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Abstract
Throughout this thesis I study primordial inflation, which was a period of accelerated

expansion in the early universe, through models of tensorial fields, more specifically.
3-form fields.

I explore the dynamics of two coupled 3-form fields in the standard four dimensional
case and compare it to the uncoupled model already addressed in the literature. I focus
on the role of the coupling, in contrast with the uncoupled case, and see how it affects
inflationary scenarios for two different forms of the potential. I follow to deduce the
evolution equations and the equations of motion which I numerically solve. I propose a
general form for the Lagrangian of N coupled 3-form fields and provide the respective
equations of motion.

I present a single 3-form field model in a five dimensional braneworld, called the
Randall-Sundrum II model, in which our universe in confined to a four dimensional
3-brane embedded in a five dimensional AdS bulk. The braneworld effects modify the
evolution equations so I focus on the main differences from the five dimensional and
the standard four dimensional case. Once again, I calculate the equations of motion
and follow to rewrite these in the form of a system of first order differential equations
which I numerically solve. I present inflationary solutions for different forms of the
potential and study the dynamics, the critical points and their stability, and show the
influence of the fifth dimension on these quantities. I follow to calculate the speed of
sound for this model and present the evolution of scalar and tensorial perturbations by
perturbing the 3-form and the metric.

Finally, by calculating the cosmological parameters, tensor to scalar ratio and spec-
tral index, I show how my inflationary setting fits the recent Planck data and see how
is it sensible to the value of the brane tension where in a particular case I find a lower
bond for it.

Keywords: Inflation; 3-form inflation; 3-form cosmology; Randall-Sundrum II;
Inflation in Randall-Sundrum II; N-Forms





Resumo
Inflação primordial foi um curto peŕıodo de expansão acelerada no universo primitivo

(10−36s a 10−33s). É uma teoria que foi introduzida por Alan Guth com o objectivo de
dar resposta a alguns problemas do modelo standard da Cosmologia.

Nesta tese estudo a inflação a partir de campos tensoriais, em particular, campos
3-forma. Começarei por lembrar ao leitor alguns conceitos básicos e necessários de
cálculo tensorial. Apresento resumidamente o modelo padrão da cosmologia e explico
o que é a inflação primordial, porque é necessária e como é maioritariamente estudada
na literatura a partir de um campo escalar a interagir com o seu potencial.

Escrevo os modelos standard para uma e para múltiplas 3-formas, já estudadas na
literatura. Apresento um modelo para inflação conduzida por dois campos 3-forma
acopladas onde calculo as equações de evolução, equações do movimento, tensor ener-
gia momento e alguns constrangimentos. Introduzindo quatro variáveis adimensionais
úteis, reescrevo as equações do movimentos para os campos, com estas novas variáveis,
sob a forma de um sistema de equações diferenciais de primeira ordem o qual re-
solvo numericamente. Calculo os parâmetros de slow roll e impondo as condições para
termos inflação (condições de slow roll) consigo obter as condições iniciais para o sis-
tema dinâmico. Estudo a dinâmica, os pontos cŕıticos e estabilidade destes pontos
para dois tipos de potenciais, quadrático e exponencial. Foco-me no papel do acopla-
mento em comparação com o caso desacoplado, já estudado na literatura, mostrando a
sua influência na modificação das equações e na dinâmica inflacionária. Em particular,
mostro que um acoplamento da ordem de ∼ 10−4 tem a influência de estender a duração
da inflação entre 20 a 30 e-folds. Proponho uma forma geral para o Lagrangiano de N
campos 3-forma acoplados introduzindo um novo termo que contém os acoplamentos
onde imponho algumas restrições de forma a não termos repetições nos potenciais e
mostro as respectivas equações do movimento.

Familiarizo o leitor com o modelo extra-dimensional Randall-Sundrum II, proposto
por Lisa Randall e Raman Sundrum em 1999, onde o nosso universo está confinado a
uma 3-brane de 4 dimensões embebido numa quinta dimensão (bulk) cuja geometria é
Anti de Sitter. Apresento um modelo inflacionário conduzido por um campo 3-forma,
confinado à brana, onde deduzo as equações do movimento e respectivos constrang-
imentos. Uma vez mais, introduzo variáveis adimensionais e reescrevo as equações
do movimento sob a forma de um sistema dinâmico. Impondo as condições de slow
roll para inflacção, estudo a dinâmica, os pontos cŕıticos do sistema e sua estabilidade
para diferentes formas do potencial. Em particular foco-me na influência da quinta
dimensão em comparação com o caso padrão a quatro dimensões. Calculo a evolução
das perturbações escalares e tensoriais perturbando a métrica e a 3-forma. Usando a
forma da velocidade do som, deduzo os parâmetros cosmológicos, mais especificamente,
a razão entre a amplitudes das perturbações tensorias-escalares e os ı́ndices espectrais
ns e nT . Por fim comparo as previsões cosmológicas do modelo considerado com os
recentes resultados do satélite Planck e observo como são senśıveis à quinta dimensão
quando se altera o valor da tensão da brana. Encontro um limite inferior para a tensão
da brana para um caso particular do potencial.

Palavras-chave: Inflação; Inflação 3-forma; Cosmologia 3-forma; Randall-Sundrum
II; Inflação em Randall-Sundrum II; N-formas
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1 INTRODUCTION

1 Introduction

Primordial inflation (4) was a period of accelerated expansion in the early universe
and provides solutions for some cosmological problems such as the flatness and hori-
zon problems and also explains the emergence of the primordial density fluctuations
essential for the formation of the large scale structure observed today [1, 2]. Inflation
is mostly studied considering a self interacting scalar field and has been widely studied
in the literature (see Refs. [3, 4] for reviews). However, there is no study excluding
the possibility of the energy source of the inflationary expansion to be of a non-scalar
nature. It is, therefore, important to understand the nature of higher spin fields and
how robust they are in order to fully test their applications in cosmology. Inflation
considering higher spinor fields has been investigated in the past and these models are
also important due to their connection to string theory scenarios[5, 6, 7]. Vector infla-
tion has been studied in Ref. [8], however, for inflation to proceed, the vector needs a
nonminimal coupling and seems to feature some instabilities. Inflation with a 2-form
field resembles much the vector inflation with the same problems [9, 10].

A 3-form has been shown to present viable solutions, not only for inflation [11,
12, 14], but also for describing the dark energy sector [15]. Inflation driven by two
uncoupled 3-form fields has also been studied and does presents interesting results [16].

In the Randall-Sundrum II model (6), proposed in 1999 [17], our universe is confined
to a four dimensional 3-brane, where the standard model particles reside, embedded in
a five dimensional slice of an anti-de Sitter (AdS) space-time, the bulk. The presence
of the bulk modifies the evolution equations [18], more specifically, the Friedmann
equation leads to a non-standard expansion law of the universe at high energies, while
reproducing the standard four dimensional cosmology at low energies. One particular
feature of the RSII model is that the tensor modes are enhanced due to the presence of
the five dimensional bulk [20, 19]. Chaotic inflation on the brane has been investigated
in Ref. [21] and it was shown that the inflationary predictions are modified from those
in the four dimensional standard cosmology. Quintessential inflation from brane worlds
has also been explored in Ref. [22] and also inflation in the context of a Gauss-Bonnet
brane cosmology [23]. More recently, simple inflationary models in the context of
braneworld cosmology were analysed against the 2015 Planck data [24, 25].

It is important to compare the dynamics of inflation with scalar fields with the
dynamics where higher order fields are considered.

This thesis focus on the study of inflation through dynamical systems considering 3-
form fields. I will explore the dynamics of two coupled 3-form fields, in an inflationary
context, and see the role of the coupling in comparison with the uncoupled case, already
studied in the literature. I will propose a general form for the Lagrangian forN coupled
3-form fields and show the respective equations of motion. Finally I will also explore the
dynamics of a single 3-form in the Randall-Sundrum II braneworld, presenting viable
inflationary solutions, comparing with the standard 4 dimensional case, and see how
the cosmological observables fit the latest observations made by the Planck satellite
[24, 25].

In chapter 2 I will give a brief introduction to some mathematics of general relativity
essential in order to understand the basics of cosmology. In chapter 3 I resume the
standard model of cosmology, the ΛCDM model. In chapter 4 I review the standard
inflationary model, explaining what is inflation, why it is needed and how is it typically
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1 INTRODUCTION

studied. In chapter 5 I start by presenting to the reader to the recent 3-form cosmol-
ogy theory and I follow to describe my original work for this thesis. More precisely in
chapter 5.3 I explore the dynamics of two coupled 3-form fields in the standard four
dimensional FLRW universe and also consider rotations within the SO(2) group to
see if the theory is left unchanged. In chapter 5.4 I propose a general form for the
Lagrangian of N coupled 3-form fields model and show the respective equations of
motion. In chapter 6 I familiarize the author with the Randall-Sundrum II, five dimen-
sional, braneworld model where I present the five dimensional Einstein equations and
explain the main differences from the standard four dimensional case. In chapter 6.2 I
present braneworld inflationary models in the RSII context driven by a single 3-form,
confined to the brane, in the light of the Planck 2015 results. Finally in chapter 7 one
can find the conclusions.
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2 BASICS OF GENERAL RELATIVITY

2 Basics of General Relativity

In general relativity, gravity is an aspect of the geometry of spacetime unlike in
Newtonian theory where gravity is a force between particles.

In what follows, some basic aspects and definitions about the spacetime geometry
are introduced in order to fully understand Einstein’s equations and their meaning.

2.1 Metric

The geometry of the spacetime manifold can be described by the metric which is
given in terms of a set of coordinates which can be an arbitrary curved coordinate
system. The coordinates of the four dimensional spacetime are (x0, x1, x2, x3), where
x0 = t is a time coordinate. In this thesis I use the notation where the Greek indices
denote spacetime coordinates, xµ, µ = 0, 1, 2, 3, and Latin indices to denote space
coordinates, xi, i = 1, 2, 3.

The coordinates are numbers which identify locations but do not specify physical
distances. The distance information is in the metric gµν that gives the square of the
line element ds2 in terms of the coordinate differentials,

ds2 =
3∑

µ=0

3∑
ν=0

gµνdx
µdxν ≡ gµνdx

µdxν , (2.1)

where in the last step I introduce the Einstein summation convention of summing over
repeated indices and do not write the summation sign. The tensor gµν is called the
metric tensor.

The case of Minkowski space, or flat spacetime, in which Einstein’s theory of special
relativity is most conveniently formulated, the metric tensor in Cartesian coordinates
is defined as gµν = diag(−1, 1, 1, 1) ≡ ηµν (I use the signature (−1, 1, 1, 1)).

We can define g as the determinant of the metric, g ≡ det(gµν), and if g 6= 0 we can
define the inverse of gµν as,

gµνg
να = δαµ = gαµ . (2.2)

We can raise and lower indices of a tensor using gµν and gµν .
It will be useful to remember the Jacobi’s formula, the rule for differentiating a

determinant, that gives,
δg = δ det(gµν) = ggµνδgµν . (2.3)

2.2 Covariant derivative and the Christoffel symbols

The introduction of the Christoffel symbols becomes necessary when we address the
problem that the partial derivative, ∂µ ≡ ∂/∂xµ, does not tranform as a tensor (is not
a tensor) when we consider curved manifolds. We define the covariant derivative, or
derivative operator on a manifold, of a contravariant vector V ν as,

∇µV
ν = ∂µV

ν − ΓναµV
α (2.4)

where we add the connections Γναµ, known as the Christoffel symbols or metric con-
nections, that should be nontensorial to cancel out the nontensorial character of the
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2.3 Affine geodesic 2 BASICS OF GENERAL RELATIVITY

partial derivative in order to preserve the tensorial nature of ∇µ. That is, an operator
which reduces to the partial derivative in flat space but transforms as a tensor on an
arbitrary manifold.

An essential postulate of Riemannian geometry is that the length of a vector is
unchanged under parallel transport. There are other geometries that do not preserve
length for example Weyl geometry but we only need to deal with Riemannian geometry
in general relativity. This amounts to assume that the covariant derivative of the metric
is zero,

∇µgνρ = 0. (2.5)

If we now use Eq. (2.4) and assume zero torsion, ie Γναµ = Γνµα, we can write the metric
connections in terms of the metric and its derivatives as,

Γµνρ =
1

2
gµα(∂ρ gνα + ∂ν gαρ − ∂α gνρ). (2.6)

It follows from equation (2.6) that the connections are necessarily symmetric, Γµνρ =
Γµρν . In reality, we are only restricting ourselves to symmetric connections where the
torsion vanishes, but, as I said, there are other geometries where torsion does not vanish
and the anti-symmetric part of Γµνρ namely,

T µνρ = Γµνρ − Γµρν , (2.7)

is a tensor (unlike the connections Γαµν) and is called the torsion tensor (do not confuse
the torsion tensor T µνρ with the energy-momentum tensor Tµν). If the torsion tensor
vanishes, then the connection is symmetric, Γµνρ = Γµρν . We are only interested in
torsion-free connections so this is the only time I will refer to the torsion tensor.

2.3 Affine geodesic

Geodesics describe the path (worldline) of a particle acted upon only by gravity.
An affine geodesic on the spacetime manifold is defined as a curve x(t) that transports
their tangent vector parallel to itself,

∇ẋẋ
µ = 0, (2.8)

where a dot represents the derivative with respect to time ẋ ≡ ∂x/∂x0 = ∂x/∂t.
Using the definition (2.4) we can write the affine geodesic equation as,

d2xρ

dt2
+ Γρµν

dxµ

dt

dxν

dt
= 0. (2.9)

Now we want to stop and look at Eq. (2.9) from a Newtonian point of view. We
note that the first term in Eq. (2.9) is an acceleration (proportional to a force) so we
can informally write,

F ∝ −Γρµν
dxµ

dt

dxν

dt
, (2.10)

that tells us that geodesics can be seen as trajectories of free particles in the spacetime.
Equation (2.8) means that the acceleration of the curve has no components in the
direction of the surface (its perpendicular to the tangent plane of the surface at each
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2.4 Riemann, Ricci and Einstein tensors 2 BASICS OF GENERAL RELATIVITY

point of the curve). So, the motion is completely determined by the bending of the
surface (ie by the metric connections Γρµν which is the ”correction term” from the flat
space). In a fascinating way, we can actually see by Eq. (2.10) the fact that in general
relativity the force is seen as a bending of spacetime!

2.4 Riemann, Ricci and Einstein tensors

Covariant differentiation, Eq. (2.2), unlike partial differentiation, does not in general
commute. We define the commutator of a tensor T µν as,

∇ρ∇αT
µ
ν −∇α∇ρT

µ
ν . (2.11)

Doing the calculation for the commutator (2.11) in the case of a vector Xµ, using
Eq. (2.4) we find,

∇α∇ρX
µ = ∂α(∂ρX

µ + ΓµνρX
ν) + Γµσα(∂ρX

σ + ΓσνρX
ν)− Γσρα(∂σX

µ + ΓµνσX
ν), (2.12)

and

∇ρ∇αX
µ = ∂ρ(∂αX

µ + ΓµναX
ν) + Γµσρ(∂αX

σ + ΓσναX
ν)− Γσαρ(∂σX

µ + ΓµνσX
ν). (2.13)

Subtracting the last two equations and assuming ∂α∂ρX
µ = ∂ρ∂αX

µ we obtain the
result,

∇ρ∇αX
µ −∇α∇ρX

µ = Rµ
νραX

ν , (2.14)

which we can also write,

∇[ρ∇α]X
µ =

1

2
Rµ
νραX

ν , (2.15)

where Rµ
νρα is defined by,

Rµ
νρα = ∂ρΓ

µ
να − ∂αΓµνρ + ΓσναΓµσρ − ΓσνρΓ

µ
σα. (2.16)

Since the left-hand side of Eq. (2.16) is a tensor, follows that Rµ
νρα is a tensor called

the Riemann tensor or curvature tensor. This tensor depends on the metric and its
first and second derivative, we can collect the symmetries together and show that,

Rµνρα = −Rµναρ = −Rνµρα = Rραµν ,

Rµνρα +Rµανρ +Rµραν = 0. (2.17)

These symmetries (2.17) reduce the number of independent components from n4 to
1
12
n2(n2 − 1), where n is the dimension.
It can be shown that the curvature tensor also satisfies a set of differential identities

called the Bianchi identities,

∇µRασνρ +∇ρRασµν +∇νRασρµ = 0. (2.18)

We can also define the Ricci tensor, which has a fundamental role in the Einstein
equations, by the contraction,

Rµν = Rρ
µρν = gραRαµρν . (2.19)

5



2.5 Energy-momentum tensor 2 BASICS OF GENERAL RELATIVITY

Finally, a last contraction defines the Ricci scalar or curvature scalar,

R = gµνRµν . (2.20)

Now, using Eq. (2.19) and Eq. (2.20), we can define the Einstein tensor,

Gµν = Rµν −
1

2
gµνR, (2.21)

which is also symmetric and, by Eq. (2.18), it can be shown that it satisfies the con-
tracted Bianchi identities,

∇νG
ν
µ = 0. (2.22)

2.5 Energy-momentum tensor

The energy-momentum tensor describes all properties off matter which affect the
spacetime, namely energy density, momentum density, pressure and stress. As we will
see, the energy-momentum tensor is the source of the gravitational field in the Einstein
equations just as mass density is in Newtonian gravity.

Usually in cosmology, from the symmetry of the spacetime, we consider the EM
tensor to be of a perfect fluid (no heat conduction and no viscosity) form,

Tµν = (ρ+ p)uµuν + pgµν , (2.23)

where ρ is the energy density and p is the pressure measured by an observer moving
with four-velocity uµ. The time-time component T 00 = ρ is the energy density (divided
by the square of the speed of light), T 0i = T i0 gives the momentum density which is
equal to the energy flux, T ij gives the flux of momentum i-component in j-direction,
in particular T ii represents normal stress, which is pressure, and T ij, i 6= j represents
the shear stress. We can also write,

T νµ =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.24)

The conservation of energy density and momentum in general relativity is written
in terms of the covariant derivative,

∇νT
µν = 0. (2.25)

2.6 Einstein field equations

Having presented the mathematical background, we now want to find out how the
curvature of spacetime acts on matter and how matter influences the curvature of
spacetime.

Einstein realised that he needed to find the equations that supersede the Poisson
equation for the Newtonian potential,

∇2Φ = 4πGρ, (2.26)

6



2.6 Einstein field equations 2 BASICS OF GENERAL RELATIVITY

where ∇2 = δij∂i∂j is the Laplacian in space, Φ is the gravitational potential, G is the
gravitational constant and ρ is the mass density. The generalization should be tensorial
and should reduce to Eq. (2.26) in the weak limit (v � c).

Now, for a relativistic generalisation, we need to take into account all forms of
relativistic matter, where mass is not the dominant contribution to the energy density
and the momentum p can have the same order of magnitude as ρ. So we now know
that the generalization of the mass density as a tensor is the energy-momentum tensor
Tµν that will tell spacetime how to curve. The spacetime degrees of freedom are given
by the metric and we want equations of motion, which are second order, so it can only
involve the metric and its first and second derivatives. As a first guess we could think
of using the Ricci tensor (2.19) (not the curvature tensor because it has to be of the
same type as Tµν) and write Rµν = κ2Tµν (where κ is a constant that will be given by
the Poisson equation (2.26) and actually Einstein thought about using this equation
at some point. But from the conservation of the energy momentum tensor (2.25) we
know that both sides of the equation must have zero divergence, and we can easily see,
using Eq. (2.18), that,

∇µRµν =
1

2
∇νR 6= 0. (2.27)

But we can write Eq. (2.27) as,

∇µ

(
Rµν −

1

2
gµνR

)
= 0, (2.28)

thus, we can use,

Rµν −
1

2
gµνR = κ2Tµν , (2.29)

where we identify the left-hand side being the Einstein tensor (2.21), and therefore we
finally get,

Gµν = κ2Tµν , (2.30)

that are the Einstein field equations.
Einstein equations have to reduce to the Poisson equation in the weak limit (v � c)

and it can easily be shown using the metric,

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)δijdx
idxj, (2.31)

where |Φ| � 1. In this case the Einstein equations (2.10) reduce to the Poisson equation
(2.26), where we can set the value κ2 = 8πG.

7



3 STANDARD MODEL OF COSMOLOGY

3 Standard model of Cosmology

Cosmology is the study of the Universe as a whole at their largest scale. Given
obvious difficulties on their study the standard model of Cosmology is based on some
basic assumptions. One of the main assumptions is the Cosmological principle which
states that at large scales (> 100) Mpc the Universe is presented as homogeneous (all
places look the same) and isotropic (all directions look the same). This is, at large
scales the properties of the Universe look the same for all observers. The Universe is
under expansion and the mean distance l of their constituents is given by the Hubble
law,

dl(t)

dt
= v(t) = H0l(t), (3.1)

where H0 is the Hubble parameter. The dynamics of this expansion is described by the
Einstein field equations (2.6). This expansion started from an extremely hot and dense
phase where the energy of the Universe, at that time, was dominated by the energy of
radiation.

3.1 The FRW model

A common approximation is that there is a slicing of spacetime into spacelike slices,
or hypersurfaces, which are homogeneous and isotropic. The proper time t which labels
the hypersurfaces is called the cosmic time. The Friedmann-Robertson-Walker model,
or FRW model, can be described by the spatially homogeneous and isotropic metric,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
, (3.2)

where k describes the curvature and a(t) is the scale factor, and this metric (3.2) is
called the Friedmann-Robertson-Walker (FRW) metric.

The metric (3.2) can be written in Cartesian coordinates as,

ds2 = −dt2 + a2(t)
1

1 + kr2
δijdx

idxj. (3.3)

Observations tells us that our Universe is nearly flat. Through this thesis I will
usually refer to the FRW metric considering k = 0.

In order to find how the scale factor a(t) evolves we need to consider the Ein-
stein equations (2.30). Using the FRW metric (3.2) and considering that the energy-
momentum tensor has the perfect fluid form (2.5) the Einstein equations reduce to two
ordinary non-linear differential equations,

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (3.4)

ä

a
= −4πG

3
(ρ+ 3p), (3.5)

where G is Newton’s gravitational constant. Equation (3.4) is usually called the
Friedmann equation and (3.5) the Raychaudhuri equation.
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3.1 The FRW model 3 STANDARD MODEL OF COSMOLOGY

From the conservation of the energy-momentum tensor (2.25) we get the continuity
equation,

ρ̇ = 3H(ρ+ p) = 0. (3.6)

The critical density is defined as ρc = 3H2

8πG
. When talking about the energy density

of the Universe, we often use the dimensionless density parameter,

Ωi =
ρi
ρc
, Ω =

∑
i

Ωi, Ωk = − k

H2a2
. (3.7)

Dividing now Eq. (3.4) by H2 we can rewrite the Friedmann equation as,

Ω + Ωk = 1. (3.8)

We can also define the equation of state w = p/ρ. There are several types of matter
in the Universe (different components) that behave in different forms affecting the
evolution of the Universe:

• Radiation: matter for which w = 1/3, for example the case for a gas of free
ultrarelativistic particles in which the energy density is dominated by the kinetic
energy. From the continuity equation we arrive at,

ρ̇γ
ργ

= −4
ȧ

a
⇒ ργ ∝ a−4. (3.9)

• Dust: matter for which the pressure is zero,or at least negligible |p| � ρ i.e.
w = 0. This is the case for a gas of free non-relativistic particles where the
dominant energy density is the mass. From the continuity equation we arrive at,

ρ̇γ
ργ

= −3
ȧ

a
⇒ ργ ∝ a−3. (3.10)

• Cosmological constant: Observations of distant supernovae, called SnIa, tell
us that the universe is accelerating. For the universe to accelerate we must have
ä > 0 which implies p < ρ/3. One type of matter with this behaviour is the
vacuum energy, in which p = −ρ, or a cosmological constant, depending on
which side we consider it in Einstein equations,

Gµν + Λgµν = 8πGTµν , (3.11)

Gµν = 8πG

(
Tµν −

Λ

8πG
gµν

)
= 8πGT̃µν , (3.12)

where Λ/8πG = ρΛ = −pΛ. Substituting in the Friedmann equation we have,

a ∝ e
√

Λt. (3.13)

Lemâıtre in 1927 and Hubble in 1929 discovered that the redshifts of galaxies were
proportional to their distance. This is, the light from distant galaxies is redder (longer
wavelength) when it arrives on Earth. This redshift can be determined with high

9



3.1 The FRW model 3 STANDARD MODEL OF COSMOLOGY

accuracy from spectral lines in which, their original wavelength λ0 can be measured in
the laboratory. The redshift z is defined as,

z ≡ λ− λ0

λ0

⇒ 1 + z =
λ

λ0

=
a0

a
, (3.14)

where λ is the observed wavelength. The redshift is observed to be independent of
wavelength, and it follows the relation,

cz = H0d, (3.15)

which is the known Hubble law.
For a universe with radiation, baryons, dark matter and dark energy, the Friedmann

equation can be written as,

H2 =
8πG

3

[
ρm

(a0

a

)3

+ ργ

(a0

a

)4

+ ρΛ

]
− k

a2
. (3.16)

Dividing both sides by H2 and using the relation between redshift and the scale factor
we find,

H2 = H2
0

[
Ωm(1 + z)3 + Ωγ(1 + z)4 + ΩΛ + Ωk(1 + z)2

]
, (3.17)

where,

Ωk ≡ −
k

a2
0H

2
0

. (3.18)

The Hubble parameter at present is given by,

H0 ≈ 67.3 Mpc−1 km s−1. (3.19)
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4 INFLATION

4 Inflation

Primordial inflation was proposed by Alan Guth, in 1981, in order to solve some
cosmological puzzles such as the horizon, flatness and entropy problems [1, 2]. Inflation
was a period of accelerated expansion in the early universe (∼ 10−36s to ∼ 10−33s after
the Big Bang). In this section I will describe the standard model of inflation considering
a single scalar field interacting with its potential, where most literature stands on. For
a review see for example the lecture notes ”Inflation and the Theory of Cosmological
Perturbations” by A. Riotto (2002) [37].

4.1 The inflaton

The condition for inflation, i.e., a period of accelerated expansion, ä > 0 can be
satisfied by considering a scalar field φ which we will call the inflation. Considering
the action,

S =

∫
d4x
√
−gL = −

∫
d4x
√
−g
[

1

2
∂µφ∂

µφ+ V (φ)

]
, (4.1)

where
√
−g = a3 for FLRW. The resulting equations of motion are,

φ̈+ 3Hφ̇− 1

a2
∇2φ+ V ′(φ) = 0. (4.2)

The energy-momentum tensor reads,

Tµν = ∂µφ∂νφ− gµνL. (4.3)

So the energy and pressure of the field are defined as,

T00 = ρφ =
φ̇2

2
+ V (φ) +

1

2a2
(∇φ)2, (4.4)

Tii = pφ =
φ̇2

2
− V (φ)− 1

6a2
(∇φ)2. (4.5)

Writing the field as background + perturbation, i.e.,

φ(t, ~x) = φ0(t) + δφ(t, ~x), (4.6)

where δφ(t, ~x) are quantum perturbations around φ0. Setting φ0(t)→ φ(t) for simplic-
ity, now,

T00 = ρφ(t) =
φ̇2

2
+ V (φ), (4.7)

Tii = pφ(t) =
φ̇2

2
− V (φ). (4.8)

So if V (φ) � φ̇2 ⇒ pφ ≈ −ρφ ≈ −V (φ). Inflation is generated by the vacuum energy
of the inflaton.

11
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4.2 Slow roll conditions and number of e-folds

To have ä > 0 we need,

ä

a
= Ḣ +H2 > 0⇒ − Ḣ

H2
< 1, (4.9)

where,

− Ḣ

H2
=

3

2

φ̇2

φ̇2

2
+ V

< 1 ⇒ V > φ̇2 ⇒ pφ ≈ −ρφ. (4.10)

In order to ensure inflation V > φ̇2, and to ensure that we have a sufficient number of e-
folds, otherwise the last conditions are violated, it is used the slow roll approximations,

H2 ≈ 8πG

3
V and 3Hφ̇+ V ′ = 0. (4.11)

So we will define the first slow roll parameter as,

ε ≡ − Ḣ

H2
. (4.12)

Substituting the slow roll approximations in ε we have,

ε =
1

16πG

(
V ′

V

)2

, (4.13)

and ε� 1 for slow roll. Now we should impose that ε varies slowly in order to have a
sufficient number of e-folds,

d ln ε

d ln a
=
ε′

ε
' −2(η − 2ε) ≈ 0 ⇒ η ≈ ε� 1, (4.14)

where,

η ≡ 1

8πG

V ′′

V
, (4.15)

is the second slow roll parameter. So we also need η � 1. There is also a third slow
roll parameter that comes from the fact that we impose also d ln η

d ln a
≈ 0, defining,

ξ2 ≡ 1

(8πG)2

V ′′V ′

V 2
⇒ ξ2 ∼ O(η2) ∼ O(ε2)� 1. (4.16)

We will define N as the number of e-folds, which represent the number of Hubble
times between the horizon exit and the end of inflation, as

N ≡
∫ aC

aN

d ln a =

∫
H dt =

∫
H

φ̇
dφ = −

∫
3H2

V ′
dφ = 8πG

∫ φC

φN

V

V ′
dφ. (4.17)
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4.3 Power spectrum

Inflation was first introduced as a possible solution for the horizon, flatness and
entropy problems. It happens that inflation also generates the density perturbations
spectrum and the gravitational waves spectrum crutial in the formation of structure
that we observe today. The space is filled with quantum fluctuations that are like waves
with every possible wavelength (Fourier spectrum). During inflation, the wavelength
of a fluctuation quickly exceeds the Hubble radius and its amplitude is frozen because
fluctuations become causally disconnected. Once inflation ends, the Hubble radius
grows quicker than the scale factor and eventually the fluctuation re-enters the horizon.

The power spectrum is a useful quantity to describe the properties of the fluctua-
tions. Considering a generic quantity g(t, ~x) with Fourier transform,

g(~x) =

∫
d3k

(2π)3/2
g~ke

i~k·~x =

∫
d3x

(2π)3/2
g(~x)e−i

~k·~x. (4.18)

With g∗~k = g−~k we can write,

〈
g~kg
∗
~p

〉
= δ(3)(~k − ~p)2π2

k3
Pg(k). (4.19)

where,

Pg =
k3

2π2
P (k), (4.20)

and P is called the power spectrum defined as,

P (k) = (2π)3
∣∣g~k∣∣2 . (4.21)

4.4 Metric scalar fluctuations

Any perturbation in the field φ is a perturbation on the energy-momentum tensor,

δφ→ δTµν =
1

8πG
δG⇒ δφ→ δgµν . (4.22)

We will perturb the metric as,

gµν = g0
µν(t) + δgµν(~x, t), (4.23)

with δgµν � g0
µν . We can decompose the perturbations in scalar, vector and tensorial

perturbations. The perturbed line element read,

ds2 = a2[(−1 + 2A)dτ 2 + 2∂iBdτdx
i + ((1− 2ψ)δij +DijE)dxidxj], (4.24)

where Dij = ∂i∂j − 1
3
δij∇2.

Using the Einstein equations we define the comoving curvature perturbation,

R = ψ +Hδφ
φ′
, (4.25)

where H = a′/a and the prime means differentiation with respect to conformal time τ .
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The power spectrum for this quantity at superhorizon scales is,

PR =
4π

m2
Plε

(
H

2π

)2(
k

aH

)nR−1

, (4.26)

or,

PR = AR

(
k

aH

)nR−1

, (4.27)

where,

AR ≡
4π

m2
Plε

(
H

2π

)2

. (4.28)

At horizon exit PR = AR ∝ H2/ε, hence, the spectral index reads,

nR − 1 ≡ d lnPR
d ln k

= −6ε+ 2η. (4.29)

4.5 Gravitational waves

The line element for tensor perturbations can be written as,

gµν = a2(τ)[−dτ 2 + (δij + hij)dx
idxj], (4.30)

where |hij| � 1.
The power spectrum of gravitational waves, at large scales read,

PT = AT

(
k

aH

)nT
, (4.31)

where,

AT ≡
64π

m2
Plε

(
H

2π

)2

, (4.32)

and, the spectral index is,

nT ≡
d lnPT
d ln k

= −2ε. (4.33)

Thus we can write the consistency relation which has to be satisfied,

r ≡ PT
PR

∣∣∣∣
k=aH

= −8nT , (4.34)

where r is called the tensor to scalar ratio. If this relation is not satisfied by observations
we have to consider other scenario for inflation (for example multi-field inflation, non-
canonical kinetic terms or higher order fields like 3-forms).
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5 3-form Cosmology

In this section I will start by presenting the standard 3-form field model in four
dimensions, already studied in Ref. [13], and then study some inflationary scenarios
driven by a single 3-form in five dimensions, more precisely in the Randall-Sundrum
II braneworld, which I will mainly focus on the differences from the standard four
dimensional case. Finnaly I explore the dynamics of two coupled 3-forms, also in
an inflationary context, contrasting with the uncoupled N 3-forms case [16] for some
suitable choices of the potential.

5.1 Standard single 3-form model

A 3-form, Aµνρ, is a rank 3 totally antisymmetric tensor,

Aµνρ = −Aνµρ. (5.1)

For example, when we define the cross-product as,

(~u× ~v)i = εijkujvk, (5.2)

the Levi-Civita symbol, εijk, is a 3-form.
First, lets start by considering a flat Friedmann-Lemaitre-Robertson-Walker (FLRW

or simply FRW) cosmology, where the line element is given by,

ds2 = −dt2 + a2(t)dx2, (5.3)

where a(t) is the scale factor of the Universe as a function of the cosmic time t.
We shall focus on a theory minimally coupled to Einstein gravity. The action for a

single 3-form field Aµνρ can be written as,

S = −
∫
d4x
√
−g
(

1

2κ2
R− 1

48
F 2 − V (A2)

)
, (5.4)

where g in the determinant of the metric and κ2 = 8πG. The first term inside brackets
is the standard Einstein-Hilbert lagrangian where R is the Ricci scalar. The last two
terms are the 3-form lagrangian. I use the notation where squaring means contracting
all the indexes, A2 ≡ AµνρA

µνρ. Finally Fµνρσ is the generalization of the Faraday form
appearing in Maxwell theory,

Fµνρσ = 4∇[µAνρσ] = ∇µAνρσ −∇σAµνρ +∇ρAσµν −∇νAρσµ, (5.5)

where square brackets denotes antisymmetrization. So F is a 4-form and we have
F 2 ≡ FµνρσF

µνρσ = ∇[µAνρσ]∇[µAνρσ].
We derive the equations of motion (5.7) by writing the Euler-Lagrange equations

for the general 3-form lagrangian (5.4),

∂L
∂A
−∇ ·

[
∂L

∂(∇A)

]
= 0 ⇒ −2V ′(A2)A+

1

6
(∇ · F ) = 0, (5.6)

which is equivalent to,
∇ · F = 12V ′(A2)A. (5.7)
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For the calculation of the energy-momentum tensor it is helpful to remember the
Jacobi’s formula, the rule for differentiating a determinant, that gives,

δg = δ det(gµν) = ggµνδgµν . (5.8)

I am also going to use the notation where circling means contracting all but the first
index, (A ◦ A)µν = AµαβA

αβ
ν .

Using the 3-form lagrangian,

L = − 1

48
F 2 − V (A2), (5.9)

we can calculate the energy-momentum tensor using the following formula, consequence
of Noether’s theorem,

Tµν = − 2√
−g

∂(L
√
−g)

∂gµν
, (5.10)

resulting in,

Tµν = gµνL+
1

6
(F ◦ F )µν + 6V ′(A2)(A ◦ A)µν . (5.11)

Assuming a homogeneous and isotropic universe (cosmological principle) the 3-form
field depend only on time and hence only the space-like components will be dynamical,
so we set

A0ij = 0, (5.12)

and the nonzero components of the unperturbed 3-form are given by,

Aijk = a3(t)εijkχ(t) ⇒ A2 = 6χ2, (5.13)

where χ(t) is a comoving field associated with the 3-form and εijk is the standard
Levi-Civita symbol. The dynamics of the Universe is then governed by the behaviour
of the scalar quantity χ(t) which is directly related to the 3-form. When written in
terms of this scalar quantity the equations of motion which govern the behaviour of
the Universe, and the role of the 3-form potential, are straightforward to interpret.

We can now express the equations of motion (5.7) in terms of the comoving field χ,

χ̈+ 3Hχ̇+ 3Ḣχ+ V,χ = 0. (5.14)

The third term is a new feature from the 3-form model which is not present in the
standard scalar field theory.

From now on, for the rest of this thesis, I will adopt units where κ2 = 8πG = 1
unless it is convenient otherwise.

Now that we have the energy-momentum tensor, Eq. (5.11), we can calculate the
other two evolution equations, Friedmann and Raychaudhuri, through the Einstein
equations (2.30), which read,

3H2 =
1

3

(
1

2
(χ̇+ 3Hχ)2 + V (χ)

)
, (5.15)

Ḣ = −1

2
V,χχ. (5.16)
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We can thus define the energy density and pressure of the field as,

ρχ =
1

2
(χ̇+ 3Hχ)2 + V (χ), (5.17)

pχ = −1

2
(χ̇+ 3Hχ)2 − V (χ) + V,χχ. (5.18)

The equation of state, wχ = ρχ/pχ,can be written as,

wχ = −1 +
V,χχ

ρχ
, (5.19)

where we see directly that whenever the potential or just its slope vanishes, the field
acts like a cosmological constant (wχ = −1). Furthermore, whenever the slope of V is
negative (positive) if χ is positive (negative), the comoving field behaves as a phantom
field (wχ < −1).

In order to study the dynamics of the system, it is useful to express the equations
of motion in terms of the dimensionless variables,

x ≡ χn, (5.20)

w ≡ χ′n + 3χn√
6

, (5.21)

where a prime means differentiating in respect to the number of e-folds N = ln a(t),
such that x′ ≡ dx/dN .The resulting equations of motion are,

x′ = 3

(√
2

3
w − x

)
, (5.22)

w′ =
3

2

V,x
V

(1− w2)

[
xw −

√
2

3

]
, (5.23)

subject to the Friedmann constraint,

w2 + y2 = 1, (5.24)

where,

y2 ≡ V

3H2
. (5.25)

The critical points of the dynamical system Eqs. (5.22) (5.23) are,

x w V,x/V Description

A ±
√

2
3

±1 any kinetic domination

B xext

√
3
2
xext 0 potential extrema

Table 1: Critical points of the dynamical system.
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5.2 N uncoupled 3-form fields model

In this subsection I will present the standard model for N uncoupled 3-form fields.
This work was described in Ref. [16] which generalizes the background equations related
to a single 3-form [11, 12].

We will first consider a flat FLRW metric described by the line element,

ds2 = −dt2 + a2(t)dx2, (5.26)

where a(t) is the scale factor and t being the cosmic time. We will consider the general
action for Einstein gravity and the N uncoupled 3-forms, i.e., the generalization of
Eq. (5.4), given by,

S = −
∫
d4x
√
−g

[
1

2
R−

N∑
n=1

(
1

48
F 2
n + Vn(A2

n)

)]
, (5.27)

units where κ2 = 8πG ≡ 1, where R is the Ricci scalar, A
(n)
µνρ is the n-th 3-form and

F
(n)
µνρσ is the strength tensor associated with the respective n-th 3-form. Assuming a

homogeneous and isotropic universe, remembering Eq. (5.13), we have,

A
(n)
ijk = a3(t)εijkχn(t) ⇒ A2

n = 6χ2
n, (5.28)

where εijk is the Levi-Civita symbol and χn is a comoving field associated with the
respective 3-form An.

As in the standard single 3-form model (5.1), the strength tensor associated with
the n-th 3-form, is given by,

F (n)
µνρσ = 4∇[µA

(n)
νρσ]. (5.29)

We have the following equations of motion for the N 3-form fields,

χ̈n + 3Hχ̇n + 3Ḣχn + Vn,χn = 0. (5.30)

Because there is dependence on the derivative of the Hubble parameter Ḣ, it is straight-
forward to see that there is a peculiar coupling of equations (5.30) for each value of
n.

For this setting, the evolution equations, Friedmann and Raychaudhuri, read,

3H2 =
1

3

(
1

2

N∑
n=1

(χ̇n + 3Hχn)2 +
N∑
n=1

Vn(χn)

)
, (5.31)

Ḣ = −1

2

N∑
n=1

Vn,χnχn. (5.32)

The total energy density and pressure of the N 3-form fields are,

ρN =
1

2

N∑
n=1

[
(χ̇n + 3Hχn)2 + 2Vn

]
, (5.33)

pN = −1

2

N∑
n=1

[
(χ̇n + 3Hχn)2 + 2Vn − 2Vn,χnχn

]
. (5.34)
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We can also write Eq. (5.30) as,

χ̈n + 3Hχ̇nV
eff
n,χn = 0, (5.35)

where we identify,

V eff
n,χn ≡ 3Ḣχn + Vn,χn = Vn,χn

(
1− 3

2
χ2
n

)
− 3

2
χn

 N∑
m=1
m6=n

Vm,χmχm

 . (5.36)

5.3 Two coupled 3-form fields

In this subsection I will describe the dynamics of two coupled 3-forms and show that
it can also bring viable inflationary solutions. I will focus on the role of the coupling
on the dynamics compared with the uncoupled case (5.2). I will also explore rotations
in the SO(2) group and show that in some particular cases, the coupled model can be
expressed in terms of two uncoupled rotated in the field space 3-forms.

5.3.1 Two coupled 3-forms model

Following the same procedure as in (5.2) we will first consider a flat FLRW metric
given by Eq. (5.26). The general action for the two coupled 3-form fields minimally
coupled to Einstein gravity reads,

S = −
∫
d4x
√
−g
[

1

2
R− 1

48
(F 2

(1) + F 2
(2))− V1(A2

(1))− V2(A2
(2))− V12(C)

]
, (5.37)

where A
(1)
µνρ and A

(2)
µνρ are the 3-forms and C = A

(1)
µνρA

µνρ
(2) . We can see that the coupling

is expressed in V12(C) = V (A
(1)
µνρA

µνρ
(2) ).

We have now for the Maxwell tensors,

F
(1)
αβγδ = 4∇[αA

(1)
βγδ], (5.38)

F
(2)
αβγδ = 4∇[αA

(2)
βγδ], (5.39)

where antisymmetrization is denoted by square brackets.
Following the same assumption of a homogeneous and isotropic universe, the nonzero

components of the 3-forms are given by,

A
(1)
ijk = a3(t)εijkχ1 ⇒ A2

(1) = 6χ2
1, (5.40)

A
(2)
ijk = a3(t)εijkχ2 ⇒ A2

(2) = 6χ2
2, (5.41)

C = A
(1)
ijkA

ijk
(2) ⇒ C = 6χ1χ2, (5.42)

where χn is the comoving field associated with the respective 3-form. We usually refer
to Vn(A2

(n)) just as Vn.

Considering the lagrangian density (5.37) the Euler-Lagrange equations for the 3-

form A
(1)
µνρ read,
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∂L
∂A(1)

−∇ ·
[

∂L
∂(∇A(1))

]
= 0⇒ −2V ′1(A2

(1))A(1)− V ′12(C)A(2) +
1

6
(∇ ·F(1)) = 0. (5.43)

In the same way we obtain the motion equations for the other 3-form A
(2)
µνρ and

conclude that,

∇ · F(1) = 12V ′1(A2
(1))A(1) + 6V ′(12)(C)A(2), (5.44)

∇ · F(2) = 12V ′2(A2
(2))A(2) + 6V ′(12)(C)A(1). (5.45)

Comparing with Eq. (5.7) we note that the last two terms in Eq. (5.44) and Eq. (5.45)
are only present when there is a coupling. The equations of motion in terms of the
comoving fields read,

χ̈1 + 3Hχ̇1 + 3Ḣχ1 + V1,χ1 + χ2

(
V12,χ1

χ2

+
V12,χ2

χ1

)
= 0, (5.46)

χ̈2 + 3Hχ̇2 + 3Ḣχ2 + V2,χ2 + χ1

(
V12,χ1

χ2

+
V12,χ2

χ1

)
= 0, (5.47)

where the last terms in parenthesis express the coupling and are new comparing with
the uncoupled case (5.30). These last terms can also be written using the relation,

V12,χ1

χ2

+
V12,χ2

χ1

=
1

χ2

∂V (χ1χ2)

∂(χ1χ2)

∂(χ1χ2)

∂χ1

+
1

χ1

∂V (χ1χ2)

∂(χ1χ2)

∂(χ1χ2)

∂χ2

= 2V12, (χ1χ2), (5.48)

that will give,

χ̈1 + 3Hχ̇1 + 3Ḣχ1 + V1,χ1 + 2χ2V12,(χ1χ2) = 0, (5.49)

χ̈2 + 3Hχ̇2 + 3Ḣχ2 + V2,χ2 + 2χ1V12,(χ1χ2) = 0. (5.50)

It is also usefull to keep in mind that if there is no coupling, V12 = 0, we recover the
uncoupled 3-forms case [16].

Varying the action with respect to the metric, we find for the energy-momentum
tensor,

Tµν = gµνL+
1

6
(F(1) ◦ F(1))µa +

1

6
(F(2) ◦ F(2))µa + 6V ′1(A2

(1))(A(1) ◦ A(1))µa

+6V ′2(A2
(2))(A(2) ◦ A(2))µa + 6V ′12(C)(A(1) ◦ A(2))µa, (5.51)

which comparing with the uncoupled case we see that a new term, the last one, arises
consequence of the coupling.

The evolution equations now read,

H2 =
1

3

{
1

2

[
(χ̇1 + 3Hχ1)2 + (χ̇2 + 3Hχ2)2 + 2V1 + 2V2 + 2V12

]}
, (5.52)

Ḣ = −1

2

[
V1,χ1χ1 + V2,χ2χ2 + 4V12,(χ1χ2)χ1χ2

]
. (5.53)
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In both equations a new term arises from the coupling and is expressed through the
potential V12 and its derivative. We identify the energy density and pressure of the two
3-forms as,

ρ =
1

2

[
(χ̇1 + 3Hχ1)2 + (χ̇2 + 3Hχ2)2 + 2V1 + 2V2 + 2V12

]
, (5.54)

p = −1

2

[
(χ̇1 + 3Hχ1)2 + (χ̇2 + 3Hχ2)2 + 2V1 + 2V2 + 2V12

−2V1,χ1χ1 − 2V2,χ2χ2 − 8V12,(χ1χ2)χ1χ2

]
. (5.55)

Once again we note the arising of a new term from the coupling potential of the fields
and its derivative.

5.3.2 Dynamics of the two coupled 3-forms

In order to study the dynamics of the system we will introduce the dimensionless
variables,

xn ≡ κχn, (5.56)

wn ≡ κ
χ′n + 3χn√

6
, (5.57)

n is the n-th 3-form and a prime means differentiating in respect to the number of
e-folds N = ln a(t), so that x′n ≡ dxn/dN .

In this notation, the Friedmann equation read,

H2 =
1

3

V1 + V2 + V12

1− w2
1 − w2

2

. (5.58)

Let us now define,

V eff
1,χ1

= 3Ḣχ1 + V1,χ1 + χ2

(
V12,χ1

χ2

+
V12,χ2

χ1

)
, (5.59)

V eff
2,χ2

= 3Ḣχ2 + V2,χ2 + χ1

(
V12,χ1

χ2

+
V12,χ2

χ1

)
, (5.60)

the effective potentials of the 3-forms A
(1)
µνρ and A

(2)
µνρ respectively.

Thus, we can write the equations of motion, (5.49) and (5.50), as

H2x′′n + (3H2 + Ḣ)x′n + V eff
n,xn = 0, (5.61)
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which can be written in the autonomous form,

x′1 = 3

(√
2

3
w1 − x1

)
, (5.62)

x′2 = 3

(√
2

3
w2 − x2

)
, (5.63)

w′1 =
3

2
√

6

1− w2
1 − w2

2

V1 + V2 + V12

{
x′1 [V1,x1x1 + V2,x2x2 + 2(V12,x1x1 + V12,x2x2)]

+3x1 [V1,x1x1 + V2,x2x2 + 2(V12,x1x1 + V12,x2x2)]− 2V1,x1

−2x2

(
V12,x1

x2

+
V12,x2

x1

)}
, (5.64)

w′2 =
3

2
√

6

1− w2
1 − w2

2

V1 + V2 + V12

{
x′2 [V1,x1x1 + V2,x2x2 + 2(V12,x1x1 + V12,x2x2)]

+3x2 [V1,x1x1 + V2,x2x2 + 2(V12,x1x1 + V12,x2x2)]− 2V2,x2

−2x1

(
V12,x1

x2

+
V12,x2

x1

)}
. (5.65)

Again, it is good to note that if there is no coupling, V12 = 0 we recover the uncoupled
case, generalized in Ref. [16].

5.3.3 Initial conditions and slow roll regime

Analogous to the scalar field [30] as well as 3-forms [11, 14] the slow roll param-
eters are given by ε ≡ −Ḣ/H2 = −d lnH/dN and η = ε′/ε − 2ε. One manner to
establish a sufficient condition for inflation is, ε� 1 and |η| � 1. This conditions are
essential in a way that determine the set of possible choices of initial conditions for
(5.62),(5.63),(5.64) and (5.65). For this coupled model we have

ε =
3

2

V1,χ1χ1 + V2,χ2χ2 + 2(V12,χ1χ1 + V12,χ2χ2)

V1 + V2 + V12

(1− w2
1 − w2

2). (5.66)

5.3.4 Quadratic potential Vn ∼ χ2
n

Let us consider the following potentials for the fields,

V1 = χ2
1, V2 = χ2

2, V12 = 0.004χ1χ2. (5.67)

Observing Figure (1), we can see that a coupling in the order of 10−3 has an influence
in the duration of inflation, allowing the Universe to inflate by 50 e-folds more, for this
particular potential. We can see by the Friedmann equation (5.58) that the fact that
we have a coupling makes the system to have more friction and that is expressed in
the duration of inflation. The fact that χ1 and χ2 have different plateaus comes from a
certain asymmetry in the choice of initial conditions for w1(0) and w2(0), in Eq. (5.64)
and Eq. (5.65), obeying the inflation constraints. Both solutions end in the critical
point (χ1, χ2) = (0, 0) at late times. The fact that interaction is present does not
change the solution of the trajectories, compared with the non-interacting case, as we
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Figure 1: The left panel shows the solutions for the fields with (red) and without (blue)
coupling. The red lines stands for the fields χ1 and χ2 with no interaction (V12 = 0),
returning the uncoupled case studied in Ref. [16], and the blue line for the fields with
coupling, V12 = 0.004χ1χ2. On the right panel are the set of trajectories evolving in
the (χ1, χ2) plane for the coupled and uncoupled case. These trajectories are numerical
solutions for (5.62), (5.63), (5.64) and (5.65) associated with the solutions in the left
panel.

see that the lines coincide in the right panel. We can also see a fixed point in the
trajectories that represents the plateaus of the fields where they stay most of the time
(inflating).

5.3.5 Exponential potential Vn ∼ eχ
2
n

Next we considered the following potentials for the fields,

V1 = eχ
2
1 − 1, V2 = eχ

2
2 − 1, V12 = 0.004 [e(χ1χ2) − 1]. (5.68)

Now, an interaction in the order of 10−3 (same as in the quadratic case) has a
influence to extend the duration of inflation by 10 e-folds.

The solutions end in the critical point (χ1, χ2) = (0, 0), shortly after inflation stops,
entering in an oscillatory regime, as we can also observe in the right panel.

5.3.6 Rotations within the SO(2) group

It is crucial to study the rotations of the two coupled 3-forms, in which the La-
grangian (5.37) stay invariant, to two uncoupled 3-forms and verify that only the
scales in the total potential change.

In this case, for a quadratic potential, we can show that the two coupled 3-form
model can be expressed as two uncoupled rotated 3-forms.

Let us consider the following orthogonal rotation matrix with determinant 1, within
the SO(2) group, [

σ1

σ2

]
≡
[
cos θ − sin θ
sin θ cos θ

] [
χ1

χ2

]
, (5.69)
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Figure 2: Once again, on the left panel, the red lines stands for the fields χ1 and χ2

with no interaction (V12 = 0), returning the uncoupled case studied in Ref. [16], and
the blue, dashed, line for the fields with coupling, choosing V12 = 1.2 × 0.004 e(χ1χ2).
On the right panel we present the set of trajectories evolving in the (χ1, χ2) plane for
the coupled and uncoupled case.

where σ1 and σ2 are the new rotated fields associated with the χ1 and χ2 fields of our
model.

The kinetic term in Eq. (5.37) is invariant under the rotation (5.69). The total
potential can be expressed as 2 uncoupled 3-forms for some particular choices of the
scales. For the choice that was used in (5.3.4) the total potential can be express as,

Vt =
[
χ1 χ2

] [ 1 0.002
0.002 1

] [
χ1

χ2

]
=
[
σ1 σ2

] [249
250

0
0 251

250

] [
σ1

σ2

]
,

θ = nπ − 3π

4
. (5.70)

We can see that the rotated 3-forms are uncoupled as the second square matrix in
(5.70), for the coefficients of the potential, is diagonal.

In general, for nonlinear potentials we cannot express the total potential in terms
of uncoupled 3-forms because of their nonlinearity.
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5.4 N coupled 3-form fields model

In this subsection I will propose a general form for N coupled 3-form fields and
show the respective equations of motion.

I consider the following action for N coupled 3-forms, A1, A2, ..., AN minimally
coupled to gravity,

S = −
∫
d4 x
√
−g

[
1

2
R−

N∑
i=1

(
1

48
F 2
i + Vi(A

2
i )

)
− UN

]
, (5.71)

units where κ2 = 1, R is the Ricci scalar, Fk is, once again, the strength tensor
associated with the respective kth 3-form,

F k
µνρσ ≡ 4∇[µA

k
νρσ], (5.72)

and UN is the total coupling potential that, for this model, is given by,

UN ≡

N−(N mod 2)
2∏
i=1

N∏
µ1=1

...
N∏

µ2i=1
µ2i>...>µ1

∃ j∈N, ∀ l6=j:µj 6=µl

[1− αµ1...µ2iVµ1...µ2i(A1...A2i)]− 1, (5.73)

where αµ1µ2...µ2i are constants such that, depending on our theory for the couplings
we do not want to consider we can set the respective constants to zero. The first
product goes up to N−(N mod 2)

2
to ensure that if N is odd, than the product goes up to

N−1
2
∈ N to consider all the 2i even combinations of the couplings and up to N

2
if N

is even. For example, for three 3-forms we only want to consider combinations up to
two 3-forms (V12,V13,V23) because we cannot contract all the indexes of an odd number
of 3-forms. The condition µ2i > µ2i−1 > ... > µ2 > µ1 ensures that we do not have
repetitions like V12 and V21 which express the same coupling. Finally the last condition
∃ j ∈ N, ∀ l 6= j : µj 6= µl ensures that there is at least one coupling, i.e. excludes
terms like V11 or V4444 already considered in the action (5.71), but includes terms like
V1444. Note that for the case of a single 3-form model we have an empty product

∏0
i=1

in (5.73), in which by convention its value is one leading to U1 = 1− 1 = 0 recovering
the single 3 form field model (5.1). The last −1 term is to avoid having a term acting
as a cosmological constant in the Lagrangian (5.71)

The equations of motion resulting from the action 5.71 reads,

∇ · Fk = 12AkVk(A
2
k) + 6[UN ′(Ak)], (5.74)

where a prime denotes derivative with respecto to the parameter,

UN ′(Ak) =
∂ UN

∂Ak
. (5.75)
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5.4.1 Example: UN for the 3 and 4 coupled 3-forms model

U3 = [1− α12V12][1− α13V13][1− α23V23]− 1

= α12V12 + α13V13 + α23V23 + α12V12α13V12 + α12V12α23V23 + α13V13α23V23

U4 = [1− α12V12][1− α13V13][1− α14V14][1− α23V23][1− α24V24][1− α34V34][1− α1112V1112]

[1− α1113V1113][1− α1114V1114][1− α1122V1122][1− α1123V1123][1− α1124V1124]

[1− α1133V1133][1− α1134V1134][1− α1144V1144][1− α1222V1222][1− α1223V1223]

[1− α1224V1224][1− α1233V1233][1− α1234V1234][1− α1244V1244][1− α1333V1333]

[1− α1334V1334][1− α1344V1344][1− α1444V1444][1− α2223V2223][1− α2224V2224]

[1− α2233V2233][1− α2234V2234][1− α2244V2244][1− α2333V2333][1− α2334V2334]

[1− α2344V2344][1− α2444V2444][1− α3334V3334][1− α3344V3344][1− α3444V3444]− 1
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6 RANDALL-SUNDRUM BRANEWORLD

6 Randall-Sundrum braneworld

Extra dimensions were proposed in the early twentieth century by Nordstrom and a
few years later by Kaluza and Klein which combined principles of quantum mechanics
and relativity.

Randall and Sundrum originally suggested a two-brane scenario in five dimensions
with a highly bulk geometry. This is the so called Randall-Sundrum I (RSI) model.
Writing the solution of Einstein equations on the positive tension brane and sending
the negative tension brane to infinity, an observer confined to the positive tension brane
recovers Newton’s law if the curvature scale of the AdS is smaller than a millimeter.
In contrast with the Kaluza-Klein mechanism where all extra-dimensional degrees of
freedom are compact, in this model the higher-dimensional space is non-compact.

The braneworld cosmology in which I will focus is the so called Randall-Sundrum
II (RSII) model first proposed by Lisa Randall and Raman Sundrum [17] where the
standard model particles are confined to a (3 + 1) dimensional hyper-surface, positive
tension, called 3-brane, embedded in a 5 dimensional anti-de Sitter (negative cosmolog-
ical constant) space-time, called bulk, in which only gravity and other exotic matter can
propagate (see Fig.3). The 4 dimensional Einstein-Hilbert action is reproduced at low
energies, recovering the standard 4 dimensional Friedmann equation (3.4). Our Uni-
verse my be such brane-like object. For a review see Ref. [18] in which this subsection
is based on.

They also proposed a two brane model (RSI) in which the hierarchy problem, i.e.
the large discrepancy between the weak force and gravity, is addressed.

Figure 3: Randall-Sundrum II braneworld.

6.1 Model

We will concentrate in the so called Randall-Sundrum II (RSII) model. It was shown
that there is a continuum of Kaluza-Klein modes for the gravitational field, contrasting
with the discrete spectrum if the extra dimension is periodic. In consequence, the force
between two masses confined to the brane will have a new correction term and the
potential energy between them is given by,

V (r) =
Gm1m2

r

(
1 +

l2

r2
+O(r−3)

)
, (6.1)
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where l is related to the five-dimensional bulk cosmological constant Λ5 therefore is
a measure of the curvature scale of the bulk spacetime. As said before, there is no
deviation from Newton’s law on length scales larger than a millimeter. Thus, l has to
be smaller than that length scale.

For this theory we will consider the brane action and the Einstein-Hilbert action,

S = SEH + Sbrane = −
∫
dx5
√
−g(5)

(
R

2κ2
5

+ Λ5

)
−
∫
dx4
√
−g(4)λ, (6.2)

where λ is the brane tension, which is constant and positive, R is the Ricci scalar, κ5 is
the five-dimensional gravitational coupling constant, g(4) and g(5) are the four and five
dimensional determinants of the metric respectively. The brane is located at y = 0 and
is assumed a Z2 symmetry (identifying y with −y). Since we are looking for solutions
to the five-dimensional Einstein equations, the four-dimensional universe derived for
this theory should look like our own universe, so should appear flat and static. The
ansatz for the metric reads,

ds2 = e−2K(y)ηµνdx
µdxν + dy2, (6.3)

where ηµν = diag(−1, 1, 1, 1) is the four-dimensional Minkowski metric, e−2K(y) is the
warp factor which depends only on the five dimension y, written, for convenience, as
an exponential.

The Einstein equations, derived from the action (6.2), result in two independent
equations,

6K ′2 = −κ2
5Λ5, (6.4)

3K ′′ = κ2
5λδ(y). (6.5)

The first equation results in,

K(y) =

√
−κ

2
5

6
Λ5y, (6.6)

which gives us the information that Λ5 < 0, which explains the reason why the five
dimensional bulk is Anti-de Sitter (AdS). If we integrate Eq. (6.5) from −ε to ε, take
the limit ε→ 0 and make use of the Z2 symmetry, we get,

6K ′|0 = κ2
5λ, (6.7)

now using Eq. (6.6) gives,

Λ5 = −κ
2
5

6
λ2, (6.8)

which is the fine-tuning between the brane tension and the bulk cosmological constant
for static solutions to exist.

We will derive the cosmological equations making use of the bulk equations only.
The bulk metric reads,

ds2 = a2b2(dt2 − dy2)− a2δijdx
idxj, (6.9)
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which is consistent with isotropy and homogeneity on the brane (at y = 0). The
functions a and b depend on t and y only. This metric results in the Einstein equations
for the bulk,

a2b2G0
0 = 3

[
2
ȧ2

a2
+
ȧḃ

ab
− a′′

a
+
a′b′

ab
+ κb2

]
= a2b2

[
ρB + ρδ̄(y − yb)

]
, (6.10)

a2b2G5
5 = 3

[
ä

a
− ȧḃ

ab
− 2

a′2

a2
− a′b′

ab
+ κb2

]
= −a2b2T 5

5 , (6.11)

a2b2G0
5 = 3

[
− ȧ
′

a
+ 2

ȧa′

a2
+
ȧb′

ab
+
a′ḃ

ab

]
= −a2b2T 0

5 , (6.12)

a2b2Gi
j =

[
3
ä

a
+
b̈

b
− ḃ2

b2
− 3

a′′

a
− b′′

b
+
b′2

b2
+ κb2

]
δij (6.13)

= −a2b2
[
pB + pδ̄(y − yb)

]
δij, (6.14)

where a dot represents derivative with respect to time t, and a prime derivative with
respect to the fifth dimension y. The bulk energy-momentum tensor T ab has been kept
general. For the Randall-Sundrum model we will consider ρB = −pB = Λ5 and T 0

5 = 0.
Integrating the 00-component, over y from −ε to ε, taking the limit ε→ 0, and use

the Z2 symmetry gives,
a′

a
|y=0 =

1

6
abρ. (6.15)

Integrating now the ij-component making use of Eq. (6.15) tells,

b′

b
|y=0 = −1

2
ab(ρ+ p). (6.16)

Equations (6.15) and (6.16) are called the junction conditions. The other com-
ponents should be compatible with these conditions. From equation (6.12), i.e., the
05-component, to y = 0, leads to the continuity equation,

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (6.17)

which represents matter conservation on the brane.
The 55-component gives,

ä

a
− ȧḃ

ab
+ κb2 = −a

2b2

3

[
1

12
ρ(ρ+ 3p) + qB

]
. (6.18)

in which, changing to cosmic time dτ = ab dt, assuming a = eα(t), and using the
energy conservation results in Ref. [31],

d(H2e4α)

dα
=

2

3
Λ5e

4α +
d

dα

(
e4α ρ

2

36

)
, (6.19)

in which aH = da/dτ . Integrating Eq. (6.19) shows,

H2 =
ρ2

36
+

Λ5

6
+
µ

a4
(6.20)
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where the last term µ appears in the derivation above as an integration constant, and
this last term, containing µ, is called the dark radiation term (see Ref. [32]). A version
of Birkhoff’s theorem tells us that if the bulk spacetime is AdS then µ = 0 [33]. If
the bulk is AdS-Schwarzschild then µ 6= 0 but a measure of the bulk black hole’s
mass. Splitting the total energy-density and pressure into parts coming from matter
and brane tension, ρ = ρM + σ and p = pM − λ, we find for the Friedmann equation,

H2 =
8πG

3
ρM

[
1 +

ρM
2λ

]
+

Λ4

3
+
µ

a4
, (6.21)

from which, using the energy conservation, the Raychaudhuri’s equation reads,

dH

dτ
= −4πG(ρM + pM)

[
1 +

ρM
λ

]
, (6.22)

where,
Λ4

3
=
λ2

36
+

Λ5

6
, (6.23)

and comparing the last equation with the fine-tuning relation, i.e. equation (6.8), we
see that Λ4 = 0 in this case.

For the rest of this work I will consider µ = Λ4 = 0 and, from the next section to
the rest of this thesis, I will refer to ρM simply as ρ for convenience.

The most interesting feature of the Friedmann equation (6.21) is that the universe
expands faster at high energies (early times), i.e. for ρM � 2λ, with expansion rate
H ∝ ρM . At low energies we always recover the standard case where H ∝ √ρM , i.e.
for ρM � 2λ (late times). This is one important feature of braneworlds.

It is important to note that at the time of nucleosythesis this braneworld effects on
the Friedmann equation must be negligible, otherwise, if the expansion rate is modified,
the results for the abundances of the light elements are unacceptably changed. This
leads to the bound λ ≥ (1MeV)4. But the stronger constraint comes from tests of
deviation from the Newton’s law [34] (assuming the RS fine-tuning relation Eq. (6.8))
and gives λ ≥ (100Gev)4.
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6.2 3-form in Randall-Sundrum II

In this section I will consider a single 3-form confined to the brane, in the Randall-
Sundrum II scenario, and I will present some inflationary scenarios in this five dimen-
sional model.

As the 3-form Aµνρ is confined to the brane, I will consider an action where I
include the 3-form lagrangian density (5.9) in the brane part of the action for the RSII
braneworld Eq. (6.2), and will consider the same minimally coupling to Einstein gravity
theory,

S = −
∫
d5x
√
−g(5)

(
R

2κ2
5

+ Λ5

)
−
∫
d4x
√
−g(4)

(
λ− 1

48
F 2 − V (A2)

)
. (6.24)

Since the 3-form is confined to the four dimensional brane we can follow the same
initial approach as the standard four dimensional case (5.1) where wa associate to the
3-form a comoving field χ whose equations of motion are given by Eq. (5.14) and the
energy density and pressure are given by Eq. (5.17) and Eq. (5.18) respectively. give
The main difference now to be considered is the modified Friedmann equation,

H2 =
1

3
ρ
(

1 +
ρ

2λ

)
, (6.25)

(units where κ = 1) where ρ is the energy density and λ the positive brane tension, as
mentioned in (6.1). The fact that the expansion rate is larger at high energies (ρ� 2λ)
means that the friction term in Eq. (5.14) is larger in that regime. This means that the
field χ(t) rolls slower, for the same initial conditions, and inflation can last longer in
this five-dimensions set up than in the four-dimensional case. The Friedmann equation
in the standard cosmology is reproduced in the limit of low energies, ρ� 2λ.

6.2.1 Dynamics of the 3-form on the brane

We want to study the dynamics of the 3-form in the nature of dynamical systems.
In order to do that, we rewrite the equations of motion (5.14) as a system of first order
differential equations, introducing the dimensionless variables,

x ≡ κχ, (6.26)

y2 ≡ V

ρ
, (6.27)

w ≡ χ̇+ 3Hχ√
2ρ

, (6.28)

Θ ≡
(

1 +
ρ

2λ

)−1/2

, (6.29)

where x represents the comoving field χ, y and w are, respectively, the normalized
potential and kinetic energies and Θ represents the correction term in Eq. (6.25).
These variables are subject to the constraint, that follows from Eq. (5.17),

w2 + y2 = 1. (6.30)
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Using equations (5.17), (6.26), (6.28) and (6.29), the modified Friedmann and Ray-
chaudhuri equations can be written as,

H2 =
1

3

V

(1− w2)
Θ−2, (6.31)

Ḣ = −V,xx
(

Θ−2 − 1

2

)
. (6.32)

Substituting for ρ in Eq. (6.30) using Eq. (6.27) and Eq. (6.29), we obtain the useful
relation for Θ in terms of the x and w variables,

Θ2 =
1− w2

1− w2 + V
2λ

. (6.33)

The dynamical system for the equations of motion (5.14) reads,

x′ = 3

(√
2

3
Θw − x

)
, (6.34)

w′ =
3

2

V,x
V

(1− w2)

[
xw −Θ

√
2

3

]
, (6.35)

where a prime means differentiating in respect to the number of e-folds N = ln a(t), so
that x′ = dx/dN .

At low energies, ρ � 2λ and therefore Θ ≈ 1, we end up recovering the four-
dimensional equations studied in Ref. [16] even though the variables were normalized
to H2 instead of ρ as we do here. We would like to see now, how the presence of
this correction term, Θ, affects the dynamics of the system in comparison with the
evolution in the four-dimensional case.

6.2.2 Critical points

Let us assume for now that Θ evolves sufficiently slow such that we can take it to
be a constant within a few e-folds. We will see later that this assumption is actually
supported by the numerical solutions. We can then identify the instantaneous critical
points of the dynamical system established by Eq. (6.34) and Eq. (6.35). These are
shown in Table 2.

x w V,x/V Description

A ±
√

2
3
Θ ±1 any kinetic domination

B xext

√
3
2

1
Θ
xext 0 potential extrema

Table 2: Instantaneous critical points of the dynamical system.

The critical points A do not exist for the standard scalar field models [28] and result
from the extra 3Ḣχ term in the equation of motion (5.14). One of the eigenvalues
vanishes, hence, we cannot infer anything regarding its stability from the linear analysis
without specifying the form of the potential. The critical point B corresponds to the
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value of the field at the extrema of the potential, therefore, its stability is strongly
dependent on whether it corresponds to a minimum or a maximum of the potential.

From the analysis of the critical points we can see that, in the five dimensional set
up, the critical points have a dependence on the correction term Θ. This means that
as the energy decreases, the instantaneous critical points move along the phase space
and approach the four dimensional case at low energies, Θ = 1.

In Fig 4 is shown the phase space portrait for a potential of the form V = eχ
2 − 1.

Comparing these figures we, again, note that the critical points A (upper and lower
blue dots) are shifted along the x axis as the system evolves and will eventually end
at x = ±

√
2/3 (4 dim case). As we will see in (6.2.4), at the critical points A (top

and bottom blue dots), the universe inflates and critical point B (central yellow dots)
corresponds to the attractor and potential minimum for this potential where reheating
happens as usual [29].

Figure 4: Phase space (tanh(x), w) for V = eχ
2 − 1 at different stages, i.e. different

values of Θ.

33



6.2 3-form in Randall-Sundrum II 6 RANDALL-SUNDRUM BRANEWORLD

Other way than can be used to study the stability of the critical points is by defining
the effective potential,

Veff,χ = 3Ḣχ+ V,χ, (6.36)

and analyse the potential and effective potential.
The potential and the corresponding effective potential for V = eχ

2−1 is illustrated
in Fig.5. We can observe the shift in the value of the instant critical points as the

energies decrease, i.e. as Θ approaches unity, where the critical points are x = ±
√

2
3

as we can also verify in Table 2.
One interesting feature regarding the dynamics of a 3-form in RSII is that the Θ

dependence of the dynamics can change the stability of the critical points as the energy
decreases. For example, in Fig.6, we traced the Landau-Ginzburg potential

V (χ) = (χ2 − c2)2, (6.37)

with c = 0.5 (solid), and its effective potential (dashed) at different values of Θ. We
observe that at early times the potential minima at x = ±0.5 are initially unstable
and, as the energy decreases, they become stable.

Figure 5: Potential V (χ) (solid red line) and effective potential Veff (dashed blue lines)
for the potential V = eχ

2 − 1 for different values of Θ.

6.2.3 Initial conditions and slow roll regime

In order to study inflation we need to understand how the slow-roll parameters are
modified in this set up. Analogously to the scalar field as well as 3-forms [11, 14] the
parameters are defined by ε ≡ −Ḣ/H2 = −d lnH/dN and η = ε′/ε− 2ε. One manner
to establish a sufficient condition for inflation is, ε � 1 and |η| � 1, which must last
for at least ≈ 50 e-folds. For our RSII model we have,

ε =
3

2
x
V,x
V

(1− w2)(2−Θ2), (6.38)

η =
x′(V,x + V,xxx)

V,xx
+ 6x

V,x
V

(1− w2)
Θ2 − 1

2−Θ2
, (6.39)

34



6.2 3-form in Randall-Sundrum II 6 RANDALL-SUNDRUM BRANEWORLD

Figure 6: Potential V (χ) (solid line) and effective potential Veff (dashed lines) for the
potential V = (χ2 − 0.52)2 for different values of Θ.

where the terms in Θ signal the new contributions to the slow-roll parameters.

6.2.4 3-form inflation on the brane

I will now present inflationary solutions for the system (6.34)–(6.35). I will also
compare the evolutions between the four and five dimensional cases. Observing Fig.7
we note that inflation happens when the field is on the plateau of the evolution that
for the four dimensional case is flat and corresponds to the critical point χ = ±

√
2/3

[16]. We can make sure that the field is inflating by observing the value of the slow roll
parameter ε in Fig.8 which ε� 1 during inflation, ending it at ε = 1. For the RSII case,
however, the plateau has a gentle slope due to the dependence of the instantaneous
critical points on Θ (we saw that χ = ±

√
2/3Θ) up to the point in which χ = ±

√
2/3.

We can also note that, for the same initial conditions, inflation lasts about 30 e-folds
longer in the five dimensional set up due to the fact that there is additional friction to
the field’s evolution. When inflation ends, the field goes to the attractor χ = 0 which
is the potential minimum (critical point B in Table 2).
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Figure 7: Solutions for the system (6.34)–(6.35) for the four dimensional case (dashed
blue line) i.e. for Θ = 1 already studied in Ref. [16] and for the RSII model (solid red
line) when Θ is given by Eq. (6.29) for V = V0[eχ

2 − 1], V0 = 10−14, λ = 10−12 and for
the initial conditions (x0, w0) = (2, 0.9055). The smaller panel shows the change in Θ,
for the RSII model, as the system evolves.

Figure 8: Variation of the slow roll parameter ε for the solutions of the system (6.34)–
(6.35) for the RSII model for V = V0[eχ

2 − 1], V0 = 10−14, λ = 10−12 and for the initial
conditions (x0, w0) = (2, 0.9055). The black dashed line marks ε = 1 for reference.

6.2.5 Cosmological Perturbations

We have seen, from the Friedmann equation (6.25), that early universe cosmology in
RSII is modified at high energies, where the ρ2 term dominates. As a result we expect
the early evolution to be different from the standard four dimensional case.

It was shown in previous work [18] that for scalar perturbations, fluctuations in the
bulk spacetime are not important during inflation. So I will only consider the standard
four dimensional scalar perturbations on the brane, where the 3-form is confined.
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For the 4D brane we can consider general perturbations about the FLRW metric
where the line element can be written as [12],

ds2 = −(1 + 2ψ)dt2 + 2bidx
idt+ a2(t)(1− 2φ)dxidxi + a2(t)hijx

ixj, (6.40)

where the two scalar perturbations ψ and φ are the Bardeen potentials in the lon-
gitudinal (sometimes called Newtonian) gauge, bi is a transverse vector and hij is a
transverse and traceless tensor describing the tensor perturbations.

Einstein equations for the scalar perturbations read,

1

2
δG0

0 = −∇
2

a2
φ+ 3H(φ̇+Hψ) = −4Gδρ, (6.41)

1

2
∂iδG

i
0 = −∇

2

a2
(φ̇+Hψ) = 4πG(ρ+ p)

θ

a
, (6.42)

1

2
δGi

i = φ̈+H(3φ̇+ ψ̇) + (2Ḣ + 3H2)ψ − ∇
2

3a2
(φ− ψ) = 4πGδp, (6.43)

1

2
δGj

i = −∇2(φ− ψ) = 12πG(ρ+ p)$. (6.44)

The first equation, G0
0 component, represents the energy constraint, the second, G0

i

component, shows the momentum constraint involving the velocity perturbation θ, the
third, Gi

i component, is the trace of the spatial components, and the last one, Gj
i

component, gives the shear propagation for the shear $.
We must also account for perturbations in the matter sourcing the universe’s evo-

lution, which in this case is the 3-form field. To parametrize the fluctuations of the
3-form it is done a similar decomposition as for the metric. The four degrees of freedom
in a 3-form turn out to be two scalar and two vector degrees of freedom. The most
general form of the perturbed 3-form is given by,

A0ij = a(t)εijk(α,k + αk) (6.45)

Aijk = a3(t)εijk(χ(t) + α0), (6.46)

where αk is a transverse vector and thus has two independent degrees of freedom. We
easily see that, as usually, the vector and scalar perturbations decouple at linear order
so it can be neglected. So now we have the relation,

A2 = 6
[
χ2 + 2χ(α0 + 3χφ)

]
. (6.47)

The equations of motion (5.7) now yields the equation of motion for α0,

α̈0+3Hα̇0+(3Ḣ+V,χχ)α0−
∇2

a2
(α̇−2Hα)+(χ̇+3Hχ)(3φ̇−ψ̇)+3(V,χχχ−V,χ)φ+2ψV,χ = 0,

(6.48)
the constraint (5.5),

α̇0 + 3Hα0 + (3φ− ψ)(χ̇+ 3Hχ) +

(
V,χ
χ
− ∇

2

a2

)
α = 0, (6.49)

and, for last, we have the identity ∇ · (∇ · F ) = 0 that gives the additional constraint,

∂

∂t

(
V,χα

χ

)
− V,χχ(α0 + 3χφ)− V,χψ = 0. (6.50)
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Now we can calculate the perturbed components of the energy-momentum tensor,

−δT 0
0 = δρ = (χ̇+ 3Hχ)

[
α̇0 + 3Hα0 + (χ̇+ 3Hχ)(3φ− ψ)− ∇

2

a2
α

]
+ V,χ(α0 + 3χφ), (6.51)

δT ii = δp = −(χ̇+ 3Hχ)

[
α̇0 + 3Hα0 + (χ̇+ 3Hχ)(3φ− ψ)− ∇

2

a2
α

]
+ V,χχχ(α0 + 3χφ), (6.52)

δT 0
i = −V,χα,i (6.53)

δT ij = 0. (6.54)

From the last equation, T ij component, we note that 3-form does not generate
anisotropic stress φ = ψ, i.e. $ = 0 in Eq. (6.44).

The rotational perturbations, in the absence of other vector sources, evolve like,

ḃi +Hbi = 0 (6.55)

∇2

a2
bi = V,χ(χbi − αi), (6.56)

thus the vector perturbations decay and can be ignored. Since the 3-form does not
generate tensor perturbations they evolve separately and we will talk about them in a
few moments.

Because there is no anisotropic stress, φ = ψ, we can now derive an evolution
equation for the Bardeen potential φ in a closed form. Equation (6.45) can be used
to eliminate α̇0 from the system, equations (6.41) and (6.51) may then be used to
eliminate α0. We can eliminate α using Eq. (6.42) and Eq. (6.53). Finally plugging
the solutions into Eq. (6.43) with the right hand side given by Eq. (6.52) we get,

φ̈+

(
H − Ḧ

Ḣ

)
φ̇+

(
2Ḣ − ḦH

Ḣ

)
φ =

(
1− Ḧ

Ḣ

χ

χ̇

)
1

a2
∇2φ, (6.57)

where the right hand side of Eq. (6.57) is simply δpχ/2 in the comoving gauge.
One feature of consider 3-form fields is that the dynamical speed of sound, c2

s, can
vary and can be expressed to the derivatives of the potential. On the rest frame we
read,

c2
s =

δpχ
δρχ

=
V,χχχ

V,χ
, (6.58)

where it is used the background relations in the 3-form dominated universe.
By inspecting Eq. (6.57) we see that we can describe the scalar fluctuations of the

field with only one degree of freedom. This is due to the symmetries of the FLRW
metric. It happens that the kinetic term has a gauge symmetry which reduces the
number of physical degrees of freedom in the absence of the potential. Even when the
potential is present, the symmetry is partially efficient. This is because the potential
depends only on A2 and the spatial components of A are forced to vanish in the FLRW
background (5.12) so their fluctuations α cannot contribute at the linear order to the
quadratic invariant A2 (6.47).
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To consider quantum fluctuations during inflation we must find the gauge invariant
variable to describe the degree of freedom we have. It is conventional to refer to the
curvature perturbation ζ [13] given by,

ζ = −H φ̇+Hφ

Ḣ
+ φ. (6.59)

The 2-point correlation function for the curvature perturbation is defined as,

〈ζ(k1)ζ(k2)〉 = (2π)5δ3(k1 − k2)
Pζ
2k3

1

, (6.60)

where Pζ is the power spectrum of the curvature perturbation given by,

Pζ ≡
1

2π2
k3 |ζk|2 =

1

2(2π)2ε

H2

csM2
Pl

∣∣∣∣
∗
, (6.61)

where ε is the slow roll parameter (6.2.3), and ∗ indicates that the expression is evalu-
ated at horizon crossing csk = aH. The power spectrum now has a dependence on the
sound speed. The spectral index ns is then given by,

1− ns = 2ε+
ε̇

εH
+

ċs
csH

. (6.62)

In the Randall-Sundrum model, however, the amplitude of the tensor modes are
modified and read [20],

A2
T =

4

25πM4
Pl

H2F 2(H/µ)|∗, (6.63)

where F is a correction function,

F (x) =

[
√

1 + x2 − x2 ln

(
1

x
+

√
1 +

1

x2

)]−1/2

, (6.64)

and

x0 ≡
H

µ
=

(
3

4πλ

)1/2

HMPl, (6.65)

or in terms of our dynamical variable Θ,

x0 =

√
4

Θ−2 − 1

Θ2
. (6.66)

For x0 � 1, F (x0) ' 1 and Eq. (6.63) reduces to the standard cosmology formula, and
for x0 � 1, F (x0) '

√
3x0/2. Finally, the tensor to scalar ratio is then,

r ≡ A2
T

A2
ζ

= 16cs |ε|F 2(x0). (6.67)

We are now ready to compare the cosmological parameters, scalar to tensor ratio
and spectral index, for our inflationary setting with the 2015 Planck data [26]. First
we consider a form of the scalar potential which has been proven in Ref. [16] to lead to
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Figure 9: Comparison of the spectral index and the tensor to scalar ratio against the
recent Planck 2015 data [26] for 50 (small dot) and 60 (large dot) e-folds for different
values of the brane tension λ. We considered the potential in (6.68) with b = −0.245.
The bars represent, from bottom to top, the solutions with λ = 5×10−4, λ = 1.5×10−7

and λ = 8× 10−8 units κ2 = 1).

a viable cosmology in the four dimensional set up (although for a two 3-form system)
and to produce a good fit to the Planck 2013 results,

V = V0(χ2 + bχ4), (6.68)

where V0 and b are free parameters.
In Fig.9 the bottom bar represents the prediction for the five dimensional case with

λ = 5 × 10−4. With this value of the brane tension, the evolution quickly reaches
Θ ≈ 1 which means that this case is practically indistinguishable from the four di-
mensional solution. When we lower the brane tension and consequently increase the
five dimensional effects, we observe that the predictions worsen due to the presence of
the correction F 2(H/µ) in Eq. (6.63), which enhances the tensor to scalar ratio. For
λ = 8 × 10−8, corresponding to λ ' (2 × 1017 GeV)4, (corresponding to the upper
bar) the predictions are beyond the Planck TT+lowP contour limits. We find a lower
bound, for 60 e-folds, of λ ≥ 1.26× 10−7, corresponding to λ ≥ (2.3× 1017 GeV)4, for
the inflationary predictions to be within the Planck TT,TE,EE+lowP contour limits.

In Fig. 10 we present the relation between the spectral index and the logarithm
of the brane tension λ. As expected, ns is not very sensitive to the value of λ, as it
was shown in Ref. [13], using the dual of this theory to a scalar field, we can fix the
number of e-folds as 60 and in this case, ns ≈ 0.97. Also in Fig. 10 we analyse how the
brane tension and the tensor to scalar ratio are related as λ is lowered for 60 e-folds.
For λ < 10−6, r quickly increases due to the presence of F 2 in Eq. (6.67), making the
predictions in conflict with Planck data, as we also saw in Fig. 9.

When we lower the brane tension, in order to keep the power spectrum of scalar
perturbations fixed as Pζ(k0) = 2.196× 10−9, for the pivot scale chosen at k0 = 0.002
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Figure 10: Left panel: log λ vs ns, for the potential (6.68), with b = −0.245, for
60 e-folds, for different values of the brane tension λ. Right panel: log λ vs r, for
the potential (6.68), with b = −0.245, for 60 e-folds, for different values of the brane
tension λ.

Mpc−1, we also have to change the V0 in order to keep this fine tuning. In Fig. 11 we
show the relation between λ and V0 in order to keep fixed Pζ(k0) = 2.196× 10−9.

Figure 11: log λ vs V0, for the potential (6.68), with b = −0.245, for 60 e-folds, for
different values of the brane tension λ.
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7 CONCLUSIONS

7 Conclusions

In this thesis I explored the dynamics of inflation driven by two coupled 3-forms
compared with the uncoupled case [16]. It was shown that the presence of the coupling
gives rise to a new term in the equations of motion, (5.49) and (5.50), of the 3-forms.
I proceeded with the calculation of the stress-tensor (5.51) that also gives rise to a
new term resulting from the coupling. In particular I explored two solutions, for a
quadratic and an exponential potential, of the equations of motion (5.62), (5.63), (5.64)
and (5.65), for quadratic and exponential potentials, with a particular choice of initial
conditions in order to have inflation. It is shown that a small coupling, in the order of
10−3, has the influence to extend the duration of inflation of about 20 to 50 e-folds.

I have also proposed a general form for the Lagrangian of N coupled 3-form fields.
By introducing a new term (5.73) that express the couplings of multiple 3-forms, im-
posing some restrictions in order to avoid repetitions in the coupled potentials, I also
provided the equations of motion (5.74) for this theory.

I explored the main differences between the dynamics of a single 3-form in the
Randall-Sundrum II braneworld and the standard four dimensional case [11]. Rewrit-
ing the equations of motion for the 3-form model in terms of a system of first order
differential equations (6.34) and (6.35). By defining a set of useful variables (x, y, w,Θ)
I have identified what we called the instantaneous critical points which now have a de-
pendence on the correction term, Θ, arising from the modified Friedmann equation. I
described the phenomena that take place at high energies by showing the phase space
of the system at different stages of the universe, or in other words, for different values
of Θ, and by interpreting them as a modification to the effective potential. I also ob-
served that in five dimensions the behaviour, or more precisely the stability, of some
instantaneous critical points can change as the energies decrease. I presented an infla-
tionary solution for the potential in (6.68) and computed the respective cosmological
parameters tensor to scalar ratio (6.67) and spectral index (6.62). Finally I was able
to fit the cosmological predictions with the recent Planck 2015 data [26] for a choice of
parameters and saw that, as expected, the effects of the braneworld bring the observ-
ables away from the central region of the data contours. I found a lower bound for the
brane tension for the potential (6.68) such that the observable values remain inside the
contours of the Planck TT,TE,EE+lowP.
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”Learn from yesterday, live for today, hope for tomorrow. The important thing is not
to stop questioning.”

-Albert Einstein
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