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ABSTRACT: The screening of compound libraries to identify small-molecule modulators
of specific biological targets is crucial in the process for the discovery of novel therapeutics
and molecular probes. Considering the need for simple single-tool assay technologies with
which one could monitor “all” kinases, we developed a fluorescence polarization (FP)-
based assay to monitor the binding capabilities of protein kinases to ATP. We used
BODIPY ATP-y-S as a probe to measure the shift in the polarization of a light beam when
passed through the sample. We were able to optimize the assay using commercial Protein
Kinase A (PKA) and H7 efficiently inhibited the binding of the probe when added to the
reaction. Furthermore, we were able to employ the assay in a high-throughput fashion and
validate the screening of a set of small molecules predicted to dock into the ATP-binding
site of PKA. This will be useful to screen larger libraries of compounds that may target
protein kinases by blocking ATP binding.

■ INTRODUCTION

A very first step on the path for the discovery of novel
therapeutics is the screening of compound libraries in the
search for new small-molecule modulators of biological targets.
A wide range of robust assay technologies are currently
available and, although no single technology is broad enough
to address all of the needs in the drug discovery field, most of
them are suitable for high-throughput screening (HTS).
Nevertheless, the selection of an appropriate primary assay
technology can greatly increase the chances of initial hit
identification. One applicable technology, fluorescence polar-
ization (FP) is a powerful approach by which alterations in the
apparent molecular weight of a fluorescent probe in solution
are indicated by changes in the polarization of the sample’s
emitted light.1 Since FP was first applied to screening, newly
advanced methods have substantially boosted this technology
in the field. Advantages of FP assays include the use of an all-
in-one (homogeneous) format fitted to study molecular
processes in solution, comparatively low cost, availability of
time-course analysis, and relatively insensitivity to some type of
assay interferences such as inner filter effects.1−3

One major application of FP assays relies on the inter-
rogation of biologically relevant molecular interactions, either
due to direct binding of a fluorescent probe (tracer) or through
competition with an unlabeled species.2 We recently described
a fluorescent tool based on the nonspecific kinase inhibitor
staurosporine. The tool was highly suitable for FP applications
and allowed monitoring the ATP-binding site of a large

number of kinases and in this way enabled identification of
inhibitory substances.4 Although the FP technique is easily
adapted for HTS applications, a significant number of kinases
could not be measured using this tool. With the emergence of
the new therapeutic areas for kinase drug discovery and
considering the still considerably large orphan kinase family in,
for example, oncology applications, the need arises for simple
universal assay technologies with which one could monitor
most kinases. Such tools would also allow parallel development
of single assay formats for multiple different kinases, which
would allow easy side-by-side screening and analysis, as in
selectivity screening experiments, for example.
With this in mind, we sought to develop a FP-based system

suitable for HTS using solely ATP-γ-S, a nonhydrolyzable
derivative of ATP-containing BODIPY FL as the fluorophore
chemosensor.5 Being an ATP derivative, this probe is expected
to bind to all kinases, including kinases for which no ready
high-throughput assay system exists. Additionally, BODIPY has
unique photophysical and photochemistry properties com-
pared to fluorophores such as fluorescein.6 This probe was
originally used in studies of synthesis and transport of
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sphingolipids,7 though it is currently being used in many fields,
from clinical diagnostics and biotechnology to molecular
biology and biochemistry. Yet, several applications include the
use of BODIPY derivatives, such as sensitizers for living cells,
cationic and anionic chemical sensors, medical applications,
and electroluminescent agents.8−10

To characterize the probe and obtain proof-of-principle for
the assay, we employed purified cAMP-dependent protein
kinase (PKA), which is well-known and widely available for
commercial purposes. Thus, in addition to establishing
inhibition by known PKA inhibitors, we also employed the
assay in the HTS format to validate an in silico screening of a
library of small molecules predicted to dock into the ATP-
binding site of PKA.

■ RESULTS

Kinase Binding Assay. First, we performed an in silico
docking prediction of the ATP and the BODIPY FL ATP-γ-S
(adenosine 5′-O-(3-thiotriphosphate), BODIPY FL) probe
into the nucleotide-binding pocket (G-loop) of the protein
kinase A (PKA). In silico docking of ATP recreated the
experimentally observed ATP-binding poses with a good deal
of accuracy (root-mean-square deviation, RMSD = 1.07 Å)
(Figures 1A and S1A,B).11 Although the probe, in comparison
to the natural kinase ligand ATP, contains a relatively large
additional fluorophore, in silico docking analysis predicts that
it protrudes out of the ATP binding into the solvent-accessible
space and does not interact with any part of the protein, apart
from a hydrogen bond between the amide NH2 and T51,

hence making this docking very similar to ATP itself and quite
stable (Figure S1C).
To optimize the probe concentration to be used in the assay,

FP was measured for several concentrations of the probe,
ranging from 10−13 to 10−7 M in three different conditions
(Figure 1B). Low amounts of Tween20 (0.01 or 0.05%) were
used to reduce (or remove) nonspecific binding of the probe,
hence providing a more realistic value of the free/bound probe
in the sample. As shown in Figure 1B, around 10−10 M of the
probe was capable of causing depolarization of the light, with
this effect reaching saturation around 10−8 M. The presence of
the detergent lowered the polarized fluorescence values by
roughly 30% when compared to the probe alone (Figure 1B).
For application in the assay, we have selected the optimal
concentration of the probe that causes a full depolarization
signal without saturation of it, thus the chosen optimal
concentration corresponded to a range of 5 × 10−9 to 1 × 10−8

M (−8.5 to −8.0 on the x-axis, Figure 1B).
It is known that ATP is the natural ligand of protein kinases;

hence if the analogous ATP probe can bind to a protein kinase,
the light depolarization previously observed could be reversed.
Purified PKA was used as a model kinase to bind to the probe,
since it is a standard known kinase largely and commercially
available. The probe concentrations corresponding to the
optimal depolarization values (5 × 10−9 and 1 × 10−8 M) were
chosen to evaluate the binding of PKA in a dose-dependent
manner. PKA was able to bind to the probe and cause a
significant increase in FP, specifically in the presence of 0.01%
Tween20 detergent as from 5 units of the PKA enzyme (Figure

Figure 1. Use of the ATP derivative, ATP-y-S BODIPY FL (SIGMA) in fluorescence polarization assay. (A) Structure of the probe. (B)
Fluorescence polarization value in response to increasing amounts of the probe in three different conditions regarding the presence or absence of
the detergent (Tween20, Merck) in the buffer. Each point represents the mean ± SD (n = 3). Fluorescence polarization was measured as described
in the Methods section.

Figure 2. Binding of the probe to the enzyme PKA (Protein Kinase A, Merck) visualized by fluorescence polarization in three different conditions.
Two concentrations of the probe (A) 5 × 10−9 M or (B) 1 × 10−8 M were used and increasing amounts of PKA were added to the reaction.
Fluorescence polarization was measured as described in the Methods section. Each column represents the mean + SD (n = 2). Data was analyzed
using two-way ANOVA (p < 0.0001) and Tukey’s multiple comparisons test (p-value 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****)).
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2). Higher amounts of the enzyme (10 units) caused an
increase in polarization values either in the presence or absence
of the detergent (Figure 2). The lower values observed when
using 1 × 10−8 M of the probe indicate that at this
concentration, there might have been some irreversible
saturation of the signal caused by the free probe (Figure 2B).
These data indicate that we could use the kinetics between

the PKA and the probe to identify compounds that can block
that same interaction. To confirm this, we used H7 (Figure
3A), a known ATP-binding site blocker, to validate the present

FP binding assay. As shown in Figure 3B, H7 inhibited the
binding of the probe to PKA in a dose-dependent manner with
an IC50 value of approximately 1.13 mM. Additionally, a ligand
competition experiment was performed by adding unlabeled
ATP to assess if it could bind preferentially to the enzyme,
displacing the probe and causing the polarization values to
decrease. As shown in Figure 3C (left), although ATP
appeared to slightly reverse the effect caused by the binding
of the probe to PKA, this was not considered statistically
significant. The same behavior was observed in the presence of
increased PKA (10 units) and when the order of reagent
addition was varied (results not shown). Then, we used the
same ATP analogous that is present in the BODIPY probe,
ATP-γ-S. As observed in Figure 3C (right), the ATP slightly
reverses the polarization observed by the ligation probe−PKA.

Since the natural ligand ATP could not preferentially bind to
PKA in the presence of the probe, we hypothesized that both
molecules would have a high score of affinity to dock in the
same site in PKA. Thus, ATP is not an efficient competitor
against the probe to bind to PKA. Indeed, predicted docking
scores were high for both the ATP and the probe (144.14 and
70.73, respectively) when analyzed by the ChemPLP Score
function.

In Silico Docking Analysis of PKA and In Vitro
Validation. First, a docking analysis was carried out to
identify potential inhibitors of the human PKA. Initial docking
was performed on a subset of 10 000 compounds from the
University of Nottingham Managed Chemical Compound
Collection (MCCC) using both the ChemScore Kinase and
ChemPLP Score scoring functions from the Genetic
Optimization for Ligand Docking (GOLD) platform.12 It
was noticed that the range of score values obtained for the
same 10 000 compounds was significantly different between
the two scoring functions (Figure S2A). In each case, the
ChemScore Kinase scoring function provided significantly
lower scores than the ChemPLP function. Additionally, both
functions showed a broad divergence with regards to the
highest-scoring compounds as there were only 28 (18.1%)
matching compounds in the top 100 and 12 (15.2%) in the top
50 between the two scoring functions (Figure S2B and Tables
S1 and S2). Next, we selected the 12 common compounds
with the highest score in both scoring functions that matched
on the top 50 set (Table 1 and Figure S2B), as well as 5
negatively scored predicted compounds to serve as negative
controls (Table 1).
The selected compounds were tested for their inhibitory

activity against the PKA−probe binding. As shown, 2 out of 12
compounds significantly blocked PKA−probe binding thus
lending support to the in silico prediction (Figure 4A).Figure 3. Competition for the nucleotide-binding site of PKA. (A)

Structure of H7 inhibitor. (B) Blocking of the binding between the
probe and PKA by H7 inhibitor. The probe (5 × 10−9 M) was
incubated with 5 units of PKA in the presence of increasing
concentrations of H7, and specific binding was measured as described
in the Methods section (mean ± SD, n = 3). Data were fitted in
GraphPad Prism log(inhibitor) vs response, variable slope (four
parameters). (C) Effect of the natural ligand ATP (left) and the ATP-
γ-S (right) on the probe−PKA interaction. Data is represented by
mean ± SEM from several experiments (n = 8) (left). Fluorescence
polarization was measured as described in the Methods section and
Tukey’s multiple comparison test (p-value <0.0001 (****)) was used
for statistical analysis.

Table 1. Comparison of the Scores for 17 Matching
Compounds between ChemScore Kinase and ChemPLP
Functionsa

ID MCCC sample ID ChemScore Kinase ChemPLP Score

Positive
B1 NCC-00066504 62.79 100.77
B2 NCC-00069179 60.16 108.41
B3 NCC-00068966 56.95 99.12
B4 NCC-00063353 55.62 101.23
B5 NCC-00027360 53.02 93.79
B6 NCC-00073056 52.97 92.98
B7 NCC-00071565 52.31 99.53
B8 NCC-00067960 52.13 93.54
B9 NCC-00062976 51.55 97.02
B10 NCC-00063592 51.45 95.70
B11 NCC-00070778 48.47 91.73
B12 NCC-00066895 48.07 95.12
Negative
N1 NCC-00000100 −28.25 −17.98
N2 NCC-00000176 −5.98 −10.25
N3 NCC-00000179 −5.27 −48.39
N4 NCC-00000267 18.91 −82.98
N5 NCC-00006655 15.14 −29.74

aTwelve positively scored compounds were detected in the top 50 list
and five negatively scored compounds were selected as negative
controls.
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Figure 4. Screening to evaluate the inhibitory activity of several compounds against the binding of the probe to commercial PKA. (A) ATP-γ-S
BODIPY probe (5 × 10−9 M) was incubated with 5 units of PKA in the presence of different compounds (10 μM) predicted by both score
functions (B1−B12, positive; N1−N5, negative). Values of FP (mP) represent specific binding and it was measured as described in the Methods
section (mean ± SD, n = 3). Data was analyzed using one-way ANOVA (p < 0.0001) and Tukey’s multiple comparisons test (p-value 0.0332 (*),
0.0021 (**), 0.0002 (***), <0.0001 (****)). (B) Fluorescence polarization values for the positive compounds B5 and B8 incubated in phosphate-
buffered saline (PBS)/dimethyl sulfoxide (DMSO). Bars represent the average of three replicates. Compounds were tested in 10 μM final
concentration. (C) Structure of compounds B5 and B8.

Figure 5. Predicted binding pose of compounds B5 (left) and B8 (right) in the crystal structure of PKA (PDB: 4WB5), showing the similar
interactions as seen for the natural ligand ATP. Reference structure: carbon = cyan; oxygen = red; nitrogen = dark blue; fluoride = light blue; sulfur
= orange; Mg2+ is represented by rounded red shapes. Bottom schematic maps represent the interactions of the compounds B5 (left) and B8
(right) inside the ATP-binding pocket. Amino acids are represented as a three-letter code with its corresponding position in the PKA amino acid
sequence. MG = magnesium cation (Mg2+).
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Moreover, the detectable change in the mP value represented
the competitive binding of the compound to PKA rather than
interference from the compound itself with the probe signal
(Figure 4B). The compounds’ structure (Figure 4C) and their
docking prediction (Figure 5) indicate that they have a strong
specific binding to the ATP pocket of PKA. Compound B5
mimics similar interactions as the ATP probe, the urea group
interacts with the Mg2+ ions, and the methoxy benzene ring
occupies a similar space to the adenosine ring in ATP.
Compound B8 also interacts with the Mg2+ ions through the
five-membered ring and the trifluoromethoxy group occupies a
hydrophobic region of the binding site (Figure 5).
Additionally, a total of 31 of the top-scoring compounds

from each function were also tested in the same conditions
previously used for the H7 inhibitor (Figure S3A,B). A total of
7 out of 62 selected compounds significantly inhibited the
binding of the probe to PKA. From those, only one presented
minor signal interference. The mP value for the compound
itself was 21% lower when compared to that of PBS, indicating
that this compound itself was able to depolarize the light
(Figure S3C).

■ DISCUSSION
As characterized first for PKA, typical protein kinases are
nucleotide-binding proteins.11 Therefore, the kinase must bind
an ATP molecule for the enzyme to undergo a conformational
change and switch to an active state, required for substrate
binding and catalytic core functioning.13,14 Thus, molecules
that are able to block the docking of ATP into its pocket, either
by direct competition or by allosteric regulation, are
considered promising protein kinase inhibitors and drug
candidates.15−18 Indeed, the ATP-binding pocket is considered
the main focus for inhibitor design,19 and although it is
generally well conserved between kinases, small differences
exist in the lining of the binding area that can be exploited to
introduce kinase selectivity, as demonstrated by the high level
of selectivity now achieved for kinase inhibitors.20,21

Here, we describe the development of an ATP-kinase
binding evaluation assay using an analogous ATP-containing
fluorophore chemosensor, named BODIPY FL ATP-γ-S
(adenosine 5′-O-(3-thiotriphosphate), BODIPY FL, sodium
salt). This probe is an ATP molecule conjugated with the
fluorescent dye known as BODIPY FL (4-4-difluoro-5,7-
dimethyl-4-bora-3a,4a-diaza-s-indacine-3-yl).5 For instance,
ATP derivatives of this probe have been used as an indicator
to measure ATP influx through the outer membrane of the
mitochondria22 as well as a label for histidine kinases in
bacterial two-component systems.23 Here, we used the probe
to measure the shift in the fluorescence polarization caused by
the addition of inhibitors that block the ATP binding to
protein kinases, specifically to PKA.
Our docking analysis shows that the probe sits at the ATP-

binding site of PKA in a similar manner as described for the
natural ligand ATP.21,24 However, the fluorophore protrudes
out of the pocket and does not impair the binding of the probe
to the enzyme, thus making the use of the probe compatible
for this kind of assay. Additionally, we were able to determine
the right amount of probe (5 × 10−9 M) to use in order to
provide a steady reading value for depolarized light without
saturating the signal, similar to what is observed for the
theoretical value for free fluorescein (27 mP).25

All experiments in this study were carried out in the
presence of 0.01% Tween20 in the buffer. Nonionic detergents

are generally used as blocking agents, which can help avoid
nonspecific binding of the probe and decrease the background
signal just as they do in immunoblotting assays.26 This is in
agreement with our data showing that the presence of the
detergent promotes specific binding of the probe to PKA.
When the natural ligand was used in competition with the

probe, we noticed a slight preference for the ATP rather than
the probe. This preference was even higher when ATP-γ-S was
used as the competitor. In addition, the same behavior was
observed for higher concentrations of ATP, 10 and 50 mM
(data not shown). Also, the fact that the known H7 inhibitor
was able to efficiently block the binding of the probe indicates
that the probe is specifically binding to PKA into the ATP-
binding pocket. It is possible, however, that in addition to the
ATP-binding site, the BODIPY probe also binds to alternative
sites on the PKA molecule, resulting in incomplete displace-
ment by ATP-γ-S, which would only displace the probe bound
to the ATP-binding site.
Additionally, in the present study, we performed an in silico

analysis to obtain docking scores for a library of compounds
that potentially block the ATP-binding site of protein kinases.
Docking was performed using the GOLD software package,
which includes a built-in kinase scoring function, ChemScore
Kinase, that was initially used to score the compounds being
investigated. Moreover, a recent article inspecting numerous
docking platforms suggested that the ChemPLP scoring is
more accurate at reproducing experimental structures than the
dedicated ChemScore Kinase function.27 In an attempt to have
a robust analysis, we used both scoring functions, ChemScore
Kinase and ChemPLP Score. We observed a significant
difference in the scores generated by each of the two
algorithms. This suggests that ChemScore Kinase produces
empirically lower scores but produces similar trends as to
ChemPLP Score. In each case, there were some compounds
that scored uniquely high with one of the scoring functions,
and biological assessment of these compounds by our assay
suggested that the ChemPLP Score scoring function is superior
in terms of its ability to identify potential inhibitors.

■ CONCLUSIONS

The universal FP-based assay developed in the present study is
quick and cost effective and may be used as an HTS method to
cover libraries for potential new drugs against key kinase
targets of many organisms. Furthermore, this assay is not
substrate-based, and it is useful mainly for screening
compounds that target kinases or any other ATP-binding
enzymes. It is therefore developed to be used as a tool to
evaluate if a given compound can inhibit the binding of ATP to
the enzyme by measuring the fluorescence polarization shift
caused by the probe released from the enzyme in the presence
of an inhibitor.

■ METHODS

Fluorescence Polarization Assays. Assays were per-
formed in 384-well black flat-bottom plates in 50 μL final
volume of 0.01 M phosphate-buffered saline (PBS), pH 7.4
containing 2 mM magnesium chloride at room temperature.
Increased concentrations of BODIPY FL ATP-γ-S (SIGMA)
were used to define the ideal concentration for light
depolarization in serial dilutions, and it was established the
use of 5 × 10−9 M of the probe, unless stated otherwise.
Commercial Protein Kinase A catalytic subunit (PKA from
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bovine heart, Merck) was used as the enzyme source, after
standardization using 1, 5, and 10 enzyme units, experiments
were carried out using 5 units (approximately 500 μg) of
enzyme per reaction, unless stated otherwise. A concentration
of 0.01% nonionic detergent (Tween20, Merck) was added to
the mixture unless stated otherwise. Natural ATP ligand as well
as ATP-γ-S were used at 1 mM concentration, unless stated
otherwise. Reading of the plates was performed using a
PerkinElmer Envision 2104 Multilabel plate-reading spectro-
photometer using 480 nm excitation and 535 nm emission
filters, suitable for measurement of fluorescein. Fluorescence
polarization was determined by measuring the parallel and
perpendicular fluorescence emission intensity with respect to
the polarized excitation light and is expressed in millipolariza-
tion (mP) units. Specific PKA inhibitor H7 was purchased
from Merck.
In Silico Docking Analyses for PKA. The in silico

docking analyses for PKA were performed using the Genetic
Optimization for Ligand Docking (GOLD) platform from The
Cambridge Crystallographic Data Centre (CCDC) and a
selection of 10 000 compounds available within the University
of Nottingham Managed Chemical Compound Library
(MCCC). The structure 4WB5, PKA in complex with ATP
was retrieved from the Protein Data Bank database (PDB,
https://www.rcsb.org/) and prepared using the Protein
Preparation Wizard Tool in Maestro (Schrödinger Release
2018-4: Maestro, Schrödinger, LLC, New York, NY, 2018).
The structure was subject to H-bond optimization and
energetic minimization using the OPLS3 force field. The
resulting structure was then saved as a PDB file for future use.
An SDF file containing all of the ligand available in the MCCC
was obtained, and these structures were prepared using the
LigPrep tool within Maestro. The various protonation states
for each molecule were calculated between pH 7.0 ± 2.0, and
the resulting structures were saved as an SDF file for future use.
Docking was performed using GOLD (5.6) using the standard
search efficiency settings. The active site was defined by the
native ATP ligand in the 4WB5 crystal structure. The solution
structures were saved in the SDF file format.
Compounds. Compounds were obtained from a library of

small molecules from the MCCC Library provided at the
Centre of Biomolecular Sciences (University of Nottingham).
All compounds were dissolved in DMSO and were used at a
final concentration of 10 μM. The requested compound codes
are: NCC-00066504, NCC-00069179, NCC-00068966, NCC-
00063353, NCC-00027360, NCC-00073056, NCC-00071565,
NCC-00067960, NCC-00062976, NCC-00063592, NCC-
00070778, NCC-00066895, NCC-00000100, NCC-
00000176, NCC-00000179, NCC-00000267, NCC-
00006655, NCC-00067772, NCC-00068009, NCC-
00067155, NCC-00075821, NCC-00073101, NCC-
00004123, NCC-00073207, NCC-00004578, NCC-
00069395, NCC-00071160, NCC-00070853, NCC-
00071708, NCC-00016314, NCC-00040680, NCC-
00066365, NCC-00009799, NCC-00074851, NCC-
00020178, NCC-00000041, NCC-00000037, NCC-
00066879, NCC-00067308, NCC-00033008, NCC-
00071549, NCC-00072265, NCC-00067150, NCC-
00063994, NCC-00070051, NCC-00063034, NCC-
00072272, NCC-00070760, NCC-00069625, NCC-
00076211, NCC-00029407, NCC-00069711, NCC-
00013234, NCC-00014721, NCC-00034842, NCC-
00018391, NCC-00069640, NCC-00041365, NCC-

00067733, NCC-00066507, NCC-00072319, NCC-
00065651, NCC-00066826, NCC-00072585, NCC-
00069782, NCC-00066588, NCC-00066671, NCC-
00042920, NCC-00072060, NCC-00074246, NCC-
00066984, NCC-00073991, NCC-00069672, NCC-
00072007, NCC-00067319, NCC-00012226, NCC-
00069605, NCC-00070551, and NCC-00066958.

Statistical Analysis. All data were analyzed using Graph-
Pad Prism version 7.00 for Mac (GraphPad Software, La Jolla,
California, www.graphpad.com), and statistical analyses are
stated where appropriate.
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