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RESUMO 

Nos dias de hoje, surge cada vez mais a necessidade de se recorrer a uma maior 

qualidade e quantidade de variados produtos, para que seja possível responder ao rápido 

crescimento da população. Assim desenvolvem-se novas tecnologias, das quais, uma das mais 

recentes é a utilização de nanomateriais (NMs) em diversas áreas, como na cosmética, 

alimentação, biomedicina, indústria, entre outras, designando-se assim de NMs manufaturados 

(produzidos deliberadamente pelo Homem).  

Os NMs contêm propriedades distintas ao nível da estrutura levando a um aumento da 

área superficial relativamente ao volume e, consequentemente, a um aumento das moléculas 

na superfície, sendo que estas características modificam a reatividade, melhorando muitas das 

suas propriedades.  Porém, os NMs têm suscitado grande interesse por parte dos investigadores, 

pois o seu efeito para a saúde humana ainda não é bem conhecido e alguns estudos sugerem a 

sua implicação no desenvolvimento de cancro. Apesar da grande variedade de estudos 

efetuados acerca da genotoxicidade dos NMs, os resultados obtidos acerca do perigo que estes 

podem constituir para o ser humano não são concordantes. Este facto deve-se às características 

que os NMs apresentam e à sua capacidade de as alterar, consoante os meios em que se 

encontram e das condições em que são utilizados como, por exemplo, o tamanho, estado de 

aglomeração/agregação, ligação a proteínas, presença de metais de transição entre outros. 

Assim a avaliação dos efeitos dos NMs levando em consideração as especificidades destes, tem 

surgido como uma nova área da toxicologia, a nanotoxicologia. Nesta área, verifica-se que existe 

na literatura acerca da toxicidade dos NMs falta de concordância, pelo que surge a necessidade 

de se efetuarem mais estudos recorrendo a metodologias padronizadas e a NMs bem 

caracterizados, de maneira a conseguir-se comparar resultados.  

O objetivo deste trabalho foi investigar a cito- e genotoxicidade de NMs, na perspetiva 

da nanotoxicologia, contribuindo para a avaliação da sua segurança. O estudo envolveu NMs 

desenvolvidos com o intuito de aplicação médica, o Poli(metil metacrilato) (PMMA) e um novo 

NM recentemente desenvolvido a partir desse, o Poli(metil metacrilato)-eudragit (PMMA-eud). 

Foram ainda investigados dois NMs manufaturados frequentemente utilizados na indústria, um 

NM de dióxido de titânio (TiO2) e outro de nanotubos de carbono de parede múltipla (MWCNTs).  

Os NMs analisados foram previamente caracterizados com detalhe relativamente às 

suas propriedades físico-químicas e as suspensões para a exposição das linhas celulares foram 

preparadas de acordo com metodologias padronizadas. Para avaliação da citotoxicidade, 



 

ii 

 

utilizaram-se os ensaios clonogénico e contagem de células, bem como a análise de índice 

replicativo. O efeito genotóxico foi avaliado através do ensaio do cometa e do ensaio do 

micronúcleo com bloqueio da citocinese, realizado de acordo com as orientações internacionais 

para testes de genotoxicidade. 

O efeito do PMMA e PMMA-eud foi avaliado em fibroblastos de ratinho (células L929) 

através do ensaio do micronúcleo em que foram determinados também os índices proliferativo 

e replicativo para avaliação da citotoxicidade. Na experiência preliminar, verificou-se um atraso 

ou um bloqueio do ciclo celular quando as células foram expostas por 48h a PMMA-eud, pelo 

que se optou por uma exposição de 54h no ensaio seguinte que não revelou efeitos citotóxicos 

nas células expostas a nenhum dos dois NMs. Quanto à genotoxicidade destes dois, somente os 

PMMA induziram um aumento na frequência dos micronúcleos 54h após exposição, mas apenas 

em duas concentrações, sem um efeito de dose-resposta. Estes resultados sugerem que a 

aplicação médica de PMMA-eud pode ser vantajosa em relação ao PMMA, uma vez que 

apresenta menos efeitos adversos. A diferença obtida entre estes dois NMs pode ser devida à 

carga de superfície, que é distinta entre os dois, ou ainda a uma maior capacidade do PMMA-

eud para formar mais aglomerados, relativamente à PMMA, tornando estas últimas partículas 

mais pequenas, podendo facilitar a entrada dentro das células. 

Relativamente aos NMs manufaturados, TiO2 e MWCNTs utilizaram-se as células do 

epitélio pulmonar (A549) para a sua avaliação de toxicidade, uma vez que a via mais provável de 

exposição é a via respiratória. A citotoxicidade destes NMs foi avaliada através do ensaio 

clonogénico. Após 8 dias de exposição o TiO2 revelou-se ligeiramente citotóxico apenas numa 

concentração, enquanto os MWCNTs foram citotóxicos em todas as concentrações analisadas, 

sendo possível delinear uma curva de dose-resposta. No entanto, nos ensaios de citotoxicidade 

realizados após exposição de 24h ou de 48h (contagem de células e índices proliferativo e 

replicativo), não foram observados efeitos citotóxicos. Para a avaliação dos efeitos genotóxicos 

causados por estes NMs, foram avaliadas as quebras de ADN em cadeia simples e cadeia dupla 

após 24 horas de exposição, assim como as quebras cromossómicas durante uma exposição de 

48 horas através dos ensaios do cometa e do micronúcleo respetivamente. Através do ensaio 

do cometa, observou-se um aumento nos danos no ADN das células expostas por 24h a TiO2, 

que era dependente da concentração. No entanto não se observou genotoxicidade no ensaio 

do micronúcleo após exposição por 48h a este NM. 

 No que respeita ao TiO2, este NM de forma cristalina anatase, mostrou causar um 

aumento nos danos de ADN no ensaio do cometa. Este resultado, foi coerente com outros 
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estudos efetuados anteriormente utilizando um outro TiO2 na forma anatase, sugerindo que 

esta propriedade físico-química, é importante para a genotoxicidade deste NM. Quanto aos 

MWCNTs, não se verificou nenhum efeito genotóxico nos dois ensaios efetuados. Os resultados 

negativos obtidos nos MWCNTs, podem dever-se à forte capacidade de aglomeração.  

 Com este estudo, podemos concluir que a avaliação das propriedades físico-químicas 

dos NMs é um fator importante relativamente à avaliação dos efeitos tóxicos destes. Pequenas 

modificações de um NM podem condicionar o seu efeito adverso, pelo que são necessários mais 

estudos para compreender os mecanismos relevantes, permitindo no futuro desenvolver NMs 

sem efeitos negativos para a saúde humana. Por sua vez, é importante prosseguir estudos de 

genotoxicidade utilizando metodologias padronizadas a partir de NMs de referência para 

garantir a sua utilização segura.  
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ABSTRACT 

The nanomaterials (NMs) have distinct structural properties, namely their size and 

increased surface area/volume ratio, and these characteristics change their reactivity, improving 

the applications in biomedicine, cosmetic as well as in industry. However, these properties may 

also lead to different toxicological consequences, such as the development of cancer.  

This project aimed to contribute to the safety evaluation of NMs that are used or being 

developed for human applications, using nanotoxicology approaches. The study focused in 

Poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)-eudragit (PMMA-eud) NMs, 

used in the biomedical field for drug delivery, and titanium dioxide (TiO2) and multi-walled 

carbon nanotubes (MWCNTs), that are frequently used in industry. 

Following the preparation of the dispersion of the NMs, previously characterized in 

detail, the cytotoxic effects of the NMs were analyzed in cell lines using clonogenic assay, cell 

counting assay, proliferation and replication indexes. The comet and the cytokinesis-blocked 

micronucleus assays were used to investigate genotoxicity. 

The effects of PMMA and PMMA-eud were evaluated in mouse fibroblasts (L929) and 

after 54 hours of exposure, no impact on cell cycle progression or cytotoxicity was observed for 

any of the NMs. PMMA revealed genotoxic effects while PMMA-eud was negative. 

Concerning TiO2 and MWCNTs, a pulmonary cell line (A549) was used. The clonogenic 

assay showed high cytotoxicity of MWCNTs while TiO2 had low cytotoxicity, 8 days after 

exposure. However, the cytotoxicity assays using 24 or 48 h exposure did not reveal any 

cytotoxicity of the NMs. TiO2 induced genotoxicity, with a dose-dependent increase in DNA 

damage detected by comet assay 24 h after exposure, while MWCNTs were negative. There was 

no increase in the micronucleus frequency after TiO2 or MWCNTs, showing the absence of 

clastogenic or aneugenic effects. 

The present study showed that the NMs physicochemical properties may determine 

their toxicological effects. 

 

 

Key words: nanomaterials, genotoxicity, cytotoxicity, Poly(methyl methacrylate), Eudragit RL 

100, titanium dioxide, multi-walled carbon nanotubes. 
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1 INTRODUCTION 

 

The term NM is defined by European Commission as “a natural material, accidently 

produced or manufactured that contains loose particles, aggregated or agglomerated, in which 

50% or more of the particles present in the particle size distribution, have one or more external 

dimensions in the range 1nm-100nm” (Comission, 2011). However, other international 

authorities consider broader ranges of sizes for NMs and have released other definitions 

(SCENIHR, 2010). 

NMs can have several origins: natural, resulting from volcanic eruptions and fires or 

produced by viruses; or anthropogenic if they originated from human activities, such as refining 

processes, automobile combustion and food preparation. NMs can also be synthesized 

deliberately by Man with a specific purpose, being then called manufactured NMs (Louro and 

Borges, 2013). 

The NMs have distinct and attractive structural properties, such as small size and 

increased surface area relatively to volume and, increased number of atoms/molecules in the 

surface (Louro and Borges, 2013). These characteristics change the reactivity of the NMs, 

improve magnetic, optical and mechanical properties relatively to materials with larger 

dimensions, but with the same physicochemical composition (Oberdorster, 2010). Due to these 

characteristics, NMs have been recently used in several areas. In fact, due to the fast growth of 

the human population and the increase in the consumption of products, the need to improve 

the quantity and quality of new technologies arises. One of this technology was the development 

and large scale production of NMs (Louro and Borges, 2013). These have been used in the last 

decade in many different fields, such as pharmaceuticals, cosmetics, chemistry, computer 

engineering, food, paints, electronics, sports, and biomedical applications and imaging (Mittal 

and Pandey, 2014). For example, the colorless sunscreens contain insoluble titanium dioxide and 

zinc oxide nanoparticles. These sunscreens filter UV light more efficiently than microsized (>100 

nm) particles.  Furthermore, these particles when combined with organic UV filters has a 

synergistic effect of UYV scattering (particles) with the UV-absorption (organic UV filters), which 

permitted the development sunscreen with high (>30) sun protection factors (Nohynek and 

Dufour, 2012). As reported by Smolkova et al., the synthetic amorphous silica (E551) has been 

used for many years to clear beer and wines, as an anti-caking agent. The titanium dioxide is 

used as an additive is categorized as E171. This additive is used as white colorant, more 
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specifically as white-colored sauces and dressings, and non-dairy creamers (Smolkova et al., 

2015). On the other hand, the NMs can be used in nanomedicine, for example in drug delivery; 

poly(methyl methacrylate) is used to deliver antibiotics locally that have application in 

prevention or treatment in orthopedic infections (Bettencourt and Almeida, 2014). 

The NMs have elicited more interest by scientists because their health effects are not 

well known. A major concern is that their specific physicochemical characteristics can lead to 

genotoxic effects such as an increase in the development of cancer (Andujar et al., 2011). As a 

result, more studies need to be performed, in order to be able to ensure a safe application of 

NMs during all of their life cycle, and to protect the environment (Louro and Borges, 2013). 

 

1.1 NANOTOXICOLOGY: THE TOXICITY OF THE NANOMATERIALS 

As referred, the distinct structural properties of the NMs change their reactivity and this 

fact may have implications on their biological effects. Figure 1 shows the influence of NMs 

properties on several cellular processes and their biological effects. 

 

  

 

 

 

 

 

 

 

 

 

 Considering these specific characteristics, nanotoxicology has emerged as a recent area 

of toxicological science that investigate the adverse effects of NMs on living organisms and the 

Figure 1. NMs properties and their biological effects (Louro et al., 2015). 
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ecosystems. The in vitro and in vivo assays are used to identify the potential hazard and then to 

establish a dose-response relationship (when possible) following exposure to NMs (Oberdorster, 

2010). 

 To understand the nanotoxicological potential it is necessary to know the 

characterization of each NM. It has been reported that within each group of closely related NMs, 

distinct biological effects (cytotoxicity and genotoxicity) occur in human cells (Tavares et al., 

2014), suggesting the importance of testing each NM, instead of assuming a similar effect based 

on similar chemical composition.  

 Furthermore, in biological media, the surface of the NMs will get in contact with proteins 

and other biomolecules resulting in the formation of a dynamic protein corona whose 

composition varies over time due to continuous protein association and dissociation as well as 

changes in the environment (Louro et al., 2015) 

 The changes that occur in physicochemical properties of the NMs are very important. 

The aggregation or agglomeration are important factors to evaluate the toxicology of NMs. The 

aggregates consists of primary particles joined by strong chemical bond (covalent); the 

agglomerates involves the primary particles that are joint by van der Waals weak forces, their 

properties being strongly influenced by medium (in liquid or air) (Louro and Borges, 2013). The 

nanoparticles are able to interact with biomolecules such as proteins, nucleic acids, biological 

metabolites and lipids. Both in liquid medium and in air, it is possible to determine the actual 

size of nanoparticles, as well as the biological interactions or the deposition site (Oberdorster, 

2010; Oberdörster et al., 2005). 

 Suspension of NM in a serum, cell culture or surfactant-coating vehicle is sometimes 

employed to assist disaggregation of the NMs. To reduce the aggregation/agglomeration and 

measure the size of NMs, a process using ultrasonication and immediate use of the NM has been 

established by NANOGENOTOX project (Jensen et al., 2011). In addition, to analyze the 

dispersion of NMs after the dispersion procedure, determining the average size of the particles, 

Dynamic Light Scattering (DLS) measurement can be used. The DLS methodology is used to 

measure the distribution of size of particles in suspension. It is based on the use of a light ray 

that focuses in suspension that contains the NMs. When the light focuses in the nanoparticles, 

variations occurs or “speckles” in the intensity of the scattered light. These are caused by 

differences in the phases of the waves scattered by different particles. Then, the variations of 

the intensity of the scattered light are measured through a small pinhole, and it is possible to 
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tell how fast the scattering particles are diffusing over a distance equal to the wavelength of 

scattered light (Boyd et al., 2011; Dhawan and Sharma, 2010). 

 In summary, when performing nanotoxicology studies it is essential to consider 

information regarding the physicochemical properties of the test NMs, but also on their 

behavior in the biological systems. 

 

1.2 GENOTOXICITY OF THE NANOMATERIALS 

Genotoxicity studies provide the estimation of different types of DNA damage after 

exposure to xenobiotics are important for risk assessment of potential carcinogens (Dobrzynska 

et al., 2014). It has been suggested that NMs can cause genotoxicity by direct interaction with 

DNA or indirectly by reactive oxygen species (ROS) induction or toxic ions released by soluble 

nanoparticles (Magdolenova et al., 2013). The majority of nanoparticles can cross cell 

membranes and some can even reach the nucleus by diffusion, or through the nuclear pores 

interacting directly with the DNA molecules or nuclear proteins. A study using carbon 

nanoparticles showed an interaction between these nanoparticles and DNA, using Escherichia 

coli. Carbon nanoparticles linked to single strain DNA, indicating that these nanoparticles could 

interfere with replication (Magdolenova et al., 2013). 

 When nanoparticles interact directly with DNA, they can cause genetic instability, 

contributing to the development of carcinogenic processes. Hypothetically, NMs penetration 

ability is higher than their non nanometric analogs, due to its small size, which allows them to 

cross cell membranes and thus reach the nucleus. In addition, the NMs that not have this ability 

to cross the nuclear membrane, may interact with the same nuclear DNA and proteins during 

the mitotic process, causing structural chromosome damage (chromosome breaks, clastogenic 

activity) and numerical chromosome loss (aneugenic activity) (Magdolenova et al., 2013). This 

happens by the interaction of the nanoparticles with the mitotic spindle, centrioles or associated 

proteins. Huang et al. demonstrated that TiO2 have the ability to affect any function of the 

mitotic apparatus, leading to loss or gain of chromosomes in daughter cells (Huang et al., 2009). 

 Furthermore, damage to DNA bases can occur such as modification (oxidation) adducts 

in DNA, double strand breakage, crosslinks or structural changes (Magdolenova et al., 2013). 

 The most investigated type lesion at the nuclear level is the DNA oxidation, due to the 

fact that in many studies, an increase in the production of ROS following exposure to NMs has 

been observed. The main product resulting from this oxidation is 8-oxoguanine (8-OxoG) 
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produced during oxidative stress, which is highly mutagenic and consequently a potential 

carcinogen. NMs can also interact with proteins involved in processed such as DNA replication, 

transcription or repair (Magdolenova et al., 2013). 

 Indirect interactions with DNA, for example, NMs deposition in tissues can lead to the 

recruitment of neutrophils and macrophages to the site of contact, causing inflammatory 

response. This inflammatory response causes oxidative stress in cells, leading to the production 

of ROS; this reaction may in turn, cause changes in the genome of adjacent cells, producing 

secondary genotoxic effects. ROS may interact with DNA, causing breaks or lesions to purines 

and pyrimidines. These lesions may lead to mutations due to incorrect pairing during replication, 

being a potential carcinogen (Magdolenova et al., 2013). 

 In situations where the inflammation is chronic, the genotoxic stress will be lasting, 

resulting in an accumulation of genetic changes that facilitate the process of cell transformation 

leading to malignant phenotype. However, NMs do not necessarily cause an inflammatory 

response. In the absence of this, NMs can induce genotoxic effects primarily through interaction 

with cellular components, such as mitochondria (inducing the formation of ROS) and NADPH 

oxidases linked to the cell membrane, or even across the depletion of oxidants (Louro and 

Borges, 2013). 

 To evaluate the effects of the NMs, both in vitro and in vivo assays are performed, 

requiring the collection of the NMs most relevant physical and chemical characteristics (Louro 

and Borges, 2013). As described in the previous section (nanotoxicology), this information is 

critical when choosing which studies and routes of administration are to be used.  

 The great diversity and nonconformity of results between the various genotoxicity 

studies done to date, is due to several features such as the origin of NM, the method of 

preparation, the protocols used, the experimental conditions (physical and chemical 

specifications such as pH, temperature, presence of impurities or irradiation), the treatment 

regimen, the type of cell line or animal model that is used, the concentration and the exposure 

time (Shukla et al., 2011). An important aspect to retain is the adsorption of proteins on the 

nanoparticle surface and this complex nanoparticle-protein is commonly designated as the 

nanoparticle-protein corona. This complex can influence the biological reactivity of the 

nanoparticles. The corona is formed due to a multifactorial process and not only depends on the 

characteristics of nanoparticles, but also on the interacting proteins and the medium. For 

example, the pre-coating of pulmonary surfactant proteins has been shown to influence the 
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subsequent adsorption of plasma proteins on the surface of multi-walled carbon nanotubes 

(Saptarshi et al., 2013). 

 Due to the lack of agreement among the several studies, there has been a combined 

effort by international organizations such as the Center for Disease Control (CDC), the 

Organization for Economic Co-operation and Development (OECD) and the European Union 

(EU), in order to promote projects and working groups focused on ensuring the correct use of 

NMs (Louro and Borges, 2013). Thus, the area of nanotoxicology has been developed, as an 

important component of the field of public health in order to assess the adverse effects of NMs 

on the human body and the environment (Oberdorster, 2010). OECD recommended a battery 

of assays to support regulatory approval of pharmaceutical and chemical compounds, but to the 

assays for testing NMs are not yet well defined. Due to physicochemical characteristics of NMs, 

some assays that are commonly used to test genotoxicity have been changed, because the 

increased reactivity of NMs may potentially increase the probability of interactions and 

interference with these assays (OECD, 2014).  

 Among the most commonly used tests to investigate the genotoxicity of NMs are the in 

vitro Mammalian Cell Micronucleus Test (OECD, 2010b) and the comet assay (Landsiedel et al., 

2009). 

 The micronucleus consists in nuclear material deriving from the total or partial loss of 

chromosomes. At the telophase, a nuclear envelope forms around the chromosomes and their 

fragments, which then assume a morphology similar to, but smaller than the major nuclei; this 

structure is designated micronucleus and provides information regarding both break of 

chromosomes as the loss thereof. There is also the possibility that nucleoplasmatic bridges are 

formed between the nuclei of a binucleated cell. This is probably due to the formation of 

dicentric chromosomes: the two centromeres are pulled to opposite poles of the cell, resulting 

in bridges covered by the nuclear membrane (Fenech, 2000). An increase in the frequency of 

micronucleated cells after exposure to a chemical, as compared with the basal frequency of 

micronucleated cells in unexposed control cells is an indicative of a genotoxic effect. 

Furthermore, an increased risk of cancer development has been related to a higher frequency 

of micronucleated cells (Bonassi et al., 2011). 

 Although the micronucleus assay is commonly recommended for genotoxicity testing, it 

has been discussed if it could be applied to NMs. Due to some factors, the NMs can interfere 

with this assay so, some adaptations have been done in the micronucleus assay. The 
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cytochalasin B is a chemical agent that has the effect to block the cytokinesis, because it inhibits 

actin polymerization that is required for the formation of the microfilament ring, which 

constricts the cytoplasm and prevents separation the daughter nuclei cells after mitosis, forming 

binucleated cells. The majority of binucleated cells can show one, or more micronuclei indicating 

losses or breakage of chromosomes (OECD, 2010b; Fenech, 2000). In addition, some authors 

reported that cytochalasin B also blocks the endocytosis, inhibiting the uptake of nanomaterials 

into the cells, and due to this fact, the cells were incubated with NMs 6 hours before addition of 

cytochalasin B to ensure their uptake (Magdolenova et al., 2012). OECD recommend that the 

chemicals that are being studied are removed after cytochalasin B addition; with NMs it is not 

possible to do this, because NMs remain adsorbed to cells after being washes (Magdolenova et 

al., 2012) 

 To evaluate genotoxicity at DNA level, a straightforward methodology use the single-cell 

gel-electrophoresis assay, or comet assay; this method represents a technically simple, relatively 

cheap, fast and sensitive technique and can be applied to virtually all cell types without the need 

of cell culture (Collins et al., 2008). It detects single and double strand breaks in DNA (Tice et al., 

2000); additionally it may be modified to detect oxidative damage of bases and even DNA repair 

(Collins et al., 2008). In the comet assay, the cells are embedded in agarose on a glass slide, and 

are lysed to remove membranes and soluble components, leaving DNA attached to the nuclear 

matrix, designated “nucleoid”. Electrophoresis (a very alkaline solution) causes DNA loops 

containing breaks to extend toward the anode as a “comet tail”. The percentage of DNA in the 

tail is directly related with the frequency of DNA breaks (Louro et al., 2015). In order to 

determine the presence of oxidative DNA lesions, specific bacterial enzymes are used in the 

modified comet assay, such as endonuclease-III (Endo-III) and formamidopyrimidine-DNA-

glycosylase (FPG) (Collins et al., 2008). The FPG allows the conversion of oxidative lesions in 

strand breaks that are detected with the comet assay, increasing its sensitivity. However, some 

authors state that the NMs can interfere with the comet assay (Magdolenova et al., 2012; Stone 

et al., 2009). 

 Cytotoxicity may interfere with the outcome of the genotoxicity studies since it can 

mislead interpretation of the results of the comet or micronucleus assay. For that reason, it is 

generally recommended to perform cytotoxicity assays not only to complement information 

from genotoxicity studies, but also to define the dose-range to investigate. 
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1.3 NANOMATERIALSS FOR MEDICAL APPLICATIONS (PMMA AND PMMA-EUDRAGIT NMS) 

 As mentioned above, the pharmaceutical area has invested in the development of new 

NMs. 

 In the latest years, polymeric nanoparticles have been widely used in the therapeutic 

and diagnostic areas, and their biomedical impact depends on their size, surface and 

composition. These particles have a great value in drug delivery because they “are 

biocompatibile, present colloidal stability in physiological medium and have the ability to 

encapsulate active agents, targeting specific cells or tissues” (Juneja and Roy, 2014). 

Poly(methyl methacrylate) (PMMA) is a manufactured and biocompatible polymer and 

is very hydrophobic, but becomes less hydrophobic when in contact with water. It “is a non-

biodegradable synthetic homopolymer of methylmethacrylate monomer (MMA)” (Figure 2) 

(Bettencourt and Almeida, 2014). 

 

 

 

 

 

  Figure 2. Chemical structure of (A) MMA monomer and (B) PMMA monomer (Bettencourt and Almeida, 2014) 

 

PMMA began being used as a particulate transporter material and in the development 

of nanoparticles for vaccination (Bettencourt and Almeida, 2012; Juneja and Roy, 2014). 

Currently, there are other biomedical applications for PMMA, as a permanent implant for 

intraocular lens subsequent cataract surgery and prosthetic material in dental and mandibular 

corrections (Juneja and Roy, 2014). In addition, PMMA is used as a transporter for local delivery 

of antibiotics to local infections (Bettencourt and Almeida, 2014). Furthermore, particles of 

PMMA can carry many drugs, such as anti-inflammatory, antioxidants, antihypertensive, 

antidiabetics, anti-histamines and antibiotics (Bettencourt and Almeida, 2012). 

It has been shown that the release of the drugs through the PMMA particles is not 

complete. This may be due to the hydrophobic character of these particles, as well as the fact 
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that PMMA have a low porosity, which in turn difficult the diffusion of water into the matrix 

(Bettencourt and Almeida, 2014). Thus several strategies have been developed to try to 

overcome this problem; one of these strategies was mixture two polymers, for example powders 

PMMA and Eudragit RL 100 (eud). This polymer has the capacity to increase its volume (swelling) 

and in physiologic pH values is insoluble, becoming a good polymer for a better drug release 

from PMMA (Bettencourt and Almeida, 2012; Ferreira et al., 2015).  

 Eudragit is a poly(meth)acrylate and is used as a pharmaceutical excipient. Blends of 

PMMA-eud have a greater potential as carrier materials than PMMA NMs alone, thus will 

allowed a higher release of drug from the NMs. Therefore, PMMA-eud seems to be promising 

NM to be used in the biomedical area. However, before such application its safety should be 

analyzed, according to the guidelines of international Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human use (European Medicines Agency, 

1998; ICH, 1995) and of WHO/IPCS (Eastmond et al., 2009). 

 The characterization of PMMA and PMMA-eud (constituted by 70% of PMMA and 30% 

of eud) used in present study involved several parameters such as particles size distribution, 

surface morphology, surface charge evaluation, hydrophobicity and chemical composition, has 

been describe elsewhere (Graça, 2014) and is presented in Materials and Methods section. 

It is very important to consider biocompatibility in order to guarantee the safe use of 

PMMA (Caputo et al., 2009). Some studies revealed possible inflammatory reactions of PMMA 

when these are applied in dental and ocular areas, and this is due either to the fact that PMMA 

is non-biodegradable or to the release of non-polymerization additives (Bettencourt and 

Almeida, 2014). “Therefore, as referred in Bettencourt and Almeida, strategies were developed 

so that there biocompatibility of these particles with the host, for example, to suppress damage 

caused by free radical, adding antioxidant aminoacid derivate as N-acetylcysteine (NAC)” 

(Bettencourt and Almeida, 2014). 

PMMA particles have been used for drug delivery since the 60s, so it is often found in 

the human body and the issue on what happens to PMMA-engineered particles needs more 

scientific studies.  

Some concern exists regarding these polymers’ slow biodegradability, which can cause 

effects due to accumulation in chronic treatments. The interaction of PMMA particles with cells 

and the extracellular environment can generate a sequence of biological effects considerably 
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different from the material in the macro size form and even when evaluated as debris resulting 

from orthopedic procedures (Bettencourt and Almeida, 2014). 

As reviewed by Bettencourt and Almeida (2014) many studies have been done both in 

vivo as in vitro and so far, the majority has been satisfactory when evaluating the cytotoxic and 

genotoxic effects. Kreuter and Speiser (1976), did not find histological abnormalities at the 

injection site in guinea pigs, one year after intramuscular injection of PMMA nonparticle-

containing influenza vaccine. PMMA-chitosan microspheres were hemocompatible and non-

cytotoxic to mouse fibroblasts cells (Bettencourt and Almeida, 2014). Also, no cytotoxic effect 

was observed in human leukemic cells when PMMA nanoparticles obtained by mini emulsion 

polymerization technique with aim to encapsulation of antitumor agents were tested 

(Bettencourt and Almeida, 2014). 

The capacity of NMs to cross the cellular membrane, is an important factor that 

contributes to their toxicity. Studies done in male albino rats shown that nanosized particles can 

cross small intestine by per absorption and further can be distributed into the blood, brain, lung, 

heart, kidney, spleen, liver, intestine and stomach (Hillye and Abrecht, 2001). 

Once inside the cell, the NMs can induced the ROS production. A study done by Hazra 

and his colleagues verified that PMMA induce DNA damage in Gram-positive bacterial cells. Also, 

confirmed that PMMAs nanoparticles are internalized by bacterial cells and induce a significant 

stress oxidative that can lead to genotoxicity and cytotoxicity in B. subtilis (Hazra et al., 2014). 

In addition, a study, that used micronucleus assay in human peripheral blood lymphocytes 

comparing PMMA, PMMA + MMA, PMMA + MMA + HA (hydroxyapatite) and metallic materials 

(namely, Ti), revealed that PMMA exhibited more cytotoxicity, and reveled a highest percentage 

in relation to all other tested compounds. This study also confirmed that the surface properties 

are directly related to cell proliferation, differentiation and apoptosis. Other study done by 

Bigatti et al. (1994), using also micronucleus assay, verified that PMMA induced a highly 

significant increase in micronuclei frequency using human lymphocytes. 

Some preliminary data has been published in respect to genotoxicity of PMMA-eud as 

described in Graça (2014). 
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1.4 MANUFACTURED NANOMATERIALS USED IN CONSUMER PRODUCTS  

1.4.1 Titanium dioxide Nanomaterials 

In recent years titanium dioxide NMs (TiO2) has been used in industrial and consumer 

products. 

TiO2 is a white pigment and due of its high stability, anticorrosiveness and 

photocatalytic properties, in addition to low solubility, can be used in paints, coatings and 

plastics, as well as in areas such as medicine (as a component for articulating prosthetic 

implants), pharmaceutics, food and cosmetics (essentially in toothpastes and sunscreens) 

(Aueviriyavit et al., 2012; Olmedo et al., 2008; Shi et al., 2013). Furthermore, TiO2 can contribute 

to the bioactivity of implant interfaces and enhanced cell adhesion (Louro et al., 2015; Shi et al., 

2013). It can be used in catalytic reactions, such as semiconductor photocatalysis, in the 

treatment of water contaminated with hazardous industrial by-products, and in nanocrystalline 

solar cells as a photoactive material (Karlsson et al., 2008). 

There are two crystalline forms of TiO2 in nature that are mainly used in human 

consumer products: rutile and anatase (figure 3). Some studies suggested that the crystalline 

form of anatase has a greater toxic potential (Shi et al., 2013).  

 

 

 

 

 

 

 

 

 

Figure 3. Rutile and anatase crystalline structures ((NIOSH), 2011) 

 

TiO2 is a crystalline, solid, odorless powder and nanocombustible. It is also insoluble in 

an aqueous medium or alcohol, and it is soluble in hot concentrated sulfuric acid or alkali 

((NIOSH), 2011; Shi et al., 2013). 

Ti 
O2 
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The presence of impurities in NMs is an aspect that can determine the toxicity, as well 

as the presence of coatings, catalysts, specific surface area and aspect ratio. The composition of 

TiO2 was analyzed by semi-quantitative energy dispersive X-ray spectroscopy (EDS) 

(Nanogenotox Joint Action, 2013). 

 TiO2 can enter the human body through several potential routes, such as inhalation, 

ingestion and skin contact. For this reason, many studies have been done about genotoxicity of 

this NM. A study, using micronucleus assay in human lymphocytes revealed a significant increase 

in the frequency of micronucleus in binucleated cells in some types of TiO2 that were tested 

(Tavares et al., 2014). 

 As mentioned above, the TiO2 is used in paints and these nanoparticles can be inhaled 

so, it is important evaluated the genotoxicity in respiratory cells. A study done by Aueviriyavit et 

al. (2012), using A549 cells shown that TiO2 both the anatase and rutile forms significantly 

increased the intracellular ROS level at concentration of 100 µg/mL. Other study, verified a 

genotoxic potential of TiO2 in comet and micronucleus assay using BEAS-2B cells (Prasad et al., 

2014). On the other hand, a study in vivo, using comet assay, do not verified an increased in the 

percentage of DNA tail in mouse Crl: CD (SD) lung cells after 3 and 24 hours exposure (Naya et 

al., 2012). In other study, A549 cells were exposed to several types of TiO2, and all of these TiO2 

revealed a significant increase in the level of DNA breaks 4 hours after exposure. This level 

increase more 24 hours after exposure but this time only in some TiO2 using comet assay. In the 

same study also evaluated the number of micronuclei frequency and did not observed an 

increase these (Jugan et al., 2012). 

As the TiO2 is used in some cosmetic products and sunscreens, so the dermal adsorption 

of TiO2 NMs have an interest in the evaluated to the genotoxicity of this NM. It is important 

worth noting that the majority of cosmetics and sunscreens that containing TiO2 are normally 

used in intact skin.  Thus, skin penetration studies of TiO2 are usually investigated in vivo and in 

vitro both intact skin (Shi et al., 2013). Shi et al. (2013), concluded that TiO2 NMs did not 

penetrate the intact human skin. Other authors verified various size s of TiO2 cannot penetrate 

through skin cells 24 hours after exposure in porcine skin, but 30 days exposure could penetrate 

through the horny layer on pig ear (Wu et al., 2009). Reeves et al. (2008), tested the genotoxicity 

of TiO2 in GFSk-S1 cells (primary cell line developed from the skin of goldfish) using comet assay. 

They verified a significant increases in oxidative DNA damage in modified comet assay in all 

doses. 
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Some workers can be exposed by inhalation to NMs, because of this, it is important to 

evaluate the exposition of these workers to TiO2, once this NM can be found in paints, as 

mentioned above. Pelclova et al. (2015), found anatase and rutile TiO2 particles in workers that 

were exposed for their work.   

As can be observed in several studies mentioned above, discrepancies exist, so it is 

necessary to continue to investigate the risk assessment of NMs. 

 

1.4.2 Multi-walled carbon nanotubes 

Carbon nanotubes (CNTs) have been used in ever increasing amounts for several industrial 

applications, as batteries, biotechnology, clothing and as organic materials for tissue 

engineering applications. They offering good choices for scaffold fabrication and delivering of 

siRNA and DNA, oligonucleotides and proteins into cancer cells because they are able to cross 

cell membranes by endocytosis and thus, may have a potential application in chemotherapy (Liu 

et al., 2012; Louro et al., 2015; Migliore et al., 2010; Nymark et al., 2014; Zhao and Liu, 2012). 

CNTs are formed by graphene layers and the composition may vary from one to one 

hundred cylindrical tubes. Considering this constitution, CNTs can have different names: single-

walled carbon nanotubes (SWCNTs) are constituted only by one graphene layer, while multi-

walled carbon nanotubes (MWCNTs) contain more than one graphene layer (figure 4). The CNTs 

structure is endowed with very advantageous chemical, physical and mechanical features, due 

their low density, extraordinary conductivity, high ductility and mechanical strength (Migliore 

et al., 2010; Zhao and Liu, 2012).  

 

 

 

 

 

 

Figure 4. Representation of Carbon nanotubes. (A) Graphene sheets; (B) Single-walled carbon nanotube; (C) Multi-
walled carbon nanotube (Kreupl et al., 2004). 

CNTs are practically insoluble in any solvent, including in biological fluids. Their 

insolubility not only severely hinders research on their chemical properties, but significantly 
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restricts the applications in every field. Therefore, many procedures have been developed to 

modify their chemical properties and to increase the solubility of these NMs (Lam et al., 2006; 

Zhao and Liu, 2012)  

It has been suggested that because the CNTs have high aspect ratio (i.e., ratio between 

length and diameter), they, may be able to induce lung cancer and mesothelioma in as asbestos 

do. Studies in vivo have been shown that both MWCNTs and SWCNTs can induce oxidative 

stress, inflammation, fibrosis and granulomas (Lam et al., 2006; Lindberg et al., 2009). 

The most probable route of exposure to CNTs is inhalation, due the use of these NMs in 

the industry field, it is important identify if this NMs could act as lung carcinogens (Kisin et al., 

2007). Lindberg et al., evaluated the genotoxicity of CNTs using comet and micronucleus assays 

in BEAS-2B. This author verified that 24 hours after exposure to CNTs, these can induce a dose-

dependent increase in DNA damage; in contrast, the micronucleus assay not revealed a 

significantly increased in the micronuclei frequency. These last results may be due the increased 

size of the agglomerates at higher concentrations levels (Lindberg et al., 2009). In a study using 

the V79 cells (Chinese hamster lung fibroblast) no increase in the micronuclei frequency was 

observed in any concentration after 24 hours exposure to SWCNTs; the author suggested that 

this result may be due a low degree of SWCNT uptake by V79 cells. On the other hand, in the 

same assay it can be observed a significantly increase in the percentage of DNA in tail length in 

concentration-dependent (Kisin et al., 2007). Guo et al. (2011), evaluated the genotoxic effect 

of MWCNTs using human umbilical vein endothelial cells, and verified an increase in DNA 

damage and cause apoptosis(Guo et al., 2011). Studies in vivo using mice models, detected that 

MWCNTs can persist in the lungs and produced an inflammatory response, fibrosis and 

granulomas formation (Ma-Hock et al., 2009; Muller et al., 2005).  

As mentioned above, the genotoxic effects may be primary or secondary. The secondary 

genotoxicity response may be due the induction of inflammation accompanied by oxidative 

stress, leading to DNA damage.  Some authors demonstrated that carbon black particles have a 

secondary genotoxic effect lead a chronic inflammation followed by ROS production leading to 

DNA damage (Kisin et al., 2007). A study done by Jacobsen et al. (2008), reported that a 

significant increase of ROS production in FE1 MutaTM mouse epithelial cell line exposed to 

SWCNTs, but this production of ROS do not verified at high concentrations. These results may 

be due to the agglomeration of SWCNTs. Furthermore, in the same study, the researchers 

measure the DNA damage using FPG enzyme and they not verified an induction of strand breaks. 
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All of these results revealed that it is necessary to keep studying the safety of NM, due 

to the disagreement that exists. In each study, it is necessary have knowledge about the 

physicochemical properties of each NM.  
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2. OBJETIVES 

 

This project aims to contribute to the safety evaluation of nanomaterials that are used 

or being developed for human applications, using well-characterized NMs and standardized 

procedures for NM preparation and for the investigation of their toxic effects. 

The specific aims of this thesis were to use in vitro methodologies for: 

i) Evaluation of genotoxic effects of poly(methyl methacrylate) and poly(methyl 

methacrylate)-Eudragit, that are under development to be used as drug delivery 

carriers for human medicine. 

ii) Analysis of the cytotoxic and genotoxic potential of a titanium dioxide NM, as 

well as a multi-walled carbon nanotube, both manufactured NMs used in 

cosmetics and industrial applications. 
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3 MATERIALS AND METHODS 

In toxicology to obtain the results in a short period of time and to reduce the number of 

animal tests necessary, it is usually use in vitro assays in order to evaluate the toxicity of many 

agents, including the nanomaterials. Also, in vitro testing has a relatively lower cost, as well as 

simplicity to perform, control and interpret the results, when compared with in vivo tests (Stone 

et al ., 2009). However, in in vitro assays it is not possible to fully replicate the complex 

interaction that occur between multiple cell types in vivo, both within an organ and also 

between organs; furthermore cell culture it is cannot be used to identify the targets of exposure 

within the body (Stone et al., 2009). The choice of each cell line should be selected according 

the aim of the study and the characteristics of the cells when growing in culture medium can 

influence their susceptibility to the chemicals or, in this case, to the particles, as their 

metabolism may be altered due to the changes of medium or to cell density (Stone et al., 2009).  

The evaluation of the genotoxicity of PMMA and PMMA-eud was performed on the cell 

line L929, obtained by American Type culture Collection (ATCC® CCL-1™). 

This cell line was isolated from mouse fibroblasts (Mus musculus) of a 100 days male. 

This cell line had an adherent property (figure 5) (ATCC, 2015). L929 fibroblasts were chosen 

because are a model usually used in the biocompatibility studies of biomaterials as it is 

recommended by the ISO 10993-5 (“Biological evaluation of medical devices – Part 5: Tests for 

in vitro cytotoxicity”).  

 

 

 

 

 

 

    Figure 5. L929 cells in RPMI-1640 culture medium 
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The growth medium used for L929 cell cultures was RPMI 1640 culture medium 

supplemented with 10% Fetal Bovine Serum and 1% Pen/Strep. When the cells reached about 

75% confluence, subculture was performed: the medium was removed and the cells were 

washed with trypsin-EDTA, trypsin-EDTA was added to the flask and incubated for 5 minutes at 

37oC. When the cells were detached from the flask, fresh culture medium was added to 

inactivate the trypsin-EDTA and subsequently transferred to new flasks (25 cm2) at a tenth of its 

original volume and incubated in the same conditions as before. All of these reagents were 

provided by Gibco (Scotland, UK). 

To evaluate the cytotoxicity and genotoxicity of TiO2 and MWCNTs the cell line A549 

(figure 6) from Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA, in English, Federal 

Institute for Occupational Safety and Health; Berlin) was used.  

This cell line it was isolated from a human lung carcinoma epithelial (BAuA, 2015) and 

have important molecules active in the detoxification of the cells, such as P450 cytocrome, 

allowing the incorporation of metabolic pathways in the pulmonary epithelium (Foster et al., 

1998).  

 

 

 

 

 

 

 

         Figure 6. A549 cells in DMEM culture medium. 

The growth medium used for the cell cultures was DMEM (with stable glutamine), 

supplemented with 10% heat-inactivated Hyclone Fetal Bovine Serum, 1% Pen/Strep, 1% 

Fungizone and 2.5% HEPES. When cells reached about 80% confluence, a subculture was 

performed: the culture medium was removed, the cells were washed twice with warm 4 mL PBS, 

and then incubated for 5 minutes in an incubator at 37ºC with trypsin-EDTA (0.05%). When the 

cells were detached from the flask, viable cells were counted and seeded at the density of 1x106 

cells/ flasks (75 cm2) with warm culture medium. All of these reagents were provided by Gibco 
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(Scotland, UK), except the Hyclone Fetal Bovine Serum (FBS), provided by Thermo Scientific 

(Waltham, MA, USA). 

 

3.1 NANOMATERIALS PREPARATION 

In context of the project of “Biological Effects of Acrylic Engineered Particulate-Systems” 

(research project EXCL/CTM-NAN/0166/2012). in collaboration with Faculdade de Farmácia, two 

different nanomaterials were studied: PMMA and PMMA-eudragit. These particles were 

prepared using the method SESE, as was mentioned above, and were tested in parallel in L929 

cells. The characteristics evaluated in the previous work can be seen in the table 1: 

 

Table 1. PMMA and PMMA-eud characteristics (Graça, 2014). 

*Hydrophobicity assay results as a percentage of sample retention in the resins sorted by increasing 

hydrophobicity 

 

 The PMMA and PMMA-eud white powders were weighed in a precision scale inside a 

glass scintillation vial. Then, the stock particle dispersion were obtained with a sterile H2O in a 

final concentration of 20 mg/mL, since these NMs are partially soluble. Careful homogenization 

through and sample inversion was performed until no aggregation was visually detected. PMMA 

and PMMA-eud stock dispersions were prepared immediately before use. For both 

nanoparticles the same concentration were used: 0.1, 0.5, 1, 2 and 5 mg/mL. The two highest 

concentrations were diluted from stock solution. The samples ate the concentration of 1 mg/mL 

was prepared from dilution of the samples at the concentration of 2 mg/mL and the two lower 

 PMMA (nm) PMMA-Eudragit (nm) 

Size (mean ± SD) 572 ± 20 508.9 ± 8 

morphology spherical spherical 

Surface charge (mean ± SD) -32.7 ± 1.04 +31.8 ± 1.66 

Hydrophobicity* 

Sepharose – FF (%) 16  ± 2.7 20.3  ± 2.9 

Butyl Sepharose – FF (%) 27.1  ± 0.4 84.5  ± 4.4 

Octyl  Sepharose – FF (%) 17.2  ± 1.5 78.5  ± 3.5 
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concentrations were prepared by diluting the 1mg/mL sample (showed in figure 7). All 

concentrations were prepared in culture medium. 

 

 

 

 

 

 

Figure 7. Preparation of NM dilutions for cell exposure (Graça, 2014) 

 

In the project NANoREG, two different manufactured nanomaterials were analyzed: TiO2 

labeled (NM-1001) and MWCNTs (NM-4000). These NMs were produced, characterized and 

provided by the Joint Research Centre Repository (Institute for Health and Consumer Protection, 

European Commission, Ispra, Italy). 

Both NM-1001 and NM-4000 were tested in A549 cells. 

 The NM-1001 (or NM-101) is poorly soluble in aqueous media and is has a form of white 

powder. The physicochemical characteristics of this nanomaterial it was already been studied in 

NANOGENOTOX Joint Action (“Safety Evaluation of Manufactured Nanomaterials by 

Characterization of their Potential Genotoxic Hazard”) and are show in the table 2: 

Table2: Geometric mean Feret’s minimum and maximum diameter and aspect ratio of primary particles and 

boundaries of typical aggregate and agglomerate size for NM-1001 nanoparticles (JRC, 2014b). 

* Particles that measurement. 

  

 

Phase  

Impurities

/ 

coatings 

Specific 

surface 

Primary particles Aggregates/Agglomerates 

NM 
Feret min 

± SD 

Feret 

max ± 

SD 

Aspect 

ratio ± SD 
A* 25% median 75% 

NM-

1001 
anatase 

Al, Na, P, 

S, Zr 

169.5 ± 

8.5 
25.7 ± 22.5 

38.8 ± 

33.9 

1.52 ± 

0.33 
1802 14.1 22.6 45.8 
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The NM-4000 (or NM-400), had already been studied genotoxicity in NANOGENOTOX 

project, using lymphocytes and do not present any cytotoxicity or genotoxicity. It is an insoluble 

NM shown a black powder before dispersion, and their physicochemical characteristics were 

analyzed by JRC and are represented in the following table: 

Table 3: Geometric mean thickness, geodesic length and aspect ratio of multi-walled carbon nanotubes (JRC, 2014a). 

c Number of measured primary particles. 

 

 Since these NMs are insoluble, their preparation in liquid medium for cell exposure 

involves the dispersion instead of dissolution (OECD- ORGANIZATION FOR ECONOMIC CO-

OPERATION AND DEVELOPMENT – Guidance on sample preparation and dosimetry for the 

safety testing of manufactured nanomaterials. In the NMs dispersions ultrasonication may 

contribute to produce stable dispersions. 

 Therefore, to disperse large agglomerate and aggregates of TiO2 and MWCNTs it was 

necessary to proceed a pre-sonication after pre-wetting the NM with 0.5% ethanol and 

suspension in sterile-filtered 0.05% wt% Bovine Serum Albumin (BSA; 95% of the volume of the 

final solution; from Sigma Aldrich, St Louis, MO, USA). The standardized protocol of 

NANOGENOTOX project for the dispersion of the nanomaterials was used (NANOGENOTOX). A 

precision scale was used to weigh the nanomaterials, inside a glass scintillation vial; and a 2.56 

mg/mL (stock dispersion was prepared by prewetting powder with 96% ethanol (0.5% of the 

volume of the final solution), followed by addition of sterile-filtered 0.05 wt% BSA. This stock 

was selected based on the dispersibility of the nanomaterials (Jensen et al., 2011; Tavares et al., 

2014). 

The vial with nanomaterials dispersion was placed in an insulated box and partly 

submerged in ice; was sonicated at 400 W with 10% of amplitude for 16 minutes using a Branson 

Sonifier S-450D with 13 mm disruptor horn (Branson Ultrasonics Corporation, Danbury, USA). 

The batch dispersion prepared in BSA/water was used to prepare a working solution at 

0.64 mg/mL and then diluted in appropriated amount of complete cell medium for exposure of 

A549 cells. The two highest test concentrations were diluted directly from batch dispersion at 

2.56 mg/mL. 

MWCNTs 
Specific surfasse 

área (m2/g) 

Tickness ± 

SD (nm) 

Geodesic lenght ± SD 

(nm) 

Aspect ratio ± 

SD 
Nc 

NM-4000 254 11 ± 3 846 ± 446 79 ± 50 20 
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3.2 CELLS EXPOSURE 

In all assays were used a negative control (cell culture incubated only with culture 

medium) and a positive control (in case of cell counting and comet assay, the Ethyl 

Methanesulfonate; EMS, and Mitomycin C; MMC, both from Sigma-Aldrich; St. Louis, MO, USA; 

it was used), to compare the concentrations that were tested. 

In respect to the dose-range selection for PMMA and PMMA-eud, since the previous 

tests showed no relevant cytotoxicity up to the concentration of 2 mg/mL, it decided to proceed 

with an evaluation of toxicity on the maximum concentration recommended by (OECD, 2010a) 

guidelines, which chosen the highest concentration (5mg/mL). 

 

3.3 CYTOTOXICITY ANALYSIS 

The cytotoxicity assays are important to measure the impact on cell death after 

exposure to the test compounds, including NMs. These assays are usually the first tests before 

genotoxic assays to allow the determination of the dose-range, avoiding concentrations that 

yield high levels of toxicity that may mislead the results of genotoxicity testing. The cell 

proliferation and the number of viable cells in exposed cultures as compared with negative 

controls are usually the evaluated parameters. 

 The most commonly used colorimetric assays (neutral red uptake or MTT assay) are 

not feasible due to the interference of many NMs with the assay. Alternative methodologies 

include the cell counting assay, that it characterized by counting viable cells and non-viable 

cells by a dye (in this case Trypan Blue); clonogenic assay that evaluated the proliferative 

potential of cells, counting the form of colonies after exposure and CBPI and RI that analyzed 

the viability of cells using the cytokinesis-blocked proliferation and replication indexes.  

The concentrations that were tested in this work were: 0, 1, 3, 10, 30 and 75 µg/cm2 for 

NM-1001; 0, 8, 16, 32, 64 and 128 µg/cm2 for NM-4000. 

 

3.3.1 Cell counting assay with Trypan Blue dye 

Trypan Blue is a dye that allows for the distinction between viable and non- viable cells, 

because this dye can enter the cells which membranes have been compromised, thus non-viable 
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cells become blue. Using the Neubauer chamber, the number of viable and non-viable cells is be 

counted. By comparing several concentrations and the negative control, we can determine the 

cytotoxicity of the tested particle (Collins et al., 2008a). 

The cells were exposed to each nanomaterial concentrations for 24 hours. It was plated 

0.5x105 cells per well in a 24-well plate. Cells were exposed to positive control (EMS in a final 

concentration of 5mM and incubated for 1 hour before harvesting. Following the exposure 

period, cells were detached from the flasks, and a small volume of cell suspension was diluted 

1:1 in Trypan blue dye, placed in Neubauer chamber and counted. Then, the result was 

multiplied by the dilution factor used and the cell concentration was obtained as cell/mL. The 

cell concentration obtained for each concentration of nanomaterials (or EMS) was compared 

with the negative control and the percentage of viability was determined. 

 

3.3.2  Clonogenic assay 

The clonogenic assay allows to evaluate the proliferative potential of cells, measuring 

the percentage of cells in population capable to form a colony after exposure to compounds 

(Herzog et al., 2007). The cytotoxicity of tested agents, or in this case, nanomaterials, is 

evaluated and calculated by comparing the number of cells plated initially with the number of 

colonies formed after treatment period, relative to the plating efficiency in unexposed 

controls. The clonogenic assay allows measure the effect of concentration of an agent on cell 

survival (Buch et al., 2012; Herzog et al., 2007; Longo-Sorbello et al., 2006). 

In this thesis, it was only possible to perform this assay in A549 cells; L929 cells don’t 

have the capacity to form colonies. 

The A549 cells were plated in a density approximately 150 cells per well, in a 6-well plate 

and allowed to attach for 18 hours before exposure. The attachment period was shorter (18 

hours) than the doubling time of the cells, in order to guarantee that the cells were attached but 

not divided ate the time of the treatment with nanomaterials. Then, the cells were exposed to 

the concentrations of the nanomaterials, mentioned above. The plates were then incubated for 

8 days, at 37oC, with 5% CO2. MMC was used as positive control at a concentration of 0.05 µg/mL 

and was incubated for 6 hours only and was removed after that period and replaced for culture 

medium. 

After 8 days of exposure to the treatment, the cells were washed twice with PBS and 

fixed with absolute cold methanol (Merck; Darmstadt, Germany) for 10 minutes. Then, the 
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cells plates were dried and the colonies was stained with 10% Giemsa (Merck; Darmstadt, 

Germany) for 10 minutes, washed twice with Gurr’s phosphate buffer and allowed to dry. The 

colonies were counted, and several parameters were analyzed, using the following equations 

(Buch et al., 2012): 

 

  Plating Efficiency = Number of colonies in the negative control 

         Number of cells plated in each well 

  

Surviving Fraction = Number of colonies exposed to the treatment 

             Number of colonies in the negative control 

 

Cytotoxicity = 100 – (Surviving Fraction x 100) 

 

3.3.3  Proliferation and replication indexes 

During the micronucleus assay, the viability of the cell lines exposed to the several 

nanomaterials were analyzed using the cytokinesis-blocked proliferation index (CBPI) and the 

replication index (RI), based on the proportion of mon-, bi- and multinucleated cells. These will 

be further explained bellow. 

 

3.4  GENOTOXICITY  

In this work two genotoxicity assays were used: the comet assay, for detection of breaks 

of DNA, and the micronucleus assay, that allows detection of chromosomal breaks, or full 

chromosomes unable to approach to the poles during mitosis. 

 

3.4.1  Comet assay  

The comet assay allows measure primary DNA damage, such as DNA strand breaks and 

oxidative damage inflicted by ROS. This damage can be detected ate the level of the individual 

cells, and an increases in damage as a result of occupational or environmental exposure to 

compounds can means un increase the risk of cancer (Collins, 2013).  

Using this assay, after being exposed to the test compound, the cell suspension is 

embedded in agarose, treated with lysis solution and submitted to electrophoretic migration 
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under alkaline conditions (pH > 13). The lysis solution leads to disruption of the membranes, 

allowing the diffusion of the soluble and nuclear components. At this time, the cells are called 

nucleoids. The alkaline conditions cause DNA unwinding, required to reveal single-strand breaks 

(SSB) and double-strand breaks (DBS). Under electrophoretic conditions, the DNA that contain 

breaks migrates at a higher rate through the agarose gel, forming a tail (where are present the 

DNA fragments) with a head (undamaged DNA molecule) looking a comet, when viewed by 

fluorescence microscope following staining with a DNA-binding fluorescent dye (e.g. ethidium 

bromide) (see figure 8) (Collins et al., 2008a; Collins, 2013; Collins and Azqueta, 2011; Tice et al., 

2000). 

  
 
 
 
 
 
 

 

  

 The basic comet assay procedure can be modified to detect the oxidative lesions 

through the presence of oxidized purines and pyrimidines. In this modification of the method, 

an incubation of the nucleoids embedded in agarose gels with a bacterial DNA repair enzymes 

(after lysis) is used. This enzyme, formamidopyrimidine DNA glycosilase (FPG) combines a 

specific glycosylase activity, removing the damage base and creating an apurinic/apyrimidinic 

(AP) site and then, an AP lyase converts the AP site to a break (Collins, 2013). This process 

increases the assay sensitivity and by comparing the results with or without FPG incubation, 

oxidative DNA lesions can be inferred (Collins et al., 2008; Collins and Azqueta, 2011). In this 

thesis, all of comet assay was performed with and without this enzyme. However, during the 

assays, it was concluded that the FPG activity was too low, even in the positive control cells, 

possibly due to a problem with the freezer where it was stored. Therefore, the results using FPG-

modified comet assay were not considered valid and are not presented. 

 Some researchers suggested that the nanomaterials may interfere with the comet 

assay in several ways (Magdolenova et al., 2012; Stone et al., 2009):  

i) the NMs can aggregated to DNA of nucleoids, that can interfere with the DNA 

migration during electrophoresis;  

Figure 8. Examples of nucleoids obtained using Comet Assay. a – undamaged DNA, b – high level of DNA 
damage. 

a b 
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ii) when the NMs aggregated to the nucleoids can cause DNA break; 

iii) these aggregates can interfere with the measurement in DNA tail; 

iv) The NMs can interfere with FPG action.   

 However, as referred by Magdolenova, these events don’t be relevant considering the 

available data (Magdolenova et al., 2012). 

 L929 cells were analyzed using comet assay in the work by (Graça, 2014) and in this 

work only NM-1001 and NM-4000 were used for comet assay. 

 The A549 cells were plated at the density of 0.5x105 cells per well in a 24 well plate 

and allowed to grow for 24 hours. Then, were exposed for 24 hours to the 0-75 µg/cm2 of NM-

1001 or to 0-128 µg/cm2 of NM-4000. The EMS (positive control) was diluted in PBS in a final 

concentration of 5mM for 1 hour before harvesting. At the end of exposure, the cells were 

washed twice with PBS and detached with trypsin-EDTA, removed from the plate and counted. 

The cell concentration obtained, was adjusted to a 1.35x105 cells/mL. Then, 15 µL were 

embedded in agarose and placed on microscope slides previously coated with 1% normal 

melting point agarose. 

 The slides were allowed to dry and the agarose to solidify on a cold surface. Then, the 

slides were submerged in lysis solution (Na2EDTA.H2O 100 mM; from Calbiochem (Darmstadt, 

Germany; NaCl 2.5 M, NaOH until pH=10; from Merck, Darmstadt, Germany;  Tris-HCl 10 mM, 

from Invitrogen; Carlsband, CA, USA; 10% DMSO and 1% Triton-X100; from Sigma Aldrich) in a 

coplin jar for approximately 1 hour at 4ºC. 

The slides were washed twice for 10 min in F buffer (HEPES 40 mM, , BSA 0.2 mg/mL 

from Sigma-Aldrich KCl 100 mM, acid EDTA 0.5 mM, KOH until pH=8 from Merck). Then, FPG 

enzyme (kindly provided by Dr. A. R. Collins, University of Oslo, Norway) diluted in F buffer, or F 

buffer only was added to each mini-gel and covered with a flexible cover slip, and the slides were 

placed in a humidified atmosphere in an incubator (37oC) for 30 min. 

Flexible cover slips were removed and the slides were immersed in electrophoresis 

buffer (NaOH 0.3, Na2EDTA.H2O 1 mM; pH=13) for 30 minutes, allowing the DNA to unwind. 

Electrophoresis was performed for 25 minutes ate 28 V and 300 mA and the slides were washed 

for 10 min, first in cold PBS and then, in a cold dH2O for the pH to be neutralized. The slides were 

allowed to dry at room temperature, overnight and were stained with 6.25 µg/mL ethidium 

bromide. Analysis of the slides was done in a fluorescence microscope (Axioplan2 Imaging, 

Zeiss), with the assistance of specific image-analysis software (Comet Imager 2.2, from 

Metasystems, GmbH). In each slide ten mini-gels were placed, two mini-gels of each 
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concentration of treatment. Fifty nucleoids were analyzed per mini-gel and 100 per treatment. 

Two independent cultures were made for this assay. 

To evaluate the genotoxicity of nanomaterials through comet assay, the median value 

of the percentage of DNA in the tail was calculated. To obtain the oxidative damage, it was 

compared the percentage in the tail of the nucleoids from FPG-treated with the percentage of 

DNA in the tail of nucleoids using the following equation: 

 Oxidative damage = % DNA FPG - % DNA without FPG  

 

3.4.2  Cytokinesis-blocked micronucleus assay 

 

The cytokinesis-blocked micronucleus assay can detect chromosome loss and 

chromosome breakage (Bonassi et al., 2011). The micronuclei are chromosome fragments or 

whole chromosomes that have been lost during mitosis, being expressed in cells that presented 

chromosomes break, or chromosomes unable to migrate the poles during mitosis (Fenech, 

2000). Furthermore, in this assay, other abnormal events can be observed such as 

nucleoplasmatic bridge between nucleus in a binucleated cell (formed due to the exposure to 

clastogens), or nuclear buds where micronuclei were not fully separated from the nucleus. Also, 

it is possible to detect the apoptotic cells due to the presence of a nuclear fragmentation 

(Fenech, 2000). The micronuclei are a good indicator of cancer an increase in this number is 

associated to an increase in cancer risk (Bonassi et al., 2011; Sargent et al., 2010).  

Thus, in this work, for the micronucleus assay it was used a modified protocol to NMs 

exposure. The cytochalasin B was added 6 hours after NMs exposure and these, were not 

removed (Gonzalez et al., 2011). 

For micronucleus assay in L929 cells, cells were seeded in 6 well plates at a density of 

2.5x105 cells per well, and incubated for 24 hours at 37oC with 5% CO2. The cells were exposed 

to the PMMA and PMMA-eud in the concentrations mentioned above and incubated again for 

48 hours at 37oC with 5% CO2. The positive control was the same used for NM-1001 and NM-

4000 (MMC) which was prepared in PBS and in normal culture medium with a final concentration 

0.1 µg/mL.   
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At 21 hours of exposure, Cytochalasin-B was added. The selection of this time point 

intended to avoid interference of this chemical with nanomaterials uptake. Two consecutive 

experiments have been conducted that vary in total incubation time as show in table 4:  

 

Table 4: Exposure times used in each micronucleus experiment 

 

The basis for extending the duration of cells exposure to the PMMA and PMMA-eud in 

the second experiment is given below in the results section.  

After the referred total time of 48h or 54h since the start of the exposure to both 

nanomaterials, were added trypsin-EDTA, as described for this cell line. The cell suspension was 

centrifuged for 5 minutes at 1200 rpm. Then, supernatant was then discarded and hypotonic 

shock was induced with of KCl 0.1 M added drop by drop while vortexing. Then, the solution was 

centrifuged again for 5 minutes at 1200 rpm and supernatant discarded by pipetting. Then, the 

cells were fixed with cold fixing solution: 3 parts of methanol and 1 part of acetic acid. The cell 

suspensions were spread in microscope slides using a cytocentrifuge (Cytospin 3, Shandon). The 

slides were air-dried and stained with Giemsa for 13 minutes (4% in Gurr’s phosphate buffer). 

Then, the slides were washes twice in Gurr’s in the same buffer. After air drying, the slides were 

mounted with Entellan and cover slips.   

The A549 cells were seeded in 6-well plates at a density of 2x105 cells per well, and 

incubated for 24 hours at 37oC with 5% CO2. The cells were exposed to the NM-1001 and NM-

4000 in the concentrations mentioned above and incubated again for 48 hours at 37oC with 5% 

CO2. The positive control was the same used in clonogenic assay (MMC) which was prepared in 

PBS and in culture medium in a final concentration 0.1 µg/mL.  Cytochalasin-B was add to each 

well after six hours of exposure to the treatment (final concentration of 6 μg/mL), and cells were 

incubated again. 

After 48 hours of treatment, the cells were washed with PBS twice and added trypsin-

EDTA, as described above for this cell line. The suspension was centrifuged for 5 minutes at 1200 

 
Time of exposure until 

Cytochalasin B addition 

Time of exposure after 

Cytochalasin B 

Total time of cells  

exposure to the NM 

1st assay 21h 27h 48h 

2nd assay 21h 33h 54h 
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rpm, the supernatant was discarded and the cell pellet was ressuspended in culture medium. 

After that, the cells were submitted to a hypotonic shock with a solution of 73.5% sterile 

injectable bidistilled water, 24.5% of culture medium and 2% of inactivated FBS, added drop by 

drop vortexing. The cells were centrifuged for 5 minutes at 1200 rpm again, the supernatant was 

discarded and then the cells were ressuspended in culture medium. Two drops of cell suspension 

were placed on microscope slides. For each treatment, three/ four slides were prepared. 

After the slides dried, they were immersed in a cold fixing solution: 3 parts of methanol 

and 1 part of acetic acid for 20 minutes to fix the cells. In the next day (or more), the slides were 

stained with Giemsa. First, the slides were immersed in Gurr’s phosphate buffer (VWR, Radnor, 

PA, USA) for 4 minutes, then in a solution with 4% Giemsa (prepared in a Gurr’s phosphate 

buffer) for 15 minutes and finally washed twice the same buffer. Then, slides were allowed to 

dry and mounted with Entellan and cover slips.     

In micronucleus assay in A549 and L929 cells, coded slides were “blind” analyzed under a 

bright field microscope and micronuclei were scored in, at least, 2000 binucleated cells from two 

independent cultures. The diameter of micronucleus may vary between 1/16th and 1/3rd of the 

mean diameter of the main nuclei and must have a round or oval shape (see figure 9) (Fenech, 

2000). 

 

 

 

  

 

 

 

Figure 9. An example of the micronuclei diameter in L929 cells exposed to MMC (1000x). 

 

 For assessing the cell cycle progression and cytotoxicity in the cells, the proportion of 

mono- (MC), bi(BC) or multinucleated cells (MTC) was determined in a total of 1000 cells and 

the CBPI was calculated as follows (OECD, 2010b): 

 

CBPI = Nº mononucleated cells + 2x nº binucleated cells + 3 x nº multinucleated cells 

Total number of viable cells 
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The replication index (RI) of nanomaterials treated cultures, relative to vehicle control 

cultures, was also calculated by the formula:  

 

   Nº binucleated cells + 2 x nº multinucleated cells 

    Total number of cells treated cultures 

RI = 

   Nº binucleated cells + 2 x nº multinucleated cells 

    Total number of cells Control cultures 

 

3.5 STATISTICAL ANALYSIS 

 All of statistical analyzes were performed in IBM SPSS Statistics 22. 

 In the cytotoxicity results, for cell counting method it was used Student’s t-test; the 

results from clonogenic assay were analyzed by One-Way ANOVA test and the CBPI and RI were 

evaluated by Kruskal-Wallis test and Mann-Whitney test.  One-Way ANOVA tests is used when 

the results assumed a normal distribution; on the other hand, when the results don’t follow a 

normal distribution, the non-parametric Kruskal-Wallis test is used.   

 In the genotoxicity results, in the comet assay the results were analyzed by One-Way 

ANOVA test, comparing the several concentrations that were used with the negative control. 

This test was used, because the results presented a normal distribution. In the micronucleus 

assay, the Two-sided Fisher’s exact test was used for comparing the frequency of 

micronucleated binucleated cells in several concentrations that were exposed cultures with the 

negative control.    

 In addition, the existence of a dose-response relationship in all assays was explored by 

regression analysis.  
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4 RESULTS 

 

4.1 NANOMATERIALS FOR MEDICAL APPLICATIONS (PMMA AND PMMA-EUDRAGIT 

NANOMATERIALS) 

4.1.1 Cytotoxicity 

The cytotoxic effects of PMMA and PMMA-eud have been described previously in Graça, 

(2014). In this work it was evaluated by MTT assay and three exposure periods were analyzed 

(24, 48 and 72 hours). Graça verified that cell viability showed a slight but significant decrease 

with the two highest PMMA concentrations (624 µg/cm2 and 1559 µg/cm2) after 48 hours 

exposure. After 72 hours for the same concentrations of PMMA cell viability further decreased. 

For PMMA-eud, a slight significantly decrease in the cell viability was observed after 24 hours to 

exposure for the same concentrations of PMMA: 624 µg/cm2 and 1559 µg/cm2, after 72 hours 

of all PMMA-eud concentrations significantly lowered cell viability values. Yet, the lower value 

59.98 ± 8.55%.  

Therefore, in general neither NMs show major toxicity effects in the concentration range 

studied (Graça, 2014) since the decrease in cell viability was always above 50%. 

Since the micronucleus assay also offers information about cytotoxicity by evaluating 

the cytokinesis-blocked proliferation and replications indexes (CBPI and RI), these indexes were 

determined in the present work and are represented in Figure 10 and Tables A1 and A2 in the 

Annexes. 
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Figure 10. Results of the CBPI and RI of L929 cells exposed for 48h and 54h to PMMA and PMMA-eud: a - CBPI; b - RI.  
The results of the positive control (MMC) can be found in the annexes. 

 

In L929 cells exposed to PMMA and PMMA-eud there were no differences in CBPI and 

RI as compared to negative controls, in any of the experiments (48 and 54 hours) or 

concentrations tested (p>0.05, Student’s t-test). The only exception was the RI after the 

exposure of cells during 48 hours to 312 µg/cm2 of PMMA-eud (p=0.000133, Student’s t-test), 

showing a delay in the cell cycle progression. By increasing the exposure time to 54 hours this 

delay was no longer observed. 

In the positive control exposure (MMC) a significant decrease in the RI and CBPI was 

observed at 48 and 54 hours (Table A1 and A2 in the annexes) (Student’s t-test).  

 

4.1.2 Genotoxic effects 

In Graça (2014), the genotoxicity it was studied using the comet assay, with two 

exposure periods (3 and 24 hours). No significant were DNA damage was observed in either time 

points for any of the NMs, with or without FPG.  

In respect to the micronucleus assay, that was performed twice during this work. In the 

first experiment the cells were exposed during 48 hours to PMMA or PMMA-eud and results are 

presented in Figure 11 and Tables A1 and A2 in the annexes. 

a b 
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 In the experiment with 48 hours exposure, there were no significant increases in the 

micronucleus frequency in L929 cells exposed to any of the concentrations of PMMA except of 

the lowest concentration (31 µg/cm2; p<0.0001, Fisher’s exact test). In cells exposed to PMMA-

eud for 48 hours the MNBNC were significant lower after 156, 312 and 1559 µg/cm2 (p= 0.0002, 

0.020 and 0.019, respectively). However, this latter finding may be due to the impact of the NMs 

with cell cycle progression that was seen through RI analysis. 

 In fact, in this experiment was not possible to analyze 2000 binucleated cells in L929 

cells exposed to highest concentrations of PMMA-eud, due to damage of the cytoplasm. In figure 

12 it is possible to observe an interference of the PMMA-eud with the integrity of the cytoplasm, 

making difficult to observe the micronuclei. 

Following MMC exposure, a 2.5-fold increase in MNBNC was observed, showing a 

significant genotoxic effect (p<0.001; Fischer's test).  

 

  

 

 

Figure 11. Mean micronucleated binucleated cells (MNBNC) after exposure for 48 hours to PMMA and PMMA-eud.  
Bars represent standard deviation. 
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Considering, that the 54 hours exposure period showed no impact on cell cycle 

progression, only the results of this exposure were considered valid and are shown in Figure 13 

and Tables A1 and A2 in the annexes: 

 

  

 

 

 

 

 

 In the second experiment (54 hours exposure), there were increases in the micronuclei 

frequency in L929 cells exposed to PMMA, that were significant in the concentrations of 156 and 

1559 µg/cm2 (p<0.05; Fischer's test) and almost significant in the concentrations of 30 and 624 

µg/cm2 (both with p=0.054; Fischer's test). No increase in the micronuclei frequency was 

observed in L929 cells exposed to PMMA-eud. 

 The positive control (MMC) caused a 3.7 fold significant increase in the micronucleus 

frequencies (p<0.0001, Fischer’s exact test). 

b c a 

Figure 12. Microphotographs of L929 binucleated cells exposed to PMMA and PMMA-eud: a- negative control, b- 
cells exposed to PMMA, c- cells exposed to PMMA-EUD. In figure and b it is possible to see a micronucleus in a 
binucleated cell.  

Figure 13. Mean micronucleated binucleated cells (MNBNC) after 54 hours exposure for to PMMA and PMMA-eud. Bars represent 
standard deviation.  
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 Furthermore, regression analysis using the data from 54 hours exposure did not reveal 

any dose-response curve that could be fitted to these data.  

 In conclusion, PMMA revealed genotoxic effects in L929 cells exposed for 54 hours while 

PMMA-eud did not induce increased micronuclei frequencies. 

 

4.2 MANUFACTURED NANOMATERIALS USED IN CONSUMER PRODUCTS (TIO2, MWCNTS) 

4.2.1 Cytotoxic effects  

 Due to difficulty of using cytotoxicity assays for NMs investigation, several assays were 

used to produce complementary information on the toxic effects of the manufactured NMs. 

 The results of the clonogenic assay in A549 cells exposed to the nanomaterial NM-1001 

and NM-4000 for 8 days, can be observed in figure A3 and A5 in the annexes. 

 The Figure 14 shows the aspect of the wells in the plates with the cell colonies, from the 

negative control to the highest concentration in both nanomaterials (figure 14-a, 14-b). While 

in Figure 14-a no major difference is apparent, in Figure 14-b it can be seen a clear decrease in 

the number of the colonies in all concentrations when compared with the negative control, 

corresponding to increase in cytotoxicity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Clonogenic assay results after exposure to NM-1001 and NM4000: a- all concentrations that were 
tested of NM-1001; b- all concentrations that were tested of NM-4000; (left to right: negative control up to 
the highest concentration).  

 

a 

b 
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 The clonogenic assay results are presented in Figure 14 and Tables A3 and A5 in the 

Annexes. An increase in cytotoxicity was observed after NM-1001, that was significant after 

exposure to 30 µg/cm2 (p=0.033, Kruskal- Wallis test).After MWCNTs exposure, it was verified a 

highly cytotoxic effect in all concentrations (p<0.01, Kruskal- Wallis test).  

 In cells exposed to MMC (0.1 µg/mL) a significant decrease in cytotoxicity was observed 

(Table A3 and A5 in the annexes). 

 

 In spite of this results relatively to NM-4000 did not show correlation to a mathematical 

model, considering only the lowest concentrations a best-fit could be found and is represented 

in Figure 16. Using this analysis it was possible calculate the half maximal inhibitory 

concentration, IC50 (figure 16). 
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Figure 15. Results means clonogenic assay in A549 cells exposed to NM-1001 and NM-4000 for 8 days. Standard deviations 
of four replicates are presented.  
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 Using the linear model with R2=0.995 and through of equation we obtained the IC50= 

8.3 µg/cm2 for NM-4000. 

 Cell counting assay also allowed analyzing the cytotoxicity of NMs. The results are 

presented in Figure 16 (and table A4 and A6 in the annexes) and presented high variations. After 

24 hours of exposure of A549 cells to NM-1001, no cytotoxicity was observed when compared 

with the negative control. 

 When the A549 cells were exposed to NM-4000 for 24 hours, these presented a 

decrease in viability only at the highest concentration (fig. 17), but not significantly different 

from the negative control (p>0.05, Student’s t-test). 

 

 

 

 

 

 

 

 

 

Figure 17. Results of cell counting in A549 exposed to NM-1001 and NM-4000 for 24 hours.  

Figure 16: Determination of IC50 by clonogenic assay in A549 cells exposed to NM-4000 

y = 5,8038x + 1,8685
R² = 0,9952

0

20

40

60

80

100

0 5 10 15 20

C
yt

o
to

xi
ci

ty
 (

%
)

Concentration µg/cm2



 

40 

 

Finally, the evaluation of the cytokinesis-blocked proliferation and replications indexes 

(CBPI and RI), during micronucleus assay is presented in figure 18 and Tables A9 and A10. 

 

 

 

 

 

 

 

 NM-1001 caused a slight alteration in replication index. But the CBPI values were not 

different from the control (table A5 in the annexes). Likewise NM-4000 caused small fluctuations 

in replication index and in the CBPI there were no significant differences. 

 The positive control (MMC) cause a significant decrease both in CBPI and RI (table A5 

and A6 in the annexes). 

 In conclusion, the clonogenic assay showed high cytotoxicity of MWCNTs while TiO2 had 

low cytotoxicity, after 8 days exposure. However, the assay using 24 or 48 hours exposure did 

not reveal cytotoxicity of the NMs at these time points. 

 

4.2.2 Genotoxic effects 

4.2.2.1 Comet assay 

 

The results of the comet assay are represented in Figure 19.  

The A549 cells showed a significant increase in DNA damage 24 hours after exposure to 

NM-1001 (p=0.005, post hoc Tukey HSD). The concentration of 75 µg/cm2 was significantly 

different from the control. 

Figure 18. Results of the CBPI and RI of A549 cells exposed for 48 hours to NM-1001 and NM-4000: a – CBPI; b – RI. 

 

a b 
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 Regression analysis using the mean of the four replicates (represented in the Figure 20) 

showed a concentration-response effect after NM-1001 exposure with a high correlation 

(R2=0.99). On the other hand, using the four replicate values obtained for each concentration, 

we calculated the regression analyses by SPSS, and for a quadratic function we obtained 

R2=0.631. 

 

 

 

 

 

 

 

 

  

 

 

Figure 19. Results of Comet assay with NM-1001 and NM-4000.  The results of positive (EMS) control can be found in 
the annexes. 
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Figure 20: Relationship between concentration and percentage in DNA tail by comet assay applying the 
polynomial model.  
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 When the cells were exposed to NM-4000, no significant differences were found in the 

levels of DNA damage detected (p>0.005, One-Way ANOVA) (Figure 19). 

 The image analysis of the comet assay was affected by the MWCNTs, because it was 

possible to see the comet head with MWCNTs, as observed in figure 21 that can have interfered 

with electrophoretic migration or with the measurement the percentage of DNA in tail. 

 

 

 

 

 

 

 

 In this assay, it was verified that the FPG enzyme was not working adequately, because 

even in the positive control, the DNA damage values were similar to these without FPG. 

Therefore, modified comet assay was not valid and is not presented. Further assays will be done 

in the future using new batch of enzyme. 

 

4.2.2.2 Cytokinesis-blocked Micronucleus assay  

The figure 22 shows the results of the Micronucleus assay in A549 cells after 48hours 

exposure of NM-1001 and NM-4000. The number of micronucleated binucleated cells analyzed 

was 2000 binucleated cells per treatment conditions. 

There were no significant differences in the mean MNBNCN after TiO2 or MWCNTs as 

compared to the negative controls. However, the highest concentration of NM-4000 showed a 

2-fold increase over controls in micronucleus frequency that was not statistically significant. 

Figure 21. Photography of MWCNs in A549 cells. It is possible to see an interference of MWCNTs in cells. 
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Additionally, a 10-fold significant increase was observed in cells exposed to positive 

control (Tables A9 and A10 in the Annexes). 

 

It has become very difficult to observe the micronuclei after NM-1001 exposure, because 

the NMs deposited and aggregated on the cells, as can be seen in the figure 23.  

 

 

 

 

 

 

Relatively to NM-4000, it was verified that this NM form some aggregates, but not 

interfered with the visualization of cytoplasm.  

 

 

 

Figure 22. Results of Micronucleus assay in A549 cells exposed to TiO2 and MWCNT: MN BNC/1000 BNC. The results of the 
positive control (MMC) can be observed in the annexes. 

Figure 23. Microphotograph of A549 cells after 48h exposure to NM-1001: a- negative control, 
b- concentration 75 µg/cm2. 

a b 



 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

45 

 

5 DISCUSSION 

With the increase of nanomaterials and the development of nanotechnology and their 

used in several areas, including the pharmaceutical area, biomedical sciences, cosmetics, to 

paints, food, clothes, electronics (Liu and Liang, 2012; Louro et al., 2015; Mittal and Pandey, 

2014); it is necessary to ensure the safety of these new materials, namely regarding the toxicity 

of these. 

In the last decade many scientific reports have dealt with the toxicity of nanoparticles, 

both in vivo and in vitro assays, but the results are not consistent because they lack adequate 

characterization of the NMs or standardized methodologies. So, in this work it was used a 

standard procedures to evaluate the cytotoxicity and genotoxicity of three different 

nanomaterials, that were previously characterized in detail, using two types of cells, relevant 

according with probable routes of exposure. Besides considering the necessary modifications of 

the methodologies to analyse NMs genotoxic effects, the specific characteristics of the NMs and 

their suspensions were considered for the interpretation of the data, in order to use a 

nanotoxicology perspective. 

 

5.1 NANOMATERIALS FOR MEDICAL APPLICATIONS  

In the present work, the micronucleus assay was used to test the PMMA and PMMA-eud. 

The standardized methodology described in OECD 2011 was used, with the modification of 

adding cytochalasin B only 6 hours after beginning of the exposure. According to Magdolenova 

et al. (2013), this modification allows the contact of NMs with the cells and prevents the 

blockage of the NM uptake by cytochalasin addition.  

According to the cytokinesis-blocked proliferation index and replications index, no 

cytotoxic effects of PMMA and PMMA-eud were found.  

Some studies have been done to evaluate the cytotoxicity and to ensure the safe 

application of PMMA nanomaterials in medicine, using several cell lines and were mostly 

negative. Graça (2014) used the MTT assay and verified a significant, but slightly decrease at two 

high concentration when L929 cells exposed to PMMA after 48 and 72 hours exposure. A recent 

study in A549 cells did not observe cytotoxic effect after 48 hours exposure using MTT assay 

(Juneja and Roy, 2014). These authors compared three types of PMMA with different sizes and 
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surface coating and in all of these they did not verify a significant cytotoxic effect. Other study, 

using HCT116 cells (human colorectal cancer cells), tested the cytotoxicity of the PMMA 

nanoparticles by MTT assay too. The cells were incubated with PMMA for 24, 48 and 72 hours 

and no-cytotoxic effects were observed during any exposure periods (Ge et al., 2012). Papa et 

al., reported the viability of primary cultures of microglia cells exposed to PMMA using MTS 

assay. The authors evaluated the toxicity of PMMA nanoparticles that were internalized 

selectively by LPS-activated microglia, and did not revealed a toxic effect of these particles. So, 

the authors concluded that PMMA nanoparticles internalized selectively by LPS will may provide 

benefit in different human neurologic diseases opening new perspectives to the inflammatory 

treatment in the central nervous system (Papa et al., 2014). Hazra et al. (2014), using a bacterial 

model, verified that PMMA increased reactive oxygen species inducing oxidative stress, which 

can lead to a cytotoxic and genotoxic effect. These authors used 0.1-0.7 g/L. Vale et al. (1997), 

verified a cytotoxic effect using MTT assay in surgical fragments of human skin after exposure 

for 24 hours to PMMA. Furthermore, a study using the L929 cells showed a strong cytotoxic 

effect after 48 hours exposure to PMMA powder (Gulçe Iz et al., 2010). On the other hand, other 

study in this cell line revealed non-cytotoxic effect after 24 hours exposure to 100mg/mL of 

chitosan PMMA, using the MTT assay (Changerath et al., 2009); in the majority of studies in vitro 

that evaluated the cytotoxicity potential of PMMA, they used the MTT assay. The MTT assay 

allows detect the mitochondrial activity (Graça, 2014). The difference between results may be 

due to the interference in the spectrophotometric measurements caused by NMs misleading 

the final results or to differences in the type of NM assayed. 

The in vivo experiments are also important to verify the cytotoxicity of NMs. Dhana et al., 

tested the toxicity of PMMA using male albino rats, analyzing the mortality and survival time, as 

well as by clinical picture of intoxication including behavior reactions. Rats were injected for 

different concentrations and, 21 days, after exposure time, all adverse reactions were observed. 

The authors did not observe changes in all of tested doses, not verifying toxic effects (Dhana 

Lekshmi et al., 2010). Sitia et al. (2014), using cell growth assay in 4T1 cells and in vivo assays (in 

female athymic Foxn1 nu/nu mice), also did not observe toxic effects.  

In the studies referred, 2 were positive, while 8 did not show cytotoxic effects after PMMA 

exposure. However, the positive results corresponded to different forms of PMMA (powder or 

chitosan-coated). 

In respect to the PMMA-eudragit, Graça verified the same results that were obtained for 

PMMA (a significant, but slightly decrease in cell viability at last two concentrations) after 48 
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hour exposure. When cells were exposed for 72 hours, observed a significantly decrease in cell 

viability at all concentrations (Graça, 2014). To our knowledge there are no more previous 

studies to evaluate the cytotoxicity of this NM, possible because it is a newly developed material. 

Therefore, the absence of cytotoxic effects of PMMA-eud adds new data to the literature. 

 

In this study, the genotoxicity of PMMA and PMMA-eud was evaluated by micronucleus 

assay (OECD, 2010b) and, the most pertinent findings were obtained after 54 hours exposure. 

An increase in micronuclei frequency was observed after PMMA but not with PMMA-eud 

exposure. The two experiments performed (48 and 54 hours exposure) allowed to verify that 

PMMA-eud did not block the cell cycle, but caused a slight delay in cell cycle progression. 

Furthermore, the cells that were exposed to PMMA-eud presented disturbances in the integrity 

of membranes in higher concentrations as shown in results chapter. This effect could be related 

to an inflammatory response that might lead a ROS generation. Vale et al. (1997), reported an 

inflammatory response in surgical fragments of human skin after exposure 24 hours to PMMA, 

describing that this NM can injury in the antioxidant enzyme activities that can lead the 

production of prostaglandin, which in turn resulting in an inflammatory response. Another study 

done by Yang et al., demonstrated an inflammatory response in rats injected with PMMA, in the 

same study in vitro cultures of PBMC (peripheral blood mononuclear cells), revealed too an 

inflammatory response (Yang et al., 2011).  On the other hand, Graça (2014) did not found the 

production of ROS by PMMA in L929 cells after 1 and 2 hours exposure. 

However, the results of Graça (2014) reported no genotoxic effects of PMMA when using 

the comet assay in L929 cell. The differences may reflect that PMMA cause chromosomic 

damage and did not cause breakage in DNA single- and double- stranded. Other hypothesis can 

due to the fact that the lesions primary appear after exposure to the agent that is being tested 

and can be repaired by the cell’s DNA machinery. On the other hand, the micronuclei can emerge 

through clastogenic and aneugenic events and persist in the cell (Hartmann et al., 2001). 

In respect to the evaluation of genotoxic potential of polymeric nanomaterials, namely 

PMMA, very few studies exist, especially in respect to de micronucleus assay.  

A study performed by Gulçe Iz et al. (2010), evaluated the genotoxicity of PMMA exposure 

in human lymphocytes using micronucleus assay and these authors verified a significantly 

increase of MBNC frequency in cells exposed to PMMA compatible with our findings (the authors 

did not mentioned the concentrations that were used). Our results showed a significant increase 

in micronuclei frequency, after PMMA exposure at 0.1 and 5 mg/mL but it was not verified a 
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dose-response. Bigatti et al. (1994) also verified an increase in the micronuclei frequency in 

human lymphocytes after 5 days exposure to PMMA. In contrast, Lamberti et al. (1998), did not 

verify a genotoxic effect in human lymphocytes after 5 days exposure to PMMA. 

To the best of our knowledge, we did not find studies about genotoxic effects using L929 

cells. This cell line is useful in the biocompatibility studies of biomaterials and because it is 

thought to use PMMA-eud as a drug delivery for therapeutic in bone diseases, providing 

evidence of genotoxic effects in target organ. This cell line it is recommended by ISO 10993-5. 

A study in vivo using MMA reported an increase in the micronuclei frequency after 8 hours 

exposure in male Wistar rats (Araújo et al., 2013). On the other hand, a study performed by 

Souto Lopes (2012) tested the MMA in two different cell types, HGF  (homo sapiens gingival 

biopsy) and V79-4 cells using micronucleus assay, for 72 hours exposure and did not verified a 

genotoxic effect in both cell lines. 

Others studies have been done using other polymer similar to PMMA such as poly(lactide-

co-glycolide) copolymers (PLGA), using the mitotic indices in fibroblasts and lymphocyte cells, 

and poly(caprolactone) (PCL) using micronucleus assay in mice; are commonly used in 

engineering tissues and in drug delivery, such PMMA (Louro et al., 2015). In both polymers it 

was not verified a genotoxic potential (Huang et al., 2010; Louro et al., 2015). Other study, using 

comet and micronucleus assays in TK-6 cells (human B-lymphoblastoid cells) exposed to PLGA-

PEO did not reveal a genotoxic effect; however, they verified a significant increase in micronuclei 

frequency in mononucleated cells in two of three concentrations that were tested (Kazimirova 

et al., 2012).  In respect to the chitosan, another polymer, frequently used in tissue engineering, 

suitable for cell growth, antibacterial activity and bioadhesive behavior (Louro et al., 2015); were 

found a genotoxic potential using micronucleus and comet assay (in mouse bone morrow and 

A549 cells, respectively) (Louro et al., 2015); (European Medicines Agency, 1998). 

As seen in our results, there were no cytotoxic or genotoxic effects to PMMA-eud, 

consistent with results obtained previously by Graça (2014) using the comet assay. The PMMA 

proved to be more genotoxic than the PMMA-eud, through micronucleus assay. These results 

can be due to the chemical properties, in this case, the surface charge modification, while PMMA 

presented be strongly negative (-32.7 ± 1.04 mV), the PMMA-eud were strongly positive (+31.8 

± 1.66) (Graça, 2014). A study performed by Wang et al., using graphene oxide (GO) in human 

lung fibroblasts cells, verified that GO with a negative charge, is more toxic than a PEI-GO 

(Polyethylenimine functionalized graphene oxide, with positive charge). The authors referred 

that a mild positive charge may help GO to stay out of cells if those positive charges do not 
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damage the cell membrane. Furthermore, the ideal GO derivate should have lower positive 

electronic charge to reduce their toxic effect on cells, but this conclusion need more studies, to 

be confirmed (Wang et al., 2013). In agreement with these authors, in our study it was verified 

that negative PMMA it was more genotoxic than positive PMMA-eud. Another example that 

may influence the genotoxicity is the size and surface charge of PMMA and PMMA-eud were 

highly influenced by the media constitution. The surface charge of PMMA revealed to be 

neutralized by both fetal serum and ionic strength and PMMA-eud revealed neutralized by ionic 

strength but inverted by the presence of the fetal serum proteins (Graça, 2014). This data is 

relevant for risk analysis since an increase in micronucleus frequency has been assumed to be 

associated to an increase risk of cancer development (Bonassi et al., 2011). In view of the 

potential use of PMMA in the pharmaceutical area, our results provide information on its safe 

use under the tested conditions. 

 According to the guidelines of International Conference on Harmonisation of Technical 

Requirements for Registration of Pharmaceuticals for Human Use (European Medicines Agency, 

1998; ICH, 1997) and of WHO/IPCS (Eastmond et al., 2009), future work for safety assessment 

would require the in vivo confirmation of these data.  

 

5.2 MANUFACTURED NANOMATERIALS USED IN CONSUMER PRODUCTS 

The increase application of manufactured nanomaterials in industry and consumer 

products has raised concerns their safety. The issues about the potential risks of NMs for public 

health arise mainly from epidemiologic studies in humans exposed to nanomaterials generated 

as by-products from human activity and pollution and the potential to induce cancer, suggested 

by some experimental studies, as seen for titanium dioxide or carbon nanotubes. To analyze in 

a short term the carcinogenic properties of a compound, genotoxicity assays in mammalian cell 

lines or models are frequently used. However, until today the investigation of the genotoxic 

properties of NMs has been inconclusive.  

It is important evaluated the toxicity of TiO2 and MWCNTs in respiratory cells like A549, 

because humans, namely, the workers from industry are possibly exposed to this by inhalation. 

(Pelclova et al., 2015), identified particles of TiO2 rutile and anatase crystal phase, in exhaled 

breath condensate of exposed workers in 40% of the pre-shift and 70% of the post-shift samples. 

The workers may also be exposed to MWCNTs through inhalation (Lee et al., 2015) and some 

studies reported a toxic effects using several types of lung cells (Lindberg et al., 2009).  
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 In the present work cytotoxicity and genotoxicity of two manufactured nanomaterials 

was investigated. 

The cytotoxicity assays allows the detection of toxic effects of the nanomaterials and 

also to determine the dose-range, for the genotoxicity studies, avoiding concentrations that 

yield high levels of toxicity that may mislead the results of genotoxicity testing. In this work, we 

proceed to different assays to evaluate the cytotoxicity of TiO2 and MWCNTs: clonogenic assay, 

cell counting with Trypan blue and proliferation and replication indexes. 

 The clonogenic assay showed high cytotoxicity of MWCNTs while TiO2 had low 

cytotoxicity, after 8 days exposure. However, the other assays using 24 or 48 hours exposure did 

not reveal cytotoxicity of the NMs ate these time points. Therefore, the dose-range selected for 

the genotoxicity assays was limited only by the nanomaterial dispersibility in the medium. 

 Several authors have described cytotoxicity studies of TiO2, in the same or different cell 

lines.  Aueviriyavit et al. (2012), verified an increase of cytotoxicity using MTS assay in A549 cells 

at a concentration similar to the highest used in the present work and above, after 24 hours 

exposure to anatase TiO2 NMs, with a dose-dependent effect. A recent study by (Kansara et al., 

2015), described a cytotoxic effect in MTT and neutral red assay using A549 cells, observed at 

similar concentrations, 48 hours after exposure to anatase TiO2. Using the same cellular line, 

Mochini et al. (2013), demonstrated a very little acute cytotoxicity effect of TiO2 (not identified) 

in this concentration range, after 24 hours exposure. Another study reported by Hamzeh and 

Sunahara (2013), tested various types of TiO2 (anatase, rutile and anatase-rutile mixture), using 

MTT and cell counting assays in V79 cells (Chinese hamster lung fibroblast), demonstrated a 

cytotoxic effect in all TiO2 types that were tested at 10 µg/mL and 100 µg/mL after 24 and 48 

hours exposure. On the other hand, Corradi et al. 2011), did not observe a significantly cytotoxic 

effect of both rutile and anatase TiO2 in A549 cells when compared with negative control. In 

general, the reported assays were based on spectrophotometric measurements that may be 

affected by the increase in the concentration of TiO2 in the medium. The clonogenic assay is 

used as an alternative method which avoids the use of any colorimetric or fluorescent indicator 

dye, decreasing the risk of interactions and allowing the assessment of true cytotoxicity (Herzog 

et al., 2007). Besides, differences in the TiO2 NM analyzed and assay conditions reported may 

explain the different outcomes. 

 Concerning also exposure of other cell types to TiO2, a study by Bhattacharya et al. 

(2009), using cell counting assay in two different type of lung cells, IMR-90 cells (human diploid 

fibroblasts) and BEAS-2B cells (human bronchial epithelial cells), verified that TiO2 (anatase) did 
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not induced cytotoxic effects in BEAS-2B cells, whereas it had significant cytotoxic effects in IMR-

90 cells, after 24 hours exposure. This result suggests that cells are more sensitive than others. 

Another study, in BEAS-2B cells, evaluated the cell viability using the same assay after 24, 48 and 

72 hours exposure to three different TiO2 (rutile, anatase and fine TiO2). The decreased of cell 

viability when BEAS-2B cells exposed to TiO2 anatase, starting at 304 µg/mL with all treatment 

times. The authors concluded that fine rutile showed the highest cytotoxicity, followed by 

anatase and last rutile, strengthening the importance of to know the physiochemical properties 

of each nanomaterial in detail (Falck et al., 2009). 

 A study using another type of TiO2 (NM-102; another anatase), verified a decrease in 

viability of BEAS-2B cells using cell counting assay at last two highest concentrations, in spite of 

only at 256 µg/mL revealed statistically significant after 24 hours exposure. In the same study, 

the cytotoxicity of this NMs was analyzed in A549 cells too by clonogenic assay and no cytotoxic 

effect was detected in this cells (Louro, 2013).  

 Such as can be verified, there is extensive literature about cytotoxicity of TiO2, but it is 

very difficult to establish a conclusion about their cytotoxicity. These results can depend the 

type of cells that are used and the physicochemical characteristics namely phase (rutile or 

anatase), agglomeration/aggregation, size, surface area and impurities, are also an important 

influence to evaluate the cytotoxicity of nanomaterials (Guichard et al., 2012). However, our 

results did not show high toxicity with the dose-range used. Thus it was decided to use the same 

concentrations for generality testing. Top concentrations were limited by the dispersability of 

the NMs. The maximum concentration was based on the availability of nanomaterials and 

previously conducted studies (Tavares et al., 2014). 

 In respect to the NM-4000, a marked decrease in viability of cells was verified using 

clonogenic assay, after 8 days exposure, while using cell counting assay and CBPI and RI indexes 

after shorter exposure time, no significant decrease was verified. 

 Some studies have reported the investigation of MWCNTs’ cytotoxicity. A study realized 

by Simon-Deckers et al. 2008), used LDH (for assessment of cell membrane integrity, lactate 

dehydrogenase) and MTT assays in A549 cells. The authors verified a MWCNT concentration-

dependent increase in LDH release from cells, suggesting increased cell membrane damage due 

expose to MWCNTs after 48 hours exposure at 100 µg/mL concentration. Another study, using 

the same assays in normal human dermal fibroblast cells, verified that MWCNTs exposure 

caused a significant time- and dose-dependent cytotoxicity from dose 40 µg/mL (Patlolla et al., 

2010). SWCNTs showed cytotoxic effects even at low concentrations after 10 days exposure of 
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A549 cells (Herzog et al., 2007). The latter study suggested yet that the differences in sample 

preparation, sample composition and assay system used can explained the discrepancies 

between the studies that have been published. In spite of in our study, we used MWCNTs and 

the characteristics are different, we verified a high cytotoxic effect in all concentrations that 

were used. This study that compared if the method used to production SWCNTs might be 

influence the cytotoxic effect of this NMs; shown a (1.56, 6.25, 100 and 400 µg/mL; except in 

the colony number at 25 µg/mL concentration) for 10 days exposure. This study suggested yet 

that the differences in sample preparation, sample composition and assay system used can 

explained the discrepancies between the studies that have been done (Herzog et al., 2007). 

Relatively to SWCNTs, another study using cell counting in V79 cells and verified a decrease in 

viability cells at 48 and 96 µg/cm2 after 3 and 24 hours exposure (Kisin et al., 2007). In our study, 

we verified a decrease in viability cells, when the concentrations increase in spite of results did 

not shown significant, may be due the variation inherent to the assay.  

 Cavallo et al. (2012), verified a cytotoxic effect from the lowest concentration (10 µg/mL) 

from 4 hours exposure to MWCNTs using MTT and LDH assays. These results can confirm the 

high cytotoxic potential induced by MWCNTs in A549 cells. Another study verified too that 

MWCNTs induced a concentration- and time-dependent decrease in mitochondrial metabolism 

by MTT assay (Tabet et al., 2009). A study using cell counting assay, did not reveal cytotoxic 

effects of MWCNTs (NM-403) in BEAS-2B. In the same study, by clonogenic assay the author 

verified a cytotoxic effect in A549 cells and observed a concentration-dependent after NM-402 

and NM-403 exposed (Louro, 2013). Using cell counting assay, Migliore et al. (2010), verified a 

decrease of living cells and a cytotoxic effect at two last concentrations (10 and 100 µg/mL). 

Corradi et al. (2012), did not observe a cytotoxic effect of this NM of MWCNTs in A549 cells in 

any concentration through CBPI evaluation. 

 In BEAS-2B cells exposed 24, 48 and 72 hours exposure, cytotoxic effects were seen in 

cell counting assay but not in CBPI assay (Lindberg et al., 2009). 

 As described, much literature exists showing that the MWCNTs have cytotoxic effects. 

However, in other studies contradictory results were reported. Differences in the 

physicochemical characteristics of the various MWCNTs mentioned above may explain such 

contradictions. 

 In spite of the high cytotoxicity of NM-4000 observed in the clonogenic assay, no major 

cytotoxicity was observed when shorter exposure periods were used (24 and 48 hours), 
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therefore, the dose-range for the genotoxicity assays was only limited by the dispersability of 

the NM. 

 The assays employed for the investigation of the genotoxic effects of the NMs were the 

comet assay, that allows detection of DNA strand breaks (Collins et al ., 2013), and the 

cytokinesis-blocked micronucleus assay that detect chromosome loss and chromosome 

breakage (Bonassi et al., 2011). As described previously, the standardized methodology 

described in OECD 2011 was used, with the modification of adding cytochalasin B only 6 hours 

after beginning of the exposure (Magdolenova et al., 2013).  

 Relatively to NM-1001, the results obtained in comet assay, revealed a concentration 

dependent genotoxic effect after 24 hours exposure. We verified a high genotoxicity at highest 

concentration 75 µg/cm2 corresponding 285.1 µg/mL when compared to the negative control. 

In fact, previous results from our group using the same concentration-range showed that 

another anatase TiO2 (NM-102), with size to NM-1001, was positive in the comet assay (Louro, 

2013). In agreement with our results, a study using the same cells and the same assay, 

demonstrated the induction of similar levels of DNA damage at 20 and 40 µg/cm2 concentrations 

after 4 hours of exposure to TiO2 (mixture of anatase and rutile) in A549 cells (Karlsson et al., 

2008). Falck et al. (2009), verified an increase in DNA damage in BEAS-2B to 10, 20, 40, 60 and 

80 µg/cm2 concentrations, after 24 hours exposure to anatase TiO2. In the same study, they 

tested also a rutile TiO2 and verified an increase in DNA damage only at concentration of 80 

µg/cm2 after 24 hours exposure. These results suggested that anatase is more genotoxic than 

rutile and that the physicochemical characteristics are important to determine the genotoxicity 

of NMs. Jugan et al. (2012), compared several TiO2 with different phase, shape and diameter: 

A12 (95% anatase, spherical, 12 nm), A25 (86% anatase, spherical 24 nm), A140 (100% anatase, 

spherical 142 nm), R68 (100% rutile, elongated 68 nm) and R20 (90% rutile, spherical 21 nm) 

using A549 cells. The authors concluded that TiO2- A12, -A25 and –R20 an increased DNA 

damage after 24 hours exposure. This trend was observed for spherical TiO2 nanoparticles with 

diameter smaller than 68 nm whatever their crystalline phase. 

Another study using A549 cells showed an increase in DNA damage at 75 and 100  µg/mL 

after 6 hours exposure to TiO2 (anatase). The authors suggested that this increase due to 

increased oxidative stress and ROS generation (Kansara et al., 2015). Ursini et al. (2012), 

demonstrated a direct and oxidative DNA damage only at 40 µg/mL concentration after 2 hours 

exposure and a slight induction of oxidative DNA damage at 5 µg/mL after 24 hours exposure in 

A549 cells. Furthermore, these authors did not verify direct or oxidative DNA damage in BEAS-
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2B cells verified a significant increase DNA damage dose-dependent in A549 cells at 13, 26 and 

52 µg/cm2 after 48 hours exposure of anataseTiO2 (Wang et al., 2015). In contrast, Louro (2013), 

did not verify any increase in DNA damage in BEAS-2B cells after 24 hours exposure to NM-102. 

In agreement with this author, Bhattacharya et al. (2009), did not verify a significant increase in 

DNA damage in IMR-90 cells (lung fibroblasts) after 24 hours exposure to anatase TiO2. 

The discrepancies may due to experimental factors. In fact, Karlsson et al., (2008) 

described that TiO2 can form radicals in the presence of light, because this NM is  photocatalytic, 

but the activity seems to depend on it is anatase, rutile or a mix of these two. The anatase form 

induces an increased production of ROS. Due to this fact, the conditions in which the assay is 

done are important to determine the genotoxic effect. The time of exposure is another 

important factor to evaluate the genotoxic effect.  

Our results revealed a significant increase in DNA damage at the highest concentration 

using the comet assay, revealing a genotoxic effect. In addition, we verified a dose-response. 

Accordingly, in the majority of studies that have been done, the authors verified a genotoxic 

effect using the same assay. However, some studies do not demonstrate increases in the in DNA 

damage.  It was important to retain, that the physicochemical characteristics are very important 

to determine the genotoxic effects of nanomaterials, as verified Falck et al.(2009) and Jugan et 

al. (2012); furthermore, the type of cell is important to determine the genotoxicity outcome 

(Guichard et al., 2012; Shukla et al., 2011). 

Relatively to the cytokinesis-blocked micronucleus assay, no genotoxic effects were 

observed after 48 hours exposure. In this assay, we had very difficult to visualize the cytoplasm, 

as demonstrated in figure 22. It was observed too an agglomeration of TIO2. Corradi et al. (2012) 

and Flack et al. (2009), verified the same problem using the same assay. They did not analyze 

the results because the micronuclei were obscured by TiO2 NMs agglomerates covering the cells. 

Flack et al .(2009), did not observe an increase micronuclei in any concentration after 24 or 48 

hours, but the authors showed an increase in the micronuclei frequency at 10 and 60 µg/cm2 

after 72 hours of exposure to TiO2. These results suggested that the time of exposure is 

important to evaluate the genotoxic effects. Another study, using A549 and BEAS-2B cells did 

not observe increases in micronuclei after 48 hours exposure to TiO2 anatase, in contrast, in the 

same study, using the human lymphocytes, the author reported an increase in the 

microinucleated cells frequency (Louro, 2013). 

Kansara et al. (2015), verified a significant increase in micronucleus frequency at 75 and 

µg/mL after 6 hours exposure to TiO2 anatase. Srivastava et al. (2013), also exposed A549 cells 
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to TiO2 anatase for 24 hours exposure and verified a significant increase of micronuclei 

frequency at 10 and 50 µg/mL concentration, revealing a genotoxic effect. 

Studies in other cell lines, such as in lymphocytes cells, reported an increase in 

micronuclei frequency in a dose-dependent of anatase-rutile TiO2 (20, 50 and 100 µg/mL) (Kang 

et al., 2008). A recent study, using HepG2 cells detected a significant concentration dependent 

of micronucleus in all concentrations (20, 40 and 80 µg/mL) (Vallabani et al., 2014). 

As mentioned above, the NMs have the capacity adhere to cells and some studies 

related that NMs can cross to cell membranes (Stearns et al., 2001). May be this fact can explain 

the interferences of TiO2 with cells that we will be found, blocking the observation of cytoplasm 

of cells.  

Disagreements in reported genotoxic potential of TiO2 NMs may be due to the fact of 

the different TiO2 treatment regimens, the cell type used, the metabolic/antioxidant capacity of 

cells, as well as DNA repair capabilities (Reeves et al., 2008). However, our present results were 

performed using standardize procedures for NM preparation (Jensen et al., 2011) as well as 

accordingly to standardized micronucleus assay (Magdolenova et al., 2013; OECD, 2010b). In 

fact, the negative results obtained in the micronucleus assay for the anatase NM-1001 are in 

agreement with the negative results in the same assay in A549 cells exposed to another anatase 

TiO2 (NM-102), with similar size (Louro, 2013). 

In the next table are resumed the results obtained in this work and by other our work 

group (table 5) (Tavares et al., 2014): 

 

      Table 5: Summary of the cytotoxic and genotoxic results in A549 cells exposed TiO2  

 

 

+Positive results: the results showed a statistically significant in two or more concentrations in comparison 

to the control or, a statistically significant change in highest concentration. 

(+)Equivocal results: statistical significant change in only one concentration 

-Negative results 

 

As mentioned above, both TiO2 shown an increase in DNA damage. Comparing the 

physicochemical characteristics of these two NMs, we verified that both presented anatase 

phase. Furthermore, we supposed that TiO2 that presented an aspect ratio between 1.5, may be 

NMs 
Cytotoxicity Genotoxicity 

Clonogenic 
Cell 

Counting 
CBPI or RI Comet Micronucleus 

NM-1001 (+) - (+) + - 

NM-102a -  - + - 
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a factor to contribute the DNA damage. Relatively to the specific surface, we did not find a 

connection in respect to the genotoxicity, because the values of NM-1001 and NM-102 are much 

different (169.5 and 60, respectively).  

When the A549 cells were exposed to MWCNTs, we no increase in DNA damage was 

observed in the comet assay. Previously, Louro (2013) tested two types of MWCNTs (NM-402 

and NM-403) using the same procedures of the present work and observed a slight increase in 

DNA damage but not statistically significant after 3 or 24 hours exposure in A549 cells. In BEAS-

2B, the author did not verify an increase in DNA damage. In other study, Pinhão (2014) reported 

also an increase in micronuclei frequency in A549 cells after 48 hours exposure to MWCNT (NM-

401). However, these results may reflect the physicochemical characteristics of each NM. For 

example, we know that NM-401 has a surface area, length and thickness larger than the other 

MWCNTs which have been studied by our group. 

Lindberg et al. (2012), reported a dose-dependent increase in DNA damage in BEAS-2B 

cells after 24 hours exposure to carbon nanotubes and a significant increase at 1, 60, 80 and 100 

µg/cm2. The authors increased the time exposure (48 and 72 hours) and verified a clear increase 

in DNA damage in al concentrations. Zhu et al. (2007), Muller et al. (2008) and Yang et al. (2009) 

also reported a dose-dependent in mouse embryonic stem cells, in epithelial cells and mouse 

embryo fibroblasts cells. Migliore et al. (2010) also verified an increase in DNA damage in murine 

macrophage cell line RAW 247.7. 

Cavallo et al. (2012), used A549 cells and reported a significant increase in the DNA 

damage at 10 µg/mL after 24 hours exposure to MWCNT. In addition, these authors verified a 

concentration-dependent induction that was statistically significant at 10 and 40 µg/mL after 2 

hours exposure and at 5, 10 and 100 µg/mL after 4 hours exposure. On the other Karlsson et al. 

(2008) verified only an increase in DNA damage at 1 µg/cm2 after 4 hours exposure. 

Our negative results may be due the agglomerates/aggregates that it can be found when 

visualizing the DNA damage. These agglomerates/aggregates can have interfered in the DNA 

tail, preventing the software to read the percentage of DNA damage, as illustrate the figure 20 

in results chapter. 

Studies in vivo are important to determine the genotoxicity of NMs. Kato et al. (2012), 

observed in lung of mice for 3 hours treatment with MWCNTs a dose-dependent and the values 

of DNA tail moment were significantly increased compared with control. Another study in vivo, 

using morrow cells of Swiss-webster mice, the authors verified an increase in DNA damage after 
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5 days of treatment, reporting a dose-dependent (Pelclova et al., 2015). In contrast, Ema et al. 

(2012) did not verified an increase in DNA damage, not reveling a genotoxic effect in mouse. 

Relatively to the micronucleus assay, we observed a two fold increase in the frequency, 

but not statistically significant may be due to the standard deviation be a little high. It could be 

observed some agglomerates of MWCNTs, but did not interfered with our visualization.  

Kato et al. (2012), exposed A549 cells for 6 hours to MWCNTs and verified an increase 

the number of micronucleated cells in a dose-dependent (8.5% in the 200 µg/mL). Louro (2013) 

reported a significant increase in 2 fold in the micronuclei frequency at 125 and 256 µg/mL 

concentrations in A549 cells exposed to NM-402 when compared to the negative control. In 

contrast the NM-403 did reveal an increase in micronuclei frequency in both A549 and BEAS-2B 

cells. Lindberg et al., used too BEAS-2B cells and did not verified an increase in micronuclei 

frequency after 24 or 72 hours exposure. However, they verified an increase after 48 hours 

exposure at 10, 60 and 100 µg/cm2 . Srivastava et al. (2013), performed a study using also BEAS-

2B cells and verified that at 10 µg/mL induce an increase in micronuclei frequency higher than 

50 µg/mL. 

In in vivo studies, using bone morrow cells of Swiss-webster mice, reported that 

MWCNTs induced a dose-related increased in micronuclei frequency after 24 hours exposure 

(Patlolla et al., 2010). On the other hand, Kim et al (2011) did not verify an increase in the 

micronuclei frequency in any concentration.  

Such as been mentioned throughout this thesis, the physicochemical characteristics are 

important properties in the assessment of toxic effects of NMs. A study done by Kisin et al. 

(2011) compared the induction of cytotoxicity and genotoxicity between carbonanofiber (CNF) 

(aspect ratio: 500) and SWCNT (aspect ratio: 1000). They verified that CNT produced a stronger 

genotoxic effect than SWCNTs in V79 cells, using the comet assay. Magrez et al. (2006), 

confirmed that carbon nanofibers (aspect ratio: 30-40) is more toxic when compared to 

MWCNTs (aspect ratio: 80-90) in H596 lung tumor cells. In contrast with these authors, Poland 

et al.(2008) and Takagi et al. (2008) showed that high-aspect-ratio MWCNTs is more toxic and 

potential to induce mesothelioma than low-aspect-ratio MWCNTs. On the other hand, Kim et al. 

(2011), reported that neither the high- nor the low aspect ratio MWCNTs appeared to induce 

any cytotoxicity in the hematopoietic cells or genotoxicity in the mice due to their inability to 

translocate to the bone morrow of the femurs. 

Our work group studied another MWCNTs, and the results are summarized in the table 

6:  
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         Table 6: Summary of the cytotoxic and genotoxic results in A549 cells exposed MWCNTs (Louro, 2013; Pinhão, 
2014) 

 

 

 

+Positive results: the results showed a statistically significant in two or more concentrations in comparison 

to the control or, a statistically significant change in highest concentration. 

(+)Equivocal results: statistical significant change in only one concentration 

-Negative results 

 

Pinhão (2014) verified a genotoxic effects of NM-401 and NM-402 using micronucleus 

assay, but Louro (2013), did not find a genotoxic effect with NM-403 in both assays. On the other 

hand, Pinhão (2014) verified an association with the physicochemical properties using the three 

nanomaterials tested above (NM-401, NM-402 and NM-403). She observed an association 

between the aspect ratio and the frequency of micronucleated cells. The results that were 

obtained in this work, with NM-4000 did not allow stablish any correlation. 

As mentioned above, there are many studies on the toxicity of NMs. The disagreement 

that exists between the different results may be due to the physicochemical characteristics of 

NMs. These properties when analyzed alone may be not revealed a connection with the 

genotoxic effects, because of these it is important have attention all of characteristics. The cell 

line that is used in each study and also due to the exposure times to NMs that are used it is 

another important aspect to evaluate the toxicity of NMs. In this work, we verified that TiO2 

induced DNA damage but did not induce clastogenic or aneugenic effects.  

As mentioned above, the results obtained may have been subjected to the interference 

of TiO2 with the cells that prevents viewing the cytoplasm. This fact was reported for more 

authors (Corradi et al., 2012; Falck et al., 2009). Likewise, the MWCNTs results showed some 

interference since MWCNTs adhere to the cells (Stearns et al., 2001) and when we wash the 

wells, the cells can be adherents to the NMs and it cannot be possible to observe any colony. In 

spite of NMs specific characteristics, with the methodology used it was possible to analyze their 

genotoxic effects. 

 

 

NMs 
Cytotoxicity Genotoxicity 

Clonogenic 
Cell 

Counting 
CBPI or RI Comet Micronucleus 

NM-4000 + - (+) - - 

NM-401 + (+) + - + 

NM-402 + NP - - + 

NM-403 + NP - - - 
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6 CONCLUSIONS 

 

The present work, had the objective to evaluate the toxicity of nanomaterials for medical 

applications, the PMMA, PMMA-eud, and also two nanomaterials used in consumer products, 

such as titanium dioxide (NM-1001) and multi-walled carbon nanotubes (NM-4000), considering 

a nanotoxicology approach. 

A major finding of this work is the lack of genotoxic effects of the modified PMMA-eud in 

fibroblast cells, suggesting that this NM provides an advantage for biomedical application as 

compared with PMMA. To our knowledge, this result constitutes new information that may be 

useful for regulatory decisions since the methodologies used were based on ISO and ICH 

guidelines. Future work for safety assessment would require the in vivo confirmation of these 

data.  

Furthermore, the suggested association of the NM surface charge and its genotoxic effects 

should be further investigated since it provides a clue on the property that may be more 

determinant for nano-genotoxicity. 

Concerning TiO2, we verified that TiO2 induced genotoxic effects in dose-dependent way. 

Together with previous results, this finding suggests that the anatase form of TiO2 may be 

responsible for increased genotoxicity, and this relation with the crystal form of TiO2 NM should 

be investigated in the future, using larger panels of these NMs. There was no induction of 

micronucleus after TiO2 or MWCNTs, showing the absence of In each study is necessary to know 

the physicochemical properties of respectively nanomaterial with the objective to compared 

studies with the same characteristics of nanomaterials; 

For future studies, exist some aspects deserve more research, such as: 

i) It is important to performed methodologies more specifics to evaluate the toxicity 

of nanomaterials; 

ii) It is important to try understand by which mechanism that the nanomaterials act, 

such as evaluating the reactive oxygen species production and how nanomaterials 

interact with DNA;  

iii) In each study is necessary to know the physicochemical properties of respectively 

nanomaterial with the objective to compared studies with the same characteristics 

of nanomaterials. 
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8 ANEXES 

 

Table A1. Results of the micronucleus assay in L929 cells exposed for 48h to the PMMA and PMMA-eud. 

*Significantly different from the negative control (p≤0.05, Fischer's test). The mean MNBNC/1000 BC was lower than 

in controls; **significantly different from the negative control (p≤0.01, Fischer's test). The mean MNBNC/1000 BC 

after MMC exposure was higher than in controls. MMC- positive control. 

 

 

 

 

 
Concentration  Total BC 

analysed 

 MNBNC/1000 BC 

(mean ± SD) 

 CBPI (mean 

± SD) 

RI (mean ± 

SD) 
(μg/cm2) (mg/mL) 

PMMA 

0 0 2500 17.8±1.2 1.65±0.04 100±0 

31 0.1 2000 25.5*±0.7 1.66±0.03 101.7±1.7 

156 0.5 2000 17.0±1.4 1.68±0.06 105.1±9.7 

312 1.0 2000 18.0±5.7 1.63±0.01 96.6±4.7 

624 2.0 2500 14.3±0.5 1.64±0.01 98.0±8.2 

1559 5.0 2000 14.0#±5.7 1.60±0.07 91.5±5.4 

PMMA-

Eud 

31 0.1 2000 18.0±5.66 1.63±0.02 97.1±8.8 

156 0.5 2500 6.83±0.24 1.54±0.14 101.1±10 

312 1.0 1231 9.41±3.6 1.39±0.03 60.4**±5.4 

624 2.0 1088 13.3±13.9 1.46±0.06 70.9±13.8 

1559 5.0 1237 8.52±4.21 1.48±0.04 76.5±15.,7 

MMC  0.1 µg/mL 1522 43.04**±2.69 1.14**±0.42 53**±23.2 



 

b 

 

 

Table A2. Results of the micronucleus assay in L929 cells exposed for 54h to the PMMA and PMMA-eud. 

 *Significantly different from the negative control (p≤0.05, Fischer's test). The mean MNBNC/1000 BC was lower than 

in controls; **significantly different from the negative control (p≤0.01, Fischer's test). The mean MNBNC/1000 BC 

after MMC exposure was higher than in controls. MMC- positive control. 

 

 

 

 

 

 

 

 

 

 

 Concentration  Total BC 

analysed 

MNBNC/1000 BC 

(mean ± SD) 

CBPI (mean ± 

SD) 

RI (mean ± 

SD) 
(μg/cm2) (mg/mL 

PMMA 

0 0.0 2000 15.5±6.36 1.71±0.01 100±0.00 

31 0.1 2000 24.5*±0.71 1.71±0.06 98.46±6.27 

156 0.5 2000 26.0±2.83 1.72±0.06 103.53±5.66 

312 1.0 2000 22.0±1.41 1.68±0.02 98.47±3.5 

624 2.0 2000 24.5±0.71 1.72±0.03 102.73±4.53 

1559 5.0 2000 25.5*±3.54 1.64±0.06 91.15±5.62 

PMMA

-Eud 

31 0.1 2000 21.5±4.95 1.70±0.00 99.86±3.14 

156 0.5 2000 10.00±1.41 1.63±0.03 91.43±0.79 

312 1.0 2000 10.00±4.24 1.64±0.05 91.64±4.05 

624 2.0 2000 11.50 ± 9.19 1.64±0.02 88.41±1.05 

1559 5.0 2000 15.00 ± 1.41 1.55±0.07 76.15±6.39 

MMC  0.1 µg/mL 2000 57.5**±3.54 1.52**±0.01 70.29**±2.44 



 

c 

 

 

Table A3. Surviving fraction of A549 cells that were exposed for 8 days to TiO2 in Clonogenic assay 

 *Significantly different from the negative control (p≤0.05, One-Way ANOVA test); **Significantly different from the 

negative control (p≤0.01, One-Way ANOVA test). MMC- positive control. 

 

 

 

Table A4. Cell counting assay after of A549 cells exposure for 24h to TiO2. 

 

 

 

 

 

 

 *Significantly different from the negative control (p≤0.05, One-Way ANOVA test); MMC- positive control 

 

NM-1001 

Concentration  Surviving fraction 

(mean ± SD) 

Cytotoxicity (mean ± SD)  

(µg/cm2) (µg /mL) 

0 0 100 ± 0.02 0 ± 0 

1 3.8 91 ± 9.5 8.8 ± 9.5 

3 11.4 78 ± 13.9 22 ± 13.9 

10 38 81 ± 12.3 18.9 ± 12.3 

30 114.1 71* ± 18.1 29.5* ± 18.1 

75 285.1 76 ± 11.9 23.6 ± 11.9 

MMC   0.1 0** ± 0 100 ± 0 

 

NM-1001 

Concentration Viability 
mean ± SD 

(%) µg/cm2 µg/mL 

0 0 100 ± 0 

1 3.8 173.9 ± 21.3 

3 11.4 146.4 ± 34.2 

10 38 128.1 ± 23.1 

30 114.1 52.9* ± 0 

75 285.1 188.6 ± 0.5 



 

d 

 

Table A5. Surviving fraction of A549 cells that were exposed for 8 days to MWCNTs in Clonogenic assay. 

 

 

 

 

 

 

 

 

 

 

*Significantly different from the negative control (p≤0.05, One-Way ANOVA test); **Significantly different 

from the negative control (p≤0.01, One-Way ANOVA test). MMC- positive control. 

 

Table A6. Cell counting assay after of A549 cells exposure for 24h to MWCNTs. 

*Significantly different from the negative control (p≤0.05, One-Way ANOVA test); MMC- positive control 

 

 

 

 

NM-4000 

Concentration 
Viability (mean ± SD) 

(µg/cm2) (µg/mL) 

0 0 100 ± 0 

8 16 140.7 ± 18.24 

16 32 127.8 ± 39.28 

32 64 112.5 ± 53.03 

64 128 118.8 ± 51,91 

128 245 69.8 ± 23.01 

NM-4000 

Concentration  Surviving fraction 

(mean ± SD) 

Cytotoxicity (mean ± SD)  

(µg/cm2) (µg /mL) 

0 0 100 ± 2.82 0 ± 0 

8 16 47.96* ± 5.05 52.04* ± 5.05 

16 32 7.14** ± 2.16 92.86** ± 2.16 

32 64 0** ± 0 100** ± 0 

64 128 0** ± 0 100** ± 0 

128 245 0** ± 0 100** ± 0 

MMC   0.1 11.71** ± 5.03 88.29** ± 5.03 



 

e 

 

Table A7. Comet assay: percentage of DNA tail with, and without FPG and oxidative damage in A549 cells exposure 

for 24h to TiO2. 

*Significantly different from the negative control (p≤0.05, One-Way ANOVA test); **significantly different from the 

negative control (p≤0.001, One-Way ANOVA test). EMS- positive control. 

 

 

Table A8. Comet assay: percentage of DNA tail with, and without FPG and oxidative damage in A549 cells exposure 
for 24h to MWCNTs. 

*Significantly different from the negative control (p≤0.05, One-Way ANOVA test); **significantly different from the 

negative control (p≤0.001, One-Way ANOVA test). EMS- positive control. 

 Concentration DNA in tail (%) 

(mean ± SD) 

Tail length 

(µm)  

Tail moment 

NM-1001 

 (µg/cm2) (µg/mL)  

0 0 6.8 ± 2.4 15.91 ± 3.1 1.45 ± 0.39 

1 3.8 7.5 ± 1.2 16.97 ± 1.51 1.67 ± 0.32 

3 11.4 8.2 ± 1.1 18.7 ± 2.13 1.8 ± 0.24 

10 38 10.3 ± 2 18.37 ± 4 2.05 ± 0.56 

30 114.1 13.7 ± 4.7 24.06 ± 5.06 2.97 ± 1.25 

75 285.1 17* ± 5.4 27.86* ± 8.6 3.8 ± 1.33 

EMS 5mM  25.5** ± 5.7 28.08** ± 8.46 6.43** ± 1.79 

 Concentration DNA in tail (%) 

(mean ± SD) 

Tail length 

(µm)  

Tail moment 

NM-4000 

 (µg/cm2) (µg/mL)  

0 0 6.2 ± 2.4 16.58 ± 2.7 1.36 ± 0.46 

8 16 7.1 ± 1.2 17.59 ± 4.16 1.43 ± 0.35 

16 32 6.6 ± 1.1 15.47 ± 2.72 1.39 ± 0.44 

32 64 7.2 ± 2 18.03 ± 4.8 1.59 ± 0.52 

64 128 5.3 ± 4.7 14.68 ± 4.65 1.2 ± 0.58 

128 256 7.4 ± 5.4 16.58 ± 6.52 1.32 ± 0.77 

EMS  5mM   26.1** ± 5.7 39.11 ± 3.91 7.36 ± 1.47 



 

f 

 

 

Table A9. Micronucleus assay in A549 cells exposed for 48h to TiO2. 

** Significantly different from the negative control (p≤0.01, Fisher’s test). #significantly different from the negative 
control (p≤0.05, Student’s t test). $ significantly different from the negative control (p≤0.01, Student’s t test) 

 

 

Table A10. Micronucleus assay in A549 cells exposed for 48h to MWCNTs 

** Significantly different from the negative control (p≤0.01, Fisher’s test). #significantly different from the negative 
control (p≤0.05, Student’s t test). $ significantly different from the negative control (p≤0.05, Student’s t test). $$ 
significantly different from the negative control (p≤0.01, Student’s t test) 

 

 

Concentration Total BC 

analysed 

MNBNC/1000 

BC (mean ± SD) 

CBPI (mean ± SD) RI (mean ± SD) 

NM- 1001 

µg/cm2 µg/mL 

0 0 2000 4.5 ± 2.1 1.7 ± 0.03 100 ± 0 

1 3.8 2000 9.0 ± 1.4 1.7 ± 0.01 97.2 ± 2.8 

3 11.4 2000 6.5 ± 0.7 1.7 ± 0.03 97.8 ± 5.8 

10 38 2000 2.5 ± 2.1 1.8 ± 0.02 105.# ± 2.3 

30 114.1 2000 1.0 ± 0 1.7 ± 0 97.2 ± 0.2 

75 285.1 2000 4.5 ± 3.5 1.7 ± 0.02 104# ± 0.9 

MMC   0.1 2000 40.5** ± 7.8 1.74 ± 0.03 48.9$ ± 5.5 

 Concentration Total BC 

analysed 

MNBNC/1000 

BC (mean ± SD) 

CBPI (mean ± SD) RI (mean ± 

SD) 

NM- 4000 

µg/cm2 µg/mL 

0 0 2000  5.0 ± 2.8 1.6 ± 0.02 100 ± 0 

8 16 2000 6.5 ± 0.7 1.6 ± 0.01 97.1$ ± 0.7 

16 32 2000 9.5 ± 0.7 1.6 ± 0 99.8 ± 0.5 

32 64 2000 5.5 ± 3.5 1.7 ± 0.02 102.1 ± 3 

64 128 2000 6.5 ± 2.1 1.6 ± 0.12 89.3 ± 15.7 

128 256 2000 11.5 ± 6.4 1.7 ± 0.03 107.7# ± 2.4 

MMC   0.1 2000 59.0** ± 4.2 1.1$$ ± 0 23.2$$ ± 0.6 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


