
Big Step Normalisation for Type Theory
Thorsten Altenkirch
School for Computer Science, University of Nottingham, United Kingdom
txa@cs.nott.ac.uk

Colin Geniet
Computer Science Department, ENS Paris-Saclay, France
colin.geniet@ens-paris-saclay.fr

Abstract
Big step normalisation is a normalisation method for typed lambda-calculi which relies on a purely
syntactic recursive evaluator. Termination of that evaluator is proven using a predicate called
strong computability, similar to the techniques used to prove strong normalisation of β-reduction
for typed lambda-calculi. We generalise big step normalisation to a minimalist dependent type
theory. Compared to previous presentations of big step normalisation for e.g. the simply-typed
lambda-calculus, we use a quotiented syntax of type theory, which crucially reduces the syntactic
complexity introduced by dependent types. Most of the proof has been formalised using Agda.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Normalisation, big step normalisation, type theory, dependent types, Agda

Digital Object Identifier 10.4230/LIPIcs...

Supplement Material https://github.com/colingeniet/big-step-normalisation

Funding Thorsten Altenkirch: supported by COST Action EUTypes CA15123 and USAF, Airforce
office for scientific research, award FA9550-16-1-0029

1 Introduction

1.1 Normalisation
In the context of typed lambda-calculi, normalisation refers to the process of computing
a canonical representative, called normal form, in each βη-equivalence class of terms. A
very general definition of normalisation, previously used in e.g. [6, 3, 7], is the following.
Normalisation is given by a set of normal forms and two (computable) maps: norm from
terms to normal forms, and an embedding p_q of normal forms into terms, satisfying

soundness If u 'βη v, then norm u = norm v

completeness1 For every term u, pnorm uq 'βη u
stability For every normal form n, norm pnq = n

The traditional way to define a normalisation function is through rewriting theory. One
proves that βη-reduction is confluent, and terminates2 on typed terms. Normal forms are
defined as terms which can not be βη-reduced, and normalisation is done by reducing a
term until reaching a normal form. Termination and confluence ensure the correctness of
the definition. Soundness also follows from confluence, while completeness and stability
are immediate. See for instance [16] for a detailed proof of this result for the simply-typed
lambda-calculus and some variants (System F, System T). Unfortunately, problems arise for

1 The choice of the words soundness and completeness comes from viewing normal forms as a model.
2 We do not use the words strong or weak normalisation to refer to termination of the rewriting process,

so as to avoid ambiguity with the generalised notion of normalisation introduced.

© Thorsten Altenkirch and Colin Geniet;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/323358126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:txa@cs.nott.ac.uk
mailto:colin.geniet@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs...
https://github.com/colingeniet/big-step-normalisation
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Big Step Normalisation for Type Theory

some other variants of the lambda-calculus. For instance, the lambda-calculus with explicit
substitutions does not terminate in the strong sense [22], and the lambda-calculus with
coproduct types (i.e. disjoint union) is not confluent [14]. While some of these issues can
be worked around, for instance by using weak termination and more restrictive reductions,
these problems have lead to the development of other methods.

One of them is normalisation by evaluation (NBE), introduced by Berger and Schwichten-
berg [9] for the simply-typed lambda-calculus. The idea is to evaluate terms into a semantic
model, meaning for instance that λ-abstractions (syntactic functions) are interpreted by
actual (semantic) functions. A map from the model into normal forms is then defined, giving
rise to the normalisation function by composition with evaluation. This method was for
instance used to prove decidability of equivalence for the lambda-calculus with coproducts [4].

1.2 Big Step Normalisation
Big step normalisation (BSN) is a purely syntactic normalisation method, proposed in [3]
by Chapman and the first author for the simply-typed lambda-calculus. The normalisation
algorithm is in two parts. First, terms are evaluated by an environment machine, yielding
syntactic values. Then, values are mapped to normal forms by a function named quote.
Normalisation norm is done by evaluating in the identity environment, then applying quote
on the resulting value. The embedding p_q is the inclusion of normal forms into terms.

Evaluation and quote both have fairly simple definitions, but are not structurally recursive,
hence their termination is not obvious. To prove termination, a Tait-style predicate [25]
called strong computability (SC) is defined on values:

A value v of the base type is strongly computable if normalisation terminates on v.
A value f of a function type is SC if it preserves SC when applied to an argument.

The following results can then be proved.
quote terminates on any SC value, and conversely any neutral value (i.e. a value which is
not a λ-abstraction) on which quote terminates is SC.
In a SC environment, evaluation terminates and yields SC results.

Termination of norm follows from these results. Completeness and stability are straightforward.
The proof of soundness is more involved, and shares some similarities with the proof of
termination, but replaces strong computability with a binary relation on values.

1.3 BSN for Type Theory and Quotiented Syntax
Chapman also considered BSN for dependent type theory in [10], but did not provide a full
proof of correctness, due to the syntactic complexity added by dependent types.

In this work, we propose some methods to simplify the proof of BSN in the case of
dependent types, allowing us to complete it. Notably, we use the quotiented syntax of type
theory proposed in [8]. By only considering terms quotiented by βη-equivalence, the syntax
becomes significantly lighter. For instance, the coercion constructors which form a large part
of the syntactic boilerplate encountered in [10] become unnecessary.

With a quotiented syntax, the notion of normalisation changes slightly. If 'βη is replaced
with equality of quotiented terms in the first definition of a normalisation function, then
soundness simply states that norm is correctly defined on the quotiented syntax, while
completeness and stability state that norm and p_q are inverse of each other. This leads to
the following definition proposed in [7]: a normalisation function is simply an isomorphism
between quotiented terms and normal forms. Obviously, this definition requires a sensible
notion of normal forms—one can not consider quotiented terms to be normal forms, and



T. Altenkirch and C. Geniet XX:3

identity to be normalisation. Thus, we require normal forms to have a simple inductive
definition, which ensures decidability of equality.3

1.4 Structure of the Paper
Section 2 presents the metatheory, notation, and conventions used in this paper.

Section 3 presents the quotiented syntax of type theory.
Section 4 introduces a notion of weakening of contexts.
Section 5 defines big step normalisation itself. Because it is not a priori clear that

BSN defines a correct function (termination for instance is problematic) we formally define
normalisation by its big step semantics, i.e. as a relation between inputs and output.

Section 6 focuses on the two major correctness proofs: termination and soundness. The
proof of termination remains similar to the case of simple types. The main difference is
that we develop a simplified and generalised induction principle for types, which allows us
to manipulate dependent types in almost the same way as simple types during the proof.
The proof of soundness for an unquotiented syntax seems much harder to adapt, we instead
provide a simple proof using soundness of NBE.

Finally, Section 7 explains how the proof of BSN can be adapted to a cubical metatheory,
using higher inductive types to encode quotient inductive types.

1.5 Related Work
Big step semantics have previously been used for the purpose of normalisation. For instance
T. Coquand uses a big step relation to decide conversion in type theory [12], but relies
on considerations on untyped terms, and focuses on deciding conversion, rather than fully
normalising terms. P.B. Levy uses Tait’s method to prove termination of a big step semantics
in the case of a simple programming language [21]. Big step normalisation was developed
by Chapman and the first author for a combinatory calculus [2], and for the simply-typed
lambda-calculus [3]. A generalisation to type theory was proposed [10], but without a full
proof of correctness. The present paper can be seen as a continuation of these works.

An important difference compared to previous works on big step normalisation is that
we use a quotiented syntax of type theory. This builds upon the work by Kaposi and the
first author which provides a concise, quotiented syntax of type theory within (a larger) type
theory [8], and formalises normalisation by evaluation in this syntax [7]. This quotiented
syntax is closely related to categories with families [15, 18], in that the syntax is essentially
an initial category with families. The syntax is formalised using quotient inductive-inductive
types (QIIT), which were previously used in [24]—although not under that name—to e.g.
define Cauchy reals in type theory. More recently, the precise notion and semantics of QIIT
has been the subject of work such as [1, 13, 20].

2 Metatheory and Notations

The present work has been formalised using a cubical metatheory [11] implemented by
Agda [23]. This cubical theory provides a simple way to define quotient inductive inductive
types (QIIT, cf. [8]) as a special case of higher inductive types. However, for simplicy, we
prefer to present this paper in a strict, intentional Martin-Löf Type Theory, extended with

3 In the unquotiented case, the embedding of normal forms into terms (which can be proved to be injective)
ensures that equality of normal forms is decidable, hence why no such restriction was required.



XX:4 Big Step Normalisation for Type Theory

QIIT. Functional extensionality is assumed, and can in fact be proved using the interval
quotient type. See Section 7 for a discussion of the implementation in a cubical metatheory.

Our metatheoretic notations are loosely based on the syntax of Agda. Function types
are written as (x : A) → B, or simply A → B for non-dependent functions. We use infix
arguments denoted by underscores, e.g. _,_ applied to x and y is written as x, y. Functions
with implicit arguments are defined as f : {x : A} → B, and the argument can be either
omitted, or given in subscript as fx. Sum types (dependent pairs) are denoted by Σ(x : A), B.
We denote by Set the universe of types, and by Prop the universe of mere propositions, i.e.
the types in which all elements are equal. The equality type is denoted by x ≡ y, while = is
only used in definitions. The transport of x : P a along an equality p : a ≡ b is denoted by
p∗x : P b. If p : a ≡ b, the type of dependent equalities between x : P a and y : P b lying over
p is denoted by x ≡p y. For simplicity and readability, transports and dependent equality
types will be omitted starting from Section 4.

Inductive types are introduced by data, the sort of the defined type, and the signatures
of the constructors. Inductive functions are defined by pattern-matching. For instance:

data N : Set where _ + _ : N→ N→ N

0 : N
S : N→ N

n+ 0 = n

n+ (S m) = S (n+m)

We allow a very general form of mutual induction, called inductive-inductive definitions. A
good example is the following fragment of the syntax of dependent types from next section.

data Con : Set where data Ty : Con→ Set where
• : Con
_,_ : (Γ : Con)→ Ty Γ→ Con

U : Ty Γ
Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ

In addition to Con and Ty being defined simultaneously, note that Ty is a family indexed by
Con, and the signature of the constructor Π form Ty uses the constructor _,_ from Con.

QIIT furthermore allow equality or quotient constructors, which build of equalities in the
defined type. For example the interval type is defined by two endpoints and an equality:

data I : Set where
a : I
b : I
p : a ≡ b

A function defined by induction on a QIIT must be defined inductively on regular constructors,
and must respect all quotient constructors, meaning that it must map the elements equated
by a quotient constructors to images which are provably equal. For instance, to define a
function by induction on I, one must specify the images f(a) and f(b), then prove that
f(a) ≡ f(b). The reader may refer to [8] for more details on QIIT.

Finally, all free variables in definitions and lemmas are implicitly universally quantified.
Omitted types can be inferred from the context and the naming conventions.

3 Quotiented Syntax of Type Theory

This section introduces the syntax of type theory based on QIIT proposed by Kaposi and
the first author in [8, 7]. The reader should refer to the former for further details.



T. Altenkirch and C. Geniet XX:5

This syntax is intrinsically typed, with De Bruijn indices, and explicit substitutions.
Contexts, types, substitutions and terms are mutually defined. We denote contexts by
Γ,∆,Θ,Φ, types by A,B,C, substitutions by σ, ν, δ, and terms by s, t, u.

data Con : Set Con is the set of contexts
data Ty : Con→ Set Ty Γ are the types in context Γ
data Sub : Con→ Con→ Set Sub Γ ∆ are the substitutions from ∆ to Γ
data Tm : (Γ : Con)→ Ty Γ→ Set Tm Γ A are the terms of type A in Γ

Syntax constructors follow closely the definition of a category with families [15, 18] with
product types. Contexts and substitutions form a category, types are a presheaf, and terms
are a family of presheaves over types. The constructor for dependent function types is
denoted by Π. There is a base type U, and a base dependent family El indexed by U. One
may see U as a universe, i.e. a type whose elements are types, when interpreted through
El—this is reflected by the names of the constructors. Because we consider a minimalist type
theory, it is only an abstract universe, meaning that no element of U can be built in a closed
context. However, one may use contexts to postulate the existence of types in U.

The syntax constructors are listed below, with regular constructors on the left, and
equality constructors on the right.

data Con where
• : Con
_,_ : (Γ : Con)→ Ty Γ→ Con

data Ty where data Ty where
_[_] : Ty ∆→ Sub Γ ∆→ Ty Γ
U : Ty Γ
El : Tm Γ U→ Ty Γ
Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ

[id] : A[id] ≡ A
[◦] : A[σ ◦ ν] ≡ A[σ][ν]
U[] : U[σ] ≡ U
El[] : (El u)[σ] ≡ El(U[]∗u[σ])
Π[] : (Π A B)[σ] ≡ Π(A[σ])(B[σ↑A])

data Sub where data Sub where
id : Sub Γ Γ
_ ◦_ : Sub ∆ Θ→ Sub Γ ∆ → Sub Γ Θ
ε : Sub Γ •
_,_ : (σ : Sub Γ ∆)→ Tm Γ A[σ]

→ Sub Γ (∆, A)
π1 : Sub Γ (∆, A)→ Sub Γ ∆

id◦ : id ◦ σ ≡ σ
◦ id : σ ◦ id ≡ σ
◦ ◦ : (σ ◦ ν) ◦ δ ≡ σ ◦ (ν ◦ δ)
εη : {σ : Sub Γ •} → σ ≡ ε
π1β : π1(σ, u) ≡ σ
πη : π1 σ, π2 σ ≡ σ
, ◦ : (σ, u) ◦ ν ≡ (σ ◦ ν), ([◦]−1∗u[ν])

data Tm where data Tm where

π2 : (σ : Sub Γ (∆, A))→ Tm Γ (A[π1σ])
_[_] : Tm ∆ A→ (σ : Sub Γ ∆)

→ Tm Γ A[σ]
λ : Tm (Γ, A) B → Tm Γ (Π A B)
app : Tm Γ (Π A B)→ Tm (Γ, A) B

π2β : π2(σ, u) ≡π1β u

β : app (λu) ≡ u
η : λ(appu) ≡ u

λ[] : (λu)[σ] ≡Π[] λ(u[σ↑A])



XX:6 Big Step Normalisation for Type Theory

Equations Π[] and λ[] use the lifting of a substitution by a type, defined as follows.

_↑_ : (σ : Sub Γ ∆)→ (A : Ty ∆)→ Sub (Γ, A[σ]) (∆, A)
σ↑A = (σ ◦ π1 id), ([◦]−1∗π2 id)

This syntax uses a categorical application constructor app, which is essentially the inverse
of λ. One may understand app f as the application of f to a fresh variable. In order to
obtain the usual application, denoted _$_, this fresh variable must be substituted by the
argument. We denote this substitution of the last variable in the context by < _ >.

< _ > : Tm Γ A→ Sub Γ (Γ, A)
< u > = id , [id]−1∗u

_$_ : Tm Γ (Π A B)→ (u : Tm Γ A)→ Tm Γ (B[< u >])
f $ u = (app f)[< u >]

As a simple example, let us translate the lambda term λxA.λyB .x to this syntax. We
assume that A is type in context Γ, and B a type in context (Γ, A) (or in short Γ : Con,
A : Ty Γ, B : Ty (Γ, A)), so that (Γ, A,B) is a context. We start with id, intuitively the
substitution containing all variables in context.

id : Sub (Γ, A,B) (Γ, A,B)

The second to last variable in the context, corresponding to x, is retrieved through projections.

π2(π1 id) : Tm (Γ, A,B) A[π1 id]

Finally, the lambda-abstractions are added.

λ(λ(π2(π1 id))) : Tm Γ (Π A (Π B A[π1 id]))

4 Weakenings

In this section, we introduce variables and weakenings of contexts. The presentation is the
same as in [7], except that the latter uses the name ‘renamings’ instead.

Variables, denoted by x, y, z, are defined as typed De Bruijn indices, with constructors vz
and vs standing for ‘0’ and successor. Variables can be embedded into terms by applying
projections to id—intuitively, id is the substitution formed by all the variables in context.

data Var : (Γ : Con)→ Ty Γ→ Set where p_q : Var Γ A→ Tm Γ A

vz : Var (Γ, A) (A[π1 id])
vs : Var Γ A→ Var (Γ, B) (A[π1 id])

pvzq = π2 id
pvsxq = pxq[π1 id]

Weakening substitutions (or simply weakenings), denoted by α, β, γ, are substitutions com-
posed only of variables. This regroups the usual notions of weakening (i.e. forgetting a
variable), contraction, and reordering of independent variables. Note that constructors ε and
_,_ are overloaded due to the similarity with substitutions.

data Wk : Con→ Con→ Set where p_q : Wk Γ ∆→ Sub Γ ∆
ε : Wk Γ •
_,_ : (α : Wk Γ ∆)→ Var Γ A[pαq]→Wk Γ (∆, A)

pεq = ε

pα, xq = pαq, pxq



T. Altenkirch and C. Geniet XX:7

Unlike regular substitutions, identity and composition of weakenings are not constructors,
but inductive definitions. Some auxiliary functions are required: wk weakens the context
of a weakening substitution by a type A, and _[_] applies a weakening substitution to a
variable. These functions all commute with embeddings of variables and weakenings. We
omit the inductive definitions and proofs, which are simple.

wk : (A : Ty Γ)→Wk Γ ∆→Wk (Γ, A) ∆
id : {Γ : Con} →Wk Γ Γ
_[_] : Var ∆ A→ (α : Wk Γ ∆)→ Var Γ (A[pαq])
_ ◦_ : Wk ∆ Θ→Wk Γ ∆→Wk Γ Θ

pwkq : pwk A αq ≡ pαq ◦ (π1 id)
pidq : p id q ≡ id
p[]q : px[α]q ≡ pxq[pαq]
p◦q : pα ◦ βq ≡ pαq ◦ pβq

Contexts and weakenings form a category with these operations. Types, terms, and substitu-
tions can be weakened by applying a weakening substitution, seen as a regular substitution
through embedding. These operations respects identity and composition, that is types and
substitutions are presheaves on the category of weakenings, while terms are a family of
presheaves over types. Definitions are below, with the lemmas on the right (proofs omitted).

_ +_ : Ty ∆→Wk Γ ∆→ Ty Γ
A+α = A[pαq]
_ +_ : Tm ∆ A→ (α : Wk Γ ∆)→ Tm Γ A+α

u+α = u[pαq]
_ +_ : Sub ∆ Θ→Wk Γ ∆→ Sub Γ Θ
σ+α = σ ◦ pαq

+id : A+id ≡ A

+◦ : A+(α◦β) ≡ (A+α)+β

+id : u+id ≡ u

+◦ : u+(α◦β) ≡ (u+α)+β

+id : σ+id ≡ σ

+◦ : σ+(α◦β) ≡ (σ+α)+β

This will be a general pattern in later constructions and proofs: families of sets (e.g.
values, normal forms, . . . ) have a presheaf-like structure, which simply means that the
elements can be weakened coherently. Similarly, functions are natural transformations, i.e.
commute with weakening, and predicates are sub-presheaves, i.e. are stable under weakening.
The corresponding definitions and proofs are typically straightforward, and we will often not
mention them. We abusively denote all applications of weakenings by _ +_.

Finally, given a type A, one may consider wk A id : Wk (Γ, A) Γ, the weakening of the
context Γ by A. We abuse notations and write u+A for u+(wk A id).

5 Normalisation Relation

This section defines the big step normalisation algorithm using the previous syntax of type
theory. As further explained in Section 5.2, this algorithm can not yet be formally defined as
a function. Thus, it is defined as a relation in order to carry out the correctness proof.

We first define values and the evaluation from terms to values, then normal forms and
the function quote mapping values to normal forms. Normalisation is done by applying
evaluation followed by quote.

5.1 Values
A value is either a closure, corresponding to the delayed evaluation of a lambda-abstraction,
or a neutral value, that is the stuck application of a variable to values. We define mutually
values (denoted by v, w), neutral values (denoted by n), and environments (substitutions



XX:8 Big Step Normalisation for Type Theory

composed of values, denoted by ρ, ω), together with the associated embeddings.

data Val : (Γ : Con)→ Ty Γ→ Set where p_q : Val Γ A→ Tm Γ A

neu : NV Γ A→ Val Γ A

clos : Tm (∆, A) B → (ρ : Env Γ ∆)
→ Val Γ ((Π A B)[pρq])

pneu nq = pnq

pclos u ρq = (λu)[pρq]

data NV : (Γ : Con)→ Ty Γ→ Set where p_q : NV Γ A→ Tm Γ A

var : Var Γ A→ NV Γ A

app : NV Γ (Π A B)→ (v : Val Γ A)
→ NV Γ (B[< pvq >])

pvar xq = pxq

papp n vq = pnq $ pvq

data Env : Con→ Con→ Set where p_q : Env Γ ∆→ Sub Γ ∆
ε : Env Γ •
_,_ : (ρ : Env Γ ∆)→ Val Γ (A[pρq])→ Env Γ (∆, A)

pεq = ε

pρ, vq = pρq, pvq

This definition has an issue when used with a quotiented syntax: values can be equivalent as
terms (formally, have equal embeddings), but not equal. For instance, in a closure clos u ρ,
if the body u never refers to the environment ρ, then modifying ρ yields a distinct but
equivalent value. Then, evaluation would map equivalent terms to distinct values, hence
could not be defined on the quotiented syntax. This is fixed by forcing equivalent values to
be equal with the following quotient constructor.

data Val where
qVal : (v w : Val Γ A)→ pvq ≡ pwq→ v ≡ w

The corresponding result for environments can be proved by induction on contexts.

qEnv : (ρ ω : Env Γ ∆)→ pρq ≡ pωq→ ρ ≡ ω

Weakening is defined by induction on values, neutral values, and environments, we omit
the definitions and the associated lemmas. Finally, the identity environment is defined by
induction on the context, and uses weakening of environments.

idenv : {Γ : Con} → Env Γ Γ
idenv• = ε

idenvΓ,A = idenvΓ
+A , neu (var vz)

5.2 Evaluation
The first stage of normalisation is an environment machine, which evaluate terms in an
environment, and returns values. It consists of three mutually defined functions: eval and
evals evaluate terms and substitutions respectively in an environment, while _@_ computes
the application of a value to another.

eval : Tm ∆ A→ (ρ : Env Γ ∆)→ Val Γ A[pρq]
eval (π2 σ) ρ = let (ω, v) = (evals σ ρ) in v

eval (u[σ]) ρ = eval u (evals σ ρ)
eval (λu) ρ = clos u ρ
eval (app u) (ρ, v) = (eval u ρ) @ v



T. Altenkirch and C. Geniet XX:9

evals : Sub ∆ Θ→ Env Γ ∆→ Env Γ Θ
evals id ρ = ρ

evals (σ ◦ ν) ρ = evals σ (evals ν ρ)
evals ε ρ = ε

evals (σ, u) ρ = (evals σ ρ), (eval u ρ)
evals (π1 σ) ρ = let (ω, v) = (evals σ ρ) in ω

_@_ : Val Γ (Π A B)→ (v : Val Γ A)→ Val Γ B[< pvq >]
(clos u ρ) @ v = eval u (ρ, v)
(neu n) @ v = neu (app n v)

Most cases are straightforward. Note how evaluation of a lambda simply returns a closure,
delaying the evaluation of the body. The latter occurs in the first case of _@_, as the
application of a closure to a value is computed by evaluating the body of the closure in the
extended environment. Evaluation of the projections π1, π2 performs a projection on an
environment, expressed through the let . . . in construct with an obvious meaning.

However, there are several problems with this presentation of the evaluator. Firstly, the
functions are defined by recursion on terms and substitutions, which are QIIT, but we did
not bother to verify that equality constructors are respected. Perhaps more worryingly, the
function is not structurally recursive: the last case of eval applies _@_ to eval u p, which a
priori is an arbitrary value. Thus it is not clear that the evaluator terminates.

The proof of correctness of this algorithm is not trivial, and is the subject of Section 6.
For now, we will only define the algorithm, i.e. we consider the previous definition as a
programming function, rather than an (incorrect) mathematical function. In order to formally
define this algorithm, we represent it by its big step semantics, that is the relation between
inputs and outputs of the evaluator. For instance, we denote by eval t ρ ⇓ v the proposition
‘t evaluates to v in environment ρ’.

data eval__ ⇓ _ : Tm ∆ A→ Env Γ ∆→ Val Γ B → Prop where
evalπ2 : evals σ ρ ⇓ (ω, v)→ eval (π2 σ) ρ ⇓ v
eval[] : evals σ ρ ⇓ ω → eval u ω ⇓ v → eval (u[σ]) ρ ⇓ v
evalλ : eval (λu) ρ ⇓ (clos u ρ)
evalapp : eval f ρ ⇓ g → g @ v ⇓ w → eval (app f) (ρ, v) ⇓ w

data evals__ ⇓ _ : Sub ∆ Θ→ Env Γ ∆→ Env Γ Θ→ Prop where
evalsid : evals id ρ ⇓ ρ
evals◦ : evals ν ρ ⇓ ω → evals σ ω ⇓ ξ → evals (σ ◦ ν) ρ ⇓ ξ
evalsε : evals ε ρ ⇓ ε
evals, : evals σ ρ ⇓ ω → eval u ρ ⇓ v → evals (σ, u) ρ ⇓ (ω, v)
evalsπ1 : evals σ ρ ⇓ (ω, v)→ eval (π1 σ) ρ ⇓ ω

data _@_ ⇓ _ : Val Γ A→ Val Γ B → Val Γ C → Prop where
@clos : eval u (ρ, v) ⇓ w → (clos u ρ) @ v ⇓ w
@neu : (neu n) @ v ⇓ (neu (app n v))

The types of the above relations may seem surprisingly imprecise. For instance, the type
of eval does not give any information on the type of the return value—it is a value of some



XX:10 Big Step Normalisation for Type Theory

unknown type B—whereas we know that it should have type A[< pρq >] when evaluating in
environment ρ. Similarly, we do not even require the first argument of @ to be a function.
It would be possible to define the evaluation relation with more restrictive types, but this
would only complicate later proofs by requiring many additional transports. This choice may
be compared to heterogeneous equality, which can similarly simplify proofs merely by being
less restrictive than dependent equality types.

Of course, the expected type restrictions on evaluation can still be proved as lemmas.

I Lemma 1.
eval u ρ ⇓ v
pvq ≡ u[pρq]

evals σ ρ ⇓ ω
pωq ≡ σ ◦ pρq

f @ v ⇓ w
pfq $ pvq ≡ pwq

Proof. By simultaneous induction on the definitions of the relations eval, evals, and @. J

A soundness property follows.

I Lemma 2.
eval u ρ ⇓ v eval u ρ ⇓ w

v ≡ w
evals σ ρ ⇓ ω evals σ ρ ⇓ δ

ω ≡ δ
f @ u ⇓ v f @ u ⇓ w

v ≡ w
Proof. Using Lemma 1, and that embeddings of values and environments are injective by
qVal and qEnv. J

5.3 Normal Forms
Having defined the evaluator, we continue with the function quote which maps values to
normal forms. The classic notion of η-long β-normal forms (see for instance [19]) is used,
which interestingly is shared with normalisation by evaluation (cf. [7]).

Like values, normal forms are defined mutually with neutral normal forms, i.e. the
application of a variable to normal forms. An important difference is that not all neutral
normal forms are normal forms: it is only true for neutral normal forms of the base types
(i.e. U and El). This restriction ensures that normal forms are sufficiently η-expanded.

data Nf : (Γ : Con)→ Ty Γ→ Set where p_q : Nf Γ A→ Tm Γ A

λ : Nf (Γ, A) B → Nf Γ(Π A B)
neuU : NN Γ U→ Nf Γ U
neuEl : NN Γ (El u)→ Nf Γ (El u)

pλnq = λ pnq

pneuU nq = pnq

pneuEl nq = pnq

data NN : (Γ : Con)→ Ty Γ→ Set where p_q : NN Γ A→ Tm Γ A

var : Var Γ A→ NN Γ A

app : NN Γ (Π A B)→ (n : NN Γ A)
→ NN Γ (B[< pnq >])

pvar xq = pxq

papp m nq = pmq $ pnq

Note that normal forms are indexed by regular types, we do not use a notion of normal
types. Indeed, normalising types and terms simultaneously only seems to complicate matters,
and it is easier to first normalise a term without worrying about its type, then recursively
normalise the type. A disadvantage of this choice is that equality of normal forms is not
a priori decidable, because it would require to test equality of types, and in turn equality
of terms. This issue can be solved once the normalisation function is defined by proving
decidability of equality for terms, normal forms, and types simultaneously, as shown in [7].



T. Altenkirch and C. Geniet XX:11

5.4 Quote
The function quote is defined by induction on the type of the value, together with quoten
which maps neutral values to neutral normal forms by recursively applying quote. Like the
evaluator, we begin with an informal definition as a function, which is then translated to a
relation.

quote : {A : Ty} → Val Γ A→ Nf Γ A

quoteU (neu v) = neuU (quoten v)
quote(El u) (neu v) = neuEl (quoten v)

quote(Π A B) f = λ(quote (f+A @ neu (var vz)))

quoten : NV Γ A→ NN Γ A

quoten (var x) = var x
quoten (app f v) = app (quoten f) (quote v)

A value of a base type is necessarily neutral, hence it suffice to use quoten in that case. For
function types, the definition of normal forms requires the result to be an abstraction. This is
done by η-expending the value, and applying quote to the body of the resulting abstraction.
The η-expansion is somewhat technical to define. First, the function is weakened as f+A

to allow the introduction of a new variable of type A represented by the De Bruijn index
vz. This variable is turned into a value by the var and neu constructors, and the weakened
function is applied using @, giving the body of the η-expansion.

Beside the problems of termination and correctness with regards to quotient constructors
which already appeared in the evaluator, one may note that quote is not defined on the _[_]
type constructor. We will later show that the definition for _[_] can in fact be inferred
from the other cases and the equality constraints. For now we again ignore all issues by
considering the big step semantics of quote.

data quote : Val Γ A→ Nf Γ A→ Prop where
quoteU : {v : NV U} → quoten v ⇓ n→ quote (neu v) ⇓ (neu n)
quoteEl : {v : NV (El t)} → quoten v ⇓ n→ quote (neu v) ⇓ (neu n)
quoteΠ : f+A @ (neu (var vz)) ⇓ v → quote v ⇓ n→ quote f ⇓ (λ n)

data quoten : NV Γ A→ NN Γ A→ Prop where
quotenvar : quoten (var x) ⇓ (var x)
quotenapp : quoten f ⇓ m→ quote v ⇓ n→ quoten (app f v) ⇓ (app m n)

A coherence result in the style of Lemma 1 is proved by induction on the relation.

I Lemma 3.
quote v ⇓ n
pnq ≡ pvq

quoten m ⇓ n
pnq ≡ pmq

5.5 Normalisation
Finally, terms are normalised by evaluating in the identity environment and applying quote.

norm u ⇓ n = Σ(v : Val Γ A) eval u idenv ⇓ v ∧ quote v ⇓ n

With this definition, stability and completeness of BSN can already be proved.



XX:12 Big Step Normalisation for Type Theory

I Theorem 4 (Completeness).

norm u ⇓ n
pnq ≡ u

Proof. Immediate by Lemmas 1 and 3. J

I Theorem 5 (Stability).

n : Nf Γ A
norm pnq ⇓ n

n : NN Γ A
Σ(v : NV Γ A) eval pnq ⇓ (neu v) ∧ quoten v ⇓ n

Proof. By simultaneous induction on normal forms and neutral normal forms. J

6 Correctness of BSN

Two main results must be proved in order to establish the correctness of BSN. Termination
states that the normalisation relation is defined on every term.

∀(u : Tm Γ A), ∃(n : Nf Γ A), norm u ⇓ n

Soundness states that normalisation can only give one result for each term.

norm u ⇓ n norm u ⇓ m
n ≡ m

Termination and soundness together imply that the normalisation relation defines a function
from terms to normal forms, and the remaining coherence properties (completeness and
stability) have already been proved in the previous section.

In this section, we first provide a short proof of soundness using known results on NBE.
Next, we define a partial normalisation of types, and the notion of skeleton of a type.

Together, they give a very simple induction principle for the syntax of dependent types.
Using this simplified induction principle, it is fairly straightforward to adapt the proof of
termination for simple types [3], based on the strong computability predicate.

6.1 Soundness, by NBE
The original presentation of BSN for the simply-typed lambda-calculus proves soundness using
a logical binary relation, similar to the use of strong computability for termination presented
later in this section. Unfortunately, this proof seems hard to adapt to the quotiented syntax.

However there is an alternative proof, much shorter if not as interesting. The key
observation is that BSN uses the same notion of normal forms as normalisation by evaluation
(cf. [7] for a formal proof of NBE for type theory—we use the very same syntax and definition
of normal forms). A direct consequence of the existence of a normalisation function such as
NBE is that there is exactly one normal form in each equivalence class of terms, which in
the quotiented syntax means that the embedding of normal forms is injective.

I Theorem 6.
n,m : Nf Γ A pnq ≡ pmq

n ≡ m
Proof. By soundness and stability of normalisation by evaluation. J

I Theorem 7 (Soundness).

norm u ⇓ n norm u ⇓ m
n ≡ m



T. Altenkirch and C. Geniet XX:13

Proof. Immediate by Theorems 4 and 6. J

It can of course be argued that defining a normalisation function using another normal-
isation function defeats the object. However we think that it is interesting to consider BSN
not so much as alternative normalisation function than as an alternative definition for the
function which can also be obtained through NBE. This proof of soundness becomes more
sensible from this point of view: as soon as we prove that the functions defined by NBE
and BSN coincide (for which completeness of BSN is a key result), all correctness properties
which are known to hold for NBE—in particular soundness—transfer to BSN.

6.2 Substitution-Free Types
An interesting issue was mentioned while defining quote: the natural definition is by induction
on types, but only considers the constructors U, El, and Π, forgetting both _[_] and the
quotient constructors. In this subsection, we show that this type of definition is in fact
always correct, by defining substitution-free types, and proving that they are isomorphic to
regular types.

Substitution free types are defined together with their embedding into regular types.

data Tysf : Con→ Set where p_q : Tysf Γ→ Ty Γ
U : Tysf Γ
El : Tm Γ U→ Tysf Γ
Π : (A : Tysf Γ)→ Tysf (Γ, pAq)→ Tysf Γ

pUq = U
pEl uq = El u
pΠ A Bq = Π pAq pBq

We will now define an evaluation function from types to substitution-free types, which
will be the inverse of the embedding p_q. This requires to interpret every remaining type
constructors in substitution-free types.

First, the application of a substitution to a substitution-free type is defined inductively.

_[_] : Tysf ∆→ Sub Γ ∆→ Tysf Γ
U[σ] = U
(El u)[σ] = El(u[σ])
(Π A B)[σ] = Π (A[σ]) (B[σ↑pAq])

The definition directly follows the equations U[], El[], and Π[] from the syntax of regular
types. The remaining equations can be proved by induction.

A : Tysf Γ
A[id] ≡ A

A : Tysf Θ σ : Sub ∆ Θ ν : Sub Γ ∆
A[σ ◦ ν] ≡ A[σ][ν]

Put together, this defines the evaluation function: U, El, and Π are interpreted by the
respective constructors, substitutions are applied using the previous recursive definition, the
equations U[], El[], and Π[] hold trivially, and we just verified that [id] and [][] are respected.
It is easy to verify that this evaluation function is indeed the inverse of the embedding,
therefore regular and substitution-free types are isomorphic.

This gives an alternative, much simpler induction principle for types.

I Lemma 8. To define a function on types, it suffice to define it inductively for the con-
structors U, El, and Π.

Proof. The hypothesis of the lemma corresponds exactly to a definition of the function
on substitution-free types. This function is then extended to regular types through the
isomorphism previously defined. J



XX:14 Big Step Normalisation for Type Theory

6.3 Type Skeletons

If we were to immediately define strong computability, we would face a second issue regarding
the induction principle for types: it will often be the case that when proving a result by
induction on types and considering a type Π A B, we need to apply the induction hypothesis
not on B, but instead on B[σ] for some substitution σ, which is not allowed by the induction
principle of types. However, if we were to forget substitutions altogether, then B or B[σ]
would be the same. This is exactly the idea behind the skeleton of a type: by deleting all
substitutions, we obtain a well-founded notion of size of types, for which B and B[σ] are
equivalent.

Formally, a type skeleton correspond to the non-dependent structure of types: either a
base type or a function type.

data Sk : Set where
base : Sk
Π : Sk→ Sk→ Sk

Defining the skeleton of a type is straightforward, and all quotient constructors are clearly
respected.

skeleton : Ty Γ→ Sk
skeleton U = base
skeleton (El u) = base
skeleton (Π A B) = Π (skeleton A) (skeleton B)
skeleton (A[σ]) = skeleton A

Using the skeleton of types as size indicators for induction, the example of problematic
induction given at the beginning of this subsection becomes valid.

I Lemma 9. To define a function f on types, it suffice to
Define f on the base types U and El.
Define f on any type Π A B, while assuming that f is defined on C for any type C with
the same skeleton as either A or B.

Proof. The proof is the same as for Lemma 8, but additionally uses the skeletons as size
indicators to ensure that the inductive definition is well-founded. Formally, this means that
the function is defined by induction on type skeletons, then by pattern matching on the types
of a given skeleton. J

6.4 Strong Computability

The proof of termination is based on a Tait-style [25] predicate on values, called strong
computability. This subsection introduces strong computability, together with some important
lemmas.

Strong computability is defined by induction on types, using Lemma 9
A value v of a base type is SC if quote terminates on v.
A value f of type Π A B is SC if the application of f to a SC value v of type A gives a
SC result of type B.



T. Altenkirch and C. Geniet XX:15

scv : {A : Ty} → Val Γ A→ Set
scvU v = Σ(n : Nf Γ U) quote v ⇓ n
scv(El u) v = Σ(n : Nf Γ (El u)) quote v ⇓ n
scv(Π A B) f = ∀(α : Wk ∆ Γ)(v : Val ∆ A+α)→ scv v →

Σ(C : Ty ∆) Σ(w : Val ∆ C)
(f+α @ v ⇓ w) ∧ (scv w) ∧ (skeleton C ≡ skeleton B)

Some remarks can be made regarding the case of function types. Firstly, stability under
application is understood up to weakening, i.e. the argument v need not be in the same
context Γ as the function f , but may instead come from a weaker context ∆, where the
weakening α : Wk ∆ Γ expresses that ∆ is weaker than Γ.

Secondly, as in the definition of the evaluation relation, we prefer not to restrict the result
type to simplify the upcoming proofs, hence we merely require that there exist a value w of
some type C. However, the definition would not be well-founded without any restriction on
C, since we inductively refer to strong computability at type C. Thus, we ask for C to have
the same skeleton as B. In this way, strong computability for Π A B is defined based on
strong computability for types with the same skeleton as either A or B.

Strong computability is extended to environments pointwise.

sce : Env Γ ∆→ Set
sce ε = >
sce (ρ, v) = sce ρ ∧ scv v

Let us now prove some lemma on strong computability. Throughout this subsection, we
implicitly use Lemma 9 when proceeding by induction on types.

I Lemma 10. Strong computability is stable under weakening:

v : Val Γ A scv v α : Wk ∆ Γ
scv v+α

ρ : Env Γ Θ sce ρ α : Wk ∆ Γ
sce ρ+α

Proof. For values, the proof is by induction on the type. For base types, stability of quote
under weakening is used. For function types, the proof is immediate, since the definition of
strong computability already accounts for weakening.

For environments, the proof is trivial by induction. J

I Lemma 11. Strong computability is a mere proposition, i.e. any two proofs of strong
computability are equal.

p, q : scv v
p ≡ q

p, q : sce ρ
p ≡ q

Proof. For values, the proof is by induction on the type. For base types, we use soundness
of quote, that is

quote v ⇓ n quote v ⇓ m
n ≡ m

which follows easily from Lemma 3 and Theorem 6. For function types, Lemma 2 is used.
For environments, the proof is trivial by induction. J

The most important lemma regarding strong computability is that it implies termination
of quote. A form of the converse for neutral values is proved simultaneously.



XX:16 Big Step Normalisation for Type Theory

I Lemma 12.
v : Val Γ A scv v (quote)

Σ(n : Nf Γ A), quote v ⇓ n
v : NV Γ A Σ(n : NN Γ A), quoten v ⇓ n

(unquote)
scv (neu v)

Proof. By mutual induction on the type A. The base cases are trivial by definition of strong
computability. Consider a function type Π A B.

For the case (quote), let f be a strongly computable value of type Π A B. Following the
definition of quote for function types, we need to prove that there exist some v : Val (Γ, A) B
and n : Nf (Γ, A) B such that

f+A @ neu (var vz) ⇓ v ∧ quote v ⇓ n

In this expression, the variable vz has type A[π1id]. Furthermore quoten trivially terminates
on variables, hence (unquote) implies that neu (var vz) is strongly computable by induction
hypothesis. Then by definition of strong computability f+A @ neu (var vz) ⇓ v holds for
some strongly computable v, and we may verify using Lemma 1 that v has type B. Since v
is strongly computable of type B, there exist by induction hypothesis n : Nf (Γ, A) B such
that quote v ⇓ n. Therefore, quote f ⇓ (λ n).

Inversely, for the case (unquote), assume quoten f ⇓ n with f : NV Γ (Π A B), and let
us prove that neu f is strongly computable. Let α : Wk ∆ Γ and v : Val ∆ A+α strongly
computable. Let us prove that neu (app f+α v) satisfies the conditions of the definition of
strong computability for function types. Firstly,

(neu f+α) @ v ⇓ (neu (app f+α v))

is immediate since f is neutral. Furthermore, by induction hypothesis (unquote) and
definition of quoten, to prove that neu (app f+α v) is strongly computable, it suffice to check
that quoten terminates on f+α and quote terminates on v. The former holds by hypothesis
using that quoten is stable by weakening, while the latter holds by induction hypothesis
(quote). Finally, one may verify that the type of neu (app f+α v) can be expressed as B with
some substitutions and weakenings applied, hence its skeleton is the same as B. It follows
that f is strongly computable. J

I Lemma 13. The identity environment is strongly computable.
Γ : Con

sce idenvΓ

Proof. Lemma 12 implies that all variables are strongly computable because they are neutral
values for which quoten trivially terminates. The result follows by induction on Γ, using
Lemma 10. J

6.5 Termination
All the tools are now available to prove the main termination result.

I Theorem 14. Evaluation in a strongly computable environment terminates, and yields a
strongly computable result.

u : Tm Γ A ρ : Env ∆ Γ sce ρ
Σ(B : Ty ∆)Σ(v : Val ∆ B) eval u ρ ⇓ v ∧ scv v
σ : Sub Γ Θ ρ : Env ∆ Γ sce ρ
Σ(ν : Env Γ Θ) evals σ ρ ⇓ ν ∧ sce ν



T. Altenkirch and C. Geniet XX:17

The theorem is proved by induction on terms and substitutions. Regular constructors are
unproblematic, in the sense that the proofs does not change significantly compared to the
case of an unquotiented syntax. However, we also need to verify that quotient constructors
are respected, i.e. that for every equality constructor u ≡ v, the proof (seen as a function) of
Theorem 14 gives equal results on u and v.

A simple way to ensure this is to prove that the types corresponding to Theorem 14 are
mere propositions. In that case, when considering an equality constructor u ≡ v, the result
of a proof of Theorem 14 on u and v will necessarily be equal since both are elements of the
same mere proposition.

I Lemma 15. For any u : Tm Γ A, σ : Sub Γ Θ and ρ : Env ∆ Γ, the following types are
mere propositions.

Σ(B : Ty ∆)Σ(v : Val ∆ B) eval u ρ ⇓ v ∧ scv v
Σ(ν : Env Γ Θ) evals σ ρ ⇓ ν ∧ sce ν

Proof. By Lemma 2, a term can only evaluate to a single value v. Furthermore, the types
eval u ρ ⇓ v and scv v are mere propositions, by definition and by Lemma 11 respectively.
The result follows. The proof is similar in the case of substitutions. J

Proof of Theorem 14. By induction on terms and substitutions. We split the constructors
into three groups:

All quotient constructors are respected by Lemma 15.
Almost all regular constructors are very straightforward: the result of evaluation is
obtained by following the definition of the evaluator and applying the induction hypotheses,
and strong computability of the result comes directly from the hypotheses. The exceptions
to this pattern are λ and app, for which we give more detailed proofs below.
For an abstraction λu of type Π A B evaluated in a strongly computable environment
ρ : Env ∆ Γ, evaluation is trivial since it simply yields the closure clos u ρ. Let us show
that this closure is strongly computable.
Let α : Wk Θ ∆, and v : Val Θ (A[pρq]+α) strongly computable. Then by Lemma 10,
(ρ+α, v) is a strongly computable environment, hence by induction hypothesis there exists
w strongly computable such that eval u (ρ+α, v) ⇓ w. It follows that (clos u ρ)+α @ v ⇓ w.
Finally, we may verify using Lemma 1 that the type of w must have the same skeleton as
B. It follows that clos u ρ is strongly computable.
Consider an application app u with u : Tm Γ (Π A B) evaluated in a strongly computable
environment (ρ, v) : Env ∆ (Γ, A). By induction hypothesis, there exists f strongly
computable such that eval u ρ ⇓ f . It can be verified using Lemma 1 that f has type
Π (A[pρq]) (B[pρq ↑A]). Hence, because f and v are strongly computable, there exist
w strongly computable such that f @ v ⇓ w. Then we obtain by the definition of the
evaluation relation that eval (app u) (ρ, v) ⇓ w, proving the result.

J

I Theorem 16 (Termination). Normalisation terminates.

u : Tm Γ A
Σ(n : Nf Γ A), norm u ⇓ n

Proof. Let u : Tm Γ A. By Lemma 13 and Theorem 14, there exist v strongly computable
such that eval u idenv ⇓ v. By Lemma 1, one may verify that v has type A. Finally, by
Lemma 12, there exist n : Nf Γ A such that quote v ⇓ n. It follows that norm u ⇓ n. J



XX:18 Big Step Normalisation for Type Theory

By Theorems 7 and 16, norm defines a function from quotiented terms to normal forms,
and by Theorems 4 and 5, it is the inverse of the embedding of normal forms. Therefore, we
have proved that big step normalisation defines a normalisation function.

7 Formalisation of BSN in a Cubical Type Theory

Most of the present work has been formalised [5] using Agda [23]. Precisely, Sections 3 to 5
have been fully formalised, and Section 6 partially so—what remains to do in the latter is
equality reasoning. This formalisation is expressed in a cubical type theory (CTT, cf. [11])
using the cubical mode of Agda. This differs from the present paper, which uses a strict
type theory for simplicity. The choice of CTT allows to easily express QIIT as a special
case of higher inductive types (HIT, cf. [24]), which from the technical point of view is a
notable improvement over previous implementations of QIIT in non-cubical Agda, which
had to introduce all quotient constructors as additional axioms (e.g. [7, 8]).

As explained in [8], simply considering a QIIT as a special case of HIT leads to unexpected
results. For instance, in the case of the quotiented syntax, U[] and [id] give two proofs of
U[id] ≡ U, and these proofs are distinct in a non-strict type theory. Therefore, this naive
implementation of QIIT leads to a syntax which is not a set in the type theoretic sense, i.e.
uniqueness of identity proofs (UIP) does not holds. It follows by Hedberg’s theorem [17] that
equality is undecidable in this syntax, which is definitively not what was expected.

The solution is to truncate the syntax to a set, by the addition of the following constructors:

setTy : {A B : Ty Γ} (p q : A ≡ B)→ p ≡ q
setSub : {σ ν : Sub Γ ∆} (p q : σ ≡ ν)→ p ≡ q
setTm : {s t : Tm Γ A} (p q : s ≡ t)→ p ≡ q

Note that the corresponding constructor for contexts is unnecessary, because it can be proved
that contexts form a set from the fact that types are a family of sets.

In order to adapt the proof of big step normalisation to CTT with this implementation
of QIIT, there are two problems to solve:

The proof of BSN uses the UIP axiom of the strict type theory.4 Since we lose this axiom
in CTT, its uses must be replaced.
The additional truncation constructors of QIIT must be taken into account whenever we
use induction on a QIIT.

Both problems can be solved together by proving that all the types considered in the proof
of BSN are in fact sets. Indeed, any use of the UIP axiom can then be replaced by the proof
of UIP for the appropriate type, and when defining a function by induction on a QIIT, the
set-truncation constructor can be mapped to the proof that the codomain is a set.

We will not detail all the proofs of UIP because they are fairly repetitive, but we will
explain the general techniques used. There are some trivial cases: all QIIT (terms, types,
values) are explicitly truncated to sets. Mere propositions (the big step relations, strong
computability) are always sets. What remains are regular inductive types, such as variables,
normal forms, substitution-free types. . . For such types, Hedberg’s theorem [17] is an

4 While we never explicitly refer to the UIP axiom in this presentation of the proof, it is used whenever
we prove a lemma of the form L : (x : A) → f(x) ≡ g(x) by induction on a QIIT A. Indeed, for a
quotient constructor of type a ≡ b in A, we need to provide an equality between equalities L(a) ≡ L(b).
This is trivial with UIP—hence why such cases are neglected in the proof—but is in general problematic
in a non-strict metatheory. An example is the coherence lemmas for weakening of values.



T. Altenkirch and C. Geniet XX:19

extremely useful tool. For instance, it is easy to verify that equality of variables is decidable,
which implies that they are a set. Even for types which do not a priori have decidable
equality (e.g. normal forms), it is still possible to adapt the techniques and lemmas used for
Hedberg’s theorem to prove UIP.

8 Conclusion and Further Work

We have formalised big step normalisation for a simple dependent type theory, and proved its
correctness. Crucially, a quotiented syntax of type theory based on QIIT is used to reduce
the complexity of this proof. While the proof of BSN for type theory shares many similarities
with the case of the simply-typed lambda-calculus, it requires some additional steps, for
instance a simplified induction principle for the syntax of types.

This work is also an interesting application of the QIIT syntax of type theory, since
it provides an example in which using this syntax has an important impact on the proof.
The implementation of the QIIT syntax using HIT in cubical Agda, and its use in the
formalisation of BSN is also a practical validation of ideas which were developed in [8].

Since we have only considered a minimalist type theory in this work, it is natural to try
to extend it. A first step in this direction could be the addition of some inductive types. This
was already done in the non-dependently typed case in [3], by adding integers (System T). In
order to handle inductive types in BSN, the general idea is to add the inductive constructors
to values and normal forms, and add the elimination principles to neutral values and neutral
normal forms, adapting eval and quote accordingly. A next step could then be to addW -types,
so as to allow the use of arbitrary inductive types. Another equally interesting extension
would be to replace the abstract universe U—which contains no closed terms—with a more
useful universe equipped with type constructors.

References
1 Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall

Forsberg. Quotient inductive-inductive types. In International Conference on Foundations of
Software Science and Computation Structures, pages 293–310. Springer, Cham, 2018.

2 Thorsten Altenkirch and James Chapman. Tait in one big step. In MSFP@ MPC, 2006.
3 Thorsten Altenkirch and James Chapman. Big-step normalisation. Journal of Functional

Programming, 19(3-4):311–333, 2009.
4 Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normalization by

evaluation for typed lambda calculus with coproducts. In Proceedings 16th Annual IEEE
Symposium on Logic in Computer Science, pages 303–310. IEEE, 2001.

5 Thorsten Altenkirch and Colin Geniet. Agda formalisation for the paper big step normalisation
for type theory. Available at https://github.com/colingeniet/big-step-normalisation,
2019.

6 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of
a reduction free normalization proof. In International Conference on Category Theory and
Computer Science, pages 182–199. Springer, 1995.

7 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types.
In 1st conference on Foundational Structures in Computation and Deduction (FSCD), 2016.

8 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. ACM SIGPLAN Notices, 51(1):18–29, 2016.

9 Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed
lambda-calculus. In [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 203–211. IEEE, 1991.

https://github.com/colingeniet/big-step-normalisation


XX:20 Big Step Normalisation for Type Theory

10 James Chapman. Type theory should eat itself. Electronic Notes in Theoretical Computer
Science, 228:21–36, 2009.

11 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: a
constructive interpretation of the univalence axiom. arXiv preprint arXiv:1611.02108, 2016.

12 Thierry Coquand. An algorithm for testing conversion in type theory. Logical frameworks,
1:255–279, 1991.

13 Gabe Dijkstra. Quotient inductive-inductive definitions. PhD thesis, University of Nottingham,
2017.

14 Daniel J Dougherty and Ramesh Subrahmanyam. Equality between functionals in the presence
of coproducts. In Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science,
pages 282–291. IEEE, 1995.

15 Peter Dybjer. Internal type theory. In International Workshop on Types for Proofs and
Programs, pages 120–134. Springer, 1995.

16 Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7. Cambridge
university press Cambridge, 1989.

17 Michael Hedberg. A coherence theorem for martin-löf’s type theory. Journal of Functional
Programming, 8(4):413–436, 1998.

18 Martin Hofmann. Syntax and semantics of dependent types. In Extensional Constructs in
Intensional Type Theory, pages 13–54. Springer, 1997.

19 Jean-Pierre Jouannaud and Albert Rubio. Rewrite orderings for higher-order terms in η-long
β-normal form and the recursive path ordering. Theoretical Computer Science, 208(1-2):33–58,
1998.

20 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proceedings of the ACM on Programming Languages, 3(POPL):2, 2019.

21 Paul Blain Levy. Call-by-push-value. PhD thesis, Queen Mary and Westfield College, University
of London, 2001.

22 Paul-André Mellies. Typed λ-calculi with explicit substitutions may not terminate. In
International Conference on Typed Lambda Calculi and Applications, page 32. Springer, 1995.

23 Ulf Norell. Towards a practical programming language based on dependent type theory, volume 32.
Citeseer, 2007.

24 Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics.
Univalent Foundations, 2013.

25 W. W. Tait. Intensional interpretations of functionals of finite type i. Journal of Symbolic
Logic, 32(2):198–212, 1967. doi:10.2307/2271658.

http://dx.doi.org/10.2307/2271658

	Introduction
	Normalisation
	Big Step Normalisation
	BSN for Type Theory and Quotiented Syntax
	Structure of the Paper
	Related Work

	Metatheory and Notations
	Quotiented Syntax of Type Theory
	Weakenings
	Normalisation Relation
	Values
	Evaluation
	Normal Forms
	Quote
	Normalisation

	Correctness of BSN
	Soundness, by NBE
	Substitution-Free Types
	Type Skeletons
	Strong Computability
	Termination

	Formalisation of BSN in a Cubical Type Theory
	Conclusion and Further Work

