fluor 568 goat anti-rabbit or 594 donkey
ant i -goat secondary ant ibodies (Thermo-Fisher ,
Loughborough, UK: 1:500 in buffer 2), washed (2 × 5 min
each) in buffer 2 and PBS, and then mounted on gelatin-
subbed slides and air-dried. They were then rinsed with
PBS, counterstained with DAPI nuclear stain (Sigma-
Aldrich: 1:2000 in H2O; 30 s), rinsed with H2O, and cover
slipped with DABCO (Sigma-Aldrich: 0.2% in 90% glycerol)
then stored at 4 °C. With the expectation of DAPI, all solu-
tions were prepared in PBS.

Sections were viewed on a Nikon EFD-3 fluorescence mi-
croscope and images obtained using an Insight QE camera and
SPOT Imaging software (Diagnostic Instruments Inc., MI,
USA). The number of calbindin-positive cells within strata
oriens, radiatum, and lacunosum-moleculare of the
subiculum/fasciola cinereum, CA1, and CA2/3 was counted
from × 4 images manually reconstructed to cover the entire
dorsal hippocampus. The intensity of calbindin and 5-HT im-
munoreactivity in consistently placed × 20 images of CA1
(encompassing strata oriens, pyramidale, and radiatum;
Fig. 5a), and of 5-HT immunoreactivity in further × 40 images
entirely within strata oriens or radiatum (Fig. 5e), was quanti-
fied using Fiji [61]. Anatomical boundaries were determined
using a digital atlas [60].

Drugs

PCP HCl, L-glutamate, 5-HT, dopamine, ascorbic acid, and
L-cysteine were purchased from Sigma-Aldrich, α-latrotoxin
from Enzo Life Sciences (Exeter, UK), and all other com-
pounds from Tocris (Bristol, UK). For microsensor studies,
stock solutions of TBOA, SB-399885, CPPG, MMPIP, TTX
(2–10 mM in saline), and α-latrotoxin (300 nM in 50% glyc-
erol) were stored in aliquots at − 20 °C and diluted in aCSF on
the day of use. All other solutions were prepared daily.

Statistical Analysis

All analyses were performed using GraphPad Prism (v7) or
IBM SPSS (v24). After confirming normality and homogene-
ity of variance, data from the microsensor/western blot cohort
were analyzed by three-way repeated measures ANOVA
(with time, object, prepulse, applied drug concentration, or
glutamate transporter subtype as a within-subject factor) or
two-way ANOVA (total locomotor activity, NOD discrimina-
tion ratio, microsensor responses to single-drug concentra-
tions, and remaining protein expression) with neonatal treat-
ment and housing as between-subject factors. Data from the
pharmacological NOD and immunohistochemistry cohort
were analyzed by three-way repeated measures ANOVAwith
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acute treatment and object, or hippocampal subfield and cell
layer as within-subject factors and neurodevelopmental con-
dition as a between-subject factor. NOD discrimination ratios
were analyzed by two-way repeated measures ANOVA with
acute treatment as a within-subject factor, and remaining im-
munohistochemical data by one-way ANOVA, with
neurodevelopmental condition as a between-subject factor in
each case. Pearson’s r correlation analyses were also per-
formed between immunohistochemical and discrimination ra-
tio data. Post hoc within- and between-subject comparisons
used Sidak and Tukey tests, respectively. P < 0.05 was
regarded as statistically significant and data are presented as
mean ± SEM.

Results

Microsensor and Western Blot Characterization of
Glutamatergic Deficits

Prior Confirmation of Neonatal PCP and Isolation
Rearing-Induced Behavioral Phenotype

The time course of ambulation in a novel arena showed a time ×
housing interaction (F(11,605) = 3.055; P< 0.001), and although
there were no time × treatment or time × treatment × housing
interactions, PCP-Iso had higher ambulation than Veh-Gr con-
trols and single-hit PCP-Gr or Veh-Iso at multiple time points
(Fig. S1a). Total ambulation showed treatment (F(1,55) = 3.872;
P < 0.05) and housing (F(1,55) = 3.817; P < 0.05) effects and was
higher in PCP-Iso (but not Veh-Iso or PCP-Gr) than in Veh-Gr
(P < 0.05; Fig. S1b). Similar patterns were observed for rearing
and fine movement (data not shown).

NOD testing confirmed an effect of object (F(1,65) =
37.016; P < 0.001) and an object × housing interaction
(F(1,65) = 18.979, P < 0.001) during the choice trial. Veh-Gr
and PCP-Gr were both able to discriminate the novel from
familiar object (P < 0.0001 and P < 0.001, respectively), but
Veh-Iso and PCP-Iso were not (P > 0.05; Fig. S1d). This
isolation-induced impairment was further supported by a
housing effect on the discrimination ratio (F(1,65) = 22.37,
P < 0.0001), which was lower in both Veh-Iso (P < 0.001)
and PCP-Iso (P < 0.01) than in Veh-Gr (Fig. S1e).
Importantly, these changes occurred without any spatial pref-
erence between identical objects during the familiarization
trial (Fig. S1c) or any differences in total object exploration
(data not shown).

PPI testing showed the expected effect of prepulse volume
(F(2,130) = 122.534; P < 0.001), although the prepulse × hous-
ing interaction just failed to reach statistical significance
(F(2,130) = 2.921, P = 0.057; Fig. S1f). There were no differ-
ences in startle reactivity (data not shown).

Taken together, these findings suggest the current PCP-Iso
cohort had slightly more marked locomotor hyperactivity than
previous studies, and the expected robust NOD impairment,
but a smaller PPI deficit than when these tests were performed
after an extra week of isolation [10, 14], which was not com-
patible with the current microsensor study design. We there-
fore progressed these animals to planned microsensor and
western blot studies, given the novelty of these proposed
ex vivo measures following isolation rearing.

Effect of Neonatal PCP and Isolation Rearing on Glutamate
Release from Hippocampal Slices

Validation studies confirmed that in the absence of tissue,
sensors responded to exogenous glutamate (Fig. 2a) in a linear
manner (Fig. 2b), but not to test compounds (data not shown)
or potential interfering agents (Fig. 2a). Basal extracellular
glutamate in slices from drug-naïve group-housed rats (2.43
± 0.52 μM) was reduced by TTX (1.40 ± 0.27 μM; − 42%;
P < 0.05) and elevated by KCl (Fig. 2d), TBOA (Fig. 2e),
veratridine (Fig. 2f), L-cysteine (Fig. 2g), and α-latrotoxin
(Fig. 2h). KCl- and TBOA-evoked responses were both sen-
sitive to TTX (data not shown).

Slices from neurodevelopmentally manipulated rats re-
vealed a main effect of housing on basal hippocampal gluta-
mate (F(1,28) = 4.567; P < 0.05) which was 32% lower in Iso
than Gr (Fig. 3a) but did not reach post hoc significance for
Veh-Iso or PCP-Iso compared to Veh-Gr or PCP-Gr. KCl-
evoked (F(2,56) = 21.834; P < 0.001) and TBOA-evoked
(F(1,28) = 15.665; P < 0.001) increases were both unaffected
by neurodevelopmental history (data not shown). Neither
SB-399885, CPPG, nor MMPIP influenced extracellular glu-
tamate levels when administered alone (data not shown), but
of particular note, the release evoked by the 5-HT6 antagonist
in the presence of KCl (F(1,28) = 71.528; P < 0.001) interacted
with neonatal PCP treatment (F(1,28) = 6.213; P < 0.05) and
was attenuated in PCP-Iso compared to both Veh-Gr
(P < 0.05) and Veh-Iso (P < 0.01; Fig. 3b). No such reduction
was seen for release evoked by the group III mGlu antagonist
(F(1,28) = 56.539; P < 0.001; Fig. 3c) or mGlu7 allosteric an-
tagonist (F(1,28) = 66.418; P < 0.001; Fig. 3d) with KCl, which
remained unaffected by treatment or housing.

Effect of Neonatal PCP and Isolation Rearing on Hippocampal
Expression of Glutamatergic and GABAergic Markers, plus
5-HT6 and mGlu7 Receptors

Protein expression data are shown in Fig. S2 and Fig. S3.
There was a subtype × treatment × housing interaction for
VGLUT expression (F(2,56) = 4.306; P < 0.05). Despite no
treatment × housing interaction for VGLUT1 (F(1,32) =
3.095; P = 0.0881; Fig. S2a), there were interactions for the
ratio of VGLUT1:VGLUT2 (F(1,32) = 5.473; P < 0.05; Fig.
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S3a) and VGLUT1 as a proportion of total VGLUT (F(1,32) =
4.952; P < 0.05; Fig. S3b), which were lower in PCP-Iso than
in PCP-Gr (P < 0.05; − 35% and − 22% respectively). There

was no subtype × treatment × housing interaction for EAATs,
but a treatment × housing interaction for EAAT2 (F(1,32) =
4.303; P < 0.05) which was lower in PCP-Iso than in Veh-

Fig. 2 Characterization of the glutamate microsensor signal prior to
studies in neurodevelopmentally manipulated rats. Representative a, d–
h or mean ± SEM b difference in current output between glutamate and
null sensors on addition of a exogenous glutamate or potential interfering
agents, which demonstrates a selective response to glutamate, and b
increasing concentrations of glutamate in the absence of tissue, which
demonstrates a linear relationship, as well as following insertion of
sensors into the CA1 region c of separate slices from drug-naïve group-

housed rats (n = 3)where glutamate signals were increased by exposure to
d elevated KCl, e the glutamate reuptake inhibitor DL-TBOA, f sodium
channel activator veratridine, g antiport exchange substrate L-cysteine, or
h α-latrotoxin which induces exocytosis from presynaptic vesicles, sug-
gesting neuronal origin of the glutamate signal. Bars represent 10-min
perfusion via the aCSF reservoir, and arrows local application to the
interface chamber
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Iso (P < 0.05, − 20%; Fig. S2e). There was also a treatment ×
housing interaction for 5-HT6 expression (F(1,32) = 5.127;

P < 0.05; Fig. S2i) but between-group differences did not
reach post hoc significance.
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NOD Assessment of Pharmacological Sensitivity,
Followed by Immunohistochemistry

Effect of Neonatal PCP and Isolation Rearing on the Cognitive
Effects of 5-HT6 and mGlu7 Receptor Antagonists in the NOD
Task

There was an acute treatment effect on the duration of
familiarization trial object exploration (F(2,76) = 12.684;
P < 0.001) which was decreased by SB-399885 and
MMPIP, but importantly no spatial preference between
identical objects nor any neurodevelopmental condition
× acute treatment interaction (Fig. 4a). In contrast, there
were choice trial effects of object (F(1,38) = 69.167;
P < 0.001) plus an object × neurodevelopmental condi-
tion interaction (F(2,38) = 6.382, P < 0.01). Veh-Gr dis-
criminated the novel from familiar object following
acute vehicle (P < 0.01), inferring intact memory, and
this was not modified by SB-399885 (P < 0.05) or
MMPIP (P < 0.01), consistent with a ceiling effect.
Veh-Iso and PCP-Iso were both unable to discriminate
following acute vehicle (P > 0.05), suggesting an inabil-
ity to remember experiences from the familiarization
trial 2 h previously. Memory was restored by SB-
399885 in single-hit Veh-Iso (P < 0.001) but not dual-
hit PCP-Iso (P > 0.05), whereas MMPIP remained effec-
t i ve in bo th mode l s (P < 0 .001 and P < 0 .01 ,
respectively; Fig. 4b). Discrimination ratios support this
pattern, being lower in both Veh-Iso and PCP-Iso than
in Veh-Gr following acute vehicle (P < 0.05), and of
particular note also lower in PCP-Iso than the two other
neurodevelopmental conditions following acute SB-
399885 (P < 0.01; Fig. 4c).

Effect of Neonatal PCP and Isolation Rearing on Hippocampal
Calbindin and 5-HT Immunoreactivity

There was typical intense calbindin labeling in the dentate
gyrus and stratum pyramidale, which prevented cell counting
within these regions. Remaining cells matched the distribution
of GABA interneurons [62] (Fig. 5a, b) and their counts were
influenced by neurodevelopmental history (F(2,37) = 6.795;
P < 0.01) and reduced in PCP-Iso (80 ± 3) compared to Veh-
Gr (101 ± 5; P < 0.01) or Veh-Iso (95 ± 3; P < 0.05). This was
predominantly due to changes in CA1 (PCP-Iso versus Veh-
Gr P < 0.0001 and Veh-Iso P < 0.05), where labeling intensity
was also affected by neurodevelopmental history (F(2,37) =
3.294; P < 0.05) and lower in PCP-Iso (91 ± 4) than in Veh-
Gr (105 ± 4; P < 0.05). Reduced counts in Veh-Iso were re-
stricted to strata oriens of CA1 but extended in PCP-Iso to
strata radiatum, plus strata oriens of remaining subfields
(Fig. 5c). Significant positive correlations were observed be-
tween calbindin immunoreactivity and NOD discrimination
ratios when rats received SB-399885 (Fig. 5d), but there was
no link between calbindin immunoreactivity and cognitive
performance when the same rats received either vehicle or
MMPIP (data not shown).

Labeling of varicose 5-HT axons (Fig. 5e, which are
known to preferentially contact calbindin-positive interneu-
rons [37, 63]), showed the expected effect of cell layer [64]
but was not influenced by neurodevelopmental history (Fig.
5f) and did not correlate with NOD following SB-399885
(Fig. 5g) or any other acute treatment (data not shown).

Discussion

Combining two established rodent neurodevelopmental
models for schizophrenia, neonatal PCP and isolation rearing,
produces a wider range of behavioral and neurochemical al-
terations akin to the core pathophysiology of schizophrenia
than either alone [7, 10–12]. Our locomotor data again support
this more pronounced change in PCP-Iso, and the reliable
NOD impairment in 100% of 9 PCP-Iso cohorts now exam-
ined in our laboratory confirm this deficit in visual recognition
memory is more reproducible than the reported 70% follow-
ing single-hit isolation [39]. PPI deficits seen in two previous
PCP-Iso cohorts [10, 14] were not observed here, in only the
third cohort to undergo this test, perhaps due to the slightly
earlier timing of this assessment to accommodate subsequent
microsensor studies while remaining within project license
limits on the duration of isolation and weight restrictions for
the required euthanasia method. Nevertheless, preliminary
suggestions of a PPI deficit in 67% of the three PCP-Iso co-
horts examined to date may represent some improvement on
the approximately 55% of 18 single-hit isolate cohorts exam-
ined within our laboratory, particularly if the PCP-Iso deficit

�Fig. 3 Effect of neonatal PCP and isolation rearing on glutamate release
from hippocampal slices. Mean ± SEM (left-hand y-axis) a basal
extracellular glutamate concentration and evoked AUC responses to b
3 μM SB-399885, c 100 μM CPPG, and d 100 μM MMPIP in the
presence of 120 mM KCl for 15 min, together with (b–d right-hand y-
axis) representative difference in current output between glutamate and
null sensors. Bars represent 15-min perfusion via the aCSF reservoir.
Male Lister hooded rats that received saline (1 ml/kg s.c.; Veh) or PCP
(10 mg/kg) on PND 7, 9, and 11 were housed in groups (Gr) or isolation
(Iso) from weaning on PND 21, with hippocampal slices obtained on
PND 73–112 (n = 7–9 per treatment-housing combination). There were
main effects of a isolation on basal extracellular glutamate levels
(P < 0.05), and glutamate release was evoked by the combination of ele-
vated KCl with b SB-399885 (P < 0.001), c CPPG (P < 0.001), or d
MMPIP (P < 0.001). Of note, the release evoked by b SB-399885 plus
high KCl interacted with neonatal PCP treatment (P < 0.05) and was
reduced in PCP-Iso compared to Veh-Gr or Veh-Iso, whereas release
evoked by c CPPG plus high KCl or d MMPIP plus high KCl remained
unaffected by neonatal PCP treatment or isolation rearing. ~P < 0.05 ver-
sus Gr (two-way ANOVA); *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001 versus basal in the same slice (three-way repeated mea-
sures ANOVAwith Sidak post hoc); †P < 0.05 versus Veh-Gr; ##P < 0.01
versus Veh-Iso (two-way ANOVA with Tukey post hoc)
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can be maximized by closely controlling timing of the assess-
ment. Although assessment of fear-motivated memory could

not be included within the current test battery, the reliable
impairment in 100% of five PCP-Iso cohorts now examined
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Fig. 4 Impact of combined neonatal PCP and isolation rearing on the
ability of a 5-HT6 (but not mGlu7) antagonist to reverse isolation-
induced cognitive deficits in the NOD task. Mean ± SEM time spent
exploring a two identical objects during the familiarization trial and b
the novel and familiar object during the choice trial 2 h later, as well as c
choice trial discrimination ratio (time exploring novel/total choice trial
object exploration). Male Lister hooded rats that received saline (1 ml/kg
s.c.; Veh) or PCP (10 mg/kg) on PND 7, 9, and 11 were housed in groups
(Gr; Veh only) or isolation (Iso; Veh and PCP) fromweaning on PND 21,
then underwent NOD on three occasions at 1–2-week intervals (PND 57–
80) to receive acute vehicle (Veh; 0.5% methylcellulose 1% Tween 80;
1 ml/kg i.p. 30 min before the familiarization trial), SB-399885 (SB;
10 mg/kg), or MMPIP (MP; 10 mg/kg) on separate test days in a pseu-
dorandom order and serve as their own controls (n = 13–14 per
neurodevelopmental condition). In the familiarization trial a, there was
a main effect of acute treatment on the duration of object exploration
(P < 0.001), which was decreased by SB-399885 and MMPIP, but

importantly, no spatial preference between identical objects or any
neurodevelopmental condition × treatment interaction. In the choice trial
b, there was an effect of object (P < 0.001) and an object ×
neurodevelopmental condition interaction (P < 0.01). Veh-Gr discrimi-
nated the novel object following acute vehicle and this intact memory
was not further enhanced by acute treatment, consistent with a ceiling
effect. Impaired memory was restored by SB-399885 in single-hit Veh-
Iso but not dual-hit PCP-Iso, whereas MMPIP remained effective in both
models. Accordingly, discrimination ratios (c) were lower in Veh-Iso and
PCP-Iso than in Veh-Gr following acute vehicle, and of note also lower in
PCP-Iso than the other two neurodevelopmental conditions following
acute SB-399885. *P < 0.05; **P < 0.01; ***P < 0.001 versus the famil-
iar object following the same acute treatment in the same rats (three-way
repeated measures ANOVA with Sidak post hoc); †P < 0.05 versus acute
vehicle in Veh-Gr, ‡‡P < 0.01 versus acute SB-399885 in Veh-Gr;
##P < 0.01 versus acute SB-399885 in Veh-Iso (two-way ANOVA with
Tukey post hoc)
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Fig. 5 Impact of combined neonatal PCPand isolation rearing on hippocampal
calbindin and 5-HT immunoreactivity in the dorsal hippocampus.
Representative a, b calbindin immunoreactivity throughout a all subfields and
b part of CA1 (indicated in a by a solid border), together with e higher magni-
fication images of typical 5-HT immunoreactivity inCA1 strata oriens (s.o.) and
radiatum (s.r.) locations (indicated in a by dashed borders). Red represents a, b
calbindin or e 5-HT, and blue in a and the top portion of each image in e
represents DAPI nuclear counterstain; the bottom portion of each image in e
is a duplicate presented without the nuclear counterstain. Scale bars are equiv-
alent to 100 μm a, b or 10 μm e. Mean ± SEM c number of calbindin-positive
cells in s.o., s.r., and stratum lacunosum-moleculare (s.l-m) of the dorsal hippo-
campal subiculum/fasciola cinereum (sub/fc), CA1, and CA2/3, and f intensity
of 5-HT immunofluorescence in s.o. and s.r. of dorsal hippocampal CA1 and
CA3 and molecular (mol) and polymorphic (pol) layers of the dentate gyrus
(DG), plus correlation analyses of d calbindin and g 5-HT immunofluorescence
intensity in CA1 versus the NOD choice trial discrimination ratio (time explor-
ing novel/total choice trial object exploration) following acute SB-399885.Male
Lister hooded rats that received saline (1ml/kg s.c.; Veh) or PCP (10mg/kg) on
PND 7, 9, and 11 were housed in groups (Gr; Veh only) or isolation (Iso; Veh

and PCP) fromweaning on PND 21, then underwent NOD on three occasions
(PND 57–80) before tissue collection (PND 78–80), to receive vehicle (0.5%
methylcellulose 1% Tween 80; 1 ml/kg i.p. 30 min before the familiarization
trial), SB-399885 (10 mg/kg), or MMPIP (10 mg/kg) on separate test days in a
pseudorandom order and serve as their own controls (n = 13–14 per
neurodevelopmental condition). Calbindin immunoreactivity a was strongest
in the dentate gyrus and stratum pyramidale, and remaining cells matched the
distribution of GABA interneurons. The b intensity of calbindin immunoreac-
tivity in CA1 and c number of calbindin-positive cells throughout dorsal hip-
pocampal subfields andcell layerswere both influencedbyneurodevelopmental
condition (P<0.05 and P<0.01, respectively), and although there were some
reductions in single-hit Veh-Iso, these were much more extensive in PCP-Iso
and correlated with dNODperformance following acute administration of SB-
399885. Patterns of e 5-HT immunoreactivity were consistent with labeling of
fine varicose axons (marked by arrowheads) but labeling intensity f was not
influenced by neurodevelopmental condition and g did not correlate with NOD
flowing SB-399885 administration. †P < 0.05 Veh-Iso and †P < 0.05;
††P<0.01; ††††P<0.0001 PCP-Iso versus Veh-Gr; #P<0.05 PCP-Iso versus
Veh-Iso (three-way repeated measures ANOVA with Tukey post hoc)
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in our laboratory ([10, 12], and unpublished observations)
suggests this deficit is also more robust than observed in
67% of 12 single-hit isolation cohorts. Accumulating behav-
ioral data from the PCP-Iso dual-hit model therefore support
an additive or cumulative stress hypothesis [65] as also ob-
served for maternal separation [66] or neonatal AMPA/
kainate receptor agonism [67] plus isolation rearing, and these
newer models allow scope to investigate how complex inter-
actions between early-life risk factors contribute to the neuro-
biology of neurodevelopmental disorders like schizophrenia.
Models involving social manipulations like maternal separa-
tion and isolation rearing appear to have excellent construct
validity for schizophrenia, since parental separation or loss,
frequent relocation during adolescence, and social disadvan-
tage or exclusion extending into later life are all risk factors
[68]. While we acknowledge that developmental exposure to
glutamate receptor ligands is less common [69–71] it appears
the long-term consequences of such exposure in rodents as
part of a dual-hit approach still afford good face validity.
The availability of more robust preclinical models with which
to test novel therapeutics has crucial relevance for drug dis-
covery, but to our knowledge the pharmacological sensitivity
of combined versus separate PCP and isolation models has not
been directly compared before. Our principal finding is that
dual-hit PCP-Iso are less sensitive to the 5-HT6 antagonist SB-
399885, in terms of glutamate release from hippocampal
slices, and this translates to reduced cognitive effect of SB-
399885 in a NOD task. Reductions in hippocampal calbindin
expression could potentially underlie both of these
observations.

We recognize that the relevance of glutamate microsensor
measurements is open to interpretation, because their invasive
nature permits direct comparison with data from patients ver-
sus healthy controls. However, it is important to note that
direct comparison between human and animal data are simi-
larly lacking even in cases where the same MRS approach to
study glutamatergic neurotransmission is used across species,
due to requirements for general anesthesia in rodents. For
compounds in the earlier phases of development glutamate
microsensor measures in brain slices, or ultimately in freely
moving animals, therefore provide a valuable direct indication
of extracellular glutamate with high temporal resolution [24].
Basal extracellular glutamate levels in slices from control an-
imals were similar to those obtained using alternative sensors
[24], and components of the signal met several criteria for
neuronal origin. These include sensitivity to KCl, α-
latrotoxin, and TTX, with decreases to the latter in line with
previous microsensor reports [72]. Neuronal glutamate
sources in CA1 include CA3 Schaffer collateral synapses (on-
to basal and proximal apical pyramidal dendrites in strata
oriens and radiatum) and entorhinal cortex temporoammonic
projections (onto distal apical dendrites in stratum lacunosum-
moleculare [73]). Precise replication of sensor placement

between slices and animals was unattainable but typically
within the region of apical dendrites and so receptive to both
pathways. Reduced basal glutamate in isolates matches MRS
findings [74] and mirrors the pattern of NOD impairments,
consistent with dependence of this type of memory on gluta-
matergic neurotransmission within CA1 [33–36]. Although
the consensus is that schizophrenia begins with hypofunction
of NMDA receptors on GABAergic interneurons leading to
disinhibition of pyramidal cells and excitotoxic damage to
CA1 [75], MRS generally shows little hippocampal change
in early schizophrenia [76]. Our NOD studies began at the
accepted onset of adulthood, which is approximately 3 weeks
after typical emergence of isolation-induced dopaminergic
changes and hyperlocomotion [77]. Since our microsensor
studies continued for almost 3 months after this first emer-
gence it can be argued that current findings more closely mir-
ror chronic disease where MRS can reveal decreased gluta-
mate in patients [19], potentially due to reduced synaptic den-
sity [20] and VGLUT1 expression [21, 22]. Indeed, similar
changes are reported in isolates within the time frame of our
microsensor measurements [78, 79] and although we did not
observe outright VGLUT deficits it is possible that subfield-
and/or lamina-specific changes in expression were masked by
analysis of whole homogenates. The altered ratio of
VGLUT1:VGLUT2 may also contribute to the current isola-
tion effect on basal glutamate, since these transporters respec-
tively localize to synapses with low release probability that
exhibit long-term potentiation or high release probability that
exhibit long-term depression [80].

5-HT6 antagonists elevate hippocampal glutamate efflux
in vivo [81] but the absence of similar effects when applied
alone to synaptosomes [82] or slices is readily attributed to loss
of 5-HT tone, while the lack of mGlu7 allosteric antagonist
effect [83] is explained by relatively low affinity of glutamate
for this receptor and consequent activation only during high-
frequency firing [84]. Elevated extracellular K+ concentrations
which occur during such discharge [85] are routinely used to
induce neurotransmitter release ex vivo, and because KCl-
evoked responses were unaffected by neurodevelopmental his-
tory, this stimulus appeared suitable for further examination of
receptor-selective compounds. 5-HT6 blockade augments KCl-
evoked glutamate release from slices in a TTX-sensitive man-
ner [86] and we are the first to show this effect is attenuated in
slices from PCP-Iso. We are also the first to reveal the potential
functional correlates of this observation, since an SB-399885
dose capable of reversing isolation-induced NOD deficits was
inactive in the combined neurodevelopmental model. While 5-
HT6 antagonists’ effects on NOD ultimately depend on NMDA
receptor-mediated glutamatergic mechanisms [48, 87, 88] and
there is extensive colocalization of hippocampal 5-HT6 and
VGLUT1 mRNA, any direct effect of excitatory Gαs protein-
coupled 5-HT6 receptors on principal neurons is played down
by suggestions of little tonic 5-HT input to this population of 5-
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HT6 receptors [89]. Instead, GABAergic disinhibition is the
main mechanism proposed to underlie 5-HT6 antagonist-
induced glutamate release. The 5-HT6-expressing GABA inter-
neurons appear to be largely calbindin-positive—not
parvalbumin-positive (60 versus 5% mRNA co-localization,
respectively [38]), which is consistent with preferential seroto-
nergic innervation of the calbindin-positive interneurons that in
turn arborize with proximal apical dendrites of pyramidal cells
and mediate feedforward inhibition [37, 63]. In contrast, the
mGlu7 antagonist-stimulated glutamate release that was main-
tained in PCP-Iso is likely to be largely independent of
calbindin-positive interneurons, since Gαi/o protein-coupled in-
hibitory mGlu7 autoreceptors and heteroreceptors are expressed
on VIP-positive interneurons and appear to be preferentially
found at synapses onto somatostatin-positive interneurons in
stratum oriens that mediate feedback inhibition of distal pyra-
midal dendrites [90, 91]. It therefore appears plausible that dys-
function of calbindin-positive interneurons could account for
attenuated glutamatergic and cognitive responses to SB-
399885 and sparing of responses to MMPIP in PCP-Iso. The
correlation between calbindin expression and NOD perfor-
mance following SB-399885 does not confirm causality but at
least appears consistent with our working hypothesis. We cer-
tainly saw no evidence for reduced 5-HT6 receptor expression
in the dual-hit model, nor for reduced 5-HT innervation of the
dorsal hippocampus that would influence 5-HT6 receptor tone.
Admittedly, SERT expression or indicators of tonic 5-HT re-
lease in PCP-Iso remain unexplored, but any serotonergic dys-
function in schizophrenia [92], isolation-reared [93–95] or neo-
natal NMDA antagonist-treated rats [96, 97] appears far less
extensive than that produced by intentional median raphe le-
sions that abolished 5-HT6 antagonists’ effect on NOD during
dissociation of relevant neuroanatomical substrates [98].

There is evidence that some patients with schizophrenia do
have reduced calbindin expression and a disordered pattern of
calbindin interneurons in the hippocampus [99, 100, but see
101], while the VIP-positive interneurons that express mGlu7
remain unaffected in schizophrenia [102]. PCP-Iso therefore
appear to have better relevance, in terms of face validity, for
calbindin-deficient patient subgroups than single-hit isolation-
reared rats or indeed other non-neurodevelopmental models.
There has previously been some conflict whether reduced
calcium-binding protein immunoreactivity in preclinical
models and patients with schizophrenia reflects a selective
posttranslational decrease in calcium-binding protein expres-
sion [103] or actual loss of that cell population [104]. Our
PCP-Iso-induced calbindin decrease without any change in
GAD67, VGAT, or 5-HT6 markers known to be present in
the same cell types appears to support the former. Reduced
calcium-binding protein expression would be expected to re-
duce interneuron firing [105], potentially preventing further 5-
HT6 antagonist-mediated disinhibition. Future high-priority
studies beyond scope of this manuscript should employ

calbindin-deficient mice or RNA interference-mediated
calbindin knockdown to test the hypothesis that a selective
reduction in calbindin expression (of the order associated with
schizophrenia) is actually sufficient to impact on 5-HT6

antagonist-mediated responses. It may become necessary to
explore alternative explanations including alterations in fron-
tal cortical dopamine, which is also important for NOD [106]
and modulated by 5-HT6 antagonists [107] but as yet unex-
plored in PCP-Iso. Such alternatives may underlie the ability
of cariprazine to reverse NOD deficits in PCP-Iso, since
in vivo microdialysis shows this novel antipsychotic normal-
izes acute PCP-induced dopamine and glutamate efflux in the
medial prefrontal cortex [108] and elevates dopamine efflux in
the nucleus accumbens and hippocampus without having any
effect on hippocampal glutamate [109]. On the basis of this
latter observation, cariprazine would not be expected to influ-
ence the signal in our current microsensor studies and we
therefore instead prioritized the inclusion of other putative
procognitive drugs with established effects on glutamatergic
neurotransmission within the hippocampus.

A diverse array of compounds, including 5-HT6 antagonists
[42, 110–112], an mGlu2/3 agonist [49], NMDA receptor gly-
cine modulatory site partial agonist [113], α4β2 and α7 nico-
tinic receptor agonists [114], donepezil [115], risperidone [47],
and fluoxetine [116], all reverse “single-hit” isolation-induced
NOD deficits. Some of these approaches are associated with
clinical benefit in other psychiatric or neurodegenerative disor-
ders but ultimately lackmarked clinical benefit in schizophrenia
[117–119]. For example, 5-HT6 antagonists appear to improve
cognition in mild to moderate Alzheimer’s disease [120, 121]
which interestingly, and consistent with our working hypothe-
sis, does not appear to involve calbindin deficits in CA1
[122–124]. Sparse clinical data for cognitive effects of 5-HT6
antagonists in schizophrenia [125] together with anecdotal in-
dications that most pharmaceutical companies have suspended
trials in this area seem to imply that previous findings in normal
rats and other models for this disorder may actually represent
false positives. In support of this, it is worth noting the earlier
failure of three independent groups to replicate procognitive
effects of 5-HT6 antagonists in non-neurodevelopmental stud-
ies [126–128]. The current absence of any “gold standard”
treatment for the cognitive impairment associated with schizo-
phrenia makes it difficult to ascertain the true predictive validity
of PCP-Iso. However, our previous findings with cariprazine,
aripiprazole, and lamotrigine [12, 14], together with current
observations with a 5-HT6 receptor antagonist, suggest
wider adoption of PCP-Iso may aid more reliable preclin-
ical evaluation of novel compounds to manage the symp-
toms of schizophrenia or even modulate disease onset.
Any progress towards improved early distinction of prom-
ising from less suitable pharmacological approaches using
the PCP-Iso model has clear relevance from streamlining
drug discovery.
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Paradoxically, 5-HT6 receptor agonists have similar cogni-
tive effects to antagonists of the same receptor, so prolong
NOD memory in normal animals [129] and reverse a variety
of acute NMDA receptor antagonist-induced NOD deficits
[130, 131, 132]. The underlying neurochemical mechanisms
remain unclear, since 5-HT6 agonists actually facilitate
GABAergic and inhibit glutamatergic neurotransmission in
the hippocampus and cortex [53, 55, 82, 133]. Future neuro-
chemical and cognitive studies in PCP-Iso should therefore
examine the extent to which 5-HT6 receptor agonist-
mediated responses might be perturbed by glutamatergic def-
icits and interneuron dysfunction in schizophrenia. The rela-
tionship between mGlu7 and memory is also complex, with
the mGlu7-negative modulator MMPIP both impairing NOD
in normal mice [58] and recently proposed as a putative anti-
psychotic due to its ability to reverse acute MK-801-induced
hyperactivity and cognitive deficits inmouseNODand rat spatial
delayed alternation tests [56]. It has been suggested mGlu7 may
represent a new treatment target for neurodevelopmental disor-
ders [134], and current neurochemical and behavioral findings
certainly appear to justify continued preclinical evaluation of
mGlu7 allosteric antagonists against a broader variety of PCP-
Iso-induced cognitive impairments. This is important since the
NOD test of visual recognition memory performed here has
translational relevance to only one of several cognitive domains
impaired in schizophrenia [45]. Future studies should also assess
the integrity of VIP-expressing interneurons in PCP-Iso to test
our current working hypothesis that cells mediating the effects of
mGlu7 receptor ligands would be spared in this animal model
and therefore mirror findings in patients with schizophrenia
[102]. In conclusion, this research highlights the importance of
improved understanding for selection of appropriate preclinical
models, and for better stratification of patient subpopulations to
different drug treatments, especially in cases where disease neu-
robiology impacts upon the cells mediating pharmacological ef-
fects of potential therapeutics.
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