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I. RESUMO 

O intestino humano é considerado o maior compartimento do sistema imunitário, tendo 

constantemente de enfrentar e responder de forma eficiente a sinais e perigos externos, como 

antigénios e moléculas imunomodulatórias provenientes de várias fontes, incluindo o nosso 

próprio microbioma intestinal (1). Isto deve-se ao lúmen intestinal estar em contato direto com 

tudo aquilo que é ingerido, funcionando como uma porta seletiva entre o meio-ambiente e o 

corpo e até mesmo como um potencial nicho onde bactérias patogénicas se podem 

desenvolver e levar a situações de doença, podendo inclusive ser considerado uma parte 

exterior do nosso corpo. Adicionalmente, o sistema imunitário tem de integrar e modular os 

sinais provenientes do microbioma intestinal, que coevoluiu com os seus hospedeiros, 

estabelecendo uma relação simbiótica com eles de várias formas (2, 3), ajudando na 

manutenção da homeostasia, metabolizando compostos que de outra forma seriam 

indigeríveis, competindo e prevenindo que outras bactérias colonizem o trato intestinal e 

sendo até capaz de modular o próprio sistema imunitário (4). Em troca, nós oferecemos-lhes 

uma fonte estável e constante de nutrientes e um ambiente relativamente estável onde podem 

crescer e proliferar. (4). No entanto, em certas condições, quando o sistema imunitário não 

consegue regular e controlar devidamente as bactérias comensais, algumas delas podem 

tornar-se patogénicas (5). Ainda assim, é notável a forma como o sistema imunitário consegue 

lidar simultaneamente com as bactérias comensais e bactérias patogénicas, de forma a 

garantir a homeostasia intestinal em situações simultaneamente tão semelhantes e diversas. 

É fácil de imaginar que o que observamos hoje em dia foi o resultado de uma enorme pressão 

evolutiva para garantir o bom funcionamento do nosso sistema imunitário intestinal.  

Entre as várias células que fazem parte do sistema imune inato e adaptativo e que têm um 

papel fundamental na regulação e manutenção da homeostasia, existe uma família emergente 

de células inatas de morfologia linfoide, as Innate Lymphoid Cells (ILCs). O seu papel em 

processos biológicos tem vindo a ser revelado ao longo destes últimos anos. Sabe-se 

atualmente que as ILCs tem um papel na iniciação, mediação e resolução de estados 

inflamatórios, integram sinais do microbioma, têm um papel na formação e reparação de 

órgãos linfoides, reconhecem e produzem citocinas imunomodulatórias e são inclusive 

capazes de modular a resposta do sistema imune adaptativo. As ILCs identificam-se pela 

ausência de marcadores clássicos de células B, T, mieloides ou granulócitos. No entanto, 

expressam alguns marcadores presentes noutros leucócitos, como no caso da cadeia gamma 

(γc, CD132), IL-7Rα (CD127), IL-2Rα (CD25), e Thy1 (CD90). Esta família de células foi 

recentemente dividida em 3 grupos, de acordo com a expressão de fatores de transcrição 

específicos e perfis de expressão de citocinas. Atualmente, considera-se existirem ILCs de 

tipo 1, 2 e 3 (6-14). 
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As ILCs de tipo 3 são um grupo relativamente heterogéneo de células, encontrando-se 

divididas em ILC3s e em células Lymphoid Tissue Inducer (células LTi). Estas células fazem 

parte do sistema imunitário das mucosas, estando presentes no intestino delgado e grosso e 

sendo produtoras de IL-22 (15). As ILC3s são definidas em ratinhos como sendo Lin- RORγt+ 

(e também Thy1+ IL-7Rαint C-Kitint CCR6-, com uma percentagem sendo NKp46+), enquanto 

que as células LTi são caracterizadas como Lin- RORγt+ NKp46- (e também Thy1+ IL-7Rαhi C-

Kithi CXCR5+ CCR6+), com uma percentagem sendo CD4+. Este subtipo de células foi 

considerado como o grupo mais importante na produção de IL-22 numa situação de estado 

estacionário (16) e como tendo um papel extremamente importante na organogénese linfoide 

no feto (17-19), sendo ainda potentes produtores de IL-22 na fase adulta em ratinhos (20). No 

nosso laboratório, foi verificado que estas células expressam um recetor de fatores 

neurotróficos – RET (21). 

Também observámos que a percentagem de ILC3s IL-22+ se encontra reduzida em ratinhos 

com uma deleção condicional de RET em células RORγt+ (Rorc-Cre Retflox/flox). Estes ratinhos 

foram denominados RetΔ. Em contraste, ratinhos com uma mutação genética em que existe 

um ganho de função de RET (RetMEN2B/MEN2B), em que o recetor se encontra ativo de forma 

constitutiva, apresentavam uma maior percentagem de ILC3s IL-22+. Isto correlacionou-se 

com a reatividade epitelial destes ratinhos, sendo que a ausência de RET especificamente em 

ILC3s levava a que existisse uma menor expressão de genes associados à integridade 

epitelial. Pelo contrário, ativação constitutiva de RET levava a que existisse uma maior 

expressão de genes associados à reatividade epitelial. Isto fez-nos pensar que o RET tem um 

papel na produção de IL-22 em ILC3s, e que seria essa proteína a principal responsável pelas 

diferenças observadas, o que faz sentido se tivermos em conta o efeito que a IL-22 tem no 

epitélio. Esta proteína está descrita como tendo um papel antimicrobiano, regeneração de 

feridas e tecidos (22-24) e como sendo necessária para evitar a disseminação microbiana. (8, 

25) 

Com este trabalho, pretendemos portanto analisar se era esta alteração na produção de IL-

22 que levava às diferenças observadas entre ratinhos mutantes e wild type, e não outro fator 

(igualmente dependente de RET) que não estava a ser tido em conta. Para conseguir isto, 

decidimos inicialmente induzir a produção de IL-22 em células ILC3 de ratinhos RetΔ de forma 

independente de RET, e verificar se seria possível “recuperar o fenótipo” observado em 

ratinhos wild type. Para tal, criámos um vírus capaz de infetar este tipo de células e induzir 

uma produção constitutiva de IL-22. Embora tenhamos conseguido infetar uma percentagem 

de ILC3s, tendo efetivamente desenvolvido, de acordo com o nosso conhecimento, o primeiro 

método para inserir genes neste tipo de células, o processo é relativamente stressante para 
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as mesmas e não nos foi possível recuperar um número suficiente de células para realizar um 

ensaio in vivo.  

Paralelamente, desenhámos um método in vitro que nos permitiu estudar a interação de ILC3s 

com o epitélio intestinal. Foi-nos possível purificar estas células diretamente de ratinhos e 

realizar uma co-cultura com organoides intestinais (também conhecidos como “mini guts” - 

modelos ex-vivo do epitélio (26)), medindo a expressão de vários genes que são upregulated 

pela IL-22. Foi possível observar uma upregulation bastante evidente de alguns destes genes 

após uma co-cultura com ILC3s de ratinhos wild type, tanto constitutivamente como após uma 

estimulação com IL-23, o que nos permitiu validar o método de co-cultura e mostrar que as 

ILC3s tinham, de forma autónoma, a capacidade de estimular um aumento na reatividade 

epitelial. Esta estimulação encontrava-se bastante reduzida na presença de um anticorpo 

capaz de neutralizar o efeito de IL-22, o que indica que os efeitos observados dependiam 

diretamente da atividade de IL-22. 

De seguida, estimulámos as células com ligandos de RET, e conseguimos observar um 

aumento na expressão destes mesmos genes, encontrando-se igualmente reduzida na 

presença do anticorpo anti-IL-22. Este efeito não se verificou em células cuja expressão de 

RET se encontrava afetada, o que fortaleceu a hipótese de que esta citocina é o fator que se 

encontra downstream de RET e que é responsável pelas alterações verificadas na reatividade 

epitelial de ratinhos com mutações neste recetor, indicando portanto que o RET tem um papel 

na produção de IL-22 em ILC3s e que essa produção está afetada quando a função de RET 

se encontra alterada, pelo que esta é a causa pelos diferentes fenótipos observados e 

descritos anteriormente. 

 

 

 

 

 

 

 

Keywords: RET, Innate lymphoid cells, Interleukin-22, Epithelial Reactivity, Intestinal 

organoids 
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II. SUMMARY 

The mammalian immune system has evolved to simultaneously allow for a peaceful 

cohabitation with the beneficial commensal bacteria, to provide defense against infectious 

agents and to initiate the repair and remodeling processes that restore and maintain tissue 

homeostasis.   

Innate lymphoid cells (ILCs) are an emergent family of effector immune cells which display a 

lymphoid morphology, lack rearranged antigen receptors and are most abundant at mucosal 

surfaces. The combined expression of lineage-specific transcription factors along with specific 

cytokine profiles led to the formal classification of this family in three distinct ILC subsets: 

Group 1, 2 and 3 ILCs.  

In the lab, it had previously been shown that RORγt+ ILC3s express the neurotrophic factor 

receptor RET. Furthermore, when the guts from RetGFP/+ mice (where GFP is knocked-in in the 

Ret locus) were analyzed by stereo microscopy, it was observed that GFP+ cells were located 

in aggregates, called Cryptopatches (CPs). It was also shown that RET is dispensable for the 

development of ILC3s (data not shown). 

We have then shown that mice with a specific Ret deletion in RORγt-expressing cells (RetΔ)   

show a decreased IL-22 production by ILC3s. Accordingly, mice with a gain-of-function mutant 

form of RET (RetMEN2B, where RET is constitutively active) have an increased percentage of 

IL-22+ ILC3s. Since IL-22 is known to induce the production of proteins and peptides (such as 

mucins and antimicrobial peptides) important for the maintenance of the epithelial barrier, we 

have also analyzed the gut of RetΔ and RetMEN2B mice and have found a strong reduction in 

the expression at the mRNA level of those genes in RetΔ mice and a marked increase in their 

expression in RetMEN2B mice. This data has shown that RET has a role in controlling innate IL-

22 production and that the RET expression/activity modulates the epithelial reactivity. 

We hypothesized that IL-22 was the link between RET and the changes in epithelial reactivity. 

In order to prove this, we have developed a virus capable of infecting these cells and inducing 

the constitutive expression of IL-22 in both RetΔ cells and Wild type (WT) cells, since we were 

interested in recovering the expression of IL-22 that is partially lost in cells that lack RET. In 

theory, this would allow us to recover the expression of genes that are upregulated by IL-22 

either in vivo or in vitro. This would provide strong evidence that IL-22 is the molecular link 

downstream of RET, being directly responsible for controlling the epithelial reactivity. We were 

able to develop a method of ILC3s transduction (to the best of our knowledge, the first one), 

but it was not efficient enough for our planned in vivo trials. 
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In parallel, we have developed a novel co-culture system of intestinal organoids and ILC3s 

that allows us to study the interaction between them. The model was validated both by a rIL-

22 stimulation and by a standard IL-23 stimulation of ILC3s, which showed that IL-22 is able 

to have a measurable effect on intestinal organoids and that stimulation of ILC3s was sufficient 

to increase some epithelial reactivity-related genes in this system in an IL-22-dependent 

manner.   

We have also shown than RET stimulation is enough to induce the upregulation of those same 

genes. This upregulation was reduced in the presence of an IL-22-neutralizing antibody, which 

indicates that ILC3-autonomous RET signals are able to modulate the epithelial reactivity, 

maintaining the integrity of the epithelial barrier in an IL-22-dependent manner.  
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III. INTRODUCTION 
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1- Mucosal Immunity – General Aspects 
 

The gastrointestinal tract is constantly exposed to various external challenges, microbes and 

antigens. As such, evolution has led to the development of a complex system, characterized 

by an interplay between immune cells and epithelial cells (and recently, the role of the 

microbiota is revealing itself to be extremely relevant as well) in maintaining the epithelial 

integrity and the intestinal homeostasis. This is essential to keep the pathogens out, the 

commensal bacteria controlled and for orchestrating inflammatory and anti-inflammatory 

responses, depending on the circumstances.  

1.1 - Epithelial Barrier  

 

The intestinal lumen is isolated by an epithelial layer (Fig. 1), which in turn is covered with a 

mucosal layer that is mainly produced and maintained by Goblet Cells. This layer is important 

in preventing the adhesion of harmful bacteria and in helping commensal bacteria thrive, 

contributing for the positive selection of beneficial bacteria in detriment of pathogenic strains. 

(27-30) 

 

Figure 1: Schematic representation of the small intestine epithelium and the underlying Lamina Propria (31). 
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Aside from working as a physical barrier, epithelial cells also express various pattern-

recognition receptors (32, 33). One could hypothesize that epithelial cells could downregulate 

and upregulate the various subtypes of Toll-like receptors (TLRs) expressed in response to 

different signals. If the host has some kind of mechanism capable of interpreting the various 

combinations of activation/non-activation of TLRs and making sense of them, this could 

represent a complex, intricate mechanism with the potential to be fine-tuned towards very 

specific situations - which is exactly what happens in the intestine. It could also mean the 

epithelium would have a way to control the host response against bacteria, giving these cells 

a certain plasticity and allowing them to have a different behavior depending on the 

circumstances, modulating their sensibility to certain stimuli and allowing for more specific and 

accurate responses.  

While TLRs are mainly extracellular receptors, these cells also express nucleotide binding 

oligomerization domain-like receptors (NLRs) in their cytoplasm, which means there is also a 

way for these cells to sense when certain pathogens manage to enter the intracellular domain. 

Additionally, cells present in the epithelium are capable of both producing cytokines and 

responding to cytokines produced by other cells (22, 34, 35), some of which are responsible 

for inducing the production of mucins and antimicrobial peptides (36, 37). 

It is possible to see that the epithelium is far from being a mere physical barrier capable of 

controlling the absorption of nutrients. In fact, it has a fundamental role in cooperating with 

immune cells to maintain the intestinal homeostasis. 

1.2 - Lamina Propria 

 

The Lamina Propria (LP) is the tissue immediately beneath the epithelial cell layer. Various 

immune cells locate at the LP, such as B cells, T cells, Innate Lymphoid Cells (ILCs) and 

Dendritic cells (DCs). The LP is an effector site, where the residing lymphocytes (the majority 

of which are T Cells) respond to stimuli (38), producing various cytokines such as IL-4, IFNγ, 

IL-17 and IL-22 (38, 39). It has been shown that T cells that are present in the Lamina Propria 

have markers of activation, such as CD45RO+, CD62low, CD69high, CD25, α4β7+ and CCR9+ 

(40), contributing to the notion that the LP is an effector site and other gut associated lymphoid 

tissues are activation sites. 

Innate Lymphoid Cells are an important population in the LP. Among them, we have ILC1s 

(which might originate from ILC3 cells, being then considered ex-RORγt cells after the 

downregulation of this transcription factor), ILC2s, ILC3s and LTi cells, and the most well-

known subtype of innate lymphoid cells, the NK cells.  
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Two important cytokines produced both by ILC3s in the LP are IL-17 and IL-22, which are able 

to have a direct effect in the epithelium, since epithelial cells express both IL-17R and IL-22R 

(41, 42). 

Type 3 ILCs are further divided into 2 categories: ILC3s and LTi cells. ILC3s are defined in 

mice as Lin- RORγt+ Thy1+ IL-7Rαint C-Kitint CCR6-, with bimodal expression of Nkp46, while 

LTi cells are defined as Lin- RORγt+ NKp46- CCR6+ (also Thy1+ IL-7Rαhi C-Kithi  CXCR5+), with 

a percentage of them being CD4+. This subtype has been defined as the main IL-22 producers 

in the intestine in a steady state (16). These cells have even shown to be more important than 

their T cell counterparts in certain circumstances, like in the early stages of Citrobacter 

Rodentium infection(43, 44). 

It is no coincidence that this tissue, which is extremely close to the epithelium, is very rich in 

various subtypes of lymphocytes: The Lamina Propria can be considered as a second line of 

defense, prepared in many ways to maintain and restore the integrity of the epithelium. 
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2 - Epithelial Barrier Cells 
 

The intestinal epithelial barrier is far from being a uniform monolayer of cells. Instead, it is 

composed of various cell subtypes (Fig.2) which have different functions, all of them having an 

important role in the intestinal homeostasis. 

 

Figure 2: Schematic representation of a small section of the intestinal barrier, showing a crypt (bottom) and the tip 

of a villus (top), along with the various subtypes of cells and their localizations. The luminal side is represented by 

the location of the Mucus layer and the commensal bacteria (45). 

The intestinal epithelium is one of the most rapidly self-renewing tissues in the human body, 

with a turnover time of about 3-5 days, being sustained by a population of intestinal stem cells 

(ISCs) that reside in the intestinal crypts (46). The crypt is a microenvironment which ensures 

the physical and biochemical signals essential for ISC maintenance, such as the Wnt, Notch 

and EGF pathways (47). This high rate of cellular differentiation is compensated by the equal 

high rate of cellular apoptosis at the top of the villus. The Wnt pathway plays an indispensable 

role in the maintenance of the normal intestinal architecture, and its inhibition results in the 

disruption of the cellular hierarchy and in loss of “stemness” by intestinal stem cells, 

characterized by a loss of their self-renewal properties (48, 49). In physiological conditions, 

each crypt contains about 5-20 stem cells, which have both the ability to self-renewal and to 

differentiate, giving origin to all the epithelial cells seen in Figure 2. 

The most abundant cell type in the epithelium is the enterocyte, making for about 80% of the 

total cells of the epithelium. The enterocyte is a cell characterized by its polarization, held 
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together by tight junctions, capable of taking up antigens, expressing MHC I and MHC II (and 

presenting antigens to T cells) (50), and also appearing to express various TLRs (33, 51) and 

NOD1 (52).  

Another major cell subtype are the Paneth cells, which are specialized in producing and 

secreting antimicrobial peptides (AMPs) that have a role in controlling the bacterial composition 

of the intestinal lumen, playing an important function in epithelial defense (53-56) and in 

maintaining the normal gut microbiota (55). Their frequency is higher near the intestinal crypts 

and, as a result, the zone closer to the crypt has a high concentration of AMPs. This helps 

preventing the bacterial invasion of these areas and maintaining the crypt microenvironment. 

Goblet cells have a glandular morphology and exist along the total length of the intestine. Their 

main function is the production and maintenance of the mucus layer that coats the epithelium 

(57, 58), creating a so-called first line of defense against pathogens and a place that allows for 

commensal bacteria to thrive in a controlled manner (27, 29, 30). They do this by producing 

some specialized peptides, called Mucins, which are highly glycosylated molecules with gel-

forming properties.  

Making for about 1% of the total epithelial cells, enteroendocrine cells play a role in controlling 

the digestive process, by secreting peptide hormones that regulate the appetite and digestive 

responses (59, 60). There is evidence that they could also have important roles, directly or 

indirectly, in inflammatory processes, such as downregulating the appetite in situations of 

colitis (60, 61) or even by producing a peptide (GLP-2) that appears to promote epithelial repair 

and to shape the epithelial barrier, modulating the epithelium sensibility to TNFα (62, 63). 
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3 - Proteins and Peptides in the gut and their function 
 

3.1 - Antimicrobial Peptides 

 

AMPs are small peptides/proteins that have antimicrobial activity, working as part of the innate 

immune system. They rely on highly conserved structures and characteristics of pathogens, 

attacking them rapidly in a way that controls and/or neutralizes danger. This form of attack can 

either be done enzymatically, as in the case of Lysozyme, that is able to catalyze the 

breakdown of the peptidoglycan that constitutes the cell wall, an important structure that is 

needed for bacterial survival (64) and Phospholipase A2, an enzyme that acts directly on 

bacteria: it is able to penetrate the cell wall and catalyze the hydrolysis of the underlying 

membrane’s phospholipids, strongly compromising its integrity and leading to death of the 

bacteria (65). 

There are also other peptides that attack bacteria cell walls in a non-enzymatic way, such as 

defensins and c-type lectins (REG3 family). These proteins have a net positive charge at 

biological conditions, which allows them to interact easily with the bacterial cell walls, 

effectively exploiting its natural net negative charge (66, 67). While the mechanism by which 

C-type lectins work is still unknown, the mechanism for one of its members has been described 

recently. REG3A is able to penetrate the cell wall, associate with other REG3A molecules and 

form pores in the membrane (Fig. 4), eventually leading to osmotic lysis (68). It is possible that 

other members of the REG3 family share a similar mechanism.  

Figure 4: Bactericidal mechanism of REG3A: After being 

secreted in its inactive form, it is converted to the active form 

(as a monomer) by the action of trypsin. It is then able to 

cross the bacterial cell wall and associate with other REG3A 

molecules at the bacteria’s cell membrane, forming a pore 

that causes osmotic stress and eventually death by lysis (68). 

 

 

 

 

 

A similar mechanism appears to be valid for human α-defensin: it appears to dimerize, forming 

pores and disrupting the membrane. 
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There are also AMPs that disrupt the synthesis of the bacterial cell wall, like Human beta-

defensin 3, that was shown to inhibit a critical step of the cell wall precursors in Staphylococci 

(69). 

This vast array of proteins and different mechanisms of bacterial attack is probably necessary 

to minimize the chance of bacterial resistance to one particular peptide or mechanism and to 

widen as much as possible the spectrum of pathogenic bacterial strains that are susceptible 

to AMPs. In fact, the existence of such a diverse array probably only exists due to previous 

evolutionary pressure, caused by the development of resistance to a specific peptide, that 

pressured animals to develop another alternative to deal with the (now resistant) pathogens. 

This “evolutionary war cycle” probably had a strong influence in the current plethora of AMPs 

in complex organisms. 

The focus on highly conserved structures (that usually are essential for the fitness of the 

organism, which is why they tend to be highly conserved in the first place) is also an excellent 

way to ensure that the pathogens can’t easily develop another method that renders the 

proteins/peptides useless.  

3.2 - Mucins  

 

The epithelial layer of the intestine is covered by a mucosal layer, made of proteins called 

Mucins that have a natural tendency to form a gel. These mucins are produced by Goblet Cells 

and are absolutely essential in maintaining this mucosal layer, necessary for the prevention of 

the adhesion of harmful bacteria and for helping commensal bacteria to thrive, contributing for 

the positive selection of beneficial bacteria in detriment of pathogenic strains (27, 29, 30). In 

addition promoting the formation of this physical barrier, mucin polymers (disulphide-linked) 

also help to lubricate, prevent dehydration of the epithelium surface and contain specific 

ligands to bind pathogens. 

Mucins are divided in 2 categories: the gel-forming mucins, which are glycosylated in the Golgi 

and then enter the secretory pathway, forming large polymers that are able to trap water and 

give the mucus layer its consistency (70). The most important gel-forming mucin in the 

intestine, both in mice and in humans is MUC2. There are also transmembrane mucins, which 

have both a cytoplasmic domain and an extracellular domain. In the intestine MUC3, MUC12 

and MUC17 appear to be the major components of the intestinal glycocalyx, and are probably 

involved in cellular protection (70). 
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4 - Interleukin-22 
  

Interleukin-22 (IL-22) is a cytokine that was first described around the year 2000, having also 

been named IL-TIF (IL-10-related T cell-derived inducible factor), since it was found to share 

25% homology with IL-10 (71), an anti-inflammatory cytokine (72). This cytokine was found to 

be produced by various immune cell subtypes and found to have antimicrobial, wound-healing 

and tissue repairing properties (22-24), and well as being necessary to prevent bacterial 

dissemination throughout the body (8, 25). 

4.1 - Biological Function 

 

IL-22 seems to act exclusively on non-hematopoietic cells. It was found to have an 

antiapoptotic effect (both on intestinal and on hepatic cells), being able to upregulate the 

expression of certain key antiapoptotic genes (Bcl-2, Bcl-xL, Mcl-1), and a proliferative effect, 

through the upregulation of mitogenic genes (c-myc, cyclin D1, Rb2, CDK4) in a pathway 

dependent of STAT3 in hepatic cells (73) and of genes such as pla2g5, birc5, myc, smo, and 

mcl1 in the inflamed intestine (28). It was also able to promote wound healing in the skin (74) 

and help in the regeneration of the tissue in colitis models (75). Its role as a stem cell growth 

and protective factor (76, 77) could, at least partly, explain why it helps tissues (in the case of 

the intestinal epithelium) regenerate faster after they are damaged: it protects the stem cells 

and helps their proliferation.  

IL-22 has a broad importance in various organs and tissues, such as in the liver, where it was 

shown to ameliorate liver damage in many pathological situations, such as Liver ischemia–

reperfusion injury, Nonalcoholic fatty liver disease, Alcoholic liver disease and Acute liver injury 

(78). It also has a biological function in the lung, such as in the protection of chlamydia 

infection, in the inflammatory response against cigarette smoke and in the lung injury induced 

by the P. aeruginosa (79-81). As said before, in the skin it promotes wound healing (82) and 

is also implicated in psoriasis (83). 

In the intestine, aside from the healing and proliferative properties, it is also necessary for the 

control of the microbiota, preventing its uncontrolled dissemination to peripheral organs and in 

keeping pathogens away, essentially in the earlier stages of the infection (23-25, 84, 85). 

IL-22 achieves this by acting directly on the intestinal epithelium, signaling through the IL-22R 

present on epithelial cells (42). It stimulates the production of several peptides that are 

essential for the homeostasis (such as Mucins) and antimicrobial action (AMPs), as described 

previously. More precisely, IL-22 is needed and/or can induce the production of various 

proteins and peptides, such as the mucins MUC1, MUC3, MUC4 and MUC5b (86), the AMPs 
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REG3B, REG3G, S100A8, S100A9 and even several genes associated with IBDs, which hints 

towards the importance that IL-22 has in the pathogenesis of these diseases (87). 
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5 - Innate Lymphoid Cells 
 

ILCs are the most recently discovered cell of the immune system and have been the focus of 

extensive investigation in the last decade. They are part of the innate immune system, being 

characterized by a lymphoid cell morphology and by the lack of any classical markers that are 

used to identify other defined lymphocytes, being commonly referred as “lineage negative” 

cells. They also lack a classical antigen receptor like those of B and T cells (BCR and TCR, 

respectively) that is able to undergo V(D)J recombination (since they lack the RAG gene), 

making these cells unresponsive to specific antigens and instead responding to less-specific 

signals (88, 89) (Fig. 5). 

 

Figure 5:  The type of alert cytokines associated with each pathogen and the way that innate lymphoid cells respond 

to them, with the corresponding global effect caused by that response (13). 

ILCs express certain cytokine receptors and produce certain signature cytokines. This allows 

them to respond rapidly to “alert” cytokines and respond accordingly, making them a rapid, first 

line of defense that is able to respond before the adaptive immune system. That, along with 

certain surface markers and transcriptional factors is the currently accepted way to classify 

them. Another interesting characteristic is that they seem to have cytokine profiles that are 

similar to some helper T Cells (89). 

5.1 - Group 1 ILCs: 

 

Group 1 ILCs are characterized by the production of IFNγ and by the lack of expression of Th2 

and Th17 signature cytokines (89, 90). The oldest known member of this category is the NK 

cell, which displays cytotoxic activity towards cells that express abnormal markers, indicative 
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of stress such as viral infection. They can also secrete TNFα and IFNγ (91), having a 

resemblance with cytotoxic CD8+ T cells. 

The ILC1 is another (somewhat debated) member of this group. They are weakly cytotoxic 

(92) and are distinct from NK cells in the sense that they are not dependent on T-bet for 

differentiation and appear to be independent of Eomes, which is necessary for conventional 

NK cells development (93). However, the ILC1 is still a poorly defined and characterized type 

of cell and more studies will need to be done in order to further classify this population. 

 

5.2 - Group 2 ILCs: 

 

Group 2 ILCs were first identified around 2001, when a group reported a new population of 

“accessory cells” in RAG-/- mice that were able to respond to IL-25, producing IL-5 and IL-13. 

These cells were defined as “non-lymphoid accessory cells” by the authors, since they had no 

lineage markers, were MHCIIhigh, and CD11null (94). In 2010, some groups showed the 

existence of a novel type of cell, having been baptized with different names depending on the 

group that had described them, such as “Natural Helper” cells (10) or “Nuocytes” (95), having 

later been the subject of a revision, in which it was agreed to rename them to ILC2s, after it 

was concluded they were the same cell subtype, in an effort to give them a common name in 

order to facilitate further research in the field (89). 

ILC2s respond to IL-25, IL-33 and TSLP by expanding and by secreting Type 2 cytokines, like 

IL-5 and IL-13 (96-98), making them critical early responders towards infections by 

extracellular parasites. This also makes them the “innate counterpart” of Th2 cells, which has 

served as the basis for their classification. 

Interestingly, these cells also appear to control the response of Th2 cells, engaging in a 

crosstalk that is necessary both for a proper Th2 response for ILC2 expansion in vivo (99, 

100). 

5.3 - Group 3 ILCs: 

 

Group 3 ILCs are defined by their expression of RORγt, needed for their development and for 

their function. Group 3 ILCs are somewhat more heterogeneous than ILC2s. This group 

contains both LTi cells, which are further divided into LTi0 and LTi4, depending on their lack 

or expression of CD4 (whose function is currently unknown), respectively, and ILC3s.  

LTis appear during the embryonic stages and are required for the formation of Peyer’s Patches 

and Lymph Nodes. They express CCR6, which is necessary for their clustering and 
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consequent formation of lymphoid tissues. They also express IL-17 and IL-22 during the 

embryonic stage, but the relevance of this expression is unknown, since mice that lack these 

cytokines are still able to develop lymphoid structures normally (101). 

After birth, another subtype of Group 3 ILCs develops. These are defined as ILC3s and are an 

effector population that is essentially present on mucosal tissues, such as the Lamina Propria 

of the intestine. This population is again further divided in 2 other populations (The Nkp46+ 

ILC3s and the Nkp46- ILC3s) depending on their expression (or lack thereof) of Nkp46, known 

as a NK cell activation marker, whose relevance is also currently unknown for ILC3s (102). 

Like the previous 2 subsets of ILCs, ILC3s also resemble a helper T cell, the Th17. 

It was also shown that these cells can, depending on environmental cues, upregulate T-bet 

and become Nkp46+ IFNγ-producing cells (102, 103). 

 

5.3.1 - ILC3s in Intestinal Homeostasis  

  

ILC3s are necessary for the maintenance of intestinal homeostasis and appear to be 

implicated in Inflammatory Bowel Diseases (IBDs). Both populations of ILC3s are known to be 

important producers of IL-22 and are key players during infection by C. Rodentium in mice (43, 

44) and in DSS-induced colitis. They are activated by IL-23 both in vivo and in vitro, resulting 

in a strong production of IL-22. It is known that IL-23 is produced by DCs and macrophages in 

certain infections, like C. Rodentium (84, 104) which elucidates a way for these cells to respond 

during an infection. 

As mentioned earlier, the immune system has a way to avoid responding to commensal 

bacteria as if they were pathogenic. These cells are no exception: it has been shown and 

proposed that IL-25 expression by epithelial cells downregulates IL-22 and IL-17 expression 

in ILC3s, in a DC-dependent manner (16). It was also shown that ILC3s express MHC II, and 

that ablation of this receptor results into abnormal responses of T cells towards commensal 

bacteria (9). This shows that ILC3s are not only important during immune responses, but are 

also important in steady state, being able to present peptides of commensal bacteria to T cells 

and regulating their response. 

This allows us to get a glimpse at the network of cellular communication involved in the 

tolerance process that takes place in the intestine. It will certainly be quite remarkable to see 

this network further unravel as further research is published, allowing us to progressively 

understand how the intestinal immune system is able to differentiate between pathogenic 

agents and non-harmful, beneficial bacteria and/or antigens. 



   20 
   

5.3.2 - T-Cell independent IL-22 production by ILC3s: 

 

While T cells are a major source of IL-22 in several pathogenic states, this is usually a “late” 

response that takes time to reach full potential. Without an early, potent IL-22 production, 

infections become lethal and elimination of the pathogen is severely compromised or even 

impossible. This shows the importance of the existence of an IL-22 source that is able to act 

fast and efficiently, containing infections before the adaptive immune system has a chance to 

“kick-in” and deliver a potent, large scale response. This happens in several situations, such 

as C. albicans and C. Rodentium infection in the gut and K. pneumonia in the lung (44, 105, 

106). 

As said before, IL-22 is an important cytokine with effects throughout the body in epithelial 

tissues. Due to the nature of the work, I will only mention the IL-22 innate producers in the 

intestinal Lamina Propria, even though some of them have a role in other tissues and/or 

organs. 

In the intestinal Lamina Propria, there is a specific ILC subtype that is able to produce IL-22 

(Fig. 6). These are all part of the ILC3 family, with perhaps the exception of an ex-RORγt cell, 

which displays a phenotype similar to that of ILC1s, after the downregulation of RORγt and 

upregulation of T-bet and expression of IFNγ (102, 103, 107). All the other currently known 

subtypes of ILC3s have been described to produce IL-22 in one way or another. 

 

Figure 6:  Adult mouse IL-22 producing ILC3s and the currently known subtypes that are part of this family (88). 

Over the years ILC3s were defined and recognized by the expression (or lack thereof) of some 

markers whose purpose in ILC3s is not understood (CD4 and Nkp46), even though they are 

still regarded as members of this family. This led to a certain confusion and makes these cells 
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a likely target for a nomenclature review, as more is understood about the function of their 

surface markers.  

CD4+ LTi-like cells have been shown to be an important source of IL-22 in C. Rodentium 

infection, with their depletion leading to an impaired anti-microbial response (108). CD4- ILC3s 

cells have also been shown to be important IL-22 producers (20) in the murine gut. LTi cells 

have been described to produce IL-22 in the embryonic gut, even though the role of IL-22 at 

this stage is unknown, as these mice still seem to develop normally after IL-22 is ablated (101). 

Nkp46+ ILC3s also produce IL-22 and appear to be dispensable in certain conditions (103), in 

which ILC3-derived IL-22 production is essential. 

All in all, the ILC3 family is still far from defined, and more research will need to be done in this 

area in order to further elucidate the subtypes of ILC3s, their function, the relationship between 

them and other ILC subtypes and the role of some proteins (such as CD4 and Nkp46, and 

possibly other still unknown ones) in ILC3s function and development. 

5.3.3 – ILC3s in Human Inflammatory Bowel Diseases: 

 

Human studies regarding intestinal ILCs are still very recent and scarce. One recent study has 

reported that in Crohn’s disease (CD), there is an accumulation of a type of ILC that had a low 

production of IL-22 and higher production of IL-17, when compared to healthy controls. This 

phenomenon did not happen in Ulcerative Colitis (UC) patients (109). It is possibly that an ILC 

imbalance or dysregulation that favors the accumulation of IL-17-producing cells in detriment 

of IL-22-producing cells has a role in the etiology of the disease. The fact that it does not seem 

to happen in UC patients is very interesting, since it could provide clues to understand how 

both diseases work in more detail and to what is the precise role of the innate immune system 

in both diseases. 

Another interesting study shows that in humans with Crohn’s disease, RORγt+ ILCs purified 

from inflamed zones have a decreased IL-22 production when compared to RORγt+ ILCs 

purified from non-inflamed zones, and that their IL-22 production was increased when they 

were co-cultured with macrophages with LPS stimulation (110). This could indicate that a 

deficient interaction between the microbiota, macrophages and ILCs could be causing for a 

lower IL-22 production and consequent inflammation. 

It was also shown that human ILC3s can differentiate to ILC1s and vice versa, with a specific 

ILC1 subtype (IL7Rα+) being increased in Crohn’s disease patients. This could also be relevant 

for the disease, and one could suggest that a bias towards the differentiation of ILC3s to ILC1s 

could play a role in the inflammatory process (11). 
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It is becoming increasingly likely that ILCs have a role in the etiology of inflammatory bowel 

diseases. Even though they add another layer of complexity in order to fully understand these 

diseases’ mechanisms, it will be important to study their precise role and their biology in order 

to determine if they are candidates for novel therapeutics and what importance do they have 

in the development and/or management of these diseases. 
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6 - Physiological aspects of RET 
 

The Ret (REarranged during Transfection) gene encodes for the RET protein, which is a 

transmembrane receptor tyrosine kinase (RTK) for the glial cell line-derived neurotrophic factor 

family of ligands (GFLs) (21, 111) (Fig. 7). RTKs are a large family of proteins that are involved 

in various signal transduction pathways that mediate cellular processes such as proliferation, 

migration, differentiation, survival and metabolism (112, 113). 

 

Figure 7: The transmembrane RET receptor and the 4 co-receptors, with their respective ligands (114). 

6.1 - RET function: 

 

The RET protein is a single-pass transmembrane receptor, that has an extracellular domain 

containing cadherin-like domains (transmembrane proteins that have a role in Ca2+-dependent 

cell adhesion processes). So far, RET is known to be able to bind to 4 ligands: GDNF, Artemin 

(ARTN or ART), Neurturin (NRTN or NTN) and Persephin (PRSP or PSP). However, it cannot 

do this by itself. It also requires the presence of a co-receptor: GDNF-family receptor alpha 

(GFRα). Each GFL binds preferentially to a specific GFRα, as shown on Figure 7. This complex 

allows 2 RET molecules to form a homodimer, which is the process that promotes the 

autophosphorylation of the intracellular tyrosine residues. 

However, this relationship doesn’t appear to be the only way for GFLs to interact with RET, 

since there seems to be a certain promiscuity between ligands and co-receptors (115). GFRα 

can either act in cis when it is expressed by the cells expressing RET or it can act in trans, 

acting as a soluble receptor (116, 117). 

The intracellular domain of RET is the kinase domain, where RET residues are able to undergo 

autophosphorylation upon RET activation (118, 119), a process that is necessary for the 
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interaction with several proteins that act as intermediaries in signaling cascades that are 

downstream of RET. 

RET has also been shown to be expressed in hematopoietic cells, and was also shown to have 

a role in immune processes before. Mice with a deficient RET/GFRalpha3/ARTN pathway 

show impairment in the development of Peyer Patches (120). RET was also shown to be 

expressed in hematopoietic stem cells, regulating their survival and differentiation (121) and in 

Th2 cells, where it has a role in regulating their production of IL-10 (122). A broader study also 

analyzed the expression of RET in human T and B lymphocytes, monocytes and 

macrophages. While the study showed very high variation in RET expression in the same cell 

types between different individuals and its functional relevance was not analyzed, its 

expression seemed to positively correlate with the expression of IL-8, which is a cytokine 

expressed by monocytes and macrophages. The collection of these studies suggest that RET 

has a broad role in modulating immune cells and/or immune responses in ways that are far 

from fully understood. (123) 

 

6.2 - RET-related diseases: 

 

RET loss-of-function and gain-of-function mutants are implicated in some known diseases and 

conditions. MEN2 mutations, which result in a constitutively active form of RET, are divided in 

2 categories: MEN2A and MEN2B. In MEN2A, the extracellular part of RET undergoes a 

mutation that allows 2 RET molecules to interact with each other, forming the homodimer 

necessary for signal transduction in a ligand-independent way. In MEN2B, the intracellular 

domain suffers a mutation which allows the kinase domain to phosphorylate the substrates 

without the need for homodimerization. This also results in RET activation independent of 

ligand. Both mutations lead to an abnormal activation of RET. Most patients (>90%) with these 

RET mutations display Medullary thyroid cancer and a smaller, but still very significative (about 

50%) display pheochromocytoma (124).  

In mutations that lead to a RET loss of function, it is possible to develop a condition called 

Hirschsprung disease (HRD), caused by a deficient development of an enteric nervous system 

due to a defect in Enteric Neural Crest Cell (ENC) migration during the development of the 

intestine. However, this disease does not appear to be exclusively caused by RET, and RET 

mutations are only present in 15-35% of HRD patients, with some other mutations associated 

with ENC being responsible for another 15-35% (in total, this makes for about 50% of HRD 

patients) (125, 126). 
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