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ABSTRACT 
 

Zinc oxide (ZnO) nanostructures were synthesised for gas sensing application. In an attempt to 

improve the surface area and the electrical conductivity of the ZnO, nanomaterials such as the 

carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were used separately to produce 

CNTs/ZnO and Au/ZnO nanocomposites, respectively. The addition of these nanomaterials 

onto the ZnO nanostructures significantly improved the gas sensing properties such as the 

sensitivity and response time. Synthesis of gold nanoparticles was successfully achieved via 

gold salt (HAuCl4.3H2O) reduction using the Turkevich method. Citrate molecules were used 

as the stabiliser and to systematically control the sizes of the AuNPs. The sizes of AuNPs were 

found to increase from 14 nm to 40 nm when the concentration of citrate ions was reduced 

from 1 mM to 0.3 mM. The size distribution of AuNPs was relatively wider as the particle size 

increased. The synthesized AuNPs were stable for over a period of 4 weeks. 

Carbon nanotubes synthesis was achieved using chemical vapour deposition (CVD) method 

using acetylene gas as the carbon source and ferrocene as the catalyst. An increase in the 

flowrate of the precursor gas (acetylene) yielded an increase in amorphous carbon, which was 

attached to the walls of the carbon nanotubes. The optimum flowrate of acetylene was found 

to be 150 m3/min that yielded CNTs with an average diameter of 95 nm and a relatively narrow 

size distribution.    

The hydrothermal chemical precipitation method was used to synthesise ZnO nanostructures. 

Zinc sulphate (ZnSO4) and sodium hydroxide (NaOH) were used as a metal precursor and 

reducing agent, respectively. The NaOH concentration of 0.3 M yielded ZnO nanosheets with 

relatively the highest surface area of 102 m2/g. Gas sensing analysis was conducted using 

carbon monoxide (CO) gas at 250°C. The sensitivity and response time were calculated to be 

9.8% and 114 seconds, respectively, at a CO concentration of 200 ppm. 

The composites CNTs/ZnO and Au/ZnO were prepared, separately. The average surface area 

of the Au/ZnO composite was 131 m2/g and that of CNTs/ZnO composite was 153 m2/g. The 

CNTs/ZnO composite showed an optimum sensitivity of 9.9% and the response time of 49 

seconds when exposed to 200 ppm of CO gas at 250°C. 
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CHAPTER 1 

1.0 General Introduction 

In recent years, there has been a considerable increase in the attention of nanomaterials with 

gas sensing capabilities, with the number of publications almost doubling every 2 to 3 years. 

This interest is due to undesired high response time and high operating temperatures 

experienced by most conventional gas sensing materials such as polymer thin films [1-2]. 

Furthermore, there is a growing need for accurate, reliable, low cost and portable gas sensors 

to enhance the safety of living organisms against toxic gases in industries and households [1-

3]. Toxic gases can be emitted from industries such as the mining industry. Some households 

use natural gases which requires environmental monitoring. In recent years, the concentration 

of gases in the atmosphere has increased dramatically mainly due to urbanisation, which has 

increased the combustion of fossil fuels [3-6]. The combustion of fossil fuels drastically 

increases emissions of toxic gases such as; ammonia (NH3), hydrogen sulphide (H2S) and 

carbon monoxide (CO). The combustion of fossil fuels often releases mixed gases at low 

concentrations which increases the need for a highly sensitive and selective gas sensing 

materials [7].  

There are various gas sensors which have been used to combat the increased emissions of toxic 

gases based on different sensing mechanisms such as optic, electrical variation, acoustic, gas 

chromatography (GC) and calorimetric methods [8]. These sensing mechanisms can be 

employed in different gas sensors such as electrochemical, polymer, surface acoustic wave 

(SAW), thermal conductive, solid electrolyte, carbon nanomaterials and semiconductor metal 

oxides (SMOs), each with a different functionality [11-12]. The effectiveness of each sensor 

depends on the efficiency and ability to discriminate between small concentrations (sensitivity) 

of different gases (selectivity) [8-9]. However, the performance of gas sensors can also be 

measured by parameters such as response time, recovery time and stability [10]. 

Nanomaterials have gained greater interest because of their unique properties such as electrical 

conductivity, high surface area, high mechanical strength, relatively wide bandgap and high 

surface area to volume ratio, hence the high number binding sites for gas molecules. The 

relatively high electrical conductivity and wide bandgap of nanomaterials make them ideal for 

gas sensing applications [1, 11].  
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The commonly used gas sensing nanomaterials are the SMOs such as Tin dioxide (SnO2) and 

carbon-based materials such as carbon nanotubes (CNTs) because their electrical 

conductivities are easily changed when gas molecules are attached on their surfaces. The SMOs 

(ZnO, SnO2, Titanium dioxide (TiO2)) are ideal for gas sensing because of their properties such 

as high surface area, high electrical conductivity, bandgap of around 3.4 eV, low cost and 

stability [5,12]. The SMOs mechanism to detect gases is based on the change of electrical 

conductivity which changes due to interaction with surrounding gases. 

The SMOs are divided into two groups which are; SMOs which follow bulk conductance and 

SMOs which follow surface conductance effects. SMOs that follow bulk conductance operates 

at high temperature (>700ºC) and some of the examples are TiO2, Cerium (IV) oxide (CeO2) 

and Niobium pentoxide (Nb2O5) because they respond to the changes in environmental oxygen 

partial pressure [12]. The second group of SMOs perform gas sensing at temperatures ranging 

from 300ºC to 600ºC, with examples being SnO2 and ZnO [13-15]. Often the SMOs are doped 

with metals or small elements such as carbon (C) and sulphur (S), noble metals such as gold 

(Au), silver (Ag) and palladium (Pd) to enhance their gas sensing performance [16]. This 

surface modification by noble metals increases the electrical variation of the SMOs, therefore, 

provide a potential of improving gas sensing parameters such as response time, recovery time 

and sensitivity [16].  

ZnO is a multifunctional SMO due to its unique properties. Gas sensors based on ZnO materials 

have numerous advantages such as low cost, high sensitivity and improved life span. ZnO can 

be synthesised in different morphologies, which affects gas sensing performance [6, 14, 16]. 

Previously ZnO has been incorporated with metal nanoparticles such as AuNPs, Pt, Ag and 

carbon-based materials to improve their gas adsorption, hence improving their gas sensing 

performance [17-19]. 

CNTs have also been investigated for gas detection by various researchers because of unique 

properties such as geometry and morphology [20].  Electrical properties and morphology of 

CNTs are altered upon contact with some gases which makes CNTs a suitable material for gas 

sensing [20-23]. The CNTs are sensitive to gases such as NO3 and NH3 because of the change 

in electrical conductivity of the CNTs as a result of gas adsorption on the surface [9, 16, 23]. 

Furthermore, properties such as high surface area and high aspect ratio enable the CNTs to 

detect smaller concentration (sensitivity) of gas molecules as compared to other gas sensing 
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materials [24]. Currently, there are different gas sensors based on CNTs such as sorption gas 

sensors, ionisation gas sensors, capacitance gas sensors and resonance shift gas sensors [20]. 

1.1 Problem Statement  

Industrial gas emissions are often harmful to living organisms and the surrounding atmosphere. 

Some of these gases such as CO are toxic, odourless and colourless, these characteristics make 

these gases highly harmful to living organisms. Hence there is a need to develop gas sensing 

materials that can be able to selectively detect gases at low concentrations and subsequently 

respond timeously [24-26]. Nanostructures of different shapes have been reported to have an 

effect on gas sensing parameters such as selectivity, sensitivity and response time [16-17]. ZnO 

has been reported to have disadvantages of being unstable at higher temperatures and have high 

response times. To address this issue, ZnO with different morphologies will be synthesised. 

Additives such as AuNPs and CNTs will be added to the ZnO, which has the potential to 

increase electrical conductivity and surface area, potentially improving the sensing 

performance [27-28]. 

1.2 Aim and Objectives   

The aim of the study is to investigate the effect of AuNPs and CNTs as additives to ZnO on 

gas sensing performance.  

Objectives are as follows: 

 To synthesize ZnO nanomaterials using a hydrothermal method.    

 To investigate the chemical, structural and physical properties of the ZnO using 

characterization techniques such as XRD, BET, UV-Vis, FTIR and Raman. 

 To make two composites of ZnO with CNTs and ZnO with AuNPs.  

 To investigate the interaction of the CNTs and AuNPs with the ZnO using transmission 

electron microscopy. 

 To determine the gas sensing performance of pristine ZnO and the composites. 
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1.3 Thesis Outline  

Chapter 1 outlines the background of the study which includes the problem statement, the aim 

and the objectives to achieve the aim. Chapter 2 covers the literature review of semiconductor 

metal oxides and their gas sensing performances, carbon-based materials and metal 

nanoparticles. In-depth explanations of the characterisation techniques are covered in Chapter 

3. Chapter 4 explains the synthesis and characterisation of gold nanoparticles (AuNPs) and 

carbon nanotubes (CNTs) additives. The synthesis and characterisation of ZnO and its gas 

sensing performance in terms of sensitivity and response time are explained in Chapter 5. The 

synthesis of the Au/ZnO and CNT/ZnO composites and their gas sensing performance was 

compared to that of pure ZnO and is discussed in Chapter 6. Chapter 7 covers the general 

conclusions and recommendations.  
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CHAPTER 2 

2.0 Literature Review 

2.1 Introduction 

The detection and monitoring of toxic gases in the mines and atmosphere is important for life 

preservation and environmental safeguard. Reliable and portable gas sensors are in demand 

because of their wide applications in industries and for indoor air quality [1-2]. A gas sensor 

that is highly sensitive and selective is ideal and this has led to a search for suitable materials. 

SMOs are the most investigated gas sensing material because they offer high surface area to 

volume ratio, hence the high number of gas binding sites which are both important for gas 

adsorption and subsequently detection [1-3]. Most studies have focused on detection of gases 

such as CO2, CO, SO2, O3, O2, H2 and organic vapours because of their toxicity in the 

atmosphere which affects humans and are found in high levels in the atmosphere [2-3]. Current 

disadvantages of commercial gas sensors are high operating temperatures and high response 

times [3-4].  

2.2 Background  

A gas sensor is a device that can be used to quantify and detect different types of gases in the 

atmosphere, an example is environmental monitoring. The development of a gas sensor is 

promoted by the increasing need to test the levels of toxic gases during daily activities either 

in households or the workplace. These sensors can be made from different materials such as 

SMOs and CNTs. Dey et al [1] and other researchers defined a gas/chemical sensor as a device 

that translates chemical data into an analytical signal [5-7]. Gas/chemical also provides 

important information about the composition of the gases in the environment [7-8]. They 

contain a physical transducer and a chemically selective layer. There are several transducer 

modes that can be incorporated into gas sensors such as thermal, optical and electrochemical.  

The output of the gas sensors is measured by the change in electrical resistance [9]. A gas 

sensor consists of two main components which are; the receptor part which transforms the 

chemical information into electrical energy and the physical transducer which converts the 

electrical energy into a signal [8-10].  

There are different types of gas sensors made from nanomaterials including carbon 

nanomaterials and SMOs which are; capacitance sensors, mass sensitivity sensors, calorimetric 

sensors and solid-state ionic sensors. However, the most commercially used gas sensors are 

optical, electrochemical and chemi-resistive [10-13]. Optical gas sensors have exhibited 
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desirable characteristics such as high sensitivity and selectivity. However, they are expensive 

to fabricate which limits their applications [14]. The electrochemical sensors have low stability 

which also limits its application.  The most commercially available gas sensors are the chemi-

resistive, despite their disadvantages of low selectivity and relatively high response times [12-

15].  

2.2.1 Chemi-resistive Sensors  

The chemi-resistive sensors have gained more interest in the past decades because of their 

properties such as low operational cost, smaller size (potable) and low cost of fabrication [16-

18]. The chemi-resistive gas sensors operate based on electrical resistance variation that is 

caused by the reaction between the sensing material and the gas molecules. These types of gas 

sensors have the potential to be applied in different applications such as environmental 

monitoring, and space emissions transportation. [18]. Chemi-resistive sensors have been used 

to monitor different gases such as NH3, NO2, NO, H2S, Cl2 and CO, using different types of 

nanomaterials such as SMOs, carbon-based materials and hybrid materials [6, 18-20]. Among 

these materials, the SMOs present a good opportunity for use in the chemi-resistive gas sensors, 

however, it has disadvantages such as high operational temperature. This limits its application 

at room temperature environment and also decreases the stability of the sensor in terms of life 

span. The use of SMOs based gas sensor in sensing of gas and vapour with a low boiling point 

can cause a fire when it comes in contact with the SMOs hot surface [21-23]. Working at low 

temperatures for a gas sensor is more desirable in a work-place.  

2.2.2 Characteristics of a Gas Sensor  

The performance of a gas sensor is measured in terms of different characteristics such as 

selectivity, sensitivity, response time, recovery time, stability and detection limit [13-15].   

Selectivity is defined as the capability of a gas sensor to detect a specific gas in the presence 

of other gases. An example is CO gas sensor which does not show response to other gases like 

CO2 [13]. Selectivity can be expressed in terms of gas of interest over other gases, as shown in 

Equation 2.1.  

𝒔𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠𝐴

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠𝐵
… … … … … . . (2.1) 

Sensitivity can be explained as the lowest gas concentration that a certain gas sensor can detect 

at a given time. It can be expressed as Rg /Ra for reducing gases and Ra/ Rg for oxidizing gases 

where Ra stands for the resistance of a gas sensor in the reference gas, which is commonly air 
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and Rg is resistance of a gas sensor in the presence of a target gas [11], and the overall 

sensitivity is expressed in Equation 2.2. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = [
𝑅𝑎 − 𝑅𝑔

𝑅𝑎
] × 100 … … … … … … . (2.2) 

Response time is defined as the time it takes for a gas sensor to generate a corresponding signal 

after the gas concentration reached a specific value [1]. Recovery time, also referred to as 

settling time is defined as the time taken by the signal of the sensor to return to its initial value 

within a certain percentage of the steady-state value [23]. Stability is defined as the ability of a 

sensor to reproduce the same output value when measuring the same input over a certain period. 

This involves maintaining the sensor selectivity, sensitivity and response time [22-23]. The 

detection limit is defined as the lowest gas concentration that can be detected by the sensors 

under a given temperature. The detection limit is shown in Equation 2.3 [21-23]. The 𝑛𝑜𝑖𝑠𝑒𝑟𝑚𝑠 

(Equation 2.3) is determined by calculating the sensor noise in the gas response at baseline 

using the root mean square deviations (rms) and the slope is the first derivative of the response 

versus gas concentration graph [24-25].  

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 = 3 [
𝑛𝑜𝑖𝑠𝑒𝑟𝑚𝑠

𝑠𝑙𝑜𝑝𝑒
] … … … … … … … … … . (2.3) 

2.2.3 Nanomaterials  

Nanomaterials are defined as materials which have at least one dimension with a diameter of 

less than 100 nm. Nanomaterials have high surface areas. Their properties are altered and 

enhanced at a nanoscale, this increases their application in different fields such as water 

treatment, gas sensing and the energy sector [1]. Other properties include relatively high 

electrical conductivity and small bandgap, making them suitable for gas sensing [21].  There 

are different types of nanomaterials such as SMOs and carbon-based like carbon nanotubes 

(CNTs) that have been used successfully for gas sensing applications.  

2.2.4 Semiconductor Metal Oxide (SMOs) 

SMOs embody properties such as electrical conductivity, avarage bandgap and high surface 

area which are ideal for a gas sensor [31-32]. The SMOs are used widely to detect gases because 

of their low cost of production and reliability. There are different types of SMOs such as ZnO, 

SnO2, TiO2 and WO2 which have been used as gas sensing nanomaterials [32]. The mechanism 

of SMOs to detect gases is based on the change in electrical conductivity which changes due 

to interaction with surrounding gases.  
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SMOs as gas sensing material provides numerous advantages as compared to other 

nanomaterials such as low cost. The SMOs are classified into two groups, which are transition 

and non-transition metal oxides. The transition metals oxides contain multiple oxidation states, 

some examples are Fe3O4 and Cr2O3 [32]. The non-transition are metal contains one oxidation 

state, such as ZnO, SnO2 and Al2O3. Transition metals oxides could form different oxidation 

states on the surface, which enables the SMOs to be a more suitable gas sensing material [32].  

There are several factors that affect the sensitivity of the SMOs, such as the microstructure, 

porosity and dopants [11, 32]. The sensitivity of the sensor can be improved by manipulating 

the microstructure of the SMOs such as grain size. SMOs with relatively high surface area and 

porosity exhibit increased gas sensitivity [30].  Addition of dopants such as Au and Pd can also 

be used to improve the sensitivity of the SMOs nanomaterials for gas sensing [33]. Gases can 

be classified as either reducing or oxidising gases and SMOs can be classified as p-type and n-

type. The n-type metal oxides have been reported to show an increase in resistance in the 

presence of an oxidising gas and a decrease in resistance in the presence of a reducing gas, 

however, the p-typed shows an increase in the electrical resistance when exposed to a reducing 

gas [26]. 

2.2.4.1 Zinc oxide (ZnO) 

Amongst SMOs, ZnO possesses superior physical and chemical properties such as high photo 

stability, high electrocoupling effect, and high chemical stability [34-38].  Zinc oxide is a 

unique group Ⅱ-Ⅵ SMO whose covalence is on the boundary between the covalent and ionic 

semiconductor metal oxide with a bandgap of approximately 3.4 eV [36-40]. ZnO has a 

wurtzite hexagonal structure with lattice parameters a=0.3296 nm and c=05265 nm [40-44]. 

The structure of ZnO can be described as several alternating planes composed of tetrahedrally 

coordinated O2- and Zn2+ ions stacked together [44-45].  ZnO can be synthesised to different 

structures such as one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) 

nanostructures.  1D consists of structures such as nano-rods, nano-rings, nano-combs, nano-

helixes, nano-wires, nano-combs, nano-belts, nano-combs and nano-needles. 2D consists of 

structures such as the nano-pallets and nanoplates. 3D structures of ZnO include snowflakes, 

coniferous urchin-like and flower-like. These different structures allow ZnO to be 

multifunctional [45-50].   

ZnO is non-toxic and easy to synthesise in bulk. ZnO is an ideal chemi-resistive material for 

gas sensing because of properties such as photoelectric response. ZnO has also been reported 

to have excellent chemical and high thermal stability [48-52]. Other researchers have 
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established that the ZnO has a binding energy of 60 meV band. When the ZnO surface becomes 

exposed to oxygen in ambient conditions, the resistance of a gas sensor can relatively be 

increased by the formation of depletion layers due to the trapping of electrons in the conduction 

[50-54]. When a reducing gas interacts with the surface of the ZnO, the oxygen species interact 

with the gas molecules thereby releasing the fixed electrons back to the conduction band, 

making the resistance of the sensor to decrease. On the contrary, exposure to oxidising gases 

such as NO2 which act as an electron acceptor has been reported to increase the sensor’s 

resistance [54-56].  

Another factor in gas sensing using ZnO material is the effect of temperature. The temperature 

affects the kinetics, electron mobility and conductivity of the reaction.  A typical ZnO material 

operates at a temperature range of 300-500ºC. This is due to the high thermal energy needed to 

overcome the activation energy needed to excite the electrons mobility. The reaction kinetics 

are also increased which improve sensing measurement [56-60].  High operating temperatures 

is one of the drawbacks as it requires more energy to operate. High temperatures also cause 

instability in the material leading to unreliable results. Furthermore, a gas explosion can happen 

as a result of flammable gases with low ignition point in standard atmosphere [60-63].  

The morphology of the nanostructured ZnO affects the operating temperature, response time, 

selectivity, sensitivity, recovery time and stability [64]. Different dimensions and structures are 

synthesised using optimised conditions on different methods. 1D ZnO structures possess high 

conductivity, and high electron mobility promoting an improved separation of electrons and 

holes thereby decreasing the electrical resistance of ZnO [46, 65-66]. The effective separation 

makes the absorbed oxygen species to be easily created; this is due to the reaction between the 

surface and absorbed oxygen molecules [65-69]. Different morphologies have been 

investigated by different researchers, Shingange et al. [70] synthesised rose-like ZnO 

nanostructures using a microwave hydrothermal method. The synthesised structures showed 

an improved response time and recovery time to NO2 at 300ºC.  Furthermore, the incorporation 

of Au into ZnO nanostructures significantly improved the sensing performance. Venkatesh et 

al [71] reported response time of 49 seconds and a recovery time of 19 seconds at 25 ppm NH3 

at 25⁰ C [73-74]. This improved performance was attributed to defects site caused by the 

oxygen vacancies [71]. Motaung et al [74] synthesised ZnO nanostructures at different times 

of 12 h, 24 h and 72 h, the results showed improved sensitivity and selectivity on NO2 gas at 

24 h and 72 h, which proved a change in morphology at different synthesis times.   
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2.2.5 Carbon Nanotubes  

There are different carbon-based materials such as graphite, fullerene, mesoporous carbon, 

carbon nanotubes (CNTs) and activated carbon. CNTs received a lot of attention in the past 

decade due to their unique properties such as electrical properties and higher surface area. 

CNTs consist of carbon atoms with a diameter measured in nanometers [7]. Since it was 

discovered by Iijima in 1991 [75], more studies have been initiated mainly due to their multiple 

applications. CNTs can either be metallic or semiconducting depending on the configuration. 

CNTs can also be used to increase the performance of gas sensors. The choice of CNTs in this 

study was based on their high electrical conductivity, high surface area and high insulation 

capabilities [5]. They can be multi-walled (MWCNTs) or single-walled (SWCNTs) depending 

on the number of rolled graphene sheets [76]. Single-walled CNTs consists of one layer of 

rolled graphene sheet with a diameter of 1 nanometer and tube length of thousands of times the 

diameter and it is depicted in Figure 2.1 (a) [77]. Multi-walled CNTs consist of several rolled 

layers of graphene sheets forming a tube shape as shown in Figure 2.1 (b) [77]. The chemical 

or physical properties of CNTs can be controlled by the synthesis method used to synthesize 

them. CNTs synthesis method includes arch discharge, chemical vapour deposition (CVD) and 

laser ablation [78-80]. 

 

Figure 2.1: Depicts two different types of carbon nanotubes which are a) SWCNTs and b) 

MWCNTs [77] 

2.2.5.1 Chemical Vapour Deposition (CVD) 

CVD is the most studied and used method for the synthesis of CNTs. It is mostly used for mass 

production of different types of CNTs [78]. Currently, this method has been used to produce 
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controlled CNTs. CVD uses hydrocarbon gaseous carbon sources such as methane, toluene and 

acetylene. CVD uses transitional metal catalysts such as Ni, Co and ferrocene to promote the 

growth of CNTs [78-80].  CVD operates at a temperature range of 600⁰ C - 1200⁰ C [80].  

Kumar et al [81], studied the synthesis of CNTs using CVD and concluded that there are two 

main things that affect the type of CNTs produced namely temperature and catalyst particle 

size. Lower temperature with smaller particles size catalyst mainly produces multi-walled 

CNTs. The disadvantages of this method are that it produces more amorphous carbon, as 

compared to other methods [82]. The amorphous carbons affect the electrical conductivity and 

the thermal characteristics of the CNTs [83]. An example of the CVD set up is depicted in 

Figure 2.2. [81] 

 

Figure 2.2: Schematic diagram of the CVD [81] 

2.2.5.2 Arc Discharge  

The arc discharge technique involves creating direct current (DC) between the graphite 

electrodes under inert conditions (e.g. argon) [84]. It was the first method to produce CNTs 

using two graphene electrodes. The technique produces MWCNTs without the use of a catalyst 

while the production of SWCNTs requires mixed metal catalyst such as Ni and Co [84-86]. 

The produced CNTs have a high degree of structural perfection and it is controlled by the 

temperature of the chamber and concentration of the catalyst [87]. Other electrodes and 

chemicals have been investigated also for the production of CNTs using arc discharge method 

[88]. A schematic diagram of the arc discharge is shown in Figure 2.3 [77] 
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Figure 2.3: Schematic diagram of arc discharge [77] 

2.2.5.3 Laser Ablation  

The laser ablation technique involved the use of solid graphite mounted in the quartz boat that 

is placed inside the quartz tube at a high temperature of 600-1500⁰ C [89]. The high 

temperatures vapourize the solid graphite by a laser beam pulse and the vapourized carbon-

based soot is collected in the walls of the quartz tube [89-90]. The high synthesis temperature 

makes the produced CNTs to be structurally perfect, however, the use of high temperatures 

requires high power while producing small quantities which are the main disadvantages of 

using laser ablation [91-92]. The chemical composition of the precursor and the laser power 

are the main variables that affect the quantity and type of the CNTs [92].  The schematic 

diagram of the laser ablation technique for the synthesis of CNTs is shown in Figure 2.4 [77] 
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Figure 2.4: Schematic diagram of the laser ablation technique [77] 

2.2.5.4 Growth Mechanisms of CNTs  

Different researchers have investigated the growth mechanism of CNTs, however, the most 

popular growth mechanisms of CNTs from the CVD technique are the tip-growth model and 

base-growth model [81]. The reaction conditions and post reaction analysis determine the 

growth mechanism. However, a general CNTs growth mechanism is outlined as follows [93]. 

Hydrocarbon gas comes in contact with a hot metal catalyst, the hydrocarbon decomposes into 

hydrogen and carbon; Hydrogen gas goes out of the system and the carbon gets dissolved in 

the catalyst. Then after it reached the carbon solubility limit, the dissolved carbon precipitates 

out in the form of cylindrical sheets which are energetically stable [81, 77, 90].  

The tip-growth model occurs when the carbon source gas is introduced on top of the metal 

catalyst [81], the carbon passes down through the metal catalyst and the CNTs grows from the 

bottom pushing the catalyst up from the substrate, as depicted in Figure 2.5 (a) [81], The CNTs 

continues to grow until the metal is completely covered with extra carbon and the CNTs growth 

stops.  

The other mechanism is the base-growth model. The decomposition of hydrocarbons takes 

place same as the tip-growth model [81], however, the precipitation of CNTs fails to push the 

metal catalyst particle up, which in turn causes the CNTs to grow from the apex of the metal 

[94]. As depicted in Figure 2.5 (b) the carbon forms out as hemispherical which extends up. 

The hydrocarbons deposition happens on the lower sides of the metal catalyst surface, as the 

carbon diffuses upward resulting in the CNTs growing with the metal catalyst rooted in its base 

[81]. 
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Figure 2.5: Growth mechanism of CNTs are depicted in a) tip-growth model and b) base-

growth model [81] 

2.2.5.5 Properties of CNTs (Electrical and Chemical Properties) 

CNTs are applicable in different fields due to their unique properties. The main properties are 

electrical and chemical properties [80]. The electrical properties are one of the most researched 

properties offered by CNTs. The electrical properties can be explained in terms of the band 

structure of graphene [95]. The electrical properties can vary from metallic to semiconducting 

depending on the configuration (zigzag or chiral) [95]. As discussed earlier, CNTs are formed 

by rolled graphene sheets. As shown in Figure 2.6 (A), at k-points (fermi points) of the 

graphene sheets the conduction and valence bands are connecting resulting in a zero-bandgap, 

hence graphene is a zero-bandgap semiconductor [95-97]. However, as shown in Figure 2.6 

(B), for carbon nanotubes each band formed from graphene known as the graphitic bands, 

opens up to form sub-bands, this is due to the accumulation of electrons in the radial direction 

[96]. When these graphitic sub-bands pass through the fermi points, the CNTs are metallic. 

However, if the sub-bands do not pass the fermi point as shown in Figure 2.6 (C), then the 

CNTs are semiconducting [98]. The direction of the rolled graphene sheets decides the 

formation of the CNT. The CNTs can either be armchair, zigzag or chiral [100]. Some of the 

CNTs form around the axis of symmetry, which results in chiral shaped CNTs. During the 
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synthesis of CNTs defects occurs on the produced CNTs. The presence of these structural 

defects such as vacancies, stone-wales and pentagon-heptagon pairs enhances the chemical 

reactivity of the CNTs [99-100]. The CNTs with defects absorbs gas molecules easily and can 

be functionalized easily [95] 

 

 

Figure 2.6: 3-D plots for the dispersion relations of a) graphene b) metallic CNTs and c) 

semiconducting CNTs [96] 

2.2.5.6 Functionalization of CNTs  

CNTs present good properties, however, functionalized CNTs exhibit properties which have 

potential in gas sensors due to functional groups which have been attached on the surface of 

the CNTs and are highly reactive and absorbs gas molecules [100]. There are different routes 

used to functionalize the CNTs such as physical functionalization via milling, ultra-sonication 

and friction, however, the most used route is the chemical route as it exploits the reactive 

properties of CNTs [101].  CNTs are hydrophobic in nature, this is due to van der Waal forces. 

During synthesis, there is amorphous carbon that is formed making CNTs insoluble in chemical 

solvents [103]. The functional groups determine the characteristics properties of CNTs and 

enhance the reactions between the CNTs and molecules [105]. The commonly used functional 

groups are carboxyl (-COOH), hydroxyl (-OH) and carbonyl (-C=O) [104-106]. Attaching 

these groups into the CNTs follows the covalent bond whereby acids are used. Nitric acid 

(HNO3) and 5M diluted Sulfuric acid (H2SO4) with a ratio of 1:3 are usually used to 

functionalize the CNTs [100]. Functionalizing with acid allows for the conjugation of other 

materials in CNTs, makes the CNTs to be hydrophilic, improve homogeneous dispersion, 

remove impurities and introduces more binding sites for gas molecules [100, 106].  
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2.2.5.7 CNTs in Gas Sensing  

 CNTs have been applied in gas sensing using different methods. Avouris et al [99] synthesized 

electrodes by casting CNTs on interdigitated electrodes. The usually used CNTs are single-

walled CNTs because they are semiconductors as compared to multi-walled CNTs which are 

mostly conducting [100]. The electrodes were synthesized using photolithography of Ti and 

Au in silicon oxide. The SWCNTs were prepared by dispersing in dimethylformamide and then 

deposited in the electrode. Another method used is dielectrophoresis (DEP) [103]. DEP method 

has been used to manipulate the CNTs in terms of orientation and separation. The DEP-

synthesized CNTs sensors successfully detected gases such as SO2 and NH3 [104]. 

2.2.5.8 CNTs and Semiconductor metal oxides  

Semiconductor Metal oxides incorporated with CNTs have been reported in the literature. 

There are two main methods used in making the composite, namely in-situ and ex-situ [107].  

The in situ method involves synthesising CNTs within the same process with metal oxide. In 

this method, one of the constituents that make up the composite is synthesised in the presence 

of another or they can also be synthesised simultaneously in one process [107-108]. The main 

advantage of this method is that one constituent can become support material, same with the 

synthesis of CNTs and SMOs whereby the CNTs can act as a support and the SMO can settle 

on top [109].  The ex-situ method involves the decoration of CNTs by metal oxide after the 

synthesis of CNTs. In this method, the constituent that makes up the composites are synthesised 

separately with their desired shape and dimensions, and CNTs can also be functionalised [107, 

109]. After they have been synthesised, they link together through van der Waals forces, 

covalent bonding, electrostatic forces, hydrogen bonds and hydrophobic interaction [110]. The 

main draw-back of this method is that the distribution of nanoparticles depends on the 

functional groups introduced in the CNTs. However, the advantage of this method is that it is 

easy to control the shapes and dimensions of individual constituents [107, 109].  

Depending on which material is in larger quantity, the composites can be divided into two, 

there is CNTs decorated with SMO and SMO decorated with CNTs [107, 110]. MWCNTs are 

a stable p-type semiconductor making it appropriate for gas sensing applications [111]. The 

primary reason to decorate SMOs with CNTs is to enhance the gas sensing properties of SMOs 

hence it is important to choose a suitable SMO for making the composite [112-114]. Making a 

composite of MWCNTs with n-type SMO is more desirable [113]. This is because the 

formation of p-n type heterojunctions via surface decoration is an effective method to improve 

the gas sensing performance of SMOs [112]. For the p-type MWCNTs, the transfer of charge 
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carriers is through the low resistance hole accumulation layer, and through the formation of p-

n heterojunctions the charge transfer path is stifled by the flow of electrons from the SMO to 

the MWCNTs resulting in the decrease in width of the charge carrier path [109, 114-115].  

2.2.6 Gas Sensing Mechanism for SMOs 

The fundamental mechanism of gas sensing has been reported in several published research 

[11, 23-28]. The atoms of the molecules interact with SMOs surfaces, subsequently changing 

the surface conductivity. The conductivity of ZnO can be altered by the presence of traces of 

reactive gases present in the air [28-30]. The interaction of gas molecules and the SMOs can 

either be physical (physisorption) or chemical (chemisorption).  Chemisorption includes the 

reduction and oxidation of the metal oxide leading to a formation of new chemical bonds. 

Physisorption is due to weak Van der Waals forces between the SMOs and gas molecules [2].   

The electrical conductivity variation of the sensor is caused by the trapping of electrons by 

absorbed molecules usually from environmental oxygen [26]. When the oxygen molecules are 

absorbed on to the metal oxide surface, they extract and trap the electron thereby leaving an 

electron depleted region (Figure 2.7) [26-30]. The reaction of the oxygen species with a 

reducing gas and the exchange of adsorbed oxygen species with other molecules decreases 

band bending thereby increasing the conductivity [11, 26]. The oxygen species is more present 

at the temperatures of 300-450ºC, which is the operating temperature of most SMOs for gas 

sensing.  

 

Figure 2.7: Depicts a  chemisorption of charged species, where Ec is energy of the conduction 

band, Ev is valence band, Ef is the fermi level, Λair is the width of the space charge layer,  eV 

surface is the potential barrier and e-,+ represent conducting electrons on the donor sites [26].  
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2.2.7 Factors Affecting the Sensitivity of SMOs  

There are several methods that are used to improve the sensitivity of SMOs. Methods such as 

(ⅰ) surface modification, (ⅱ) microstructure (grain size and shape) and (ⅲ) porosity have been 

used to modify the SMOs to improve sensitivity. The sensing mechanism relies more on surface 

reactions, hence the importance of improving the surface structure of nanomaterials [76].  

2.2.7.1 Surface Modification  

Almost all metal oxides have a problem of low sensitivity and high operating temperature. 

Attempts have been made to modify the surface of the SMOs by doping them with metals [116-

117]. The addition or doping with these metals has been previously reported to increase the 

response time and reducing the operating temperature [118]. Surface modification by noble 

metals such as Au and Pt increases the electrical variation of the SMOs hence improving gas 

sensing properties such as response time and sensitivity [117-119]. Table 2.1 shows various 

chemi-resistive materials with their recommended noble metal additives.  

Table 2.1: Some semiconductor metal oxides with recommended additives 

Chemiresistive 

material  

Base 

Material  

Additives  Analysing gas  Reference 

Metal oxides  SnO2 Platinum (Pt), 

Silver (Ag), 

Palladium (Pd), 

Gold (Au), Iron 

(Fe), Indium (In).   

Carbon monoxide (CO), 

Methane (CH4), Ammonia 

(NH3), Nitrous Oxide (N2O), 

Hydrogen sulphide (H2S), 

Sulphur dioxide (SO2) 

 118, 126-

129 

TiO2 Lanthanium (La), 

Platinum (Pt) 

Ammonia (NH3), hydrogen 

(H2), Oxygen (O) 

 127-129 

WO3 Palladium (Pd), 

Gold (Au), Zinc 

(Zn) 

Hydrogen sulphide(H2S), 

Ammonia (NH3), Nitrogen 

dioxide (NO2) 

 129-131 

Fe2O3 Gold (Au), Zinc 

(Zn), Platinum 

(Pt) 

Carbon monoxide (CO), 

Propane, Toluene 

 131 

In2O3 Gold (Au), 

Aluminium (Al) 

Sulphur dioxide (SO2), 

Hydrogen sulphide(H2S),  

 128-139 
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Carbon dioxide (CO2), 

Acetone 

ZnO Aluminium (Al), 

Tin (Sn), Copper 

(Cu), Palladium 

(Pd), Gold (Au) 

Ammonia (NH3), hydrogen 

(H2), Carbon monoxide 

(CO), Hydrogen 

sulphide(H2S), Nitrogen 

dioxide (NO2), Methanol, 

LPG, Methane  

 131-136 

 

Shingange et al [121] synthesised rose like hierarchical Au/ZnO nanostructures using a 

microwave hydrothermal method. The synthesised composite structures showed an enhanced 

response time and faster recovery time to NO2 gas at 300ºC as compared to the undoped ZnO. 

Katoch et al [122] investigated the effect of Au addition on the ZnO, they observed that the 

response time of the sensor to CO had improved when compared to the undoped ZnO. The size 

and dispersion of the noble metal nanoparticles have an effect on gas sensing performance. 

SMOs can be mixed with other metal oxides (SnO2-ZnO, Fe2O3-ZnO, ZnO-CuO) to make 

composites in an attempt to improve gas sensing performance [123-125]. Zhu et al [27] 

investigated the effect of the metal oxides composites SnO2-ZnO on gas sensitivity. The 

composite showed an improved sensitivity on certain gases as compared to the individual metal 

oxides such as ZnO, which suggest a synergistic effect between the two components. 

2.2.7.2 Microstructures  

The sensitivity of the gas sensor can be improved by significantly changing the microstructures 

like grain size. There have been attempts to synthesize materials with small sizes because small 

grain sizes result in a larger surface area [120]. A more exposed surface area will increase the 

interaction between the gas molecules and material surface hence improving the sensitivity of 

the material. Different models have been developed to describe the effect of grain size. Xu et 

al, [128] developed a model that explains the sensing ability of the SnO2 by comparing the 

grain size (D) and the thickness of the space charge layer (2L). The model suggests that when 

D>>2L the conductance is limited by boundary control also known as Schottky barrier [62]. 

This suggests that the structure is not sensitive to the charges acquired from the surface but the 

inner charges [141-142]. If D=2L then the conductance is limited by necks between grains, this 

is because the number of necks is bigger than the grain contacts and it defines the size 



23 
 

dependence of gas sensitivity [46, 61], if the D<2L then it suggests that the conductance is 

influenced by every grain.  This concept is depicted in Figure 2.8. 

 

Figure 2.8: Three mechanism (a, b, c) of grain size dependence of conductance gas sensing 

materials 

2.2.7.3 Humidity and Temperature  

The humidity of the surrounding environment can affect the performance of a gas sensor. The 

water molecules that get absorbed in the sensor material do not donate any electrons. The most 

used humidity sensors are ionic-type sensors. The mechanism of humidity sensors depends on 

H+ or H3O
+ from the dissociation of adsorption water [142]. The reaction between the water 

molecules from the humidity and the oxygen surface causes a decrease in resistance of the gas 

sensor, resulting in a decrease in sensitivity [143-144]. The adsorption of water molecules 

hinders the chemisorption of oxygen species on the surface of the metal oxide due to the 

decrease in surface area, this affects the response time of the sensor. The effect of humidity on 

the SnO2 gas sensor for C2H2 gas [103-105], showed that the water molecules acted as a barrier 

for the adsorption of the C2H2 gas which decreased the sensitivity [146].   

In summary, SMOs have been used for gas sensing applications. However, they had high 

response times for different gases such as CO and H2S. Different modifications have been 

performed in an attempted to improve the gas sensing performance of the SMOs such as 

making the composites of the SMOs with other materials. Different studies have been reported 

on composite of SMOs with heavy metals such as palladium, gold and silver. However, the 

response time has not been significantly improved. There is a gap in the research of carbon 

materials such as carbon nanotubes composite with SMOs. The carbon nanotubes have been 

reported to have a high surface area and highly conductive, which has the potential to increase 

the electrical conductivity of the SMOs and subsequently improving the sensing parameters. 

D>>2

L 

D<2L 

D=2L 
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CHAPTER 3 

3.0 Characterization Techniques 

Various characterization techniques were used to analyse the structural, physical, optical, 

chemical and surface properties of nanomaterials. Techniques such as X-ray diffraction (XRD), 

Transition Electron Microscopy (TEM), Raman spectroscopy, Ultraviolet-Visible 

Spectroscopy (UV-Vis), Brunauer-Emmet-Teller (BET) and Fourier Transform Infrared 

Spectroscopy (FTIR). Gas sensing measurements were conducted using the KINESISTEC 

testing station. 

3.1 X-ray Diffractometer (XRD)  

Figure 3.1 showed a digital image of the XRD instrument. The instrument was used for 

structural analysis including the phase structure and composition. The XRD has an effective 

non-destructive characterization technique used in material science for the identification of 

crystalline structure. The XRD used for this application was a D8 advance diffractometer 

equipped with Lynx-eye XE detector operated between 5 and 2𝜃. This XRD utilizes cobalt X-

ray source radiation. For this study, the powder samples were mounted on an amorphous silicon 

sample holder and the compound identification was conducted by comparing the measured 

spectra with the database (JCPDS, Card No. 4-784). The beam of X-rays with a wavelength of 

0.5 to 2 A, is governed by Bragg’s law as shown in Equation 3.1 

𝑛𝜆 = 2𝑑 sin 𝜃 … … … … … . (3.1) 

Where n =1, d is the interplanar spacing between the atomic planes in the crystalline phase,  𝜆 

is the wavelength (𝜆 = 1.5418) and 𝜃 is the angle of incidence.  

The nanoscale of the nanomaterials causes the broadening of the peaks due to the crystal 

structure [1]. The nanoparticles sizes can be determined from the broadening of the peaks by 

using the Debye-Scherrer equation shown in Equation 3.2 

𝑑 =
0.9𝜆

𝛽 cos 𝜃
… … … … … … … (3.2) 

Where d is the diameter of the nanoparticles, 𝜆 is the wavelength of the incident x-ray, 𝛽 is the 

width and 𝜃 is the angle of incidence. 
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Figure 3.1: Digital image of the XRD equipment. 

3.2 Transition Electron Microscopy (TEM) 

The digital image of the high-resolution Transmission Microscopy (HRTEM) is depicted in 

Figure 3.2. HRTEM is spatial imagine equipment whereby a beam of electrons is propagated 

through a specimen and detected on the other side of the sample, resulting in an image. The 

resultant image is then enlarged and focused to appear on a fluorescent screen [2].  The 

HRTEM is often used to determine the size and morphology of the nanomaterials. In this study, 

JEOL TEM-2100F, JEM-200kV transmission electron microscopy (TEM) operating at 200kV 

was used to investigate the size and morphology of AuNPs, CNTs and ZnO nanostructures. 

The CNTs and ZnO nanostructures were prepared by dispersing them in ethanol and ultra-

sonicated, while the AuNPs were dispersed in water. The droplets of individual solutions of 

the homogeneous mixture were placed in fomvar film-coated copper grid. After the solution is 

dry, it was mounted in the TEM.  
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Figure 3.2: Digital image of TEM equipment 

3.3 Brunauer–Emmett–Teller (BET)  

BET is a technique used to measure pore volume and surface area of the nanomaterials. The 

BET works by physical adsorption of a monolayer of gas on the surface of the solid.  A 

monolayer of nitrogen gas at -70⁰C from the BET isotherms is usually used because of the 

weak interaction between gaseous and solid phases. The principle of capillary condensation 

together with the equivalent capillary model is used to determine the pores, pore distribution 

and volume while the monolayer formation is used to determine the surface area. Different 

pores are treated as capillaries with different sizes [3]. The pore size distribution is calculated 

by the quantity of the adsorbed gas molecules. The gas is adsorbed on the pore walls and the 

thickness increases with the increase in pressure. The digital image of BET is shown in Figure 

3.3. 

For this study, the surface area (SBET) of ZnO and composites were measured by the isotherms 

of nitrogen physical adsorption and desorption of raw Na-Bt and PILCs using TRISTAR 3000 

analyser. The BET equation is shown in Equation 3.3. Nitrogen gas adsorption was used to 

measure the surface area of the ZnO. The samples were degassed under vacuum at 150⁰C for 

4h.  
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1

𝑉𝑎(
𝑃𝑂

𝑃 − 1)
=

𝐶 − 1

𝑉𝑚𝐶
×

𝑃𝑂

𝑃
+

1

𝑉𝑚𝐶
… … … … … … . (3.3) 

Where 𝑉𝑎 is the volume of the absorbed gas at standard temperature and pressure, 𝑃𝑂 is the 

saturated pressure of the adsorbed gas, 𝑃 is the partial vapour pressure of the adsorbed gas, C 

is a constant and 𝑉𝑚 is the volume of gas adsorbed to produce monolayer on the sample surface.  

 

Figure 3.3: Schematic diagram of the BET equipment 

3.4 Raman Spectroscopy  

Raman spectroscopy is a technique generally used to observe vibrational modes of the 

molecules. The digital image of Raman spectroscopy is shown in Figure 3.4. Vibrations are 

referred to as quantum of energies caused by the collective vibration of atoms in the lattice [4]. 

During the experiment, a monochromatic laser radiation with a single wavelength is incident 

upon a sample. The light will either be reflected, absorbed or scattered as it interacts with the 

sample. The scattering of the laser radiation present data about the molecular structure of the 

sample, while the change in wavelength provides chemical information. In this study, the 

Perkin Elmer Raman spectroscopy 400r was used with a 514 nm excitation laser. The ZnO 

nanostructures and CNTs in powder form were placed in the sample holder and mounted in the 

spectroscopy.    
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Figure 3.4: Digital image of Raman Spectroscope 

3.5 Gas Sensing Measurement  

The gas sensing instrument was used for gas sensing analysis of the prepared nanostructures. 

For this study KENOSISTEC KSGAS6S gas sensor station was used for all testing. The setup 

of the system consists of a sample stage, four different gas inlet, twelve mass flow controllers 

to control the gas capacity in the chamber, wet and dry air inlet and mixer, six heaters that 

supplied voltage to the system and six KEITHLEY Pico ammeter for measuring the 

conductance [5]. The digital image of the gas sensing station is shown in Figure 3.5. 

In this study, the powder ZnO, CNTs/ZnO and Au/ZnO composites samples were dispersed in 

ethanol to make a paste and subsequently forming the sensing film. The paste was drop coated 

into the alumina substrate interdigitated Au/Pt electrodes. The sensing film was dried at room 

temperature before calcination at 500⁰C.  The sensing films were mounted in the sample holder 

inside the sensing chamber. The analyte gases are directed to the chamber, the heaters supply 

voltage throughout the sample and the picommeters record the gas concentrations.  
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Figure 3.5: Schematic diagram gas sensing station 

3.6 Fourier Transform Infrared Spectroscopy (FTIR) 

The Fourier Transform Infrared Spectroscopy (FITR) is a technique used to determine amongst 

other things the functional groups of different nanomaterials. It is used to characterise the 

structural properties such as vibration frequencies of molecules and crystal structures. FTIR is 

the analysis of infrared light interacting with the molecules. Typically, the technique measures 

the wavelength and the intensity of the absorption of infrared light by the sample. The 

absorbance is measured as a function of frequency containing information about sample 

vibrations [6]. The frequencies of vibrations between the atom bonds corresponds to the 

absorption peaks. The digital image of the FTIR is shown in Figure 3.6. 

The FTIR consist of infrared energy source, a sample compartment, detector and a computer. 

The infrared energy source beam passes through the energy control of the sample and 

subsequently to the detector. The beam enters the interferometer to make precise 

measurements. The beam passes into the detector for measurement and signal is sent to the 

computer where the Fourier Transform spectrum takes place.  For this study, the FTIR used is 

the Perkin Elmer UATR, spectra Two. The powder samples of the ZnO and CNTs were 

mounted in the sample holder.  
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Figure 3.6: Digital Image of the FTIR technique. 

3.7 Ultraviolet-Visible Spectroscopy (UV-Vis) 

The Ultraviolet-Visible Spectroscopy (UV-Vis) is a technique used to determine the optical 

properties of different materials. The UV-Vis works on a principle whereby the sample absorbs 

the ultraviolet and visible light due to electronic transitions, resulting in the energy absorption 

versus wavelength.  When the sample absorbs the light at a certain wavelength, the transmitted 

light will be reduced, and the intensity will be plotted as a function of the light wavelength to 

give a spectrum of the sample absorption. The principle of absorption spectroscopy can be 

explained using the Beer’s and Lambert’s law, which states that fraction of incident radiation 

absorbed is directly proportional to the number of absorbing molecules in its path [4], meaning 

that the molecules that absorbs the light are directly proportional to the peak intensity in the 

absorption spectrum. The law is given by (Equation 3.4); 

log
𝐼𝑂

𝐼
= 𝜀𝑐𝐼 … … … … … … (3.4) 

Where 𝐼𝑂is the intensity of the incident light, 𝐼 is the intensity of the light transmitted through 

the sample, 𝜀 is the molar absorptivity of the sample and c is the concentration of the solute. 

For this study, the UV-Vis spectrometer used is the Perkin Elmer Lambda 750 and is shown in 

Figure 3.7. The spectrometer covers the wavelengths between 190 nm to 900 nm and is divided 

into the ultraviolet (190 nm to 400 nm) and visible (400 nm to 900 nm) regions. The 

concentration of the sample is also an important fact, because if it is too high then it will lead 

to saturated absorption. The samples were prepared by sampling the ZnO and Au solutions 

during synthesis. Before the sample can be placed in the equipment, background should be 

taken. The background is the cuvette containing the solvent that was used to make the sample 
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solution. The absorption spectrum of the nanoparticles can be used to determine the particles 

sizes by observing if the spectrum is blue-shifted. Blue-shift is a shift towards lower 

wavelengths, which suggest that the size of the nanoparticles is decreasing. There is also red-

shift, which is a shift towards higher wavelengths, suggesting that the particle sizes are 

increasing.  

 

Figure 3.7: Digital image of UV-Vis equipment. 
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CHAPTER 4 

4.0 Synthesis of Composite Additives: Gold Nanoparticles and Carbon 

Nanotubes 

4.1 Introduction  

Gold is a noble metal which exists in different morphologies with various properties and 

applications. Gold in nanoscale has become a subject of interest because of its stability in an 

aqueous medium, toxicity index, and high electrical conductivity [1-3]. Hence, gold 

nanoparticles are applicable in electrochemical sensors, catalysts, electronics and surface-

enhanced Raman spectroscopy. The wide range of applications is attributed to different 

morphologies of gold such as spherical, triangular, rods and rectangular to mention a few [5].   

Different methods have been used in the past to synthesise the gold nanoparticles (AuNPs) 

such as the Turkevich method, Sonolysis and Brust-Schifffrin. The Turkevich method has been 

commonly used for the synthesis of AuNPs because it is the simplest, efficient and cost-

effective method when compared to other methods [4]. It involves the use of citrate as a 

reducing agent and capping agent [4-6]. The use of citrate is preferred because it produces 

uniform, well-distributed and stable AuNPs. Citrate forms a protective layer during the 

formation of nanoparticles which enables size control. The citrate concentration relative to the 

gold precursor is an important factor as it affects the surface charge which leads to size-

selective formation [6].   

Carbon materials exist in various morphologies such as carbon nanotubes, activated carbon, 

fullerene, mesoporous carbon and graphite [7]. CNTs have been used in different applications 

such as gas sensing and high-performance electronics [10].  The method used to synthesise the 

CNTs is the chemical vapour deposition method (CVD). CVD was chosen because it is simple, 

less energy cost and produces a large quantity of CNTs. Recent studies have shown that 

properties of CNTs can be enhanced by chemical functionalisation using mostly acids to 

introduce functional groups on the surface of CNTs [11-13].  
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4.2 Experimental Procedure  

4.2.1 Chemicals   

Hydrogen tetrachloroaurate (III) tri-hydrate (HAuCl4.3H2O, >99% purity), trisodium citrate 

dehydrate (> 99% purity) and ferrocene (>98% purity) were all purchased from Sigma Aldrich 

SA and used without further purification. Nitrogen, argon and acetylene gases were purchased 

from AFROX. Deionised water was used to prepare all the solutions.  

4.2.2 Characterisation Techniques  

Characterisation of the samples was done using UV-Vis spectra (Lambda 35), high resolution 

transmission electron microscopy (HRTEM, JOEL-2100F-200 kV), X-ray diffraction (D8 

Advance, Lynx-eye XE detector), FTIR and Raman spectroscopy. 

4.2.3 Preparation of Gold Nanoparticles  

The synthesis of spherical gold nanoparticles was done using the Turkevich method according 

to Elahi et al. [4].  A solution of 10 mL of HauCl4.3H2O (0.029 M) was added to a round bottom 

flask containing boiling deionized water (1000 mL). The solution was allowed to stir for 5 

minutes, followed by the addition of 28 mL of trisodium citrate solution (0.034 M). After two 

minutes of citrate addition, the solution turned grey then dark purple and then ruby red. The 

solution was then refluxed on a hotplate for further 30 minutes until the ruby red colour was 

stable. Finally, the hotplate was switched off, and the solution was further stirred for four (4) 

hours to complete the growth of gold nanoparticles. Two other solutions of gold nanoparticles 

were prepared to produce different sizes. This was achieved by different citrate concentrations 

of 1 mM, 0.8 mM and 0.3 mM. The schematic diagram of the synthesis procedure for AuNPs 

is shown in Figure 4.1. 

 

Figure 4.1: Schematic diagram of gold nanoparticles synthesis. 
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4.2.4 Preparation of Carbon Nanotubes 

The carbon nanotubes were prepared by chemical vapour deposition (CVD) technique 

according to Elsehly et al [11]. Acetylene gas was used as a carbon source and ferrocene (1 g) 

was used as the catalyst. Nitrogen was used as a carrier gas and to create an inert atmosphere. 

The reaction was conducted at a temperature of 900˚C to produce carbon nanotubes. Different 

flowrates of the carbon source gas (150m3/min, 200 m3/min, 250 m3/min) were used.  The 

furnace was allowed to cool down to room temperature and the product formed was collected 

on the quartz boat and the walls of a quartz tube [7-8, 11].  Figure 4.2 depicts the schematic 

diagram of the CVD. 

The CNTs were functionalized by refluxing them in a 3:1 mixture of sulphuric acid and nitric 

acid for 6 hours at 120⁰C under inert conditions using nitrogen. After refluxing, the CNTs 

(1.5g) were filtered using Whiteman filter paper and then washed in de-ionized water using 

centrifugation until the pH was neutral (pH~7). The CNTs were dried in an oven overnight at 

100℃ before use [11].  

 

Figure 4.2: Schematic diagram of the chemical vapour deposition. 
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4.3 Results and Discussion  

4.3.1 Part A:  Synthesis and Characterisation of Different Sizes of Gold Nanoparticles 

(AuNPs) 

The XRD spectra of samples prepared with citrate concentrations of 0.3 mM, 0.8 mM and 1 

mM are shown in Figure 4.3.  The XRD spectra of all the samples showed the presence of 

similar diffraction peaks at a 2-theta angle of 46⁰[200], 54⁰[110], 78⁰[220] and these are 

characteristics of crystalline Au. The Au peaks were relatively broad which was attributed to 

the size of gold crystallite, suggesting Au in nanoscale (AuNPs). However, at the citrate 

concentration of 0.3 mM, there was a presence of extra peaks at a 2-theta angle of 33⁰ and 38⁰.  

The presence of the extra peak at 38⁰ [111] was indexed to Au, it was caused by the citrate 

molecules which were not sufficient to hinder the size growth of the particles, which suggest 

the formation of different shape of AuNPs. Au peaks are typical of face-centred-cubic (FCC) 

structure of the AuNPs (JCPDS, Card No. 47-784). As the citrate concentration was increased 

from 0.3 to 1 mM, the XRD spectra showed that the peaks became narrower, which was 

attributed to a decrease in particle size and highly crystalline.  

 

Figure 4.3: XRD patterns of Au nanostructures prepared using different citrate concentrations 

(a) 1 mM, (b) 0.8 mM and (c) 0.3 mM. 
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TEM images of samples prepared with citrate concentrations of 0.3 mM, 0.8 mM and 1 mM 

and their respective particles size distribution histograms are shown in Figure 4.4. The citrate 

concentration of 1 mM, 0.8 mM and 0.3 mM yielded AuNPs with sizes 14, 27 and 40 nm, 

respectively. The spherical Au nanoparticle size increased with a decrease in the citrate 

concentration. This means that as the citrate molecules were reduced, they became insufficient 

in stopping Au growth hence the size increased. There was also an introduction of irregular 

shapes that were observed as the citrate concentration was decreased and these were not 

considered to obtain the particle size distribution of the samples. The histograms showed that 

the particle size distribution became progressively wider as the size increased. This could be 

attributed to Au nuclei not growing at a similar rate hence forming AuNPs with varied particle 

sizes resulting in wider distribution, this was also observed by Nyembe et al, [15]. 
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Figure 4.4:TEM images and size distribution histograms of AuNPs with citrate concentration 

of (a) 1 mM (b) 0.8 mM and (c) 0.3 mM.  

The UV-Vis spectra of the AuNPs prepared using different citrate concentrations 

corresponding to different particles sizes is depicted in Figure 4.5. The UV-Vis spectra showed 

a monomodal peak for all the samples at wavelengths of 527 nm (particle size = 40 nm), 519 

nm (particle size = 27 nm) and 516 nm (particle size = 14 nm). The presence of these peaks at 

the wavelength 527 nm, 519 nm and 516 nm, suggest the formation of AuNPs which appears 

between the wavelengths of 450-550 nm [3]. This is in agreement with both the XRD (Figure 

4.3) and TEM (Figure 4.4) which both showed that the particles were of Au. The monomodal 
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peak suggests that the AuNPs in solutions were monodispersed, which suggests that the citrate 

stabilizer was effective in isolating each particle [15]. The increase in Au particle size from 14 

to 40 nm was confirmed by the UV-Vis red-shift from a wavelength of 516 nm (particle size = 

14 nm) to 527 nm (particle size = 40 nm). Furthermore, this trend of increasing particle size 

with a decrease in citrate concentration was also observed by TEM analysis (Figure 4.4). 

 

Figure 4.5: UV-Vis spectra of AuNPs of different particles sizes. 

4.3.2 Part B:  Synthesis of Carbon Nanotubes  

The TEM images of CNTs synthesised at different flowrates of the acetylene gas are depicted 

in  Figure 4.6. At the flowrate of 150 m3/min, the CNTs average size was 95 nm and showed 

less formation of amorphous carbon. However, at the flowrate of 200 m3/min, the produced 

CNTs with an average size of 120 nm showed a significant formation of amorphous carbon on 

the walls of the CNTs. The average diameter of the CNTs increased at the flowrate of 250 

m3/min to 150 nm and more amorphous carbon was observed.  This might be due to the high 

concentration of the acetylene gas in the furnace resulting in the formation of more amorphous 

carbons. The TEM images also show that the nanotubes contained an outer and inner diameter. 

The size of the thickness between the outer and inner diameters suggests that these were multi-

walled carbon nanotubes. Furthermore, the synthesis temperature range of 700°C to 900 °C has 

been reported in literature to yield multi-walled carbon nanotubes [12, 14]  
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 Figure 4.6: TEM images of carbon nanotubes synthesised at carbon source flowrates of (a) 

150 m3/min (b) 200 m3/min (c) 250 m3/min. 

The FTIR spectra of CNTs after H2SO4/HNO3 functionalisation is depicted in Figure 4.7. The 

FTIR spectra of the functionalized CNTs at different flowrates indicated common bands 

representing five different types of bonding. The first broad band at 3437 cm-1 was due to the 

(O-H) functional group vibration stretch. The second vibrational band at 2921 cm-1 was due to 

the C-H bond stretch of the –CHO aldehyde group. This confirmed the direct oxidation of the 

carbon atoms on the walls of the CNTs by the nitric acid oxidation [16]. The aromatic C=C 

double bond stretching frequency, which was detected at 1624 cm-1 suggested the formation of 

the graphene structures during the synthesis of the CNTs [17]. The peak at 1394 cm-1 was due 

to an O-H bending mode. The vibrational band at 1102 cm-1 occurred due to the presence of 

the carboxylate ion C-O functional groups.  
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Figure 4.7: FTIR spectra of functionalised carbon nanotubes synthesised at different acetylene 

gas flowrates.  

XRD patterns of CNTs synthesised at different flowrates are depicted in Figure 4.8. All the 

XRD patterns showed a peak at 30⁰ (001) which was consistent with the formation of the 

graphene layers. The peaks at 50⁰ (101) and 65⁰ (110) were indexed to carbon nanotubes. The 

XRD peaks showed a purer species of the CNTs at flowrate of 150 m3/min, this was shown by 

the peaks which were more pronounced. TEM analysis ( Figure 4.6) revealed that the 

150m3/min flowrate was the optimal flowrate as it gave CNTs with no or minimal amorphous 

carbons which was supported by the XRD. From this point on-wards, only the results obtained 

from 150 m3/min flowrate will be discussed.  
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Figure 4.8: XRD pattern of CNTs synthesised at different flowrates 

The Raman spectra of CNTs is shown in Figure 4.9. Raman spectroscopy was used to evaluate 

the extent of functionalization of the MWCNTs. The Raman analysis was conducted on 

functionalised and non-functionalised CNTs samples obtained at a flowrate of 150 m3/min. 

Raman spectrum of the pristine MWCNTs showed two distinct bands at Raman shifts of 1341 

cm-1 and 1583 cm-1, these bands were associated with the D-band G-bands, respectively [12]. 

The D-band was a characteristic of C=C bonds on the graphitic plane on the CNTs, while the 

G-band was the indication of the graphitic structure of the CNTs [18]. The ratio of the intensity 

of the D-band (ID) and the G-band intensity (IG) {i.e. ID/IG}, indicated the degree of distortion 

of the graphitic structure on the CNTs [18]. Upon acid functionalisation of the MWCNTs, the 

D-band and G-band Raman shifts were retained, however, the ID/IG ratio decreased from 0.47 

(i.e. for pristine MWCNTs) to 0.41 (i.e. for –COOH functionalized MWCNTs). This indicated 

that the intensity of the G-band increased upon –COOH functionalisation, indicating some form 

of disorder on the graphitic planes of the MWCNTs, thus also confirming effective 

functionalisation of the CNTs which is in agreement with the FTIR results (Figure 4.7). 
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Figure 4.9: The Raman spectroscopy of the (a) pristine (i.e. produced using a flowrate of 150 

m3/min) and (b) –COOH functionalised MWCNTs, 6 hours after being subjected to 

acidification.   

4.4 Conclusions 

Different citrate concentrations were used to synthesize different sizes of spherical AuNPs. The 

different particles sizes (14 nm, 27 nm and 40 nm), were achieved by systematically reducing 

the concentrations of the citrate, thereby affecting the pH which then affects the size of the 

formed particles. As the concentration of the citrate was decreased from 1 mM to 0.3 mM, the 

particle sizes increased, and particle shape became more irregular. At high citrate 

concentration, the stabiliser effect was apparent as it sufficiently capped the gold nanoparticles 

thus forming smaller sizes, however, at low citrate concentrations the protecting effect of the 

stabiliser was less, leading to a particle size growth as seen in the TEM micrographs (Figure 

4.4 ). The ratio of citrate molecules to gold ions is crucial for precise particle formation (specific 

size). The citrate molecules get attached to the crystal planes and inhibit further growth of the 

AuNPs which led to the formation of a specific particles size. The AuNPs (14 nm) synthesised 

using 0.1 mM was chosen as ideal to make a composite for gas sensing application, because 

the particles were well dispersed with relatively narrow size distribution.  
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Different flowrates of the CNTs were varied to optimise the formation of CNTs. All the 

synthesised CNTs were functionalised using acids (Nitric and sulphuric acid) to produce –

COOH functionalised CNTs. The CNTs were successfully functionalised as the O-H and C-O 

groups were observed in the FTIR. The well dispersed and pure CNTs were observed at the 

flowrate of 150 m3/min. However, as the flowrate increase (i.e. from 200 m3/min to 250 

m3/min) the presence of amorphous carbons became more apparent.  
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CHAPTER 5 

5.0 Synthesis of ZnO Nanostructures and Gas Sensing Application 

5.1 Introduction  

Zinc Oxide (ZnO) is an n-type semiconductor metal oxide, with an average bandgap of 3.37eV, 

a relatively large binding energy of 60meV, thermally stable at room temperature and relatively 

high electron mobility [1-6].  Furthermore, ZnO is non-toxic, easy to produce in bulk quantity 

and a typical chemiresisitive material making it change its electrical resistance when its surface 

interacts with reducing or oxidising gas molecules [5].  

Different synthesis methods have been developed for the synthesis of ZnO nanostructures. 

Methods such as chemical precipitation, mechano-chemical process, hydrothermal techniques, 

and sol-gel have been used to synthesise ZnO nanostructures [7-9]. Different precursors such 

as zinc sulphate heptahydrate (ZnSO4.7H2O) and zinc nitrate (Zn(NO3)2) has been used as the 

metal precursors. Reducing agents such as NaOH and diethanolamine have been used [8]. The 

microwave technique is preferred for the synthesis of ZnO because it saves time and is efficient. 

The microwave technique also provides uniform constant heating of the samples, making it 

more accurate in the synthesis [10-13].  

5.2 Experimental Procedure  

5.2.1 Synthesis of Zinc Oxide Using Microwave Oven Digestion  

Zinc sulphate heptahydrate (ZnSO4.7H2O, >99% purity) and sodium hydroxide pallets 

(NaOH,> 99% purity), were both used as purchased from Sigma Aldrich South Africa. Zinc 

sulphate (ZnSO4.7H2O) was used as a metal precursor and NaOH was used as a reducing agent. 

Deionised water (d-H2O) was used as the solvent for all the reactions. A zinc sulphate solution 

of 0.1 M concentration was prepared by dissolving a mass of 7188.53 mg of ZnSO4.7H2O in 

100 ml of deionised water.  Different concentrations of NaOH (0.1 M, 0.2 M, 0.3 M, 0.4 M 

and 0.5 M) were prepared by dissolving NaOH in 100 ml of deionised water. A concentration 

of ZnSO4.7H2O was kept constant at 0.1 M and was mixed with the various solutions of the 

NaOH with different concentrations and placed inside the microwave oven. The microwave 

oven was set at 510 W for 15 minutes and then increased to 680W for 10 minutes. The 

microwave was then shut down and cooled to room temperature naturally. The precipitates that 

were produced were allowed to settle and then dried in an oven overnight at 70⁰C. The dried 

precipitates were calcined in air at 500⁰C for 2 hours using a muffle furnace after calcination 
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studies, which showed that 500°C was the optimal temperature for calcination. The muffle 

furnace temperature was increased gradually at a rate of 5⁰C/min, this was done to uniformly 

heat the sample. The temperature of 500⁰C was an optimised calcination temperature.  The 

Schematic diagram of the process is depicted in Figure 5.1. 

 

Figure 5.1: Schematic diagram of the synthesis of ZnO. 

5.2.2 Brunauer–Emmett–Teller (BET) Analysis 

The surface area (SBET) of ZnO (and all other nanomaterials) were measured by the isotherms 

of nitrogen physical adsorption and desorption of raw Na-Bt and PILCs using a TRISTAR 

3000 analyser. The samples were degassed under vacuum at 150⁰C for 4h. Other 

characterisation techniques used are explained in Chapter 3.  

5.2.3 Gas Sensor Fabrication and Measurement  

ZnO based gas sensor was prepared by mixing the ZnO powder with ethanol to form a paste. 

The paste was drop-coated onto alumina substrates interdigitated with Au electrodes then dried 

for 2h. After it was heated at 400⁰C for 2 hours to increase the stability, the gas sensing 

measurements were done using a computer-controlled gas sensing testing station. Carbon 

monoxide (CO) was injected into the sensing chamber to give out desired gas concentrations.  

The gas concentrations were varied from 10 ppm to 200 ppm, while the operating temperature 

was kept constant at 250⁰C. The electrical resistance measurements were recorded by Keithley 

3706 source meter. The gas sensing performance was analysed in terms of response time and 

sensitivity.  
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5.3 Results and Discussion  

5.3.1 Characterisation of ZnO nanostructures  

The UV-Vis spectra of samples prepared using NaOH concentrations of 0.1 M, 0.2 M, 0.3 M, 

0.4 M, and 0.5 M before calcination is depicted in Figure 5.2. The sample prepared using NaOH 

concentration of 0.1 M showed a peak at 283 nm. This peak was consistent with the formation 

of the Zn(OH)2 species [14]. However, the spectra of the samples prepared using NaOH 

concentrations of 0.2 to 0.5 M showed a peak at 365 nm. The presence of the peak at the 

wavelength of 365 nm is consistent with the presence of ZnO nanostructures. The formation of 

the ZnO species could be due to the pH levels and temperature effect as stated in the literature 

[14]. 

 

Figure 5.2: UV-Vis spectra of samples synthesised using different NaOH concentration of (a) 

0.1 M, (b) 0.2 M, (c) 0.3 M, (b) 0.4 M and (e) 0.5 M.   

The XRD patterns of the samples prepared using different NaOH concentrations of 0.1 M, 0.2 

M, 0.3 M, 0.4 M, and 0.5 M before calcination is depicted in Figure 5.3. All the samples showed 

peaks at a 2-theta angle of 10⁰(200) and 23⁰ (212) which were indexed to Zn(OH)2. The peak 

at a 2-theta angle of 30⁰ (100) was indexed to ZnO. The presence of the peaks at a 2-theta 

angle of 10⁰(200) and 23⁰ (212) suggests that Zn(OH)2 was a prevalent phase.  However, UV-

Vis (Figure 5.2) could not detect the presence of Zn(OH)2 at higher NaOH concentrations of 
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0.2 M – 0.5 M, possibly due to low concentration or the UV-Vis technique having a higher 

detection limit for ZnO nanostructures than the concentration of Zn(OH)2 in the sample. The 

Zn(OH)2 species were pH dependant, and mostly formed at low pH than ZnO [14]. At 0.1 M, 

the pH was low enough to favour the formation of a significant amount of Zn(OH)2 which was 

detectable using UV-Vis spectrometer. The concentration of Zn(OH)2 might have been within 

the detection limit of the UV-Vis spectrometer hence it was able to be detected.  

 

Figure 5.3: XRD patterns of the sample before calcination synthesised using different NaOH 

concentrations. (a) 0.1 M, (b) 0.2 M, (c) 0.3 M, (b) 0.4 M and (e) 0.5 M. 

The FTIR spectra of samples synthesised using different concentrations of NaOH before 

calcination is depicted in Figure 5.4. The spectra showed a peak at a wavenumber of 3400cm-

1, which is consistence with the O-H bond [6].  The presence of this O-H group further suggests 

the formation of the Zn(OH)2 species which was also detected by the UV-Vis (Figure 5.2) and 

the XRD  (Figure 5.3). The formation of predominantly Zn(OH)2 species suggested that 

calcination was required.  Calcination was done to thermally convert the Zn(OH)2 into  ZnO 

[5].  
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Figure 5.4: FTIR spectra of ZnO before calcination of different NaOH concentrations. (a) 0.1 

M, (b) 0.2 M, (c) 0.3 M, (b) 0.4 M and (e) 0.5 M.   

Calcination was conducted using the optimised temperature of 500⁰C for 2 hours in air. The 

XRD pattern of ZnO nanostructures after calcination is shown in Figure 5.6 and it revealed the 

presence of narrow peaks suggesting a crystalline material. The peaks at a 2-theta angle of 34⁰ 

(100), 37⁰ (002), 39⁰ (101), 52⁰ (102), 64⁰ (110) and 71⁰ (112) were all indexed to pure wurtzite 

structure of ZnO [10]. This suggested that the ZnO produced after calcination was phase pure. 

Similar diffraction peaks were observed by Shingange et al [19], who synthesised ZnO using 

the microwave technique at different times.  
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Figure 5.5: XRD patterns of the sample after calcination synthesised at different NaOH 

concentrations of (a) 0.1 M, (b) 0.2 M, (c) 0.3 M, (b) 0.4 M and (e) 0.5 M. 

Figure 5.6 showed the FTIR spectra of the ZnO after calcination of different NaOH 

concentrations of (a) 0.1 M, (b) 0.2 M, (c) 0.3 M, (b) 0.4 M and (e) 0.5 M. The absence of the 

O-H peak at a wavenumber of 3400cm-1 which was observed before calcination suggest that 

the ZnO was relatively pure which was the same trend observed in the XRD analysis (Figure 

5.5). The formation of a relatively pure ZnO is crucial for gas sensing application in order to 

avoid any ambiguity of the phase responsible for gas sensing [19]. The use of impure ZnO for 

gas sensing will give unreliable results in terms of gas sensing parameters. 
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Figure 5.6: FTIR spectra of ZnO after calcination at different NaOH concentrations of (a) 0.1 

M, (b) 0.2 M, (c) 0.3 M, (d) 0.4 M and (e) 0.5 M. 

Figure 5.7 showed the TEM images of ZnO prepared using different NaOH concentrations. 

The TEM analysis was conducted after calcination. The TEM images clearly shows different 

morphologies of ZnO from the various samples. When the concentration of NaOH was 0.1 M, 

the ZnO formed was hexagonal in shape. Increasing the concentration of the NaOH to 0.2 M 

changed the morphology of the ZnO to flower-like structures. When the concentration of the 

NaOH was increased from 0.3 M to 0.5 M, the ZnO became sheet-like. The degree of 

agglomeration of nanosheets was observed to be increasing with an increase in NaOH 

concentration (0.3-0.5 M). The change in the morphology of ZnO was due to change in pH as 

the concentration of the NaOH is increased [14]. The concentration ratio of the precursor and 

reducing agent also affect the morphology. 

 

 



68 
 

 

Figure 5.7: TEM images of ZnO synthesised with different concentrations of NaOH. (a) 0.1 

M, (b) 0.2 M, (c) 0.3 M, (d) 0.4 M and (e) 0.5 M. 

Figure 5.8 showed the Raman spectra of ZnO. The peaks observed from the Raman spectra 

indicate Raman active modes. The Raman peaks at 452 cm-1 and 440 cm-1 were ascribed to E2 

(High) Raman shifts, which are characteristics of the ZnO wurtzite crystal formations, which 

is in agreement with XRD analysis (Figure 5.5). The Raman shifts assigned to Raman active 

modes in ZnO nanocrystals occurring at relatively higher wavenumbers indicated the formation 

of nanostructures of ZnO [15]. Increasing the concentration NaOH from 0.1 M to 0.2 M 

induced a blue-shift (i.e. shift to lower wavenumbers) for the E2 high Raman shift from 452 
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cm-1 (i.e. 0.1 M NaOH) to 440 cm-1 (i.e. 0.2 M NaOH). A shift in the E2 high Raman spectrum 

of the ZnO nanostructures indicates internal strains within the wurtzite crystals due to 

dissimilar growth directions [16]. Thus, ZnO nanostructures with E2 high Raman shifts 

resemble different morphologies which were consistent with TEM analysis (Figure 5.7). No 

stokes shift in the E2 high bands was observed when 0.2 M, 0.3 M, 0.4 M and 0.5 M NaOH 

concentrations were used. However, when 0.5 M NaOH was used to prepare the ZnO 

nanocrystals, it further induced the internal strains on the ZnO wurtzite crystals. These internal 

strains on the crystal were correlated to the presence of other Raman vibrational modes that 

occurred at both 440 cm-1 and 450 cm-1 Raman shifts as highlighted in the spectrum (i.e. for 

0.1 M NaOH) [15-16]. 

 

Figure 5.8: Raman spectra of ZnO prepare using various NaOH concentrations 

5.3.2 Brunauer–Emmett–Teller (BET)  

The surface area results of the samples measured by BET are shown in Table 5.1. The surface 

area (SBET) was done on 3 different samples prepared using NaOH concentrations of 0.1 M, 

0.3 M and 0.5 M in order to get the average trend of the surface area. The surface area increased 

from 60 m2/g to 102 m2/g as the concentration of NaOH increased from 0.1 M to 0.3 M. This 

could be due to a morphological change of ZnO from hexagonal shape to nanosheets, which 

have a relatively higher surface area. However, as the concentration of NaOH was increased to 

0.5 M, the surface area decreased to 80 m2/g, this might be due to clustering of ZnO nanosheets 



70 
 

as shown by the TEM image (Figure 5.7). The decrease in the surface area might also be due 

to excess NaOH as its concentration increases, filling the pores of ZnO resulting in a decrease 

in surface area. The sample prepared using NaOH concentration of 0.3 M had the highest 

surface, which was considered ideal for gas sensing because larger surface area results in more 

binding sites for gas molecules. All the gas sensing analysis were done on this sample. Figure 

5.9 showed the graphical representation of ZnO surface area with respect to the NaOH 

concentration.  

Table 5.1: Specific surface area of ZnO samples synthesised using NaOH concentration of 0.1 

M, 0.3 M, and 0.5 M 

Sample Name Specific Surface Area (SBET) (m2/g) 

0.1 M NaOH 60 

0.3 M NaOH 102 

0.5 M NaOH 80 

 

 

Figure 5.9: ZnO surface area in different NaOH concentration 
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5.3.3 ZnO based Gas Sensor  

Figure 5.10 showed the electrical conductivity changes of the ZnO nanosheets in the presence 

and absence of carbon monoxide (CO) analyte gas. The CO gas concentration was varied from 

10 ppm to 200 ppm and the temperature was kept constant at 250⁰C throughout the analysis. 

In the presence of the CO gas in the surface of ZnO, the electrical conductivity of the ZnO 

increased. ZnO is a stable n-type semiconductor and upon exposure to a reducing gas such as 

CO the electrical conductivity increases, which explains the increase in the observed electrical 

conductivity [15]. However, the electrical conductivity of ZnO did not revert to the initial value 

when the CO gas was removed, suggesting that the ZnO nanomaterial was not given enough 

time to fully recover before exposure to the next gas concentration.  This is typical of most 

nanomaterials as they require a relatively long time to fully recover, and for this study, the 

focus was only on the response time and not the recovery time.  

 

Figure 5.10: Electrical conductivity changes of ZnO exposed to different CO concentration 

The sensitivity of the gas is defined as the sensor response to different analyte gas 

concentrations. It is influenced by the interaction between the material surface and the gas. 

This interaction is directly proportional to the surface area of the material and the concentration 

of the analyte gas [18]. The sensitivity (S) of the sensor was determined by measuring the 

change in the electrical resistance of the ZnO and is expressed as  

𝑆(%) = [
𝑅𝑎 − 𝑅𝑔

𝑅𝑎
] × 100 … … … … … … … (5.1) 
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Where, Ra is the resistance of a sensor in the reference gas, which was air and Rg is the 

resistance of a gas sensor in the presence of a target gas. In this study, a voltage of 5 V was 

used for the analysis as it was generated by the system, it was also used to convert electrical 

current into electrical resistance to calculate the sensitivity. The sensitivity of the sensor was 

calculated to be it 9.7, 9.8 and 9.9 % at different gas concentrations of 120 ppm, 160 ppm and 

200 ppm respectively.  The sensor sensitivity depends on the interaction between the target gas 

and the chemisorbed oxygen species on the surface of the semiconductor, which then leads to 

a change in electrical conductivity. Therefore, the difference in the sensitivity is attributed to 

the difference in the interaction between the gas and the surface of the sensor as the gas 

concentration increases. The more chemisorbed oxygen molecules the better the sensitivity 

[16]. This trend was expected because the sensitivity of the sensor mainly depends on the 

removal of the absorbed oxygen species, which generate electrons. Hence at high 

concentrations of the target gas, there was enough gas to cover the materials resulting in 

relatively high sensitivity. The TEM (Figure 5.7) also showed a high surface area at ZnO 

nanosheets synthesized from 0.3 M NaOH, which correspond with high sensitivity.  These 

findings are consistent with what is found in the literature, by Kim et al [17] and Ahlers et al 

[18].   

Another parameter that was investigated was the response time and is defined as the time 

required to reach 90% of a stable electrical current after the gas exposure. The response time 

was calculated at the CO concentration of 200 ppm because this concentration produced 

relatively higher sensitivity. The response time was calculated to be 114 seconds. Response 

time of 114 seconds for CO concentration of 200 ppm is not ideal, as by the time the sensor 

responds, the CO gas would have caused disorientation, unconsciousness or even possible 

death to living organisms, especially in the mining industry whereby high levels CO gas are 

produced. A need to improve the response time of ZnO nanosheets is crucial possibly through 

doping or making a composite with another nanomaterial [18]. Shingange et al, [19] 

investigated the effect of doping on the response time, the findings revealed that the response 

time was improved by doping the ZnO with AuNPs for NO2 detection. This shows the need 

and importance of doping or making a composite with other nanomaterials such as Au and 

CNTs in order to improve the electrical conductivity and surface area thus improving gas 

sensing performance [19].  
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5.4 Conclusions  

Different morphologies of ZnO have been successfully synthesised using a microwave-assisted 

hydrothermal method. Hexagonal, flowerlike and sheets like structures were obtained. The 

different morphologies depended on the concentration of the reducing agent (NaOH). The 

NaOH concentrations affected the pH, which in turn determined the morphology and formation 

of ZnO. A concentration of 0.3 M NaOH, yielded sheet-like nanostructures. These 

nanostructures were considered to be optimum for gas sensing as it is was phase pure and had 

the highest surface area of 102 m2/g, which is crucial for gas sensing. The ZnO nanosheets 

showed an increasing trend in the sensitivity as the concentration of CO gas increased. The 

response time was calculated to be 114 seconds at a concentration of 200 ppm. However, there 

is a need to improve the rapid responsiveness of the ZnO nanosheets. This can be done through 

making of ZnO nanosheets composites with various nanomaterials in order to improve their 

response time. 
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CHAPTER 6 

6.0 Fabrication and Gas sensing Performance of Composites 

6.1 Introduction  

 Semiconductor metal oxides (SMOs) such as ZnO, SnO2, TiO2 and WO2 have been used as 

gas sensing material because they produce highly sensitive sensors [1-3].  However, they have 

been reported to have high response times [4]. Structural and morphological optimization of 

these materials has been done to improve the gas sensor performance [5]. Furthermore, material 

modifications such as doping and chemical surface treatment have been proven to be effective 

ways of improving the gas sensing performance of the SMOs [5-6]. Metals such as gold (Au) 

and palladium (Pd) nanoparticles can enhance that catalytic activity of the SMOs [6-7] by 

enhancing their catalytic oxidation which is important for gas sensing. Carbon nanomaterials 

such as carbon nanotubes (CNTs) have also been reported to introduce a relatively high surface 

area, crucial for gas sensing [8-10]. It has been reported in the literature that SMO like titanium 

oxide has been used for gas sensing and its sensitivity was improved by the use of dopants [11]. 

Sarala Devi et al, [11] investigated the effect of CuO addition on tin dioxide on hydrogen 

sulphide gas (H2S) sensor and the sensitivity of the sensor was improved at low concentration. 

Hosseini et al [12] showed that ZnO nanorods doped with Au showed an improved response 

time compared to undoped ZnO nanorods.  

Zak et al, [13] investigated the doping of Pb nanoparticles on ZnO nanowires synthesised from 

thermal evapouration method and found out that the Pb reduced the crystalline quality of the 

nanowires. Similarly, Gao et al [14] synthesised Pd/ZnO composite with simple chemical 

precipitation and found that the Pb controlled the size and formation of ZnO. 

6.2 Experimental Procedure  

6.2.1 Preparation of Zinc Oxide and Gold Nanoparticles (Au/ZnO) Composite. 

A mass of 400 mg of ZnO powder was mixed with 50 ml of 14 nm gold (Au) solution making 

5 w/w% of AuNPs in ZnO nanosheets [10]. The resulting solution was stirred using a magnetic 

stirrer bar for 1 hour at a rate of 500 rpm. A ruby red to pinkish colour change was noticed. 

The solution was then dried overnight and characterised. The composite of AuNPs in ZnO 

nanosheets was done using 0.3 M NaOH concentration because it gave the best ZnO 

nanostructures (nanosheet) as shown in Chapter 5. 
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6.2.2 Preparation of Zinc Oxide and Carbon Nanotubes (CNTs/ZnO) Composite.  

ZnO (400 g) was mixed with a solution of dispersed CNTs in ethanol making 1 w/w% of CNTs 

in ZnO nanosheets [11]. The solution was ultra-sonicated for 45 minutes using an electrical 

sonicator. After ultra-sonication, the composite solution was stirred using a stirrer bar for 1 

hour until the mixture was homogenous. The solution turned purple-black in colour. The 

resulting solution was dried overnight at 70°C and then characterised. The concentration of 0.3 

M NaOH was used to make the composite because it showed best ZnO nanosheets which were 

ideal for gas sensing as shown in Chapter 5.  

6.2.3 Brunauer-Emmett-Teller (BET)  

The BET analysis was done on three different samples prepared by 0.3 M NaOH concentration, 

which are ZnO nanosheets, Au/ZnO and CNTs/ZnO.   

6.2.4 Gas Sensing  

Gas sensing analysis was done on Au/ZnO, CNTs/ZnO and CNTs. The analysis was done using 

CO gas with a concentration range of 10-200 ppm at a constant temperature of 250⁰C. The gas 

sensing parameters investigated were response time and sensitivity.  

6.3 Results and Discussion  

6.3.1 Part A: Zinc Oxide (ZnO) Incorporated with Gold Nanoparticles (AuNPs) 

Composite (Au/ZnO)  

Figure 6.1 showed the XRD patterns of (a) ZnO and (b) Au/ZnO samples. The XRD patterns 

of Au/ZnO composite showed peaks at a 2-theta angle of 37⁰ (111), 44⁰ (200), 67⁰ (220), 34⁰ 

(100), 38⁰ (002), 41⁰ (101), 54⁰ (102), 65⁰ (110) and 73⁰ (112). The peaks at 37⁰ (111), 44⁰ 

(200)  and 67⁰ (220) were indexed to AuNPs [17], this is consistent with the XRD peaks of 

pure AuNPs (Figure 4.3) suggesting that the crystal structure of the AuNPs was not altered 

when incorporated into the ZnO nanosheets. The peaks at a 2-theta angle of 34⁰ (100), 38⁰ 

(002), 41⁰ (101), 54⁰ (102), 65⁰ (110) and 73⁰ (112) were indexed to pure ZnO [12]. This also 

shows that the crystalline phase of ZnO was also not altered during the addition of AuNPs. 

This implies that the Au/ZnO composite synthesis was successful [17]. 
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Figure 6.1: XRD patterns of (a) ZnO and (b) Au/ZnO samples 

Figure 6.2 depicted TEM image of Au/ZnO composite. The TEM image showed the Au 

nanoparticles within the ZnO nanosheets. The AuNPs were well dispersed throughout the ZnO 

nanosheets suggesting that the synthesis of the composite was successful. Well dispersed 

AuNPs within the composite increases the reactivity of the composite, since the average size 

is kept constant, even though there was a slight clustering of nanoparticles as shown in Figure 

6.2 represented by C-AuNPs. The AuNPs are attached on the surface of the ZnO nanosheet and 

are not attached on the edges of the nanosheets, which has a potential for uniform reactivity 

[13] and spill-over effect of the composite [15-17]. There appears to be relatively good 

adhesion between AuNPs and the ZnO nanosheets since there were no AuNPs that were found 

outside the ZnO nanosheets which may make the composite more stable [15]. The addition of 

the AuNPs is expected to increase the surface area of the ZnO nanosheet and spill over some 

of its electrons to the ZnO nanosheets which can improve its sensitivity and response time. 

However, there are more factors that affect gas sensing performance such as electrical 

conductivity, porosity, binding sites of material and interaction of the material with the analyte 

gas (chemisorption and physisorption) [17]. 
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Figure 6.2: TEM image of Au/ZnO composite  

6.3.2 Part B: Zinc Oxide (ZnO) Incorporated with Carbon Nanotubes (CNTs) composite 

(CNTs/ZnO)  

Figure 6.3 showed the XRD patterns of (a) pure ZnO and (b) CNTs/ZnO composite. The XRD 

pattern of CNTs/ZnO composite showed diffraction peaks at a 2-theta angle of 27⁰ (001) 34⁰ 

(100), 37⁰ (002), 39⁰ (101), 52⁰ (102), 64⁰ (110) and 71⁰ (112). The peak at 27⁰ (001) was 

consistent with the presence of pure CNTs in the sample as shown by the XRD of CNTs (Figure 

4.8) [4], which suggest that the composite was successfully made. The other peaks were 

indexed to pure ZnO (Figure 5.5) suggesting that the crystalline structure of the ZnO was not 

affected during the incorporation of CNTs [4].   
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Figure 6.3: XRD pattern of (a) pure ZnO and (b) CNTs/ZnO composite 

Figure 6.4 showed the TEM image of CNTs/ZnO. The image showed the ZnO nanosheets 

attached to the walls of the CNTs. It is evident that the ZnO is attached to the

walls of the CNTs and this is because the CNTs are larger in size. Some of the ZnO nanosheets 

were not entirely attached to the walls of CNTs due to the concentration ratio of the ZnO 

nanosheets to CNTs, which was 95% ZnO nanosheets. The surface area of the CNTs/ZnO is 

expected to be higher than that of the ZnO, because of the hollow nature of the CNTs [2, 7]. 

High electron density of CNTs through SP2 hybridisation makes them highly electron- 

conducting, this is ideal for improving the response time and sensitivity for ZnO nanosheets 

[6].  
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Figure 6.4: TEM image of CNTs/ZnO composite 

 6.3.3 Part C: BET and Gas Sensing of Au/ZnO and CNTs/ZnO Composites.  

Table 6.1 showed specific surface areas (SBET) of ZnO, Au/ZnO and CNTs/ZnO. There was a 

noticeable increase in the surface area of the ZnO nanosheets with the addition of AuNPs and 

CNTs. The surface area increased from 102 to 131 m2/g with the addition of Au and 102 to 153 

m2/g with the addition of CNTs. Figure 6.5 showed a graphical presentation of specific surface 

areas (SBET) of ZnO, Au/ZnO composite and CNTs/ZnO composite. The CNTs/ZnO showed 

the highest surface area as compared to pure ZnO and Au/ZnO. This is due to the hallow nature 

of the CNTs resulting in a higher surface area [7].  The surface area of CNTs has been reported 

in the literature to be around 150 m2/g [16]. The Au nanoparticles at low loadings do not affect 

the surface area of the material, however, at the Au loading of 5 w/w%, the Au particles start 

to increase the surface, possibly due to their concentration and size. 

Table 6.1: Specific surface area of ZnO, Au/ZnO composite and CNTs/ZnO composite 

Samples  Surface Area (m2/g) 

ZnO 102 

Au/ZnO 131 

CNTs/ZnO 153 
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Figure 6.5: Specific surface areas (SBET) of ZnO, Au/ZnO and CNTs/ZnO 

Figure 6.6 showed the electrical conductivity changes of Au/ZnO, CNTs/ZnO and CNTs in the 

presence and absence of analyte gas (CO) with varying concentrations. To investigate the effect 

of nanomaterials addition on the sensor performance, different sensors with surface 

modifications were tested. The analyte gas was varied from 10 to 200 ppm for all the samples 

and the temperature was kept constant at 250⁰C as it is the lowest reported temperature in the 

application of gas sensors. The temperature of 250⁰C was preferred over room temperature 

because at high temperature there is improved mobility of the electrons for ZnO semiconductor 

[15]. The electrical conductivity increased when the samples were exposed to CO gas 

throughout the concentrations range. The increase in electrical conductivity when the sensor 

was exposed to CO (reducing gas), suggests that the composites behaved as an n-type 

semiconductor, similarly to pure ZnO [17].  

 The exposure of the ZnO nanosheets in synthetic air causes free oxygen molecules to be 

absorbed in the surface. The absorbed oxygen captures electrons from the surface of ZnO 

leading to the formation of oxygen ions [18]. After the formation of oxygen ions, the electrical 

resistance increases, due to the formation of depletion layers on the ZnO surface. Exposing 

ZnO electron depleted surface to a reducing gas (CO), induces a reaction between CO and O2- 

and subsequently forming CO2 [17]. The formation of the CO2 molecules decreases the 

concentration of the oxygen ions on the surface of the ZnO sensor leading to an increase in the 
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concentration of electrons in the surface of ZnO, which subsequently made the depletion layer 

thinner, hence an increase in electrical conductivity as depicted in Figure 6.6 [18].   

 

Figure 6.6: Electrical conductivity changes of a) Au/ZnO, b) CNTs/ZnO and c) CNTs when 

exposed to different concentrations of CO gas.  

Figure 6.7 showed the graph of sensitivity of various sensors versus the CO concentration of 

200 ppm since it had the highest sensitivity for pure ZnO (Chapter 4). Sensitivity was 

calculated (Equation 5.1) to be 9.97, 9.96, 9.99 and 9.98% for ZnO, Au/ZnO, CNTs/ZnO and 

CNTs respectively.  The sensitivity of the sensor depends on the interaction between the analyte 

gas and the surface of the sensing material. This explains the observed differences in the 

sensitivity values for different samples (Au/ZnO, CNTs/ZnO and CNTs) which can be related 

to differences in the morphology of the material. The morphology affects the surface area and 

surface defects resulting in different sensitivity values. The mechanism of sensitivity can be 

explained in terms of the chemisorbed oxygen molecules [18]. The more chemisorbed oxygen 

molecules on the surface of the sensor the better the sensitivity. However, the adsorption of 

these oxygen molecules depends on other factors, such as material porosity. A large surface 

area leads to more chemisorbed oxygen molecules resulting in increased sensitivity [18]. Hence 

different morphologies showed different sensitivity values because they exhibited different 

surface areas. This explains the reason the sensitivity value of the CNTs/ZnO (9.99%) is 
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relatively higher than ZnO nanosheets and Au/ZnO composite. This is because the CNTs/ZnO 

has the highest surface area resulting in a larger quantity of the O-ions being absorbed.  

Guo et al [12] investigated the effect of AuNPs loading on the ZnO nanorods. The study 

showed that thinner nanorods exhibited higher sensitivity as compared to thicker nanorods, and 

this is because thinner nanorods had a larger effective surface area resulting in more 

chemisorbed oxygen molecules. The study also demonstrated that the addition of Au in the 

ZnO nanorods improved the gas sensor performance.   

Based on Figure 6.7, it is apparent the CNTs/ZnO composite showed better sensitivity followed 

by the CNTs. The BET surface area (Figure 6.5) studies showed that the CNTs/ZnO had the 

highest surface area of 153 m2/g compared to ZnO nanosheets and Au/ZnO composite at 102 

and 130 m2/g respectively. Therefore, the better sensitivity can be explained in terms of the 

surface area, whereby the high surface area of CNTs/ZnO resulted in more chemisorbed 

oxygen molecules which led to better sensitivity. Both the CNTs/ZnO and CNTs exhibited 

better sensitivity as compared to bare ZnO nanosheets and Au/ZnO.  These differences are 

mainly due to the hollow nature of the CNTs resulting in higher surface area. The Au/ZnO 

composite showed a lower sensitivity value compared to other samples. This might be due to 

the slight increase in AuNPs sizes due to clustering as observed in the TEM analysis (Figure 

6.2).  

 

Figure 6.7: Sensitivity (%) of ZnO, Au/ZnO, CNTs/ZnO and CNTs exposed to a concentration 

of 200 ppm of CO gas 
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Figure 6.8 showed the graph of the response time of different samples (ZnO, Au/ZnO, 

CNTs/ZnO and CNTs) exposed to a gas concentration of 200 ppm. Response time is one of the 

important parameters in determining the performance of the gas sensor and it is defined as the 

time required to reach 90% of a stable electrical current after the gas exposure [17]. The 

CNTs/ZnO composite gave the fastest response time of 49 seconds as compared to other 

samples. Further showing the effect of surface area in the performance of the sensor, as the 

sample with the highest surface area showed the fastest response time. Pure ZnO nanosheets 

showed a faster response time compared to Au/ZnO composite, this might be due to the 

interaction between the AuNPs and the ZnO. The difference might be explained by the spill-

over effect [15], whereby the amount and distribution of the AuNPs govern the performance 

of the Au/ZnO sensor. This effect only occurs when the AuNPs are well dispersed on the 

surface of the ZnO nanosheets (Figure 6.2), in this study the spill-over effect refers to the Au 

as a metal dissociated molecule that can spill over the surface of the ZnO. The mechanism of 

this process involves, first, the adsorption of molecules on the surface of the Au, and 

subsequently migrating to the surface of the ZnO nanosheets. The migrated molecules react 

with the oxygen species in the surface, hence the change in electrical conductivity [12-13]. 

However, more of the AuNPs in the surface can cause clustering which subsequently makes 

the spill-over effect less effective since fewer gas molecules can dissociate and spill over the 

ZnO nanosheets. Hence a relatively higher response time of the Au/ZnO as compared to bare 

ZnO nanosheets [16]. The CNTs/ZnO composite and CNTs both have the same surface area 

however, their response time differs as depicted in Figure 6.8. The difference in response times 

might be due to the electrons being transferred from the CNTs to the ZnO thus increasing the 

electrical conductivity of the material, while on CNTs alone, it does not have the ZnO effect 

hence having a longer response time. 
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Figure 6.8: Response time of different sensors exposed to CO gas concentration of 200 ppm 

6.4 Conclusion  

The Au/ZnO composite was successfully synthesised by mixing the ZnO nanosheets with 

AuNPs (14 nm). The characterisation showed that neither AuNPs nor ZnO crystal structure 

was altered during the incorporation. The AuNPs were well dispersed in the ZnO nanosheet. 

The Au/ZnO had a higher surface area than ZnO nanosheets alone. The synthesis of the 

CNTs/ZnO composite was successful. Both the pure ZnO and CNTs were not changed during 

synthesis of the composite, further suggesting that both retained their crystal structure. The 

ZnO nanosheets were attached on the walls of the CNTs. The CNTs/ZnO composite had a 

higher surface area as compared to the ZnO nanosheet before incorporation. The CNTs/ZnO 

composite showed an improved sensitivity and response time as compared to bare ZnO, 

suggesting that making composite with the CNTs improved the material. 
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CHAPTER 7 

7.0 General Conclusions and Recommendations 

7.1 Conclusions 

The formation of ZnO nanostructures was achieved by microwave digestion method using 

different concentrations of NaOH. It was found that different concentrations of NaOH affect 

the morphology of the ZnO. ZnO nanostructures such as hexagonal, flower-like and sheets-like 

were achieved. The nanosheets showed the highest surface area compared to other 

nanostructures. The ZnO was tested for gas sensing capabilities and showed a response time of 

144 seconds when exposed to 200 ppm of CO gas.  

AuNPs were synthesised using gold salt as the metal precursor and citrate was used as both a 

reducing agent and stabiliser. Spherical AuNPs with sizes of 14, 30 and 40 nm were 

successfully synthesized by systematically varying the concertation of citrate. Carbon 

nanotubes were synthesised using ferrocene as a catalyst and acetylene as the carbon source. 

Average size of 95 nm of CNTs was achieved by varying the flowrate of acetylene gas into the 

chemical vapour deposition furnace.  

The two additives (AuNPs and CNTs) were synthesised in order to make composites with the 

ZnO. The composites showed an increased surface area compared to pure ZnO, however, the 

CNTs/ZnO composite showed the highest surface area of them all. The gas sensing 

performance of the composites was investigated and CNTs/ZnO composite showed the fastest 

response time of 49 seconds when exposed to 200 ppm CO gas.  

7.2 Recommendations  

The following are recommended for future studies to fully understand the behaviour of ZnO: 

 Detailed characterisation techniques Photoluminescence (PL) and high-resolution TEM to 

investigate the d-spacing and fringes (crystal planes) and compare with XRD data. 

 Investigate the effect of different AuNPs and CNTs loadings on ZnO nanosheets. 

 Investigate more gas sensing parameters such as selectivity of ZnO based gas sensor. 

 Investigate the interaction between Au-ZnO and CNTs-ZnO, since these will have 

implications on the reproducibility of the ZnO based gas sensor. 

 Conduct molecular modelling of the ZnO composites and the analyte gas to investigate the 

binding sites. 
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 Perform BET long scans to obtain isotherms for calculating properties such as pore shapes 

and binding sites. 
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Appendices  

 

Appendix A: Technical Trainings 

  

 Microsoft Excel: Spreadsheet as an Engineering Tool, Mintek, Randburg, 28-29 May 2018. 

 

 Mastering Business Communication Training, Mintek, Randburg, 21-22 June 2018. 

 

 Project Management Training, Mintek, Randburg, 21-23 August 2018. 

 

 Presentation Techniques Training, Mintek, Randburg, 03-04 October 2018. 

 

Appendix B: Calcination temperature optimization  

 

 

Figure 1B: The calcination temperature study of ZnO 
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Appendix C: Concentration study of ZnSO4 

 

Figure 2C: FTIR spectra of  ZnO synthesised using  ZnSO4 concentrations of (a) 0.1 M, (b) 

0.2 M, (c) 0.3  M, (d) 0.4 M and  (e) 0.5 M 

 

 

Figure 3C: SEM images of ZnO synthesised using NaOH concentrations of (a) 0.1 M, (b) 0.2 

M, (c) 0.3 M, (d) 0.4 M and (e) 0.5 M 
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Figure 4C: TEM images of ZnO synthesised at different temperatures with 0.1 M of ZnSO4 

and NaOH at (a) 40⁰ C, (b) 60⁰ C, (c) 80⁰ C and (d) 100⁰ C    
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Figure 5C: TEM images of ZnO synthesised using ZnSO4 concentrations of (a) 0.1 M, (b) 0.2 

M, (c) 0.3 M, (d) 0.4 M and (e) 0.5 M 

 

 

 

 

 

 

 

 

 

 

 

 


