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Abstract 30 

Plants have evolved sophisticated mechanisms for adaptation to fluctuating availability of 31 

nutrients in soil. Such mechanisms are of importance for plants to maintain homeostasis of 32 

nutrient elements for their development and growth. The molecular mechanisms 33 

controlling the homeostasis of nutrient elements at the genetic level have been gradually 34 

revealed, including the identification of regulatory factors and transporters responding to 35 

nutrient stresses. Recent studies have suggested that such responses are not only controlled 36 

by genetic regulation but also by epigenetic regulation. In this review, we present recent 37 

studies on the involvement of DNA methylation, histone modifications and noncoding 38 

RNA mediated gene silencing in the regulation of sulphur homeostasis and response to 39 

sulphur deficiency. We also discuss the potential effect of sulphur containing metabolites 40 

such as S-adenosylmethionine (SAM) on the maintenance of DNA and histone methylation. 41 

 42 

Keywords: sulphur, epigenetics, DNA methylation, histone modifications, non-coding 43 
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Introduction 46 

As one of the essential macronutrients, sulphur (S) plays a pivotal role in plant growth and 47 

development. Plants take up S from the rhizosphere in the form of inorganic sulphate. In 48 

Arabidopsis thaliana (Arabidopsis), this process is mainly driven by two root-specific 49 

high-affinity sulphate transporters, SULTR1;1 and SULTR1;2 (Rouached et al., 2008; 50 

Takahashi et al., 2000; Yoshimoto et al., 2002). After being transported into root cells, 51 

sulphate is either transported into the plastids by SULTR3 sulphate transporters (Cao et al., 52 

2013; Chen et al., 2019), where it is assimilated into organic sulphur compounds, or 53 

transported into the vacuoles for storage. In the sulphur assimilation pathway, sulphate is 54 

first activated by ATP sulfurylase (ATPS) to adenosine 5′-phosphosulfate (APS), which is 55 

either reduced to sulphite in the primary assimilation pathway or phosphorylated to form 56 

3 ′ -phosphoadenosine 5 ′ -phosphosulfate (PAPS) (Takahashi et al., 2011). These two 57 

reactions are catalyzed by APS reductase (APR) and APS kinase (APK), respectively. 58 

PAPS provides an activated sulphate for many sulfation reactions, while sulphite is further 59 

reduced to sulphide by sulphite reductase (SiR). Sulphide is condensed with O-acetylserine 60 

(OAS) by O-acetylserine (thiol) lyase (OAS-TL) to form the S-containing amino acid 61 

cysteine (Cys). Cys can be used directly for protein biosynthesis or serves as a precursor 62 

for the biosynthesis of methionine (Met) and glutathione (GSH). These two molecules can 63 

be used for biosynthesis of many sulphur containing derivatives such as glucosinolates and 64 

phytochelatins, which are important for plants to alleviate biotic stress and detoxify heavy 65 

metals, respectively (Cobbett, 2000; Halkier and Gershenzon, 2006).  66 

The transporters responsible for sulphate uptake, and enzymes involved in the S 67 

assimilation pathway have been well-characterized (Leustek et al., 2000; Takahashi et al., 68 

2011). The regulation of S homeostasis at the genetic level in plants has also been gradually 69 

revealed. Such regulation includes the modulation of sulphate acquisition and distribution, 70 

S assimilation and the biosynthesis and recycling of sulphur containing compounds at both 71 

the transcriptional and posttranscriptional levels. In term of the regulation of sulphate 72 

uptake and distribution, several trans-acting factors and cis-elements have been identified. 73 

The most important regulatory factor identified so far is the transcription factor SLIM1 74 

(SULFUR LIMITATION 1). SLIM1 regulates the expression of SULTR1;1 and SULTR1;2 75 
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to activate sulphate uptake in roots, and SULTR4;2 to release sulphate from vacuoles 76 

(Maruyama-Nakashita et al., 2006). Several cis-elements responsive to S deficiency have 77 

been identified, including the sulphur-responsive element (SURE) in the promoter of 78 

SULTR1;1 (Maruyama-Nakashita et al., 2005), a SURE-like element in the promoter of 79 

the wheat Sulfur deficiency-induced-1 (sdi-1) gene (Howarth et al., 2009), the UPE-box in 80 

tobacco UP9C gene (Wawrzynska et al., 2010), and SURE21A and SURE21B in the 3’-81 

untranslated region of SULTR2;1 (Maruyama-Nakashita et al., 2015). It appears that 82 

SLIM1 does not target directly to the SURE element in the promoter of SULTR1;1 and 83 

SULTR1;2 though it regulates the expression of these two gens. Rather, SLIM1 forms a 84 

homodimer and binds to the UPE-box, which also exists in the promoters of sulphur 85 

deficiency induced genes in Arabidopsis, such LSU, APR and SULTR2;1 (Wawrzynska et 86 

al., 2010; Wawrzynska and Sirko, 2016).  87 

Similar to the complex regulation of sulphate uptake and distribution, sulphate assimilation 88 

is also tightly controlled, being highly regulated by the demand for reduced sulphur, in a 89 

regulatory system known as the ‘demand-driven’ regulatory pathway (Davidian and 90 

Kopriva, 2010; Lappartient and Touraine, 1996; Lappartient et al., 1999). However, the 91 

molecular mechanisms underlying the regulation of sulphate assimilation remain largely 92 

unclear. SLIM1 is likely involved in regulating the expression of ATPS4 and SERAT3;1 as 93 

these two genes are downregulated in the slim1 mutant (Maruyama-Nakashita et al., 2006). 94 

The transcriptional factor LONG HYPOCOTYL5 (HY5) has been shown to regulate the 95 

expression of APR1 and APR2 in Arabidopsis by directly targeting the promoters of these 96 

two genes (Lee et al., 2011). However, HY5 seems to not regulate the expression of APR3, 97 

suggesting multiple genetic pathways for the regulation of the reduction of APS. The 98 

regulation of the biosynthesis of sulphur containing secondary metabolites such as 99 

glucosinolates is much more complex. Many transcription factors, including at least eight 100 

MYBs, six MYC-bHLHs, two WRKYs, and a DNA-binding-with-one-finger (DOF) 101 

transcription factor OBP2, have been shown to be involved in this process (Frerigmann, 102 

2016). Recently, two repressors controlling glucosinolate biosynthesis, sulfur deficiency 103 

induced 1 (SDI1) and SDI2 have been identified in Arabidopsis (Aarabi et al., 2016). Under 104 

sulphur limited conditions the nuclear localized SDI1 interacts with MYB28, a major 105 

transcription factor that promotes glucosinolate biosynthesis, to suppress the biosynthesis 106 
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of glucosinolates and prioritize sulphate utilisation for primary metabolites (Aarabi et al., 107 

2016). The catabolic recycling of organic S compounds such as glucosinolates and GSH is 108 

essential for plants to adapt to sulphur limiting conditions. Glucosinolates are thought to 109 

function as a sulphur storage pool in plants in the Brassicaceae as their levels fluctuate 110 

according to the environmental sulphur status (Falk et al., 2007; Maruyama-Nakashita, 111 

2017; Maruyama-Nakashita et al., 2006). Although the catabolic enzymes of 112 

glucosinolates and GSH have been identified and well characterized (Bachhawat and 113 

Yadav, 2018; Kumar et al., 2012; Kumar et al., 2015; Ohkama-Ohtsu et al., 2008; Paulose 114 

et al., 2013; Wittstock and Burow, 2010), the genetic regulation of the breakdown of these 115 

compounds is largely unknown. Except SLIM1 which functions as a central transcriptional 116 

regulator in the degradation of glucosinolates under sulphur limited conditions 117 

(Maruyama-Nakashita et al., 2006), other transcription factors and corresponding targeting 118 

cis-elements involved in the degradation of glucosinolates and GSH remain to be identified. 119 

It is well recognized that the regulation of S homeostasis is under complex genetic control. 120 

Emerging evidence suggests that epigenetic regulation of gene expression plays an 121 

important role in the adaptive response to S deficiency and the maintenance of S 122 

homeostasis (Huang et al., 2016). Epigenetic changes refer to heritable genetic changes 123 

resulting from modification of a chromosome without alteration of the DNA sequence 124 

(Berger et al., 2009). Epigenetic regulation of gene expression in response to biotic and 125 

abiotic stresses, and adaptation to environmental cues, has been gradually revealed (Alonso 126 

et al., 2019; Chinnusamy and Zhu, 2009; Lamke and Baurle, 2017; Sahu et al., 2013; Secco 127 

et al., 2017). Epigenetic regulation mainly occurs at three levels; DNA methylation, histone 128 

modifications, and noncoding RNA regulation. Perhaps the most direct link between S 129 

homeostasis and DNA and histone methylation is the fact that S-adenosylmethionine 130 

(SAM), a major methyl donor required for many transmethylation reactions, is a sulphur 131 

containing compound. In this review, we discuss what is currently known about the 132 

regulation of S homeostasis at these three epigenetic levels.  133 

 134 

DNA methylation  135 
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DNA methylation is one of the most well studied epigenetic modifications, playing an 136 

important role in the regulation of gene expression, transposon silencing, and imprinting. 137 

DNA methylation generally refers to the transfer of a methyl group from SAM to the 5’ 138 

position of cytosine to form 5-methylcytosine. In plants, DNA methylation occurs in three 139 

different sequence contexts CG, CHG and CHH (where H is A, C or T). A specific DNA 140 

methylation state in a given genomic region is determined by the dynamic regulation of de 141 

novo DNA methylation, maintenance of DNA methylation and DNA demethylation (Law 142 

and Jacobsen, 2010; Zhang et al., 2018). In plants, de novo DNA methylation is mediated 143 

by the RNA-directed DNA methylation (RdDM) pathway, which requires DNA 144 

methyltransferase DOMAINS REARRANGED METHYLASE 2 (DRM2), and many 145 

other proteins. The maintenance of DNA methylation during DNA replication depends on 146 

the cytosine sequence context, and different DNA methyltransferases are involved. The 147 

methylation of symmetric CG is maintained by METHYLTRANSFERASE 1 (MET1), and 148 

CHG is maintained by DNA methyltransferase CHROMOMETHYLASE 2 (CMT2) and 149 

CMT3, whilst the asymmetric CHH is maintained by DRM2 at RdDM target regions or 150 

CMT2 at histone H1-containing heterochromatin. DNA demethylation can be divided into 151 

passive and active demethylation, with the former refering to the failure of maintenance of 152 

methylation during DNA replication. Such passive DNA demethylation can be due to the 153 

shortage of the methyl donor, or loss of function of DNA methyltransferase. Active DNA 154 

demethylation is mediated by a base excision repair pathway which requires different 155 

bifunctional 5-methylcytosine DNA glycosylases, including REPRESSOR OF 156 

SILENCING 1 (ROS1), TRANSCRIPTIONAL ACTIVATOR DEMETER (DME), 157 

DEMETER-LIKE PROTEIN 2 (DML2) and DML3. A detailed description of de novo 158 

DNA methylation, maintenance of methylation, and DNA demethylation, can be found in 159 

recent reviews (Law and Jacobsen, 2010; Zhang et al., 2018).  160 

Nutrient stresses, such as phosphate starvation (Secco et al., 2015; Yong-Villalobos et al., 161 

2015) and zinc deficiency (Chen et al., 2018), have been shown to change the global DNA 162 

methylation at the whole genome level. Using whole genome bisulphite sequencing (BS-163 

Seq), changes in DNA methylation, at base level resolution throughout the genome, have 164 

been revealed in rice (Secco et al., 2015) and Arabidopsis (Yong-Villalobos et al., 2015). 165 

Under phosphate starvation conditions widespread changes in DNA methylation were 166 
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observed in the rice genome, and such changes mainly derive from the hypermethylation 167 

of transposable elements in the vicinity of phosphate starvation inducible genes (Secco et 168 

al., 2015). Similarly, extensive remodelling of global DNA methylation also occurs in 169 

Arabidopsis plants, with some of this DNA methylation remodelling being correlated with 170 

changes in the expression of phosphate starvation inducible genes (Yong-Villalobos et al., 171 

2015). Although a limited number of changes in DNA methylation were reported in 172 

Arabidopsis under phosphate starvation (Secco et al., 2015), this may be due to different 173 

treatment conditions and/or different approaches in the identification of differentially 174 

methylated regions (Secco et al., 2017). Zinc deficiency also triggers genome-wide 175 

differential DNA methylation, with prominent changes in transposable elements (Chen et 176 

al., 2018). Depletion of the macronutrient nitrogen alters locus-specific DNA methylation 177 

patterns, although the changes on genome-wide DNA methylation are currently unknown 178 

due to the limitation of the technique used (Kou et al., 2011). 179 

Sulphate deficiency is assumed to affect genome-wide DNA methylation in plants because 180 

the universal methyl donor for DNA methylation SAM is synthesized from Cys, the first 181 

organic sulphur compound in the primary sulphate assimilation pathway. The biosynthesis 182 

of SAM can be initiated by the condensation of Cys and O-phosphohomoserine (OPH) to 183 

form cystathionine (Cyst), which is further converted to homocysteine (Hcy) by 184 

cystathionine γ-synthase (CGS) and cystathionine β-lyase (CBL), respectively (Fig. 1) 185 

(Hesse and Hoefgen, 2003). Methionine synthase (MS) subsequently converts Hcy to Met 186 

using the methyl group from 5-methyltetrahydrofolate (5-CH3-THF), and ultimately Met 187 

is converted to SAM catalysed by SAM synthetase (SAMS). The biosynthesis of SAM is 188 

tightly controlled and the concentration of SAM is affected by the availability of sulphate. 189 

Under sulphate deficient condition, SAM concentration decreases (Nikiforova et al., 2005). 190 

Recently, using BS-seq to investigate genome-wide changes in DNA methylation in 191 

response to sulphur deficiency, we observed that cytosine methylation levels in all three 192 

sequence contexts CG, CHG and CHH decreased in both roots and shoots under sulphate 193 

depletion conditions (Fig. 2A). This might be due to a shortage of the methyl donor SAM 194 

which potentially lead to enhanced passive DNA demethylation (Zhang et al., 2018). 195 

Interestingly, DNA methylation levels tend to increase under phosphate starvation (Fig. 2B) 196 
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(Yong-Villalobos et al., 2015), suggesting distinct mechanisms in the modulation of 197 

genome-wide DNA methylation under different nutrient stresses. 198 

During DNA methylation, the methyl group of SAM is transferred to cytosine by a specific 199 

DNA methyltransferase, and results in the production of a molecule of S-200 

adenosylhomocysteine (SAH). SAH is a strong inhibitor of all known SAM-dependent 201 

methyltransferases and is thus rapidly hydrolyzed into Hcy and adenosine by S-202 

adenosylhomocysteine hydrolase (SAHH) (Hoffman et al., 1979; Moffatt and Weretilnyk, 203 

2001). This reaction is reversible, and the equilibrium is largely driven towards SAH 204 

hydrolysis by the rapid removal of Hcy and adenosine. The by-product adenosine is 205 

phosphorylated to adenosine monophosphate (AMP) by adenosine kinase (ADK) (Moffatt 206 

et al., 2002). Hcy can be re-methylated to Met for biosynthesis of SAM to complete the 207 

SAM cycle (Fig. 1). The SAM cycle, as well as the SMM (S-methylmethionine) cycle, are 208 

two Met recycling systems essential for sustaining the high demand of Met for SAM-209 

dependent transmethylation reactions and also for maintaining the optimized ratio of SAM 210 

to SAH (Sauter et al., 2013). The SAM to SAH ratio is generally termed the ‘methylation 211 

potential’ and can be used as a metabolic indicator for the methylation status in cells. The 212 

alteration of the SAM to SAH ratio usually leads to changes in global methylation patterns. 213 

Partial loss-of-function of SAHH1 (also known as HOMOLOGY-DEPENDENT GENE 214 

SILENCING1, HOG1) leads to increased SAH levels and a decreased SAM to SAH ratio 215 

resulting in DNA hypomethylation in Arabidopsis (Ouyang et al., 2012; Rocha et al., 2005). 216 

A subset of genes is up-regulated in the hypomethylated hog1 mutant, which shows a 217 

dramatic growth defect (Jordan et al., 2007; Rocha et al., 2005). Reduction of ADK activity 218 

in Arabidopsis also increases SAH levels and reduces DNA methylation (Moffatt et al., 219 

2002). Both SAHH1 and ADK1 are targeted to the nucleus, and form a complex with a 220 

methyltransferase CMT (Lee et al., 2012). Such a protein complex may facilitate the rapid 221 

removal of SAH and adenosine to avoid the inhibition of methyltransfereases by SAH.  222 

The impairment of SAM biosynthesis itself could also lead to global DNA methylation 223 

changes. Mutation of SAMS3 (also called METHIONINE ADENOSYLTRANSFERASE 4, 224 

MAT4) reduces whole-genome DNA methylation mostly in the CHG and CHH sequence 225 

contexts (Meng et al., 2018). The null mutant of SAMS3 is lethal, and the weak allele 226 

mutants accumulate extremely high levels of Met and SAH, and lower levels of SAM (Goto 227 
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et al., 2002; Meng et al., 2018). Four isoforms of SAMS in Arabidopsis interact with each 228 

other and may form homo- and/or hetero-polymers to fulfill the biosynthesis of SAM 229 

(Meng et al., 2018). A similar genome-wide DNA hypomethylation was also observed for 230 

the other three SAMS mutants in Arabidopsis (Meng et al., 2018). Knockdown of three 231 

SAMS genes in rice by RNA interference reduces DNA methylation at several flowering 232 

related genes, and lead to a late-flowering phenotype (Li et al., 2011). Although the effect 233 

of the Met and Hcy biosynthesis defect on DNA methylation is largely unexplored in plants, 234 

it is assumed that the perturbation of Met and Hcy levels may change SAM levels, and thus 235 

modulate the DNA methylation pattern. Indeed, increased plasma Hcy is associated with 236 

the elevation of plasma SAH levels, and results in DNA hypomethylation in human (Castro 237 

et al., 2003; Yi et al., 2000). This might be due to the fact that high levels of Hcy suppress 238 

the expression of SAHH and thus elevates the level of SAH (Jiang et al., 2007a; Jiang et 239 

al., 2007b), which inhibits the activity of most of the SAM-dependent methyltransferases 240 

(Hoffman et al., 1979)., Such lines of evidences have suggested that interruption of the 241 

SAM cycle alters the genome-wide DNA methylation. However, it is still unclear how 242 

global DNA methylation is affected by sulphate assimilation or which step in the 243 

assimilation pathway plays the key roles in epigenetic regulation.  244 

The one-carbon metabolism pathway plays an important role in epigenetic modifications 245 

including DNA methylation. This is because the one-carbon unit carrier 5-methyl 246 

tetrahydrofolate (5-CH3-THF) provides the methyl group for the biosynthesis of Met (Fig. 247 

1). 5-CH3-THF is converted from 5,10-methylenetetrahydrofolate (5,10-CH2-THF) by 248 

methylenetetrahydrofolate reductase (MTHFR) in a NADH-dependent manner (Roje et al., 249 

1999). Although the impact of MTHFR on epigenetic modifications is unclear, mutation 250 

of MTHFR in maize has been shown to reduce lignin levels which is likely due to a shortage 251 

of the methyl donor SAM (Tang et al., 2014). In fact, defects in several steps of folate 252 

biosynthesis or turnover have been shown to affect SAM levels and thus change genome-253 

wide DNA methylation (Fig. 1). Suppression of folate biosynthesis by treatment with 254 

sulfamethazine, which is a structural analog and competitor of the folate synthesis 255 

precursor p-aminobenzoic acid (pABA), decreases folate pool size and SAM level, and 256 

thus causes a reduction in DNA methylation (Zhang et al., 2012). Inhibition of 257 

dihydrofolate reductase (DHFR), which catalyses the conversion of DHF to THF, by 258 
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methotrexate also decreases the level of SAM, and is thought to lead to genome-wide DNA 259 

hypomethylation (Loizeau et al., 2008). The interruption of folate turnover also changes 260 

the methylation potential, and alters global DNA methylation. Mutation in the cytoplasmic 261 

bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate 262 

cyclohydrolase (MTHFD1), which is required for the turnover of 5,10-CH2-THF to THF, 263 

causes a strong genome-wide decrease in DNA methylation (Groth et al., 2016). The 264 

mthfd1 mutant accumulates a higher level of Hcy due to impaired folate metabolism, and 265 

the increased Hcy level leads to decreased SAHH activity and accumulation of SAH, which 266 

competitively inhibits SAM-dependent DNA methylation. Even though both SAM and 267 

SAH are increased, the stronger increase in SAH levels leads to an overall decrease in 268 

methylation potential, resulting in DNA hypomethylation. Folate polyglutamylation, which 269 

is carried out by folylpolyglutamate synthetase (FPGS), is essential for folate affinity, 270 

stability and subcellular compartmentation (Hanson and Gregory, 2011; Matherly and 271 

Goldman, 2003; Shane, 1989). Folate-dependent enzymes prefer polyglutamylated folates 272 

to the monoglutamyl form (Shane, 1989). Mutation of FPGS1 in Arabidopsis dramatically 273 

reduces DNA methylation, and releases chromatin silencing at a genome-wide scale (Zhou 274 

et al., 2013). Similar to the mthfd1 mutant, the Hcy level also significantly increases in the 275 

fpgs1 mutant, following elevation of the SAH level, and the reduction of the methylation 276 

potential.  277 

We recently identified a high S Arabidopsis mutant and identified the casual gene as MORE 278 

SULPHUR ACCUMULATION1 (MSA1) (Huang et al., 2016). MSA1 was previously 279 

annotated as serine hydroxymethyltransferase 7 (SHM7). Although MSA1 is catalytically 280 

inactive in vitro and might require other co-factors to facilitate activity, SHM family 281 

proteins are believed to catalyse the reversible conversion of serine and THF to glycine and 282 

5,-10-CH2-THF (Schirch and Szebenyi, 2005). Mutation of MSA1 leads to a reduction of 283 

cytosine methylation levels in roots and increased levels in shoots, which may be due to 284 

lower levels of SAM in roots but slightly increased SAM levels in shoots (Huang et al., 285 

2016). Interestingly, a large number of differentially methylated genes (DMGs) were found 286 

between the mutant and wild-type (Huang et al., 2016), even though the detailed 287 

mechanism underlying the opposite effect of msa1 on genome-wide DNA methylation 288 

between roots and shoots is unclear. Several S-deficiency responsive genes and genes 289 
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involved in glucosinolate and anthocyanin metabolisms are differentially methylated in 290 

msa1, including SULTR1;1, SULTR1;2, APR3 and ATPS4. Methylation in the promoter 291 

region of a gene usually inhibits its expression (Zilberman et al., 2007). In Huang et al., 292 

(2016) we found that a 258-bp genomic region 118-bp upstream of the sulphur responsive 293 

element (SURE) in the promoter of SULTR1;1, which is essential for the S deficiency 294 

response (Maruyama-Nakashita et al., 2005), is hyper-methylated under S sufficient 295 

condition but is hypo-methylated under S deficiency (Huang et al., 2016). This is correlated 296 

with the low expression level of SULTR1;1 under S sufficient condition and its strong 297 

induction by S deficiency. In the msa1-1 mutant, the upstream region of SURE in the 298 

promoter of SULTR1;1 is hypo-methylated and is associated with the elevation of its 299 

expression level and the increase of S levels in shoots (Huang et al., 2016). Similar hypo- 300 

and hypermethylations in the vicinity of cis-acting elements, such as MBS, P1BS and W-301 

box, in the promoter of phosphate–responsive genes have also been shown to correlate with 302 

increased or decreased expression of phosphate responsive genes (Yong-Villalobos et al., 303 

2016). Therefore, dynamic DNA methylation particularly in the gene promoter region may 304 

represent an important mechanism in regulation of the expression of nutrient deficiency 305 

responsive genes.  306 

Promoter DNA methylation could repress transcription in two ways (Domcke et al., 2015). 307 

First, methylation in the promoter could inhibit the binding of transcriptional activators 308 

thus hindering the activation of gene expression. Second, DNA methylation in the promoter 309 

could present an epigenetic mark that recruits the binding of transcriptional repressors to 310 

the promoter, thus repressing gene expression. Therefore, for nutrient deficiency induced 311 

genes such as SULTR1;1, DNA methylation in the promoter would inhibit the binding of a 312 

transcriptional activator (Fig. 3A) or promote the binding of a transcriptional repressor (Fig. 313 

3B), thus keep gene expression at a low level under nutrient sufficient conditions. However, 314 

under nutrient deficient condition, the cytosines in the promoter would be demethylated, 315 

allowing binding of a transcriptional activator, or releases a transcriptional repressor, 316 

leading to the activation gene expression (Fig. 3). 317 

 318 

Histone modifications 319 
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Histones are the protein components of nucleosomes and fundamental units of chromatin. 320 

Canonical histones include, histone 2A (H2A), H2B, H3 and H4. A typical nucleosome 321 

contains an octameric protein complex consisting of two of these four core histones which 322 

are wrapped with 147 base pairs of DNA (Kouzarides, 2007). Histone modifications refer 323 

to posttranslational covalent modifications on the amino-terminal tails of these core 324 

histones, including methylation, acetylation, phosphorylation, ubiquitination, and many 325 

other less investigated modifications (Bannister and Kouzarides, 2011; Kouzarides, 2007; 326 

Liu et al., 2010). Such modifications are carried out by specific modifying enzymes (‘the 327 

writers’) to establish different histone marks, which can be recognized and translated by 328 

regulatory proteins (the readers/effectors) to trigger downstream signaling events. In 329 

certain cases, these histone marks can be removed by particular enzymes (‘the erasers’) 330 

(Liu et al., 2010). Histone modifications alter the accessibility of DNA to the 331 

transcriptional machinery, and influence gene expression. In general, histone acetylation 332 

and phosphorylation are associated with transcriptional activation, whereas the effect of 333 

histone methylation on gene expression is more complicated (Berger, 2007). Histone 334 

methylation occurs on lysine and arginine residues at different amino acid positions of H3 335 

and H4, in which lysine can undergo mono-, di- or tri-methylation while arginine may be 336 

mono-, or di-methylated symmetrically or asymmetrically. Among these diverse histone 337 

methylations, methylations on histone H3 lysine-4 (H3K4) and H3K36 are typically 338 

associated with active gene transcription, whereas methylation on H3K9 and H3K27 339 

generally leads to gene repression (Bannister and Kouzarides, 2011; Liu et al., 2010; Xiao 340 

et al., 2016). Dynamic histone modifications maintained by various ‘writers’ and ‘erasers’ 341 

play critical roles in regulation of gene expression during development, and responding to 342 

environmental stimuli including nutrient stresses.  343 

Several studies have demonstrated the involvement of histone modifications in modulating 344 

the expression of nutrient responsive genes. For example, at the gene body of the 345 

Arabidopsis nitrate transporter gene NRT2.1, the level of tri-methylation of lysine 27 on 346 

histone H3 (H3K27me3) is much higher at high N supply compared to the low N supply, 347 

whereas the levels of H3K4me3 and H3K36me3 showed an opposite response (Widiez et 348 

al., 2011). As mentioned above, H3K27me3 is associated with gene repression while 349 

H3K4me3 and H3K36me3 leads to gene activation. Therefore, the deposition of 350 
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H3K27me3 on the NRT2.1 locus mediated by HNI9/AtIWS1 is essential for feedback 351 

repression of NRT2.1 by high N supply. The involvement of H3K4me3 in regulation of 352 

gene expression under phosphate deficiency was also reported. The H3K4me3 mark can 353 

be recognized and bound by a plant homeodomain (PHD)-containing putative transcription 354 

factor AL6 which acts as a histone mark reader (Lee et al., 2009). Under phosphate 355 

deficient condition, the H3K4s at the promoter-proximal nucleosomes of the MYB 356 

transcriptional factor gene ETC1 are likely tri-methylated. AL6 then binds to the H3K4me3 357 

at the ETC1 locus through its PHD domain and activates the expression of ETC1, which 358 

might further regulate downstream gene expression and promote root hair elongation 359 

during phosphate deficiency (Chandrika et al., 2013a; Chandrika et al., 2013b). Not only 360 

methylation on histone 3 is involved in the nutrient stress response, the symmetric 361 

dimethylation on histone 4 arginine-3 (H4R3sme2) was also reported to be involved in 362 

regulation of Fe homeostasis. Global H4R3sme2 level increase under excess Fe but 363 

decrease in the absence of sufficient Fe supply, which requires the Shk1 binding protein 1 364 

(SKB1/AtPRMT5), a histone modification ‘writer’ catalyzing the symmetric dimethylation 365 

of histone H4R3 (Fan et al., 2014). SKB1 targets the chromatin of the Ib subgroup bHLH 366 

genes (AtbHLH38, AtbHLH39, AtbHLH100 and AtbHLH101) to regulate their transcription 367 

by deposition of H4R3sme2. Although SKB1 does not response to Fe status, the association 368 

of SKB1 to the chromatin of Ib subgroup bHLH genes and the H4R3sme2 levels on these 369 

loci decrease under limited Fe supply, and thus enhance the expression of these genes in 370 

order to enhance Fe uptake (Fan et al., 2014). Besides histone methylation, histone 371 

acetylation might also regulate expression under phosphate starvation. Knockdown of a 372 

histone deacetylase HDA19, which acts as a histone acetylation ‘eraser’, alters the 373 

expression of a subset of genes involved in the phosphate starvation response (Chen et al., 374 

2015). 375 

Although there is no direct evidence to support histone modifications involvement in 376 

regulation of sulphur homeostasis, histone methylations and acetylations are found in many 377 

genes involved in sulphate uptake and assimilation in Arabidopsis (Table 1), including 378 

H3K27me3 (Zhang et al., 2007), H3K4me3 and H3K36me3 (Luo et al., 2013), H3K23ac 379 

and H4K16ac (Lu et al., 2015), and H3K9ac (Zhou et al., 2010). Therefore, it can be 380 

assumed that histone modification may also play a role in maintaining sulphur homeostasis. 381 
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In fact, the interruption of the SAM cycle, which leads to abnormal SAM to SAH ratio, 382 

affects histone methylation (Fig. 1). Mutations of FPGS1, MTHFD1 and SAMS3, which all 383 

lead to lower SAM to SAH ratios, not only reduce global DNA methylation but also 384 

decrease H3K9me2 levels (Groth et al., 2016; Meng et al., 2018; Zhou et al., 2013). 385 

Furthermore, elevation of SAH has been shown to decrease the methylation of histone H3 386 

at the arginine 8 (H3R8me2a) site in brain of hyperhomocysteinemic rats (Esse et al., 2013), 387 

and methylation of H4R3me2a in the liver of cystathionine β-synthase-deficient mice (Esse 388 

et al., 2014).  389 

 390 

Noncoding RNA regulation 391 

Noncoding RNAs (ncRNAs) refer to functional RNA transcripts that do not code for 392 

proteins. ncRNAs comprise different groups of transcripts, including the ribosomal RNAs, 393 

transfer RNAs, and regulatory ncRNAs that play critical roles in transcriptional and post-394 

transcriptional regulation in eukaryotes. According to their length, ncRNAs can be divided 395 

into small ncRNAs (sRNAs), and long ncRNAs (lncRNAs). The micro RNAs (miRNAs), 396 

and small interfering RNAs (siRNAs), are two main groups of small regulatory RNAs with 397 

different biogenesis processes and functions (Axtell, 2013). ncRNAs that are longer than 398 

200 nucleotides are generally considered as lncRNAs (Kapranov et al., 2007). Many 399 

lncRNAs function as regulators of gene expression during development and responses to 400 

environmental stimuli (Kim and Sung, 2012), though very recent studies suggest some 401 

individual lncRNAs may not function as previously thought (Goudarzi et al., 2019). An 402 

example of lncRNA responding to nutritional stress is INDUCED BY PHOSPHATE 403 

STARVATIONA (IPS1), which prevents the cleavage of PHO2 by miRNA399 through a 404 

target mimicry mechanism (Bari et al., 2006). lncRNAs responsive to sulphur deprivation 405 

have been identified in microalgae Chlamydomonas reinhardtii (Li et al., 2016). However, 406 

lncRNAs are largely unexplored in plants, and their function in regulation of S homeostasis 407 

is still unknown though some of lncRNAs are conserved among species (Li et al., 2016). 408 

Similarly, the involvement of siRNAs in the response to S deficiency and maintenance of 409 

S homeostasis is less studied in plants. Here, we focus on the functions of miRNAs in 410 

regulation of gene expression in the maintenance of S homeostasis. 411 
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miRNAs are major post-transcriptional regulators of gene expression through guiding the 412 

degradation of target mRNAs and/or inhibiting the translation of target genes (Axtell, 2013; 413 

Jones-Rhoades et al., 2006). More than three hundred miRNAs have been identified in 414 

Arabidopsis by computational and experimental approaches, including those responding to 415 

nutrient deprivation (Kozomara and Griffiths-Jones, 2011). Among these miRNAs, the 416 

expression of 32 miRNAs was found to be down- or up-regulated under S deficient 417 

condition, accounting for approximately 10% of the total miRNAs identified in 418 

Arabidopsis so far (Liang et al., 2015). miR395 is one of the most well investigated 419 

miRNAs in response to S deficiency, and plays a central role in sulphate assimilation and 420 

allocation. miR395 was first identified by a computational approach, and was confirmed 421 

experimentally to be highly induced by sulphur starvation (Jones-Rhoades and Bartel, 422 

2004). Such induction requires redox signalling as the S deprivation induction of miR395 423 

is compromised in the GSH biosynthesis mutant cad2 and the thioredoxin reductase double 424 

mutant ntra ntrb, which are defective in glutaredoxin- and thioredoxin-dependent redox 425 

signaling, respectively (Jagadeeswaran et al., 2014). Furthermore, external 426 

supplementation of GSH suppresses the induction of miR395 by S deprivation.  427 

miR395 was predicted to target three ATP sulfurylase genes (ATPS1, ATPS3 and ATPS4), 428 

and a low-affinity sulphate transporter SULTR2;1 in Arabidopsis (Jones-Rhoades and 429 

Bartel, 2004). The cleavage of these four target genes by miR395 was validated 430 

experimentally in different tissues (Allen et al., 2005; Jagadeeswaran et al., 2014; Jones-431 

Rhoades and Bartel, 2004; Kawashima et al., 2009). Overexpression of the MIR395 gene 432 

strongly suppresses the accumulation of transcripts of these four genes and increases the 433 

sulphate level in shoots. Furthermore, knockout of ATPS1 and SULTR2;1, and knockdown 434 

of ATPS4, simultaneously phenocopies the high sulphate level of miR395-over-expressing 435 

plants, supporting the notion that miR395 targets to ATPS1, ATPS4 and SULTR2;1 (Liang 436 

et al., 2010). Although the cleavage of target genes by miR395 is clear, the transcript levels 437 

of the four target genes are not always negatively correlated with the level of miR395. 438 

miR395 is strongly induced by sulphate starvation in both roots and shoots, whereas the 439 

transcript levels of the four target genes show distinct responses to sulphate deficiency in 440 

roots and shoots. ATPS4 shows a canonical regulation by miR395 as its expression 441 

decreases in both roots and shoots following the induction of miR395 by sulphate 442 
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starvation (Jagadeeswaran et al., 2014; Liang et al., 2010). Target mimics of miR395 also 443 

leads to over-accumulation of ATPS4 transcripts under both sulphate sufficient and 444 

deficient conditions (Kawashima et al., 2011). The transcript levels of ATPS1, ATPS3 and 445 

SULTR2;1 in shoots decrease in response to sulphate deficiency as expected 446 

(Jagadeeswaran et al., 2014). However, in roots under sulphate deficient condition, ATPS1 447 

and ATPS3 maintain consistent expression levels (Jagadeeswaran et al., 2014), or are 448 

slightly induced, depending on the period of sulphate deficiency (Kawashima et al., 2011; 449 

Liang et al., 2010). SULTR2;1 is consistently strongly induced by sulphate deficiency in 450 

roots, even though miR395 is also induced (Jagadeeswaran et al., 2014; Kawashima et al., 451 

2011; Liang et al., 2010). The positive correlation between miR395 and SULTR2;1 452 

expression in roots is due to their non-overlapping expression pattern in the root vascular 453 

tissues. SULTR2;1 is specifically expressed in the xylem parenchyma and pericycle cells, 454 

whereas the expression of miR395 is restricted in phloem companion cells, which leaves 455 

the target mRNA of SULTR2;1 intact (Kawashima et al., 2009). 456 

There are four ATPS genes in the Arabidopsis genome. ATPS1, 3 and 4 encode the plastid-457 

localized isoforms, whereas ATPS2 dually encodes plastidic and cytosolic isoforms 458 

(Hatzfeld et al., 2000; Rotte and Leustek, 2000; Bohrer et al., 2015). The plastidic isoforms 459 

function in the initial activation of sulphate for assimilation into cysteine, while the 460 

cytosolic ATPS2 is involved in sulphation reaction for biosynthesis of glucosinolates 461 

(Hatzfeld et al., 2000). Interestingly, miR395 only targets plastidic isoform genes, but not 462 

the cytosolic ATPS2, indicating that miR395 specifically regulates sulphate assimilation in 463 

plastids, but not in the cytosol. Therefore, miR395 plays an important role in sulphate 464 

assimilation and root-to-shoot translocation of sulphate by regulating mRNA levels of ATP 465 

sulfurylase genes and SULTR2;1. Such regulation seems to be conserved among different 466 

species, such as rice (Guddeti et al., 2005; Jagadeeswaran et al., 2014; Yuan et al., 2016) 467 

and Brassica napus (Huang et al., 2010). miR395 is also induced in response to heavy 468 

metals such as arsenic (As) and copper (Cu), and is suppressed by nitrogen and carbon 469 

deficiency, suggesting broad functioning of miR395 in the regulation of gene expression 470 

in response to nutrient stresses (Jagadeeswaran et al., 2014; Liang et al., 2015). 471 

Interestingly, under phosphate limiting conditions miR399 is involved in the regulation of 472 

phosphate uptake and translocation through the targeting of PHO2 to maintain phosphate 473 
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homeostasis (Chiou et al., 2006; Fujii et al., 2005), further highlighting the importance of 474 

miRNAs in regulation of adaptation in response to nutrient deficiency. 475 

 476 

Conclusions and future perspectives 477 

Emerging evidence is starting to indicate the important roles of epigenetic regulation in 478 

controlling responses to nutrient stresses, and the maintenance of nutrient homeostasis in 479 

plants. miRNAs mediated gene silencing which is well-established to participate in the 480 

regulation of sulphate uptake and assimilation, whereas the examples of the involvement 481 

of DNA methylation and histone modifications in regulation of S homeostasis are still 482 

limited. Given that the universal methyl group donor SAM is derived from sulphate in 483 

plants, the reduction of SAM levels either due to impairment of its biosynthesis, or the 484 

interruption of folate metabolism, all leads to alterations in genome-wide DNA methylation, 485 

and in some cases also changes in histone methylation (Fig. 1). Therefore, a tight link 486 

between sulphur metabolism and DNA and histone methylation appears to exist in plants. 487 

Indeed, mutation of MSA1/SHM7 leads to a reduction of SAM levels and alters global DNA 488 

methylation, including the methylation level of several S homeostasis related genes, which 489 

triggers S deficiency response and enhances sulphate uptake and assimilation in the msa1-490 

1 mutant (Huang et al., 2016). Such enhancement of sulphate uptake and assimilation may 491 

be a feedback response to the reduction of SAM levels observed in this mutant. It is 492 

therefore necessary to detect whether a similar S deficiency response occurs in those folate 493 

metabolism related mutants with alteration of DNA and histone methylation due to the 494 

shortage of SAM. Several enzymes involved in SAM biosynthesis or metabolism have 495 

isoforms localized to the nucleus, including SAMS1/2/3 (Mao et al., 2015; Meng et al., 496 

2018) and MSA1 (Huang et al., 2016) for SAM biosynthesis, and SAHH1 and ADK1 for 497 

recycling SAM (Lee et al., 2012). It is therefore likely that SAM is synthesized in the nuclei 498 

to locally sustain the methyl group for DNA and histone methylation (Huang et al., 2016). 499 

The perturbation of such a nuclear SAM pool may then trigger S deficiency responses 500 

through unknown signalling pathways. 501 

Several studies have demonstrated that dynamic DNA methylation at cis-elements in 502 

promoter regions may influence the expression of nutrient responsive genes such as 503 



19 
 

SULTR1;1 (Huang et al., 2016) and several phosphate starvation responsive genes (Yong-504 

Villalobos et al., 2016; Yong-Villalobos et al., 2015). Such a relationship between gene 505 

expression and DNA methylation is largely based on their correlation, which might not 506 

necessarily reflect causality. With the development of epigenome editing tools that enable 507 

the specific methylation or demethylation of targeted cytosine residues in the promoter of 508 

the genes of interest (Gallego-Bartolome et al., 2018; Gallego-Bartolome et al., 2019), it 509 

is now possible to reliably establish the causality of DNA methylation status and 510 

transcriptional activity. Furthermore, most studies usually assess DNA methylation in 511 

whole roots and shoots or even in whole plants, which may mask functionally important 512 

heterogeneity among different cell types. Unique patterns of DNA methylation in specific 513 

cell types, or in a single cell, have been revealed (Kawakatsu et al., 2016; Li et al., 2019). 514 

It is thus necessary to determine cell-type specific or even single cell DNA methylation 515 

profiles to link DNA methylation and gene expression. The application of single cell 516 

methylome analysis techniques and precise epigenome editing tools will enable functional 517 

analyses of DNA methylation in gene expression, and allow the direct demonstration of its 518 

role in response to nutrient stresses. 519 
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Figure legend 

Fig. 1. The interconnection of sulphate assimilation, folate metabolism and the SAM cycle 

with the DNA and histone methylation. The sulphate uptake and assimilation pathway, the 

biosynthesis and turnover of folate and the SAM cycle were shown in the background in 

light green, light blue and orange, respectively. Interruption of pathways with enzymes 

highlighted in blue and red alters genome-wide DNA methylation, and mutation of 
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enzymes in red change histone methylation. Abbreviations for enzymes: ADK, adenosine 

kinase; APK, APS kinase; APR, APS reductase; ATPS, ATP sulfurylase; CBL, 

cystathionine β-lyase; CGS, cystathionine γ-synthase; DHFR, DHF reductase; DHFS, DHF 

synthase; DHPS, DHP synthase; γ-ECS, γ-glutamylcysteine synthetase; FPGS, 

folylpolyglutamate synthase; GSHS, glutathione synthetase; MS, methionine synthase; 

MTHFD1, bifunctional methylene THF dehydrogenase/methenyl THF cyclohydrolase; 

OAS-TL, OAS(thiol)lyase; SAHH, SAH hydrolase; SAMMT, SAM-dependent 

methyltransferase; SAMS, SAM synthetase; SAT, serine acetyltransferase; SHM, serine 

hydroxymethyltransferase; SiR, sulphite reductase; SOT, sulfotransferase; SULTR, 

sulphate transporter; SYN, 10-formyl THF synthetase. Abbreviations for compounds: Ado, 

adenosine; AMP, adenosine monophosphate; APS, adenosine 5’-phosphosulfate; Cys, 

cysteine; Cyst, cystathionine; DHF, dihydrofolate; DHP, dihydropteroate; Glun, 

polyglutamate; Hcy, homocysteine; Met, methionine; OAS, O-acetylserine; pABA, UDP-

glucose-p-aminobenzoate; PAPS, 3’-phosphoadenosine 5’-phosphosulfate; SAH, S-

adenosylhomocysteine; SAM, S-adenosylmethionine; Ser, serine; THF, tetrahydrofolate; 

γ-GluCys, γ-glutamylcysteine. 

Fig. 2. Whole genome methylation levels of Arabidopsis under sulphate and phosphate 

starvation conditions. (A) Methylation levels at all cytosines in the genome (Total C) and 

the CG, CHG and CHH sequence context under +S and -S conditions. Methylation level 

was determined by whole genome bisulfite sequencing (BS-Seq) of the shoots and roots of 

plants grown on MGRL agar media with 1.5 mM sulphate (+S) or without added sulphate 

(-S) for two weeks. (B) Methylation levels at all cytosines in the genome (Total C) and the 

CG, CHG and CHH sequence context under +Pi and -Pi conditions. Data were derived 

from Yong-Villalobos et al. (2015) and recalculated based on the raw data. Plants were 

grown hydroponically with 1 mM phosphate for 7 days and then transferred to hydroponic 

media containing 1 mM (+Pi) or 5 µM phosphate (-Pi) to be grown subsequently for 16 

days. Methylation level was determined by BS-Seq of the shoots and roots, respectively. 

Fig. 3. A potential model of dynamic DNA methylation in regulation of gene expression. 

The nutrient deficiency responsive genes are methylated at the cis-element in the promoter 

under sufficient nutrient condition. The methylation may prevent the binding of the 

transcriptional activator (TA) [upper panel in (A)] or recruit the transcriptional repressor 
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(TR) [upper panel in (A)] and thus inhibits gene expression. However, under nutrient 

deficient condition, the hypo-methylated promoter allows the binding of transcriptional 

activator to promote the transcription.   
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Table 1. Histone modifications of genes involved in sulphate uptake and assimilation. 

Gene ID 
Gene 

symbol 

Histone modifications 

H3K27me3 

[a] 

H3K4me3 

[b] 

H3K36me3 

[b] 

H3K23ac 

[c] 

H4K16ac 

[c] 

H3K9ac 

[d] 

Sulphate transporter 

At4g08620 SULTR1;1       

At1g78000 SULTR1;2       

At1g22150 SULTR1;3       

At5g10180 SULTR2;1       

At1g77990 SULTR2;2       

At3g51895 SULTR3;1       

At4g02700 SULTR3;2       

At1g23090 SULTR3;3       

At3g15990 SULTR3;4       

At5g19600 SULTR3;5       

At5g13550 SULTR4;1       

At3g12520 SULTR4;2       

ATP sulfurylase 

At3g22890 ATPS1       

At1g19920 ATPS2       

At4g14680 ATPS3       

At5g43780 ATPS4       

APS reductase 

At4g04610 APR1       

At1g62180 APR2       

At4g21990 APR3       

APS kinase 

At2g14750 APK1       

At4g39940 APK2       

At3g03900 APK3       

At5g67520 APK4       

Sulfite reductase 

At5g04590 SiR       

Serine acetyltransferase 

At5g56760 SERAT1;1       

At1g55920 SERAT2;1       

At3g13110 SERAT2;2       

At2g17640 SERAT3;1       

At4g35640 SERAT3;2       

O-acetylserine (thiol)lyase 

At4g14880 OASTL-A1       

At3g59760  OASTL-C       

At2g43750 OASTL-B       

At3g22460 OASTL-A2       

Cysteine synthase 

At3g03630 CS26       

At3g04940 CYSD1       

At3g61440 CYSC1       

At5g28030 CYSD2       
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Whole genome analysis of histone modifications was carried out by using chromatin immunoprecipitation 

(ChIP) coupled with high-density whole genome tiling microarrays (ChIP-chip), or ChIP coupled with high 

throughput sequencing (ChIP-seq). Genes involved in sulphate uptake and assimilation were extracted and 

shown in Table 1. Cells in grey background mean the presence of histone modifications. Data from: [a] Zhang 

et al., 2007; [b] Luo et al., 2013; [c] Lu et al., 2015; [d] Zhou et al., 2010.  
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Fig. 2. Whole genome methylation level of Arabidopsis under sulfate and phosphate starvation conditions. (A) Methylation
levels at all cytosines in the genome (Total C) and the CG, CHG and CHH sequence context under +S and -S conditions.
Methylation level was determined by whole genome bisulfite sequencing (BS-Seq) on the shoots and roots of plants grown
on MGRL agar media with 1.5 mM sulfate (+S) or without added sulfate (-S) for two weeks. (B) Methylation levels at all
cytosines in the genome (Total C) and the CG, CHG and CHH sequence context under +Pi and -Pi conditions. Data were
derived from Yong-Villalobos et al. (2015) and recalculated based on the raw data. Plants were grown hyponically with 1
mM phosphate for 7 days and then transferred to hydropic media containing 1 mM (+Pi) or 5 µM phosphate (-Pi) for 16
days. Methylation level was determined by BS-Seq on the shoots and roots, respectively.
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Fig. 3. A potential model of dynamic DNA methylation in regulation of gene expression. The nutrient deficiency responsive
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