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On the p-coverage problem on the real line
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In this paper we consider the p-coverage problem on the real line. We
first give a detailed description of an algorithm to solve the coverage
problem without the upper bound p on the number of open facilities.
Then we analyze how the structure of the optimal solution changes if
the setup costs of the facilities are all decreased by the same amount.
This result is used to develop a parametric approach to the p-coverage
problem which runs in O (pn logn) time, n being the number of clients.

Keywords and Phrases: computational complexity, dynamic pro-
gramming, parametric optimization, combinatorial optimization.

1 Introduction

A first version of this paper was written in 1991. It was inspired by the work of
Hassin and Tamir (1991), who used then-recent results in dynamic programming to
improve the complexity bounds of several median and coverage location models on
the real line. One of the results they used was the geometric approach that we had
introduced in a working paper which was later published (Wagelmans, van Hoesel
and Kolen, 1992). Another source of inspiration was a chapter on covering prob-
lems, which had been co-authored by Antoon (Kolen and Tamir, 1990) and pub-
lished in a book on discrete location theory. As location problems had also been
the topic of his dissertation (Kolen, 1982), this paper links Antoon’s early research
interests with our own. For several reasons, we never submitted this paper for pub-
lication and after sometime we realized that its topic would make it a perfect con-
tribution for a liber amicorum, a collection of essays and papers, at the occasion of
Antoon’s retirement as a full professor. Unfortunately, our farewell paper is pub-
lished much earlier than expected.

One of problems that Hassin and Tamir (1991) considered is the p-coverage prob-
lem, where – as usual – p refers to an upper bound on the number of open facilities.
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p-Coverage problem on the real line 17

They showed that if this upper bound is ignored (or redundant), the resulting prob-
lem is solvable in O(n log n) time. Because the p-coverage problem can be formulated
as a 0/1 linear program with a totally unimodular constraint matrix, an optimal
solution to the Lagrangean dual problem that results from relaxing the upper bound
constraint yields an optimal solution to the p-coverage problem. To find that opti-
mal solution a parametric method of Megiddo (1979) can be used, resulting in a
O(n2 log2 n) algorithm.

In this paper we present an algorithm that solves the p-coverage problem on the
real line in O(pn log n) time. After describing the problem in Section 2, we give a de-
tailed description of an algorithm to solve the coverage problem without the upper
bound on the number of open facilities (Section 3). This algorithm takes O(n log n)
time. We consider the actual p-coverage problem in Section 4. First we analyze how
the structure of the optimal solution changes if the setup costs of the facilities are
all decreased by the same amount. Then this result is used to develop a paramet-
ric approach to the p-coverage problem which runs in O(pn log n) time. In Section 5
we describe how the algorithm should be modified to obtain a O(pn) algorithm for
two special cases of the p-coverage problem. Section 6 contains some concluding
remarks.

2 Problem description

We consider the p-coverage problem in which n distinct points, v1 to vn, are located
on a line. These points represent both the set of clients and the set of potential
facility sites. To facilitate the exposition, we assume that the points are numbered
from left to right, i.e. j < m if and only if vj is located to the left of vm. Let d(vi , vj)
denote the distance between the points vi and vj . With the client at vi we associ-
ate the radius ri , which has the interpretation that this client can only be served by
facilities at vertices vj for which d(vi , vj)≤ ri . We will say that a client is covered by
a subset S of facilities, if S contains at least one facility that can serve that client.
The cost structure of the problem is as follows. If a facility is opened at point vj ,
a setup cost cj > 0 is incurred. If the client at vi is not covered by the set of open
facilities, a penalty of bi > 0 units has to be paid. The objective is to open facilities
such that total costs are minimized.

We will not explicitly deal with variants of the problem. For instance, one may
think of the problem in which the set of potential facility sites does not coincide
with the set of points where the clients are located or the problem in which several
clients with different radii are located at the same point. In most cases, it is easily
seen that those problems can be dealt with in a similar fashion as the one described
above.

It is easy to see that the n×n matrix A defined by

aij =
{

1 if d(vi , vj)≤ ri

0 otherwise

© 2007 The Authors. Journal compilation © 2007 VVS.



18 S. P. M. van Hoesel and A. P. M. Wagelmans

has the row consecutive 1’s property and that the following 0/1 linear programming
formulation describes the problem.

min
n∑

j =1

cjyj +
n∑

i =1

bizi (1)

s.t.
n∑

j =1

ayj + zi ≥1 for all i =1,…, n (2)

n∑
j =1

yj ≤p (3)

yj ∈{0, 1} for all j =1,…, n (4)

zi ∈{0, 1} for all j =1,…, n (5)

The constraint matrix of the above program is totally unimodular and therefore
we can replace (4) and (5) by non-negativity constraints. [Because of constraint (2)
and the fact that the objective function coefficients are non-negative, it is not neces-
sary to introduce upper bounds on the variables.] An optimal solution to the result-
ing linear programming problem can be found by solving the Lagrangean dual with
respect to (3):

max
�≥0

⎧⎨
⎩min

n∑
j =1

(cj +�)yj +
n∑

i =1

bizi −�p

⎫⎬
⎭ (6)

s.t.
n∑

j =1

ayj + zi ≥1 for all i =1,…, n (7)

yj ≥0 for all j =1,…, n (8)

zi ≥0 for all j =1,…, n (9)

It follows that an optimal solution of the above Lagrangean dual provides an opti-
mal solution to the p-coverage problem. The approaches followed by Hassin and
Tamir (1991) and in this paper are based on this fact. For fixed �, the resulting
problem can be viewed as a coverage problem without an upper bound on the num-
ber of open facilities. We will refer to such problems as relaxed covering problems.
As already pointed out by Hassin and Tamir, the special structure of the matrix A
allows these problems to be solved very efficiently. In Section 3 we will discuss in
detail an algorithm that solves the relaxed coverage problem in O(n log n) time.
© 2007 The Authors. Journal compilation © 2007 VVS.



p-Coverage problem on the real line 19

3 Solving the relaxed coverage problem

We will present a dynamic programming algorithm to solve the relaxed problem. In
a somewhat disguised form this algorithm already appeared in Hassin and Tamir
(1991). The explicit presentation as a dynamic programming algorithm will enable
us to make observations about the specific problem structure that is useful in devel-
oping our algorithm to solve the p-coverage problem.

The dynamic programming algorithm has n stages. We start with an empty cli-
ent set and in every stage one client is added to the current set. Then we consider
the coverage problem that results if only this set of clients is present (but we allow
facilities to be opened in any of the n points). The order in which the clients are
added to the set is determined as follows. Let f (i) and l(i) denote the first and last
columns, respectively, that have a 1 in row i of matrix A. Note that we may assume
that f (i) > 0, because aii =1. First permute the rows such that they appear in order of
non-decreasing l(i). This results in at most n blocks of rows all having the same l(i).
Subsequently, permute within each block the rows such that they appear in order
of non-decreasing f (i). This last step is only carried out for convenience of presen-
tation, but not really necessary. The matrix that results after permuting the rows of
A in this way will be denoted by D (see Figure 1).

It is easily checked that matrix D is in standard greedy form (cf. Kolen and Tamir,
1990), which implies that the relaxed coverage problem can be solved using a greedy
algorithm. Our dynamic programming algorithm is essentially this greedy algorithm
applied to the special case where the constraint matrix has the row consecutive 1’s
property.

The row order of D defines the order in which we will consider the clients in the
dynamic programming algorithm. From now on, we let ui denote the client that cor-
responds to the ith row of matrix D. We accordingly re-index the cost coefficients
bi , i.e. bi corresponds to ui . Furthermore, we redefine f (i) and l(i) to be the first
and last columns, respectively, that have a 1 in row i of matrix D (instead of A).
We also define l(0) ≡ 0, l(n+1) ≡ n+1 and for j ∈{1, . . ., n} we let ij be such that

Fig. 1. Structure of matrix D.

© 2007 The Authors. Journal compilation © 2007 VVS.



20 S. P. M. van Hoesel and A. P. M. Wagelmans

l(ij −1) < j ≤ l(ij), i.e. row ij of D is the first row with a 1 in a column greater than
or equal to j. Note that we have not altered the column order. Therefore, we will
use our original notation vj , j =1, . . ., n, to refer to the potential facilities.

We are now able to describe the dynamic programming algorithm in more detail.
Let Z(i, j), 1≤ i, j ≤n, denote the optimal solution value of the coverage problem in
which the client set is {u1, . . ., ui} and the largest indexed open facility is restricted
to be vj . Furthermore, we define Z(0, 0) ≡ 0. Now consider client ui and suppose
that Z(i −1, j) is known for all j ∈{0, . . ., l(i −1)}. First suppose that l(i)= l(i −1).
It is obvious that if a facility that covers ui is already open, then this client can be
added at no extra cost, i.e.

Z(i, j)=Z(i −1, j) if f (i)≤ j ≤ l(i) (10)

Because ui is not covered by facilities vj with j < f (i), we will in that case incur
the cost bi . The best thing we can do is to cover the other clients optimally. Hence,

Z(i, j)=bi +Z(i −1, j) if 0≤ j < f (i) (11)

Using (10) or (11) we are able to compute Z(i, j) from the already known value
Z(i − 1, j), j =1, . . ., l(i), in a straightforward way. Now suppose that l(i − 1) < l(i),
i.e. i is the first row of a block of rows k all having the same l(k) value. In this case,
we first determine Z(i −1, j) for j = l(i −1)+1, . . ., l(i). If facilities vj with j > l(i −1)
are opened we will incur the cost cj , but none of these facilities covers any of the
first i − 1 clients. Therefore, it is not difficult to see that in an optimal policy one
incurs additional costs equal to min0≤t≤l(i−1){Z(i −1, t)}. Hence, it follows that

Z(i −1, j)= cj + min
0≤t≤l(i−1)

{Z(i −1, t)} if j > l(i −1) (12)

It is now obvious how the values Z(i, j) can be computed recursively for all i ∈
{1, . . ., n} and j ∈{0, . . ., n}. The optimal value of the coverage problem is equal to
min0≤j≤n{Z(n, j)}. To show how an optimal set of open facilities can be determined,
we first prove the following.

Lemma 1. Let r ∈{2, . . ., n} and consider any subset S of {vr, . . ., vn} that contains vr.
Suppose the facilities in S are opened and let T ⊆{v1, . . ., vr−1} be a choice of addi-
tional open facilities. Then T is an optimal choice if and only if T represents an optimal
solution for the coverage problem in which the set of potential facilities is {v1, . . ., vr−1}
and the client set is {u1, . . ., uir−1}.

Proof. It follows from the structure of matrix D that the clients that are covered
by {vr, . . ., vn} correspond exactly to the rows with an index greater than or equal
to ir. A subset S ⊆{vr, . . ., vn} with vr ∈S, may only cover a subset of these clients.
However, we will show that any client with an index larger than i which is not cov-
ered by S is also not covered by {v1, . . ., vr−1}. Hence, these clients can be ignored
© 2007 The Authors. Journal compilation © 2007 VVS.



p-Coverage problem on the real line 21

when determining an optimal set T , i.e. choosing T optimally is equivalent to mak-
ing an optimal choice for the coverage problem with potential facilities v1 to vr−1

and clients u1 to uir−1.
Consider a client um, m > ir, that is not covered by S. Because of the structure of

D, it holds that l(m)≥ l(ir)≥ r. Furthermore, by definition dm, l(m) =1. Now suppose
that um is covered by vp, p≤ r −1, then dmp =1. Because D has the row consecutive
1’s property it follows that also dmr =1. This is a contradiction with the assumption
that um is not covered by S, because vr ∈S. Hence, any client um, m > ir, not covered
by S is also not covered by {v1, . . ., vr−1}. This completes the proof. �

Note that an optimal choice of T in Lemma 1 does only depend on the lowest
indexed facility in S. We will now use this fact to construct an optimal solution of
the coverage problem. Let j0 be such that Z(n, j0)=min0≤j≤n{Z(n, j)}, then we know
that vj0 is the largest indexed open facility in some optimal solution. We can deter-
mine the other open facilities in order of decreasing index as follows. Let S denote
the current set of facilities that have already been chosen to be opened in the opti-
mal solution. If r :=min{j|vj ∈S}, then Lemma 1 states that we should add to S the
largest indexed open facility in an optimal solution of the coverage problem in which
one has to choose facilities from {v1, . . ., vr−1} to serve {u1, . . ., uir−1}. It is not diffi-
cult to see that the optimal value to the latter problem is min0≤k≤l(ir−1){Z(ir −1, k)}
and that the facility that should be added to S is one for which this minimum is
attained. This facility – which need not be unique – is an optimal choice for the
first open facility to the left of vr given that vr is open. We will refer to it as an opti-
mal predecessor of vr. If it is not optimal to open a facility to the left of a facility,
we define its optimal predecessor to be v0. For all facilities j with l(ir −1) < j ≤ l(ir),
an optimal predecessor is found while determining the minimum in (12). By simply
storing its index at that time, an optimal solution of the coverage problem can be
constructed later on in the way indicated above.

Let us define an optimal predecessor of vn+1 to be a facility that has the largest
index among the open facilities in some optimal solution. As already indicated in
the preceding paragraph, a facility may have more than one optimal predecessor. In
particular, we have the following result.

Lemma 2. Let 0≤h < j < k < m≤n+1 be such that vh is an optimal predecessor of vm

and vj is an optimal predecessor of vk, then vh and vj are both optimal predecessors of
both vk and vm.

Proof. We know that

• ik ≤ im,
• j ≤ l(ik −1) and Z(ik −1, j)=min0≤t≤l(ik−1){Z(ik −1, t)}, and
• h≤ l(im −1) and Z(im −1, h)=min0≤t≤l(im−1){Z(im −1, t)}.

© 2007 The Authors. Journal compilation © 2007 VVS.



22 S. P. M. van Hoesel and A. P. M. Wagelmans

Because j ≤ l(ik −1)≤ l(im −1) it follows that

Z(im −1, h)≤Z(im −1, j) (13)

and h < j ≤ l(ik −1) implies

Z(ik −1, j)≤Z(ik −1, h). (14)

For all t ∈{ik, . . ., im −1} we have l(t)≥ j. Using the consecutive 1’s property this
implies that client ut is covered by {v1, . . ., vj} if and only if it is covered by vj . There-
fore,

Z(im −1, j)=Z(ik −1, j)+
∑
t∈J

bt (15)

where J ≡{t|ik ≤ t < im and dtj =0}. Analogously one can prove

Z(im −1, h)=Z(ik −1, h)+
∑
t∈H

bt (16)

where H ≡{t|ik ≤ t < im and dth =0}. Again from the consecutive 1’s property it fol-
lows that dtj =0 implies dth =0 for t ≥ ik, i.e. J ⊆H . Therefore, using (13), (15) and
(16),

Z(ik −1, j)=Z(im −1, j)−
∑
t∈J

bt ≥Z(im −1, h)−
∑
t∈H

bt =Z(ik −1, h) (17)

which combined with (14) yields

Z(ik −1, h)=Z(ik −1, j)= min
0≤t≤l(ik−1)

{Z(ik −1, t)} (18)

Hence, vh is an optimal predecessor of vk. The fact that vj is an optimal prede-
cessor of vm follows from similar arguments. �

Lemma 2 will be used in Section 4 to develop our algorithm for the p-coverage
problem. In the remainder of this section we will present an efficient implementa-
tion of the dynamic programming algorithm for the relaxed coverage problem. This
implementation is based on the following result.

Lemma 3. Let i ∈{2, . . .n} and suppose that j < k ≤ l(i −1) and Z(i −1, j)≥Z(i −1, k),
then Z(h, j)≥Z(h, k) for all h= i, . . ., n.

Proof. Consider a fixed h ∈ {i, . . ., n}. By the same arguments as in the proof of
Lemma 2 one can show

• Z(h, j)=Z(i −1, j)+�t∈J bt where J ≡{t|i ≤ t ≤h and dtj =0},
• Z(h, k)=Z(i −1, k)+�t∈K bt where K ≡{t|i ≤ t ≤h and dtk =0}, and
• K ⊆J .

The statement now follows easily. �
© 2007 The Authors. Journal compilation © 2007 VVS.
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The importance of Lemma 3 is that it implies that if Z(i − 1, j) ≥ Z(i − 1, k) for
j < k ≤ l(i −1), vj may be ignored as a potential facility from stage i onwards. In that
case, we will refer to vj as a dominated facility.

We are now able to present the algorithm in full detail. First note that the small-
est/largest indexed facility that is able to serve a given client can be found by binary
search among the facilities. Hence, it takes O(n log n) time to determine a compact
representation of matrix A. Obtaining matrix D requires O(n) time if a bucket sort
procedure is used twice.

At any point in time we let Q be the index set of relevant facilities, i.e., initially
Q ={0} and at the end of stage i − 1 it contains all non-dominated j ∈{0, . . ., l(i −
1)}. We store the elements of Q in a balanced tree (cf. Aho, Hopcroft and Ull-
man, 1974). This enables us to perform the following operations in O(log n) time:
add an element to Q, delete an element from Q and find the smallest element of Q
which is greater than a given value. To keep track of the relevant Z(i, j) values we
introduce variables �j , j =0, . . ., n, which are initialized to 0 and which at the end
of stage i −1 satisfy

Z(i −1, j)=
∑

t≤j, t∈Q

�t

for all j ∈ Q. Note that the fact that Q contains the indices of the non-dominated
facilities implies �j > 0 for all j ∈Q. Moreover, let jmin be the smallest element of Q,
then

min
0≤j≤l(i−1)

{Z(i −1, j)}=Z(i −1, jmin)=�jmin .

Furthermore, we explicitly store the value Z(i −1, l(i −1)) in the variable ZL.
We will now show how to update Q, ZL and the �j-variables such that they pos-

sess similar properties at the end of stage i. First we check whether l(i)= l(i −1). If
this is not the case then we add l(i −1)+1 to l(i) to Q, set

�l(i−1)+1 := cl(i−1)+1 +�jmin −ZL and �j := cj − cj−1

for all j = l(i −1)+2, . . ., l(i). Using (3) it is easy to see that

Z(i −1, j)=
∑

t≤j, t∈Q

�t

for all elements j of the current set Q. Furthermore, we update ZL in this case by
setting it equal to Z(i, l(i))= cl(i) +�jmin .

From (10) and (11) we see that

Z(i −1, j)=
∑

t≤j, t∈Q

�t

must be increased by bi for all j ∈Q with j < f (i), and should remain the same for all
j ∈Q with f (i)≤ j ≤ l(i). If g denotes the smallest element of Q greater than or equal
© 2007 The Authors. Journal compilation © 2007 VVS.



24 S. P. M. van Hoesel and A. P. M. Wagelmans

to f (i), then this can be effectuated by setting �jmin :=�jmin +bi and �g :=�g −bi . At
this point

Z(i, j)=
∑

t≤j, t∈Q

�t for all j ∈Q ⊆{0, . . ., l(i)}.

However, Q may contain indices of dominated facilities. Note that k ∈Q is dom-
inated if the smallest j ∈ Q with j > k has �j ≤ 0. It is easy to see that this is only
possible for j ∈ O ≡{g, l(i − 1)+1, . . ., l(i)}. To update Q we consider the elements
of O in decreasing order (although, as we will see, some elements may be skipped).
Let r be the current element under consideration and let k be the largest element in
Q with k < r. If �r ≤0, then k is deleted from Q and we set �r :=�r +�k. We repeat
this until �r > 0. Next we consider the largest element of O∩Q that is smaller than r.
After this procedure, the indices of all dominated facilities have been removed from
Q and stage i of the algorithm has been completed.

To derive the complexity of the algorithm we first note that in every stage the
total amount of work can be split into three parts:

(a) a number of operations that depend on the number of elements added to
Q at the start of the stage;

(b) a number of operations that depend on the number of elements deleted from
Q during the stage; and

(c) a number of operations associated with finding g and the corresponding up-
date of the �j-variables.

Clearly, the number of operations in (c) is O(log n) per stage and the operations
in (a) and (b) can be performed in O(log n) time per element added to Q, or deleted
from Q. There are n stages and each of the n indices is added exactly once to Q and
deleted at most once. Therefore, the total complexity of the algorithm is O(n log n).

4 Solving the p-coverage problem

As already mentioned in Section 2, the approach to solve the p-coverage problem
proposed by Hassin and Tamir (1991) is based on the observation that it suffices
to find an optimal solution to the Lagrangean dual problem that results when the
constraint on the number of open facilities is dualized. This fact is also used in the
approach to be presented here. Consider the parametric relaxed coverage problem
where the cost of opening facility vj is equal to cj +�n

i =1bi −� for all j =1, . . ., n, and
� ranges from 0 to �n

i =1bi . It is easy to see that for �=0 it is optimal to keep all facil-
ities closed. The optimal value of the parametric problem is a non-increasing piece-
wise linear concave function of �. Let �∗ be the largest value in [0, �n

i =1bi ] for which
there exists an optimal solution with at most p open facilities, then this solution is
optimal for the p-coverage problem. The latter follows from the fact that �n

i =1bi −�∗

is the value of the optimal Lagrange multiplier. Hence, solving the p-coverage prob-
lem boils down to finding �∗. This can be done in several ways. Hassin and Tamir
© 2007 The Authors. Journal compilation © 2007 VVS.
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indicate that an approach of Megiddo (1979) can be used. This approach has a
computational complexity equal to the square of the running time of the algorithm
to solve the relaxed coverage problem, i.e. it takes O(n2 log2 n) time. However, there
exist other methods with lower complexities. For instance, it is easily seen that the
optimal value function has at most n breakpoints on [0, �n

i =1bi ]. Using a well-known
method often attributed to Eisner and Severance (1976), this entire function can
be determined in O(n2 log n) time. Then �∗ can be found as the value for which the
absolute value of the slope of this function changes from a value less than or equal
to p to a value greater than p. We also note that Hassin and Tamir provide a gen-
eral method to solve location problems on the real line. This method − which is not
based on the Lagrangean relaxation – solves the p-coverage problem in O(n2) time.

We propose a parametric approach to the p-coverage problem that differs from
the parametric approaches mentioned above in the fact that it explicitly exploits the
problem structure. This will enable us to determine the optimal value function of
the parametric problem for increasing � in an on-line fashion. Given the optimal
solution for �=0 in which all facilities are closed, we determine the largest value
of �, say �1, for which this solution is optimal. Because �1 is a breakpoint of the
optimal value function, there exists for that value an alternative optimal solution
with at least one open facility. Actually, it will be shown that we may assume that
the alternative solution has exactly one open facility and we will find such a solu-
tion as a by-product of determining �1. Subsequently, we determine the largest �,
say �2, for which the just found solution is optimal. Again it turns out that there
must exist an alternative optimal solution for �2 with exactly two open facilities. We
continue in this way until we find a solution that has p open facilities. It is easy to
see that this must be the optimal solution of the p-coverage problem. So actually
we are solving a complete family of coverage problems in which the bound on the
number of open facilities ranges from 0 to p. The value �∗, although of secondary
importance, can be determined as the largest value of � for which this solution is
optimal. Of course, as soon as �t ≥�n

i =1bi for some t ≤p we conclude that there are
not more than p open facilities in an optimal solution of the relaxed problem and
we terminate the algorithm.

By now it will be clear that the most important part of our algorithm is a procedure
that calculates for a given optimal solution of a relaxed coverage problem with cost
coefficients bi and c̄j , i, j =1, . . ., n, the maximal amount that can be subtracted from
all c̄j values simultaneously such that the solution remains optimal. This resembles the
problem in which one wants to determine the maximal amount by which the setup
costs in the well-known Wagner–Whitin economic lot-sizing model can be reduced
such that a given production plan remains optimal. In van Hoesel and Wagelmans
(2000) it is shown how that problem can be solved in linear time. It turns out that a
similar approach can be used for the current problem, yielding a O(n log n) algorithm.
The latter implies a O(pn log n) algorithm for the p-coverage problem.

Our approach is as follows. Let vk(1) < · · ·< vk(q) be the open facilities in an optimal
solution of the relaxed coverage problem with cost coefficients bi and c̄j , i, j =1, . . ., n.
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Furthermore, define k(q +1)≡n+1. For r ∈{1, . . ., q +1} we consider the coverage
problem in which the set of open facilities with an index greater than or equal to
vk(r) is restricted to be exactly {vk(r), . . ., vk(q)}. Define �r as the smallest non-nega-
tive value of � with the property that if the setup costs are decreased to c̄j − � for
all j =1, . . ., n, the restricted coverage problem above has an optimal solution with
at least q +1 open facilities (this is equivalent to having at least r open facilities to
the left of vk(r)). Note that for r =q +1 there is no constraint on the choice of open
facilities. This means that �q +1 is the smallest non-negative value such that when
all setup costs are decreased by it, there exists an optimal solution of the coverage
problem with at least q +1 open facilities. Hence, �q +1 is the value we want to deter-
mine. When r increases, the corresponding coverage problems become less restricted
and this implies that the �r values are non-increasing in r. Our algorithm uses this
fact to determine the �r values in order of increasing index.

For convenience, we define k(0) ≡ 0 and �0 ≡∞. Theorem 1 is basically a char-
acterization of how the structure of the optimal solution changes when the setup
costs are decreased sufficiently.

Theorem 1. Let r ∈ {1, . . ., q +1} and suppose �r <�r−1, then there exists an opti-
mal solution for the restricted coverage problem corresponding to �r with the following
properties (see also Figure 2):

• there are exactly r open facilities v�(1) < · · ·< v�(r) with an index less than k(r),
and

• there exists an m, 0≤m < r, such that �(t)=k(t) for all t =1, . . ., m, and k(t −1) <
�(t) < k(t) for all t =m+1, . . ., r.

Proof. Because of Lemma 1 the coverage problem corresponding to �r boils down
to choosing facilities from {v1, v2, . . ., vk(r)−1} to serve the client set {u1, . . ., uir−1}.
From now on, we will therefore focus on the latter problem. Note that v1, . . ., vk(r−1)}
is an optimal solution to this problem for �=�r. Consider any solution with at
least r open facilities that is optimal for �=�r and denote the indices of its open
facilities by h(1) < h(2) < · · ·< h(s), where s ≥ r. Let vk(m1) be the largest indexed facil-
ity in the intersection of {v1, . . ., vk(r−1)} and {vh(1), . . ., vh(s)} (if this intersection is
empty, take m1 =0). Furthermore, let m2 be such that k(m1)=h(m2), then it
follows from Lemma 1 that we can also take {vk(1), . . ., vk(m1−1)} ∪ {vh(m2), . . ., vh(s)}
as an optimal solution. Because �r <�m1 all optimal solution in which vh(m2) = vk(m1)

Fig. 2. Structure of optimal solution in Theorem 1.
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is open have at most m1 − 1 open facilities to the left of vk(m1). Therefore it holds
that

|{vh(1), . . ., vh(m2−1)}|≤m1 −1= |{vk(1), . . ., vk(m1−1)}|,
which implies that also the just constructed optimal solution has at least r open
facilities.

If vh(m2 +1) to vh(s) are such that k(m1 + t − 1) < h(m2 + t) < k(m1 + t) for all
t =1, . . ., s − m2, then we have obtained a solution with the desired structure (see
Figure 3).

Otherwise, there exists at least one t∈{m1 +1, . . ., r} such that the (possibly empty)
set {vk(t−1)+1, . . ., vk(t)−1} does not contain exactly one element of {vh(m2 +1), . . ., vh(s)}.
Consider the largest t with that property, say t1.

Suppose first that {vk(t1−1)+1, . . ., vk(t1)−1} contains more than one element of
{vh(m2 +1) , . . ., vh(s)} and let vh(t2) and vh(t2 +1) be the two largest indexed of those (see
Figure 4).

Because vk(t1−1) is an optimal predecessor of vk(t1) and vh(t2) is an optimal prede-
cessor of vh(t2 +1), it follows from Lemma 2 that vk(t1−1) is an optimal predecessor
of vh(t2 +1). This implies that {vk(1), . . ., vk(t1−1)} ∪ {vh(t2 +1), . . ., vh(s)} is also an opti-
mal solution. Moreover, this solution has the structure stated in the theorem (see
Figure 5).

For the case that vk(t1−1)+1, . . ., vk(t1)−1} does not contain any element of {vh(m2 +1),
. . ., vh(s)} we will deduce a contradiction. From the fact that |{vk(1), . . ., vk(m1)} ∪
{vh(m2 +1), . . ., vh(s)}|≥ r it follows immediately that |{vh(m2 +1), . . ., vh(s)}|≥ r −m1, and
therefore there must be at least one t ∈{m1 +1, . . ., t1 − 1} such that {vk(t−1)+1, . . .,

Fig. 3. Solution with the desired structure.

Fig. 4. {vk(t1−1)+1, . . ., vk(t1)−1} contains more than one element of {vh(m2 +1), . . ., vh(s)}.

Fig. 5. Solution with the desired structure.
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Fig. 6. {vk(t1−1)+1, . . ., vk(t1)−1} does not contain any element of {vh(m2 +1), . . ., vh(s)}.

vk(t)−1} contains more than one element of the set {vh(m2 +1), . . ., vh(s)}. Let t3 be the
largest index with this property and let vh(t4) and vh(t4 +1) be the two largest indexed
elements in {vk(t−1)+1, . . ., vk(t)−1} ∩ {vh(m2 +1), . . ., vh(s)} (see Figure 6). Note that
|{vk(t3−1)+1, . . ., vk(t3)−1} ∩ {vh(t4 +2), . . ., vh(s)}| ≤ 1 for all t ∈ {t3 +1, . . ., r}, and strict
inequality holds for t = t1. Hence the set {vh(t4 +1), . . ., vh(s)} has at most r − t3 ele-
ments, which implies that |{vk(1), . . ., vk(m1−1)}∪{vh(m2), . . ., vh(t4)}|≥ t3. Using Lemma
2 we deduce that vh(t4) is an optimal predecessor of vk(t3). Therefore {vk(1), . . .,
vk(m1−1)}∪{vh(m2), . . ., vh(t4)} is an optimal choice of open facilities to the left of vk(t3)

in any solution in which vk(t3) is open. However this leads to a contradiction,
because by definition of �t3 there does not exist such an optimal solution with at
least t3 open facilities for �=�r <�t3 . This completes the proof. �

Our algorithm to determine �q +1 consists of q +1 stages, where in the rth stage
�r is calculated. To this end, we will determine for every j ∈{k(r − 1)+1, . . ., k(r)}
the value W (j), which is defined as follows:

W (j)= the optimal value when �=0 of the problem in which clients u1 to
uik(r)−1have to be served at minimum cost by r facilities from
{v1, . . ., vk(r)}, under the condition that exactly one facility is chosen
from the set {vk(t−1)+1, . . ., vk(t)} for every t =1, . . ., r −1, and vj is the
facility chosen from {vk(r−1)+1, . . ., vk(r)}

Note that W (k(r))= c̄k(r) +Z(ik(r) − 1, k(r − 1)). The reason why these values are
important is the following. Assume that �r <�r−1 and consider the problem in which
clients u1 to uik(r)−1 have to be served by facilities from {v1, . . ., vk(r)−1} . Theorem 1
states that when all setup costs are reduced by �r, then there exists an optimal solu-
tion in which for every t =1, . . ., r − 1 the set {vk(t−1)+1, . . ., vk(t)} contains exactly
one open facility, and furthermore exactly one facility from {vk(r−1)+1, . . ., vk(r)−1} is
opened. It is not difficult to see that this optimal solution has value mink(r−1) < j < k(r)

{W (j)}− r�r. Because �r is the smallest non-negative value of � for which this solu-
tion is optimal and Z(ik(r) −1, k(r−1))− (r−1)� is the value of the optimal solution
for all �∈ [0, �r], it holds that

min
k(r−1) < j < k(r)

{W (j)}− r�r =Z(ik(r) −1, k(r −1))− (r −1)�r (19)

or equivalently

�r = min
k(r−1) < j < k(r)

{W (j)}−Z(ik(r) −1, k(r −1)). (20)
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Equality (20) only holds if �r <�r−1. Because �r ≤ �r −1, it follows that �r can
be calculated as the minimum of the already known value �r−1 and mink(r−1) < j < k(r)

{W (j)}−Z(ik(r) −1, k(r −1)).
Let us define for a fixed r ∈ {1, . . ., q − 1} the efficient facilities as those vj in

{vk(r−1)+1, . . ., vk(r)} for which W (j) < W (t) for all t = j +1, . . ., k(r). We will now dis-
cuss how the W (j) values can be determined efficiently. Consider the first stage. For
every j ∈{1, . . ., k(1)−1} the value W (j) is equal to c̄j plus the sum of the bi values
of those clients ui ∈ {u1, . . ., uik(1)−1} that cannot be served by vj . These values are
implicitly calculated and stored using �j variables as in the algorithm described in
Section 3. This is simply done by considering the clients u1 to uik(1)−1 in any order.
If client ui is considered, then bi is added to �1 and �l(i)+1 and the same quantity
is subtracted from �f (i). Actually, we are only interested in the W (j) values of facil-
ities that are efficient and these can subsequently easily be determined. If vjmin is the
smallest indexed efficient facility, then min0 < j < k(1){W (j)}=�jmin ; hence, �1 =�jmin .

At the beginning of stage r, 1 < r ≤ q +1, we have already calculated �r−1 and
W (h) for every efficient h ∈ {k(r − 2)+1, . . ., k(r − 1)}. Note that these values are
defined with respect to the client set {u1, . . ., uik(r−1)−1}. Calculating the W (j) values
for j ∈{k(r −1)+1, . . ., k(r)} is done in two steps. In the first step we determine for
all j ∈{k(r −1)+1, . . ., k(r)} an optimal predecessor in {k(r −2)+1, . . ., k(r −1)} as
follows. Consider for a fixed j ∈{k(r − 1)+1, . . ., k(r)} and all h ∈{k(r − 2)+1, . . .,
k(r −1)} the quantities Y (h, j), defined as follows:

Y (h, j)=W (h) plus the sum of bi values of those clients in {uik(r−1) , . . ., uij−1}
that cannot be served by vh.

It is easily seen that a facility vh for which Y (h, j) is minimal is an optimal prede-
cessor of vj . To determine this minimum it suffices to consider only those facilities vh

that are efficient at the start of stage r. The latter follows from arguments similar to
those in the proof of Lemma 3 and the fact that every client ui ∈{uik(r−1) , . . ., uij−1} has
l(i)≥k(r −1)≥h for all h∈{k(r −2)+1, . . ., k(r −1)}. Moreover, suppose j ∈{k(r −
1)+1, . . ., k(r)} and h ∈{k(r − 2)+1, . . ., k(r − 1)} are such that Y (h, j) ≥ Y (t, j) for
some t, h < t ≤k(r −1). Using again the same arguments, it follows that for any m∈
{j +1, . . ., k(r)} it is not necessary to consider Y (h, m) when determining
mink(r−2) < t≤k(r−1){Y (t, m)}. In that case we will refer to vh as being a non-efficient
predecessor. To calculate mink(r−2) < t≤k(r−1){Y (t, j)} for all j ∈{k(r − 1)+1, . . ., k(r)}
we proceed as follows. Add the clients uik(r−1) to uik(r)−1 in order of increasing in-
dex to the current client set. For each client this boils down to adjusting at most
two �h values corresponding to facilities vh in {vk(r−2)+1, . . ., vk(r−1)} which are cur-
rently efficient predecessors. After a client has been added, this set of efficient pre-
decessors is updated if necessary. Suppose the client just added is ui and j ∈{k(r −
1)+1, . . ., k(r)} is such that i = ij − 1, then mink(r−2) < t≤k(r−1){Y (t, j)} equals the �h

value of the currently smallest indexed efficient predecessor. This minimum value is
stored at this point in order to be used in the next step.
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In the second step of calculating W (j) for all j ∈{k(r − 1)+1, . . ., k(r)}, we take
into consideration the clients that were ignored in the first step. For given j those
clients are uij to uik(r)−1 . Note that l(i) ≥ j for all i ∈ {ij , . . ., ik(r)−1}. Therefore, it is
easy to verify that W (j) is equal to c̄j +mink(r−2) < t≤k(r−1){Y (t, j)} plus the bi val-
ues of those clients ui ∈ {uik(r−1) , . . ., uik(r)−1} for which f (i) > j. Hence, for given i ∈
{ik(r−1), . . ., ik(r) −1} we should include bi in W (j) for all j with ik(r−1) +1 ≤ j < f (i).
This justifies the following procedure. Initially, we take the �j values such that

j∑
t =k(r−1)+1

�t = c̄j + min
k(r−2) < t≤k(r−1)

{Y (t, j)}.

Then we consider every i ∈ {ik(r−1), . . ., ik(r) −1} with f (i) > ik(r−1) +1 and set
�k(r−1)+1 :=�k(r−1)+1 +bi and �f (i) : =�f (i) − bi . At the end of this procedure the
�j values represent the values to be calculated and the value �r is easily obtained.
The r th stage ends with determining the efficient facilities in {vk(r−1)+1, . . ., vk(r)}.

After the q +1 stage we have computed the desired value �q +1. If we have stored
the smallest r for which �r =�q +1 and the optimal predecessor of every facility, it is
easy to construct a solution with q +1 open facilities that is optimal for �=�q +1.

The analysis of the complexity of the above algorithm is similar to the complex-
ity analysis in Section 3. Most of the work done in stage r is linearly bounded by
the cardinalities of the sets {k(r − 2)+1, . . ., k(r − 1)}, {k(r − 1)+1, . . ., k(r)} and
{ik(r−1), . . ., ik(r) −1}. Summing up over all stages yields a O(n) bound on the num-
ber of operations involved. The only exception on this bound is the amount of work
needed in the first step of the stages to determine which �h values should be adjusted
when a client is added to the client set. As in the algorithm in Section 3, this takes
O(log n) time per client. Hence, the algorithm runs in O(n log n) time. The p-cover-
age problem can be solved by running the algorithm p times, i.e. in O(pn log n) time.
In Section 5 we consider two special cases that allow a lower running time.

Several facts, that follow immediately from the algorithm presented in this sec-
tion, are worth mentioning. First of all, we have found that the p-coverage problem
on the line always has an optimal solution with exactly p open facilities, unless the
optimal solution to the relaxed problem has less than p open facilities. Actually, this
is a consequence of the fact that if the relaxed coverage problem has alternative opti-
mal solutions with q1 and q2 open facilities, where 0≤q1 < q2 ≤n, then there exists
an optimal solution with q3 open facilities for every q3 with q1 < q3 < q2. The follow-
ing property is also related to this fact. Consider the coverage problem in which all
setup costs are equal to 0 and let B(q) denote the optimal value of the problem in
which the number of open facilities is exactly q, q ∈{0, . . ., n}. Hence B(q) gives the
minimal total penalty costs as a function of q, the number of open facilities. The
following property holds.

Theorem 2. B(q) is a convex function of q.
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Proof. Consider the parametric problem coverage problem in which all setup costs
are equal to �n

i =1bi −�, where � ranges from 0 to �n
i =1bi . Clearly, for �=0 it is opti-

mal to keep all facilities closed and for �=�n
i =1bi an optimal solution is to open all

facilities. Moreover, we have seen that there exist values 0≤�′
1 ≤�′

2 ≤· · ·≤�′
n ≤�n

i =1bi

such that there exists an optimal solution with q, 0 < q < n, open facilities if and only
if �∈ [�′

q, �′
q +1]. For a fixed q ∈{1, . . ., n} it holds that

B(q)+q

(
n∑

i =1

bi −�′
q

)
=B(q −1)+(q −1)

(
n∑

i =1

bi −�′
q

)
(21)

or equivalently

�′
q =B(q)−B(q −1)+

n∑
i =1

bi (22)

Analogously, it holds that

�′
q +1 =B(q +1)−B(q)+

n∑
i =1

bi (23)

Combining (22) and (23), and the fact that �′
q ≤�′

q +1, yields

B(q)−B(q −1)≤B(q +1)−B(q) (24)

Because this inequality holds for every q ∈{1, . . ., n}, this proves the statement. �

5 Two special cases

Hassin and Tamir (1991) show how two special cases of the relaxed coverage prob-
lem can be solved in O(n) time, while it takes O(pn) time to solve the corresponding
p-coverage problems. In this section we will briefly indicate how the same bounds
can be obtained after a slight modification of the algorithms presented in Sections 3
and 4. We will only discuss the relaxed coverage problems, because the modifications
for the p-coverage problems are similar.

5.1 Special case I

ri = r for all i =1, . . ., n. It is easy to see that in this case the matrix D can be taken
equal to the matrix A, because f (i) and l(i) are both monotonically non-decreasing
functions of i in the original indexation. Moreover, the latter also implies that deter-
mining f (i) and l(i) for all i =1, . . ., n can be done in O(n) time. Instead of storing
the elements of Q – the indices of the non-dominated facilities – in a balanced tree,
we now use a doubly linked list. Furthermore, we use a pointer to indicate g, which
is in stage i the smallest element of Q greater than or equal to f (i). Again using the
monotonicity of f (i), it is not difficult to see that finding the correct value of g in
every stage can be done in a computational effort that is overall O(n).
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5.2 Special case II

bi =∞ for all i =1, . . ., n. Hence, in this problem every client has to be served. We
will show that instead of matrix A, we may use matrix A′ which is defined as follows.
Let fc(j), j =1, . . ., n, denote the smallest row such that aij =1 for all i = fc(j), . . ., j
(note that ajj =1). Similarly, let lc(j) denote the largest row such that aij =1 for all
i = j, . . ., lc(j). Column j of the (0, 1)-matrix A′ is defined by a′

ij =1 if and only if
fc(j) ≤ i ≤ lc(j). Hence, A′ has the column consecutive 1’s property. This, combined
with the fact that A has the row consecutive 1’s property, implies that A′ has also
the row consecutive 1’s property. Define f ′(i) and l ′(i) to be the first and last column
in which row i of matrix A′ contains a 1. We have the following results with respect
to the structure of A′.

Lemma 4. fc(j) and lc(j) are monotonically non-decreasing in j.

Proof. Suppose there exists a j < n and an i such that fc(j) > i = fc(j +1). Because
a′

ij =0 and j ≥ fc(j) > i, it follows that j must be greater than l ′(i). Hence, also j +1
is greater than l ′(i) and therefore a′

i, j +1 =0. This contradicts fc(j +1)= i. One can
prove analogously that lc(j) is monotonically non-decreasing in j. �

Lemma 5. f ′(i) and l ′(i) are monotonically non-decreasing in i.

Proof. Analogous to the proof of Lemma 4. �

From Lemma 4 it follows that a compact representation of matrix A′ can be ob-
tained in O(n) time, while Lemma 5 implies that the same bound holds for solving
the coverage problem w.r.t. matrix A′ (cf. Special case I). Hence, to show that the
linear time bound applies to Special case II, it now suffices to prove that replacing
A byA′ does not really alter the problem.

Lemma 6. Let S be a feasible choice of open facilities, i.e. every client is covered by
S. Then S is still feasible if all facilities vj ∈ S are restricted to serve only clients vi

with fc(j)≤ i ≤ lc(j).

Proof. It suffices to show that if we let every client be served by an open facility that
is nearest to it, then every vj ∈S serves only clients vi with fc(j)≤ i ≤ lc(j). Suppose
this is not true, then we may assume w.l.o.g. that there exists a client vi that is being
served by facility vj , while i > lc(j). Because aij =1, it follows that ahj =0 for some h
with j < h < i. Client vh is located between vj and vi , and therefore it holds that

d(vj , vi)=d(vj , vh)+d(vh, vi) > rh +d(vh, vi) (25)
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Let vl be the facility that serves vh. Clearly, l ≤ j is impossible because if vj cannot
serve vi , then this would also hold for vl . If j < l ≤ i then we would obtain a contra-
diction with the fact that client vi is being served by an open facility that is closest.
Hence, the only possibility left is l > i, in which case

d(vi , vl)=d(vh, vl)−d(vh, vi)≤ rh −d(vh, vi) (26)

Combining (25) and (26) yields d(vi , vl) < d(vi , vj) and this contradicts the fact that
vj is a facility closest to vi . �

6 Concluding remarks

We have shown how the p-coverage problem on the real line can be solved in
O(pn log n) time using a parametric approach that exploits the problem structure. Our
approach differs significantly from the one proposed by Hassin and Tamir (1991) and
has a lower complexity for problem instances in which the upper bound on the num-
ber of open facilities is small compared with the number of potential facilities.

In van Hoesel and Wagelmans (2000) a similar approach as in this paper is used to
design algorithms for several economic lot-sizing problems in which the setup costs
can be viewed as linear functions of a single parameter. Hassin and Tamir (1991)
already showed that location problems on the real line and the economic lot-siz-
ing problem allow similar solution techniques. In particular, we would like to point
out here that Lemma 2 of this paper states a property which resembles Wagner and
Whitin’s (1958) planning horizon theorem, while Lemma 1 can be viewed as an ana-
logue of Theorem 4 in Wagner and Whitin (1958). It seems worthwhile to identify
other dynamic programming problems for which such structural properties hold.
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