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Abstract

The concept of modularity associated to signalling and gene expression regulatory networks
has been a field of study for the past 20 years. There are a few theories that try to ex-
plain the origin of this architecture in biological networks but there is no agreement on
which factors contribute more and are actually responsible for modularity to arise as a
predominant topology. One of the ideas that is most accepted in the scientific commu-
nity is that if a population of organisms is exposed between every few generations to new
environmental challenges, as long as they have common sub-problems, that should be
enough for modularity to be selected as the preferred network architecture type.

In this work, we try to approach this problem in a different fashion, where our digital
organisms population is represented by a set of directed graphs and they were exposed to
different environments during their lifetime. Our objective is to prove that this condition
alone is enough for modularity to arise on the population’s signalling networks. Also we
evaluate the influences of mutational parameters and their individual contributions, as
well as the impact in terms of number of environments and how similar they are on the
evolution towards modular networks.

Our results show that it is possible to have an evolution towards modular networks just
by exposing organisms to different environmental challenges through their life time, and
not necessarily with environments with common sub-problems. Additionally, faster gene
duplication rates and a slower gene interactions mutation rates are important in this
process. Gene elimination does not seem to have any impact. This work also shows
that fitness and modularity are not directly correlated, even if modularity may represent
an evolutionary advantage, their evolution patterns can be different. Notably, the same
simulation conditions that makes possible for modularity to arise, can also produce high
fit populations that are not modular.
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Resumo

A modularidade é um conceito abstrato que é usado para descrever um tipo de arqui-
tetura em grafos genéricos que pode ser aplicado a redes de sinalização e regulação da
expressão genética. Um grafo é modular quando é posśıvel dividir os seus vértices em
grupos (clusters) com um grande número de ligações entre os vértices que constituem esse
cluster e um baixo número de ligações entre vértices que pertencem a clusters diferentes.
Em redes biológicas é geralmente associado à ideia de que protéınas ou genes com funções
relacionadas têm muitas ligações entre si, por exemplo, mecanismos regulatórios comuns.
Pelo contrário, protéınas com funções distintas tendem a ter poucas ligações entre si.

Este conceito associado a redes de sinalização e regulação da expressão genética tem
sido uma área de estudo durante os últimos 20 anos, e existem várias teorias que ten-
tam explicar os motivos que estão na base da origem deste tipo de arquitetura em redes
biológicas. Umas defendem que a modularidade interfere diretamente com a capacidade
de sobrevivência do organismo e assumem que desta forma, a seleção natural seja o fator
decisivo. Outros assumem que não existe este tipo de pressão seletiva e que, por exemplo,
a duplicação de nós é o principal fator, enquanto outros defendem que é o ambiente que
faz com que os organismos desenvolvam redes modulares. No entanto, não existe um
consenso de quais são os fatores que são efetivamente responsáveis pelo aparecimento
desta organização. Uma das propostas mais aceites na comunidade cient́ıfica é a de que
uma população de organismos, entre gerações, sendo exposta a novos desafios ambien-
tais, desde que estes tenham objetivos e est́ımulos parcialmente semelhantes, acaba por
selecionar a modularidade como o tipo de arquitetura de redes preferencial.

É assumida, neste trabalho, a hipótese de que a modularidade é consequência de variações
ambientais. No entanto, o problema é abordado de uma maneira diferente. Neste trabalho
simulamos populações de organismos em que cada indiv́ıduo, no seu tempo de vida, é
exposto a múltiplos ambientes.
De modo a alcançar os objetivos, foram feitas várias simulações de evolução com po-
pulações de organismos artificiais durante 10000 gerações. O tamanho de população
foi fixado para 1000 indiv́ıduos por geração e sua reprodução foi sincronizada. Cada
indiv́ıduo é representado por um grafo dirigido, que modela uma rede booleana de sina-
lização e regulação da expressão genética, ou seja, cada vértice só tem dois estados: 0
(inativo) e 1 (ativo). Estes vértices foram classificados como vértices de est́ımulo, vértices
intermédios e vértices de resposta.
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Os vértices de est́ımulo mimetizam protéınas que têm um papel sensorial para com o
ambiente, como recetores de membrana. Estes só podem ter ligações sáıda para vértices
intermédios. É imposśıvel para os nós de est́ımulo terem qualquer tipo de ligação com
vértices de resposta, ou outros vértices de est́ımulo. Cada organismo tem um número
fixo de dezoito vértices de est́ımulo que não podem ser duplicados nem eliminados por
nenhum tipo de evento mutacional. Cada ambiente é definido por uma lista de nós de
est́ımulo que são ativados num indiv́ıduo quando é exposto a este e o estado dos nós de
est́ımulo é imutável num dado ambiente.

Os vértices intermédios mimetizam protéınas que regulam a atividade de outras protéınas
ou interferem, na expressão genética, tais como cinases em vias de sinalização ou fato-
res de transcrição. Estes só podem ter ligação de entrada a partir de outros vértices
intermédios e dos vértices de est́ımulo e podem ter ligações de sáıda que visam outros
vértices intermédios ou vértices de resposta. É imposśıvel formarem ligações de entrada
a partir de vértices de est́ımulo e ligações de sáıda para vértices de est́ımulo. O número
deste tipo de vértices pode variar a cada geração por eventos mutacionais de duplicação
e eliminação de vértices e também podem diferir entre organismos da mesma geração,
excetuando a primeira, em que o número inicial para todos os organismos é definido para
um vértice intermédio desligado de todos os outros vértices da rede.

Os vértices de resposta mimetizam protéınas com uma variedade de funções celulares,
tais como enzimas, protéınas estruturais ou transportadores. Estes só podem formar
ligações de entrada a partir de vértices intermédios e não podem ter quaisquer ligações
de sáıda. É imposśıvel um vértice de resposta estar ligado a um vértice de est́ımulo. Cada
organismo tem um número fixo de dezoito vértices de resposta que, tal como os vértices
de est́ımulo, não podem ser duplicados nem eliminados por nenhum evento mutacional.
Para cada ambiente é definida uma lista de nós de resposta que devem estar ativos para
que o organismo tenha um ńıvel de adaptação ótimo a esse mesmo ambiente.

Toda a população é, então, exposta aos diferentes ambiente para determinar os que me-
lhor se adaptam e em seguida é feito um sorteio dos indiv́ıduos que figurarão na geração
seguinte, sendo que os mais adaptados têm maior probabilidade de aparecer em maior
proporção. São, ainda, aplicados processos de duplicação de vértices, adição ou remoção
(mutação) das interações entre vértices e eliminação de vértices. O número de ambientes
a que os organismos foram expostos, dependendo do ensaio, foram de 2, 4 e 8, sendo que
ainda podiam ter sobreposição de est́ımulo e objetivos, ou não.

O objetivo é o de provar que a exposição dos organismos a diferentes ambientes durante o
seu tempo de vida é suficiente para que se observe modularidade nas redes de sinalização
da população. Os resultados recolhidos suportam esta ideia. Para além disso, foram feitos
estudos, variando individualmente cada um dos parâmetros mutacionais, mostrando que
estes têm impacto quer da adaptabilidade de um indiv́ıduo, quer na modularidade de sua
rede de sinalização, bem como na quantidade de vértices e interações que apresentavam.
Uma taxa de duplicação mais rápida será importante para adquirir maior adaptabilidade
e maior modularidade no caso de organismos enfrentarem um problema ambiental mais
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complexo (mais sobreposição entre ambientes e maior número dos mesmos), uma vez que
serão necessários mais vértices para o resolver. A taxa de eliminação de vértices da rede
não apresentou ter algum efeito. Já a taxa de mutação de interações, observou-se que,
sendo mais lenta, pode contribuir para uma maior adaptabilidade aos ambiente e também
à arquitetura modular das redes; nunca poderá ser demasiado rápida de modo a que as
redes consigam evoluir sem perder todas as suas caracteŕısticas entre gerações.

Quanto ao impacto da mudança de ambientes na evolução das redes de sinalização,
observa-se que quanto maior é o numero de ambientes e mais sobrepostos eles estão,
mais gerações leva até que os indiv́ıduos se comecem a adaptar ao meio e a ter, de forma
mais clara, uma rede mais modular. Também é posśıvel observar que nestes cenários
ambientais complexos, existe um desacoplamento entre a evolução da adaptabilidade e
modularidade, já que evoluem de forma e em alturas diferentes.

Uma descoberta interessante é a de que as redes de indiv́ıduos extremamente adaptados
não apresentam, obrigatoriamente, uma arquitetura modular. É ainda posśıvel chegar a
redes de sinalização com arquiteturas diferentes da modular, e altamente adaptados aos
ambientes, em que os parâmetros mutacionais utlizados foram idênticos, bem como o tipo
de exposição ambiental. Isto é uma prova de que a modularidade não está diretamente
relacionada com a adaptabilidade de um indiv́ıduo ao meio, mas este tipo de arquitetura,
pode, efetivamente, contribuir para um melhor perfil de adaptação.

Todos os modelos e processos biológicos foram computados utilizando a linguagem de
programação Python 2.7 e a análise estat́ıstica foi feito na linguagem R.
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Capı́tulo 1
Introduction

1.1 Signalling and gene expression regulatory networks

Living organisms have to adapt to changing environmental conditions [1], such as nutrient
availability or temperature variations, for example. Because of that, they had to develop
signalling and genetic expression regulation networks, that translate the environmental
stimuli to physiological responses, such as varying the concentration of certain proteins
or change their activity [2].

These networks can be represented as graphs that are constituted by both nodes, that
can be proteins or genes, and the regulatory connections that are established between
them [3, 4, 5].

One goal of systems biology is to find the design principles of these networks [4, 5, 6].
These design principles are usually associated with some evolutionary advantage and
functional adaptation [7].

In biological networks, one of the design principle that has been described is modularity
[8], but the evolutionary advantage and mechanisms that led to modular networks are
not fully described [9].

1.2 Modularity

1.2.1 What is modularity?

Modularity is an abstract concept used to describe a type of architectures in generic
graphs that can be applied to signalling or gene expression regulatory network. A graph
is modular when is possible to divide it’s nodes in groups (clusters) with a high number of
connections within the nodes that constitute a cluster and a low number of connections
between nodes that belong to different clusters. In biological networks this is often
associated with the idea that proteins or genes that have related functions have a lot of
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interactions between them, e.g. regulatory mechanisms, compared to proteins or genes
with different functions [9, 8].

1.2.2 Origins of modularity

The origin of the modular architecture is a very controversial topic [8]. There have been
several studies trying to explain how did organisms evolved modularity in signalling and
regulatory networks, but there is not an agreement. However, it is probably caused by
a number of forces acting in different contexts. In that optic it is necessary to identify
both the forces and their contributions [9, 10].

Some models that try to explain the origin of modularity have natural selection driving
it [8]. It has been proposed that modularity contributes directly to higher fitness, but
these models lack a detailed analysis through the evolutionary process. This does not
allows us to know what factors actually lead to the modular architecture [8].

Others say that, due to environmental pressures, there are some traits that need to change
together frequently, integrating a module [8, 11, 10]. One of the most accepted hypothesis
is that rapidly changing environments might be one of the reasons to arise this kind of
architecture, as long as they share a common sub-problem [11, 10]. It has been shown
[10] that varying environments every 20 generations can affect an organism’s structure,
robustness, genotype-phenotype mapping and speeding up the evolution.

Another possible explanation is called ’differential erosion of pleiotropic effects’. This
means that there is a selection for robustness to noise that will eventually lead to modu-
lar networks, where the pleiotropic nodes lose that propriety [8, 12]. On the other hand,
Tran and Kwon [13] say that network robustness is negatively correlated to modularity.
This would be because if a gene that is part of a module suffers a perturbation, the other
nodes that belong to that same module are more likely to suffer from this perturbation
as well.

There are also models that do not account for natural selection as the main driving force
of modularity. One of them is duplication-differentiation model [5] where the nodes of
the network are proteins and the edges are interactions between these proteins. The idea
is that the network grows by selecting a random node and duplicating it. When a node
is duplicated, it inherits the edges that were connected to the original node but there is
a probability to lose those connections and a probability to connect to new nodes. Only
new replicated nodes can form or lose connections, and this process will, eventually, lead
to modular networks [8].

In this work we follow the hypothesis that modularity is a consequence of environmental
changes. In contrast with previous studies, where changes in the environment take place
between generations [10, 11], we will study the impact of environmental changes within
a generation. Every generation will be exposed to the same set of varying environments,
excluding from our study the effects described in previous works.
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1.3 Objectives

In this work, the main objective is to test how an organism reacts to a multi-environment
exposition during its lifetime in terms of modularity, i.e. if this condition alone is enough
to promote an evolution towards a modular signalling-network without the need of chan-
ging the environments between generations. Besides that, we wanted to study the influ-
ence of the:

• Number of environments

• Similarity degree between different environments

• Mutational parameters

on the signalling networks evolution.
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Capı́tulo 2
Methods

2.1 Individual Organism and Population Definition

To achieve the objectives described in Section 1.3, we ran several evolutionary simula-
tions of artificial organisms populations for 10000 generations. The population’s size was
fixed to 1000 individuals per generation and their reproduction was synchronized.

Each individual is defined by a directed network that models a signalling and gene ex-
pression regulatory boolean networks, i.e. all its node have only 2 states: 0 (inactive)
and 1 (active). The nodes are classified in input Nodes (In), intermediate Nodes (Nn)
and output Nodes (On).

The input nodes mimic proteins that have an environment sensory role, e.g. membrane
receptors. They can only have outward edges connecting to intermediate nodes. It is
impossible for the input nodes have any kind of edge connecting them to an output node
or other input nodes. Every organism have a fixed number of 18 input nodes that can
not be duplicated or deleted by any mutational events. Each environment is defined by
the list of input nodes (Table 2.1 and 2.2) that are activated when an individual is
exposed to it and the input nodes’ state is immutable in a given environment.

The intermediate nodes mimic proteins that regulate the activity of other proteins or
interfere in the genetic expression, e.g. kinases in signalization pathway or transcription
factors. They can only have inward edges from the input nodes and other intermediate
nodes and can have outwards to output nodes and other intermediate nodes. It is impos-
sible to form inward edges from output nodes or outwards to input nodes. Their number
can vary each generation by duplication and deletion events and can be different in each
organism within the same generation, apart from the first. In the starting population,
the number of intermediate nodes in every organism is set to one and that node is not
connected to any other nodes.

The output nodes mimic proteins with a variety of cellular functions, e.g. enzymes, struc-
tural proteins or transporters. They can only have inward edges from intermediate nodes
and can not have any kind of outward edges to any other node. Every organism have
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a fixed number of 18 output nodes that, like the input nodes, can not be duplicated or
deleted by any mutational events. For each environment is set a list of output nodes
(Table 2.1 and 2.2) that should be active on an organism that would have an optimal
level of adaptation.

2.2 Fitness Estimation

In each generation, for every individual and every environment is made an environmental
signalling propagation (input nodes activation by environmental factors like temperature
or oxygen availability), until we get the organisms’ response (output nodes activation).
To simplify the model, every edge has a positive signal, i.e. corresponds to an activation.
An output node is activated if it is the final node of a directed path within the network,
starting on an activated input node. Every intermediate node that belong to directed
paths that start in activated input nodes become active as well.

A list of the activated output nodes, for a given environment, can be compared to the
expected ideal organism’s response to that environment, allowing us to estimate a fitness
measure using the Jaccard coefficient (Equation 2.1) [16]. The global fitness of an en-
vironment set, which is calculated using de product of the different fitness values of the
environments that belong to that same set, is a quantification of the adaptive success of
an individual that will affect the average number of descendants of that same individual
that will figure in the next generation. To be able to compare the fitness values of in-
dividuals exposed to a different number os environments, it was necessary to normalize
the values. We considered that no matter how many environments the organisms were
exposed to, their fitness is evaluated 8 times. If an individual is exposed to 8 different
environments (the maximum number of different environments in this work), each par-
tial fitness corresponds to a different environment. If an individual is exposed just to 2
environments, then each one of them is evaluated 4 times. An example of this fitness
estimation is presented in Section 2.6.

So, the Fitness equation will be:

Fit =
n∏

i=1

J(F,E)
T/n
i (2.1)

where J(F,E) is the Jaccard coefficient [16] between an individual’s phenotype, F , and
the environment’s ideal phenotype, E (Equation 2.2). n is the number of the total
environments of the set, on this work’s simulations n={2,4,8} and T the number of envi-
ronments to be normalized to, i.e. max(n). In this case, T = 8.

J(F,E) =
|F
⋂

E|
|F
⋃

E|
(2.2)
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Arithmetically, for an individual to have a fitness different than zero, it has to have at
least one stimulus on a phenotype node for each environment of the set. An example of
how to estimate fitness can be found in.

2.3 Population Reprodution

The individuals that will figure in a next generation are chose by a sampling with re-
placement where each individual can be selected with a probability proportional to it’s
global fitness. These new individuals’ networks can be affected by mutational events:
mutation of the connections (edges) between nodes, node duplication and node elimina-
tion. Theses events allow a diversification of the population and the possibility of new
network architectures.

2.4 Network Architecture

To evaluate the networks’ architecture evolution, we account, for each individual: the
number of nodes, the number of edges and the modularity, calculated in terms of nodes
and edges.

Modularity base on nodes (Modnode) is define by the ratio between the number of in-
termediate nodes that are activated in a single environment (anodes) and the number of
nodes that were activated in, at least, one environment of the set (Anodes). The referred
nodes on the numerator of the fraction are part of the ones on the denominator, so the
ratio will vary between 0 and 1.

Modnode =
anodes

Anodes

(2.3)

To define the modularity base on edges (Modedge), it is important to define an active
edge as a connection between two activated nodes. The modularity based on edges is
then defined as the ratio between the number edges that were activates in a single envi-
ronment (aedges) and the edges that were activated in, at least, one environment of the
set (Aedges). An example of how to calculate modularity can be found in Chapter 2.6.

Modedge =
aedges

Aedges

(2.4)
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2.5 Environments

In this work, the simulations exposed each individual to sets containing 2, 4 or 8 environ-
ments. Besides that, the environments could present overlap (OV) or no overlap (NO)
between environmental stimuli within the set. When the environments presented overlap
os stimuli, we also considered that they would present overlap between the optimal out-
put nodes.

As stated before, the environments are described as the list of input nodes (Table 2.1
and 2.2) that are activated when an individual is exposed to it. The overlapped sets
have common stimuli for different environments within the set. The non-overlapped sets
do not have common stimuli within the set. The output nodes that are expected to
be activated to obtain a perfect fit to the set have code as the input nodes. In every
environment, I1 and I2 are always activated and O1 and O2 are always expected to have
been activated.

Tabela 2.1: Binary code of the input and output nodes of each environment of the
overlapped sets.

Nodes

Env Set Env 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2OV
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
2 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

4OV

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

8OV

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
8 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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Tabela 2.2: Binary code of the input and output nodes of each environment of the
non-overlapped sets.

Nodes

Env Set Env 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2NO
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

4NO

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

8NO

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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2.6 Fitness and Modularity example

Taking the environment set with 4 non-overlapped environments, 4NO, and the generic
network G1 (see Figure 2.1) as an example, it is possible to calculate the network’s
Fitness, Modnodes and Modedges.

Figura 2.1: Generic network G1 represented as a direct graph.In are the imnput nodes,
Nn are the intermediate nodes and On are the output nodes. The arrows are directed
edges and define the direction of propagation of the stimuli.

Environment 1 node activation paths:

{I1, N0, N1, O7, O9, O12}, {I2}, {I3, N5, O3, O4}, {I3, N5, N7, O4}, {I4, N3, N4,
O16}

Environment 2 node activation paths:

{I1, N0, N1, O7, O9, O12}, {I2}, {I7, N0, N1, O7, O9, O12}, {I7, N3, N4, O16}, {I8},
{I9}, {I10}

Environment 3 node activation paths:
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{I1, N0, N1, O7, O9, O12}, {I2}, {I11}, {I12, N6}, {I13, N6}, {I14}

Environment 4 node action paths:

{I1, N0, N1, O7, O9, O12}, {I2}, {I15}, {I16, N4, O16}, {I17}, {I18}

So, the Output pattern of this network, for the different environments of this set is showed
in Table 2.3.

Tabela 2.3: G1 output pattern. Each row represents a different enviroment to which
the population was exposed to (environments 1, 2, 3 and 4 of the 4NO environment set).
The 0 state means that the output node was not activated after the stimuli by the input
nodes. The 1 state means that the signal traveled all the way from the input nodes to
the output node, that became active.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18

0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0

Tabela 2.4: G1 ideal output pattern. Each row represents a different enviroment to
which the population was exposed to (environments 1, 2, 3 and 4 of the 4NO environment
set). The 0 state means that the output node is not expected to be activated after the
stimuli by the input nodes. The 1 state means that the signal should have traveled all
the way from the input nodes to the output node and activate it. This pattern is the one
that corresphonds to a maximum partial fitness in an environment of the set.

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Therefore, the network’s fitness is calculated as shown in Equation 2.5

Fit =

(
2

10

)8/4

·
(

2

8

)8/4

·
(

1

8

)8/4

·
(

1

9

)8/4

= 4.82× 10−7 (2.5)

In terms of Modnode, looking at the generic network G1, we see that the nodes activated
in any environments were:
{N1, N3, N4, N5, N6, N7}

and the nodes activated only in a single environment were:
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{N5, N6}

Therefore, Modnode value can be calculated as shown in Equation 2.6.

Modnode =
2

6
= 0.333(3) (2.6)

As for Modedge, looking at the generic network G1, we see that the edges activated in
any environments were:

{ (I1,N0), (N0, N1), (N1, O7), (N1, O9), (N1, O12), (I3, N5), (N5, O3), (N5, O4),
(N5, N7), (N7, O4), (I4, N3), (N3, N4), (N4, O16), (I7, N0), (I7, N3), (I12, N6), (I13,
N6), (I16, N4) }

and the edges activated only in a single environment were:

{ (I3, N5), (N5, O3), (N5, O4), (N5, N7), (I4, N3), (I7, N0), (I7, N3), (I12, N6), (I13,
N6), (I16, N4) }

Therefore, value can be calculated as shown in Equation 2.7.

Modedge =
10

18
= 0.555(5) (2.7)

2.7 Mutational Parameters

Besides varying both the number and overlap condition of the environments, we also va-
ried the mutational parameters: edge mutation probability (probmut), node duplication
probability (probduplic) and node elimination probability (probelim). The variations
were made between 4 possible values: 0.01, 0.005, 0.001 and 0.0001. A list of all the
essays performed can be found in Table 2.5). A spreadsheet containing the final output
values of the last generations can be found in the digital version of this dissertation’s
annex (Annex/Resume.xlsx).
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Tabela 2.5: Mutational parameters combinations (probduplic, probmut and probelim). The
variations were made between 4 possible values: 0.01, 0.005, 0.001 and 0.0001

ID probduplic probmut probelim

001all 0.001 0.001 0.001

005all 0.005 0.005 0.005

01all 0.01 0.01 0.01

001duplic0001 0.0001 0.001 0.001

001mut0001 0.001 0.0001 0.001

001elim0001 0.001 0.001 0.0001

001duplic005 0.005 0.001 0.001

001mut005 0.001 0.005 0.001

001elim005 0.001 0.001 0.005

005duplic001 0.001 0.005 0.005

005mut001 0.005 0.001 0.005

005elim001 0.005 0.005 0.001

005duplic01 0.01 0.005 0.005

005mut01 0.005 0.01 0.005

005elim01 0.005 0.005 0.01

As for the networks’ evolution dynamic, as stated before, each individual’s network starts
in the first generation with 18 fixed input and output nodes and only 1 unconnected in-
termediate node. The intermediate nodes number can fluctuate in each generation by
duplication or elimination mechanisms. These can be applied to any intermediate node,
in a given generation, with a probability of probduplic and it’s made a copy of the target
node, maintaining every connection of the original node (see Figure 2.2). The elimina-
tion process occurs in any node with a probability of probelim and the target node is
removed from the graph and all of its connections as well (see Figure 2.4). The edge
mutation process that can occur on any existing edge of the graph being removed with
a probability of probmut, and any possible connection that two nodes can theoretically
form, can be added to the graph with, also, a probability of probmut (see Figure 2.3).
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(a) (b)

Figura 2.2: Node duplication process on generic network G2. Sequencial process star-
ting in the network’s initial state (a), where N0 has two input edges, from I5 and I7,
and two output edges, to O4 and O5. From (a) to (b) N0 is duplicated, creating a new
node, N1, that inherits the same input and output edges as the original node, creating
the generic network G3.
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(a)

(b)

(c)

Figura 2.3: Edge mutation process on generic network G3. Sequencial process starting
in the network’s initial state (a), where N0 and N1 have two input edges, from I5 and
I7, and two output edges, to O4 and O5. From (a) to (c), the edge mutation process,
represented in (b), eliminated the edge from I7 to N1 and the one from N0 to O4. It
also added an edge from N1 to O8 and other on from N1 to O9, creating the generic
network G4.
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(a)

(b)

(c)

Figura 2.4: Elimination process on generic network G4. Sequencial process starting in
the network’s initial state (a), where N0 has two input edges, from I5 and I7, and one
output edges, to O4 and O5, and N1 has one input edge from I5 and four output edges
to O4, O5, O8 and O9. From (a) to (c), the node elimination process, represented in (b),
eliminated the node N0 and, as a consequence, every input and output node associated
to it.

19



2.8 Statistical Analysis

Each simulation with a different combination of number of environments, overlap condi-
tion and parameters values was replicated 5 times.

For each generation, in each simulation, the mean (of the 1000 individuals) values of
fitness, number of nodes, number of edges, modularity based on nodes and modularity
based on edges was calculated.

In the parameter variation analysis on fitness and modularity it was applied a linear re-
gression, being tested if the slope was significantly different than zero.

To compare the fitness and modularity mean values of the simulations’ last generation
with the number of environments and their overlap state of different environments, it
was used a 2-way ANOVA based in permutations [17] since the different replica groups
presented heterogeneous dispersion.

The analysis of the output data of the evolution model was made using Python expanded
with the Numpy and MatPlotLib modules and the statistical programming language R.

2.9 Model Implementation

The simulation model was built in Python 2.7 programming language using some expan-
sion modules (Pickle, Numpy and Scipy). The updated version of the code used in this
work can be found in the digital version of this dissertation’s annex, or in my personal
github repository: https://github.com/danvilar/mygenes.
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Capı́tulo 3
Results

3.1 Impact of Parameter Variation

To evaluate the influence of the different types of mutation on the evolution of the
networks’ fitness and modularity, the simulations were made varying each mutational
parameter individually around two reference states:

• probduplic = probmut = probelim = 0.005

• probduplic = probmut = probelim = 0.001

3.1.1 probduplic Variation

For any of the reference states, a higher value of probduplic leads to a significant higher
fitness and modularity values when the individuals are exposed to 8 environments without
overlap.

For the 0.001 reference state (Table 3.1), a higher value of probduplic lead to a signifi-
cantly higher fitness and modularity values when the individuals are exposed to 8 envi-
ronments with overlap. Besides that, in this reference state, a higher value of probduplic
leads to a significant lower value of fitness when the individuals are exposed to 2 envi-
ronments without overlap, but it does not significantly affect the modularity values.

These variations suggest that a higher probduplic of the nodes makes it easier for the
higher fitness and modularity networks to be selected in more complex environments.
In simpler environments, like the 2 environments with overlap, and lower mutation ra-
tes (0.001 reference state) an over duplication can prevent the selection of the optimal
networks.
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Tabela 3.1: probduplic impact on the output parameters (Fitness, Modnode and
Modedge). probduplic values: 0.0001, 0.001 and 0.005) probmut and probelim fixed to
0.001. Fitness significant on the environment sets (Env) 2OV, 8OV and 8NO. Modulari-
ties significant on Env 8OV and 8NO

Env
Fitness Modnode Modedge

slope p value slope p-value slope p-value

2OV 1.83E+01 6.64E-01 1.98E+01 6.05E-01 2.37E+01 4.28E-01
2NO -2.21E+00 3.40E-02 -4.37E-01 1.25E-01 -3.55E-01 1.19E-01
4OV 5.37E+01 1.12E-01 4.17E+01 1.95E-01 4.11E+01 1.18E-01
4NO 6.42E+01 1.03E-01 5.04E+01 1.39E-01 2.40E+01 9.63E-02
8OV 9.78E+01 2.87E-03 1.02E+02 1.67E-02 6.23E+01 1.37E-02
8NO 6.66E+01 1.26E-03 1.47E+02 2.32E-04 3.56E+01 1.30E-04

For the 0.005 reference state (Table 3.2), we can see that the only environment set
that has a significant impact is the 8 NO, where the fitness and modularity both have
a tendency to be higher with higher duplication rate. Empirically, organisms in the 8
environment sets will need more nodes to start showing fitness. The non-overlapped va-
riant may not need that much node because the unique phenotype node that are needed
for an individual to survive are less when comparing to the overlapped variant, therefore
needing more nodes to increase the chance of activating those nodes.

Tabela 3.2: probduplic impact on the output parameters (Fitness, Modnode and
Modedge). probduplic values: 0.001, 0.005 and 0.01) probmut and probelim fixed to
0.005. Significant only on environment set 8NO.

Env
Fitness Modnode Modedge

slope p value slope p-value slope p-value

2OV -2.03E+01 1.81E-01 -2.09E+01 1.43E-01 -1.43E+01 2.01E-01
2NO -1.26E+00 2.04E-01 -9.70E-03 9.80E-01 -2.49E-02 9.25E-01
4OV -9.65E+00 1.22E-01 -1.62E+01 2.10E-01 -1.19E+01 2.12E-01
4NO -1.11E+00 4.06E-01 1.74E-01 7.21E-01 2.17E-01 5.52E-01
8OV 6.31E-01 1.47E-01 1.33E+01 1.00E-01 1.21E+01 7.64E-02
8NO 2.20E+00 1.41E-03 6.35E+01 1.14E-04 1.05E+01 1.16E-04

3.1.2 probmut Variation

Globally, we see that higher value of probmut leads to lower fitness and modularity values.
This effect is more visible in the reference state 0.005 (Table 3.4). In the reference state
0.001 (Table 3.3), the probmut value is already too low, and this parameter’s variation
only affects the organisms exposed to 8 environments with overlap. Really high probmut

values will make the descendants of individuals who originally have high fitness values
lose, by mutation, important connections between nodes that were the ones making their
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parent individual successful.

Tabela 3.3: probmut impact on the output parameters (Fitness, Modnode and
Modedge). probmut values: 0.0001, 0.001 and 0.005) probduplic and probelim fixed
to 0.005. Significant only on environment set 8OV

Env
Fitness Modnode Modedge

slope p value slope p-value slope p-value

2OV -6.70E+01 1.53E-01 -7.41E+01 1.18E-01 -5.47E+01 1.56E-01
2NO 6.56E+00 8.72E-01 3.01E+01 3.78E-01 2.04E+01 3.80E-01
4OV -4.59E+01 2.24E-01 3.08E+01 2.33E-01 1.37E+01 5.28E-01
4NO -3.12E+01 4.08E-01 -8.15E-01 9.54E-01 -5.96E+00 3.90E-01
8OV -6.96E+01 1.47E-02 -7.50E+01 2.01E-02 -7.14E+01 9.65E-03
8NO -2.33E+00 2.20E-01 -5.44E+01 1.49E-01 -1.61E+01 4.28E-02

Tabela 3.4: probmut impact on the output parameters (Fitness, Modnode and
Modedge). probmut values: 0.001, 0.005 and 0.01) probduplic and probelim fixed to
0.005. Significant on all environment set excpet 2OV.

Env
Fitness Modnode Modedge

slope p value slope p-value slope p-value

2OV -1.55E+01 3.77E-01 2.69E+00 8.80E-01 2.75E+00 8.51E-01
2NO -4.28E+01 5.29E-15 -1.19E+01 2.10E-13 -8.29E+00 1.36E-13
4OV -8.17E+01 9.79E-11 -7.69E+01 5.06E-04 -6.46E+01 4.11E-04
4NO -6.72E+01 1.45E-11 -1.91E+01 4.95E-04 -1.51E+01 4.22E-08
8OV -6.80E+01 4.87E-05 -9.35E+01 2.37E-07 -7.54E+01 1.28E-06
8NO -1.55E+01 2.30E-02 -5.97E+01 8.13E-03 -1.72E+01 5.34E-04

3.1.3 probelim Variation

As we can see from the data presented in Table 3.5 and Table 3.6, the variation of this
parameter does not seem to have any significant effect on either fitness or modularity
values of the tested organisms under any environmental conditions. The explanation for
this observation may be that the elimination effect can be replaced with the negative
selection of networks with unwanted nodes. The edges mutation and node duplication
facilitate the arise of new structures that can contribute in a positive or negative way to
the fitness values. On the other hand, the elimination just deletes structures that already
exist in the population.
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Tabela 3.5: probelim impact on the output parameters (Fitness, Modnode and
Modedge). probelim values: 0.0001, 0.001 and 0.005) probduplic and probmut fixed to
0.001. Not significant on any environment set.

Env
Fitness Modnode Modedge

slope p value slope p-value slope p-value

2OV -4.72E+01 2.78E-01 -2.05E+01 6.38E-01 -1.14E+01 7.42E-01
2NO -7.99E-01 3.81E-01 1.40E-02 9.60E-01 5.54E-04 9.98E-01
4OV -3.02E+00 5.51E-02 5.89E+00 5.08E-01 4.64E+00 5.05E-01
4NO -1.40E+00 3.54E-01 1.75E+01 8.74E-02 5.92E+00 8.71E-02
8OV -3.06E+00 8.91E-01 1.45E+01 2.66E-01 6.60E+00 5.80E-01
8NO -8.19E-01 6.57E-01 1.45E+01 7.48E-01 2.87E+00 7.85E-01

Tabela 3.6: probelim impact on the output parameters (Fitness, Modnode and
Modedge). probelim values: 0.001, 0.005 and 0.01) probduplic and probmut fixed to
0.005. Not significant on any environment set.

Env
Fitness Modnode Modedge

slope p value slope p-value slope p-value

2OV -1.71E+00 9.12E-01 3.63E+00 8.04E-01 -9.28E-02 9.94E-01
2NO 2.38E-01 8.06E-01 3.94E-01 4.16E-01 4.16E-01 2.04E-01
4OV -2.21E+00 9.05E-02 -6.72E-01 2.33E-01 -7.91E-01 1.07E-01
4NO -1.16E+00 2.58E-01 1.13E-01 7.56E-01 6.94E-02 7.93E-01
8OV -3.21E-01 6.53E-01 -6.73E+00 3.05E-01 -5.75E+00 2.29E-01
8NO -4.00E-01 2.94E-01 -1.56E+01 4.17E-01 -2.11E+00 5.32E-01

In this set of variations of the three parameters, when there is a significant impact, there
is a concordance in the fitness and modularity (both node and edge based) variation
sign. This suggests that the architectures with better fitness tend to be, simultaneously,
modular networks.

3.2 Number of Environments and Overlap Impact

3.2.1 Impact on Final Population Characteristics

The previous study allowed us to identify the combination of parameters Probduplic =
0.005, Probmut = 0.001 and Probelim = 0.001 as the one that leads to better fitness
values within the tested environment sets. Based on this combination, we studied the
number of environments impact and the overlap state presence between the stimuli of
each environment on the fitness and signalling network architecture.

In terms of fitness, the 8 environments make the networks’ evolution harder to reach high
fitness results. The existence of overlap, in this case, allows the network to achieve higher
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fitness results but not a significantly higher modularity (Figures 3.1-3.3). On the other
hand, with just 2 environments, the overlap prevents the network to evolve in order to
achieve higher fitness values. This opposite effect between the 2 and 8 environments leads
to a significant interaction between the two factors, number of environments and overlap
state, in the 2way-ANOVA analysis (p = 0.001). The overlap does not seem to have any
impact with 4 environments.

Figura 3.1: Boxplot of the effect and interaction between the number of environments
and overlap state on Fitness. In the 2way-ANOVA analysis the number of environments
is significant (p = 0.001) and the interaction between the number of environments and
the overalp state is significat as well (p = 0.001).
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Both nodes and edge based modularity present a similar behaviour (Figures 3.2 and
3.3). The number of environments effect is not so visible, especially without overlap.
With overlap, the most visible effect is the low modularity of the individuals exposed to
2 environments, which lead us again to the significant effect of the interaction between
the number of environments and the overlap (p = 0.002 for Modnode and p = 0.003
for ModEdge). The overlap’s effect is significant (p = 0.003 for Modnode and p = 0.001
for ModEdge), but that is mainly due to the low values on the essays with 2 overlapped
environments. With 4 and 8 environments it does not seem to have any significant impact.

Figura 3.2: Boxplot of the effect and interaction between the number of environments
and overlap state on Modnode. In the 2way-ANOVA analysis the overlap state is sig-
nificant (p = 0.004) and the interaction between the number of environments and the
overalp state is significat as well (p = 0.003).
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Figura 3.3: Boxplot of the effect and interaction between the number of environments
and overlap state on Modedge. In the 2way-ANOVA analysis the overlap state is sig-
nificant (p = 0.001) and the interaction between the number of environments and the
overalp state is significat as well (p = 0.002).
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In terms of the number of nodes and edges (Figures 3.4 and 3.5), it is expectable a
higher number along with the number of environments. This is visible for the number
of nodes without overlap and partially for the edges, without overlap. With overlap, the
main result is the much higher number of nodes and edges when the organisms are expo-
sed to just 2 overlapped environments. This may justify the low fitness values under these
conditions. With 4 and 8 overlapped environments, the higher number of environments
lead to a higher number of nodes, as expected.

Figura 3.4: Boxplot of the effect and interaction between the number of environments
and overlap state on Nodes. In the 2way-ANOVA analysis the number of environments
is significant (p = 0.001) and the overalp state is significat as well (p = 0.002).
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Figura 3.5: Boxplot of the effect and interaction between the number of environments
and overlap state on the mean number of edges. In the 2way-ANOVA analysis the overlap
state is significant (p = 0.002) and the interaction between the number of environments
and the overalp state is significat as well (p = 0.005).

In this study, there are some interesting observations, such as the fact that with 8 envi-
ronments, comparing the overlapped with the non-overlapped state, similar modularity
values correspond to different fitness values (higher when overlapped). This means that
the overlap makes the better adapted networks evolution easier, but this does not affect
the networks’ modularity.

3.2.2 The Effect of Environment and Overlap on Networks’
Temporal Evolution Profile

Besides the effort to understand the environment number and overlap state impact in the
final result of the evolutionary process, we also evaluated its dynamics monitoring the
fitness mean and modularity mean variation for each successive generation (Figures3.6-
3.11).
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Figura 3.6: Fitness mean values, Modnode mean values and Modedge mean values tem-
poral evolution profile during 10000 generations. These mean values are calculated with
the correspondent value of each one of the 1000 individuals in each generation. The in-
put parameters of this essay were probduplic = 0.005, probmut = probelim = 0.001
and using the Environment Set 2OV. Red dots: first replica. Blue dots: second replica.
Yellow dots: third replica. Green dots: fourth replica. Purple dots: fifth replica.
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Figura 3.7: Fitness mean values, Modnode mean values and Modedge mean values tem-
poral evolution profile during 10000 generations. These mean values are calculated with
the correspondent value of each one of the 1000 individuals in each generation. The in-
put parameters of this essay were probduplic = 0.005, probmut = probelim = 0.001
and using the Environment Set 2NO. Red dots: first replica. Blue dots: second replica.
Yellow dots: third replica. Green dots: fourth replica. Purple dots: fifth replica.
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Figura 3.8: Fitness mean values, Modnode mean values and Modedge mean values tem-
poral evolution profile during 10000 generations. These mean values are calculated with
the correspondent value of each one of the 1000 individuals in each generation. The in-
put parameters of this essay were probduplic = 0.005, probmut = probelim = 0.001
and using the Environment Set 4OV. Red dots: first replica. Blue dots: second replica.
Yellow dots: third replica. Green dots: fourth replica. Purple dots: fifth replica.
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Figura 3.9: Fitness mean values, Modnode mean values and Modedge mean values tem-
poral evolution profile during 10000 generations. These mean values were calculated with
the correspondent value of each one of the 1000 individuals in each generation. The in-
put parameters of this essay are probduplic = 0.005, probmut = probelim = 0.001
and using the Environment Set 4NO. Red dots: first replica. Blue dots: second replica.
Yellow dots: third replica. Green dots: fourth replica. Purple dots: fifth replica.
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Figura 3.10: Fitness mean values, Modnode mean values and Modedge mean values
temporal evolution profile during 10000 generations. These mean values are calculated
with the correspondent value of each one of the 1000 individuals in each generation. The
input parameters of this essay were probduplic = 0.005, probmut = probelim = 0.001
and using the Environment Set 8OV. Red dots: first replica. Blue dots: second replica.
Yellow dots: third replica. Green dots: fourth replica. Purple dots: fifth replica.
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Figura 3.11: Fitness mean values, Modnode mean values and Modedge mean values
temporal evolution profile during 10000 generations. These mean values are calculated
with the correspondent value of each one of the 1000 individuals in each generation. The
input parameters of this essay were probduplic = 0.005, probmut = probelim = 0.001
and using the Environment Set 8NO. Red dots: first replica. Blue dots: second replica.
Yellow dots: third replica. Green dots: fourth replica. Purple dots: fifth replica.
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It is possible to see a quantitative decoupling between the fitness and modularity evo-
lution. In the simulations with 4 environments is easy to identify generations in which
modularity significantly gets higher and it is accompanied by subtle fitness value incre-
ases. With 8 non-overlapped environments, a huge fitness variation is visible but that
variation is not accompanied by the modularity values. In some replicas, it is possible to
observe periods where the fitness mean values do not significantly change, but there is a
negative variation for the modularity mean values. In the green replica (4th replica) it is
possible to observe a positive variation in the fitness mean values and a negative variation
in the modularity mean values. In this non-overlapped 8 environments simulations, it is
also visible that modularity has a positive evolution, on the first generations, but mean
values of fitness barely get any higher. This suggests that the way a network evolves, by
edge mutation and node duplications and eliminations, can lead to modularity growths
independently of associated fitness values.

3.3 High Fit Networks

A different way to approach impact of both the number of environments and overlap
state in the signalling networks evolution is to select, within every single simulation that
was made, with every parameter combination and every replica, the ones that completed
their evolution with a high mean fitness value (Fitness ≥ 0.85).

This analysis (Figure 3.12) shows that an increasing number of environments, makes
higher fitness signalling networks evolution harder and that the environments overlap
presence decreases the success rate.

Without overlapped environments, these high fit networks are very homogeneous in terms
of really high modularity mean values, mean number of nodes and edges. As for the over-
lapped environments, it is possible to see two networks clusters, in terms of modularity,
and a more sparse mean number of both nodes and edges(Figure 3.13). This suggests
that is possible to obtain by natural selection networks with high values of fitness and
relatively low modularity values.
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Figura 3.12: Histogram of the absolute frequency of the samples who showed higher
values of fitness organized by number of environments. The blue bars represent the
non-overlapped samples and the red bars represent the overlapped samples.
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Figura 3.13: Visual representation of the samples populations with higher fitness values
according to their modularity, edges and nodes. Blue dots: non-overlapped samples
(Tables 3.7 and 3.9). Red dots: overlapped samples (Tables 3.8 and 3.10).

To evaluate if some mutational parameters had any impact on the clustering of modularity
values, we tried, unsuccessfully, to find a pattern within the high fit organisms. This
means that, through stochastic events, organisms can evolve their network’s architecture
to a non-modular one that grant them similar fitness to the ones that have modular
networks. The mutational parameters used, as well as the set where the organisms are
from and replica can be found through Tables 3.7 to 3.10,
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Tabela 3.7: Mutational parameters that generated high fit samples for 2NO. Fitness,
Modnode, Modedge, Nodes and Edges are mean values of the 1000 individuals population
at the 10000th generation

Set (replica no) probduplic probmut probelim Fitness Modnode Modedge Nodes Edges

001duplic005 (3) 0.005 0.001 0.001 0.9264 0.9829 0.9873 2.80 36.41
001all (2) 0.001 0.001 0.001 0.9370 0.9847 0.9888 2.05 27.98

001elim0001 (1) 0.001 0.001 0.0001 0.9432 0.9853 0.9895 2.15 28.94
001elim0001 (4) 0.001 0.001 0.0001 0.9373 0.9855 0.9899 2.19 30.08
005mut001 (1) 0.001 0.005 0.001 0.9297 0.9857 0.9900 2.63 37.30
001elim005 (4) 0.001 0.001 0.005 0.9344 0.9858 0.9902 2.09 29.40
005mut001 (2) 0.001 0.005 0.001 0.9183 0.9864 0.9897 2.64 34.78

001all (3) 0.001 0.001 0.001 0.9236 0.9867 0.9910 2.16 30.91
001elim005 (5) 0.001 0.001 0.005 0.9334 0.9868 0.9910 2.06 29.35
005mut001 (5) 0.001 0.005 0.001 0.9322 0.9869 0.9907 2.43 32.67

001duplic005 (1) 0.005 0.001 0.001 0.9361 0.9873 0.9908 2.72 37.07
001duplic005 (5) 0.005 0.001 0.001 0.9310 0.9876 0.9905 2.80 37.80

001all (4) 0.001 0.001 0.001 0.9492 0.9878 0.9913 2.22 30.73
001duplic0001 (3) 0.0001 0.001 0.001 0.9363 0.9880 0.9912 2.00 27.25

001elim005 (2) 0.001 0.001 0.005 0.9383 0.9880 0.9916 2.13 29.68
001all (5) 0.001 0.001 0.001 0.9334 0.9883 0.9918 2.21 30.91

001duplic005 (2) 0.005 0.001 0.001 0.9382 0.9886 0.9921 3.13 42.87
001elim0001 (2) 0.001 0.001 0.0001 0.9421 0.9887 0.9921 2.14 29.38
001elim0001 (5) 0.001 0.001 0.0001 0.9514 0.9887 0.9921 2.14 30.15
001duplic005 (4) 0.005 0.001 0.001 0.9312 0.9887 0.9926 2.63 39.44
005mut001 (4) 0.001 0.005 0.001 0.9360 0.9894 0.9927 2.67 36.96

001duplic0001 (1) 0.0001 0.001 0.001 0.9446 0.9895 0.9930 2.00 29.82
001duplic0001 (5) 0.0001 0.001 0.001 0.9421 0.9895 0.9929 2.00 29.08

001elim005 (1) 0.001 0.001 0.005 0.9355 0.9895 0.9922 2.06 27.13
001elim005 (3) 0.001 0.001 0.005 0.9467 0.9895 0.9925 2.13 28.69
005mut001 (3) 0.001 0.005 0.001 0.9255 0.9902 0.9931 2.90 41.07

001duplic0001 (2) 0.0001 0.001 0.001 0.9539 0.9905 0.9934 2.00 27.88
001duplic0001 (4) 0.0001 0.001 0.001 0.9504 0.9905 0.9931 2.00 28.06
001elim0001 (3) 0.001 0.001 0.0001 0.9427 0.9910 0.9937 2.06 27.91

001all (1) 0.001 0.001 0.001 0.9450 0.9923 0.9947 2.06 29.29
001mut0001 (2) 0.001 0.0001 0.001 0.9941 0.9987 0.9991 3.04 43.38
001mut0001 (3) 0.001 0.0001 0.001 0.9940 0.9988 0.9990 2.45 30.33
001mut0001 (1) 0.001 0.0001 0.001 0.9924 0.9995 0.9997 2.28 33.41
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Tabela 3.8: Mutational parameters that generated high fit samples in the enviroment
set (Env) 2OV. Fitness, Modnode, Modedge, Nodes and Edges are mean values of the 1000
individuals population at the 10000th generation

Set (replica no) probduplic probmut probelim Fitness Modnode Modedge Nodes Edges

001elim0001 (2) 0.001 0.001 0.0001 0.9218 0.4775 0.5264 4.33 62.32
001all (4) 0.001 0.001 0.001 0.9371 0.5685 0.5626 3.78 53.00

005mut001 (3) 0.001 0.005 0.001 0.9196 0.5790 0.6048 4.24 62.87
001all(2) 0.001 0.001 0.001 0.9314 0.6183 0.6734 3.33 47.26

005mut001 (2) 0.001 0.005 0.001 0.9090 0.6271 0.6600 4.19 64.27
001duplic0001 (2) 0.0001 0.001 0.001 0.9336 0.6500 0.6946 2.99 45.98

005mut001 (4) 0.001 0.005 0.001 0.9110 0.6538 0.6417 3.96 56.87

001duplic005 (5) 0.005 0.001 0.001 0.9132 0.9668 0.9709 3.07 47.12
001elim0001 (4) 0.001 0.001 0.0001 0.9213 0.9731 0.9764 2.67 41.34
001elim005 (1) 0.001 0.001 0.005 0.9253 0.9772 0.9800 2.12 33.84
001mut0001 (3) 0.001 0.0001 0.001 0.9806 0.9943 0.9951 5.74 79.85
001mut0001 (1) 0.001 0.0001 0.001 0.9926 0.9992 0.9993 2.39 39.93

Tabela 3.9: Mutational parameters that generated high fit samples in the enviroment
set (Env) 4NO. Fitness, Modnode, Modedge, Nodes and Edges are mean values of the 1000
individuals population at the 10000th generation

Set (replica no) probduplic probmut probelim Fitness Modnodes Modedges Nodes Edges

001elim0001 (3) 0.001 0.001 0.0001 0.8613 0.7740 0.9155 5.49 46.11

001elim0001 (2) 0.001 0.001 0.0001 0.8592 0.9713 0.9744 4.12 38.38
001elim0001 (1) 0.001 0.001 0.0001 0.8672 0.9728 0.9759 4.09 38.14

001all (4) 0.001 0.001 0.001 0.8692 0.9735 0.9809 4.09 33.88
001elim005 (1) 0.001 0.001 0.005 0.8610 0.9736 0.9803 4.07 32.28

001all (2) 0.001 0.001 0.001 0.8572 0.9742 0.9813 4.11 33.81
001duplic005 (4) 0.005 0.001 0.001 0.8562 0.9744 0.9809 4.76 38.04

001all (3) 0.001 0.001 0.001 0.8605 0.9746 0.9816 4.05 33.23
001duplic005 (3) 0.005 0.001 0.001 0.8568 0.9751 0.9819 4.56 37.79
001duplic0001 (4) 0.0001 0.001 0.001 0.8679 0.9758 0.9829 4.00 34.23

001all (1) 0.001 0.001 0.001 0.8676 0.9760 0.9830 4.26 35.56
001elim0001 (5) 0.001 0.001 0.0001 0.8729 0.9766 0.9837 4.20 35.21
001elim005 (3) 0.001 0.001 0.005 0.8537 0.9783 0.9836 4.12 32.70
001elim005 (5) 0.001 0.001 0.005 0.8643 0.9789 0.9851 4.10 34.31

001duplic0001 (5) 0.0001 0.001 0.001 0.8663 0.9798 0.9860 4.04 34.27
001mut0001 (1) 0.001 0.0001 0.001 0.9743 0.9963 0.9975 6.42 51.68
001mut0001 (5) 0.001 0.0001 0.001 0.9855 0.9981 0.9986 5.46 42.43
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Tabela 3.10: Mutational parameters that generated high fit samples in the enviroment
set (Env) 4OV. Fitness, Modnode, Modedge, Nodes and Edges are mean values of the 1000
individuals population at the 10000th generation

Set (replica no) probduplic probmut probelim Fitness Modnode Modedge Nodes Edges

001mut0001 (3) 0.001 0.0001 0.001 0.9536 0.657729973 0.8163 8.91 58.32

001duplic0001 (5) 0.0001 0.001 0.001 0.8551 0.9693 0.9729 4.00 37.99
001elim0001 (2) 0.001 0.001 0.0001 0.8592 0.9713 0.9744 4.12 38.38

001all (3) 0.001 0.001 0.001 0.8632 0.9714 0.9743 4.12 37.96
001elim005 (5) 0.001 0.001 0.005 0.8548 0.9720 0.9757 4.06 38.79

001elim0001 (1) 0.001 0.001 0.0001 0.8672 0.9728 0.9759 4.09 38.14
001all (2) 0.001 0.001 0.001 0.8599 0.9731 0.9769 4.14 39.50

001elim0001 (4) 0.001 0.001 0.0001 0.8716 0.9740 0.9770 4.19 39.27
001all (1) 0.001 0.001 0.001 0.8613 0.9754 0.9779 4.23 39.55
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Capı́tulo 4
Discussion

Our results suggest that exposing an organism to different environments during its life
time is sufficient to evolve modular regulatory networks. This observation is novel and
complements the previous studies where modularity evolved due to cyclic changes of
environment after a few generations [11, 10]. Our scenario of changing environments
during lifetime is reasonable, as exemplified by organisms that live more than one year
and have to adapt to seasonal climatic changes. Previous studies also requested common
sub-problems across varying environments to efficiently select modular networks. Our re-
sults with non-overlapping environments show that modularity can evolve in the absence
of common sub-problems if the environmental changes occur during the organism lifetime.

We also wanted to study the influence of the number of environments an organism has
to deal with during his lifetime. The more environments they are exposed to, the more
complex is the problem to solve. Therefore, with 8 different environments, a large num-
ber of generations is needed to obtain well adapted networks. Reversely, with less en-
vironments, well adapted populations quickly emerge after generating individuals with
non-zero fitness. Although overall there is a positive correlation between fitness and
modularity values, in some replicate simulations it is possible to detect a quantitative
decoupling between both properties. This decoupling is more evident in more complex
settings (more environments and overlapping environments). Additionally, among simu-
lations reaching high fitness values, replicates with the same parameters and environment
exposition produce equally fit populations but either a high or low modularity. This is
consistent with the idea that modular networks are not necessarily more fit, and con-
tradicts studies where a modular architecture is implied to directly affect an organism’s
fitness. [8].

Regarding the impact of the mutational parameters (probduplic, probmut and probelim) on
the network evolution, node elimination shows no significant contribution. This can be
explained through the selection process, that in most cases is sufficient to reverse cases
of over-duplication negative effects. To our knowledge, the impact of this parameter in
signalling and gene expression regulatory networks modular architecture has not been
addressed before.
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The node duplication rate has a positive impact on both fitness and modularity of the
organisms that are exposed to more complex problems, since there will be a need for more
nodes to solve it. Many studies agree that gene duplication can lead adaptive advantages
[5, 18, 19] and that it can contribute to a more modular architecture [5, 8]. However
it has a negative impact on both fitness and modularity of organisms that are exposed
to less complex problems. One possibility is that higher duplication creates an unne-
cessary excess of nodes. Our model, for simplification reasons, does not account for a
fitness cost proportional to the number of connections or nodes. Introducing this kind of
cost, which is biologically plausible [9], could diminish this negative impact of duplication.

The edge mutation rate has a negative impact on both fitness and modularity in most
of the problems to which the organisms were presented. This is no surprise because,
although it’s a processes that it is needed to evolve the networks, it gets harder to retain
partial solutions due to the fact that the network architecture will be changing very often.

The way we calculated modularity was different from previous studies [11, 20]. The rea-
son we did it in a new way is due the fact that, according to our hypothesis, the number
of modules that would arise from the simulations would be a number close to the number
of environments to which the organisms were exposed during their life time [8, 10, 11].
Knowing the number of clusters and identifying cluster nodes and edges through their
activation in each environment greatly simplifies modularity computation and simulta-
neously attributes a clear biological meaning to cluster membership.

The process of adding nodes to our networks was done by duplication previously existing
nodesand copying the connections of the ancestor node. In a recent study, the dupli-
cation process is implemented in a different way: new nodes establish new connections
randomly and connections from previously existing nodes are immutable [21]. We beli-
eve that every node must have a duplication probability each generation and every edge
within the network must have mutation probability so it matches a more logic biological
process [18, 19].

Our results are potentially influenced by simplifications in our model definition. First
we used a boolean network model, where each node has only two states (on/off), second,
all connections are activations and third, when a node has multiple inward edges, one
active signal is sufficient for node activation (logical OR function). Other simplification
that was made was the inability of inter-regulation between two nodes, e.g. if there is
already an edge N0 −→ N1 in the graph, the creation of the edge N0 ←− N1 becomes
impossible. Boolean networks have been successfully used to study signalling networks,
capturing most essential dynamic properties [3], although we cannot exclude that quanti-
tative effects may play some role in network evolution. Negative interactions and different
logical functions to integrate multiple signals will be implemented in future versions of
the model. Still, our results will be relevant to compare the effect of these more complex
network properties.
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Capı́tulo 5
Conclusions

In the past two decades, modularity has been a research topic and there has been a lot
of discussion involving the origin of this network architecture. The main objective of this
work was to prove that exposing organisms to different environments during their life time
alone is a condition that can lead signalling and gene expression regulatory networks to
achieve modularity. Our results support this hypothesis.

Our study also showed that the mutational parameters that drive the evolution of these
networks have an impact on both fitness, modularity and overall organization. Higher
node duplication rates are important to achieve higher fitness and modularity on more
complex problems, since there will be needed a higher number of nodes to solve it. Node
elimination rates do not seem to have any impact whatsoever. As for connection muta-
tion rates, a slower mutation rate will improve the network’s fitness and modularity, but
it has to be a relatively slow, to allow the more fit and modular networks to retain the
traits when they appear and this would not be possible with fast mutation.

Regarding the environmental changes impact on the network evolutionary process, the
more complex (more and overlapping environments) the problem is, the later the network
adapts to its surroundings. It was also visible, mainly in these complex scenarios, a de-
coupling between fitness and modularity evolution.

One interesting finding is that high fit networks are not necessarily modular. It is possible
to achieve other architectures that are also fit, even with the same mutational parameters
and environmental settings that were responsible for highly modular networks. This is
an evidence that fitness and modularity are not necessarily correlated, but modularity
can, indeed contribute to an adaptation to the surrounding environmental dynamics.

In the future, we want to make our computational model more complex to allow a more
detailed study of the digital organisms. Adding a connection cost to match the new
models of evolution may improve the accuracy of our data when the organisms are exposed
to less complex problems. We also want to be able to directly control the connection
mutation rate, separating this parameter in two: one related to the addition of new
connections and other related the the elimination of previously existing connections. In
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order to improve the biological accuracy of our model it is also important to allow different
types of regulation between genes to occur since currently it only accounts for positive
and boolean regulation. It may be also interesting to add a cross-over function to the
digital network to simulate more complex organisms.

45



Bibliografia

[1] Willi Gottstein, Stefan Müller, Hanspeter Herzel, and Ralf Steuer. Elucidating the
adaptation and temporal coordination of metabolic pathways using in-silico evolu-
tion. BioSystems, 117(1):68–76, 2014.

[2] Arend Hintze and Christoph Adami. Evolution of complex modular biological
networks. PLoS Computational Biology, 4(2), 2008.

[3] István Albert, Juilee Thakar, Song Li, Ranran Zhang, and Réka Albert. Boolean
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