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RESUMO

O trauma cerebral (frequentemente denominado de TBI — Traumatic Brain Injury) é uma das principais causas de morte e
incapacidade em jovens adultos, afectando cerca de 2,5 milhdes de sujeitos, por ano, sé na Europa, sendo que 75 000 acabam
por morrer em consequéncia do mesmo. Actualmente, TBI é classificada pela Organizagdo Mundial de Salide como uma epidemia
silenciosa e um grave problema de saldde publica.

O diagndstico do trauma cerebral assenta em parametros como a escala de coma de Glasgow ou o nivel de perda de
consciéncia, o que condiciona um diagndstico exacto, ja que por vezes os sintomas associados ao trauma cerebral ndo se
manifestam de imediato. Assim, as técnicas de imagem médicas derivadas da Ressonancia Magnética, como é o caso das imagens
obtidas usando o tensor de difusdo - DTI (Diffusion Tensor Imaging) — e imagens de Ressonancia Magnética funcional — fMRI
(Functional Magnetic Resonance Imaging) - tém-se mostrado bastante relevantes para um diagndstico mais eficaz do TBI.

TBI trata-se de um conjunto de reac¢des a um agressao externa, que dependem de diversos factores e que por esse motivo
tornam dificil definir TBI, assim como a melhor abordagem para o seu tratamento. Por conseguinte, uma das formas mais eficazes
de estudar TBI, tentando definir um tratamento adequado, é através de estudos longitudinais, que permitam, abrangendo um
numero alargado de pacientes, melhor caracterizar esta patologia. E neste sentido que surge o projecto CENTER-TBI.

O CENTER-TBI é um estudo multicentro que visa, por meio da aquisicdo de dados em 60 centros e abrangendo um total de
5400 individuos, uma caracterizacdo mais eficaz do trauma cerebral, assim como a identificacdo da intervencdo mais eficaz para
o tratamento de TBI.

Considerando as mais-valias que um estudo multicentro oferece, entre as quais se destaca o aumento da populagdo em
estudo o que permite um aumento de poder estatistico dos testes, assim como a garantia de que a populacdo é o mais
heterdgena possivel permitindo a andlise de diferentes caracteristicas e sintomas associados ao TBI, sera possivel definir uma
abordagem que esclareca a comunidade médica sobre como proceder perante um paciente com trauma cerebral.

No entanto, a viabilidade deste tipo de estudos, e do projecto CENTER-TBI em particular, esta fortemente dependente da
reprodutibilidade dos dados. Para tal, foi definido qual o procedimento a adoptar para a aquisicdo de imagens médicas,
estabelecendo-se protocolos que definem qual a sequéncia de aquisicdo de MRI. Porém, seja por incapacidade de
implementacdo da sequéncia tal como esta definida, seja por caracteristicas intrinsecas ao scanner utilizado, existe uma frac¢ao
de variabilidade em cada imagem adquirida que é inerente ao scanner. Tal facto introduz um viés nos dados que impossibilita
gue 0s mesmos sejam exactamente reprodutiveis e comparaveis entre scanners.

Este projecto tem como objectivo principal a redugdo da variabilidade entre dados provenientes de scanners diferentes,
assegurando a reprodutibilidade dos mesmos.

Assim, numa primeira fase, apds uma extensa pesquisa sobre o estado da arte relativo a estudos multicentro, procedeu-se
ao desenvolvimento de algoritmos que permitam a quantificacdo da variabilidade que é originada pelas singularidades do
hardware. De seguida, procedeu-se a comparacdo ndo sé dados provenientes de sujeitos saudaveis, definidos como grupo de
controlo, mas também dados provenientes de pacientes com TBI. Desse modo, foi possivel estimar o quanto a variabilidade
introduzida pelo scanner afecta o diagndstico de pacientes.

Posteriormente, apds terminada a fase de quantificagdo, procedeu-se a aplicagdo de dois métodos distintos de correc¢do
de variabilidade pelo hardware, sendo que no segundo caso, ao método testado foram introduzidas varias variacdes nas quais se
tentou obter uma melhor performance do algoritmo em andlise. Esperou-se que com a aplicagdo de ambos os métodos de

correcgao, as diferengas encontradas entre os varios scans, adquiridos em diferentes centros, se ficam a dever exclusivamente a
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diferengas anatdmicas e/ou fisioldgicas entre pacientes, permitindo desse modo a comparacdo dos diferentes individuos em
analise. Assim, as conclusdes e pressupostos assumidos tendo por base estudos e analises de dados multicentro terdo a sua
fiabilidade assegurada.

Em suma, este projecto teve como objectivo a quantificacdo e correc¢do da variabilidade entre scanners, dado que esta se

pode tornar um factor de erro com énfase suficiente para colocar em causa a fiabilidade de estudos multicentro.

Palavras-chave: Estudos Multicentro, Técnicas de imagem médica, Variabilidade, Correccdo da variabilidade

introduzida pelo scanner, Trauma Cerebral.



ABSTRACT

Introduction: Multicentre studies have proven themselves very useful to collect data from subjects with interesting
characteristics for Traumatic Brain Injury (TBI) research, such as heterogeneous approaches for TBI treatment. Multicentre
projects have been contributing to increase the statistical power of the TBI studies and to improve the reliability of the
assumptions held about this illness.

It is necessary to ensure the data reproducibility in order to guarantee the studies reliability. In this way, it is crucial to
remove any source of error in these projects, such as variability and bias present in the data, introduced by the hardware.
The present dissertation presents a project whose main goal is to quantify and correct for the variability introduced by the
hardware. Therefore, the first step to guarantee the viability of the results is to measure the variability present in the data.
Second, the data needed to be corrected so as to eliminate the sources of variability, considering the several approaches
suggested in the literature. It was also important to determine the best approach to achieve the lowest level of variability
in the data, without removing relevant features regarding pathology.

Materials and Methods: In an initial phase of the project, a quantification of the variability across scanners and within
centre was performed. For that, the Coefficient of Variation (COV) was calculated for each type of maps in analysis —
Fractional Anisotropy (FA), Mean Diffusivity (MD), Grey Matter (GM) and White Matter (WM). A voxel based analysis and
Regions of Interest (ROI) analysis was performed in order to characterize the variability present in the data and to confirm
the need for the use of a correction model to remove the variability introduced by the hardware in multicentre studies.
After that, two methodologies to correct the variability were tested. In the case of the second methodology applied,
variations of the initial model were also tested in order to improve the performance of this model. Finally, a comparison
of the effectiveness of the methods tested was performed. For that, a Support Vector Machine (SVM) algorithm was
applied to obtain an indirect measure of the accuracy of the methods tested.

Results: The results obtained in this initial phase were as expected, in agreement with previous studies described in the
literature. The models tested were effective in the correction of the variability introduced by the scanner. The Regression
Models showed the best performance in the correction of the variability. However, the Spatial Filtering models were
simpler and quicker to apply, and the effectiveness of their performance suggested that these kind of models could be
applied in the context of CENTER-TBI and the variability would be corrected.

Conclusions: As expected, the scanners introduced a significant level of variability in the data. The variability introduced by
the hardware can be quantified within scanners, analysing the data from the same device, or across scanners and
comparing the data from different devices. In both cases, the results suggest that the correction and elimination of
variability introduced by the hardware are needed, before proceeding with further analysis using data from multicentre
studies, in order to ensure the reliability of the results. The methods tested in this dissertation showed to be effective in

the elimination of the variability introduced by the scanner.

Keywords: Multicentre studies, Medical Imaging Techniques, Variability across scanner, Correction of the bias introduced

by the scanner, Traumatic Brain Injury.
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Introduction

Chapter 1

INTRODUCTION

1.1. CONTEXT

The World Health Organization expects that Traumatic Brain Injury will surpass many diseases as the major cause of
death and disability by the year 2020 (Hyder, Wunderlich, Puvanachandra, & Gururaj, 2007). In Europe, TBI affects about
7.7 million individuals, and it is estimated that 30-70% of them will suffer on-going mental illness as well physical and
cognitive disabilities (Kostro et al., 2014; Wilson et al., 2014)

Traumatic Brain Injury (TBI) is defined as an alteration in brain function, or other evidence of brain pathology, caused
by an external factor (Menon, Schwab, Wright, & Maas, 2010). TBI can be classified as mild, moderate or severe based on
acute TBI variables that include the following clinical signs:

e Duration of loss of consciousness (LOC);

e Glasgow Coma Score (GCS);

e Loss of memory for events immediately before or after the injury (Post Traumatic Amnesia - PTA);

o Neurologic deficits, such as weakness, loss of balance, dysphasia paresis/plegia, sensory loss, aphasia,
etc.

The most common manifestation of this pathology is mild TBI, with an incidence of 70-90% of all cases. (Kraus et al.,
2007)

Certain brain regions are more susceptible to contusion following TBI, such as frontal and anterior temporal cortices,
due to the proximity to the skull. On the other hand, white matter tracts are particularly susceptible to the shearing forces
that occur with TBI. (Risdall & Menon, 2011)

The diagnosis of TBI is made when the symptoms and signs are closely related to the insult. However, other clinical
manifestations may be delayed. These manifestations include cognitive changes such as decreased mental flexibility,
impaired attention, poor planning, impaired judgement, deficits in verbal fluency, problems with working memory as well
as increased impulsivity (Kraus et al., 2007). Determining the extent of clinically relevant neuropathology associated with
TBI might be problematic. To solve this issue, modern medical imaging techniques have been used, such as Diffusion Tensor
Imaging (DTI). These MRI techniques provide pathological information in vivo. Besides, the prospect of tracking white
matter microstructural changes over time holds the promise of measuring neuroplasticity and repair following TBI, which

can provide a way of monitoring the therapeutic response and can improve the efficiency of the treatment.
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However, regarding the inherent heterogeneity of TBI, which is determined by multiple factors?, the study of this
pathology is a huge challenge, which requires a diversified dataset. A large dataset ensures the presence of a large
spectrum of different symptoms and of therapeutic responses, allowing a more complete understanding of this illness.
Thus, the multicentre studies have proven themselves very useful to collect data from subjects with interesting
characteristics for TBI research, contributing to increase the statistical power of the TBI studies and to improve the
reliability of the assumptions made about this iliness.

Considering this fact, a pragmatic approach to TBI research is required. The CENTER-TBI Project is a large European
study that aims to improve the care for patients with TBI (Figure 1.1.). It consists in a prospective longitudinal observational
study in 60 centres from 20 countries including approximately 5400 patients, and it forms part of the larger global initiative
InTBIR: International Initiative for Traumatic Brain Injury Research with projects currently ongoing in Europe, the US and
Canada.

The main goals of the CENTER-TBI are the improvement of the characterization of TBI as a disease and the
identification of the most effective clinical interventions for managing TBI. For that, the CENTER-TBI study will include
works in several areas of research, such as neuroinformatics, genetic associations, MR imaging, biomarkers and
comparative effectiveness research (CER), which will give a complete and detailed characterization of TBI (CENTER-TBI,
2014).

The CENTER-TBI purposes to connect the real clinical situation to the approaches studied, in order to translate the
research outputs into valid and useful information for physicians and clinicians, allowing a better care of the patients, as
well as a more efficient approach for the hospitals and health care centres. Therefore, it will develop and sustain
an international TBI knowledge community that integrates results of the project with high quality 'living evidence reviews'
of the current state of knowledge.

These goals will only be possible if the reliability of the study is ensured. It is in this topic that the project that foments

this thesis is inserted. The main goals of the thesis will be discuss in the next section.

1.2. OBJECTIVES OF THE DISSERTATION

The principal aim of this thesis is to develop robust methods for quantification and correction of variability across
scanners in multicentre studies. Secondly, this dissertation is inserted in the CENTER-TBI Project and, consequently, it aims
to show the potential of multicentre studies for the improvement of diagnosis of TBI, and as an advanced method in brain
study.

Also, it is expected that this work can be part of the set of published studies in the context of CENTER-TBI, specifically
as a study of the impact of the variation introduced by the scanner in multicentre studies and contributing to the definition

of which methodologies could be useful to overcome the main issues behind these studies.

! The factors which contribute to the heterogeneity of TBI are injury location, physiology, extracranial injuries, and constitutional effects
of the patient (CENTER-TBI, 2014; Hyder et al., 2007; Wilson et al., 2014).
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1.3. OUTLINE OF THE DISSERTATION

This report is organized in 8 chapters as described below.

In the present chapter, Chapter 1, a brief contextualization of the project, in which this dissertation is inserted, is
presented. In this chapter, the goals of the project are detailed.

The second chapter introduces the concepts behind medical imaging useful for TBI analysis, namely MRI. Considering
the topics presented, the chapter is divided into two sections. In the first one, the concepts on MRI, such as the physical
principles and imaging reconstruction principles of MRI, are described.

Chapter 3 introduces the state of the art of multicentre studies. The limitations and advantages of multicentre studies,
as well as their usefulness on TBI study, are explained. In this chapter, the methodologies applied in previous studies to
quantify the variability introduced by the hardware in medical imaging are also detailed, and the impact this variability on
the studies reliability and data reproducibility is also discussed. A set of strategies for data calibration and error correction
presented in the literature are described in the last section of this chapter.

In Chapter 4 the dataset used in study developed on context of this dissertation and its main characteristics are
detailed. The methods used to quantify the variability between scanners and intra-scanner are also described in this
chapter. In addition, the variation measured intra- and inter-centre is presented as well as a comment about the values
achieved for the three centres, independently, and for the inter-centre analysis.

The following chapters, Chapters 5 and 6, a comprehensive and extensive description of the methods used for the
elimination of the variability are presented as well as the main results obtained using the models employed. Thereby, in
Chapter 5 an evaluation of the Spatial Filtering Model is presented, in which an ROl analysis and a voxel based analysis are
compared and discussed. In this chapter, the effectiveness of a default pipeline to correct for the errors in Magnetization
Prepared Rapid Gradient Echo (MPRAGE) images, namely in Grey Matter (GM) and White Matter (WM) segmentations is
also discussed. In Chapter 6, the usefulness of using covariates to absorb the error introduced by nuisance variables in the
data is discussed.

In Chapter 7 a comparison between models is presented.

Finally, Chapter 8 presents a conclusion and evaluation of the project. Moreover, in this chapter, an overview of the
work developed as well as a reflection on future work in the context of multicentre studies and variability correction in

MRI are presented.
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Chapter 2

BACKGROUND

2.1. INTRODUCTION

In medical science when we refer to medical imaging, we are referring to a wide range of techniques and technologies
which are used to analyse the human body for purposes of diagnosis, monitoring or treating pathological medical
conditions.

Medical imaging includes a range of non-invasive techniques which have been proven to be an essential tool for
current medical practice. These techniques are part of the current approach to diagnose and evaluate patients when they
arrive at a medical facility or hospital. In fact, medical imaging technigues enable higher viability and accuracy of diagnosis,
which result in greater effectiveness of medical treatment. The use of medical imaging has enabled physicians to study the
symptoms and progress of a specific pathology, without the need for exploratory surgery. In modern medicine, there are
several medical imaging methods with different features, which register different types of information that may be more
targeted to functional or anatomical details, depending on the specific symptoms or pathology. For instance, techniques
like structural Magnetic Resonance Imaging (sMRI), Computerised Tomography (CT) or Diffusion Tensor Imaging (DTI) are
more directed to anatomical studies, whereas functional Magnetic Resonance Imaging (fMRI) is useful in functional
evaluations.

Nowadays, medical imaging techniques are an important procedure in the employed methodology to study the
patho-physicological mechanisms of several diseases, and at the same time ensuring the comfort and safety of the
individuals being analysed. Thereby, taking all characteristics into account it is obvious why these techniques have achieved
such an important role in fields such as Clinical Neuroscience. In particular, medical imaging methods like standard MRI
structural images can readily demonstrate large focal contusions or bleeds, diffuse axonal injury may be detected indirectly
by brain volume loss (volumetric analysis) (Boven et al., 2011). On the other hand, studies using functional MRI (fMRI) in
patients with TBI show abnormal patterns of brain activation in patients compared with healthy control subjects (Boven et
al., 2011). DTl also demonstrated potential in TBI diagnosis, since DTl allows for the specific examination of the integrity of
white matter tracts, which are especially vulnerable to the mechanical trauma of TBI (Kraus et al., 2007; Shenton et al.,
2012). Thereby, there has been increasing interest in using MRI techniques to diagnose and monitor TBI patients (Risdall
& Menon, 2011; Shenton et al., 2012).

In this chapter the basic principles of MRI and DTl are presented, and the advantages and limitations of these

techniques for the purpose of medical diagnostics are discussed.
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2.2. MEDICAL IMAGING

2.2.1. Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive technique which allows in-vivo imaging of the human body,
without requiring the use of radiation. MRl is a high resolution technique and it is frequently used to acquire brain images,
since it allows acquisition of images with high level of anatomical detail and, consequently, makes possible the detection

and monitoring of many lesions.

(a) Physical principles behind MRI
MRI uses magnetic fields and electromagnetic energy to generate signals from atomic nuclei, which can be used to
create an image. The human body is composed of 60% of water, whereby the hydrogen nuclei the third most abundant in
the human body. MRI uses the signal from hydrogen nuclei to generate the image; however, it is possible to image other
nuclei such as sodium.
When a volume of water, in this case a body area, is exposed to an external and static magnetic field, Bo, the spin’s

magnetic moment (fi) of the protons aligns in the direction of Bo (Figure 2.1).
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Figure 2. 1 — External magnetic field effect on protons. In the left side of the image is possible to see the protons in absence of magnetic
field. In consequence, the spin’s magnetic moment of the protons are not aligned (represented by the black arrows). On other hand,
when a magnetic field is applied (right side) the spin’s magnetic moment of the protons aligns in direction of Bo. The orientation of the
spins is explained by the Boltzmann statistics, which explains the different orientation of the spin’s magnetic momentum of protons
represented at this image. Image adapted from (Haacke, E. M; Brown, R.W; Thompson, M. R; Venkatesan, 1999).

This phenomenon is explained by Boltzmann statistics, which state that there are more spins in the lower energy level

(orientated parallel to By), than spins in the higher energy level (orientated anti-parallel to Bo). In this situation, the spin’s

magnetic moment starts precessing at a specific frequency, known as the Larmor frequency — wo:

wo =YByg Equation 2.1.
where y is the gyromagnetic ratio.
The sum of magnetic moments of all the protons exposed to the external magnetic field is given by the Net Magnetic

Moment (M), which is aligned with Bo. This vector has a component in the Bo direction, designated as longitudinal

magnetization (Mz), which is the larger component at equilibrium state, since the transversal component of Bo, designated
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as transversal magnetization (Mxy) is close to zero at this state. Note that, in this situation, the protons are not precessing
in phase and the i component transversal to Bo is randomly distributed.

By applying a radio frequency pulse, with the Larmor frequency, it is possible to force the protons to precess in phase,
which will increase the M. The angle of rotation relative to the main magnetic field direction is called flip angle. When the
radio frequency pulse is interrupted the M starts losing its transverse component, and returns to the equilibrium state.
This effect of relaxation can be induced by two different processes: the spin-lattice relaxation (T1 relaxation) or a spin-spin
interaction (T2 relaxation). In the first case (Figure 2.2), the protons transfer their energy to the surrounding macro-
molecules and realign with Bo. T1 is the time constant that represents the time required for the protons to recover 63% of
initial M. component, after a 90 degrees pulse has been applied. This phenomenon can be described by the following

expression:

-t Equation 2.2.
M) = My |1 = exp(0)| i

where M, refers to the magnetization in the equilibrium state.
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Figure 2.2 — Proton relaxation and longitudinal magnetization recovery, after a 90° RF pulse is applied at equilibrium. The z component
of the net magnetisation, Mz, is reduced to zero. This component recovers gradually back to its equilibrium value if no further RF pulses
are applied. The recovery of Mz is an exponential process with a time constant T1. This is the time at which the magnetization has

recovered to 63% of its value at equilibrium. Image adapted from (Ridgway, 2010).

In the second case, (Figure 2.3), the reduction of My is a consequence of loss of phase coherence between the
protons, which can be expressed by Equation 2.3, where Mo refers to the initial transversal magnetization and T:

corresponds to the time constant of spin-spin relaxation.

—t Equation 2.3
Mxyo @) = MxyO [eXP(T_)]
2
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Figure 2.3 —Transverse magnetization relaxation, after a 90° RF pulse is applied at equilibrium. Initially the transverse magnetisation (red
arrow) has a maximum amplitude as the population of proton’s spin magnetic moments rotate in phase. The amplitude of the net
transverse magnetisation decays as the proton’s spin magnetic moments move out of phase with one another (shown by the small black
arrows). The resultant decaying signal is known as the Free Induction Decay (FID). The overall term for the observed loss of phase
coherence (de-phasing) is T2* relaxation, which combines the effect of T2 relaxation and additional de-phasing caused by local variations
(inhomogeneities) in the applied magnetic field. T2 relaxation is the result of spin-spin interactions and due to the random nature of
molecular motion, this process is irreversible. T2* relaxation accounts for the more rapid decay of the FID signal, however the additional
decay caused by field inhomogeneities can be reversed by the application of a 180° refocusing pulse. Both T2 and T2* are exponential
processes with times constants T2 and T2* respectively. This is the time at which the magnetization has decayed to 37% of its initial
value immediately after the 90° RF pulse. Image adapted from (Ridgway, 2010).

(b) Image Principles and Imaging sequences

During both relaxation processes, the protons emit a radio frequency with the Larmor frequency, which is designated
as free induction decay (FID). Considering that the FID does not provide a spatial discrimination, for image generation it is
necessary to apply a position encoding process.

When a radio frequency pulse is applied with a specific bandwidth, only the protons with Larmor frequency coinciding
with the RF pulse frequency profile are excited, which allows for a single slice to be selected. However, this procedure does
not differentiate the protons within the same slice. For that, it is necessary to apply two more gradients in the orthogonal
plane to the slices selected. By applying these gradients, and measuring the echoes produced, it is possible to fill the k-
space?, with information that codifies the spatial positions in the image according to their frequency. The spatial

information can be obtained applying a Fourier transform to the k-space.

2 The k-space refers to a matrix composed by complex values, which are sampled during an MR acquisition, in a premeditated
scheme controlled by a pulse sequence, i.e. an accurately timed sequence of radiofrequency and gradient pulses. Therefore, the k-space
can be described as a temporary image space, in which data from digitized MR signals are stored during data acquisition. In fact, the k-
space holds raw data before reconstruction. The k-space corresponds to the spatial frequency domain, and can be described using the
frequency encoding component (keg) and the phase encoding component (kpg) components, which can be expressed using the following
expressions: kpp_yGpgmAt and kpp_ynGpgT. The At corresponds to the interval of time during the sample is acquired, T is the
duration of GPE, y is the gyromagnetic ratio, m is the sample number in the FE direction and n is the sample number in the PE direction
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MRI allows the acquisition of images with different contrast by changing the RF pulse and gradient design throughout
time. Each combination of RF and gradient steps is called an MR sequence. The Spin-Echo sequence is one of the most
often used to acquire MRI images (Figure 2.4). The gradient-echo sequence is another kind of sequence commonly used
(Figure 2.5), which is characterized by shorter acquisition times compared to Spin-Echo. In this project, images acquired
using a magnetization prepared rapid gradient echo sequence (MPRAGE) were analysed. In this case, the sequence starts
with magnetization preparation to introduce a T1 contrast. This is achieved using an RF pulse with a flip angle of 180

degrees, also denominated as inversion pulse. M:is described now by the Equation 2.4, instead of the Equation 2.2.

180° of pulse
(refocussing pulse)
0o of +ve | ! 2nd +ve \
pulse /Gradient / Gradient \
ﬂ / Pulse \ Pulse |

180° pulse reverses decay
caused by field inhomogeneities
resulting in a spin echo at
echo time TE.

Echo time, TE

Figure 2.4 — Schematization of Spin-Echo sequence. The presence of magnetic field inhomogeneities causes additional de-phasing of the
proton magnetic moments. The Larmor frequency is slower where the magnetic field is reduced and faster where the field is increased
resulting in a loss or gain in relative phase respectively. After a period of half the echo time, TE/2, the application of a 180° RF pulse
causes an instantaneous change in sign of the phase shifts by rotating the spins (in this example) about the y axis. As the differences in
Larmor frequency remain unchanged, the proton magnetic moments move back into phase over a similar time period, reversing the de-
phasing effect of the magnetic field inhomogeneities to generate a spin echo. In addition to the effect of the 180° refocusing pulse,
gradients are applied to de-phase and re-phase the signal for imaging purposes. Note that for spin echo pulse sequences, the second
gradient has the same sign as the first, as the 180° pulse also changes the sign of the phase shifts caused by the first gradient. Image
adapted from (Ridgway, 2010).

the 2D-Fourier Transform of this encoded signal results in a representation of the spin density distribution in two dimensions. Thus
position (x,y) and spatial frequency (kee, kee ) constitute a Fourier transform pair (Twieg, 1983)
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Figure 2.5 — Schematization of Gradient-Echo sequence. The application of the 1st positive magnetic field gradient causes rapid de-
phasing of the transverse magnetisation, Mxy. Therefore the FID signal tends to zero amplitude. The application of the 2nd negative
magnetic field gradient reverses the de-phasing caused by the first gradient pulse, resulting in recovery of the FID signal to generate a
gradient echo at the echo time, TE. Extension of the time duration of the second gradient to twice that of the first gradient causes the
FID to then de-phase to zero. The maximum amplitude of the echo depends on both the T2* relaxation rate and the chosen TE. Image
adapted from (Ridgway, 2010).

The T1 contrast will dominate the sequence, depending on the time between the inversion pulse and the gradient
echo sequence. The period of time between both sequence periods is called inversion time TI. Then, when the Gradient
Echo (GE) sequence is applied the signal is acquired. This acquisition period is followed by a magnetization recovery period
where the magnetization recovers during a delay time (t) before the next inversion pulse, in order to prevent saturation

effects.

—t Equation 2.4.
M,(t) = M, [1 - ZeXp(T—l)] q

2.2.2. Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a medical imaging technique that exploits the exquisite sensitivity of magnetic
resonance imaging to diffusion processes to measure microscopic tissue orientation characteristics in vivo (Williams, Paul,
Clark, & Gordon, 2007).

DTl characterizes the three-dimensional diffusion of water as a function of spatial localization. This technique is highly
sensitive to the microstructural architecture of brain tissues, allowing the assessment of changes in the diffusion pattern

in the presence of pathological symptoms (Alexander, Lee, Lazar, & Field, 2008).
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The methods used to acquire and analyse DTl have evolved significantly in the last years. Among these are new pulse
sequences and diffusion tensor encoding schemes that improve the accuracy and spatial resolution, by reducing the

artefacts in tensor measurements.

(c) Physical principles of Diffusion

Diffusion is a kinetic process, in particular a mass process, which occurs in a fluid that leads to the homogenization,
or uniform mixing, of the chemical components in a phase (Ceric, 2005).

The process of diffusion depends on many factors such as size and form of particles diffused, temperature and
viscosity of the fluid. The Fick Law describes the flux, J, (Equation 2.5) of mass or energy in a medium where there isn’t an
initial thermic and chemical balance (Equation 2.6). Note that D denotes the diffusion coefficient and VC is the
concentration gradient of the diffusing component.

J =-DVC Equation 2.5.

ac ac ac Equation 2.6.

]X axﬁjy ay']Z aZ

The movement of particles between two compartments due to diffusion processes results in a decrease of the
concentration gradient, reaching a steady state, in which a uniform concentration across the medium is achieved.
Considering the principle of mass conservation, described by Equation 2.7 where r represent a space vector (x,y,z) and t
the temporal component, and using Fick’s first law (Equation 2.5), it is possible to obtain Fick’s second law, that describes

the variation of concentration in a medium (Equation 2.8) (Ceric, 2005).

9C(rt Equation 2.8.
Vi(r,t) = _Q quation
at
DVZC(r,t) = % Equation 2.9.

On a molecular level, diffusion refers to a random displacement of the molecules agitated by thermal energy, known
as Brownian motion (Hagmann et al., 2006).
Einstein described the diffusion coefficient, D, as a proportion of the mean squared-displacement divided by the

number of dimensions, n, and the interval of time needed to the diffusion process, At (Equation 2.9). (Einstein, 1956)

_(Ar?) Equation 2.9.
~ 2nAt

In the absence of boundaries, the diffusion of water, on a molecular level, is described by a Gaussian probability

density, as shown in the following equation:

—Ar? Equation 2.10.

1
J(4nDAt)3 X exp( DAt)

P(Ar, At) =
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(d) Biological Diffusion
The water diffusion in biological tissues occurs inside, outside and trough cellular structures, and it is modulated by
the interactions with cellular membranes and organelles. The cellular membranes show a behaviour similar to boundaries
dividing compartments. Due to this fact, the intracellular water tends to be more restricted when compared with
extracellular water and, consequently, has a restricted diffusion. In the case of fibrous tissues, such as white matter, the
water diffusion is highly restricted in the directions perpendicular to the fibres and, on the contrary, shows high diffusion
in the directions parallel to the fibre orientation, as is schematized in Figure 2.6 (Alexander et al., 2008; Winston, 2012).

Therefore, the diffusion in fibrous tissues can be considered to be anisotropic.

WY VY

C o

Figure 2.6 — Schematization of biological diffusion. Free water diffusion in extracellular mediums (left) and water diffusion in fibrous
tissues (right). In first medium (left) in absence of boundaries the movement of the molecules is not constrained; in fact, at the molecular

»

Z

level the diffusion of water is random. On other hand, the boundaries (right) constrain the movement of the molecules and its movement
is orientated in the direction of the fibres. Image adapted from (Winston, 2012).

Basser et al, (Basser, PJ; Matitello, J; LeBihan, 1994), described the anisotropic diffusion behaviour using the diffusion
tensor (Equations 2.11), which is a 3x3 covariance matrix (Equation 2.12) that describes the covariance of diffusion

displacements in three directions.

1 —ArTD1Ar .
P(Ar,At) = —————=X exp(————) Equation 2.11.
(4mAt)3|D| 4At
Dyx ny Dy, Equation 2.12.
D= |Dyx Dy, Dy,
D,x D,, D,

Note, that the off-diagonal elements are symmetric about the diagonal (Dj=Dj), thus Dxy = Dyx, Dxz=Dzx, and Dy:=Dy
and only six non-collinear diffusion encoding directions are needed. The diagonal elements correspond to diffusion
variances along the x, y and z directions.

The diagonalization of the diffusion tensor yields the eigenvalues (A1, A2, and A3) and the respective eigenvectors (€,
é2 and é3), which describe the directions and apparent diffusivities along the axes of principal diffusion. If the diffusion is
isotropic, then A1 =A2= A3, and the tensor can be visually represented by a sphere. On the other hand, if the diffusion is

anisotropic then Az > A2> A3, and the tensor assumes an ellipsoid format (Alexander et al., 2008).
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(e) Diffusion-Weighted Imaging

The MRI sequence most commonly used to quantify the diffusion in brain is a pulsed-gradient spin-echo (PGSE) with
a single shot, echo planar imaging (EPI) readout (Figure 2.7). In this sequence, the first gradient pulse de-phases the
magnetization across the sample, whilst the second pulse is responsible for re-phasing the magnetization. In the case of
static molecules (molecules that are not diffusing), the phases induced by both gradient pulses will completely cancel, the
magnetization will be maximally coherent and, consequently, there will be no signal attenuation due to diffusion. On the
other hand, in the case of diffusion motion in the gradient direction, motion will cause the signal phase to change by
different amounts for each pulse and for each spin; in other words, there will be a phase difference, which is proportional
to the displacement, the area of diffusion gradient pulses defined by the amplitude, G, and the duration, §, and the spacing

between pulses, A. Therefore, the phase dispersion due to diffusion will cause signal attenuation.

TE

A

i
=

90° 180° Spin echo

(L)

A Is)

Figure 2.7 — Representation of PGSE pulse sequence. G corresponds to the amplitude of the gradient applied during the time 6. The 4
represents the time between pulses and the TE corresponds to the Echo time. Image adapted from (Winston, 2012).

Assuming the Gaussian displacement distribution mentioned before, the amplitude of the signal attenuation can be
calculated with the following expression:

1) Equation 2.13.
S =S5,exp {—(yGS)Z x (A — §) X D}

where So is the signal without attenuation (situation where no diffusion gradient is applied), y is the gyromagnetic ratio
and D is the diffusion coefficient. This expression can be rewritten (Equation 2.14 and 2.15), and the D coefficient can be
estimated using Equation 2.16, in the particular case in which the image only has one b-value.
o) Equation 2.14.

b= (68 x (A -3) !

S =S, exp{—b x D} Equation 2.15.

1 S Equation 2.16.
D=——In(—
G

The Diffusion-weighted image (DWI) is extremely sensitive to subject motion, and even small motions can lead to
phase and amplitude modulations in the acquired data and significant ghosting artefacts in the reconstructed images.
Considering this fact, an EPI sequence could be useful to acquire images with a low presence of artefacts, since the fast

acquisition speed of EPI turns this sequence highly efficient and maximizes the image signal-to-noise ratio. This fact reduces
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the time that subjects need to be immobilized, reducing the probability of bulk motion. Thus, the EPI sequence improves
the accuracy of the diffusion measurements, thereby this sequence is the most commonly used sequence to acquire DTI
images. However, the EPI sequence shows some limitations, such as the image distortion caused by magnetic field

inhomogeneities (Alexander et al., 2008).

(f) Diffusion Tensor Imaging
As detailed above, the anisotropic diffusion can be fully described using a diffusion tensor. Diffusion Tensor Imaging
(DTI) uses the raw DWI images to estimate the diffusion tensor for all voxels in the brain (Alexander et al., 2008; Basser,
PJ; Matitello, J; LeBihan, 1994).
Considering Equation 2.15, which describes the anisotropic diffusion in a medium, it is possible to define a matrix
B which only depends on the parameters of the diffusion gradients (Equation 2.17), and where each entry of matrix B, by,

is estimated using Equation 2.14, taking into account the G value for position ij.

bxx bxy bxz Equation 2.17.
B = |byx by, by,
byx  bzy by
Thus, the Equation 2.15 can be rewritten as:
S =S, exp{—B.D} Equation 2.18.

A minimum of six non-collinear diffusion encoding directions are required to estimate the diffusion tensor, since the
elements of the matrix D are symmetric about the diagonal. The estimation of diffusion parameters from raw DWI (using
the general expression shown in Equation 2.6) can be done using a linear least square approach, denominated linear least
squares (LLS), or a non-linear approach — non-linear least squares (NLLS) (Alexander et al., 2008; Winston, 2012). Note that
the LLS allows to obtain a quicker solution and it is not so demanding from the computational point of view, when
compared with NLLS. However, the solution obtained with LLS might be not so satisfactory, due to the propagation of
errors, since in LLS the noise enters in the system as a random variable statistically dependent on the signal (Ozcan, 2011).
Both approaches were implemented in this project, and their performance will be analysed in the next chapters.

The diffusion tensor can provide several DTI invariant measures, such as the mean diffusivity (MD), fractional
anisotropy (FA), axial diffusivity (AH) and radial diffusivity (Ar).

The mean diffusivity corresponds to the trace of the diffusion tensor divided by three (Equation 2.19). This measure
is proportional to the orientationally-averaged apparent diffusivity, and its values are remarkably similar across grey matter
and white matter. MD is an inverse measure of the membrane density. This measure is sensitive to cellularity, edema, and
necrosis. (Andrew L. Alexander, 2011). Thus, MD has an important role in the context of TBI diagnosis, since allows to
evaluate the edema characteristics, which is a physical manifestation of TBI. The FA value quantifies the fraction of the
whole “magnitude” of the diffusion tensor that can be ascribed to anisotropic diffusion (Equation 2.20, the A corresponds
to the eigenvalues in the three directions defined). Finally, the axial diffusivity refers to the magnitude of diffusion along
the principal ellipsoid component, so it is equal to A;. On the other hand, radial diffusivity is the mean diffusivity along

orthogonal components relative to the principal ellipsoid axis (Equation 2.21).
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D= Trace (D) A+, + 13 Equation 2.19.
-3 3

Equation 2.20.

pa |3y YO =+ Ga = N+ Gs = )2
2 R

/12 b /13 Equation 2.21.
r = T
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Chapter 3

MULTICENTRE STUDIES: STATE OF THE ART

3.1. INTRODUCTION

Medical Imaging is an attractive and non-invasive technique to diagnose, evaluate and monitor the therapeutic
response of several diseases which affect the brain structures. Therefore, medical imaging techniques, such as DTI, have
been proposed as a sensitive biomarker for traumatic white matter injury, and might be a useful tool for evaluating patient
prognostics, tracking the microstructural changes during recovery from TBI (Sidaros et al., 2008).

However, determining the extent of clinically relevant neuropathology associated with TBI is problematic. Thus,
further studies on its clinical manifestation and the therapeutic response are needed, in order to improve the treatment
of this disease (Kraus et al., 2007). To improve characterization and classification of TBI and to identify the most effective
clinical care, a multicentre study is being developed (CENTER-TBI, 2014). Multicentre studies allow for the analysis of larger
populations, allowing for the inclusion of subjects with diverse demographic origins and with different pathological
manifestations and therapeutic responses. Thus, it is expected that this project will achieve an impact in terms of treatment
provision, health care policy and improve also health, quality of life, and social integration for patients (CENTER-TBI, 2014).

In the literature it is possible to find several advantages associated to multicentre studies, however a few limitations
are also pointed out which might be problematic and question the reliability of these kind of projects.

In this chapter a brief description of the advantages and limitations of multicentre studies is presented. Considering
the main problems of multicentre studies, the state of the art on quantification of the limitations of these studies is also
presented, as well as several methodologies that might be useful to solve these issues. Note that most of the
methodologies used to address the limitations of multicentre studies exhibit, so far, an empiric character and must be

performed before or during data acquisition.

3.2. ADVANTAGES AND LIMITATIONS OF MULTICENTRE STUDIES

Multicentre studies are performed in multiple centres located in different sites and conducted by different
professionals that have different resources at their disposal. This implies the use of different medical-machines with
different values of calibration as well as different patients. So, multicentre studies allow the study of a large number of
patients and healthy subjects, comparing subjects from different demographic origins. By doing so, thanks to multicentre
studies it is possible to study different pathologies on a wider scale, something which would be somewhat more difficult

to study using a conventional approach (using a single equipment installed in a unique centre).
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One of the most relevant characteristic of multicentre studies is their capability to increase the statistic power of the
researches performed with the data acquired in this context (Suckling et al., 2012), which is achieved by the large number
of subjects present in the sample (Friedman, Glover, & The FBIRN Consortium, 2006a). The large number of subjects is also
useful to eliminate the confounding effects of inter-subject heterogeneity inherent to cross-sectional studies (Deoni et al.,
2008).

However, despite the advantages that multicentre studies offer, their usefulness depends on the reproducibility of
the data (Friedman, Glover, & The FBIRN Consortium, 2006b). In fact, although data from different sites can be pooled,
studies revealed that systematic inter-scanner differences can occur (Abdulkadir et al., 2011). In the case of specific
multicentre studies in which the data consists of medical imaging, in particular MRI, the data reproducibility is not always
possible. This fact is due to the different calibration performed in the acquired data and the singular interaction between
the subject and the magnetic field. Even two scanners from the same manufacturer and model will not produce the exact
same images, which sometimes poses difficulties in ensuring the reproducibility of the data and, consequently, can reduce
the reliability of the study (Kostro et al., 2014; Suckling et al., 2012). In fact, the variability introduced by the scanner is a
potential source of errors in machine learning algorithms used to analyse the data, since the bias affects the learning
function during the training phase and affects the choices of the algorithm during the test phase (in other words, scanner
bias favours the prediction of one of the classes) (Kostro et al., 2014).

The literature suggests that the principal factors that might be in the origin of scanner noise and, consequently,
influence the quality of multicentre studies, are (Deoni et al., 2008; Glover et al., 2012)

o Definition of scan parameters across scanners/vendors;
e The field strength;

o Field of view (FOV), spatial and temporal resolution;

e Slice orientation;

e Acquisition sequence;

o Coil sensitivity;

e Electronic amplifier gain.

In order to correct for the sources of error introduced by the factors mentioned above, it is important to:
e Monitor longitudinal stability in scanner performance, especially after hardware and software upgrades;
o Create a compliant database infrastructure that can store, retrieve, and monitor the variety of data collected.

e Make sure that the imaging parameters are as close as possible between sessions and centres.
The measures described above have an empiric character and can only be applied before the data acquisition. In

other words, in order to avoid the bias induced by the scanner it is necessary to carefully plan the design of the process

to be used in the image acquisition and for analysing the data shared among institutions. That allows to correct for scanner
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noise by empirically adapting parameters, such as the width of window of acquisition® or the type of k-space filter* used
during acquisition (Kostro et al., 2014; Sasaki, Ida, Yamada, Watanabe, & Matsui, 2007). Even with the best planning, some
discrepancies between different institutions can occur. The main reason for that is related to the inability of a centre to
adequately implement the plan for the multicentre study, due to insufficient resources or time to follow all the necessary
requirements.

Despite this, even when controlling all the pre-acquisition sources of error, it isimportant to control also the variations
in any step of the pre-processing pipeline such as segmentation, resampling or spatial normalization, which might
introduce discrepancies among images (Abdulkadir et al., 2011).

To reduce the differences introduced by scanner variability, after image acquisition, algorithms can be used for error
correction, such as correction by segmentation and intensity normalization algorithms (Kostro et al., 2014). However, it is
important to note that the correction algorithms might not remove systematic differences. Besides, the use of these
algorithms has to be done carefully since the goal is to remove the variability introduced by the noise of the scanner,

without removing the features that can be associated to disease symptoms.

3.3.QUANTIFICATION OF INTRA- AND INTER-SCANNER VARIABILITY

As detailed before, the main issue for the viability of multicentre studies is the variability between scans introduced

by the scanner. Therefore, to ensure the reliability of the study it is crucial to evaluate and quantify this variability.

3.3.1. Magnetic Resonance Imaging — MPRAGE

Ewers et al., (2006), in a multicentre study assessment of reliability of cranial MRI, namely using the MPRAGE
sequence to acquire MRI images of a phantom, used the coefficient of variation (Equation 3.1.) to quantify the variability
across scans, in which the o corresponds to the standard deviation of the sample, u is the mean of the sample and X is the

sample in analysis.

o (X;) .
CoV(X); =——x 100 Equation 3.1.
Copx)

(Deoni et al., 2008), suggested that individual and group reproducibility for MRI (T1 and T2 images), might be assessed
via whole-brain parameter histograms and intra- and inter-site coefficients of variation (COV®) (Equation 3.1). This
parameter is calculated for each voxel, and it allows the comparison of scans acquired by the same scanner (in this case
the matrix X is composed by the scans from the different subjects), or can be used for the comparison between scans

acquired in different places (in this case, the X matrix is composed by scans from different subjects, acquired with different

3 Determining DWI display conditions by using b0 images is a simple and practical method to standardize the window width and
level for evaluating diffusions abnormalities and decreasing variation among institutions and operators (Sasaki et al., 2007).

4 For example, the GE devices provide images which show higher spatial smoothing when compared with Siemens devices. The
reason for that is Fermi k-space filter applied during image reconstruction in GE devices (Glover et al., 2012).

> The Coefficient of Variation (COV) is a statistical measure of the dispersion of data points in a data series around the mean. It
represents the ratio of the standard deviation to the mean, and it is a useful statistic to compare the degree of variation from
one data series to another, even if the means are drastically different from each other. (Lehmann, 1986)
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devices). In both cases, it is possible to construct visual maps, which express the variability introduced by the scanner in
the different structures of the brain, through the differences in colour intensities representing the value of COV obtained
for that voxel.

(Huppertz, Kroll-Seger, Kloppel, Ganz, & Kassubek, 2010) achieved a mean COV, for intra-scanner analysis, ranging
from 0.50% to 4.4% (median, 0.89%), while the inter-scanner COV varied between 0.66% and 14.7%, after pre-processing
the images using a protocol similar to the one applied to the data analysed in this dissertation.

A different way to determine the variability in an MRI image is using the ANOVA — Analysis of variance. (Suckling et
al., 2012), used this statistical model to detect the main sources of variation at each intracerebral voxel in standard
Montreal Neurological Institute space (MNI) ® for the image variables derived from each data acquisition type: grey matter
tissue segmentations from structural Magnetic Resonance Imaging (sMRI). The statistical analysis was based on a fixed
effects model, in which the factor modelling centre broadly accounted for up to 15% of the total variance for all the imaging
variables tested in this treatment.

(Weiskopf et al., 2013), used also the COV to quantify the variability across scanners in images such as T1w, PDw and
MTw, using just a few regions of interest, defined previously, and by calculating the COV and then comparing the data for
these regions. This study suggested a normalization of standard deviation to N-1 sample size, in order to avoid the bias.
Note that N refers to the sample size.

(Cannon et al., 2014), used the intra-class correlation to average the variability within and inter-scanner. In this study,
a voxel based analysis and volumetric analysis were performed. In both types of analysis the results achieved demonstrated
a high level of reproducibility intra and inter-site (between-site reliability was good, 0.75— 0.89, for overall grey, white and

CSF volumes; the within-site ICCs were excellent, 0.90— 0.99).

3.3.2. Diffusion Tensor Imaging

In the case of DTI measures, such as FA and MD, the COV could also be used as measure of reproducibility (Teipel et
al., 2011).

(Zhu et al., 2011) presented a study where the main goal was the quantification of accuracy of multicentre DTI
measurements, and it suggests an improvement to the COV used before. In this case, nonparametric bootstrap techniques
were used, such as wild bootstrap and residual bootstrap, as well as robust estimators of precision for DTI measurements.
Wild bootstrap (Y:") (Equation 3.3.), is a data driven procedure for estimating the properties of a given statistical value with
minimum assumptions on the population’s distribution. Thus, the value of COV can be estimated by the following

expression:

6 The MNI space defines a standard brain by using a large series of MRI scans on normal controls. The MNI wanted to define a
brain that is more representative of the population. For that, a new template was created that was approximately matched to the
Talairach brain in a two-stage procedure. First, it took 241 normal MRI scans, and manually defined various landmarks, in order to
identify a line very similar to the AC-PC line, and the edges of the brain. Each brain was scaled to match the landmarks to equivalent
positions on the Talairach atlas. Then, it acquired 305 normal MRI scans (all right handed, 239 M, 66 F, age 23.4 +/- 4.1), and used an
automated 9 parameter linear algorithm to match the brains to the average of the 241 brains that had been matched to the Talairach
atlas.(John C. Mazziotta, Arthur W. Toga, Alan Evans, Peter Fox, 1995)
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a(¥) :
CoV(X); =—=—x 100 Equation 3.2.
es
R
* 1 *
T = ) %] |
=1 Equation 3.3.
R
1 _
o(Y) = mZ[Yr* - (Yr*)] Equation 3.4.
r=1

where Y is the matrix with DTI measures (i.e, FA or MD measures) and R represents the sample size.
In this study, Zhu et al.,, (2011), suggested also other parameters for the measurement errors of multicentre DTI
studies at multiple levels. The parameters suggested were:

e« Measurement of Accuracy: the measurement of accuracy corresponds to the values of bias between actual
MD/FA from each dataset and the corresponding values from the gold standard dataset constructed for
phantom and human data separately.

e« Measurement Precision (within-scan variability): the within-scan variability quantified by wild bootstrap
analysis reflects the intrinsic uncertainty associated with each DTI acquisition and was consequently
selected as the measure for precision.

e Inter-site Variance Component: it describes the reproducibility of DTI for repeated scans of the same
subject or phantom among different sites.

e Intra-site Variance Component: it describes the repeatability of DTl measurements for

repeated/longitudinal scans of the same subject/phantom at the same site.

The COV value was used as well by (Magnotta et al., 2012). In this particular study, using DTl invariant measures, the
results suggests that subtle changes in the white matter architecture can be studied longitudinally if the subjects are
scanned on the same scanner, since the COV value achieved ranged between 1-3%.

Regarding the COV values achieved by (Sakaie et al., 2012), they concluded that the variability within-scanner is lower
when compared with the variability inter-scanner. Furthermore, the mean diffusivity maps (MD) had shown a lower value
of COV when compared with FA images (the COV value for MD is 4.1% versus 9.6% for FA images, when an inter-centre
analysis was performed). In this study, the results seem to suggest that the COV value is generally lower when evaluating
white matter only.

In case of fMRI and DTI, a useful tool to estimate the variability across scanners is an indirect measure obtained by
the comparison of the effect size expected if the images were acquired in one centre with the value obtained for data
acquired in a multicentre study (Teipel et al., 2011). The effect size represents the difference in the FA measures of the
regional fibre tracts between patients and healthy controls (Equation 3.5). Thus, when comparing the images from the
same subjects acquired in different centres, the same value for effect size would be expected. If that is not true, it can be
concluded that the difference is introduced by the scanners, and the variability across scanners can be estimated by the

difference found in the effect size, it is represented by &, as is indicated in Equation 3.6:
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d, = M Equation 3.5.
m
5mxy
d. = (x—=y» Equation 3.6.
=
Simxy T 6¢

where (x-y) represents the mean difference in measurements between patients and controls, &,y is the standard
deviation of measures pooled across both groups; &, is the standard deviation of the measures across centres. Note, this
model assumes that the components of variability, inter-subject component and inter-centre component, are
independent.

A different assessment of a method's reliability is the intra-class correlation coefficient (ICC) which relates the within-

subject variation to the between-subject variation from the following equation (Vollmar et al., 2010)

ol Equation 3.7.
IeC ="
ofs + 0

where gy, corresponds to the standard deviation of the population between-subjects and ag,,; refers to within-subject
standard deviation for repeated measurements. Note that the ICC expresses the fraction of the total variance in the data
that is caused by true biological variation between subjects rather than by measurement error within subjects. With this
in mind, the higher values of ICC correspond to higher values of data reproducibility and, consequently, to larger degrees
of reliability. In MRI data processing, an ICC larger than 0.7 is considered a reasonable level of data reproducibility; for ICC
values larger than 0.8, the data shows a good reproducibility, and for values higher than 0.9 the level of reproducibility is
considered excellent (Schnack et al., 2004).

In the literature, for multicentre studies, the definition of a baseline is also suggested, relative to which the
performance of the scanners used in the study can be compared. The baseline is established by a scanner defined as the
target scanner. This choice is based in estimation of coefficients of variation across subjects, whose scans were acquired
in the same scanner. In this way, the scanner that shows the lowest COV, regarding the comparison of subjects’ scans, is
chosen as the target scanner. The difference between the scanner defined as the target and the other scanners
corresponds to a measure of variability caused by the hardware (Moorhead et al., 2009).

(Vollmar et al., 2010) used the coefficients of variation (CV) and intra-class correlation coefficients (ICC) of FA
measures of the whole brain, in three regions of interest (ROI) and in three tracts derived from these ROI by probabilistic
tracking. In this study, Vollmar et al. assessed the impact of affine, nonlinear and template based methods for spatially
aligning FA maps on their reproducibility. The intra-site COV for FA ranged from 0.8% to 3.0%, with ICC from 0.90 to 0.99.
On the other hand, the inter-site COV ranged from1.0% to 4.1% with ICC of 0.82 to 0.99. The results of this study showed
an improvement in the reproducibility when nonlinear image co-registration was performed instead of affine co-
registration. However, the normalization to template space reduced the between-subject variation, resulting in lower ICC
values and indicating a possibly reduced sensitivity.

Performing an ROl analysis to analyse the inter-subject variability, (Veenith et al., 2013), obtained a COV value for FA
images of 7.9% (3.3—31.7%) and for MD images of 7.3 (2.4-33.7%). In addition, the same study suggested that the COV for
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repeated DTI measurements obtained during the same session was lower than that obtained from measurements obtained

in a different imaging session separated by up to six months, which is consistent with previous studies.

3.3.3. Quantification methods for MPRAGE and DTl images

Different kind of approaches can be used to quantify the variability among scanners. Examples of that are General
Linear Models (GLM) and classifiers, such as Support Vector Machine (SVM). In the first case, each scanner used is
considered as a variable of the model (Equation 3.8). The beta coefficients estimated in the model are a measure of
variability brought by the variable with which it is associated. It is important to note that other variables can be introduced
in the model, in order to absorb the variability introduced by other sources, such as the variability across subjects resulting
from pathological manifestations.

Y=x Xfi++x; XBi+¢€ Equation 3.8.

Considering the concepts behind SVM, this approach does not produce a direct quantification of variability. However,
using a classifier it is possible to determine how significant the level of bias introduced by the scanners is. In other words,
if the classifier distinguishes the scans acquired with different scanners - considering that the subjects analysed do not
exhibit significant anatomic and physiological differences (the group must be composed by healthy controls, with a
homogenous distributions of age and gender) - this means, with a high level of accuracy, that the variability introduced by
the scanner is too significant and, consequently, that the scans are not comparable (Kostro et al., 2014). In the absence of
any inter-scanner effects, it can be assumed that the scanners in analysis produce similar and comparable images, and the

classifier would not distinguish the scanners above chance level (50%).

3.4. APPROACHES TO VARIABILITY CORRECTION

As detailed above, medical images, such as MRI, vary among institutions and/or operators. These differences could
be critical for the effectiveness of the diagnosis.

Most of the methodologies proposed to correct for this variability are based on empirical protocols, which depend
on the radiographer and neurologist that execute and analyse the exams. In addition, the standard approaches, most of
the time, sacrifice the potential gains in signal-to-noise ratio, in order to improve the gradient performance, which might
result in a poor image resolution. Thus, this kind of procedure is not a solution to correct the data after acquisition and,

consequently, cannot solve the issues of multicentre studies.

3.4.1. Structural Magnetic Resonance Imaging — MPRAGE

(Moorhead et al., 2009) in a multicentre study using MRl images, demonstrated with the implementation of scanner
specific priors to correct the data that it is possible to reduce the differences between scanners. The model developed
(Figure 3.1) was applied to grey matter and white matter maps. To develop the prior, a group of 6 subjects, chosen

randomly among 13 subjects, was used. The procedure was iterated until the convergence of segmentations was achieved.
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The evaluation of the methodology proposed was performed using 7 subjects as a test group, for whom scans were
acquired with three different devices.

As mentioned previously, the error introduced by the scanner might be especially problematic for the performance
of machine learning algorithms. (Kostro et al., 2014), explored the use of regression models to correct for the scanner
variability, demonstrating the usefulness of regression in the reduction of data variability, without removing the disease
effects. For that, a Gaussian Process Regression (a nonlinear and regularized regression method — Equation 3.9, the yé;'z)
correspond to the values at voxel v for each centre after correction, y*?) is the vector of the values of voxel v for each
centre in analysis before correction, (kg‘a) is the kernel achieved using the relationship between the training and the voxel

that will be corrected from the test group — a and © are parameters present at the functions used to calculate the kernel

- Ky o is the Kernel matrix calculated with the training set) and an unregularized simple linear regression with ordinary least

squares solution (OLS — Equation 3.10, ygzz) is the vector of the corrected values for each centre in voxel v, y™ is the
vector of the values of voxel v from each centre before correction, x* corresponds to the design matrix used to explain the
variation of several covariates, such as age, gender and centre, and finally, B is the vector of the weight of each covariate
in the regression to explain the variability of the voxel v) were applied to correct for the bias of the scanner. In both cases,
the model developed by Kostro et al. applies a correction to the input data, including also confounding effects such as age,
sex, scanner, total intracranial volume. In this case, as a machine learning algorithm, the model executes an evaluation of
the correction effect during its implementation, allowing the iteration of the model until the best correction has been
achieved. In other words, when applying this algorithm to MRI data correction, a model estimates the grey matter density
value for every voxel based on examples of subject-specific covariates and corresponding grey matter density maps; after
that, the model is applied to new data to obtain a subject specific template; finally, the template is subtracted from the
observed grey matter map. This procedure is implemented iteratively until the model parameters which reduce the

variability as low as possible are found.

D) @) _ (| ge—1y®)
Yepr =V (ko) Kooy Equation 3.9.

(xv) _ * .
Yors = y@ —x*BY Equation 3.10.
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Figure 3. 1 — Schematization of the model applied by Moorhead et al., to correct the variability between scanners. Image adapted from
(Moorhead et al., 2009).

3.4.2. Diffusion Tensor Imaging

The easiest way to correct for the variability across scanners is to apply a smoothness equalization. This approach is
particularly useful in fMRI, and based on the premise that with the improvement of spatial smoothness an increase of
temporal SNR in MRI can be achieved. Besides, it is important to note that the scanner smoothness is strongly dependent
on k-space filtering. However, this approach reveals to be equally useful to correct DTI and MPRAGE images.

Considering these facts, Friedman et al. applied a methodology to reduce the differences between scanners, which
is based on smoothness equalization. This approach consists in removing smoothness differences inherent to the images
acquired in scanners with different level of magnetic fields’, using a Gaussian kernel. To implement this methodology, a
custom computer program was devised to assess iteratively the smoothness of a data set and then apply a Gaussian kernel
to the data until the target smoothness, previously defined, was achieved. The result achieved demonstrated a 20%
reduction of the activation effect size ratio between high (3 Tesla) and low-field scanners (1.5 Tesla). However, this
approach has some limitations, namely the fact that data smoothness decreases the spatial resolution, and can remove

important features of the signal, such as signs of pathology.

7 In this study, the scans were acquired in scanners with two different field strengths: high-field scanner — 3 Tesla — and low-field
scanner — 1.5 Tesla.
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3.5.  SUMMARY

In summary, multicentre studies provide several advantages over single-centre studies, such as the capability to
study rare diseases and the capability to accumulate large samples for situations in which the effect size under study is
small (V.a Magnotta et al., 2012; Teipel et al., 2011; Zhu et al., 2011).

However, this kind of project has some limitations, such as the variability present in the scans and introduced by the
scanner. The reliability of these studies depends of the data reproducibility, which might not be achieved due to the bias
introduced by the scanner. Nowadays, the presence and quantification of the variability between scanners is well
documented; however, most of the approaches used to correct for this issue are applied during scan acquisition and are
strongly dependent of the technician responsible for acquiring the scan. Just a few studies (Friedman et al., 2006a;
Friedman, Glover, & The FBIRN Consortium, 2006b; Kostro et al., 2014; Moorhead et al., 2009), present a solution for
processing the data and correct for the variability across scanners after the acquisition phase. For that reason, the aim of

the present study was to develop a method to quantify and correct for the intra- and inter-scanner variability.
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Chapter 4

QUANTIFICATION OF VARIABILITY INTRA- AND INTER-
SCANNER

4.1. INTRODUCTION

The usefulness of multicentre studies depends of data reproducibility (Friedman, Glover, & The FBIRN Consortium,
2006). As described in Chapter 3, the most significant limitation of multicentre studies is the variability across scans
resulting from the hardware characteristics or differences in the sequence implemented, which compromises the reliability
of the study (Teipel et al., 2011).

In this way, to ensure the reliability of the study, it is crucial guaranteeing the reproducibility of the data. Comparing
controls' scans, a significant variability would not be expected among them, since there aren’t any morphological or
functional differences between the subjects' brains — absence of disease, similar age and similar educational level —and
the protocol of image acquisition used is the same for all scans acquired. Even so, as is suggested by recent studies
(Huppertz et al., 2010; Teipel et al., 2011; Zhu et al., 2011) and mentioned earlier, significant differences can be caused by
the scanner.

In the literature, as detailed in Chapter 3, the Coefficient of Variation (COV) is suggested as a measure of the variability
intra and inter-scanner to determine the data reproducibility. In a previous multicentre study using DTl data, Christian
Vollmar et al (2010) obtained an intra-scanner COV ranged from 0.8 % to 3%, comparing FA maps from subjects acquired
with the same scanner. For inter-scanner variability, the same study, presented a COV value ranging from 1 to 4.1 %. In
more recent studies, (Fox et al, 2012) and (Venkatraman, Gonzalez, Landman, Goh, & Reiter, 2015) pointed to a higher
variability for FA compared to MD maps in intra- and inter-centres analyses. In the first case, Fox and his collaborators
found a COV value for voxel based analysis within scanner of 9.1% for FA maps and of 4.8% for MD maps. In the same
study, in an analysis performed in by regions of interest previously defined, the COV value obtained was 6.8% for FA maps
and 2.2% for MD maps. These values tend to increase when the same analyses is performed inter-centres. In that case, for
voxel analysis the values obtained were 9.6% and 2.2% for FA and MD respectively, and 8.7% in FA images and 2.2% in MD
images for ROl analysis. On the other hand, Venkatraman obtained a 4.57% and 3.56% for FA and MD images, when an
intra-centre analysis based on ROIs were performed, and 5.04% and 6.03% when the analysis was done across centres.

Finally, in case of MR images acquired with the MPRAGE sequence, the variation within scanner pointed to 0.70% for
grey matter (GM) maps and 0.72% for white matter (WM) maps (Huppertz et al., 2010). In the same study, the COV value

across scanners obtained for GM maps was 3.79% and 4.14% for WM maps.
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In this chapter, an analysis of the variability within and across scanners is presented. For that purpose, the COV was
determined for each voxel of the FA, MD, GM and WM maps, and then the results were compared from the three centres
analysed. Two types of analysis were performed. The first was an intra-centre analysis which was done independently,
using a sample of images created for each centre. The second was an inter-centre analysis, using a different sample of
images from that of the first study, created to determine the COV variability among centres.

The determination of the COV was performed to characterize the variability of the data and to prove the existence of
the-problem proposed by this dissertation and the need for improved solutions, which are also suggested in this document.
Although this type of analysis was already performed in previous studies, it is crucial to perform a study for this specific
data because the variability introduced by the hardware has specific sources of error which are influenced by factors such
as the sequence applied, the environment in which the scanner is, and the specific monitoring protocols of the scanner
performance, i.e, factors that are closely related to the scanner in analysis. With this in mind, the data will show a specific
variability, which will require an accurate measure in order to characterize the data and perform an accurate evaluation of

the models applied to correct it.

4.1. METHODOLOGY

4.1.1. Group definition and Data pre-processing

In this section three sample groups were defined, which were composed by seven healthy subjects from each centre,
denominated as Controls from this point:

Centre 1: Cognition and Brain Sciences Unit (CBU), age (mean * standard deviation) — 35 + 11 gender (m/f &+ standard
deviation) —0.62 + 0.03;

Centre 2: Finland Centre, age (mean * standard deviation) — 35 + 12, gender (m/f + standard deviation) — 0.64 + 0.04;

Centre 3: Wolfson Brain Imaging Centre (WBIC), age (mean + standard deviation) — 35 + 13 gender (m/f + standard
deviation) —0.50 + 0.05.

The MRI images (DWI and T1 weighted images) were acquired in a 3T Siemens Trio Scanner (Centre 1) and in 3T
Siemens Verio Scanners (Centres 2 and 3), and the parameters and sequences adopted were specified below.

DWI were acquired using an EPI sequence. The same sequence was applied at the three centres, with slight
differences in the sequence parameters. Centre 1: field-of-view 192 mm, repetition time 2000 ms, echo time 30 ms, voxel
size 2x2x2 mm?, b-value=1000s/mm?, 64 directions. The sequence parameters adopted at Centre 2 were: field-of-view
192 mm, repetition time 11700 ms, echo time 160 ms, voxel size 2x2x2 mm?3, b-value=1000s/mm?, 63 directions. The
sequence parameters adopted at Centre 3 were: field-of-view 192 mm, repetition time 7800 ms, echo time 90 ms, voxel
size 2x2x2 mm?3, b-value=1000s/mm?, 63 directions. Note that these differences between scanners and sequence
parameters are representative of the differences involved in multicentre studies, and therefore these data are useful in
guantifying the extent of the issue. In fact, in literature the differences between scanners and sequences parameters are

even more significant, for example, scanners with different field strength were used and from different manufactures. The

8 The proportion of males/females was calculated considering the number of males in the samples, dividing by the total number
of subjects in the sample.
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DTl invariant measures were determined using a homemade script, developed in order to calculate the non-linear
estimation of the tensor. The pre-processing was perform using the FMRIB Software Library v.5.0 (FSL v5.0) software. This
software consists of a comprehensive library of analysis tools for FMRI, MRI and DTl brain imaging data, developed by the
Analysis Group, FMRIB, Oxford. (Stephen M. Smith, et al, 2004). The FSL routines were implemented for eddy current
distortion correction and mask creation. The pre-processing was then completed using a spatial normalization of all images
to a common space — MNI template. This final step is crucial for head position correction, multi-modal fusion and mapping
to Talairach space (Jenkinson & Smith, 2001). Thus, a study was performed to test the best approach for registration. This
study concluded that the linear normalization followed by non-linear normalization to an FA-template provided the best
correspondence among images and a reduction of the variability across them (Appendix D). Thereby, the FLIRT® function
was used followed by the FNIRT function, both FSL tools. The registration was initialised and ran to convergence with
sub-sampled images, a field of low resolution and a high regularisation weight. After that, the images from the first step
were up-sampled, the regularisation modified and it was again ran to convergence (Andersson, Jenkinson, & Smith, 2007).

The T1 images were acquired using an MPRAGE sequence. At Centre 1 the sequence parameters adopted were: field-
of-view 256x256x192 mm?, repetition time 2530 ms, echo time 1.64 ms, voxel size 1x1x1 mm?3, TI 1200 ms, flip angle 7
degrees, bandwidth 6.51Hz/Px. At Centre 2 and 3 the sequence parameters adopted were: field-of-view 256x256x176
mm?3, repetition time 2300 ms, echo time 2.98 ms, voxel size 1x1x1 mm?3, TI 900 ms, flip angle 9 degrees, bandwidth
240Hz/Px.

The post-processing was performed using the SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) routines
for voxel-based analysis (tissue segmentation, DARTEL and normalization to a common space). Further details about the
post-processing functions used can be found in (Ashburner, 2010)

For each group, two DTl invariant measures were analysed — Fractional Anisotropy (FA) and Mean Diffusivity (MD) —

and Grey Matter (GM) and White Matter (WM) images obtained from T1 segmentation.

4.1.1. Quantification of variability — Coefficient of Variation

The variability across scans was measured using the COV, as suggested by the most recent studies developed on
context of multicentre projects. (Huppertz, 2010; Magnotta et al., 2012; Teipel et al., 2011; Venkatraman, 2015; Vollmar,
2010).

Bearing this in mind, the COV was defined as the proportion between the standard deviation and the mean value for
the same measure across samples- Equation 3.1. Note the value obtained using the Equation 3.1 is expressed as percentage
value.

The COV was used to characterize the data from the three different centres mentioned above, which contributed for
a preliminary analysis of the multicentre data. Although one of these centres doesn’t belong to the main project (CENTER-

TBI project, CENTER-TBI, 2014), the variability present in the scans acquired in this centre was studied to increase the

° The FLIRT function performs translations, rotations, zooms and shears.
10 This function modelled the displacement fields as linear combinations of basis-functions, which may be the discrete Cosine

transform (DCT) or cubic B-splines placed on a regular grid.

51



Quantification of Variability Intra- and Inter-scanner

statistical power of this first part of the study and to prove the viability of the assumptions about the variability originated
by the scanners.

The COV value was used to quantify the variability within scanner and across scanners. In both cases the COV was
measured in each voxel of the brain and in specific ROI defined in white matter and grey matter, the procedure used is
detailed in section 4.2.2 (a) and (b), respectively. The algorithm to determine the COV was developed in MATLAB™. Further

analyses, such as statistical analysis, were performed using MATLAB™ as well.

(a) Coefficient of Variation: voxel based analysis

The post-processing step of registration applied to all images before the data characterization was essential, in order
to compare all the analysed scans. It is expected that each voxel from any scan corresponds to the same brain region. Thus,
towards a voxel based analysis, a similar value for the corresponding voxels from different scanners is expectable. Assuming
this, any relevant differences found are due to artefacts, whose sources are mainly due to the hardware. However, it is
also expected to find individual differences between subjects since the same subjects were not sent across all sites.

In order to remove the artefacts caused by the interaction between magnetic field and the scalp, as well as the
artefacts present in boundaries between the different tissues in the cranium, two binary masks were created for each
centre, which were applied depending on the kind of tissue under analysis: GM or WM. For that, the MPRAGE scans from
the same Controls were used. For each image a segmentation and a normalization of the raw image were produced. Then

the various images were averaged in order to determine a final image from which was a binary image then achieved.

(b) Coefficient of Variation: Regions of Interest

Forty-eight ROl were defined in WM, using the Julich histological (cyto- and myelo-architectonic) atlas (JHU) (Eickhoff
et al., 2005). The description of the ROlIs is available in Appendix A.1 .These ROIs were applied to all FA, MD and WM maps
for each subject and ROI statistics were determined using MATLAB™. On the other hand, for GM images, 48 ROIls were
defined in GM using the Harvard-Oxford cortical structural atlases (Desikan et al., 2006).

A mean value for each the voxels in the same ROl was used as the intensity for the ROl under analysis, for each
subject. Mean and standard deviation across scans for each type of image were extracted per ROI. The difference between
the same ROl across scans was determined through the COV value, which was calculated using the Equation 4.1.

The comparison among scans, intra and inter-centre, was done using boxplots, which display the variation of a sample
taken from a statistical population without making any assumptions of the underlying statistical distribution. The boxplot
indicates also the degree of dispersion (spread) and skewness in the data, and shows outliers. On the other hand, the

degree of variability among ROl is represented by bar plots.
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4.2.  RESULTS

4.2.1. Variability quantification within centre

(a) Coefficient of Variation: voxel based analysis

The variability within each centre was compared for the four types of images analysed (Figure 4.1.). The values for
each centre are shown as a bar which corresponds to the mean value of all voxels analysed. The results obtained showed
a high variability which is shown by the deviation from the mean value. The main reason for this value of deviation, is due
to some voxels which have a COV raised (approx. 150%). These higher values of variability are due to the localization of
these voxels. As mentioned above, the voxels located in the boundaries between different brain tissues are more affected
by partial volume artefacts (Le Bihan, Poupon, Amadon, & Lethimonnier, 2006), which result in a higher value of variability.
Despite the attempt to reduce this effect by the use of a mask, the mask used was obtained through a mean image across
subjects. Thus, in some cases the mask was not able to cut the voxels by the boundaries and effectively reduce the effect
of partial volume which contributes to a higher value of variability at those specific voxels.

In order to represent the distribution of the variability in the brain, coloured maps were created which represent the

COV value in each voxel. The coloured maps can be found in Appendix B.

Variability within Centre
25%

20%

15%

10% }V }V [
0%
FA MD GM WM

B Center 1::CBU M Center 2 :: Finland Center 3 :: WBIC

Coefficient of Variation (%)

Figure 4.1 — Coefficient of Variation expressed as a percentage value for each type of image analysed. Each bar represents the mean
COV value for each centre. The line corresponds to the standard deviation of the COV value.

(b) Coefficient of Variation: Regions of Interest
The ROl analysis allows to verify which ROl have a higher value of variation for the different types of image, namely
the variability behaviour on FA, MD, GM and WM within each centre (Figures 4.2, 4.3, 4.4 and 4.5, respectively). In order
to compare the results for each ROl and the results from the previous analysis, coloured maps were created to express the
variability in each ROl (Appendix B). This type of analysis could also be compared with the previous analysis performed
through the results presented in Figure 4.6, which summarizes the behaviour of variability across scans from the same

centre. As shown in Figures 4.2, 4.3, 4.4 and 4.5, the ROl analysis seems to suggest a tendency for a lower variability in

53



Chapter 4
Quantification of Variability Intra- and Inter-scanner

scans from Centre 3, when compared to the Centres 1 and 2, namely in FA, MD and GM images. The exceptions are the

WM images from Centre 2 which show a lower variability.
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Figure 4.2 — Coefficient of Variation expressed as a percentage value for FA images. Each bar represents the mean COV value for each
ROl in the three centres.

Mean Diffusivity (MD)

16,0%
14,0%
_12,0%
X
< 10,0%
.0
5 80%
s
- 6,0%
o
=
S 4,0%
S
£ 2,0%
8
0,0%
5,080, 2822283 E25E2 2553 EEE2EIEIEZEIEZERS2EZEr
= =0 w == = — T AaE o === == R "y A7, Sy SRS Rr-4 OO0 FEFF > T o ow—
§+388¢c Cugjﬁﬁ%g&&ugggegggsggggg&$w8w88§:’15m55§85:'-
H Centre 1:: CBU B Centre 2 :: Finland B Centre 3 :: WBIC

Figure 4.3 — Coefficient of Variation expressed as a percentage value for MD images.
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Figure 4.4 — Coefficient of Variation expressed as a percentage value for GM images.

()L
(¥)L
(14n
(¥)4n
(1s)404
(¥s)404
(s)
(¥s)47
(1)1Ls
(¥)Ls
(1)oH
(¥)oH
(192
(¥)22
(103
(¥)23
(1)ss
(4)ss
(1d)yL
(¥d)yL
(1d)4d
(¥d)¥d
(1s)¥d
(4S)¥d
(v)¥d
(4v)¥d
(14)21
(9¥)o1
(1d)21
(¥d)2I
()l
(4v)2I
(1)dd
(¥)dd
(15)dd
(¥S)dd
(dd
(¥1)dd
(AN
(WA
(M1
(¥)1o
4
(s)D
(a)20
(9)20
1d
(W)d2

HCentre 1:: CBU mCentre2::Finland ™ Centre 3 :: WBIC

Figure 4.5 — Coefficient of Variation expressed as a percentage value for MD images.

55



Quantification of Variability Intra- and Inter-scanner

15 T

Fractional Anisotropy (FA) 4

w10

Coefficient of Variation (%}

Coefficient of Variation (%}
w

+
I
SF T B
. | —
7 [
] -
= [

|
Centre 1: CBU Centre 2: Finland Centre 3: WBIC Centre 1: (BU Centre 2: Finland Centre 3: WBIC

MPRAGE - Grey Matter (GM)

15 T T 5 MPRAGE - White Matter
g T
S X #*
5 S ¥
g ¥ i ® 10} t +
© =
o
“>5 — o z + i
£ = ' + S !
2 g
g 51 R & st s _ |
s | == == | '
] =
[
& e e 8 —]
0 L L 0 — —

.
Centre 1: CBU Centre 2: Finland Centre 3: WBIC Centre 1: CBU Centre 2: Finland Centre 3: WBIC

Figure 4.6 — Summary of the analysis performed for the 48 ROI defined. The red stars correspond to the values defined statistically as
outliers.

The results from the quantification of variability within centre are summarized in Table 4.1. The data show that values
of COV obtained by the ROl analysis (denominated at the table as column (b)) are lower than the COV values obtained by
voxel analysis.

On the other hand, regarding the fact the data from ROI analysis came from an average of the voxels in each ROI, the
standard deviation of the COV value obtained by ROl analysis are also lower than the standard deviation for the voxel based

analysis (Table 4.1 - shaded area).

Table 4.1 — Summary of the Coefficient of Variation obtained within centre. The labelling (a) and (b) refers to the voxel based analysis
and ROl analysis described.

Mean COV = Standard deviation (%)

Centre 1 Centre 2 Centre 3
(a) (b) (a) (b) (a) (b)
FA | 11.2+51 65+2.0 123+49 65+23 121+66 44118
MD 82+50 56+£25 81+£39 62+26 84+70 4318
GMm | 114+73 34+12 89460 42+13 126+73 37%16
wMm | 106+76 18+28 83+63 25435 103+74 3.0+36
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4.2.2. Quantification of inter-scanner variability

In order to determine the inter-scanner variability, an average of the COV was performed considering all the scans
from the three centres. The procedure behind the COV calculus was the same used for the quantification of the variability

within scanner. The mask used for each type of images was obtained from the MPRAGE scans from the three centres.

(a) Coefficient of Variation: voxel based analysis
The voxel based analysis for the variability across centres suggests the variability is higher in FA and GM images (Figure

4.7). That result is consistent with the previous results for analogue studies performed within centres.

Variability inter- Center
25%

20%

15% |
10%
5% |
0% [
FA MD GM WM

M Inter-centre :: CBU + WBIC + Finland

Coefficient of Variation (%)

Figure 4.7 — Coefficient of Variation expressed as a percentage value for each type of image analysed. Each bar represents the mean
COV value. The line corresponds to the standard error of the COV value.

(b) Coefficient of Variation: Regions of Interest
As described above, the variability introduced by the scanner was quantified in the 48 ROls previously defined. The

following figures (Figures 4.8, 4.9, 4.10, 4.11) present the mean value of COV in each ROI, for the four types of images

analysed.

Variability across Centres - FA
14,0%
12,0%
10,0%
8,0%
6,0%
4,0%

2,0%

Coefficient of Variation (%)

0,0%

R)
L)

T(L)

CP(M)
PT
cc(G)
cc(B)
cc(s)
F
CTR
CcT(L)
MR
L(ML
CP(IR)
CP(IL)
CP(SR)
CP(SL)
CP(R)
(
IC(AR
(AL
IC(PR
IC(PL
IC(RR
(RL
FOF(SL
UF
UF
T(R)

57



Chapter 4
Quantification of Variability Intra- and Inter-scanner

Figure 4.8 — Coefficient of Variation expressed as a percentage value for FA images. Each bar represents the mean COV value for each
ROl across centres.
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Figure 4.9 — Coefficient of Variation expressed as a percentage value for MD images for each ROl across centres.
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Figure 4.10 — Coefficient of Variation expressed as a percentage value for GM images across centres.
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Variability across Centres - WM
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Figure 4.11 — Coefficient of Variation expressed as a percentage value for WM images for each ROl across centres.
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Figure 4.12 — Summary of the analysis performed for the 48 ROI defined. The red starts correspond to the values defined statistically
as outliers.

The results from the quantification of variability across centres are summarized in Table 4.2. The difference between
the types of analyses, labelling as (a) and (b) in the following table, suggest a reduction of variability when ROl analysis is
performed. The exceptions are the WM images that have higher values of standard deviation for the ROl analysis, not

consistent with the rest of the images analysed. The explanation behind this could be found in Figure 4.12, in which four

COV values defined as outliers are visible.
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Table 4.2 - Summary of the Coefficient of Variation obtained across centres. The labelling (a) and (b) refers to the voxel based analysis
and ROl analysis described.

Mean COV = Standard deviation (%)

(a) (b)
FA 12.3£4.9 7.1£1.8
MD 8.4+4.1 7.2+19
GM 13.5+8.2 4.2+12
wMm 11.8+115 37+56

4.2. DISCUSSION

4.2.1. Quantification of intra-scanner variability

In the quantification of the variability, which is useful to infer about the level of bias introduced by the scanner and
the protocol, for the three scanners, the value of COV were similar among scanners. However, for both the voxel based
analysis or for the ROI analysis, the values obtained are slightly higher than the values referenced in the literature for
similar studies. In spite of the difference, these results are not meaningful, because this slight difference can be due to
differences in the sequence (not all the studies applied the same sequence parameters, even if the sequences applied
were also EPI and MPRAGE sequences), and the reduced number of subjects which might be not be enough for a robust
statistical test; besides, this reduced number of subjects was critical when the standard deviation was calculated for the
intra-scanner analysis, since with just 7 controls the standard deviation is higher than the expected value for a sample with
more subjects. However, it was impossible to increase the number of subjects used in the samples tested, since it is the
number available in order to have matched groups. Therefore, the reduced number of subjects compared with the
previous studies, in which the sample size was 9 (Vollmar et al., 2010), and the reduced number of centres might be an
issue in the comparison of the COV achieved when compared with previous studies.

The COV values achieved can be due to a MRI calibration or the environmental conditions where the scans were
acquired, which can be determined by the stability of the magnetic field and the interactions between the magnetic field
and the subject scanned.

In case of the voxel based analysis, none of the centres shows a tendency to have a higher variability across subjects.
Thus, for the FA images the Centre 2 has a higher COV value (12.3+4.9%), while the Centre 3 shows a higher value for the
MD and the GM images (8.4+7.0% and 12.6 +7.3% respectively), and the WM images have a higher COV in Centre 1
(10.6%7.6%). On the other hand, for the ROI study, the Centre 2 shows consistently more variability when compared with
the other centres. The exception are the WM images in which the higher value of COV came from Centre 1 (10.617.6%).
Also note that the variability is lower in the ROl study. The ROl analysis allows to reduce sources of variability across scans,
such as the partial volume effect. In this way, this type of analysis could be useful in multicentre studies as a first approach
to reduce the variability across scanners. However, in certain studies where a more accurate spatially analysis is needed,
such as Parkinson’s and Huntington, this approach is not recommended since small features present in specific tracts in
some region can be removed when the mean value of that region is calculated. In fact, the ROl analysis reduces biological

heterogeneity within each ROI, and if the biological changes are subtle and ROl analysis might miss it. In this particular
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study, as the illness in focus is the TBI this approach could be applied without significant consequences. Considering the
TBI characteristics, in some situations, namely in severe TBI in which the patients’ brain is seriously damaged and deformed,
the ROl analysis is the only approach available, since in these particular cases the segmentation is not efficient considering
the level of brains” deformation presented in MRl scans, and automated registration algorithms are not able to normalise

these abnormal brains.

4.2.3. Quantification of inter-scanner variability

As expected, the variability across centres is higher than the variability within centre, in spite of the scanners in the
three centres being from the same company. However, the sequence used had slightly differences which can explain the
increasing of the variability across scanners.

The stability of magnetic field could be affected by external factors, such as the temperature and humidity of the
room. Also, the scanners are located in different centres in different locations, and this fact implies that the person
responsible for the scanner calibration and maintenance is different for each one, and thus the calibration procedure might
have small differences, which may constrain the scanner performance. These factors may also contributed for the raised
variability across scanners.

Considering to the ROl analysis, it is possible to conclude that the diffusion measures are more susceptible to scanner
artefacts. This fact is consistent with previous studies in which the same result was observed. It is also possible to observe
that the Fornix and the Posterior thalamic radiation have a higher value of COV, whilst the GM regions with more variability

are the Supracalcarine Cortex and the Cuneal Cortex, with COV value above 6%.

4.3. CONCLUSION

Due to initial comparisons between the performances of these three scanners, it is possible to conclude that the data
reproducibility is not achievable without an initial correction, since an error inferior to 5% would be acceptable. Besides,
visual assessment of the variation of COV among ROIs (Appendix B), enables to verify that the pattern of variation is not
the same for the data acquired for the various centres, which suggests that the variability measured is random and caused
by the scanner, which means that the sources of error are independent from any particular feature and inherent to each
subject. However, note that this conclusion could only be supported by an analysis using the same controls in each centre

in order to compare the variability pattern for the same subject in different centres.
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Chapter 5

SPATIAL FILTERING MODEL

5.1. INTRODUCTION

After confirmation of the presence of variability introduced by the hardware, which could undermine the reliability
of the multicentre study, three corrections models were tested in order to ensure the minimization of this error in the MRI
images.

The first model was based on a spatial filtering by smoothing method, which is usually applied to reduce artefacts
such as the ones caused by subjects’ movement (Le Bihan et al., 2006).

Spatial filtering is applied by convolving the images with an isotropic Gaussian kernel. In practice, each voxel in the
result image - smoothed image - will contain the weighted average concentration of the voxels around each original voxel.
Note that the region around the voxel is determined by the shape of the smoothing kernel.

Even though the smoothing process can be advantageous, since it increases the validity of parametric statistical tests,
according to the central limit theorem, as smoothing has the effect of rendering the data more normally distributed. This
fact was not the purpose of using this method due to the groups’ size and nature of the data available. For this reason, the
statistical tests performed were non-parametric tests. However, many studies mention smoothing as the first pre-
processing step to treat MRI scans, namely structural images such as MPRAGE scans. Moreover, the smoothing step also
helps to compensate for the inexact nature of the spatial normalization.

Whenever possible, the size of the smoothing kernel should be comparable to the size of the expected regional
differences between the groups of brains.

The evaluation of this method was performed through the analysis of the variation of the z-score values before and
after the correction, which could be understood as a measure of the difference between the patients’ values when
expressed in terms of the baseline defined by the controls or between the controls from one centre to another. This
analysis was performed for each subject, in the 48 ROls previously defined.

Moreover, statistical tests were also performed in order to understand if the correction has a significant effect on the
detected differences in the context of group analysis. For that purpose, the tests applied consisted of non-parametric 2
sample t-tests, used to evaluate how different were the subjects from Centre 2 compared to the subjects from Centre 3,
before and after the correction was applied. The Centre 1 was not included in this analysis, since the dataset from this
centre had not TBI patients. The CENTER-TBI project did not include the CBU as research centre in which the TBI patients

were analysed.
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5.2.  METHODOLOGY

5.2.1. Group definition and Data pre-processing

In this section two sample groups were defined, composed by subjects from Centre 2 and from Centre 3. The subjects
in these samples were part of the groups defined in Chapter 3. In order to evaluate the developed models, these two
groups were separated in two subsamples defined as Controls (composed by healthy subjects) and Patients (subjects with
mild TBI diagnosis, which were analysed by MRI in their hospital assessment), taking into account the mean age and the
proportion of gender that makes the subsamples suitable and comparable.

e Centre 2: Finland
o Controls: 4 subjects
o Patients: 58 subjects
e Centre 3: WBIC
o  Controls: 7 subjects

o Patients: 21 subjects

The MRIlimages (DWI and T1 weighted images) were acquired using the scanners and sequences described in Chapter

Furthermore, the pre-processing data pipeline adopted in this study is detailed in the previous chapter (section 4.2.1
of this document).
As before, for each group two DTl invariant measures were analysed —FA, MD — and GM and WM for the images

obtained from T1 segmentation.

5.2.2. Spatial Filtering Method

To minimise the effects of noise, a spatial filtering method was applied to the raw DWI volumes using a Gaussian
kernel with FWHM=2mm. The FWHM value was chosen taking into account the size of the voxel (2 mm), in order to achieve
the noise reduction without removing too many relevant features of the scan. The smoothing filtering was applied using
the FSL routines, which use an isotropic kernel.

In the same way, the MPRAGE images were corrected using a Gaussian kernel with FWHM=2mm. Considering
previous studies (Ashburner, 2010), a more standard value for MPRAGE correction was also tested, in order to evaluate
the effectiveness of the smoothing with a higher value for the FWHM (FWHM=8mm) without blurring the scans and
remove relevant features. These two types of correction performed on MPRAGE images were denominated as Correction

A and Correction B, respectively. The MPRAGE scans were treated using SPM8.

(a) Z Score
The Z score, also denominated as standard score, is a statistical measure, dimensionless, which expresses the
deviation of a value to the mean of the population. Thus, this measure provides an assessment of how off-target a value

is. The Z score was used to express the values obtained for the Patients from each centre in terms of the corresponding
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measure obtained for the Controls from the same centre. In this way, the Controls were used to calculate the population
mean and standard deviation, and were defined as baseline for each centre, while the Patients were expressed as a
difference to the expected value - baseline.

The Z score was obtained by subtracting the Controls’ population mean (x;) from an individual raw score,
corresponding to each Patient (y), and then dividing the difference by the Controls’ population standard deviation (o)
(Equation 5.1).

The analysis performed consisted on the assessment of how many Patients were significantly different from the
Controls. In addition, it was also tested how many Controls from Centre 2 were significantly different from the Controls
from Centre 3. An ideal dataset would show a high number of Patients significantly different from Controls, and a reduced
number of Controls significantly different among centres. Note that the subject was categorized as significantly different
if the Z score value was above 2 or if it was lower than -2.

This method was applied to the 48 ROIs defined in WM and GM.

Yi — Xc
z Score =

o, Equation 5.1.
(b) Group Analysis

A group analysis was performed in order to infer on the effectiveness of the spatial filtering correction. Thereby, a
nonparametric 2-sample t-test was performed before and after the data correction. The first test used raw images, and
the goal was to distinguish Patients from Centre 2 from the ones from Centre 3. This approach was informative in assessing
the method analysed, since using this approach it was possible to test if the method was able to reduce the variability of
the group of subjects. Actually, with this test it was analysed if the method is able to reduce the variability introduced by
the scanner in a group of subjects by reducing the variability in each patient individually. If the method achieved this goal,
it was possible to mix scans from different centres and using a spatial filtering in each of them to proceed to a group
analysis without any further concern for the study reliability.

The second test was performed with the same goal, using however the smoothed images. A design matrix was used
to define the main characteristics of the samples, such as the centre, age and gender. Note that, the same characteristics,
namely the age and gender, were considered as nuisance variables and were ignored by the contrast established for the t-
test. Finally, the number of permutations N was calculated using the Equation 5.2, where n1 is the size of group 1 and n2
is the size of the second group, in which the value obtained was 3.81x10*%. Considering the high number of permutations
needed, the number of permutations used was 10000, taken into consideration that this is the appropriate value for
biological samples and that this number of permutations are required to reduce the margin-of-error to below 10% of the

nominal alpha (Winkler, Ridgway, Webster, Smith, & Nichols, 2014).

_ (ny +ny)!

ni! X n,! Equation 5.2.
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5.3. RESULTS

5.3.1. Spatial Filtering Model

(a) Z score

An intra- and inter-centre analysis was performed in order to evaluate the effectiveness of the correction in both
cases. The results for intra-centre correction can be found in Appendix C.

In the Figures 5.1 to 5.8, it is possible to see the Z scores for inter-centre scans for Controls (Figures 5.1., 5.3., 5.5,,
5.7) and for the Patients’ group (Figures 5.2., 5.4., 5.5., 5.6.). The second set of figures (Figures 5.9 to 5.20) corresponds to
the Z score obtained after correction. Note that in the case of MPRAGE images, as mentioned above, two different levels
of correction were applied, and consequently an additional image for both Controls and Patients can be found as a result
of this additional correction (Figures 5.19 and 5.20 respectively).

In all figures each subject is represented by a blue circle and a shadow represents the values between -2 and 2, which

were considered as non-significant statistically.

(a.1) Before Correction

The data analysed in this section corresponds to the raw data — without any correction. Thereby, the Controls
denomination refers to the Controls from the two centres, WBIC and Finland, and the Patients also refers to the dataset

composed by the patients from both centres.
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Figure 5.1 —FA maps. Z score of the Controls from Centre 3 — WBIC —when expressed in terms of controls from Centre 2 - Finland. The
shadow region corresponds to the region of non-significant differences among subjects. Each circle represents a different subject.
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Fractional Anisotropy (Patients)
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Figure 5.2 — FA maps. Z score of the Patients when expressed in terms of a baseline defined by the controls from the two centres under

study.
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Figure 5.3 — MD maps. Z score of the Controls from Centre 3 — WBIC — when expressed in terms of controls from Centre 2 - Finland.
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Figure 5.4
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MPRAGE - GM (Controls)
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MPRAGE - WM (Patients)
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Figure 5.10— FA maps. Z score of the Patients when expressed in terms of a baseline defined by the controls from the two centres under

study, after correction.
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Figure 5.11 — MD maps. Z score of the Controls from Centre 3 — WBIC — when expressed in terms of controls from Centre 2 - Finland.
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Figure 5.12 — MD maps. Z score of the Patients when expressed in terms of a baseline defined by the controls from the two centres

under study.
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Figure 5.13 — GM maps. Z score of the Controls from Centre 3 — WBIC — when expressed in terms of controls from Centre 2 - Finland.
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The correction was performed using a FWHM
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Figure 5.14 — GM maps. Z score of the Patients when expressed in terms of a baseline defined by the controls from the two centres

under study. The FWHM used was 2mm.
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Figure 5.15 — GM maps. Z score of the Controls from Centre 3 — WBIC — when expressed in terms of controls from Centre 2 - Finland.
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Figure 5.16 — GM maps. Z score of the Patients when expressed in terms of a baseline defined by the controls from the two centres

=8mm.

under study. The factor used in spatial filtering was FWHM
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Figure 5.19 — WM maps. Z score of the Controls from Centre 3 — WBIC — when expressed in terms of controls from Centre 2 - Finland.
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Figure 5.20 — WM maps. Z score of the Patients when expressed in terms of a baseline defined by the controls from the two centres
under study. The FWHM value used was 8mm.

(a.3) Correction Evaluation
In order to obtain a quantitative measure of the effectiveness of the correction model applied, the number of Patients
for which differences among all group were significant for each ROl was counted before and after the correction. In this
way, the Figures 5.21 to 5.28 express the number of patients significantly different from the all patients in the group
(number of patients localized outside of the confidence interval [-2 2]) before and after the correction for the four types
of images present in this study. Note that the number of subjects present in the Controls group (11 subjects) differs from

the number of subjects present in Patients group where the number of subjects is 79.

Fractional Anisotropy (Controls)
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Figure 5.21 — Number of controls significantly different for each ROl before and after correction for FA maps.
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Figure 5.23 — Number of subjects significantly different for each ROl before and after correction for MD maps.
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Figure 5.24 — Number of patients significantly different for each ROI before and after correction for MD maps.
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Figure 5.25 — Number of controls significantly different for each ROl before and after correction, Considering to the two types of

correction applied, for GM maps.
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Figure 5.26 — Number of patients significantly different for each ROl before and after correction, considering the correction A and B

applied, for GM maps.
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Figure 5.27 — Number of controls significantly different for each ROl before and after correction, considering the correction A and B

applied, for WM maps.
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Figure 5.28 — Number of patients significantly different for each ROI before and after correction, considering the correction A and B
applied, for WM maps.
(b) Group Analysis

The results of the group analysis are presented using colour-maps, in which the significant voxels (p-value <0.05) are
represented with a colour variation between red and yellow. However, for an easier assessment of the results, the number
of voxels was calculated with a significant weight for the statistical analysis (Table 5.1).

No significant differences were found for WM images between groups. Thus, these images were not included in this
section. In the same way, the GM images obtained after applying the Correction B did not show significant differences

between groups, and so the images were not included either.

0,950 0,9625 0,975 1

Figure 5.29 — Evaluation of differences for FA maps displaying voxels with significant differences between centres. The top
row corresponds to the FA slices before any correction, and the bottom row corresponds to the FA slices after correction.
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0,950 0,9625 0,975 1

Figure 5.30 — Evaluation of differences for MD maps. Voxels with significant differences between centres. The top row
corresponds to the MD slices before any correction, and the bottom row corresponds to the MD slices after correction.

0,950 0,9625 0,975 1

Figure 5.31 — Evaluation of differences for GM maps. Voxels with significant differences between centres. The top row
corresponds to the GM slices before any correction, and the bottom row correspond to the GM slices after correction A.
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Table 5.3 — Summary of statistical analysis. The results presented in this table correspond to the number of voxels where
significant differences were detected. The significance was defined using the p-value, namely p-value<0.05. Given that the
results of the test implemented are corrected, the intervals presented correspond to 1-(p-value).

1-(p-value)
[0.85; 0.9] [0.9; 0.95] [0.95; 1]
A Before Correction 11556 11412 89797
Correction 644 1067 2762
D Before Correction 579 1642 1982
Correction 30632 22864 4594
Before Correction 34386 42798 1508
GM Correction A 28046 7793 0
Correction B 2766 0 0
Before Correction 0 0 0
WM Correction A 0 0 0
Correction B 0 0 0

5.4.  DISCUSSION

5.4.1. Spatial Filtering Method

Although most studies produced on the topic of multicentre analysis using MRI suggest a set of preventive measures
to avoid as much as possible the variability introduced by variants such as the scanner, one of the most common approach
to correct artefacts and sources of error which could compromise the reliability of the study is spatial filtering by
smoothing. With this in mind, one of the approaches tested to correct the CENTER-TBI data used an isotropic smoothing
kernel to correct artefacts in the scans as well as the variability introduced by hardware issues.

This approach, denominated as approach 1 in this dissertation, was applied to DTl invariant measures and MPRAGE
scans, which were segmented in GM and WM.

Furthermore, this method should be able to increase the differences across patients, because the patients’ scans
should present a high level of variability since the diseases manifestations are heterogenic among patients, and not lead
to full homogeneity in the Controls’ scans, since the variability introduced by the scanner is not the only source of
differences among scans. Besides, if this approach eliminates the variability among patients, it is likely that the main
features which allow patients’ diagnosis and TBIs to be studied are being removed as well. This is the main issue of the
correction models. In fact, it is very important to test the model in order to verify its effectiveness in theory, but it is also
important to guarantee its applicability to real studies, without compromising further analysis. In other words, a good
correction method should be the one that removes differences between controls, but preserves differences between
patients.

Considering the results obtained for FA images (Figures 5.1, 5.2, 5.21, 5.22), it is possible to infer that the model

successfully removed the variability among Controls, without homogenising the subsample Patients. In fact, with a small
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number of exceptions, the number of patients significantly different in each ROl was lower after the correction approach
was applied (Figure 5.21).

Similarly, for MPRAGE scans, for either GM or WM, the models seemed to be successful as well, with better results
when compared to FA. However, it is important to notice that the Correction B — using a smoothing kernel with
FWHM=8mm seemed to be more effective to correct the data (Figures to 5.25 to 5.28). In fact, in the particular case of
GM images, this approach was able to correct almost all the subjects (this fact is possible to see analysing Figure 5.15). In
contrast, the results obtained using Correction A suggest that the value used for FWHM is not enough to remove the
artefacts in the scan. Note that, with this analysis it was proved that the FWHM=8 mm is not a value too high, which could
cause a blurring effect in the image and render it useless for patient diagnosis or other studies performed using the MRI
scans.

The only exception to the positive results obtained using this method were the MD images, in which the differences
among Patients seemed to be reduced. However, since these images have a smaller level of variation when compared
with the other types of images analysed (FA, GM and WM), the correction model could be less successful when compared
to other images with higher values of COV.

The performance of the model was not equally efficient for the intra-scanner correction. The results of this correction
can be found in Appendix C. In this case the correction is not efficient for all ROIs, where in some particular cases, the
number of patients was significantly different, and lower than before correction. This fact seems to suggest that the
correction could be prejudicial for the intra-centre correction since the patients are homogenised, losing particular
features inherent to the disease, which are crucial for the diagnosis and to distinguish them from the healthy subjects.
This effect is significant for MD scans from Finland, in which the correction was inefficient. These results can be caused by
the reduced number of Controls in each centre, which might be insufficient to establish a baseline, i.e., 7 subjects in each
centre is not enough to establish a baseline sufficiently robust in statistical terms. Nevertheless, reaching an accurate
conclusion about the performance of the model in the context of intra-scanner correction would only be possible by

studying the effect of the model on the scans from controls within the centre, before and after correction.

(b) Group Analysis

Although the group analysis has been performed using patients, considering that the t-test performed took into
account all the features which could contribute to an increase in variability, the only factor under focus in this test was the
variability introduced by the centre. Therefore, in theory, the number of voxels significantly different across centres should
be lower after correction.

The results for the group analysis suggested a high effectiveness of the model in the correction of FA and GM maps
(Figures 5.29 and 5.30). However, the results for MD images showed a slight increase of the number of voxels with
significant differences among centres, after correction. These results were consistent with the previous study for individual
subject analysis, in which the number of Patients with significant differences relative to the baseline increased after
correction.

Thereby, as concluded before, the correction applied seems to be a good choice for FA, GM and WM maps, however

the results for MD maps revealed issues.
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5.4.2. Limitations of the Method and Future Improvements

Despite of the good results of the method, this correction approach has limitations.

The first limitation of the model is the number of controls used to establish the baseline. Considering the number of
Patients present in this study (79 subjects), the number of controls is not sufficient to ensure a robust statistical test.
Besides, regarding the features of the sample (age, gender, centre), a controls’ sample with a bigger size would be
beneficial, since the present group shows a low level of heterogeneity in the subjects features. On the other hand, to
guarantee well matched groups (Patients and Controls) the subjects present in Control group have a high level of deviation
in age, in order to achieve the medium age of 35 years old. In spite of the issues behind the number of controls used, it
was not possible include more controls in this study because the number of controls available in CENTER-TBI is only 9 per
centre. Besides, to ensure the groups were well matched, two controls were excluded, and only 7 controls were used per
centre.

Another issue behind this method is the fact of the spatial filtering using a Gaussian kernel increases the partial
volume and can remove biological features of the images, jeopardize the viability of biological interpretations after
correction.

Finally, using the z-scores to express the Patients in terms of Controls seems to be a good way to evaluate and ensure
the study reliability, since the variability introduced by sources of error could be detect and removed. However, using this
approach the biological meaning of the voxels values were lost, and it is impossible to analyse the images using qualitative
and visual methods. After this approach was applied ,the Patients were always analysed in terms of the baseline established
by the controls; thus it is impossible to compare the values of the Patients from the two centres analysed with a third
centre, without established a new baseline, in which the controls from a third centre are included. In this way, when a new
comparison and/or analysis between centres are required, the method described in this section will need to be applied
from the beginning, which requires a loss of time and efforts not justified.

To improve the method described in this section and overcome the limitations mentioned above, it would be good
to increase the number of subjects present in the Controls group. This fact would be useful to ensure the robustness of
the statistical tests performed. On the other hand, it would be interesting to develop an algorithm, which applied a
personalized Gaussian kernel with a specific FWHM to the scanners from a particular centre. This algorithm would be able
to test which specific FWHM for each centre could reduce the variability across centres without improve unnecessarily the
partial volume of the images. This improvement was not tested regarding the number of combinations required to test
different levels of smoothing from each centre and their effect in the variability across scanners.

Finally, in order to ensure the effectiveness of the method suggested, it would be useful apply it to a third centre (if

it possible with a different scanner, e.g. Phillips) to prove the results achieved.
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5.5.  CONCLUSION

The results suggest a good performance of the model. Besides its simplicity, it provides an easy and quick way to
correct the data and achieve the reliability needed in multicentre studies. However, using isotropic smoothing kernels can
significantly increase partial volume or voxel averaging artefacts, and this model could therefore adversely affect the true
diffusion properties of the underlying fibre tissue. In this way, it is important to understand if the study could be
compromised by this issue.

The performance of the model is not so good for an intra-scanner correction, as there seems to be a tendency of the
model to homogenise the patients and the controls, and a tendency to remove important features of patients which could
be useful to distinguish them and to reach an accurate diagnosis.

Regarding the results of group analysis, the model was efficient in removing the variability introduced by the noise
from the scanner, did not allowed to distinguish the groups from the different centres.

With this fact in mind, it is possible to conclude that the model is highly efficient in the context of group analysis, and
seems to perform well when used to correct the scans from different centres, allowing to accurately proceed to an analysis
of each subject independently. However, in the context of intra-scanner correction, the model seems to remove the

particular features of the patients and to homogenise the dataset.
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Chapter 6

REGRESSION MODELS

6.1. INTRODUCTION

Kostro et al., (Kostro et al., 2014), explored the use of regressions to correct the scanner variability, demonstrating

the usefulness of regression in the reduction of data variability, without removing the disease effects. For that, a Gaussian
Process Regression (a nonlinear and regularized regression method — Equation 3.9) and an unregularized simple linear
regression with ordinary least squares solution (OLS — Equation 3.10) were applied to correct the variability of the i scanner.
Kostro et al. used all the covariates defined with equal relevance for the model. However, Kostro et al., only applied the
model on context of voxel based analysis.
Considering the problem behind this project and the different types of MRI images acquired, the model mentioned above
was modified in order to be possible apply it to the CENTER-TBI data. Therefore, regarding the disease effects at the TBI
patients, namely in cases of severe TBI, in which the brain is deformed and the segmentation is not efficient, the voxel
based analysis is difficult to apply. Thus, to overcome the limitations of voxel based analysis in severe TBI the model was
also adapted to perform an ROl analysis. In the present chapter, an optimization of the model was performed iteratively
and independently for each ROI, in order to achieve the best model for each of them. Note that the model was constructed
with the possibility of the application of this optimization to a voxel-based analysis. This variation of the model was not
applied since the computation time required not justify the improvements achieved.

In this chapter a different test was applied to evaluate the model performance. Despite of this new approach used to
evaluate the model did not contribute for the consistency and comparability of the methods used across chapters, it was
not possible to use the approaches adopted in Chapter 5. The main reason for that was the insufficient number of controls
available in the dataset. In fact to ensure the robustness of the model developed to correct the data, all the controls
available were used for the model calibration. Therefore, these controls cannot be used for model evaluation, in order to
avoid the introduction of bias in the method used to evaluate the performance of the model.

Different kind of approaches can be used to quantify the variability among scanners. Examples of that are General
Linear Models (GLM) and classifiers, such as Support Vector Machine (SVM). In the first case, each scanner used is
considered as a variable of the model. The beta coefficients estimated in the model are a measure of the variability brought
by the covariate with which it is associated. It is important to note that other variables can be introduced in the model, in
order to absorb the variability introduced by other sources, such as the variability across subjects resulting of age and

gender.
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The SVM does not produce a direct quantification of variability. However, using a classifier it is possible to determine
how significant the level of variability introduced by the scanners is. An accuracy of classification higher than 80% means
that the variability introduced by the scanner is too significant and, consequently, the scans are not comparable (Kostro et
al., 2014). In the absence of any inter-scanner effects, it can be assumed that the scanners under analysis produce similar

and comparable images, and the classifier would not distinguish the scanners above chance level (50%).

6.2. METHODOLOGY

6.2.1. Group definition and Data pre-processing

In this section, two groups were created using the subjects from the Centre 2 and Centre 3, described in Chapter 4.
The first group corresponds to the Controls from Centre 2 and Centre 3 joined (total of 25 subjects). The second group was
formed by the Patients from both centres, which corresponds to a total of 79 subjects. The subjects’ characteristics could
be found in the Chapter 4.

The parameters and sequences adopted to acquire the MRI scans were described at Chapter 4.

Furthermore, the pre-processing data pipeline adopted in this study is detailed in the previous chapter (section 4.2.1
of this document).

As before, for each group two DTl invariant measures were analysed —FA, MD — and GM and WM for the images

obtained from T1 segmentation.

6.2.2. Regression Model: Ordinary Least Squares (OLS)

The first step of this model is the construction of the design matrix, which will define the covariates taken into account
in the regression model, and their values for each subject. The design matrix used in this study, denominated as X matrix
(Equation 6.1), included the age, gender, Centre 2 and Centre 3 as covariates. The last three covariates were code {0 1},
while the age was scaled to the interval [0 1].

The Ordinary Least Squares model (OLS) for each voxel was then defined in matrix form (Equation 6.3), y is the vector
of the observations for each scan at the voxel v, the € is the residual error with zero mean and variance ¢ and B (Equation
6.4) corresponds to the matrix of the parameters estimated by the model, which were used to correct the voxel value using
the pseudo-inverse transformation (Equation 6.5).

Note that the Training set is only composed by Controls in order to avoid confounding disease with non-disease
effects during the estimation of the regression parameters. On the order hand, given the reduced number of controls in
this dataset, the Test group is only composed by patients. In this way, only the patients’ data were corrected and the
information from de controls was lost for subsequent statistical analyses. This fact is the principal issue of this model, since
it will not be possible to use the controls for further studies or to do an extensive evaluation of this model. Given the

reduced number of controls available in each centre®, it was not possible to use the same metrics, applied in Chapter 4,

11 The CENTER-TBI protocol has established that only nine subjects are analysed in each centre, in order to be used as

reference/controls.
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to evaluate the model performance. In other words, splitting the controls in two groups to be used as model estimation
and then as model evaluation was not considered, since in that situation the model would not be able to correct efficiently
the data and it would lose the statistical power and the robustness essential to apply this methodology. Another option
would be to use part of the data used to estimate the model to evaluate it. However, using the same data to estimate and
evaluate the model would introduce bias in the results, making them unviable to be discussed and presented as a solution

to the problem under analysis in this dissertation.

.

X= [XO' Xage'Xgender'XCentre 2, Xcentre 3 ] € RV Equation 5.3.

x! = [1' Xageiﬂxgenderi'XCentre Zi'XCentre 3i ] €R® Equation 5.4.
y'=XB +¢e,y = [y(1,v), ---:y(N'V) ] € RN Equation 5.5.

Bv = [BOV' Bagev' Bgenderv' BCentre 2vx BCentre 3v ] ER® Equation 5.6.
Yeorrectea® =Y' — X.E? © Yeorrectea® =Y — x(XTX)_leY Equation 5.7.

To apply the model detailed above the following assumptions were taken into account:
a. The effects in analysis were linear;
b. The covariates were independent;
c. Theresiduals had a Gaussian distribution;
d. The values of § were equally likely a priori.
This model was applied also to ROl analysis. In that case, the model could also be described by the Equations 6.1 to
6.5, however, the v index should be understood as definition of one ROI.
In the particular case of ROl analysis, the model was optimized by the determination of which estimated Bs, in each
ROI, had a higher significance in the regression. The significance of the Bs were assessed using a stepwise algorithm, in
which the R squared adjusted was used to evaluate the significance of the Bs token into account in the specific step for the
correction of the particular ROl in analysis. Thus, the covariates taken into to account to correct each ROI, were the ones
with a relevant meaning (R squared adjusted > 0.7) to correct that specific ROI. This optimization was not applied to the

voxel analysis, since the computation time required for the optimization did not justified the improvement obtained in the

results®?.

12 This optimization was only tested for FA maps, in which the time required to calculate the Bs was approximately 3 days, in
contrast with the 1.5 hours required for the calculation of the betas when a voxel based analysis without optimization. Note that, the
AUC achieved for a voxel based analysis optimized, for FA maps, was 0.613. However, the algorithm optimized for voxel based analysis
should be tested more carefully for the rest of the images analysed (MD, GM, WM), in order to prove the conclusion mentioned above.

83



Regression Models

The effectiveness of these three variations of this model were then compared through the AUC obtained by

classification of the centre using a linear classifier, calculated for the three situations detailed above.

6.2.3. Support Vector Machine (SVM)

A machine learning method was adopted to evaluate the results achieved. Considering the concepts behind SVM, this
classifier was applied to categorize the patients’ data in terms of the centre where they came from. The Centre 2 was
defined as category A, instead the Centre 3 was defined as category B. The patients’ data (the corrected data) was split in
two groups — Training (20 subjects) and Test set (39 subjects)® — and a design matrix to define the variable in analysis —
the centre —was constructed. A dataset with a reduced inter-centre variability would not be efficiently categorized in terms
of the centre using a classifier, while using a dataset with a high level of inter-centre variability it would be possible to
categorize the data in terms of the centre. With this in mind, the SVM was used as an indirect measure of variability.
Therefore, in the classification of the uncorrected data a high level of accuracy is expected (accuracy >80%), whilst it was
expected that the better the performance of model correction, the percentage of correctly classified Patients in terms of
the centre would be nearest to 50 percent (this value corresponds to the situation in which the classifier is attributing the
category randomly).

To categorize the results of the SVM, the following parameters were used:

a. Area under the curve (AUC) — quantified the overall ability of the test to discriminate between two classes,
in this particular situation the classes correspond to the two centres. A truly useless test (one no better at
identifying true positives than flipping a coin) has an area of 0.5. A perfect test (one that has zero false
positives and zero false negatives) has an area of 1.00.

b. Accuracy —is the proportion of true results (both true positives and true negatives) among the total number
of cases examined.

c. Sensitivity — fraction of subjects from Centre 2 that the test correctly identified as positive.

d. Specificity — fraction of subjects from Centre 3 that the test correctly identified as negative.

e. Precision — proportion of the true positives against all the positive results

f.  F-score — (F1 score) is the harmonic mean of precision and recall, thus was used as a measure of accuracy
test.

Although all the measures mentioned above had been taken into to account to characterize the SVM results, the AUC was

enough to infer about the efficiency of the correction model applied.

6.3.  RESULTS

6.3.1. Regression Model: Ordinary Least Squares (OLS)

As mentioned above, the results of the application of OLS model were not brain images with a direct biological

interpretation. In fact, the raw data — voxel values which allow to obtain a brain image with direct biological meaning —is

13 Not all the patients corrected were used in SVM analysis. The main reason for that was the need of the groups were well matched
in terms of the age and gender, which made the groups comparable and without features that could contribute to increase the variability.
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transformed by the model in corrected data, which voxel values just can be analysed through comparison among subjects,

since their biological meaning was loss during the correction steps.

(c) Support Vector Machine
The following table, Table 6.1, summarises the performance of the SVM for the different type of data and the different

type of correction applied.

Table 6.4 — SVM results of the data classification of the results of model correction, in terms of the Centre.

AUC Accuracy Sensitivity  Specificity  Precision F-score
Before Correction 0.833 0.897 0.667 1.000 1.000 0.800
OLS: voxel based analysis 0.545 0.744 1.000 0.091 0.737 0.849
i OLS ROl analysis (non-optimized) = 0.625 0.513 0.917 0.333 0.379 0.537
OLS: ROI analysis (optimized) 0.552 0.718 0.929 0.182 0.743 0.825
Before Correction 0.801 0.872 0.964 0.636 0.871 0.915
OLS: voxel based analysis 0.818 0.897 1.000 0.636 0.875 0.933
VP OLS: ROl analysis (non-optimized) 0.591 0.769 1.000 0.182 1.000 0.308
OLS: ROI analysis (optimized) 0.591 0.769 1.000 0.182 0.757 0.862
Before Correction 0.914 0.925 1.000 0.107 0.901 0.947
OLS: voxel based analysis 0.839 0.769 1.000 0.679 0.550 0.710
oM OLS: ROl analysis (non-optimized) 0.681 0.821 1.000 0.348 1.000 0.533
OLS: ROI analysis (optimized) 0.625 0.462 1.000 0.250 0.344 0.512
Before Correction 0.902 0.974 1.000 0.964 0.917 0.957
OLS: voxel based analysis 0.821 0.744 1.000 0.643 0.524 0.688
WM OLS: ROl analysis (non-optimized) 0.714 0.590 1.000 0.428 0.410 0.579
OLS: ROI analysis (optimized) 0.647 0.641 1.000 0.500 0.440 0.611

6.4. DISCUSSION

6.4.1. Regression Model: Ordinary Least Squares (OLS)

As mentioned before, the performance of the model cannot be evaluated directly. However, considering the SVM

results the model seems to be effective in data correction.
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In the raw images, i.e. before any correction, the SVM achieve a high value of AUC, which suggest a high level of
variability in the majority of the scans — FA, GM, and WM. These results are the expected considering the COV values
averaged before for data characterization — Chapter 4.

Considering the Table 6.1, it is possible to conclude the model adjusted, which was applied on context of ROl analysis,
achieved best results when compared with the rest of the OLS variations tested. On the other hand, the several variations
of the model tested had a better performance in terms of variability correction for FA maps.

The SVM results also suggest that the model is more effective in the correction of FA and MD maps instead of the
GM and WM segmentation. Nevertheless, the model was also effective in GM and WM correction, in which the capability
of the classifier was reduced about 29% and 26% respectively.

However, it is important to note that the results mentioned above are not a direct evaluation of the OLS model. In
this way, the conclusions about the performance of the model may not be the detailed and accurate ones, since those
conclusions depend of the performance of SVM algorithm and the inherent error behind any kind of estimation of the
classification function. Even so, the SVM gave a way to evaluate the performance of the model as accurately as possible,
since the approaches to evaluate the model applied at Chapter 5 cannot be applied to these results. Besides, applying the
optimized model was ensure a R-squared adjusted > 0.7, which means that the covariates estimated are significant to

explain the data, and the model is well adjusted to the data.

6.4.2. Limitations and Future Improvements

As detailed above, the model tested assumes that the effects are linear, the covariates are independent, the residuals
have a Gaussian distribution, and the parameter estimates are equally likely a priori. Therefore, the OLS model is an
unbiased estimator that minimizes the sum-of-squared errors of the training set. Besides, considering the simplicity of the
model, the OLS algorithm is computationally very fast, which makes this model a good option for the correction of large
dataset, as the CENTER-TBI dataset. Although, this correction model tends to over fit to the corrected data, leading to
suboptimal error when tested on the scans, which were not included on the training group.

In order to improve the efficiency of the model tested, it was also developed an algorithm in which a GPR was applied
instead to a linear regression. In the same way, this algorithm was applied in the context of voxel-based-analysis and ROI
analysis. The GPR applied non-linear regression and took into account interaction between the covariates. On the other
hand, this type of model allowed to reduce the overfitting of the results. However, while in OLS the coefficients were the
covariates themselves (age, gender and centre), in GPR the coefficients are kernel function values of the patients present
at test group with all the controls of the training group. In this way, the GPR model is computationally very slow
(approximately 2.5/3 weeks to run a dataset of 80 subjects), and the results of this model were not achieved in time to be
included in this dissertation. Even so, the GPR algorithm was completely developed and it is ready to test, which might
bring improvements to this correction model. Note further that the GPR regressors express a similarity of the covariates
of the test group with the covariates of the training group and therefore do not provide an intuitive interpretation, which
could require another type of analysis beyond SVM.

This model has also a limitation in terms of its performance evaluation. This issue is once again related to the reduced

number of Controls available. For an accurate evaluation of the model performance would be needed at least twice of the
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number of controls, in order to split the controls’ group and using half of the controls for the model calibration and the
estimation of the covariates. The other half of controls would be then used for the evaluation of model.

Considering the methods applied in this correction model, it is impossible to recover the brain images after the
correction model has been applied and the values of the voxels (or the ROIs in case of ROl analysis) lost the biological
meaning. In this way, the only interpretation of the Patients’ data possible after correction would be by the comparison of
the data among Patients. Besides, further analysis of the Patients’ data after correction should be always based on the
comparison among patients or take into account the comparison between the Patients’ data and the Controls’ data (in

specific situations in which the number of controls available allows the researcher to split the controls group).

6.5. CONCLUSION

The results suggest a good performance of the three variations of the correction model tested, with better results for
the optimized version of the model in which a stepwise selection was applied.

Besides, considering the simplicity of the model, this is an easy and quick way to correct the data and achieve the
reliability needed in multicentre studies.

However, further analysis should be performed in which a bigger number of controls would be used, in order to

evaluate the model using the same approaches which are used in Chapter 5.
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Chapter 7

MODELS COMPARISON

7.1.  INTRODUCTION

One of the biggest issues of the project developed on context of this dissertation was the number of controls
available. This fact makes difficult to test properly the effectiveness of the correction performed by the models. With this
fact in mind, in order to compare the performance of the models tested to correct the variability across centres, the SVM
algorithm applied to evaluate the effectiveness of the model at Chapter 6 was applied as well to the results obtained at
the Chapter 5. Therefore, a comparative measure of the models performance was obtained by SVM analysis.

The concepts behind the methods applied in this Chapter, namely the Spatial Filtering, OLS algorithm and SVM, can
be found in Chapters 4 and 5.

7.2. METHODOLOGY

7.2.1. Group definition and Data pre-processing

In this section, two groups were created using the subjects from the Centre 2 and Centre 3, described in Chapter 4.
The first group correspond to the Controls from Centre 2 and Centre 3 joined (total of 25 subjects). The second group was
formed by the Patients from both centres, which corresponds to total of 79 subjects. The subjects’ characteristics can be
found in Chapter 4. The parameters and sequences adopted to acquire the MRI scans were described in Chapter 4.
Furthermore, the pre-processing data pipeline adopted in this study is detailed in the previous chapter (section 4.2.1 of
this document). As before, for each group two DTl invariant measures were analysed —FA, MD —and GM and WM for the

images obtained from T1 segmentation.
7.2.2. Support Vector Machine (SVM)

As mentioned in the Introduction of this Chapter, a machine learning method was adopted to compare the
performance of the models. Considering the concepts behind SVM, this classifier was applied to categorize the patients’
data in terms of the centre where they came from. The Centre 2 was defined as category A, instead the Centre 3 was
defined as category B. The patients’ data (the corrected data using Spatial Filtering and Regression Models) was split in

two groups — Training (20 subjects) and Test set (39 subjects)!* — and a design matrix to define the variable in analysis —

14 Not all the patients corrected were used in SVM analysis. The main reason for that was the need of the groups were well matched
in terms of the age and gender, which made the groups comparable and without features that could contribute to increase the variability.
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the centre —was constructed. The comparison between models was done using the AUC and the Accuracy of the classifier
to distinguish the centre were the scans came from. Another statistical measures, such as F-score, were also used to
characterize the effectiveness of the classifier to distinguish the centre and, indirectly, to characterize the performance of

the several correction methods applied.

7.3. RESULTS

7.3.1. Comparison of the effectiveness of correction methods

The following table, Table 7.1, summarise the performance of the SVM for the different type of data and the different
type of correction applied. This table has same repeated results (Table 6.1), however the reader should give special

attention to the AUC obtained for Regression models and the Spatial Filtering method.

Table 7.5 — SVM results of the data classification of the results of models of correction, in terms of the Centre.

AUC Accuracy Sensitivity Specificity Precision F-score
Before Correction 0.833 0.897 0.667 1.000 1.000 0.800
Spatial Filtering methods 0.685 0.814 1.000 0.458 0.863 0.801
FA OLS: voxel based analysis 0.545 0.744 1.000 0.091 0.737 0.849
OLS ROl analysis (non-optimized) = 0.625 0.513 0.917 0.333 0.379 0.537
OLS: ROI analysis (optimized) 0.552 0.718 0.929 0.182 0.743 0.825
Before Correction 0.801 0.872 0.964 0.636 0.871 0.915
Spatial Filtering methods 0.712 0.827 1.000 0.258 0.754 0.950
MD | OLS: voxel based analysis 0.818 0.897 1.000 0.636 0.875 0.933
OLS: ROl analysis (non-optimized) = 0.591 0.769 1.000 0.182 1.000 0.308
OLS: ROI analysis (optimized) 0.591 0.769 1.000 0.182 0.757 0.862
Before Correction 0.914 0.925 1.000 0.107 0.901 0.947
Spatial Filtering methods 0.841 0.916 1.000 0.780 0.906 0.875
GM | OLS: voxel based analysis 0.839 0.769 1.000 0.679 0.550 0.710
OLS: ROl analysis (non-optimized) = 0.681 0.821 1.000 0.348 1.000 0.533
OLS: ROI analysis (optimized) 0.625 0.462 1.000 0.250 0.344 0.512
Before Correction 0.902 0.974 1.000 0.964 0.917 0.957
Spatial Filtering methods 0.735 0.724 1.000 0.574 0.693 0.651
WM | OLS: voxel based analysis 0.821 0.744 1.000 0.643 0.524 0.688
OLS: ROl analysis (non-optimized) 0.714 0.590 1.000 0.428 0.410 0.579
OLS: ROl analysis (optimized) 0.647 0.641 1.000 0.500 0.440 0.611
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7.4. DISCUSSION

Attending to the Table 7.1 it is possible conclude that the Regression models achieved better results in to remove
the variability introduced by the hardware. In most of the cases, the Spatial Filtering methods were not able to remove the
variability of the scanner, which is the main feature of MRI images that could be used by the classifier to distinguish the
images in terms of the centre where were acquired.

In this way, using the SVM to evaluate the correction methods studied during this project, it is possible to conclude
that the best option to remove the variability across centres and ensure the reliability of multicentre studies is the
Regression models, namely the adjusted OLS applied in the context of ROl analysis.

However, attending to the time consumed by the Regression models, and considering the results obtained for
Spatial Filtering methods (Chapter 4), these kind of approaches could be used. In fact, the Spatial Filtering methods are the
most intuitive and simpler to apply in the context of CENTRE-TBI project. The results achieved using these methods are
enough to ensure the reliability of the study, since there was achieved an elimination of almost every voxels of a significant
weight to the variability across scanners (Chapter 5). Besides, the maps corrected will preserve the biological meaning of
the values for each voxel, which is lost using the Regression models. Besides, using the Spatial Filtering methods, the
number of Controls acquired in CENTRE-TBI would be enough, and the protocol would not need to be change in order to
acquire a higher number of controls to split in two groups in order to use one of them to calibrate the Regression Models.

Although, in future studies in which an accurate correction will be required, the Regression Models proved to be
a smart choice, since a higher number of controls will be acquired in order to ensure the robustness of the model estimated

and the existence of controls to use in posteriors analysis after correction.

7.5.  CONCLUSION

The Regression models achieved in general better results in the elimination of the variability introduced by the
scanner. In this way, attending only the performance of the correction method the Regression Models are the obvious
choice. Although, considering all the aspects behind the methodologies analysed, namely the number of controls required
and the loss of biological meaning of the values of the maps acquired — FA, MD, GM and WM — the Spatial Filtering models
are the most effective and simpler solution to reduce the error due to the scanner performance and to ensure the reliability

of multicentre studies.
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Chapter 8

CONCLUSION AND FUTURE WORK

TBI is described as “the most complex disease in our most complex organ” (CENTER-TBI, 2014). In fact, TBI cannot be
classified as one disease, with symptoms and therapeutic response already well known. This illness has an inherent
heterogeneity, which is determined by multiple factors such as injury location, physiology, extracranial injuries, and
constitutional effects of the patient (CENTER-TBI, 2014; Hyder et al., 2007; Wilson et al., 2014). That fact makes the study
of this pathology a huge challenge, which requires a diversified dataset. A large dataset insures the presence of a large
spectrum of different symptoms and of therapeutic responses, allowing a more complete understanding of this illness.
Thus, the multicentre studies have proven themselves very useful to collect data from subjects with interesting
characteristics for TBI research, contributing to increase the statistical power of the TBI studies and to improve the
reliability of the assumptions held about this illness.

However, the multicentre studies just can be useful, if the data collected on context of these studies will be
reproducible, in order to be possible pooled all the data from different places in the same database, without constraints
about the place where the data came from. Only in this way, the study will benefit of size of sample and heterogeneity
among subjects, increasing in this way the robustness of the tests performed and increasing as well the statistical power
of the analysis done.

This dissertation is the result of a study developed in the context of CENTRE-TBI project, in which methodologies to
reduce the variability among subjects and across centres were developed, due to artefacts and sources of error caused by
hardware specifications.

The work developed began with an exhaustive study of the level of variability present in three different scanners,
which had differences despite all being produced by the same manufacturer and in which the sequence acquisition
parameters had slightly differences. The main goal of this first phase of this study was to simulate a real clinical situation
in which it was not possible to match all the sequence parameters and using the same scanner for all scan acquisitiosn.
Besides, even in the perfect situation, in which all the sequence parameters and scanners are well matched, the
environment — namely temperature and humidity - influence the scanner performance and the variability across scanners
must be quantify to determine its influence in the study. In this way, it is possible to conclude, considering the results
presented in Chapter 4, that there was a significant level of variability which should be removed to increase the reliability
of the studies performed.

After the assessment of the level of variability across scanners, a set of methodologies were developed in order to
correct the raw data from two centres — Finland and WBIC. Considering the analysis of the results of both studies (Chapters

5and 6) itis possible to conclude that both methodologies were successful in removing the variability previously quantified.
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In first case, the Spatial Filtering methods had shown an excellent performance in the FA maps correction, and a good
performance in the correction of GM and WM segmentations. This model, had not shown such good results for MD maps;
however, in this specific situation the variability was also removed, and further analysis should be applied in order to
understand if the method was inefficient for these maps in particular or if in this case the number of controls used express
the patients in terms of controls was not enough to achieved a statistical robustness of the tests performed.

On the other hand, the Regression models had shown an excellent performance in the correction of MD and FA maps,
and a good performance in GM and WM correction. These models seem to be especially useful for ROl analysis in particular
for adjusted variations of the models applied on context of ROl analysis. In case of GM and WM, would be useful to include
more covariates namely the volume of GM, WM or even the total intracranial volume. Specific priors used for tissue
segmentation would be useful as well to include in the model estimation, since these priors have the information relatively
to each subject in particular and could be useful to explain variability that in this study was attributed to the scanners’
performance but could be due to the subjects’ inherent variability.

Considering the results of Chapter 7, the Regression Models seems to be more effective in reducing the variability
across centres, since the classifier had a worst performance in distinguishing the data in terms of centre after these models
were applied, when compared to the same situation but applied to the results of Spatial Filtering methods. However, as
mentioned in the discussion of Chapter 7, the regression methods apply several transformations to the raw data, which
remove any biological meaning to the correct data. In this way, these methods just can be used in a quantitative analysis
between subjects.

Therefore, with this study it is possible conclude that the variability across centres must be reduced in order to
improve the reliability of the studies performed. The best option to reduce the variability is using regression models in
which the covariates are able to explain each source of variability that are not a result of specific features of the subjects,
such as features of the stage of the illness in the subject. However, if the data is to be used in a clinical context in which a
gualitative analysis is usually the most common, these methods should be avoided, since the corrected data have no
biological meaning and cannot be analysed by the visualization of images. In that scenario, the Spatial Filtering method
must the one to use in order to reduce the variability.

In the future, it would be extremely useful to have a Control group composed by a higher number of subjects in order
to be possible to perform an exhaustive analysis of the methods studied. On the other hand, it would be also really useful
to send the same controls to each centre, in order to compare the values of variability for the different scanners. In that
scenario, the variability measured would be due to the scanner only, since the variability inherent of each subject would
be removed, since the subjects in each centre would be the same. This group could be used to calibrate the data, i.e, this
group would be used to establish a gold standard, to which all the centres would be compared and corrected. The gold
standard group would be an improvement of Regression models performance, but would be also an opportunity to test
different approaches of correction models.

On the other hand, the GPR results analysis is needed in order to prove the expectations detailed in Chapter 6, and
include also this method as a viable approach to correct the variability.

Finally, a mixed model should be useful to perform a more accurate correction. In this case, the model should start
with the Spatial Filtering method, in which a set of FWHM values would be tested until the one required to reduce the

variability until a certain value would be found. After that, in case of an accurate quantitative analysis of the images is
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required, the Regression models could be applied. This algorithm (Figure 8.1) would be able to increase the reliability of
the Multicentre studies.
In summary, this dissertation achieved the expected results, and the main goals established at the beginning of the

project have been concluded.

MULTICENTRE RAW DATA

QUANTIFICATION OF VARIABILITY

T Group Analysis: non parametric t-test IcC If the variability < threshold established Multicentre Corrected Data

B T T T LTI TTT TP TP

If the variability > threshold established :
v v

Qualititive Analysis Quatititive Analysis
Spatial filtering models Spatial filtering models

Regression Models

feesssssesseer Qutput: Corrected Data #sssssssseniandd

Figure 8.1 — Schematization of the mixed model to correct the variability.
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CP(M)
PT
CC(G)
CC(B)
cc(s)

CT(R)
CT(L)
L(MR)
L(ML)
CP(IR)
CP(IL)
CP(SR)
CP(SL)
CP(R)
CP(L)
IC(AR)
IC(AL)
IC(PR)
IC(PL)
IC(RR)

Appendix A

REGIONS OF INTEREST

A.1. WHITE MATTER REGIONS

The denomination R refers to right, and L denominates left.

Middle cerebellar peduncle
Pontine crossing tract

Genu of corpus callosum

Body of corpus callosum

Splenium of corpus callosum
Fornix column and body of fornix
Corticospinal tract R

Corticospinal tract L

Medial lemniscus R

Medial lemniscus L

Inferior cerebellar peduncle R
Inferior cerebellar peduncle L
Superior cerebellar peduncle R
Superior cerebellar peduncle L
Cerebral peduncle R

Cerebral peduncle L

Anterior limb of internal capsule R
Anterior limb of internal capsule L
Posterior limb of internal capsule R
Posterior limb of internal capsule L

Retrolenticular part of internal capsule R

15 Include optic radiation

IC(RL)
CR(AR)
CR(AL)
CR(SR)
CR(SL)
CR(PR)
CR(PL)
TR(PR)
TR(PL)
SS(R)
SS(L)
EC(R)
EC(L)
CG(R)
CG(L)
HC(R)
HC(L)
ST(R)
ST(L)
LF(SR)
LF(SL)

Appendix A: Regions of Interest

Retrolenticular part of internal capsule L
Anterior corona radiata R
Anterior corona radiata L
Superior corona radiata R
Superior corona radiata L
Posterior corona radiata R
Posterior corona radiata L
Posterior thalamic radiation®® R
Posterior thalamic radiation® L
Sagittal stratum®® R

Sagittal stratum® L

External capsule R

External capsule L

Cingulum (cingulate gyrus) R
Cingulum (cingulate gyrus) L
Cingulum (hippocampus) R
Cingulum (hippocampus) L
Fornix (cres) / Stria terminalis R
Fornix (cres) / Stria terminalis L
Superior longitudinal fasciculus R

Superior longitudinal fasciculus L

%|nclude inferior longitudinal fasciculus and inferior fronto-occipital fasciculus

Xcviii



FP

SFG
MFG
IFG (pt)
IFG (po)
PrecG
TP
STG(A)
STG(P)
MTG(A)
MTG(P)
MTG(T)
ITG(A)
ITG(P)
ITG(T)
PoscG
SPL
SMG(A)
SmG(P)
AG

A.2. GREY MATTER REGIONS

Frontal Pole

Insular Cortex

Superior Frontal Gyrus

Middle Frontal Gyrus,

Inferior Frontal Gyrus, pars triangularis
Inferior Frontal Gyrus, pars opercularis
Precentral Gyrus

Temporal pole

Superior Temporal Gyrus, anterior divison
Superior Temporal Gyrus, posterior division
Middle Temporal Gyrus, anterior division

Middle Temporal Gyrus, posterior division

Middle Temporal Gyrus, Temporooccipital part

Inferior Temporal Gyrus, anterior division

Inferior Temporal Gyrus, posterior division

Inferior Temporal Gyrus, temporooccipital part

Postcentral Gyrus

Superior parietal Lobule

Supramarginal Gyrus, anterior division
Supramarginal Gyrus, posterior division

Angular Gyrus

FMC
IXLC
ScC
PcG
CG(A)
CG(P)
pcC
cC
FObC
PhG(A)
PhG(P)
LG
TFC(A)
TFC(P)
TOFC
OFC
FOpC
COpC
POpC
PP
HsG

Appendix A: Regions of Interest

Frontal Medial Cortex

Juxtapositional Lobule Cortex

Subcallosal Cortex

Paracingulate Gyrus

Cingulate Gyrys, anterior division

Cingulate Gyrus, posterior division
Precuneous Cortex

Cuneal Cortex

Frontal Orbital Cortex

Parahippocampal Gyrus, anterior division
Parahippocampal Gyrus, posterior division
Lingual Gyrus

Temporal Fusiform Cortex, anterior division
Temporal Fusiform Cortex, posterior division
Temporal Occipital Fusiform Cortex
Occipital Fusiform Gyrus

Frontal Operculum Cortex

Central Opercular Cortex

Parietal Operculum Cortex

Planum Polare

Heschi's Gyrus
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Appendix B: Quantification of Variability

Appendix B

QUANTIFICATION OF VARIABILITY

B.1. VOXEL BASED ANALYSIS

AS mentioned in Chapter 4, colour maps to express the COV value obtained for each voxel were created. These colour
maps (Figure B.1-B.4), were obtained by the calculation of the intra-scanner variability, which can be compared across

scanners using these figures.
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Figure B.1 — Coefficient of Variation for FA maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each voxel, obtained for each Centre, is represented using a colour code: red-yellow.



Appendix B: Quantification of Variability

CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.2 — Coefficient of Variation for MD maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each voxel, obtained for each Centre, is represented using a colour code: red-yellow.

CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.3 — Coefficient of Variation for GM maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each voxel, obtained for each Centre, is represented using a colour code: red-yellow.
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CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.4 — Coefficient of Variation for WM maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which
a median value of COV for each voxel, obtained for each Centre, is represented using a colour code: red-yellow.

B.2. ROl ANALYSIS

The following figures (Figure B.5 —B.8) were obtained by the COV value for each ROI, which was translate in a colour

using a colour code red-yellow.

CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.5 — Coefficient of Variation for FA maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each ROI, obtained for each Centre, is represented using a colour code: red-yellow.
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CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.6 — Coefficient of Variation for MD maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each ROI, obtained for each Centre, is represented using a colour code: red-yellow.

CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.7 — Coefficient of Variation for GM maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each ROI, obtained for each Centre, is represented using a colour code: red-yellow.
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CENTRE 2: FINLAND CENTRE 1: CBU

CENTRE 3: WBIC

cov

Figure B.8 — Coefficient of Variation for MD maps. It is shown three different views (coronal, axial and sagittal) of the brain, in which a
median value of COV for each ROI, obtained for each Centre, is represented using a colour code: red-yellow.
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Appendix C

SPATIAL FILTERING MODEL

The Spatial Filtering Model was also tested for intra-centre correction. In this case, considering the lower number
of controls from each centre, it was not possible to proceed to the comparison of the results achieved for the controls
before and after correction. Instead, only an evaluation of how different the patients are when compared with baseline,
after and before correction, was done. With this in mind, the number of subjects significantly different of the baseline was
averaged, and a higher level of subjects significantly different are expected after correction, regarding the design of the
correction model applied.

The following images correspond to the results descripted above, for the four types of images tested.

Evaluation of Intra-centre correction - FA
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Figure C.1 — Number of Patients significantly different when compared with the baseline, for each ROI, before and after correction.
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Evaluation of Intra-centre correction - FA
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Figure C.2 — Number of Patients significantly different when compared with the baseline from centre 3, before and after correction.
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70
60
50

H | |‘||||I|||....‘|\I|||||\|| |

Number of Subjects

cza = Exﬁ“m“i“i5:%E%2%dmiﬁimimi“i“i“i%dﬁm“iEJ
v OO VF§ =Ll altTataxr 2Nl a2 Fn 00000 0FEFE2Z202 70 FF
AEEEEEE B R R L A L R EEEEEE R T
2
B Without Corrections Centre2: Finland B Correction Centre2: Finland

Figure C.3 — Number of Patients significantly different when compared with the baseline from centre 2, before and after correction.
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Figure C.4 — Number of Patients significantly different when compared with the baseline from centre 3, before and after correction.
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Evaluation of Intra-centre correction - GM
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Figure C.5 — Number of Patients significantly different when compared with the baseline from centre 2, before and after the two types
of corrections were applied.
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Figure C.6 — Number of Patients significantly different when compared with the baseline from centre 3, before and after the two types
of corrections were applied.
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Evaluation of Intra-centre correction - WM
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Figure C.7 — Number of Patients significantly different when compared with the baseline from centre 2, before and after the two types
of corrections were applied.
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Figure C.8 — Number of Patients significantly different when compared with the baseline from centre 3, before and after the two types
of corrections were applied.
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Appendix D

DT| DATA PRE-PROCESSING

In this earlier phase of the project, two groups of subjects were considered — Group A and Group B—which correspond
to data imaged by two different scanners, in different sites. The Group A is composed by 21 healthy subjects (13 males and
8 females, age 35.4 £ 11.2), and the scans were acquired on a 3T whole body MRI system (Magnetom TIM Trio, Siemens) in
Wolfson Brain Imaging Centre (WBIC) Addenbrooke’s Hospital, Cambridge. The Group B is composed of 21 healthy subjects
(12 males and 9 females), age 34.95 + 11.05, and the scans were also acquired on a Siemens Trio, but this time at the
Cognition and Brain Sciences Unit (CBU), Cambridge. The parameters adopted for MRI acquisition and the sequence details
can be found in Chapter 4.

These groups were used to determine the best pre-processing approach for the DTl data and extract the invariant

measures from the tensor.

D.1. PRE-PROCESSING AND EXTRACTION OF DTI MEASURES

Maps of DTl measures were estimated from the raw DW images. The measurements of diffusion anisotropy derived
from the diffusion tensor are quite sensitive to image noise and artefacts generated by different sources such as hardware
and sequence specifications (namely as eddy currents), and movement of subject during the scan (Alexander et al., 2008).
A typical artefact present in DTl is caused by eddy currents, due to long EPI readouts combined with strong diffusion-
sensitizing gradients. These artefacts are induced in conductive structures of the magnet bore by gradient switching and
their intensity variation depends on the magnitude and direction of the diffusion gradients (Rachel W. Chan, 2014). DTI
may be distorted and present artefacts, due to eddy currents and due to subjects” motion. In addition, magnetic field
inhomogeneity produces spatial distortions and artefacts such as ghosting, bulk object shifts and deformations, as well as
signal dropouts (Alexander et al., 2008; Rachel W. Chan, 2014).

These artefacts and distortions should be corrected before the extraction of DTl measures. The methodology applied
to correct for these artefacts consists on the

1. Spatial filtering of the DWI volumes;
2. Eddy current corrections;
Finally, after the correction of the DWI volumes, the FA and MD maps were extracted and a step of registration to

template was applied, in order to ensure that all subjects’ scans were aligned in the same space.
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Appendix D: DTl data pre-processing

Note that DWI data were pre-processed using the FMRIB Software Library v.5.0 (FSL v5.0) software. This software
consists of a comprehensive library of analysis tools for FMRI, MRI and DTI brain imaging data, developed by Analysis

Group, FMRIB, Oxford.

D.2.1. Spatial filtering of DWI volumes

As mentioned before, the noise present in DTl data introduce bias in the estimates of eigenvalues and, consequently,
affects FA and MD maps. Thus, to minimise the effects of noise, spatial filtering of raw DWI volumes was applied, (Figure
D.1), using a Gaussian kernel with FWHM=2mm. The result of this procedure is showed in Figure D.1, panel B. The FWHM
value was chosen considerering the size of the voxel (2 mm), in order to achieve the noise reduction without removing too

many relevant features of the scan.

Figure D.1 — In both panels a b0 volume is shown in the axial plane, visualized with a window of intensities [3; 1500]. Panel A shows
the b0 volume from one of the subjects without spatial filtering. Panel B shows the result of spatial filtering using smoothing by a
Gaussian kernel with FWHM=2mm.

D.2.2. Eddy current and motion corrections

As described above, an eddy current correction was performed using FSL, in particular using the function
eddy_correct. This function corrects the distortions created by eddy currents, as well as simple head motion, using affine
registration to a reference volume.

In this study, different approaches were performed for DTI data pre-processing, in order to evaluate which was the
best approach to reduce the variations across subjects due to the bias introduced by hardware specifications. Thus, three
variations of eddy current correction were performed, and for each approach a different reference volume was used:

o Approach A —the first bO volume which is not sensitive to diffusion direction, and was used as reference.
o Approach B—the median volume in each subject was used as reference. In this case it corresponds to volume
number 31 (designated as b31 from here).

o Approach C —the b0 volume was used as reference, after spatial filtering by smoothing.

CX



Appendix D: DTl data pre-processing

D.2.3. Extraction of DTl measures

As described in section 2.2.2, the maps of DTI measures are estimated from the diffusion tensor. Therefore, to obtain
the FA and MD maps, the FSL function dtifit was applied to estimate the diffusion tensor. This function fits a diffusion
tensor model at each voxel. The model used to estimate the tensor implemented by dtifit is a standard linear regression,
describe in detail in section 2.2.2 as linear least squares. This function requires as input the result of eddy current
correction, a binary mask of the brain, the b-values and the b-vectors which characterize the diffusion tensor. The binary
mask!’ is a single binarised volume in diffusion space containing ones inside the brain and zeroes outside the brain.

Bearing in mind the limitations of the linear model for diffusion tensor fitting (Ozcan, 2011), two different
methodologies for extraction of DTI measures were performed:

o Methodology 1: the linear method implemented in dtifit was applied,;

o Methodology 2: a non-linear fitting method was employed, using software developed in-house.

D.2.4. Registration

As mentioned before, DW images may be distorted and misregistered as result of many artefacts sources, such as
subject motion. Registration is used for motion correction, multi-modal fusion, mapping to Talairach space and many other
tasks (Jenkinson & Smith, 2001).

The procedure of registration implemented is composed by two steps: linear registration followed by non-linear
registration. The first step was implemented using the FLIRT function. The FLIRT function performs translations, rotations,
zooms and shears.

The second step is essential for inter-group comparison, in order to ensure the alignment of the images for all
subjects. The non-linear registration was implemented by the FNIRT function, also an FSL tool. This function modelled the
displacement fields as linear combinations of basis-functions, which may be the discrete Cosine transform (DCT) or cubic
B-splines placed on a regular grid. The registration is initialised and run to convergence with sub-sampled images, a field
of low resolution and a high regularisation weight. After that, the images from the first step are then up-sampled, the
regularisation modified and it is again run to convergence (Andersson et al., 2007).

Three registration options were compared, which differed in the template (also defined as common space) used as
target.

This first registration option uses an FA image from Laboratory of Brain Anatomical MRI, JHU,*® as template. The
second registration option calculated the transformations using the b0 volumes and a T2 image from JHU as common
space.

Finally, for ROl analyses using the white matter JHU atlas (REF), the inverse transformation was applied to the results

obtained with the second registration option, in order to “transport” each ROl into each subjects’ own space.

7 The binary mask was obtained using Brain Extraction Tool present in FSL. This function deletes non-brain tissue from an image
of the whole head. It can also estimate the inner and outer skull surfaces, and outer scalp surface, if you have good quality T1 and T2
input images.

18 Further information available in Mori et al (2005).
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The last type of registration described was only applied to the method using b0 as target.

A summary of all the methodologies applied for DTI processing data is showed in Figure D.2.

Reference Volume: b0 [YPTR—. :

Reference Volume: b31
DTIFIT LINEAR

Reference Volume:bo ¢ R
After applied smoathness o=2mm Registration: FA = FA template
,.______4 Registration: b0 = T2 template
f Registration: ROls - Subject space
Reference Volume: b0 LRI

Reference Volume: b31
DTIFIT Non LINEAR

Reference Volume: b0
After applied smoothness o=2mm

Figure D.2 — Summary of the different methodologies implemented to process the DTI data.

The procedure described was applied to the Group A data. The most efficient methodology to extract the DTI
measures was defined as the one which most decreases the variability between subjects, without removing the important
features of each scan. The evaluation of these methodologies is described in next the subsection. The Group B was used

to prove the conclusions achieved using the Group A.

D.2. QUANTIFICATION OF VARIABILITY INTRA- AND INTER-SCANNER

Description of the approaches implemented:

o Linear Model to tensor estimation (Figure D.3):

1

oW

o N oo U

Reference Volume

Reference Volume:
Reference Volume:
Reference Volume:
Reference Volume:
Reference Volume:
Reference Volume:

Reference Volume:

: b0; Registration: FA - FA template.

b31. Registration: FA = FA template.

b0; Smoothed dataset; Registration: FA - FA template.
bO; Registration: bO - T2 template.

b31; Registration: b0 = T2 template.

b0; Smoothed dataset; Registration: b0-> T2 template.

b0; Registration: ROl = Subject space.

o Non-linear Model to tensor estimation (Figure D.4):

1. Reference Volume: b0; Registration: FA - FA template.

2 Reference Volume: b0; Smoothed dataset; Registration: FA - FA template.
3 Reference Volume: b0O; Registration: bO - T2 template.

4. Reference Volume: b0; Smoothed dataset; Registration: bO—> T2 template.
5 Reference Volume: b0; Registration: ROl = Subject space.

b0; Smoothed dataset; Registration: ROI-> Subject space.
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Figure D.3 — Comparison between the different approaches implemented to DTI processing data.
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Figure D.4 - Comparison between the different approaches implemented to DTI processing data.

Analysing the results of Figure D.3 and Figure D.4, which express the average of the coefficient of variation for each
voxel in the brain, it was possible to conclude that approaches where the data was previously smoothed presented a lower
level of variability. However, the performance of these approaches was worse for voxels present in the boundaries of the
brain, near the skull. Besides, these approaches are also considered as a method for correcting the variability across
scanners, and this was analysed more carefully inChapter 5 and was not used as a pre-processing method. Therefore,
excluding the pipelines in which smoothing was applied to the data, the results presented in Figures D.3 and D.4 suggest
that the best approach to estimate DTI measures is to register FA maps to an FA template, using a non-linear model to
estimate the diffusion tensor (Figure D.4, Approach 1). In this particular case, the mean COV obtained was the lowest

compared to the other approaches tested, either for FA or MD maps.
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Appendix E

GUI FOR MULTICENTRE STUDY ANALYSIS

A Graphic User Interface (GUI) was created in order to make the application of the correction methods described in
this dissertation easier. Attending to the type of functions used in the context of medical imaging studies, such as SPM
functions, the algorithms to apply the methods described in Chapters 4, 5, 6 and 7 were developed in MATLAB™, thus, the
interface was also developed using the MATLAB™ tools. The following figures present the GUI and the main interactions
allowed between user and functions.

The Phase 4 —Statistical analysis —does not have a specific panel since this function remit the user to a non-parametric
permutation test, which is applied using the randomise function applied by FSL.

The images created by the functions of Multicentre Studies algorithm are saved as Nifty files (.nii) and can only be

opened using a supplementary software, such as FSL viewer.

; multicentre_functions -| X
Data Analysis

Multicentre Studies

Phase 1: Quantification of Wariation Intra- and Inter-centre ‘

Phase 2: Controls and Patients data processmeant ‘

Phase 3: Correction of variabily introduced by the scanner ‘

Phase 4: Statistical Analysis J

Figure E.1 — Main panel for the GUI of Multicentre study analysis. This panel is showed when the multicentre_fucntions.m is called in the
MATLABTM prompt. This panel allows the user to choose the type of analysis that will be performed. Note that each Phase runs
independently from the others. To select any function the user just needs to click on the correspondent button.
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Phase_l

Figure E.2 — This panel is showed when the Phase 1 function is chosen. In this panel the user can type the number of subjects in each
group and the number of centres (Al and A2). Besides, in this panel it is also possible to choose a selection of different types of MRI
images (DTI: FA, MD and MO or MPRAGE: GM and WM), or select only one (B). The type of analysis could also be specified with two
options: All Brain or Regions of Interest (C). Finally, the user can choose how the results are presented: plot (Figure E.3.), a MATLAB™
structure with the values calculated for each voxel or each ROI (or both), or an image of the brain in which the COV values are expressed
by a colour map (this type of presentation is shown in Appendix B) (D).

plot_phasel

Figure E.3 — This panel is shown to present the results of Phase 1 function. In this panel the user can choose to see the COV value for
each type MRI image in study, or for all measures in the same time, in order to obtain a comparison between measures (A). It is also
possible to compare two groups of subjects (Centre 1 vs Centre 2; Patients vs Controls) (B). In this panel, a summary of the analysis
performed for both groups is also presented (C).
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Figure E.4 — This panel is shown when the Phase 2 function is chosen. In this panel the user can type the number of subjects in each
group and the number of centres (Al and A2). Besides, in this panel it is also possible choose a selection of different types of MRI
images (DTI: FA, MD and MO or MPRAGE: GM and WM), or select only one (B). The type of analysis could also be specified with two
options: All Brain or Regions of Interest (C). Finally, the user can choose how the results are presented: plot (Figure E.5.), a MATLAB™
structure with the values achieved for each voxel or each ROI (or both (D). In this function it is also possible to compare different types
of data pre-processing.

ut smocthing ® pvalue

Figure E.5 — This panel is shown to present the results of Phase 2 function.
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[-)] Phase_3 I

Figure E.6 — This panel is shown when the Phase 3 function is chosen. In this panel the user can type the number of subjects in each
group (A). Besides, in this panel it is also possible choose a selection of different types of MRI images (DTI: FA, MD and MO or MPRAGE:
GM and WM), or select only one (C). The type of analysis could also be specified with two options: Intra or Inter-centre (B). Finally, the
user can choose the type of algorithm applied in the correction method — OLS or GPR (E). On the other hand, the design matrix can be
constructed using a tool called by function Phase_3 (a different panel will be shown in which the user can specify the values for each
covariate defined), or these can be loaded as .txt file or as a MATLAB™ structure (D).
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