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During the last decade technology for seeing through walls and through dense vegetation 

has interested many researchers. This technology offers excellent opportunities for military 

and police applications, though applications are not limited to the military and police; they 

go beyond those applications to where detecting a target behind an obstacle is needed. 

To be able to disclose the location and velocity of obscured targets, scientists’ resort to 

electromagnetic wave propagation. Thus, through-the-wall radar (TWR) is technology 

used to propagate electromagnetic waves towards a target through a wall. Though TWR is 

a promising technology, it has been reported that TWR imaging (TWRI) poses a range of 

ambiguities in target characterisation and detection. These ambiguities are related to the 

thickness and electric properties of walls. It has been reported that the mechanical and 

electric properties of the wall defocus the target image rendered by the radar. The 

defocusing problem is the phenomenon of displacing the target away from its true location 

when the image is rendered. Thus, the operator of the TWR will have a wrong position, not 

the real position of the target. Defocusing is not the only problem observed while the 

signal is travelling through the wall. Target classification, wall modelling and others are 

areas that need investigation. 
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Consequently, many approaches are proposed in the literature to address these issues. This 

researcher proposes the use of micro-motion as source of the micro-Doppler effect to 

detect the presence of a target behind a wall. 

In physics, a body in motion is a source of the Doppler effect when an electromagnetic 

wave impinges on the body. The Doppler effect is a physical phenomenon observed when 

an electromagnetic wave bounces off a moving target or when the radar is in motion and 

the target is stationary. It is used to determine the radial velocity of a moving target. 

However, there are many targets of interest that do not perform radial motion. This motion 

is often complex and is known as micro-motion. Motion such as the rotation of a rotor 

propeller, vibration of infrastructure and the movement of limbs, as well as the level of 

vibration of structures, is known as micro-motion. 

Therefore, knowing the type of target under investigation yields vital information in 

advance. It is known that all living humans undergo micro-motion, even when stationary. 

Micro-motion is regarded as an important source of micro-Doppler effects. The heartbeat, 

chest movement due to breathing and the movement of limbs will be investigated as 

human micro-motion in this thesis. In many cases micro-Doppler is superimposed on the 

main Doppler induced by the translation motion of the target. Many research reports have 

been published on micro-Doppler and how to retrieve it. This work is devoted to 

investigating the retrieval of a human signature in the home environment. 

In a home environment, the signal transmitted by radar has two possible patterns; the 

signal can travel from the radar to the target by passing through the wall only or it can be 

obstructed by other appliances and the wall as well. Consequently, the signal may undergo 

more disturbance while travelling through the wall and electronic appliances in various 

ways. An investigation involving detection of a human being in a home environment is 

undertaken in this thesis. A combination of micro-Doppler movement of the limbs, the 

heartbeat and chest movement in the presence of a wall and appliances can be used as a 

human signature. The human signature is mixed with many other return signals when 

collected at the radar receiver. Thus, one can separate the appliances’ wall signal return 

from the overall signal returned to be able to detect human micro-motion. 

To conduct the experiment, a frequency modulation wave radar is built. The radar system 

works as a synthetic aperture radar in the frequency range of 2315 - 2591 MHz. In 

addition, because of the limitation in terms of the frequency range of the radar that is built, 

a simulation is performed in MATLAB. The built radar uses the industrial, scientific and 

medical band, which is an unlicensed band. The simulation will run in a frequency range 
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other than the aforementioned range to study the behaviour of the radar in different 

frequency bands. 

In this work, continuous wave frequency modulation radar is used to detect the micro-

Doppler effect coming from a human body obstructed by a wall and appliances. This work 

is of great interest in many countries, where buildings and bridges occasionally collapse 

while under construction. In the mining sector, this will help in finding survivors in case of 

a landslide. The application of this work is not limited to the aforementioned cases. To 

fight rhinoceros poaching, the system can be mounted on a drone, then sent to survey a 

game reserve. In addition, the system can be used in law enforcement. In such a case, a 

police officer will be equipped with this radar to determine the number of human beings 

inside a building. This type of radar could be used as well to detect guns carried by people 

inside a building. Moreover, the radar can detect concealed objects inside a building, to 

give police prior knowledge before entering a building. 

Various important results emanated from this research: (1) It demonstrated the fact that 

micro-Doppler frequency is an efficient way of extracting and classifying the micro-

movement of a target. This allowed the researcher to achieve the primary scientific 

objective of detecting human activities behind a wall in the presence of appliances. The 

target was mobile and non-cooperative; micro-Doppler return was sensed with an FMCW 

radar. (2) In addition to that, this research achieved one more scientific objective by 

designing a low-cost FMCW radar to collect and analyse radar signatures with MATLAB 

software. (3) Furthermore, a detailed analysis of the classification of a target behind a wall 

was proposed. The researcher demonstrated a way to extract human micro-Doppler in the 

presence of a fan. This deals with the case when two micro-Doppler signals are 

overlapping. (4) Besides that, the antenna used in the experiment was made in the 

laboratory. (5) Furthermore, a printed circuit board was designed and tested for radar 

signal generation. (6) Research reported in the literature did not consider a small chest area 

when detecting human beings. The additional contribution of this thesis is that in the home 

environment people of different height may live together; therefore, assuming that the 

subject behind the wall will always be an adult might disregard some parameters necessary 

for the evaluation of the radar. Simulation involving human beings of different height has 

thus been presented. 
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CHAPTER 1   INTRODUCTION 

1.1 CHAPTER OVERVIEW 

In this thesis, the researcher is investigating the possibility of using frequency modulation 

continuous wave (FMCW) radar to detect a human being in a home environment. The 

micro-Doppler data are extracted from the raw data collected with the FMCW radar. This 

chapter outlines the background of the research and formulates concrete research questions 

based on the possibility mentioned above. Justification for the importance of this research 

is presented and relevant objectives and goals are outlined to define and defend the 

contribution to the body of knowledge. 

1.2 BACKGROUND TO THE RESEARCH 

Knowledge of the unknown has been a subject of interest among humans from the 

beginning of their existence. This is no different in modern times; humans are still making 

concerted efforts to find answers to questions about the unknown. In this case, the 

researcher is investigating the possibility of seeing through a wall. Human eyes make use 

of light reflected from an object to see. The fact that human eyes can only see when light is 

reflected automatically limits the field of vision of a human to a certain spectrum. It is 

known that visible light has a very short frequency band spectrum. Furthermore, the 

frequencies of visible light allow transparency in few materials found on earth. 

Consequently, the researcher made use of electromagnetic (EM) waves with frequencies of 

a few gigahertz (GHz), which penetrate many building materials and vegetation [1]. 

Currently, there is a great deal of interest in the use of radar to detect concealed targets, 

using a system called through-the-wall radar imaging (TWRI) [2, 3]. The core aim of 

TWRI is to use EM waves to sense objects inside an enclosed building or obstructed by 

non-metallic material. The important objective in this case is to extract the physical 

characteristics of a scene under inspection. This type of radar opens doors to many 

applications, such as military and rescue security applications [4, 5] . Recently this type of 

radar has been used in Nepal, where four men trapped under debris were found and 

rescued [6]. For military applications, the objective is to detect concealed objects such as 

bombs or to distinguish terrorists from hostages in an urban environment. In hostage 

rescue, great care has to be taken to avoid collateral damage. Furthermore, this technology 
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can be applied in mines up to a certain depth when miners are trapped underground, as 

happened in 2016, when three miners were trapped and killed underground in Lily mine, 

South Africa [7]. In addition, in rescue applications, TWRI is used to detect survivors after 

a natural disaster such as an earthquake or tornado. Seeing through an opaque object could 

be helpful in hostage rescue missions as well, as mentioned earlier. TWRI offers a wide 

range of applications; among others it can reveal the presence of concealed objects and 

human bodies inside a building. TWRI can detect animate and inanimate targets, which is 

an advantage compared to the thermal camera. 

It has been reported that by using TWRI, a target inside a building could be detected and 

distinguished [8, 9, 10]. However, although this technology is promising, it poses some 

challenges, such as signal fading and target defocusing, which both reduce human 

detectability in this type of application [11]. Wall modelling and target differentiation are 

further challenges. 

Signal fading is significant because the signal travels through the wall twice before getting 

back to the radar receiver. This implies significant attenuation from the wall. This is the 

reason why most research undertaken in this area uses frequencies that can penetrate the 

wall easily. Furthermore, some work in the literature shows that a target could be displaced 

from its actual position while the scene is being imaged [8]. This problem is known as 

target defocusing. Thus, these issues are addressed differently in the literature [12, 13].  

A great deal of work has addressed the attenuation caused by a wall. To mitigate the wall 

attenuation, researchers tend to build TWRI systems that work below 3 GHz frequency. 

Therefore, Table 1-1 presents a summary of different papers reporting on wall attenuation. 

The first column presents the reference of the paper in the bibliography, the second column 

presents the different waveforms used in different papers, the third column presents the 

frequency transmitter used for the radar and finally, the last column presents the 

processing method used in different papers to mitigate the wall effect. At the frequencies 

presented in column three, the wall attenuation is more reasonable than at higher 

frequencies. Another approach that has been proposed to mitigate wall clutter is based on 

background subtraction. This approach assumes that the wall characteristics are known, or 

the wall is modelled mathematically, prior to the radar imaging. The value of the wall 

electric characteristics is then subtracted from the raw data [12, 13]. This approach gives 

good results but is not realistic in practice because of the unknown electric characteristics 

of the wall. Moreover, knowing that the electric characteristics of the wall may vary as a 

function of the frequency and humidity makes background subtraction more complex. 
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Table 1-1: Frequency and type of radar used most in TWRI. 

Ref. Radar type and 

waveform used 

Frequency Processing method used 

[5] Synthetic aperture 

radar (SAR) based 

on stepped 

frequency 

0.7-3.1 

GHz 

The authors compared the relative strength of the 

exterior wall returns to behind-wall targets using the 

singular value decomposition method. 

[8] SAR based on 

stepped frequency 

1-3 GHz The authors used a refocusing approach to remove the 

effect of the wall. They used the idea of match filtering 

to compensate for the effect of the wall and to 

reconstruct the point target response; this was possible if 

the wall parameters were known. 

[9] SAR based on 

pulse frequency 

2 GHz The authors used two different imaging schemes to 

mitigate the error due to the wall effect. The first one 

relied on forming target displacement trajectories from a 

different standoff distance, and assuming different 

values of wall thickness and dielectric constant. Then 

the second one, relying on an image sequence, was 

generated.  

[10] SAR based on 

pulse frequency 

100, 300, 

500, and 

600 MHz 

The authors developed a two-dimensional (2-D) contrast 

source inversion-based imaging technique for layered 

media and their application to through-the-wall imaging. 

[13] SAR based on 

stepped frequency 

2 GHz This work was an extended version of 2-D imaging done 

previously by the authors. They analysed three-

dimensional (3-D) imaging via delay-and-sum 

beamforming in the presence of a single uniform wall. 

[14] SAR based on 

stepped frequency 

1-3 GHz In order to mitigate the spatial zero-frequency and low-

frequency components significantly, corresponding to 

wall reflections, the authors used spatial filters across 

the antenna array. 

[15] SAR based on 

pulse frequency 

2-6 GHz The authors used a time-domain approach to optimise 

the detectability of the target and applied a back-

projection microwave imaging algorithm for 3-D image 

recovery of radar objects. 
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Consequently, to deal with high wall reflection without relying on prior knowledge of the 

electric wall characteristics, some other approaches have been proposed [14, 16]. Such an 

approach uses the signal received to estimate and model the wall characteristics. This 

requires a strong algorithm to determine the characteristics of the wall, such as a singular 

value decomposition [5]. To solve the issues mentioned earlier without relying on 

background subtraction or the first backscattering signal, other authors proposed using an 

array of antennas that are spatially spread [17]. By using different positions of the 

antennas, one can extract the electric wall characteristics at different points. These 

collected characteristics are used to estimate the true electric wall parameters. This type of 

approach is well fitted to real-time applications, since one can extract the dielectric 

characteristics of the wall while sensing. The disadvantage of this type of radar is the 

number of antennas, which can be cumbersome. Thus, for applications where the weight 

has to be kept as low as possible for human portability, this approach may not be practical. 

The next subsection introduces the research problem and the hypothesis.  

1.3 RESEARCH PROBLEM AND HYPOTHESIS 

1.3.1 Research problem 

To address the hypothesis, the following research questions have been formulated: 

a) How does the medium through which the radar signal propagates affect the 

detectability of a human behind the wall? 

b) How can one detect a physically weak victim after an earthquake while the 

person’s breathing and heartbeat signal strength is weak? 

c) How can one detect a target with a lower chest radar cross-section (RCS), such as a 

child? 

d) How can the range ambiguity of a radar caused by different types of walls be 

reduced in order to determine the real position of the target? 

One thus observes that the medium in which the signal is propagating affects the 

detectability of the target behind the wall. This thesis also proposes an approach to detect a 

weak victim, which involves cancelling the clutter around the target. This approach is 

taken because the target may be miss-imaged while the radar is scanning the area of 

interest. In addition, a lower chest size implies a lower RCS. A small chest size can be 

observed when children are taken as target. In this case, one may sample a weak return 

signal, which will require highly sensitive radar to detect the signal.  
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1.3.2 Hypothesis 

Micro-motion has been used to detect, identify and classify targets of interest in radar 

system technology. However, the detection, identification, and classification can be 

misrepresented if a good algorithm is not used or if the target is obstructed. Much research 

found in the literature addresses the issue. To classify human limb movement, the authors 

in [18, 19, 20] demonstrate that one can classify movement of the feet, hands and chest. In 

[21], using a harmonic radar operating at 12 and 24 GHz frequencies, the authors were 

able to detect breathing and chest movement. 

The research reported in the literature considers a target obstructed by single or multiple 

wall slabs. In a home environment, considering a wall slab as the only obstruction between 

the target and the radar can be misleading, since besides the wall, the scene may contain 

different home appliances. The research conducted in this area strives to determine the 

possibility of finding a target that lies behind a wall and a home appliance simultaneously. 

Therefore, experiments where the radar signal has to go through the wall and at least one 

home appliance such as a fridge, television or fan, will be conducted. 

The following hypothesis has been formulated to summarise the aforementioned 

paragraphs: 

If through-the-wall radar signal attenuation and human micro-motion are related to the 

media where the signal is propagating and to the micro-Doppler effect, then the presence 

of an appliance between a target and the radar may cause the non-detectability of the 

target, but it would still be possible to detect chest and limb movement using a micro-

Doppler radar. 

1.4 JUSTIFICATION FOR RESEARCH 

1.4.1 Introduction 

The FMCW radar is used for scanning an object behind one slab or multiple slabs of wall. 

To perform the imaging, an EM wave is transmitted via a transmitter antenna, goes 

through the wall, then reflects from objects behind the wall. After reflection, the signal 

travels back to the receiving antenna through the slab of wall. At a frequency of a few GHz 

and below, most construction materials let the EM wave pass with reasonable attenuation. 

However, the signal undergoes the following phenomena while passing through the wall: 

reflection, refraction, diffraction and absorption [2].  



 

Department of Electrical and Electronic Science 6 

University of Johannesburg 

Therefore, the primary objective of this research is to understand how EM waves are used 

to rescue people in cases of natural disaster. Nowadays EM waves are used everywhere. 

While this may be helpful, for example in medicine for X-ray examinations or for 

telemedicine monitoring, it can also be harmful to a certain extent when the transmission 

power is not well managed. Therefore, many regulatory bodies limit the transmission 

power of EM waves. EM waves have been used in many applications, such as 

telecommunication, medical treatment (cancer treatment), etc. 

Human beings being buried under rubble is a frequent problem in areas where natural 

disasters occur or wherever there is war. When buildings collapse, there are always human 

beings under the rubble who need to be evacuated as soon as possible. However, the 

methods used to rescue them usually require time. 

It should be mentioned that the signal received by the radar is complex because of the 

reflection, refraction, diffraction and absorption. Noise and clutter are constituents of the 

received signal that make the interpretation of the signal difficult. Therefore, signal 

processing is required to display a human-interpretable image. Signal processing requires a 

performant algorithm to solve this complex problem, but since there is no exact method to 

achieve this, researchers and engineers in the radar area encounter challenges. 

In this research, the researcher aims to detect humans who may be immobile or mobile 

under debris. The debris may constitute a wall-only or wall-appliance combination. After a 

natural disaster, human beings trapped inside a building or under a fallen wall may be 

conscious or unconscious. The researcher aims to detect the target in both situations. In 

addition, because the target may be an adult or a child, this research will extend its 

investigation to a reduced RCS, taking into account a child’s chest size. 

1.4.2 Research gap in through-the-wall radar imaging 

Despite much research in TWRI, there are still unsolved problems, thus further research is 

required into the aspects discussed below. 

1.4.2.1 Detectability of the human being 

The micro-Doppler effect is the main phenomenon used to search for and rescue humans 

buried under rubble after a building has collapsed or an earthquake. To detect the presence 

of a target (human being), an EM wave is emitted in the direction of the area of interest. 

The EM wave illuminates the target, then the target scatters back a modulated wave in the 

direction of the radar. The movement of the breathing and heartbeat of the human target 
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modulates the backscattering wave. However, there are still questions that have not been 

addressed. One can consider that after an earthquake, human victims may be weak. Thus, 

the breathing and heartbeat signal strength of the trapped victim may be too weak to be 

detected by the radar. Highly sensitive TWR sensing (TWRS) systems are needed to solve 

this problem. 

Much research done in this area considers the victims as adult human beings. However, 

after an earthquake or if a building collapses, children may be trapped under the rubble as 

well. The heartbeat rate can vary significantly with the age of a person [22]. Therefore, a 

radar may miss some targets owing to their heartbeat ratio. In addition, the RCS of a 

child’s chest is lower than that of adult victims. This issue can be investigated. Besides 

that, the position in which the victim is found should be taken into consideration because it 

can vary the RCS. 

In February 2016, three gold miners were trapped underground in South Africa [7]. 

Scientists can investigate the detectability of a human being who is buried alive. In this 

case one should consider that the soil contains some metal components in its natural state. 

Because of this, the dielectric properties may be close to a perfect conductor. 

In addition to the above issues, the radar resolution should be investigated. It has been 

reported that it is difficult to detect human beings while they are standing against a wall. 

This is due to the radar range resolution. One can investigate the possibility of 

distinguishing the target and the wall as distinct objects. 

1.4.2.2 Wall modelling 

The lack of a well-designed wall model remains a huge challenge in this area. Research 

has considered knowledge of the wall parameters or the first return signal coming from the 

wall. An effective wall model should take into consideration the state of the wall. Since 

humidity and the frequency band used can have a significant influence on the transmitted 

signal, one should take into consideration the time of year in which this system can be used 

effectively. Researchers could consider investigating humid and dynamic conditions as 

well, rather than only dry walls. 

1.4.2.3 Target differentiation 

TWRI has been used successfully to detect human beings inside buildings. However, a 

new technique should be investigated when the scene of interest contains more than one 

target. In a scenario where there are hostages and terrorists in the same building, rescuers 
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need to be able to distinguish effectively between the two targets. Thus, new techniques 

should be applied to differentiate between the activities of hostages and terrorists. 

The next section is devoted to the research methodology. To determine the hypothesis of 

this work, the study followed a course of steps to identify open issues in the body of 

knowledge. 

1.5 RESEARCH METHODOLOGY 

The research methodology used in this study is illustrated in Figure 1.1. 

1.6 DELIMITATIONS OF RESEARCH 

It has to be mentioned that radar technology is a vast area of research. Radars can be found 

in civil aviation, military aviation and in meteorology etc. Therefore, delimiting the 

research subject in this thesis is very important. Knowing the application for which the 

radar has to be used is one among many elements that can make radar work better in one 

application than in another. 

Furthermore, what may be a target in one application might be clutter for another 

application. This last statement can be seen in weather radar, of which the target may be 

rainfall and the development of cloud. On the other hand, cloud and rain are seen as clutter 

in air traffic control.  

For the sake of this investigation, the researcher is working on TWR. TWR is a low-

transmission power radar compared to radar used for air traffic. The transmission power 

has to be kept low because the signal has to travel through human tissue, which cannot be 

exposed to higher RF energy. 
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Figure 1.1: Research methodology followed for the proposed research. 
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Thus, taking into consideration the power transmission, a practical choice has been made 

of the FMCW radar as sensor with a lower RF power amplifier (PA) wattage. In addition 

to power transmission, FMCW is cost-effective compared to pulse radar, which requires a 

high wattage PA. FMCW radar is used as sensor to detect human activities inside a room. 

Most research conducted in the TWR considers that the human behind the wall is an adult 

man or woman whose height is above a certain limit. To the best of the author’s 

knowledge, no research reported in literature has considered different heights of targets 

behind the wall. The lower height is considered in this thesis as children. Thus, this 

research devoted effort to investigating the return signal from children to adults in the 

simulation environment. 

All experiments were done in a laboratory environment at the University of Johannesburg 

and the author’s residence, both in South Africa. Because the study used micro-Doppler 

frequency to detect a subject behind the wall, mobile appliances were considered. 

Therefore, a fan was carefully considered as the main source of continuous mobility in a 

warm region, particularly in the home environment. Fans considered were ceiling and 

mobile fans used daily in the home environment. In addition, this application considered 

hot regions of the globe where the use of fans is necessary. 

1.7 RESEARCH CONTRIBUTION 

This thesis has made the following contribution: 

Collection, signal processing and analysis of data collected with FMCW radar for 

different targets 

Using FMCW radar, a target signature was collected, and the signal was processed. The 

data were collected in a laboratory environment and in a house where appliances were 

distributed normally. The targets comprised of human with different height and the fan. 

The target was walking toward the radar; the target direction line formed an angle different 

from the direction of the radar. 

FMCW radar hardware design 

To perform data collection, this thesis contributed by designing a cost-effective FMCW 

and high-performance radar. The hardware radar can be used in many scenarios to collect 

micro-Doppler data. 

 

 

 



 

Department of Electrical and Electronic Science 11 

University of Johannesburg 

Target micro-Doppler signature 

The investigation identified movement coming from the chest and limbs. With this type of 

radar, one is able to detect weak signals coming from a human target. 

1.8 PUBLICATION FROM THIS RESEARCH 

The following paper resulted from the research carried out during this work: 

P. K. M. Nkwari, S. Sinha and H. C. Ferreira, “Through-the-wall radar imaging: A 

review,” IETE Technical Review, vol. 35, no.6, pp. 631-639, September 2017 [23]. 

The IETE Technical Review is indexed by the Web of Science (WoS). 

The following article by the author has also been submitted and is under review: 

P. K. M. Nkwari and S. Sinha, “Frequency Modulation Continuous Wave Radar through 

the Wall Using Micro-Doppler,” submitted to a journal indexed by WoS. 

1.9 OVERVIEW OF STUDY 

The rest of this thesis is structured in the following manner: 

Chapter 2 is devoted to a literature review of relevant topics in TWRI to investigate the 

research hypothesis. Different techniques encountered in TWRI are reviewed in this 

chapter. While reviewing TWRI, attention is focused on reviewing the detectability of vital 

signs in the presence and absence of a wall. The chapter highlights the gaps remaining in 

this area of research as well. 

Chapter 3 presents a systematic discussion of the methodology used to complete the 

research, from the hypothesis phase to the measurement and conclusion phase. The 

methodology used here is the micro-Doppler, thus different micro-Doppler techniques are 

reviewed, and the relevance of the micro-Doppler used in this research is shown. 

Chapter 4 presents the radar built to collect the data. The data are collected with an FMCW 

radar. The setup and the connection of different modules are presented. Chapter 3 and 

Chapter 4 constitute a tool to test the researcher’s hypothesis throughout the experiment 

and the simulation. 

Chapter 5 focuses on the results of the study and experiments conducted. The chapter is 

divided into two main sections, the simulation run in MATLAB software and the 

experimental section. Simulation was used in this thesis because of lack of material that 

has to work at certain frequencies. Thus, simulations were performed at other frequencies 

to indicate how the radar should behave at those frequencies.  
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The second section related to the experiment describes the experiment undertaken with an 

FMCW radar built to function at 2.4 GHz, with two antennas. In this section, the 

researcher discussed the results obtained in the simulation and real experiment. The 

relevancy of this work depends on those results.  

Chapter 6 concludes this thesis and draws relationships between the simulation and the 

actual experiment. This chapter determines the possibility for future research by taking 

into account all the results obtained in this thesis. 

1.10 CONCLUDING REMARKS 

The introduction to this chapter revealed a gap in the current body of knowledge. To 

confirm this, the background and context of the problem were reviewed, leading to the 

formulation of the research hypothesis. It was shown how the research hypothesis was 

justified by the research methodology. The next chapter undertakes a literature review on 

radar in general and on TWR in particular. 

 



 

 

 

 

CHAPTER 2   LITERATURE REVIEW 

2.1 CHAPTER OBJECTIVES 

The chapter is divided into five sections: general background on the radar system, radar 

used in a through-the-wall system, interior structure reconstruction, the research gap in 

TWR imaging and the conclusion. 

To get an overview of radar, a general background on radar is given as an introduction to 

the chapter in section 2.2. Thereafter, in section 2.3, an introduction to different types of 

radar used in the TWR is presented. After reviewing the different types of radar used in 

TWRI and the different approaches used to mitigate radar clutter in section 2.3, section 2.4 

is dedicated to interior structure reconstruction. Interior structure reconstruction is another 

interesting area of research for TWRI. Using a TWR allows a structure to be imaged 

without the necessity to enter it. One can ascertain the layout of a building or structure 

while using this radar. In section 2.5, different gaps remaining in the body of knowledge 

are presented. Thus, to identify a gap in the body of knowledge that this work sought to 

fill, a section devoted to the research gap in TWR imaging has been introduced. In this 

section, the researcher focuses on the gap remaining in this area of research. Finally, 

concluding remarks are presented. 

2.2 GENERAL BACKGROUND ON RADAR SYSTEM 

2.2.1 Radar system 

Radar is an acronym for “radio detection and ranging” [24]. Radar uses EM waves to 

reconstitute the image of a target in the area of investigation. To illustrate the radar system, 

Figure 2.1 has been introduced. Figure 2.1 shows a block diagram with the different blocks 

that a radar system contains. These different blocks are necessary to enable collection of 

the echoes of the signal sent by the radar. 

To be able to detect any target in the vicinity of the radar, a wave is generated in the form 

of an electric signal at frequency, 𝑓1. The wave can take different waveforms, including the 

form of a pulse. The signal at frequency 𝑓1 is carried by another signal at a different 

frequency from 𝑓1. The second signal has a frequency of 𝑓2. The two signals generated are 
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then combined inside the transmitter. The process of combining the two frequencies is 

called modulation. Afterwards 𝑓1 + 𝑓2 are passed through a switch and radiated in the free 

space via an antenna. The radar pulse is transmitted in free space as an EM wave. The EM 

wave will bounce off any obstacle or object found in its way. After the bouncing, a small 

portion of that wave returns to the receiver antenna, called the echo. In radar technology, 

the bouncing is known as the scattering phenomenon. A small amount of the scattering 

signal returns to the same antenna used for the receiver in a monostatic radar or to the 

receiver antenna in the bistatic configuration. This small return is fed to the receiver 

antenna. The incoming signal will pass through a switch and then go to the receiver for 

signal conditioning and amplification. From the receiver it proceeds to the data recorder, 

then the processor, ending in the display. At the display, one can see the shape of the 

object off which the EM wave bounced, depending of the nature of the target. Figure 2.1 

represents a radar system with its different main blocks. 

 

Figure 2.1: Radar system with different blocks. 

In Figure 2.1, it is shown that using an EM wave is very useful, as it offers the possibility 

of detecting the presence of an object. While a camera will necessitate the presence of light 

to produce an image, radar can work even in darkness. Besides that, radar has the 

advantage of seeing through opaque objects, which the camera cannot do. Taking into 

account the advantages of radar over its counterpart, the camera, radar will fit well in the 

application of this work. 
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While the radar is emitting its signal in the air, any object found in the way of the signal 

propagation will induce a signal bounce. The signal bounce may come from many objects. 

The object that one needs to detect is known as a target, while the rest of the return signal 

is known as clutter. Therefore, what can be considered as clutter for one application can be 

considered as target for another. This can be seen in aviation; the airplane is a target to be 

detected. The signal has to pass through fog to reach the airplane. The fog and rain are 

clutter, because they decrease the signal strength. On the other hand, the weather radar sees 

rain and fog as target in order to process weather forecasting. Thus, calling an object a 

target is a function of the application of the radar. 

To detect a target under investigation, the wave form and the frequency of transmission are 

of great interest and have to be chosen meticulously. A waveform is chosen according to 

the function of an application, because some waveforms fit better into an application than 

others. 

Radar has been used in different applications to solve different problems encountered. 

Thus, radar can be classified in terms of its operating frequency, waveform and the place 

where the radar will operate [25]. 

2.2.2 Radar ranging 

Radar can reveal the range of a target and the type of target by processing the return signal 

from the target. 

To illustrate the signal propagation, a case of a pulse radar has been introduced in Figure 

2.2. In this figure transmitted and received signals are shown. In Figure 2.2, the top signal 

represents the transmitted train of pulse. The bottom signal represents a received train of 

pulse. 

Consider that at time 𝑡 = 0 = 𝑡0 a pulse 1 is sent from the radar antenna. By assuming that 

the radar was transmitting pulses before time 𝑡, pulse 2 can be considered to have been 

sent at time 𝑡2 = 𝑡 − 𝑃𝑅𝐼 and pulse 3 at time 𝑡3 = 𝑡 − 2 ∙ 𝑃𝑅𝐼. Here PRI is known as the 

pulse repetition interval. As illustrated, the train pulse has three pulses, which are 

transmitted through the air via the antenna. This train returns in the form of echoes when it 

reflects from any object. As transmitted, the echoes train constitutes three echoes, which 

are respectively for pulses 1, 2 and 3. While the echoes train is returning, a time difference 

from the moment the train pulse has been transmitted and the train echo has been received 
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is observed. This time difference is illustrated in Figure 2.2 and represented by ∆𝑡. ∆𝑡 can 

be translated in terms of distance, as the velocity of the wave is known. Thus: 𝑅 =
𝐶∙∆𝑡

2
. 

 

Figure 2.2: Transmitted and received train of pulses. 

To reveal the range, a train of pulses is sent to the target, as illustrated in Figure 2.2. The 

pulses have the same width, denoted 𝜏, and are transmitted at regular intervals. The 

interval from the starting point of pulse 1 to the starting point of pulse 2 is known as the 

PRI. The PRI is also called the inter-pulse period, as it constitutes the period of the signal, 

which can be represented as T as well. In terms of frequency, the PRI is interconnected 

with a pulse repetition frequency (PRF). The PRF is the inverse of the PRI. Let 𝑓𝑟 denote 

the PRI, which can be calculated as follows: 

𝑓𝑟 = 
1

𝑃𝑅𝐼
=  

1

𝑇
.                                                               (2.1) 

From Figure 2.2, one can see that the radar only transmits a signal for 𝜏 time. For the rest 

of the period, the signal is low. The radar listens for any return signal in the interval when 

it is not transmitting a signal. The listening interval allows a radar to detect far-away 

targets present in the vicinity. This listening interval is proportional in a certain way to the 

range that one would like radar to have.  Beyond that time the radar will expect to receive 

an echo of pulse 2. Thus, the time interval is related to a range called the unambiguous 

range. The next sub-section is devoted to the unambiguous range. 
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2.2.2.1 Unambiguous range 

For echo 1 to reach the radar receiver, the signal will have to travel two ways after a time 

delay 𝑇. The two-way distance travelled by the radar is known as the radar unambiguous 

range, 𝑅𝑢 [26]. According to Figure 2.2, echo 1 is regarded as the return signal from a 

target at range 𝑅1 due to pulse 1. Furthermore, echo 2 can be regarded as the return signal 

from a target at range 𝑅1 owing to pulse 2, or on the other hand as the return signal from a 

target far away at range 𝑅2 owing to pulse 1. Therefore, the ranges can be calculated as 

follows: 

𝑅1 =
𝐶. ∆𝑡

2
                                                                      (2.2) 

and 

𝑅2 =
𝑐. ∆𝑡

2
                                                                      (2.3) 

or  

𝑅2 =
𝑐(𝑇 + ∆𝑡)

2
.                                                               (2.4) 

Thus, using echo 2 brings about a certain ambiguity in the calculation of the range. To 

overcome the status of unambiguity, the radar has to wait a sufficient amount of time 

before sending another signal, once the preceding pulse has been sent. The amount of time 

has to be sufficient to allow the echo of the far-away target to reach the radar receiver. 

Thus, the maximum unambiguous range must be half of the PRI: 

𝑅𝑢 =
𝑐𝑇

2
=  

𝑐

2. 𝑓𝑟
.                                                                    (2.5) 

2.2.2.2 Range resolution 

Range resolution is the ability of a radar to distinguish between two different targets at the 

closest range. This is one of the main metrics in the radar system, because it will help 

greatly in different applications. 

To explain the range resolution, Figure 2.3 introduced the concept. In this figure the radar 

is placed at this position while transmitting a signal in the air. Three cases have been 

shown in Figure 2.3. The first one involves two humans who are in the same bin but 

separated in the cross-range, the second two humans in two different bins, but in the same 

cross-range, and the last one two humans in different bins and different cross-ranges.  
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Normally, radar operates between a minimum and a maximum range, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 

respectively. The distance between the 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 is divided into bins of equal width, 

∆𝑅. ∆𝑅 is the range resolution and if one considers that the distance between 𝑅𝑚𝑖𝑛 and 

𝑅𝑚𝑎𝑥 is divided into 𝑁 range bins, ∆𝑅 can be calculated as follows: 

∆𝑅 =
𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

𝑁
.                                                       (2.6) 

Figure 2.3 is an illustration of different scenarios in which human beings may find 

themselves in relation to the radar and each other. 

 

Figure 2.3: Range resolution. 

In Figure 2.3, consider the humans found in the same range bin ∆𝑅, in situation 1. For the 

radar to be able to distinguish between the two targets, image processing is necessary in 

the cross-range. In situation 2 the two targets can be distinguished in range. Finally, in 

situation 3 the target can be distinguished in range and cross-range. The range resolution 

∆𝑅 is determined as greater than or equal to 
𝑐𝜏

2
 in order to distinguish between two 

different targets. 

∆𝑅 =
𝑐𝜏

2
=  

𝑐

2. 𝐵
                                                      (2.7) 

with the radar bandwidth 

𝐵 =
1

𝜏
.                                                                  (2.8)  
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Thus, to achieve a fine range resolution radar, one has to build a radar with greater 

bandwidth. From (2.8), one can see that in order to get greater bandwidth, the pulse width 

has to be reduced. This has the undesirable effect of reducing the maximum range of the 

radar by influencing the average transmit power.  

2.2.3 Doppler frequency 

The Doppler frequency is a notion that is necessary to this research, as it is the method 

chosen to detect the target. To illustrate the notion of Doppler frequency, Figure 2.4 has 

been presented. In this figure a radar is transmitting a signal while a human is walking. 

The radar sends an EM wave to the target, then receives the return signal. Using the delay 

of the received wave, the radar will detect the range at which the target is. This delay is 

translated in terms of the frequency, known as frequency shift. A frequency shift from the 

transmitted wave will be observed if the EM wave bounces off a moving target. This 

frequency shift is known as the Doppler effect [27]. This phenomenon finds many 

applications in physics and engineering. In Figure 2.4 a human being is moving towards 

the radar and another one is moving away from the radar. 

 

Figure 2.4: Doppler effect for moving target. 

Based on Figure 2.4, consider a human being moving towards the radar at velocity 𝑣 and 

the pulse of width 𝜏 impinging on the target. Also, consider 𝑑 as the distance the target 

covers in the pulse width elapse of time ∆𝑡. 

 

radar 

radar 

𝜆 < 𝜆𝑑 

𝜆 > 𝜆𝑑 
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The distance can be calculated as follows: 

𝑑 = ∆𝑡. 𝑣.                                                                     (2.9) 

It is known that the radar wave moves at the speed of light. Then the trailing edge covers 

the distance of 𝑐. 𝜏 − 𝑑. To find the time spent by the pulse to cover that distance, one can 

calculate it as follows: 

∆𝑡 =
𝑐. 𝜏 − 𝑑

𝑐
.                                                                   (2.10)  

Incorporating (2.10) into (2.9) yields this formula after rearrangement: 

𝑑 =
𝜏. 𝑣. 𝑐

𝑐 + 𝑣
.                                                                           (2.11) 

In Figure 2.5 the Doppler effect is illustrated, but this time in terms of the velocity time 

and distance. In Figure 2.5, the top part of the figure represents a radar that has a velocity 

of 𝑣𝑟 and a human at position 𝐴 moving towards the radar at a velocity 𝑣 at time 𝑡0. The 

bottom part of the figure represents the same scenario, but this time the human is at 

position 𝐵 after ∆𝑡 time. 

 

Figure 2.5: Doppler effect demonstration on human being. 

Therefore, as illustrated in Figure 2.5, when the target moves from point A to point B it 

will cover a distance 𝑑, which has been deduced in (2.11). Then the entire distance 

remaining from the target to the radar is: 

𝑚 = 𝑐. 𝜏′.                                                                     (2.12) 

That distance can be rewritten as follows: 

𝑚 = 𝑐. 𝜏′ = 𝑙 − 𝑑.                                                     (2.13) 

radar 

radar 
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Initially, the distance between the radar and the target is from point AA to point B in 

Figure 2.5, which is the distance: 

𝑙 = 𝑐. ∆𝑡.                                                                   (2.14) 

Substituting (2.11) and (2.14) into (2.13) will yield: 

𝑚 = 𝑐. ∆𝑡 −
𝜏𝑣𝑐

𝑣 + 𝑐
.                                                  (2.15) 

Substituting (2.10) into (2.15) will yield: 

𝑐. 𝜏′ =
𝑐2. 𝜏

𝑣 + 𝑐
−

𝑣. 𝑐. 𝜏

𝑣 + 𝑐
=  

𝜏(𝑐2 − 𝑣. 𝑐)

𝑣 + 𝑐
.                            (2.16) 

𝜏′ =
𝜏(𝑐 − 𝑣)

𝑐 + 𝑣
.                                                                (2.17) 

Equation (2.17) is for a close target, meaning the distance between the target and the radar 

is decreasing. On the other hand, the opening target equation is for a target that is moving 

away from the radar. The opening target is computed with the following formula: 

𝜏′ =
𝜏(𝑐 + 𝑣)

𝑐 − 𝑣
.                                                             (2.18) 

Equations (2.17) and (2.18) are known as the time dilation factor. 

In all logic the number of pulses transmitted by the radar is equal to the number of pulses 

that will strike the target. Thus, the frequency can be calculated as follows: 

𝑓𝑡. 𝜏
′ = 𝑓𝑟 . 𝜏.                                                            (2.19) 

Substituting (2.18) into (2.19) yields: 

𝑓𝑡 = 𝑓𝑟 . (
𝑐 − 𝑣

𝑐 + 𝑣
).                                                     (2.20) 

The Doppler frequency is the difference between the radar radial velocity and the target 

radial velocity:  

𝑓𝑑 = 𝑓𝑡 − 𝑓𝑟 =
𝑣 − 𝑣𝑟

𝑐
𝑓𝑟 .                                           (2.21) 

2.2.1 Radar classifications 

In the classification of radar, one finds ground-based, airborne, space-borne and ship-based 

radar systems [25]. Simply knowing where the radar is to be installed enables one to 

classify it. For instance, the radar is called ground-based when installed on ground to 

monitor the vicinity. The place of installation is not the only parameter that guides the 

classification of radar. Radar can also be classified based on the frequency band, antenna 

type, waveform and functionality [25]. In this work, the researcher will focus on waveform 

classification, namely continuous wave radar (CWR) and pulse radar. In CWR there are 
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subsets of radar called modulated CWR and unmodulated CWR (UCWR). Pulse radar 

includes a moving target indicator and pulse Doppler radar. The choice of radar signal is 

related to the application. 

2.2.1.1 Continuous wave radar 

CWR is a type of radar that finds utility in many applications. Recently, CWR has been 

used to estimate cuffless blood pressure. To acquire the arterial pulsation at the aortic arch, 

the authors placed a transmitter and receiver antenna at the sternum [28]. CWR is finding 

increasing application in biomedical engineering [28, 29]. In [29] the authors used a CWR 

to detect inmates’ vital signs. In the case of TWRI, the CWR is used to detect activities 

inside a building [30]. Thus, two main subsets of CWR, known as unmodulated and 

modulated CWR, were identified. 

a. Unmodulated continuous wave radar 

As its name implies, UCWR is radar used in applications where cost is a constraint and 

where one is interested in the speed of a moving target. To detect the speed of a target, an 

unmodulated wave is transmitted towards a target. The backscattering signal is fed into a 

receiver antenna. The radar will detect a Doppler shift of the signal if the target is moving. 

On the other hand, if the target is stationary, the UCWR will be unable to detect it. 

b. Modulated continuous wave radar 

In this system, the radar sends a continuous wave to the target and then receives the 

echoes. The EM wave is modulated by the movement of the target, which induces echoes. 

A major problem with this type of radar is inability to measure the range of the target. 

UCWR can only measure speed by employing the Doppler effect. Therefore, once ranging 

information is required, the transmitted wave is modulated. The modulation used most 

often is frequency modulation or phase shift keying modulation. 

Figure 2.6 illustrates an FMCW signal transmitted and received by the radar. The dotted 

line is the transmitted signal, while the solid line is the received signal. The Y-axis 

represents the frequency of transmission and reception, while the X-axis represents the 

time. As time passes, the frequency increases up to the maximum frequency before falling 

sharply to the minimum frequency. 
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Figure 2.6: Frequency modulated continuous wave. 

Because the signal is periodic, this cycle will start over time. Furthermore, the received 

signal is collected with a certain delay, ∆𝑡, which is attributed to the travelling time of the 

signal from the radar to the target and back. If the target is moving, a Doppler shift 

frequency will be observed in the return signal. The shift frequency is represented by 𝑓𝑑 in 

Figure 2.6. 

Because in TWRI ranging is imperative, there is a high preference for using a modulated 

transmitted signal rather than an unmodulated one. The modulated signal is more 

prominent than the unmodulated signal because the modulated signal can detect the 

Doppler shift and the range of the target. Many researchers have used an FMCW in the 

area of TWRI to advantage. In an FMCW radar system, a signal varies its operating 

frequency. The variable frequency is transmitted toward the target, as illustrated in Figure 

2.6. Afterwards the signal is reflected from the target; the radar receives a fraction of the 

signal coming from the target. Equation (2.22) is used to determine the range in FMCW, 

 

𝑅 =
𝑐. ∆𝑡

2
=

𝑐. ∆𝑡

2.
𝑑𝑓
𝑑𝑡

                                                                (2.22) 

where 𝑐 is the speed of light, ∆𝑡 is the delay time, ∆𝑓 is the measured frequency 

difference, 
𝑑𝑓

𝑑𝑡
 is the frequency shift per unit of time, 𝑅 is the distance between the target 

and the radar; then factor 2 represents the round trip that the signal is taking to travel from 

the antenna to the target. Figure 2.6 illustrates a linear frequency modulation signal, which 

is transmitted, and the receiving signal.  
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The different patterns of the transmitted waves differentiate the type of modulation. Thus, 

one finds saw-tooth modulation and stepped modulation. To the best of the researcher’s 

knowledge, the most frequently used modulation in TWRI is stepped frequency 

modulation.  

a. Stepped frequency modulation 

This type of modulation changes the wave signal frequency in the form of stairs. It has the 

advantage of resonating with different targets at different frequencies. One can see this 

type of radar as a special case of an FMCW. 

b. Sawtooth frequency modulation 

Sawtooth frequency modulation is another modulation found in FMCW radar. It is a 

common form of modulation found in many applications. The kind of modulation is used 

for its ability to cover a relatively large range. 

c. Triangular frequency modulation 

Triangular frequency modulation is also a modulation found in FMCW radar. It has the 

advantage of detecting a target when the frequency is downward.  

d. Rectangular frequency modulation 

Rectangular frequency modulation is found in FMCW radar. Rectangular frequency 

modulation is known as square frequency modulation as well, because of the form of the 

signal pattern. 

2.2.1.2 Pulse radar 

In pulse radar, as its name implies, a high-transmission power signal is transmitted towards 

the target for a short period. The radar has a listening period when it is expecting any echo 

from a target or obstacle. This type of radar has the advantage of measuring the range and 

Doppler effect from the target. In order to distinguish the two closest objects, the radar 

must be a high-resolution range. The range resolution is determined as in (2.8). 

Thus, to obtain a high-resolution range, one can attempt to create a short-period pulse. 

Unfortunately, it is difficult to have high-power energy in a short-period signal. A pulse 

compression technique has therefore been introduced to overcome this problem.  

Pulse compression: This technique uses a pulse modulated in frequency or phase. This 

modulation allows the radar to transmit enough energy for target detection. It has the 

advantage of increasing the range resolution. Where a high-resolution range is needed, this 

type of modulation can be used. 
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2.3 RADAR USED IN THROUGH-THE-WALL SYSTEM 

2.3.1 Vital body sign detection 

Important research done in TWRI is aimed at detecting vital signs behind a wall. 

Heartbeat, chest movement and limb movement are used to detect the presence of a human 

being inside a building. This section will review the different approaches used in radar 

technology for vital sign detection. While the first subsection will be devoted to different 

methods used to detect vital signs in the absence of any obstruction between the radar and 

the human being, the second subsection will be devoted to detecting vital signs in the 

presence of a wall. 

2.3.1.1 Vital body sign detection without obstruction 

Remote sensing for vital sign detection where there is no obstruction is an application 

mainly used in biomedical systems for non-invasive monitoring of patients. In this kind of 

application, the elements used to monitor the patient are heartbeat and breathing. 

Researchers have shown great interest in this application [21] [31, 32, 33]. 

While many researchers are trying to extract vital signal signatures [21], [31], there are 

others who are extracting human signatures from body movements [34]. The authors in 

[34] found that the Doppler spectra of the limbs could be used to distinguish a walking 

human being sufficiently from a stationary one and other moving objects. In addition, the 

Doppler spectra could be used to determine the size, gender and posture of the human 

being. In order to enhance target detection, the authors decomposed the overall backscatter 

into components associated with the limbs and torso. Moreover, the authors used radar 

polarimetry with a view to detect concealed objects on the human body. 

2.3.1.2 Vital sign detection in opaque media 

Detection of human beings using a TWRI system is mainly based on detection of heartbeat 

[15], respiration [15] and movement [3]. Research done in this area has demonstrated that 

seeing through an opaque object is possible. At a lower frequency, the wall attenuation of 

an EM wave is low as well [8]. This property is used to reveal a target inside a building. 

2.3.2 Through-the-wall radar imaging 

A radar system works by making use of EM wave propagation in a medium to image a 

scene [30]. In the case of a through-the-wall system, the media are air and wall. The 
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properties of the medium determine two fundamental constraints affecting the design of 

any radar system: the power and the bandwidth constraint. Knowledge of the properties of 

the medium is therefore imperative. While the air’s electric characteristics are known, this 

is not always the case with the wall. It has to be mentioned that electric wall characteristics 

may vary significantly with the frequency, the humidity and the material used in 

construction. Thus, EM waves experience important power attenuation while going 

through a wall. It is for this reason that the next section is devoted to mitigation techniques 

and revision of how researchers attempt to mitigate these constraints and which type of 

radar is used. 

2.3.2.1 Through-the-wall system scenario 

The scenario of a TWRS is presented in Figure 2.7. In this figure, a radar is placed far 

from the wall. The distance from the radar to the wall is such that the wave hitting the wall 

is a plane wave. Beyond the first wall lies a human being at a random distance from the 

first wall. Behind the human is another wall. There are two more walls at the side of the 

human, which are not represented in the figure. 

 

Figure 2.7: Behind-wall scene. 

In Figure 2.7, the radar is a monostatic radar transmitting a signal to the wall. A portion of 

the signal goes through the wall while the rest disperses on the wall surface. Some of the 

dispersed wave returns to the radar. This is considered the first return of the signal. In 

some cases, the first return signal can be used to detect the wall when the wall properties 

are unknown. On the other side of the wall the other portion of the signal travels to the 

human inside the building. After bouncing off the human and other objects inside the 

room, the signal returns to the wall first, then the radar. At that moment the returned signal 
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can be processed. Researchers investigate the dispersion properties of an incident EM 

wave Ei on a wall to extract useful information from the reflected wave Er and the 

transmitted wave Et [4], [35]. 

A wall behaves as dielectric material when a wave 𝐸𝑖 passes through it. Therefore, three 

phenomena are observed when an EM wave is in the presence of a dielectric material, 

namely reflection, absorption and transmission. The first and third phenomena are 

imperative in radar applications because of the information contained in them. In the 

present case these are referred to as 𝐸𝑟 and 𝐸𝑡. Reflection is important in order to detect 

the object in front of the radar. Although this phenomenon is necessary, it is harmful to a 

certain extent when the target is obstructed. One can see that 𝐸𝑟𝑢 will have a stronger 

return than 𝐸𝑟 because of the delay related to the distance and the dispersion of the wave 

on the wall. The reflected signal from a target 𝐸𝑟𝑢 is important to allow the radar to detect 

the target. If the wall reflection is significant, the return target signal beyond the wall may 

be difficult to recover. Thus, this phenomenon requires proper control or needs to be 

understood well in order to mitigate its effect. The transmission from the wall is most 

desirable in the current case, because the stronger the signal is beyond the wall, the better 

chance one has of detecting a target behind the wall. 

When the incident wave 

𝐸𝑖(𝑡) = 𝐴𝑖. cos(2𝜋𝑓𝑖𝑡)                                              (2.24) 

impinges on a wall, there is a reflected wave 

𝐸𝑤 = 𝐴𝑤 . cos(2𝜋𝑓𝑖𝜏𝑤)                                            (2.25) 

𝜏𝑤 = 𝑡 − 𝑡𝑤 

and a re-emitted wave  

𝐸𝑡 = 𝐴𝑡 . cos(2𝜋𝑓𝑖𝜏𝑖),                                                (2.26) 

𝜏𝑡 = 𝑡 − 𝑡𝑡                                                             (2.27) 

that emanates from the wall. 𝐸𝑡 is emitted up to the target, then a small portion of the wave 

is backscattered to the radar through the wall. The return signal could be expressed as 

𝐸𝑟(𝑡) = 𝐴𝑟 . 𝑐𝑜𝑠 [2𝜋𝑓𝑖 (𝑡 − 2
𝑅(𝑡)

𝑐
)]                             (2.28) 

where 𝑡𝑤 is delay due to free space return propagation from the wall, 𝑡𝑡 is delay due to 

through-the-wall propagation, 𝑡𝑟 is delay due to free space, through-the-wall and free 

space propagation from the target to the radar. 𝐸𝑖 is the incident wave, 𝐴𝑖 is the amplitude 

of the incident wave 𝐸𝑖, 𝑓𝑖 is the carrier frequency, 𝐸𝑤 is the wave reflected from the wall, 

𝐴𝑤 is the amplitude of the reflected wave 𝐸𝑤, 𝜏𝑤 is the time the signal took to make a 
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round trip from the antenna to the wall, 𝐸𝑡 is the reemitted wave from the wall to the 

target, 𝐴𝑡 is the amplitude wave of the reemitted wave, 𝜏𝑡 is the time the signal took to 

travel through the wall up to the target, 𝐸𝑟 is the reflected wave from the target to the 

receiving antenna, 𝐴𝑟 is the amplitude of the 𝐸𝑟(𝑡) wave, 𝑅(𝑡) is the distance from the 

target to the radar, and 𝑐 is the speed of light. Factor 2 is a round trip from the radar to the 

target. One can see that 𝐸𝑟(𝑡), the signal coming back from the target, contains the 

dielectric properties of the wall and the target. To find the attenuation incurred by the wall, 

𝐴𝑤 has to be computed. 𝐴𝑤 contains the reflection coefficient of the wall and the target. 

By comparing the signal 𝐸𝑤 and 𝐸𝑟, one can observe that 𝐸𝑟 is less than 𝐸𝑤 because 𝐸𝑟 

undergoes attenuation via the wall. Thus, 𝐸𝑤 tends to suppress the signal 𝐸𝑟. Then in 

practice the strong backscattering from the wall tends to dissimulate the target 

backscattering, such as a human being or furniture inside a building, of which the RCS is 

relatively small. Therefore, detecting a target behind a wall becomes more challenging and 

the challenges increase when the target is stationary. Furthermore, the target signal 

strength weakens when the target is closer to the wall. When the target is closer to the wall, 

the radar tends to see the target and the wall as a whole. In this scenario, a high-resolution 

radar system will be required, otherwise targets behind a wall will be obscured and 

sometimes totally invisible in the image formed. 

In radar technology, the backscattering signal from an unwanted object is regarded as 

clutter [30], [36]. Therefore, a wall backscattering signal is regarded as clutter in the case 

of TWRI. Knowledge of this clutter is crucial because one wants to know how much a 

signal has to be attenuated while travelling through the wall. Thus, prior to applying the 

image formation method, wall reflections should be suppressed or considerably mitigated. 

The surface and the composition of the wall can thus significantly influence the way the 

wave propagates in the TWRS system. It has been demonstrated that using different types 

of radar could mitigate the effects of the wall [13, 14], [37, 38]. The next section will 

review the different approaches used to mitigate wall interference. 

2.3.3 Wall clutter mitigation 

In this section, a review of frequently used approaches of mitigation found in the literature 

is introduced. 
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2.3.3.1 Linear inverse scattering algorithms in TWRI 

The linear inverse scattering problem (LISP) is used in optic and radar systems to find the 

scatter electric properties from the backscattering EM wave. 

Consider the backscattering EM wave 𝛽(𝜔), which is collected by the radar. In contrast, 

𝑘(𝜔), the electric properties of the wall, are unknown. Both terms are dependent on 

frequency 𝜔 and position; the position has been omitted to simplify (2.29). The LISP has 

the objective to approximate the model that maps 𝛽(𝜔) to the 𝑘(𝜔) and to find the electric 

properties of the wall in the case of TWRI. In the form of an equation the problem is 

formulated as: 

𝛽(𝜔) = 𝐺(𝜔)𝑘(𝜔) + 𝑛                                       (2.29) 

where 𝐺(𝜔) is a matrix that represents the model mapping the backscattering to the 

electric properties of the wall. 𝑛 is the additive noise present in the system. Because the 

LISP infers the value of 𝑘(𝜔) from the knowledge of 𝛽(𝜔), this problem is known as an 

inverse problem. Thus, the LISP has been used in TWRI. 

In TWRI, the LISP is used to find the wall characteristics while detecting a target behind 

the wall. To address the issue in real situations where the parameters of the wall are either 

unknown or known with some level of uncertainty, several approaches have been reported 

in [39], [30]. Though LISP can be used in TWRI with great accuracy, nonlinearity of the 

wall increases the data acquisition time [40], [35]. Therefore, a proposed linear inverse 

scattering algorithm based on the Born approximation [35] is used to mitigate the wall 

effect. In [40], to perform fast data acquisition, the authors proposed an efficient data 

acquisition and processing scheme based on 3-D TWRI. 

In [36], a 2-D EM imaging technique for urban areas in multipath propagation was 

proposed. To mitigate the multipath effect in the TWRI, a linear inverse scattering 

approach based on the Kirchhoff approximation was combined with the finite-difference 

time domain (FDTD) method. To solve the Green’s function and the incident field 

involved in the kernel of the linear integral equation, the authors applied the FDTD 

technique [36]. 

2.3.3.2 Diffraction tomographic algorithms for TWRI 

Tomography is also an inverse scattering algorithm, which is used to characterise the 

media electric property for a wall in case of TWRI and for the ground in case of ground-
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penetrating radar. Using the tomographic algorithms, the author distinguished between 

adults and children, seated and standing human beings [41].  

In [41], a 3-D diffraction tomographic algorithm for real-time TWRI was proposed. This 

method was successful in detecting the presence of a target behind a wall.  

On the other hand, [42] proposed to image buried targets under multi-layered media with a 

multi-frequency multi-monostatic measurement configuration. The author used the Born 

approximation to linearise the backscattering wave, then the Green’s function and the 

Fourier transform to image the scene of interest. To increase the data processing time, the 

author in [42] proposed two techniques: (1) Coherent summation over all receiver 

locations in the linear inverse scattering algorithms, which offered simplicity over a non-

linear solution, and (2) The reconstruction of all the pixels in the transverse plane at each 

down-range pixel with 2-D inverse fast Fourier transform using the diffraction tomography 

algorithm. 

2.3.3.3 3-D TWRI 

Though LISP is a successful imaging method, it is mainly applied in two dimensions. In 

addition, most of these algorithms deal with a single-layer homogeneous wall [43]. Under 

different wall-target scenarios it has been shown numerically that a 3-D or adaptive beam 

former can provide high-quality focused images [43]. 

In [43], using a SAR, the authors represent the backscattering signal from the scanning 

region as follows: 

𝐸𝑠(𝑟𝑟𝑚, 𝑟𝑡𝑚, 𝑘𝑛) =  ∫𝐺(𝑟𝑟𝑚, 𝑟, 𝑘𝑛) 𝐺(𝑟, 𝑟𝑡𝑚, 𝑘𝑛)𝜎(𝑟)𝑑𝑟.        (2.30) 

The backscattering signal is represented by 𝐸𝑠(𝑟𝑟𝑚, 𝑟𝑡𝑚, 𝑘𝑛) received by the receiver at the 

𝑚 − 𝑡ℎ position; the signal has been engendered by the transmitter at the 𝑚 − 𝑡ℎ position. 

𝑘𝑛is the free space wavenumber of the 𝑛 − 𝑡ℎ operating frequency in the range of 𝑓𝑚𝑖𝑛 to 

𝑓𝑚𝑎𝑥 having a frequency step of ∆𝑓. 𝐺(𝑟, 𝑟𝑡𝑚, 𝑘𝑛) and 𝐺(𝑟𝑟𝑚, 𝑟, 𝑘𝑛) are layered medium 

Green’s functions, which model the wave propagation process from the transmitter to the 

target and from the target to the receiver. The model takes into consideration the presence 

of the wall. The entire model will not be complete without consideration of the target and 

range. Therefore 𝜎(𝑟) is the reflectivity of the target; on the other hand, 𝑟 with their 

respective indices are position vectors of the 𝑚 − 𝑡ℎ transmitter, receiver and target. The 

indices 𝑡 and 𝑟 represent the transmitter or the receiver. 
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Therefore, to solve (2.30), the Green’s function is approximated. This is another inverse 

scattering algorithm. 

It should be mentioned that though the 3-D TWRI has advantages over the LISP, it has 

been realised that the 3-D system requires much acquisition data time while using the 

SAR. Therefore, a 3-D image algorithm with a multiple input multiple output (MIMO) 

radar was proposed in [44, 45]. This technique is of importance, as it can be used in a real-

time application. In [44], to compensate for the wall effect, Green’s function was 

integrated into the MIMO through-the-wall beam former. 

2.3.3.4 TWRI with unknown wall parameters 

Efforts have been made to detect a target through the wall without knowledge of the 

electric parameters of the wall. If the wall effect is not taken into account, blurred images 

and ghost targets are obtained [46], [47], [48]. To address the issue of a target beyond an 

unknown wall or a wall with uncertain parameters, a two-step imaging procedure was 

proposed in [39]. The authors considered the backscattering field as a totally scattered field 

reflected by the wall and the obscured objects. In addition, in [39] LISP was used to 

estimate the thickness and the dielectric permittivity of the wall. To infer wall and target 

information from the knowledge of a far field incident wave, LISP was the preferred 

method. Therefore, using LISP, the entire problem was solved by means of a truncated 

singular value decomposition algorithm. The problem with this method is the assumption 

that the wall is homogeneous, while this is not a physical reality. Thus, further studies 

should be undertaken to consider more complex scenarios. 

Therefore, an algorithm using a spectrum Green’s function was proposed to autofocus the 

target behind an ambiguous wall [49]. After using the spectrum Green’s function, a fast 

Fourier transform was used to reconstruct the image in a short computation time. In [49], 

the authors used time reversal imaging (TRI). The target displacement was explained, as 

the focusing time was unsuitably selected using TRI. To solve that issue, a time factor was 

added to the imaging formulation to deal with the difference in time arrival. Using this 

method, the authors could detect a target behind multiple walls in the right position.  

The authors in [50] developed a matrix formulation so that they could investigate the 

diffuse scattering from a rough surface and inhomogeneous volume. They stated that the 

surface roughness caused an increase in diffuse scattering around the specular direction, 

even for cross-polarisation. 
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In addition, they found that the surface roughness caused a peak to appear in both the like 

and cross-scattering coefficients at near vertical incidence, as well as a decrease in these 

coefficients at large incidence angles, which occur in backscattering. 

2.3.3.5 Compressive sensing for TWRI 

Compressive sensing is a signal-processing method used to reconstruct a signal with less 

measurement or signal sample. Therefore, when this method is used in a radar system, the 

current consumption and the sampling time are less than when ordinary radar is used. 

Consequently, there is a trend among researchers to use this method in TWRI to increase 

the time acquisition. 

Consider an ordinary radar collecting data. The data are in the form of an analogue signal. 

This analogue signal can be represented by a function 𝑓(𝑥). The signal 𝑓(𝑥) has to be 

digitised before further processing by the processor. Thus 𝑁 is the number of samples to 

be used so that the signal 𝑓(𝑥) is digitised. It is known that a high value of 𝑁 requires 

more processing memory and storage memory, therefore a large data pipe [51]. To 

diminish this complexity, a compressive sensing method was proposed in [52, 53, 54]. By 

using a compressive sensing method, one will be able to sample the same signal 𝑓(𝑥) with 

𝑘 number of samples, as in (2.31). While using 𝑘 ≪ 𝑁, care must be taken not to 

deteriorate the information in the signal. 

𝑁 ≫ 𝑘.                                                            (2.31) 

𝑘. ∅ = 𝑁.                                                          (2.32) 

To reconstruct the signal, 𝑘 is multiplied by a random matrix ∅ as in (2.32). ∅ was chosen 

in accordance with the data that had to be collected.  

TWRI, like most sensing systems, requires a tremendous amount of sampling, therefore a 

long data acquisition time. Using the sparsity method, one can sample the space of interest 

in the case of TWRI. 

In order to circumvent the large amount of sampling and the long data acquisition time 

associated with TWRI, some authors proposed a compressive sensing method [51] - [53]. 

2.3.3.6 Layer stripping 

The layer stripping (LS) method has been used extensively for years for media 

characterisation [55], [56], [57]. 

LS is a nonlinear method based on a scattering wave from the media. The dielectric media 

are reconstructed recursively in determining the dielectric properties of one layer at a time, 



 

Department of Electrical and Electronic Science 33 

University of Johannesburg  

then removing the previously reconstructed layer to reconstruct the following one [58]. 

This method is very effective and finds application in TWRI and ground-penetrating radar 

systems [55] - [57]. 

The LS method is not limited to TWRI; it can also be applied to liquid-level measurement 

in tanks to evaluate the liquid permittivity and to estimate the liquid height of multiple 

layers of liquids inside the tank [59]. 

2.3.3.7 MIMO radar through-the-wall imaging 

MIMO uses multiple wireless channels with a spatially distributed transmitter and receiver 

to send and receive a signal. MIMO increases signal reliability and increases the RCS 

owing to diversity on the angle of observation of the target. 

In TWRI, because of the presence of the wall, clutter is experienced. To remove the 

clutter, different approaches have been proposed, based on human features characterised 

by the motion of heartbeat, breathing, etc. While observing a human behind a wall, a 

shadow effect of a human target, known as a ghost target, has been reported [60]. To 

overcome the ghost target effect, some authors have proposed MIMO [61], [62]. 

In [62] the author analysed the difference between targets and the shadow ghost using 

MIMO TWRI. The authors combined the coherent factor and non-causal coherent or non-

coherent change detection to surmount the limitation of the change detection. 

In [62], the author identified the first-order multipath (FOM) “ghosts” as the most effective 

interference sources, because they were lying inside the room being investigated. Because 

the FOM ghosts were in the same vicinity as the target, the power level of the FOM ghosts 

tended to be close to that of the target. A phase coherence factor technique was used to 

suppress the ghost target with MIMO. 

Also, as explained in the 3-D TWRI subsection, when using an SAR, the time taken to 

acquire data is long [4]. Therefore, to decrease the acquisition time and cancel the 

smearing effect, an author proposed using MIMO [44]. By using MIMO radar, the author 

was able to detect the target behind multiple walls by using an algorithm based on Green’s 

function. 

In addition, the authors in [63] proposed three techniques for fast data acquisition and real-

time processing through the wall. To decrease the acquisition time, their first technique 

was based on compressive sensing with a layered media Green’s function incorporated. 

Besides short time acquisition, this technique offers the possibility to detect a target behind 

multiple walls. The second technique was a beamforming algorithm for through-the-wall 
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imaging using real-time data collection MIMO. The third one was a real-time processing 

algorithm for single and multiple walls. 

The researcher reviewed different techniques and radar used in TWR in the above sections. 

In many cases, authors intend to detect human beings behind the wall, thus the next section 

is devoted to the detection of vital signs using radar. 

2.4 INTERIOR STRUCTURE RECONSTRUCTION 

A radar signal has the advantage of penetrating building material. For this reason, 

researchers use radar to reconstruct the interior of a structure. This has the objective of 

finding the wall layout by removing an obstruction while one does not have access to the 

building. 

In [64], the authors presented an approach that can be used to estimate the backscattering 

of the dihedral and trihedral formed by the floor-wall and the ceiling-wall-floor 

respectively. To retrieve the dihedral and trihedral backscattering the paper also uses, as in 

[37], [39] and [34], the decomposition method. The decomposition method expresses the 

overall backscattering return in singular components. 

The authors in [65] simulate a building using the floor-wall and floor-wall-ceiling as 

simple scattering mechanisms. They make the same assumption as in [64], that a building 

is commonly formed of a dihedral and trihedral. Here the authors also use the 

decomposition algorithm. The authors consider that the data collected are represented as: 

𝑠(𝑘, 𝜃, ∅) = ∑𝑠𝑛𝑔𝑛(𝑘, 𝜃, ∅)

𝑛

.                                             (2.33) 

with  

𝑠𝑛 = ∬𝑠(𝑘, ∅)𝑔𝑛(𝑘, ∅)𝑑𝑓 𝑑𝜃 𝑑∅.                                         (2.34) 

𝑠(𝑘, 𝜃, ∅) being the backscattering signal; it is frequency- and angle-dependent. 

𝑔𝑛(𝑘, 𝜃, ∅) is an element of the scattering basis set. It is known that buildings generally 

have canonical shapes as corners (floor-wall and ceiling-wall-floor). These corners exhibit 

a high backscattering signal. The high backscattering signal is then used as main signal 

return while decomposing the received signal. In the signal decomposition algorithm, an 

assumption was made in accordance with the backscattering signal strength. Thus, while 

imaging the building, all high backscattering signals were assumed to be coming from the 

building corner. Knowing that, the authors could reconstruct the image of the building. 
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2.5 RESEARCH GAP IN THROUGH-THE-WALL RADAR IMAGING 

Despite much research in the area of TWRI, there are still unsolved problems, thus further 

research is required into the following aspects: 

2.5.1 Detectability of the human being 

The micro-Doppler effect is the main phenomenon used to search for and rescue humans 

buried under rubble after a building has collapsed or an earthquake. To detect the presence 

of a target (human being), an EM wave is emitted in the direction of interest. The target is 

illuminated by the EM wave, then the target scatters back a modulated wave in the 

direction of the radar. The movement of the breathing and heartbeat of the human target 

modulate the backscattering wave. However, there are still questions that have not been 

addressed. One can consider that after an earthquake, a human victim may be weak. Thus, 

the breathing and heartbeat signals of the trapped victim may be too weak to be detected 

by the radar. One approach might be taking recourse to highly sensitive TWRS systems. 

Highly sensitive TWRS systems allow the detection of a weak response from the target. 

After reviewing the body of knowledge, one notices that most of the research done in this 

area regards victims as adult human beings, which is not always true in case of disaster. 

This can be observed after an earthquake or if a building collapses; people of different ages 

may be trapped under the rubble, including children. Research has demonstrated that there 

is significant variation in the heartbeat, depending on the age of a person [66]. In addition, 

the RCS of a child’s chest is lower than that of an adult victim. This can influence the 

return signal in certain ways. 

As mentioned in Chapter 1, in South Africa three gold miners were trapped and died 

underground. The detectability of a human being who is buried alive is an important 

research area. In this case one has to consider that the soil contains some metal in its 

primitive state. Because of this, the dielectric properties may be close to a perfect 

conductor. This is one of the gaps in the body of knowledge requiring further research. 

In addition to the above issues, radar resolution requires more study in order to have high-

resolution radar. It has been reported that it is difficult to detect human beings while they 

are standing against a wall. This is due to the radar range resolution. 
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2.5.2 Wall modelling 

The lack of a well-designed wall model remains a huge challenge in this area. Researchers 

have considered knowledge of the wall parameters or the first return signal coming from 

the wall. An effective wall model has to take into consideration the state of the wall. Since 

humidity and the frequency band used can have a significant influence on the transmitted 

signal, one should take into consideration the time of the year in which this system can be 

used effectively. Researchers could consider investigating humid and dynamic conditions 

as well, rather than only dry walls. 

2.5.3 Target differentiation 

TWRI has been used successfully to detect human beings inside buildings. However, a 

new technique has to be investigated when the scene of interest contains more than one 

target. In a scenario where there are hostages and terrorists in the same building, rescuers 

need to be able to distinguish effectively between the two targets. Thus, new techniques 

have to be applied to the activities of hostages and terrorists. 

2.5.4 Summary of literature related to this research 

To summarise the research conducted in TWRI, two tables have been presented. The first 

one summarises the research conducted in through-the-wall imaging in general without 

considering any aspect of the method used to collect data and the type of target; this is 

presented in Table A-1 in appendix A. The second table presents TWRI of previous work 

that used the micro-Doppler technique. These tables give a concise idea of the state of the 

knowledge in the area where the current research is performed. The first column contains 

the references to the papers that have been summarised in the table. The second column 

presents the journal name in which the paper has been published. The third column 

presents the journal impact factor at the time of referencing the work. The fourth column 

presents the frequency band of interest, namely the frequency used by the authors to run 

their experiment or their simulation. Finally, the last column summarises the contribution 

to the body of knowledge of each paper. 

Table A-2 in appendix A presents a narrowed summary of research on TWRI using the 

micro-Doppler technique to detect activity inside a room. From the first column to the 

third column present the same items as in Table A-1. The fourth column presents the 

algorithm used in different papers to detect mobile objects. Then finally, each paper is 

summarised. 
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2.6 CONCLUDING REMARKS 

TWRI is an essential area of research that helps rescuers, police and the military in their 

daily tasks. To date many sensing approaches have been adopted to image the scene of 

interest, assuming that the dielectric characteristics of the wall are known. This is 

impractical because rescuers or police do not know the type and state of the wall that they 

will find in the field. This presents researchers with opportunities to examine the forming 

of images through the dispersive medium of walls. Thus, without knowledge of the 

properties of the wall, some other approaches have been reviewed in this thesis. There is 

an urgent need to model walls in TWRI systems while decreasing the acquisition time to 

remove the uncertainty of unknown wall dielectric parameters. 

TWRI systems require further study to bridge the gap in knowledge about the detectability 

of a target lying against a wall. This is very important in the rescue and police scenario. In 

the case of a rescue operation, when a building collapses, a human being could be lying 

against a wall. In a police scenario, a terrorist could be hiding against a wall. In both 

scenarios failure to sense the human being could cost lives. 

An accurate algorithm is needed to eliminate or mitigate ghost target issues. Miss-imaging 

a target location affects both rescue and police applications. While in a rescue operation 

one might dig where there are no victims, in police intervention a terrorist could be 

confused with a hostage. Care must be taken to mitigate this effect. 

In this research, the detection of humans with different chest RCSs is investigated. 

Because the researcher was unable to change the chest RCS in practice, a simulation was 

introduced in which the height of the human was changed. To simulate from a large chest 

RCS to a lower one, a simulation of human beings from a height considered normal for an 

adult down to one considered normal for a child of two years old was performed in 

MATLAB to study the difference in RCS. In addition, the signal was propagated through 

different home appliances to determine how it was affected by appliances.  



 

 

 

CHAPTER 3   RESEARCH METHODOLOGY 

3.1 CHAPTER OVERVIEW 

Chapter 2 presented an in-depth review of TWR, starting with a general review on radar. It 

was discussed in connection with vital detection of a human being. A review was done of 

detecting a human being without obstruction and through an opaque medium. Thereafter, 

different methods of clutter mitigation were reviewed. The main methods to mitigate 

clutter are linear inverse scattering algorithms in TWRI, diffraction tomographic 

algorithms for TWRI, 3-D TWRI, TWRI with unknown wall parameters, compressive 

sensing for TWR, LS and MIMO radar TWI. These different methods all have pros and 

cons. Finally, different gaps persisting in the body of knowledge were mentioned. 

In section 1.5 an outline of the proposed research hypothesis is given with 

reference to Figure 1.1. This chapter is intended to expand the research methodology to be 

followed in this thesis. 

The process that was selected entails simulation. Through the simulation the researcher 

conducted experiments that were impossible to conduct with the radar that was built. In the 

simulation the experiment is conducted in the frequency band from 500 MHz up to 10 

GHz. The frequency band to be used has been justified by the limitation of the hardware 

frequency band. The radar that was built covers the frequency from 2257.4 to 2591.8 Hz, 

which is an unlicensed frequency band. In the literature, it has been mentioned that the 

frequency below 3 GHz is preferred in this type of application. To avoid using licensed 

frequency and to explore the availability of different components, the frequency band of 

2257.4 to 2591.8 Hz was chosen for the radar that was built. As the researcher wished to 

investigate the behaviour of the radar at different frequencies, it was decided to start from 

a frequency as low as 5000 MHz to 25 GHz. Therefore, the behaviour of the radar in the 

zone with less attenuation and with high attenuation was investigated.  

3.2 JUSTIFICATION OF THE RESEARCH METHODOLOGY 

To conduct this work, a literature review was undertaken in Chapter 2. In this chapter 

approaches taken by different researchers are presented. General knowledge on radar is 

reviewed. 
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Three main methods have been studied, namely through-the-wall compressive sensing, 

through-the-wall sensing using micro-Doppler radar and finally through-the-wall sensing 

using MIMO radar. 

Using a compressive sensing method in the present case can be of benefit to this research 

in terms of acquisition time. However, as the method requires some knowledge of the 

signal that has to be processed, it proved inadequate for the current research. When using 

the compressive sensing method, one will need to have a priori knowledge of the human 

being behind the wall. If a supplementary tool is not used, a strong algorithm based on the 

actual application has to be used. Because of lack of adequate tools to indicate the position 

of the human being behind the wall, the method has been classified as non-feasible. 

On the other hand, MIMO radar is a method that makes use of multiple receivers and 

transmitters. This method fits well in a system where the dielectric properties of the wall 

are unknown and have to be characterised, but because of the budget at the researcher’s 

disposal, the method was classified as non-feasible. 

Lastly, through-the-wall sensing using micro-Doppler radar has been chosen for use in this 

research. It is a monostatic radar, which is cost-effective to build compared to MIMO radar 

and radar using compressive sensing signal processing. Because the radar is mobile, one 

can detect the target without knowing the wall properties. This is one of the advantages of 

this method. Besides that, the research was aimed at detecting a target that has less 

mobility or emits weak vibration.  

Thus, the rest of this chapter is devoted to the Doppler effect in general, but more 

specifically to the micro-Doppler effect in radar sensing. 

3.3 DESCRIPTION OF METHODS OF ANALYSIS 

To conduct this research, different simulations have been run, taking into consideration 

different human heights. The simulations were conducted with transmit radar frequencies 

of 2.4 GHz and 15 GHz as centre frequency. The transmit frequency was kept at 2.4 GHz, 

then 15 GHz, while varying the height of the human and the velocity. The velocities used 

for this simulation were from 0.5 to 3 m/sec, with a step of 0.5 m/sec each time. The 

maximum speed of 3 m/sec was justified by the fact that the possibility of finding a human 

running in the building was very low. On the other hand, the height varied because the 

researcher considered that people of different ages might be found inside a building.  
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Considering that a human being with a height of 1 m can walk, 1 m was chosen as the 

starting height because below that height a human being may not be able to walk [102]. 

From an initial height of 1 m the researcher considered an additional 30 cm as reasonable 

to give the difference in the spectrum return signal. Therefore, 1 m, 1.3 m, 1.6 m and 1.9 m 

were retained as simulation test height; 1.9 m was taken as the upper limit, because it is 

rare to find people taller than 1.9 m. Finally, the radar is located at position (X=10 m, Y=0 

m, Z=2 m) in a 3-D system, while the human is located at the origin of the body fixed 

system (X=0 m, Y=0 m, Z=0 m) for the simulation. 

In addition to the simulation, a radar was built with the following module: 

a. A ramp generator 

b. A voltage-controlled oscillator (VCO) 

c. An attenuator 

d. A PA 

e. A power divider (PD) 

f. A transmit antenna. 

The receiving branch is constituted of: 

a. A receiving antenna 

b. A mixer 

c. A low-noise amplifier (LNA) 

d. A filter 

e. An analogue-to-digital converter (ADC). 

3.4 DELIMITATIONS OF RESEARCH 

Radar technology is a vast area of research, therefore delimitation of the research subject is 

necessary. A few areas where radars are used are civil aviation, military aviation and 

meteorology. The target under investigation in this thesis was human limb movement in 

the through-the-wall the scenario. Thus, knowing the application for which the radar has to 

be used is one among many elements that can make radar work better in one application 

than in another. In addition, knowledge of the target predetermined the type of radar and 

the power transmission that can be used for this application. 

Furthermore, what may be a target in one application might be clutter in another 

application in radar application. For this application, the objective was to detect the human 

rate of limb change. The rest of the return signal was considered noise. This implies that in 
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the home environment the clutter is the wall, appliances and different objects that may be 

found in the house.  

For the sake of this investigation, the researcher investigated the through-the-wall 

environment. TWR is a low-transmission power radar compared to radar used for air 

traffic. The transmission power has to be kept low because the signal has to travel through 

human tissue, which cannot be exposed to higher RF energy. Thus, taking into 

consideration the power transmission, a practical choice has been made of the FMCW 

radar as sensor with a lower RF PA wattage of 13 dBm. In addition to power transmission, 

FMCW is cost-effective compared to pulse radar, which requires a high wattage PA. 

FMCW radar is used as sensor to detect human activities inside a room in the simulation.  

Most research conducted in the TWR considers that the target behind the wall is an adult 

man or woman whose height is above a certain limit. To the best of the author’s 

knowledge, no research reported in literature has considered different heights of targets 

behind the wall. This research has been performed in MATLAB with different targets 

having different heights. The lower height is considered in this thesis as children, while the 

higher height is considered as adults. Thus, this research devoted effort to investigating the 

return signal ranging from children to adults in the simulation environment. 

Practical experiments have been conducted in a laboratory environment at the University 

of Johannesburg and the author’s residence, both in South Africa. In addition to the clutter, 

a fan was carefully considered as the main source of continuous mobility in a warm region, 

particularly in the home environment. Therefore, a fan has been modelled in MATLAB to 

analyse the return signal embedded with micro-Doppler. 

The next section demonstrates how the data were analysed. 

3.5 INTRODUCTION TO MICRO-DOPPLER 

Christian Doppler was an Austrian mathematician and physicist. In 1842, he published a 

paper on the phenomenon of the coloured light effect of stars through the Royal Bohemian 

Society of the Sciences in Prague [88]. This phenomenon later became known as the 

Doppler effect or Doppler shift. The paper demonstrated that when observing the 

frequency of a sound or light wave, this is dependent on the speed of the wave’s source 

relative to the observer. Thus, one can determine the speed of an object by analysing the 

return wave that illuminates the object. In this thesis, detecting a target behind a wall using 

the Doppler effect is the objective. Therefore, this chapter is devoted to the micro-Doppler 

effect generated by micro-motion. 
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3.6 THE MICRO-DOPPLER SIGNATURE 

In a radar system, a target signature comprises the kinematic properties that differentiate a 

target from other targets. The target signature helps to differentiate targets in an 

environment where there are many targets. To be able to differentiate between two 

signatures, the micro-Doppler effect can be used. By using a Doppler radar, a small 

variation in the frequency induced by motion can be detected. Studies have shown that by 

using radar, one can differentiate between animals and human beings [89]. 

3.6.1 Micro-motion 

Using the Doppler effect, one can detect the target only if it is in motion. It has to be 

specified that when a target is in motion and some part of the target is vibrating or moving, 

this will cause a frequency shift about the main Doppler frequency shift. Such a frequency 

shift is known as a micro-Doppler frequency. Micro-motion is a source of micro-Doppler 

frequency. Thus, analysis of micro-motion is necessary in order to infer the micro-Doppler 

frequency. 

3.6.2 Rigid body motion 

In studying body motion, it is important to know the type of body in motion, which could 

be non-rigid or rigid. A non-rigid body is deformable. The distance between two particles 

in a non-rigid body can vary when the body is in motion. On the other hand, a rigid body is 

a non-deformable body with a finite size [90]. In the rigid body the distance between two 

particles does not change when the body is in motion. A rigid body is a body of mass 𝑀 

constituted from the sum of particles of mass 𝑚𝑖. Thus, a rigid body can be defined as 

follows: 𝑀 =  ∑  𝑚𝑖. 

In Figure 3.1, a descriptive illustration of the two coordinate systems and the body in 

motion is presented. To represent a body in motion in space, two coordinate systems are 

usually used, as in Figure 3.1. 

The first coordinate is known as the global or space-fixed system (𝑋, 𝑌, 𝑍). The second 

coordinate is known as the local or body-fixed system (𝑥, 𝑦, 𝑧). The radar is placed at the 

origin of the global system, while the cylinder is placed at the origin of the local system. 

On the cylinder, a point 𝑃 is placed in order to illustrate the motion of the body. 
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Figure 3.1: Global and local system coordinates with a body in motion. 

In Figure 3.1, the first global coordinate is fixed to the space, meaning it does not change 

in relation to the space of observation. On the other hand, the local system changes in 

relation to space when there is motion, but not in regard to the body in motion. Therefore, 

a radar is placed at the origin of the global system coordinate. The body is placed at the 

origin of the local system. The body is fixed to the same coordinate. The local system 

coordinate is considered the centre of mass of the body. If the axis of the local system is 

not parallel to the axis of the global system, three independent angles can be introduced 

relative to the global system. 

Consider a particle 𝑃 at position 𝑃 in the local system, belonging to the body in motion. To 

localise the same point in the global system, a vectoral sum is used as follows: 

𝑄𝑃⃗⃗⃗⃗  ⃗ = 𝑄𝑂⃗⃗⃗⃗⃗⃗ + 𝑂𝑃⃗⃗⃗⃗  ⃗.                                                                      (3.1) 

Consider 𝑄𝑃⃗⃗⃗⃗  ⃗ = 𝑟𝑄𝑃 , 𝑄𝑂⃗⃗⃗⃗⃗⃗ = 𝑟𝑄𝑂 and 𝑂𝑃⃗⃗⃗⃗  ⃗ = 𝑟𝑂𝑃 for easy reading of reference. 

It is known that the velocity is the rate of change of a position with respect to time. Thus, 

the following equation determines the velocity: 

𝑑(𝑟𝑄𝑃)

𝑑𝑡
=

𝑑(𝑟𝑄𝑂)

𝑑𝑡
+

𝑑(𝑟𝑂𝑃)

𝑑𝑡
 .                                                  (3.2) 

Equation (3.2) can be rewritten as follows: 

𝑣 = 𝑉 + Ω × 𝑟𝑂𝑃 .                                                                    (3.3) 

𝑉 is considered the translation velocity of the centre of mass of the body, while Ω is the 

angular velocity of the body rotation. Therefore, it has been demonstrated that the body 

motion is a combination of translation and rotation movement. 
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To be able to represent the orientation of any object in space, quaternions, Euler angles and 

rotation matrices are frequently used. 

3.6.2.1 Euler angles 

Leonhard Euler introduced three angles known as Euler angles to describe a general 

rotation in space. The Euler angles describe an orientation of a rigid body with reference to 

fixed system coordinates. 

Figure 3.2 represents three different steps that an object realises when in motion. Figure 

3.2 a represents the initial position of the coordinate, progressing to Figure 3.2 b and 

finally Figure 3.2 c. The dashed axes are obtained after rotation about the z-axis. The 

dashed-dot axes are obtained after rotation about the new x-axis in the dashed line. The 

bold axes are obtained after the rotation of axes about the new z-axis in the dashed-dot 

line. 

 

Figure 3.2: Euler angles. 

In Figure 3.2 three successive rotations have been depicted to illustrate how an Euler angle 

works. The first rotation is about the 𝑧-axis, which yields an angle 𝜑.  This is depicted by 

the dashed axis in the figure. The second rotation is about the 𝑥-axis, yielding an angle of 
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𝜃. This is depicted by the dashed-dot axis in Figure 3.2.b. The last rotation about the new 

𝑧′′ yields an angle of 𝜑. This is depicted by the bold axis in Figure 3.2.c. The 

aforementioned angles (𝜑, 𝜃, 𝜓) are known as Euler angles. The rotations are counter-

clockwise. The sequence of rotation has to be followed, as the matrix multiplication is not 

commutative. 

Thus, there are 12 different sequences to represent an orientation while using Euler angles. 

The following are the sequences: 𝑥 − 𝑦 − 𝑧, 𝑥 − 𝑧 − 𝑦, 𝑥 − 𝑦 − 𝑥, 𝑥 − 𝑧 − 𝑥, 𝑦 − 𝑥 − 𝑧, 

𝑦 − 𝑧 − 𝑥, 𝑦 − 𝑥 − 𝑦, 𝑦 − 𝑧 − 𝑦, 𝑧 − 𝑥 − 𝑦, 𝑧 − 𝑦 − 𝑥, 𝑧 − 𝑥 − 𝑧 and finally, 𝑧 − 𝑦 − 𝑧. 

For the case presented in Figure 3.2, one can see that the sequence 𝑧 − 𝑥 − 𝑧 is used. 

Sometimes these rotations are specified in terms of roll-pitch-yaw as an 𝑥 − 𝑦 − 𝑧 

sequence and in terms of the angles (𝜓 − 𝜙 − 𝜑). Therefore, the rotation matrix is an 

important tool for computing rigid body rotation. Three elementary rotation angles are 

sufficient to find the orientation and the rotation of any rigid body. To rotate a rigid body 

using the roll-pitch-yaw, one has to rotate the body about the 𝑥 axis as 𝑥 = [1 0 0]𝑇 by 

an angle 𝜓, which is defined by the elementary rotation matrix: 

ℛ𝑥 = [
1 0 0
0 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓
0 −𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] .                                                 (3.4) 

A new 𝑦 axis is yielded after the rotation ℛ𝑥. The rotation will be effectuated about this 

new axis 𝑦 = [0 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓]𝑇 by an angle 𝜃, which is defined by the elementary 

rotation matrix: 

ℛ𝑦 = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] .                                                   (3.5) 

A new 𝑧 axis is yielded after the rotation ℛ𝑦. The rotation will be effectuated about this 

new axis 𝑧 = [−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓]𝑇 by an angle of 𝜑, which is defined by the 

elementary rotation matrix: 

ℛ𝑧 = [
𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 0
−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 0

0 0 1
].                                                       (3.6) 

Therefore, the rotation matrix of the roll-pitch-yaw sequence is represented as follows: 

ℛ𝑥−𝑦−𝑧 = ℛ𝑧 ⋅ ℛ𝑦 ⋅ ℛ𝑥 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

].                           (3.7) 

The components of the rotation matrix are as follows: 

𝑟11 = cos 𝜃 cos𝜑,                                                                         (3.8) 
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𝑟12 = sin𝜓 sin 𝜃 cos𝜑 + cos𝜓 sin𝜑,                                    (3.9) 

𝑟13 = −cos𝜓 sin 𝜃 cos𝜑 + sin𝜓 sin𝜑,                              (3.10) 

 

𝑟21 = −cos 𝜃 sin𝜑,                                                                    (3.11) 

𝑟22 = −sin𝜓 sin 𝜃 sin 𝜑 + cos𝜓 cos𝜑,                            (3.12) 

𝑟23 = cos𝜓 sin 𝜃 sin𝜑 + sin𝜓 cos𝜑,                                    (3.13) 

 

𝑟31 = sin 𝜃 ,                                                                            (3.14) 

𝑟32 = −sin𝜓 cos 𝜃,                                                               (3.15) 

and 

𝑟33 = cos𝜓 cos 𝜃.                                                                  (3.16) 

Thus, for any sequence rotation matrix one can find the general rotation matrix derived 

from the elementary rotation matrix. 

Though the Euler angles can represent any type of orientation of a rigid body, the main 

related issue is known as a gimbal lock. The gimbal lock is a situation when two axes are 

in the same plane. In this case one cannot perform any rotation about the axis in the same 

plane. To eliminate the gimbal lock, using quaternion algebra instead of Euler angles, 

rotation matrices is a solution. The quaternion is introduced in the next section to 

overcome the gimbal lock problem. 

3.6.2.2 Quaternion 

In 1843, while looking for a way to construct a theory of triplets that would be relevant to 

the study of 3-D geometry, William Rowan Hamilton discovered quaternions [91]. He was 

trying to find an analogy with the couplets of a complex number. 

Quaternions, as per their prefix, quarter meaning four, comprise a system having four-

dimensional vectors in the set, ℝ4. The four-dimensional vectors are the following: 𝛼 is 

the scalar and first element in the coordinate, then 𝑥, 𝑦 and 𝑧 are coordinates as imaginary 

parts. The four-dimensional vectors are used to represent a 3-D orientation. Therefore in 3-

D, a vector can be represented as (𝛼, 𝑥, 𝑦, 𝑧) from the origin of the axis. A point 𝑃 having 

(𝑥, 𝑦, 𝑧) coordinates is represented as follows: 𝑃 = 𝑥 ∙ 𝑖 + 𝑦 ∙ 𝑗 + 𝑧 ∙ 𝑘 in 3-D, if 𝑃 is 

rotating through an angle 𝛼 about a unit vector 𝑠 = 𝑎 ∙ 𝑖 + 𝑏 ∙ 𝑗 + 𝑐 ∙ 𝑘 . The unit vector 

has the following components: (𝑎, 𝑏, 𝑐). The rotation yields another point, which is found 

from the following transformation formula: 
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𝑃′ = 𝑞𝑃𝑞−1,                                                                 (3.17) 

with 𝑞 = 𝑒
𝛼

2
(𝑎𝑖+𝑎𝑗+𝑐𝑘) = 𝑐𝑜𝑠

𝛼

2
+ (𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘)𝑠𝑖𝑛

𝛼

2
. 𝑞 is the quaternion vector 

representing the unit vector 𝑠 and 𝑞−1 is the conjugate of 𝑞. Thus, the translation can be 

represented by (3.18): 

𝑃′ = 𝑞 + 𝑃 .                                                                  (3.18) 

One can see that the case presented above is a special case of quaternion because the real 

part is considered equal to zero. Therefore, the quaternion represents a point in 3-D. 

Quaternion vectors are not communicative in multiplication. The order of multiplication 

must be maintained. 

Thus, using the quaternion method is very useful to determine the orientation of an object 

in space. In this thesis, as one is dealing with a human body moving behind a wall, 

introducing such a concept is crucial for the simulation. 

3.6.3 Non-rigid body 

In contrast to a rigid body, a non-rigid body is deformable. The distance between two 

particles inside the body can vary when a force is acting on it. Modelling a non-rigid body 

is a complex exercise, which requires a high level of computation [85]. For that reason, a 

non-rigid body is modelled as a combination of rigid body segments connected through 

joints. Therefore, a body as a walking man is modelled as a rigid body connected through 

joints. In the rest of this work a human being will be modelled as several rigid bodies 

connected through joints. The rigid body motion is treated as a segment of the non-rigid 

body. This type of non-rigid body is known as a multibody system in mechanics. 

3.6.4 Backscattering electromagnetics from body in motion 

For several years it has been known that when an EM wave impinges on an object, this 

reradiates the EM wave in all directions. The reradiation is known as an RCS when 

calculated at a specific angle. The reradiated field of the object is computed with the 

assumption that the target is immobile. However, in the real world, immobile bodies are 

rarely found. Thus, all moving or oscillating objects will yield different reradiation. In 

other words, a moving target produces different scattering and RCS. 

Finding the scattering EM wave from a moving target is a subject of great interest among 

scientist. It has been studied theoretically and practically [92, 93, 94, 95, 96]. Sideband 



 

Department of Electrical and Electronic Science 48 

University of Johannesburg  

frequencies about the Doppler frequency induced by the translation are observed when the 

target oscillates linearly and periodically together with the translation movement. 

One can derive a far field of a moving target by using the following equation [97]: 

𝐸𝑇(𝑟) = 𝑒𝑥𝑝{𝑗 𝑘 𝑟𝑖  ∙ (𝑢𝑘 − 𝑢𝑟)}𝐸(𝑟) .                                  (3.19) 

𝑘 = 2𝜋/𝜆 is the wave number, with the unit vector of the incident wave as 𝑢𝑘, the 

direction of the observation unit vector as 𝑢𝑟, and 𝐸(𝑟) as the far electric field incident on 

the target before moving. 

Figure 3.3 depicts a human being moving from an initial point to a final point in space. 

The radar is placed at the origin of the global coordinate observing the human motion. The 

distance between the radar and the human is regarded as 𝑟 before the motion starts and 𝑟𝑓 

when the final position is reached. The path that the human goes through has a distance 𝑟𝑖. 

The local coordinate is considered fixed in reference to the human being. 

 

Figure 3.3: Translation movement. 

In Figure 3.3, consider a human being standing at position 𝑟 = (𝑋𝑖, 𝑌𝑖 , 𝑍𝑖) in the space-

fixed coordinates (𝑋, 𝑌, 𝑍). If one considers the human as one body moving from 

(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) to a final position (𝑋𝑓 , 𝑌𝑓 , 𝑍𝑓) in the space-fixed coordinates (𝑋, 𝑌, 𝑍), this 

movement is a translation because the human is moving from one point to another. The 

translation vector is found with the following equation: 𝑟𝑖 = 𝑟 + 𝑟𝑓. Here 𝑟 is the distance 
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vector from the radar to the human before moving. Furthermore, 𝑟𝑓 is the final position of 

the human after translation. 

Observing Figure 3.3 while applying (3.9), one can see that the only parameter that will 

change is the phase term 𝑒𝑥𝑝{𝑗 𝑘 𝑟0  ∙ (𝑢𝑘 − 𝑢𝑟)}. Because there is movement, the 

translation is a function of time. Thus, 𝑟𝑖 = 𝑟𝑖(𝑡) = 𝑟𝑖(𝑡)𝑢𝑇 , having 𝑢𝑇 as a unit vector of 

the translation. After translation, (3.19) becomes: 

𝐸𝑇(𝑟) = 𝑒𝑥𝑝{𝑗 𝑘 𝑟𝑖(𝑡)𝑢𝑇  ∙ (𝑢𝑘 − 𝑢𝑟)}𝐸(𝑟).                                  (3.20) 

In the current case the radar that is used is based on monostatic radar. This set-up 

influences (3.20), where 𝑢𝑘 = 𝑢𝑟 , thus the phase factor is: 

𝑒𝑥𝑝{𝑗𝜑(𝑡)} = 𝑒𝑥𝑝{𝑗 𝑘 𝑟𝑖(𝑡)𝑢𝑇  ∙ 𝑢𝑘)} .                                       (3.21) 

Thus, when the radar is transmitting an EM wave at frequency 𝑓0, the received signal is 

expressed as follows: 

𝑠(𝑡) = 𝑒𝑥𝑝{𝑗 𝑘 𝑟𝑖(𝑡) ∙ (𝑢𝑘 − 𝑢𝑟) − 𝑗2𝜋𝑓0𝑡}|𝐸(𝑟)| .                        (3.22)  

The phase factor of (3.22) represents the modulation of the micro-Doppler effect induced 

by the time-varying motion 𝑟𝑖(𝑡). This phase factor is important for this study, as it is the 

main factor that will have to be extracted in this thesis. This factor is a function of 

movement. If the target is vibrating, one can represent the signal as sinusoidal in the form 

of 𝑟𝑖(𝑡) =  𝐴𝑖 cos𝜔𝑡 with 𝐴𝑖 the reflective coefficient of the target and 𝜔 the angular 

frequency. 

3.7 MATHEMATICAL CALCULATION OF THE MICRO-DOPPLER EFFECT 

To be able to analyse the micro-Doppler spectrogram, mathematical expressions are 

necessary to clarify the phenomenon. Mechanical vibration or rotation of structures in a 

target analysis has been introduced in a detailed manner in [98]. In a radar area, a target is 

very often represented as a set of point scatterers [99]. Using point scatterers is a way to 

model a target in a simulation environment; it does not have any impact on the micro-

Doppler spectrograms of the target. 

Figure 3.4 is introduced in this subsection to explain the micro-Doppler effect. In this 

figure, a cylinder translating and rotating is observed. The radar is placed at the origin of 

the global system, while the antennas point towards the cylinder. From 𝑡 = 0 to 𝑡 = 1 the 

cylinder performs translation and rotation. The translation and rotation are studied to 

explain the micro-Doppler effect in a body in motion. 
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Figure 3.4: Rotation motion. 

In Figure 3.4, a target in a local system coordinate (𝑥, 𝑦, 𝑧) attached to the same target is 

illustrated. The radar is situated in the global system coordinate (𝑋, 𝑌, 𝑍) and at the origin 

𝑄 of the same coordinate. It is considered that the radar is stationary at origin 𝑄. The target 

has a translation and rotation movement with respect to the global system coordinate. 

Another reference system coordinate (𝑋1, 𝑌1, 𝑍1) is introduced to observe the rotation of 

the target. The reference coordinate has the same origin as the local system coordinate and 

has the same translation as the target, but not the same rotation in respect of the global 

system coordinate. The distance from the origin of the reference system to the radar is 𝑅0. 

The next subsection will introduce the extraction of a micro-Doppler induced by a target. 

3.7.1 MICRO-DOPPLER EXTRACTION 

As shown in Figure 3.4, the target has a translation with a velocity 𝑣 with respect to the 

radar system coordinate. In addition, the target has a rotation velocity 𝜔, which is 

dependent on the individual axis coordinate velocity (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) in the target coordinate. 

The rotation velocity can be represented in the reference system coordinate as 𝜔 =

(𝜔𝑋1
, 𝜔𝑋1

, 𝜔𝑋1
)𝑇 or in the target system coordinate as 𝜔 = (𝜔𝑥, 𝜔𝑦 , 𝜔𝑧)

𝑇
. A point 

scatterer 𝑞 on the target at the time 𝑡 = 0 translates from 𝑞 to 𝑞2 with a velocity 𝑣. The 

translation space covered by the target after the time 𝑡 is found to be  

𝑂𝑂1 = 𝑣𝑡.                                                                 (3.23). 
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Thereafter, the same point scatterer moves from point 𝑞2 to 𝑞1. The movement from point 

𝑞2 to 𝑞1 is a rotary movement with an angular velocity 𝜔. Observing the movement of the 

point 𝑞 in the reference system coordinate, q is located at 𝑟0 = (𝑋0, 𝑌0, 𝑍0)
𝑇, then the 

rotation from 𝑞2 to 𝑞1 is described by a rotation matrix ℛ𝑡. Thus, the point scatterer will 

find itself at position: 

𝑟 = 𝑂1𝑞1 = ℛ𝑡(𝑂
1𝑞2) = ℛ𝑡𝑟0.                                                 (3.24) 

From 𝑄 to 𝑞1 is the final range in which the radar will observe the scatterer point after 

translation and rotation. This can be found vectorially as follows: 

𝑄𝑞1 = 𝑄𝑂 + 𝑂𝑂1 + 𝑂1𝑞1.                                                          (3.25) 

It is known that 

𝑅0 = 𝑄𝑂 .                                                                            (3.26) 

By substituting (3.13), (3.16) and (3.14) into (3.15), the following equation will be 

obtained: 

𝑄𝑞1 = 𝑅0 + 𝑣𝑡 + ℛ𝑡𝑟0.                                                               (3.27) 

Then finally the range becomes: 

𝑟(𝑡) = ‖𝑅0 + 𝑣𝑡 + ℛ𝑡𝑟0‖                                                            (3.28) 

where ‖∙‖ represents the Euclidean norm. 

Suppose that the radar transmits a sinusoidal waveform having a carrier frequency 𝑓; the 

signal return from the point scatterer as a baseband becomes a function of 𝑟(𝑡). This signal 

is represented as follows [98]: 

𝑠(𝑡) =  𝜌(𝑥, 𝑦, 𝑧)𝑒𝑥𝑝 [𝑗2𝜋𝑓
2𝑟(𝑡)

𝑐
] =  𝜌(𝑥, 𝑦, 𝑧)𝑒𝑥𝑝{𝑗Φ[𝑟(𝑡)]} ,                           (3.29) 

where 𝜌(𝑥, 𝑦, 𝑧) is the reflectivity of the point scatterer 𝑞, which is a function of the target 

system coordinates (𝑥, 𝑦, 𝑧). 

Here 𝑐 is the speed of the EM wave that the radar transmits, and Φ(𝑟) is the phase of the 

baseband of the receiving signal, 

Φ(𝑟) = 2𝜋𝑓
2𝑟(𝑡)

𝑐
.                                                                   (3.30) 

To obtain the instantaneous frequency, one has to find the derivative of the phase of the 

baseband signal. The instantaneous frequency will reveal the Doppler frequency shift 

induced by the target’s motion: 

𝑓𝑑 =
1

2𝜋
 
𝑑Φ(𝑡)

𝑑𝑡
 .                                                                       (3.31) 
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Then substituting (3.30) in (3.31) yields: 

 

𝑓𝑑 =
2𝑓

𝑐
 
𝑑𝑟(𝑡)

𝑑𝑡
 .                                                                          (3.32) 

Substituting (3.18) in (3.22) yields: 

𝑓𝑑 =
2𝑓

𝑐
 

1

2𝑟(𝑡)
 
𝑑[(𝑅0 + 𝑣𝑡 + ℛ𝑡𝑟0 )

𝑇(𝑅0 + 𝑣𝑡 + ℛ𝑡𝑟0 )]

𝑑𝑡
,                                 (3.33) 

 

𝑓𝑑 =
2𝑓

𝑐
 [𝑣 +

𝑑(ℛ𝑡𝑟0) 

𝑑𝑡
]
𝑇

𝑛 ,                                                         (3.34) 

with: 

𝑛 =
𝑅0 + 𝑣𝑡 + ℛ𝑡𝑟0

‖𝑅0 + 𝑣𝑡 + ℛ𝑡𝑟0‖
,                                                            (3.35) 

as the unit vector of 𝑄𝑞1. 

Equation (3.8) can be written as (3.37), considering that the angular velocity vector is 

described as 𝜔 = (𝜔𝑋1
, 𝜔𝑌1 , 𝜔𝑍1

)𝑇 in the reference coordinate Figure 3.4. The time 

interval may be considered infinitesimal when a high PRF and a low angular velocity are 

used. Consider 

ℛ𝑡 = 𝑒𝑥 𝑝(𝜔̂𝑡),                                                                        (3.36) 

where 𝜔̂ is the skew symmetric matrix, which is associated with 𝜔. Therefore (3.34) can 

be written as: 

𝑓𝑑 =
2𝑓

𝑐
 [𝑣 +

𝑑(𝑒𝜔̂𝑡𝑟0) 

𝑑𝑡
]

𝑇

𝑛 .                                                    (3.37) 

After computing the derivation inside (3.28): 

𝑓𝑑 =
2𝑓

𝑐
 (𝑣 + 𝜔̂𝑒𝜔̂𝑡𝑟0)

𝑇𝑛,                                                       (3.38) 

𝑓𝑑 =
2𝑓

𝑐
 (𝑣 + 𝜔̂𝒓)𝑇𝑛 =  

2𝑓

𝑐
 (𝑣 + 𝝎 × 𝒓)𝑇𝑛,                           (3.39) 

and 𝑛 can be approximated as 
𝑅0

‖𝑅0‖
 when ‖𝑅0‖ ≫ ‖𝑣𝑡 + ℛ𝑡𝑟‖. 𝑅0 is the line of sight of the 

radar to the target. The approximation of the Doppler frequency shift is [98]: 

𝑓𝑑 = 
2𝑓

𝑐
 (𝑣 + 𝝎 × 𝒓) ⋅ 𝑛 .                                                       (3.40) 

The first term in (3.40) is the Doppler shift induced by the translation, while the second 

term is the micro-Doppler induced by the rotation. 
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For time-varying rotation, the micro-Doppler term can be written as follows: 

𝑓𝑑 = 
2𝑓

𝑐
 [Ω(𝑡) × 𝒓] ⋅ 𝑛 .                                                            (3.41) 

It has to be mentioned that the angular rotation velocity is a function of time, which can be 

expressed as follows [98]: 

Ω(𝑡) = Ω0 + Ω1𝑡
1 + Ω2𝑡

2 + ⋯  .                                                (3.42) 

3.8 CONCLUDING REMARKS 

To be able to run the simulation, some notions have to be introduced. This is the case with 

the micro-Doppler signature of the target, mathematically speaking.  Other relevant 

notions are the rigid body motion in the three-dimensional space, the Euler angle, the 

quaternion and the backscattering of the EM wave from a body in motion. These are 

required to run the simulation, as the radar and the target have to be modelled in the 

MATLAB environment. 

Simulation has been introduced in this research work to demonstrate the use of the radar 

system beyond the frequency of the built radar. In addition, this chapter gives deep 

understanding of the mathematical expression underlying the physical phenomenon. The 

next chapter will introduce the radar that was built and the setup of the experiment. 

 



 

 

 

CHAPTER 4   FREQUENCY MODULATED 

CONTINUOUS WAVE 

4.1 CHAPTER OVERVIEW 

The radar that was built works at a frequency of 2.4 GHz as a centre frequency. Because of 

the limitation of the available hardware in terms of the frequency, in addition to the 

experiment, some simulations were set up at different frequencies in a band of 2.5 GHz to 

20 GHz. The simulation setup was presented in Chapter 3 and in more detail in Chapter 5. 

Figure 4.1 represents a human walking towards the radar placed 10 m from where the 

human is starting his course. The radar is placed at a height of 2 m while transmitting its 

signal to the walking human. Figure 4.1 illustrates the setup of the simulations. 

As specified in Chapter 2, section 2.2.11, an FMCW radar is of more advantage in this 

specific application. This chapter presents the setup of the radar and justifies the choice of 

this radar. 

 

Figure 4.1: Setup of the simulation. 

4.2 RADAR SETUP 

The analysis conducted in this thesis is of data that have been collected with a radar built 

in the Centre for Telecommunication laboratory at the University of Johannesburg. The 

Target Radar 

10 m 
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radar used for the experiment was inspired by the Massachusetts Institute of Technology 

radar based on a coffee can [100]. The next subsection presents the radar used in detail, 

then the human and wall modelling. 

4.2.1 Radar design  

Figure 4.2 represents different components used to build the radar in the laboratory where 

the author did the research. The system comprises the following components: 

a. The transmission branch is constituted of: 

a. A ramp generator 

b. A VCO 

c. An attenuator 

d. A PA 

e. A PD 

f. A transmit antenna. 

b. The receiving branch is constituted of: 

a. A receive antenna 

b. A mixer 

c. An LNA 

d. A filter 

e. An ADC. 

 

Figure 4.2: Radar built with different components for the experiment described in this 

thesis. 

As one can see in Figure 4.2, the radar used in the experiment is an FMCW. The radar is 

input with a ramp signal generated by a signal generator or signal coming from the printed 
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circuit board. More details are given in Appendix A. The ramp signal voltage varies from 0 

to 5 volts in a 20 𝑚𝑠𝑒𝑐 period. The VCO receives the signal coming from the signal 

generator and in turn generates frequencies in the range of 2257.4 to 2591.8 MHz, which 

are proportional to the input voltage. The VCO power output varies between 5.14 and 6.17 

dBm, while the voltage varies between 0 and 5 volts. The signal coming from the VCO is 

fed to an attenuator and from the attenuator to a PA. The signal is sent to a PD from the 

PA. Thus, the PD splits the signal in half. The first half is transmitted to an antenna, 𝑇𝑥, 

while the other half is sent to a mixer for frequency synthesis. Once the signal has been 

sent to the antenna, this will transmit an EM wave, which will bounce from any object in 

the direction of the 𝑇𝑥 radiation pattern. A small portion of the bounced EM wave will be 

collected by a receiver antenna 𝑅𝑥. The signal coming from the 𝑅𝑥 will be demodulated 

with a mixer (Mx) by multiplying the half signal coming from the splitter and the signal 

coming from the 𝑅𝑥. The signal coming from the mixer is a beat frequency (BF), which is 

a baseband signal. Because the BF is a weak signal, it is thereafter sent to an LNA for 

amplification. A further process is undertaken from the LNA to detect any object in the 

scanning area. After the LNA the BT is filtered out for clutter removal. Then the signal 

goes from the filter to an ADC. In the present case the ADC is the audio card of a laptop. 

For signal processing, MATLAB and a DELL laptop are used. The antennas are designed 

using fundamental principles of electromagnetics. More details are given in Appendix B. 

The frequency band of 2.4 GHz has been chosen because it is an unlicensed band and is 

suitable for experimental purposes. 

A small calculation yields a bandwidth of  

𝐵 = 2591.8 − 2257.4 = 334.4 𝑀𝐻𝑧 .                                   (4.1) 

Then, using the following formula, the range resolution will be equal to 0.44 m. Thus, a 

range resolution of 0.44 m is a greater indication of limbs movement performed by a 

human being. For the actual study this range resolution is reasonable.  

∆𝑟 =
𝐶

2𝐵
                                                                          (4.2) 

 

In addition, using the sweep time 𝑇𝑠 = 20 𝑚𝑆𝑒𝑐, the beat frequency is determined at 

1114.6 𝐻𝑧 ⟹ 1.1 kHz using the following formula: 

𝑓𝑏𝑒𝑎𝑡 =
2𝐵 ∙ 𝑟

𝐶 ∙ 𝑇𝑚
 .                                                                     (4.3) 
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According to Shannon’s theory, an analogue signal can be sampled at more than or equal 

to twice its frequency to be properly represented digitally. One can see that at this 

frequency an audio ADC can sample this signal. 

To elaborate on all the modules used for the radar used in this study, Table 4-1 gives the 

part number of each component used. The first column presents the functionality of each 

part used for the radar, the second column presents the manufacture of the components, 

then the last column the part number of the components used. 

Table 4-1: Modules used for the radar system 

Module Manufacturer Part Number 

VCO Mini-Circuits Zx95-2536c+ 

Attenuator Mini-Circuits VAT-3+ 

PA Mini-Circuits ZX60-272LN+ 

PD Mini-Circuits ZX10-2-42+ 

Mixer Mini-Circuits ZX05-43MH+ 

LNA Mini-Circuits ZX60-272LN+ 

Antenna Homemade Homemade 

 

Figure 4.3 illustrates the radar built. The white antenna is the transmit antenna and the 

yellowish antenna is the receive antenna. In front of the antennas is the radar built with 

different modules, as presented in Table 4-1. 

 

Figure 4.3: Radar built. 
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In Figure 4.3 one can see the entire radar and its different components; the radar is on a 

bench test floor and the antennas next to it. 

Figure 4.4 represents the radar with different modules of the radar with the focus on the 

transceiver. From the bottom, the first module is the VCO. Thereafter comes the attenuator 

and then the PA. The component on top of the PA is the PD, dividing the signal in two. On 

the left hand the signal goes to feed the transmit antenna while on the right the signal goes 

to the mixer. On the far right-hand the cable coming from the mixer serves to receive the 

signal coming from the receive antenna. The signals coming from the PD and the antenna 

are input to the mixer, then sent to the LNA at the bottom of the mixer. The ADC module 

used for this experiment is the sound card of the computer. 

 

Figure 4.4: Modules of the radar. 

In Figure 4.4, the radar that has been built with module components for noise immunity is 

illustrated. The VCO receives the signal coming from the signal generator, then in turn 

creates a frequency that is proportional to the voltage applied to it. The attenuator 

afterwards conditions the generated frequency (signal) in the range of power that is 

admissible to the PA. The PA amplifies the signal, then transmits it to the PD. The PD 

divides the signal into two, where one portion is transmitted via the antenna and the other 

portion of the signal is transmitted to the mixer. The mixer will demodulate the signal 

coming from the receiving antenna by mixing it with the signal coming from the PD. From 

the mixer the signal is passed through the LNA before going to the computer for further 

processing. 
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4.2.2 Human and wall model 

Human signatures are introduced in this subsection because the target under investigation 

is a human being. Because the signal should travel twice through a wall before going back 

to the radar, wall modelling in TWR is discussed as well in this subsection. 

4.2.2.1 Signal propagation in the absence of a wall (dielectric) 

In this section, the researcher studies how a radar signal impinging on a human body 

behaves. The radar used in this experiment is monostatic. 

Figure 4.5 presents a radar scene where a radar is placed at a point 𝑃 at a distance 𝑟 from a 

human being at point 𝑄. The human and the radar are placed on the X-Z plane, while the 

Y-axis separates the radar from the human being. The radar is on a line of sight with the 

target under investigation. 

 

Figure 4.5: Signal propagating to the target without obstruction. 

In Figure 4.5, a radar transmits a signal towards a human in the first case; then afterwards 

the signal bounces off the human to return to the radar. The radar is placed at a certain 

distance from the human being, in such a way that the wave reaching the human is a plane 

wave. The backscattering signal is a function of many radar parameters and the dynamic 

behaviour of the target. Consider a transmitter 𝑇𝑥 and receiver 𝑅𝑥 (radar) collocated at 

point 𝑃 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝), where the distance between them is negligible. On the other side a 
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target (human being) is located at point 𝑄 = (𝑥𝑞 , 𝑦𝑞 , 𝑧𝑞). Let a signal, 𝑠(𝑡), be transmitted, 

propagating in the air while travelling from point P to Q.  

Because the EM wave is propagating in the air, the velocity of the EM wave is regarded as 

equal to the velocity of light, 𝑐. The distance between the radar and the target 𝑟 is such that 

the EM reaches the target at the far field.  

In a Cartesian system the distance between the radar and the target can be written as 

follows: 

𝑟(𝑃, 𝑄) = √(𝑥𝑞 − 𝑥𝑝)
2
+ (𝑦𝑞 − 𝑦𝑝)

2
+ (𝑧𝑞 − 𝑧𝑝)2.                            (4.4) 

The transmitted signal is represented mathematically as follows: 

𝐸𝑡(𝑟, 𝜔) = 𝑒−𝑗𝑘𝑟𝐸(0, 𝜔).                                                        (4.5) 

It is transmitted towards the scene of interest. The medium is a homogeneous isotropic and 

non-magnetic medium 𝜇 =  𝜇0 with a permittivity of 𝜀 = 𝜀0. 𝑘 is the wave number of the 

signal. Note that 𝑘 is a frequency-dependent factor and has the following value: 𝑘(𝜔) =

 𝜔√𝜖(𝜔)𝜇0. 

Figure 4.6 presents the signal transmitted against the one received. In this figure the 

dashed line is the transmitted signal while the solid line is the received signal. The 𝑥 axis 

represent the time that elapses when the signal is changing its value. On the other hand, the 

𝑦 axis represents the frequency. 

 

Figure 4.6: Signal transmitted and received. 
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In Figure 4.6, it can be observed that the received signal arrives at the radar after a certain 

delay, 𝜏, and with a difference in frequency, 𝑓𝑑 , which is a Doppler shift. 

If one considers a human being walking with hands swinging along the body, the 

movements of the limbs and chest are seen as sources of EM wave modulation. If there is 

no obstruction between the target and the radar, the signal 𝑠(𝑡) sent by the transmitter is 

modulated by the movement of the limbs and the micro-movement of the chest. Consider 

the chest and limb movement as additive signal represented by 

 

𝑦(𝑡) =  𝑦𝑐(𝑡) + 𝑦𝑙(𝑡),                                                           (4.6) 

where the 

𝑦𝑐(𝑡) = 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) ,                                                       (4.7)  

and 

𝑦𝑙(𝑡) = 𝐴𝑙 cos(2𝜋𝑓𝑙𝑡) ,                                                        (4.8) 

are signals due to the chest and limbs movement respectively. Thus, at the receiver side 

one can collect the signal: 

𝑚(𝑡) =  𝐴2 cos[2𝜋𝑓(𝑡0 − 𝑡1)].                                            (4.9) 

This signal has to be added to white Gaussian noise to yield: 

𝑚(𝑡) =  𝐴2 cos[2𝜋𝑓(𝑡0 − 𝑡1)] + 𝑛(𝑡).                          (4.10) 

Taking into account that the target has micro-movement, one can intuitively assume the 

presence of the Doppler frequency 𝑓𝑑. 

𝜏 is the round trip time taken by the signal to bounce off the target and return to the radar. 

This can be determined as: 

𝜏(𝑡) = |𝑡0 − 𝑡1| =
2𝑟(𝑡)

𝑐
                                                        (4.11) 

where 𝑟(𝑡) is the dynamic range between the target and the radar. 𝑟(𝑡) is determined as  

𝑟(𝑡) = 𝑟 + 𝑦(𝑡) .                                                                  (4.12) 

Incorporating (4.7) and (4.8) in (4.6) and then the resulting equation into (4.12) yields  

𝑟(𝑡) = 𝑟 + 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) + 𝐴𝑙 cos(2𝜋𝑓𝑙𝑡).                          (4.13) 

If (3.55) is then incorporated into (4.13), the result is: 

 

𝜏(𝑡) =  
2[𝑟 + 𝐴𝑐 cos(2𝜋𝑓𝑐𝑡) + 𝐴𝑙 cos(2𝜋𝑓𝑙𝑡)] 

𝑐
.                                  (4.14)  
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In order to deduce the target information from the received signal, a mixer multiplies 𝑚(𝑡) 

with the original signal transmitted 𝑠(𝑡) in the time domain. In practice this multiplication 

is known as the down-converting process. The result of the development is: 

𝑚(𝑡) ⋅ 𝑠(𝑡) =
𝐴2𝐴1

2
{cos [ 4(𝜋𝑓𝑡0)

2 −(2𝜋𝑓𝑡1) + 𝑛(𝑡)] + cos[ 𝑛(𝑡) − (2𝜋𝑓𝑡1)]}.   (4.15) 

A human being may be modelled as a metallic cylinder of the same height as the human 

being when the micro-Doppler is not of interest because the movement of the entire body 

is regarded as one unit. Representing a human by a metallic cylinder, a simulation was run 

in MATLAB to investigate the frequency impact on the RCS. To find the RCS behaviour 

of the target in the function of the frequency, the height and radius of the cylinder, a 

simulation was conducted. 

Figure 4.7 represents the result of a simulation run at different frequencies while 

maintaining the same radius and same height of the cylinder. The X-axis represents the 

aspect angle at which the radar signal is impinging on the target. The Y-axis represents the 

normalised RCS of the target. 

 

Figure 4.7: The same radius and same height at different frequencies (1 and 3 GHz). 

In Figure 4.7, the frequencies used are 1 and 3 GHz because at 2 GHz the difference 

between the return signal at 1 and 3 GHz is not significant. In this simulation the body 
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width regarded as the radius was not varied. In Figure 4.7 the starred plot represents the 

curve of the RCS in the function of the elevation angle of a cylinder that is 1.9 m in height 

and 0.25 m in radius at a frequency of 1 GHz; on the other hand, the continuous curve 

represents the same target at 3 GHz. At a frequency of 1 GHz the target produces a higher 

RCS than at 3 GHz. The result shows that using a radar at a frequency of 1 GHz, the target 

is more likely to be detected than when using the same target at a frequency of 3 GHz. In 

addition, at zero-degree angle of elevation the target produced a higher RCS compared to 

the rest of the angles. The high specular or great RCS at zero-degree angle in the 

simulation is justified by the fact that the cylinder height is greater than its width at that 

position. 

To extend the behavioural study of the cylinder size related to the RCS, another simulation 

was run. Figure 4.8 represents the simulation of the cylinder. This time the height and the 

radius have been modified. The X-axis represents the aspect angle at which the radar 

signal is impinging on the target. The Y-axis represents the normalised RCS of the target. 

In this condition, the influence of the height and the radius are studied. 

 

Figure 4.8: Frequency 1 GHz, radius of 0.25 and 0.15 m and height of 1.9 and 0.15 m. 

Figure 4.8 reflects that, because the frequency of 1 GHz showed higher response compared 

to 3 GHz, in this simulation a frequency of 1 GHz was chosen. Using a frequency of 1 
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GHz, a height of 1.9 m and 1 m and a radius of 0.25 m and 0.15 m were used in the 

simulation. The dashed curve is the cylinder of 1 m in height and 0.15 m in radius, while 

the continuous curve is the cylinder of 1.9 m in height and 0.25 m in radius. A target with 

higher height and radius is more reflective than a shorter one. Care has to be taken when 

trying to detect both targets in the same scene. 

As one can see, the cylinder with higher height and greater radius produced significant 

RCS compared to its counterpart of 1 m. Thus, the conclusion can be drawn that height 

cannot be neglected in the study of target behaviour. 

4.2.2.2 Signal propagation in the presence of a wall 

The backscatter model for walls is studied in this section. Backscattering of an EM wave 

impinging on a wall has been the object of many investigations for a long time [13, 71]. To 

model a wall, one has to consider the main elements in its makeup. The wall is built from 

different materials, with dielectric or electric properties as the reinforcement. 

Figure 4.9 represents propagation of the signal passing through the wall before reaching 

the human behind the wall. The radar is placed at position 𝑃, then transmits the signal 

towards the wall. 

 

Figure 4.9: Signal propagating from the radar to the human through the wall. 

In Figure 4.9, as the wave rays are passing through the wall, they bend before leaving the 

wall. From the wall the rays reach the human and are then reflected back to the wall. 

Again, the ray is bent before leaving the wall for the radar. The bending ray is the physical 

phenomenon that induces the ghost target if a strong algorithm is not used by the radar. 
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The width of the wall is an element that can influence detection. As shown in the figure, 

the bending can be significant if the wall is thick. 

In this case it is assumed that a foundation is under the soil surface and consequently not 

visible. The wall is at an angle of 90 degrees to the soil surface. It is furthermore assumed 

that the ceiling and roof are above the level that will be illuminated by the EM wave. The 

wall is regarded as an inhomogeneous dielectric when hit by the EM wave. 

The velocity of an EM wave inside a non-magnetic medium is given by: 

𝑣 =
1

√𝜀0𝜇0𝜀𝑟

=
𝑐

√𝜀𝑟

 .                                                                     (4.16) 

The velocity of the EM wave will decrease while travelling from the air to the wall media; 

this can be observed in (3.58).  

It is known that at the boundary point the incident angle 𝜃𝑎𝑖𝑟 and the refraction angle 𝜃𝑤𝑎𝑙𝑙 

are related by Snell’s law, which is given by the following formula: 

√𝜀𝑎𝑖𝑟𝑠𝑖𝑛𝜃𝑎𝑖𝑟 = √𝜀𝑤𝑎𝑙𝑙𝑠𝑖𝑛𝜃𝑤𝑎𝑙𝑙.                                            (4.17) 

The EM wave will experience multiple refraction as it travels twice through the air-wall-

air. Thus, if the refraction angle is not taken into consideration while imaging the scene, 

incorrect imaging could result. The incorrect imaging can be seen as a non-focused image 

or ghost target.  

In the interaction of an EM wave with a dielectric medium, it is known that the dielectric 

constant and the shape of a target are the main components that influence EM scattering.  

The wall can be regarded as homogeneous material to simplify the numeric calculation. On 

the other hand, the wall can be seen as a stratified medium with different layers and it then 

becomes a heterogeneous medium. The scattering signal coming from a distant wall is 

represented as follows [101]: 

𝜎 = lim
𝑟→∞

4𝜋𝑟
|𝐸𝑠|

|𝐸𝑖|
                                                             (4.18) 

with 𝑟 as the range between the radar and the target and 𝐸𝑠 and 𝐸𝑖 the scattering and the 

incident electric field. Because in this study the target is a wall with stratified layers, 

equation (3.60) is generalised as follows: 

𝜎 = lim
𝑟→∞

4𝜋𝑟(𝑡)
|∑ 𝐸𝑠𝑛

𝑙=1 |

|∑ 𝐸𝑖𝑛
𝑙=1 |

  .                                                (4.19) 

When 𝐸𝑖 impinges on the wall 𝐸𝑠 and 𝐸𝑡 , the forward electric field, result from the 

phenomenon. Thus, the relation of these three components is: 

𝐸𝑖 = 𝐸0. 𝑒−𝑗𝑘1𝑢𝑛𝑖𝑟                                                             (4.20) 
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𝐸𝑠 = 𝛾𝐸0. 𝑒−𝑗𝑘1𝑢𝑛𝑠𝑟                                                          (4.21) 

𝐸𝑡 = 𝜌𝐸0. 𝑒−𝑗𝑘2𝑢𝑛𝑡𝑟                                                          (4.22) 

where 𝐸0 is the electric field at the boundary position, 𝜎 and 𝜌 are the reflection and the 

transmission coefficient, 𝑘 is the wave number and 𝑢𝑛𝑖, 𝑢𝑛𝑠 and 𝑢𝑛𝑡 are a unit vector of 

the incident, reflection and transmission wave. 

4.3 CONCLUDING REMARKS 

This chapter describes the radar built to collect the data. The choice of the FMCW has 

been justified by the fact that it sends different frequencies to the target at different time 

intervals. These different frequencies have the advantage of reflecting differently on 

different targets; as has been shown in this chapter, different frequencies impinging on the 

target vary the RCS of the same target. Thus, the choice of radar to be used is very 

important, according to the application. Combining Chapter 3 and Chapter 4 yielded a tool 

to run the experiment in order to justify the hypothesis formulated in Chapter 1. 

The simulation covers the frequencies that the radar that was built did not cover. The 

simulation yielded a wider spectrum of viewing the problem in different angles. The 

software used for the theoretical simulation was MATLAB. The chapter presented the 

radar that was built and the experimental setup. A full description of each phase of the 

research and the radar used for data collection was given in Chapter 1 in the methodology 

section. 

Finally, while the radar was built as a technology demonstrator, it was only a prototype. 

Medical or ethical clearance for using the radar on a human subject was outside the scope 

of this thesis. It has to be mentioned that all research involving human participants must be 

approved by human research ethics committees accredited by the National Health 

Research Ethics Council, a centralised body that is part of the Department of Health. For 

this reason, the thesis documents the prototype without the researcher having had the 

opportunity to test it. The simulation approach, with relevant emulation parameters, 

completely validates the hypothesis [82]. 

 



 

 

 

CHAPTER 5   MICRO-DOPPLER 

SIMULATION AND EXPERIMENT 

5.1 INTRODUCTION 

The radar discussed in this thesis has been presented in detail in previous chapters. In 

addition, the previous chapters served as introduction to this chapter by explaining the 

method adopted and the reason for choosing this method rather than others.  Hence, this 

chapter presents experimental and simulation results to address the research questions. The 

results of the simulations and experiments are subsequently discussed. 

To observe a human behind a wall or home appliance, echoes collected with radar are 

processed. These echoes are return signals from the target and any object the signal 

encounters on its way from the radar to the target and vice versa. The return signal is 

presented at the analogue-to-digital stage as an IF signal after the LNA, amplifier and 

filter. The IF signal is digitised, then processed to obtain the spectrogram of the sensed 

environment. Thus, the return signal is a function of time and frequency because at each 

instance of time the signal has a corresponding Doppler frequency. 

To simulate a radar system and model the target, the signal has to be propagated to the 

target and the motion of the target has to be determined first. Therefore, the next section 

introduces the signal model. The model of the signal allows researchers to simulate the 

entire process of the radar sending a signal to the target, then getting the signal back to the 

radar and finally processing it. 

5.2 SIGNAL MODEL 

Consider a monostatic FMCW radar transmitting a time varying signal with a frequency 

𝑓(𝑡) over the sensing period. The transmitted signal is expressed as: 

𝑆(𝑡) = exp[𝑗2𝜋𝑓(𝑡)𝑡] .                                                                    (5.1) 

Consider a point target located at a range of 𝑅0 from the radar at a time 𝑡0 = 0. If the 

target moves with a velocity 𝑣(𝑡) in the direction of the radar, forming an angle 𝜃 with the 

line of sight of the radar, the distance between the target and the radar at the time instant 

𝑡1 is: 

𝑅(𝑡) =  𝑅0 + ∫ 𝑣(𝑡)𝑑𝑡.
𝑡1

𝑡0

                                                                      (5.2) 
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Thus (5.2) can be expressed as follows if 𝜃 is taken into consideration: 

𝑅(𝑡) =  𝑅0 + ∫ 𝑣(𝑢)cos (𝜃)𝑑𝑢
𝑡1

𝑡0

                                                      (5.2) 

where 𝑣(𝑡) = 𝑣(𝑢)cos (𝜃). 

Therefore, the radar returning signal from the target can be mathematically modelled as: 

𝑞(𝑡) = 𝜌 exp {𝑗2𝜋𝑓(𝑡) [𝑡0 −
2𝑅(𝑡)

𝑐
]}                                             (5.3) 

where 𝜌 is the reflectivity coefficient of the point target, the factor 2 in 2𝑅(𝑡) is the round 

trip of the signal from the radar to the target and 𝑐 is the velocity of the EM wave 

propagation in the air. Thus, the Doppler frequency is represented mathematically as 

follows: 

𝑓𝑑(𝑡) =
2𝑣(𝑡) 𝑐𝑜𝑠(𝜃)

𝜆𝑐(𝑡)
.                                                        (5.4) 

The wavelength is determined as 𝜆𝑐(𝑡) = 𝑐 𝑓(𝑡)⁄ . This Doppler frequency is related to 

𝑞(𝑡) . For the current application the Doppler frequency return is of great importance, as it 

helps to detect the activities behind the wall. In addition, this helps to detect only animated 

objects and eliminate the presence of immobile objects behind the wall in the processing 

signal. 

 The target in this research being a human, the human is regarded as a special 

extended target because of its nature. To compute the return signal for this type of target, 

one has to consider the integration of the return signal for each point target over the region 

occupied by the target. Therefore, the integration is represented mathematically as follows: 

𝑄(𝑡) = ∫ 𝑞(𝑡)𝑑𝑎
Ω

.                                                        (5.5. ) 

The total Doppler signature is the contribution of individual component Doppler 

frequencies for different parts of the body. Mathematically speaking, the contribution of 

the Doppler signature is known as the superposition of individual parts. 

Thus, by observation, one can expect high Doppler frequency from limbs and torso motion 

because it can generate the time-varying Doppler frequency. In addition, these different 

parts of the body generate different Doppler frequency because of their geometric size. 

Therefore, these different signatures will drive the classification of distinct parts of the 

body. The next subsection focuses on wall attenuation. It will describe an experiment on 

signal propagation throughout the wall. 
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5.3 MATERIAL ATTENUATION AND SCATTERING 

To be able to detect human activities behind the wall, the material that the signal is 

travelling through has to be taken into consideration. The wall and the appliances are the 

two materials through which the signal has to travel before reaching the human being. 

Thus, responding to the first research question entails determining how the material 

through which the radar signal is travelling is affecting the signal. The following 

subsection is devoted to ascertaining the behaviour of the signal in the presence of a fan. It 

has to be mentioned that the fan can be a portable or a ceiling fan; both are found in many 

home environments. Fans are the means of cooling a room in the absence of an air 

conditioner, which may be too expensive for some areas. This research extends its 

application to regions where the temperature can easily reach 38 to 40 degrees Celsius. 

Therefore, people use fans as a means of cooling their rooms. 

5.3.1 Wall attenuation and scattering 

To test the hypothesis formulated to determine the effect of the wall on the signal 

propagating from the radar to the other side of the wall; the experiment described below 

has been introduced in this thesis. This experiment is intended to determine how the signal 

is affected by the medium. The first sub-section is devoted to the signal affected by the 

presence of the wall in the real environment, while the second sub-section is devoted to the 

simulation. Thus, knowing the signal on the other side of the wall, one can use this signal 

with its attenuation for simulation purposes. 

5.3.1.1 Wall attenuation experiment 

The signal travels through the wall before reaching the human behind the wall. Thus, 

studying human activities without taking the effect of the wall on the EM wave into 

account is an inaccurate approach. Therefore, the wall has to be taken into consideration 

because the signal has to travel through the wall twice before getting back to the radar 

receiver. The researcher ran experiments to evaluate the wall attenuation. Table 5-1 

presents the measurement equipment used to run the experiment related to wall 

attenuation. The first column indicates the type of equipment used, the second the model 

of equipment used and the last the manufacturer of the equipment. 
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Table 5-1: Equipment used for wall attenuation experiment. 

Equipment used for the experiment 

Type of equipment Model Manufacturer 

Microwave generator R&S SMB-B106 RF and Microwave Signal 

Generator 

Rohde & Schwarz 

Spectrum analyser R&S ESR26 Rohde & Schwarz 

Antenna Appendix UJ laboratory  

 

To run this experiment, the researcher placed one antenna on each side of a wall, which 

was of brick. The first antenna was placed 1 m from the wall and connected to the wave 

generator. The antenna was placed 1 m above the floor and was used as a transmitter. The 

second antenna was placed on the other side of the room at a different distance of 50 cm 

from the wall as initial position. The antenna was at a height of 1 m as well. This antenna 

was moved from 50 cm to 3 m away from the wall, at intervals of 50 cm from the previous 

position. The interval between positions was chosen because the researcher did not expect 

any drastic change in signal below 50 cm.  

It is crucial to know the way the signal is affected by the presence of the wall, because the 

signal has to travel through the wall. It is for this reason that the experiment described 

below was conducted. 

Tables 5.2 to 5.6 present the results of the different experiments. The first column 

represents the frequency at which a signal was transmitted towards the wall. The second 

column represents the distance at which the receiver antenna was placed from the wall. 

The third column represents the strength of the signal received from the other side of the 

wall. The transmit power was 10 dBm for all the different frequencies and distances. It has 

to be mentioned that the position of the transmit antenna remained fixed while the receiver 

antenna was mobile. 
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Table 5-2: Through-the-wall signal at 1 GHz. 

Received signal 

Frequency Distance Power 

1 GHz 0.5 m -49.28 dBm 

1 GHz 1 m -51.34 dBm 

1 GHz 1.5 m -53.45 dBm 

1 GHz 2 m -60.9 dBm 

1 GHz 2.5 m -63.7 dBm 

1 GHz 3 m -58.51 dBm 

 

Table 5-3: Through-the-wall signal at 1.5 GHz. 

Received signal 

Frequency Distance Power 

1.5 GHz 0.5 m -45.39 dBm 

1.5 GHz 1 m -58.48 dBm 

1.5 GHz 1.5 m -53.9 dBm 

1.5 GHz 2 m -49.6 dBm 

1.5 GHz 2.5 m -53.3 dBm 

1.5 GHz 3 m -63.2 dBm 

 

Table 5-4: Through the wall signal at 2GHz. 

Received signal 

Frequency Distance Power 

2 GHz 0.5 m -49.53 dBm 

2 GHz 1 m -54.01 dBm 

2 GHz 1.5 m -62.4 dBm 

2 GHz 2 m -64.6 dBm 

2 GHz 2.5 m -67.7 dBm 

2 GHz 3 m -74.2 dBm 
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Table 5-5: Through-the-wall signal at 2.5 GHz. 

Received signal 

Frequency Distance Power 

2.5 GHz 0.5 m -40.43 dBm 

2.5 GHz 1 m -48.3 dBm 

2.5 GHz 1.5 m -54.3 dBm 

2.5 GHz 2 m -61.03 dBm 

2.5 GHz 2.5 m -68.47 dBm 

2.5 GHz 3 m -78.31 dBm 

 

Table 5-6: Through-the-wall signal at 3 GHz 

Received signal 

Frequency Distance Power 

3 GHz 0.5 m -47.1 dBm 

3 GHz 1 m -50.7 dBm 

3 GHz 1.5 m -53.11 dBm 

3 GHz 2 m -52.9 dBm 

3 GHz 2.5 m -61.2 dBm 

3 GHz 3 m -59.2 dBm 

 

A signal generator was used to generate a signal at a power of 10 dBm; this was fed to the 

transmit antenna via a coaxial cable of 30 cm. In order to observe the signal properly in a 

different situation, the researcher plotted the results value in Figure 5.1. Figure 5.1 presents 

the received signal from the other side of the wall at different frequencies. The legend in 

the figure shows each frequency in a different colour. In the y-axis the received power is in 

dBm and the x-axis is the distance in metres. 
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Figure 5.1: Received signal through the wall. 

At 1 GHz and 3 GHz the signals passing through the wall are less affected compared to 

others in general up to a range of 1.5 m. While the signal is less affected at 1.5 GHz and 

2.5 GHz at a range of 50 cm, the signal at 2 GHz is highly affected. At frequencies of 

1.5 GHz and 2.5 GHz the signal fluctuated a lot more compared to the signal at 1 GHz and 

3 GHz. At 2 GHz and at a distance of 50 cm the signal was even weaker than at the rest of 

the frequencies. Thus, up to 1.5 m the signals at 1 GHz and 3 GHz give better result than 

the rest of the rest of the signals in terms of fluctuation. On the other hand, at 2.5 GHz the 

signal has much higher power than at 1 GHz and 3 GHz, up to approximately 1.4 m. One 

can see that at 1.5 m the signal is weaker than the rest of the signals, even though it was 

initially stronger at a distance of 50 cm. 

At half of the distance from the wall another behaviour was observed. The 1.5 GHz signal 

exhibited great fluctuation and much higher power.  On the other hand, the 2 GHz and 

2.5 GHz signals were subject to great attenuation in the second half of the range from 

1.5 m to 3 m. 

From an EM point of view, walls may be grouped into two major categories: 

• Homogeneous walls, such as concrete or bricks walls, and 

• Inhomogeneous walls, such as reinforced concrete, cinder block or dry wall. 
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In this study all the walls were regarded as homogeneous walls. Thus, with the results 

obtained in Tables 5.1 – 5.6, the researcher had adequate information on the way the signal 

is affected at different frequencies and ranges while passing through the wall. 

5.3.1.2 Simulation of the wall slab 

Viewing the result obtained in section 5.3.1.1, the conclusion can be reached that the wall 

consists of dispersive media. Thus, a wave propagating through the wall will be attenuated 

before reaching the target. This statement is confirmed in many research studies conducted 

previously [13, 47] 

Consider a wave 𝐸(𝑧) = 𝐸(0)𝑒−𝑗𝑘𝑧 travelling in the direction of +𝑧. 𝐸(𝑧) is space-

dependent in the 𝑦 and 𝑥 directions, assuming that the wall is an isotopic and non-

magnetic medium (𝜇 = 𝜇0). In addition, the wall has an effective permittivity of 𝜖(𝜔), 

with k frequency-dependent as a complex-valued wavenumber defined as 𝑘(𝜔) =

𝜔√𝜖(𝜔)𝜇0. Thus, the wave equation can be written in the frequency domain as follows: 

𝐸̂(𝑧, 𝜔) =  𝑒−𝑗𝑘𝑧𝐸̂(0, 𝜔).                                                 (5.6) 

A complete space time of this equation can be written as: 

𝑒𝑗𝜔𝑡𝐸̂(𝑧, 𝜔) =  𝑒𝑗(𝜔𝑡−𝑘𝑧)𝐸̂(0,𝜔).                                     (5.7) 

Therefore, for a linear time-invariant system the input and the output will be represented in 

the function of the impulse response ℎ(𝑡) and the corresponding frequency response 

𝐻(𝜔). The two relations are multiplication in the frequency domain and convolution in the 

time domain. 

Figure 5.2 presents the multiplication in the frequency domain and the convolution in the 

time domain. The top figure represents the frequency multiplication and the bottom figure 

the time convolution. 

 

Figure 5.2: Multiplication in frequency domain and convolution in time domain. 

 

𝐻(𝜔) 𝐸̂𝑖𝑛(𝜔) 

h(t) 

𝐸̂𝑜𝑢𝑡(𝜔) 

𝐸̂𝑖𝑛(𝑡) 𝐸̂𝑜𝑢𝑡(𝑡) 
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Figure 5.2 can be written mathematically in the following way: 

𝐸̂𝑜𝑢𝑡(𝜔) = 𝐻(𝜔)𝐸̂𝑖𝑛(𝜔).                                                      (5.8) 

𝐸̂𝑜𝑢𝑡(𝑡) = ∫ ℎ(𝑡 − 𝑡′)𝐸̂𝑖𝑛(𝑡
′)𝑑𝑡′

∞

−∞

.                                   (5.9) 

Because micro-Doppler is used to detect the target, the reflection of the wall is ignored, as 

it has less influence on the micro-Doppler return. Figure 5.3 represents a rectangular wave 

passing through a dispersive medium. The signal in black is the original one sent and the 

signal in red is the signal after passing through the medium. The Y-axis represents the 

power in watts that is transmitted, and the X-axis represents the time that is taken by the 

signal to travel throughout the medium and when the signal has been transmitted.  

 

Figure 5.3: Transient propagation. 

In Figure 5.3, one can observe that the signal does not change much in form, but instead a 

small change in amplitude is evident. In addition, the signal fades over a long distance. 

5.3.1.3 Simulation of the wall slab with different permittivity and frequency 

The simulations run in subsections a, b and c have been introduced in this study to 

determine how the signal is affected while passing through a wall composed of a single 

layer. The frequency, permittivity relative to the wall and the width of the wall were varied 

while observing the electric field before entering the wall and after emerging from the 

wall. In Figures 5.4 - 5.6, the blue line represents the permittivity, which started with a 
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value of 1; 1 is the relative permittivity of the air. Then at 2.5 m a wall is placed with 

different permittivity in a different simulation. The red solid line represents the electric 

field travelling in the direction of the X-axis positive. Two sizes of wall width have been 

retained for this simulation. The widths are 11 and 22 cm, which are common sizes found 

in house walls. The relative permittivities of the walls used in these simulations are 4 and 

5. 

a) Simulation of the wall slab at 1 GHz with different wall width and permittivity 

Figures 5.4. a - 5.4.d represent the simulation run at a frequency of 1 GHz. Then in Figures 

5.4.a and 5.4.b the simulations are run with a wall of 11 cm in width, while in Figures 

5.4.c and 5.4.d the simulations are run with a wall having a width of 22 cm. In each case 

the relative permittivity has been modified. 

 

Figure 5.4.a: 1 GHz with a wall of 11 cm in width and permittivity of 4. 

 

 

Figure 5.4.b: 1 GHz with a wall of 11 cm in width and permittivity of 5. 
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Figure 5.4.c: 1 GHz with a wall of 22 cm in width and permittivity of 4. 

 

 

Figure 5.4.d: 1 GHz with a wall of 22 cm in width and permittivity of 5. 

One can observe that at a frequency of 1 GHz there is attenuation of the signal, which is 

accounted as 20% of the signal injected on the other side of the wall. At this frequency the 

relative permittivity and the wall width do not have a great influence on the signal 

impinging on the wall. The forward signal is more or less 80% of the incident wave. 

Therefore, though there is attenuation, the forward signal is not affected sufficiently to 

make the target undetectable. 

b) Simulation of the wall slab at 2 GHz with different wall width and permittivity 

Figures 5.5. a - 5.5.d represent the simulation run at a frequency of 2 GHz. In Figures 5.5.a 

and 5.5.b the simulations are run with a wall of 11 cm in width, while in Figures 5.5.c and 
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5.5.d the simulations are run with a wall having a width of 22 cm. In each case the relative 

permittivity has been modified. 

 

Figure 5.5.a: 2 GHz with a wall of 11 cm in width and permittivity of 4. 

 

 

Figure 5.5.b: 2 GHz with a wall of 11 cm in width and permittivity of 4. 
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Figure 5.5: 2 GHz with a wall of 22 cm in width and permittivity of 4. 

 

 

Figure 5.6: 2 GHz with a wall of 22 cm in width and permittivity of 5. 

Observing Figures 5.5.a – 5.5.b, one can notice the difference in the signal attenuation 

compared to the previous simulation run in subsection a. At 2 GHz, with a wall width of 

11 cm, the wall is almost transparent to the signal. The forwarding signal is around 95% 

compared to the incident signal. At this frequency the relative permittivity from 4 to 5 is 

not affecting the signal. On the other hand, in Figures 5.5.c and 5.5.d, at the same 

frequency, the forward signal is affected by the wall size and the permittivity. Though the 

forward signal is affected, the forward signal is 75% of the incident signal. This still makes 

the target detectable. 
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c) Simulation of the wall slab at 3 GHz with different wall width and permittivity 

Figures 5.6. a - 5.6.d represent the simulation run at a frequency of 3 GHz. In Figures 5.6.a 

and 5.6.b the simulations are run with a wall of 11 cm in width, while in Figures 5.6.c and 

5.6.d simulations are run with a wall with a width of 22 cm. In each case the relative 

permittivity has been modified. 

 

Figure 5.7: 3 GHz with a wall of 11 cm in width and permittivity of 4. 

 

Figure 5.8: 3 GHz with a wall of 11 cm in width and permittivity of 5. 
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Figure 5.9: 3 GHz with a wall of 22 cm in width and permittivity of 4. 

 

Figure 5.10: 3 GHz with a wall of 22 cm in width and permittivity of 5. 

In Figure 5.6.a, one can observe that the forward signal is almost 95% of the incident 

signal. This means that the wall is transparent at this frequency and relative permittivity. In 

contrast, in Figure 5.6.b, at the same frequency and using a wall of the same width as in 

Figure 5.6.a, the signal is affected. This demonstrates that at certain frequencies the 

permittivity may influence the signal propagation. In Figure 5.6.c, the same phenomenon 

observed in Figure 5.6.a is observed, meaning that the width of the wall is not influencing 

the signal at this frequency. On the other hand, the forward signal in Figure 5.6.d is 

affected once the permittivity is changed. Therefore, the forward signal is strong enough to 

detect the target behind the wall. 
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5.3.2 Appliance attenuation and scattering experiment 

Experimenting and simulating wall attenuation indicated that there are multiple materials 

the signal has to travel through before reaching the target. In households one frequently 

finds television sets (TV), refrigerators, fans, sofas, beds and other furniture and 

appliances. In the present case a TV, sofa or bed can easily be isolated because of their 

immobile nature. Since the researcher is using the micro-Doppler effect to detect human 

beings, immobile objects obstructing the target can be cancelled or regarded as clutter. On 

the other hand, an object such as a fan contains turning parts, which will produce a micro-

Doppler effect. Thus, cancelling the fan’s micro-Doppler effect is very important. 

5.3.2.1 Scattering from moving object 

In section 5.7 simulation of a human being is conducted. Different spectrograms of the 

human being return a signal while walking will be presented. Since the signal is expected 

to go through the wall, a home appliance, a fan, has been taken as one of the appliances 

that can produce significant disturbance to the signal. Thus, the following section 

investigates the signal return from a fan and rotating point target. 

5.3.2.1.1 Three-point scattering 

In this simulation, the researcher intends to determine the behaviour of a three-point 

scatterer when impinged on by an EM wave. Figure 5.7 represents three points scatterers 

presented in different colours. The first point in blue is placed in the centre of the line 

formed by the others. The second point is in green, rotating around the centre of the body, 

which is in the same position as the blue point. The last point is in red. The red point is 

rotating about the same point as the green one. 
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Figure 5.11: Representation of the three points in space. 

In Figure 5.7, the radar is placed in front of the three points emitting the EM wave, while 

all the points are rotating about the centre. The radar is placed at 50 m from the centre of 

origin of the body-fixed system at a height of 2 m. The radar is transmitting a signal at a 

frequency of 2.4 GHz. 

Figure 5.8 represents the micro-Doppler return of the three spinning point targets. The 

light solid line represents the first point, the dashed line the second point and the solid line 

the last target. 

 

Figure 5.12: Micro-Doppler signature of three spinning point targets. 
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In Figure 5.8, it can be seen clearly that two points are exhibiting their micro-Doppler 

signature while the third one has a micro-Doppler effect of frequency 0 Hz. This is 

explained by the rotation about the centre of the body-fixed system. In addition, the centre 

of the body-fixed system is the position of the point. It means that its displacement is equal 

to zero, therefore the micro-Doppler frequency is zero. 

5.3.2.2 Fan scattering 

A simulation was run to detect the fan while rotating to find the return signal. A fan was 

chosen, as it is one of the appliances in the home environment and in this thesis micro-

Doppler is used to detect activities inside a room. A fan can hide certain activities when a 

human is in front of this appliance. 

Figure 5.8 represents the spectrogram of a fan with three blades. In this simulation, the 

researcher is transmitting a signal at a frequency of 2.4 GHz. The radar is placed 20 m 

from the fan and at a height of 2 m. The range resolution of the radar is 0.01 m. The fan is 

constructed with three rectangular metallic planes. For simplicity, to simulate the fan, the 

blades are considered to be flat and straight without any twist, as in the real world.  

In Figure 5.9, one can observe the different blades of the fan. At this frequency the micro-

Doppler radar frequency is in the frequency band of (400, -400 Hz). This frequency is 

justified by the fact that in equation (3.41) the Doppler frequency is related to the angular 

frequency. In short, (3.41) can be written as: 

𝑓𝐷 =
2 ∙ Ω

𝜆
=

2 ∙ 25

0.125
= 400𝐻𝑧.                                     (5.10) 

In the time axis the different blades can be seen. Therefore, if any human activities happen 

in the band of frequency at the same magnitude, some activities may be lost. 

For this reason, the researcher ran another simulation, but this time with two blades to 

investigate how the signal could be affected with two blades of a rotating fan. 
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Figure 5.13: Fan with three blades spinning at 1500 rpm and radar working at 2.4 GHz. 

Using the same setup of the simulation as in Figure 5.9, Figure 5.10 presents the 

spectrogram of the return signal of a fan with two rotating blades. One can see that the 

signal is in the same frequency band as the one in Figure 5.9. The main difference between 

Figures 5.9 and 5.10 is noticeable in the time domain. In the case of the three blades the 

spacing between the peaks is closer compared to the one with two blades. 

 

Figure 5.14: Fan with two blades spinning at 1500 rpm and radar working at 2.4 GHz. 
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Carrying out the simulation in the same conditions, but changing the frequency of the 

radar, influences the results. Figure 5.11 presents the spectrogram of a return signal for a 

three-blade rotating fan. The radar is transmitting its signal at a frequency of 20 GHz. 

 

Figure 5.15: Fan with three blades spinning at 1500 rpm and radar working at 20 GHz. 

By observing Figure 5.11, one can distinguish the three blades of the fan and even the 

corresponding blades better than while the radar is transmitting its signal at 2.4 GHz. 

Figure 5.11 also reveals the lapse of time between the different amplitude of frequencies of 

blades. 

Figure 5.12 represents a two-blade simulation. This simulation is run in the same 

conditions as that illustrated in Figure 5.11, except that the number of blades is different. It 

has to be mentioned that all these simulations are run in a time of 1 second. 

 

Figure 5.16: Fan with two blades spinning at 1500 rpm and radar working at 20 GHz. 
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By observing Figure 5.9 and Figure 5.11, one can detect the same number of ridges on 

both figures. Therefore, for the three-blade experiment, the entire simulation of 1 second 

comprises 12 ridges, while for the two blades nine ridges are observed for the same lapse 

of time. Thus, using a frequency of 2.4 GHz will enable one to detect the micro-Doppler of 

the fan, but not to classify the signal properly. In contrast, using a frequency of 20 GHz in 

the same conditions yields clear imaging of the three blades. While one can choose the 

frequency of 20 GHz for its capability to classify the target of interest, this might be 

affected when going through the wall. 

Figure 5.10 and Figure 5.12 display the same similitude as Figure 5.9 and Figure 5.11. The 

entire simulation contains eight maximum amplitudes of all blades. 

Hence, care is necessary when dealing with the radar return signal coming from a fan and 

human being overlapping in the time and frequency domain. The next section deals with 

radar return from a human being. As both human beings and fans may be found in space in 

different ranges, individual analyses of the fan and the human being are necessary. 

Therefore, the next section is devoted to radar return from the human being without the 

presence of the fan. 

5.4 HUMAN SCATTERING 

The target in this study is the human being. Simulations and experiments and the results of 

the examination of different materials through which the signal will pass before reaching 

the target are presented in Section 5.3. This section investigates the scattering of the EM 

wave on a human being. Because the target is human, the amount of EM wave energy to 

which the person is exposed has to be chosen carefully. In this area, the measurement of 

the amount of radio frequency (RF) energy absorbed by a body when using a wireless 

device is called the specific absorption rate. Thus, the values are: 

• Whole body: 4 w/kg per minute exposure average, 

• Head and torso: 3 w/kg per 5 minutes exposure per gram of tissue, 

• Extremities: 12 w/kg per 5 minutes exposure per gram of tissue. 

The following subsection is devoted to respond to the second and third research questions. 

The research questions are repeated here: 

a) How can one detect a physically weak victim after an earthquake while the 

person’s breathing and heartbeat signal strength is weak? 

b) How can one detect a target with a lower chest RCS, such as a child? 
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After an earthquake the target is assumed to be breathing even though the breathing might 

be weak. The chest movement is a source of a micro-Doppler and will be simulated in the 

following section. On the other hand, to detect a low chest RCS, children are simulated in 

order to analyse the return signal. 

5.4.1 Simulation of a walking human 

In this section, multiple simulations were run to determine the effect of human height and 

radar responses. In addition to the height, simulation on two different frequencies was 

conducted to evaluate the human return signal in relation to the height and frequency. This 

section was divided into two subsections:  

a) The simulation of a walking human being with a radar transmit frequency of 2.4 

GHz with a resolution range of 0.5 m. This frequency was chosen as it is the 

frequency at which the built radar works. 

b) The second section simulated a walking human being at a radar transmit frequency 

of 15 GHz with a resolution range of 0.01 m. This frequency was chosen in order 

to achieve a fine resolution range to be able to detect fine vibration. 

5.4.1.1 Simulation of walking human with 2.4 GHz radar with 0.5 m resolution 

range 

The following simulations were conducted with a radar frequency of transmission at 2.4 

GHz. The transmit frequency was kept at 2.4 GHz while varying the height of the human 

and the velocity. Knowing that the fastest human in world can run at 10.43 m per second, 

the velocity used for this simulation was from 0.5 to 3 m/sec, as it was assumed that the 

possibility of finding a human running in the building was very low. The height varied 

because the researcher considered that people of different ages might be found inside the 

building. Considering that a human being with a height of 1 m can walk, 1 m was chosen 

as the starting height because below that height a human being may not be able to walk 

[102]. From an initial height of 1 m the researcher considered an additional 30 cm as 

reasonable to give the difference in the spectrum return signal. Therefore 1 m, 1.3 m, 1.6 m 

and 1.9 m were retained as simulation test height; 1.9 m was taken as the limit, because in 

only rare cases can one find people taller than 1.9 m. The following figures show the 

height mentioned with the model. For this simulation, the radar is located at position 

(X=10 m, Y=0 m, Z=2 m), while the human is located at the origin of the body fixed 
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system (X=0 m, Y=0 m, Z=0 m). In these simulations, the researcher is using the human 

model presented in [97]. 

 

Figure 5.17: 1 m walking human. 

 

Figure 5.18: 1.3 m walking human. 

 

 

Figure 5.19: 1.6 m walking human. 

 

Figure 5.20: 1.9 m walking human. 

5.4.1.1.1 Simulation of a walking human of 1 m at different velocities 

In Figures 5.17 to 5.22, a 1 m human is simulated at different relative velocities. The 

velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 



 

Department of Electrical and Electronic Science 90 

University of Johannesburg  

 

Figure 5.21: Micro-Doppler signature of 1 m human (child) at relative speed of 0.5 m/sec. 

 

 

Figure 5.22: Micro-Doppler signature of 1 m human (child) at relative speed of 1 m/sec. 
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Figure 5.23: Micro-Doppler signature of 1 m human (child) at relative speed of 1.5 m/sec. 

 

Figure 5.24: Micro-Doppler signature of 1m human (child) at relative speed of 2 m/sec. 
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Figure 5.25: Micro-Doppler signature of 1 m human (child) at relative speed of 2.5 m/sec. 

 

 

Figure 5.26: Micro-Doppler signature of 1 m human (child) at relative speed of 3 m/sec. 

From Figures 5.17 to 5.22, one can see that in the frequency domain there are some small 

peaks of Doppler shift that are happening at a regular time interval. These peaks are the 

return signals from the legs, which are exhibiting high Doppler frequency return. At a 

lower speed the peaks’ variation is found to be around 0 in the frequency domain. This can 

be observed in Figures 5.17 to 5.18. The return signal from the limbs is slightly clearer in 

Figures 5.19 to 5.22, but although some peaks are visible, there is no possibility of 

distinguishing the Doppler return from the different limbs. The results demonstrated that 

even though frequencies lower than 3 GHz are recommended for through-the-wall radar 

[4-13], extra care has to be taken because the height of the target could affect the results. 

Following these simulations, though the centre frequency of the radar has to be chosen 
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with care, the relative velocity of the target is another variable to take in consideration. 

While choosing the operating frequency of the radar, care has to be taken because the 

velocity of the target is proportional to the micro-Doppler return. The velocity may 

influence the detectability of the target unless the frequency has been well chosen.  

5.4.1.1.2 Simulation of a walking human of 1.3 m at different velocities 

In Figures 5.23 to 5.28, a 1.3 m human is simulated at different relative velocities. The 

velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 

 

 

Figure 5.27: Micro-Doppler signature of 1.3 m human at relative speed of 0.5 m/sec. 

 

Figure 5.28: Micro-Doppler signature of 1.3 m human at relative speed of 1 m/sec. 
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Figure 5.29: Micro-Doppler signature of 1.3 m human at relative speed of 1.5 m/sec. 

 

Figure 5.30: Micro-Doppler signature of 1.3 m human at relative speed of 2 m/sec. 
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Figure 5.31: Micro-Doppler signature of 1.3 m human at relative speed of 2.5 m/sec. 

 

Figure 5.32: Micro-Doppler signature of 1.3 m human at relative speed of 3 m/sec. 

In this simulation, compared to the simulation involving a 1 m tall human, one can observe 

that there are higher peaks coming from the legs and the hands. The red colour shows the 

torso and the rest of the body separately. Thus, different methods of analysing particular 

limb behaviour require different methods from the short-time Fourier transform to the 

Wigner distribution function. One can see that there is activity but there is no possibility to 

confirm whether it is a human being, even though the legs peaks are visible. In addition, 

this simulation sustains the researcher’s statement on the consideration of the height in 

TWR. Research conducted in [4-13] did not take the height of the target into consideration. 

Thus, this work contributes to the body of knowledge by highlighting the height-frequency 

trade-off influencing the micro-Doppler returns.  
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5.4.1.1.3 Simulation of a walking human of 1.6 m tall at different velocities 

In Figures 5.29 to 5.34, a 1.6 m tall human is simulated at different relative velocities. The 

velocities at which the human being is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 

 

Figure 5.33: Micro-Doppler signature of 1.6 m human at relative speed of 0.5 m/sec. 

 

Figure 5.34: Micro-Doppler signature of 1.6 m human at relative speed of 1 m/sec. 
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Figure 5.35: Micro-Doppler signature of 1.6 m human at relative speed of 1.5 m/sec. 

 

Figure 5.36: Micro-Doppler signature of 1.6 m human at relative speed of 2 m/sec. 
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Figure 5.37: Micro-Doppler signature of 1.6 m human at relative speed of 2.5 m/sec. 

 

Figure 5.38: Micro-Doppler signature of 1.6 m human at relative speed of 3 m/sec. 

The difference between the return signal from humans measuring 1.3 m and 1.6 m is not 

much. At a low speed of 0.5 m/sec the micro-Doppler shift is between 90 Hz and 100 Hz 

for both cases, which does not show much difference between the two spectrograms. 

Comparing the return signal at a velocity of 3 m/sec while at a height of 1.3 m, the micro-

Doppler shift peaks are about 220 Hz, and at a height of 1.6 m the micro-Doppler shift 

peaks are about 250 Hz. Thus, one can say that from 1.3 m to 1.6 m the difference is not a 

great deviation from the lower height. 
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In contrast to the height of 1.3 m, the difference in the spectrograms from a human of 1 m 

to one of 1.6 m is prominent. Thus, one can observe a micro-Doppler shift with peaks 

about 70 Hz for a 1 m tall human walking at 0.5 m/sec, whereas a micro-Doppler shift at 

the same velocity but at a different height of 1.6 m resulted in 90 Hz micro-Doppler. With 

this result a 20 Hz difference can be observed, indicating a much higher probability of 

missing a target owing to its height. 

5.4.1.1.4 Simulation of a walking human of 1.9 m with different velocities 

In Figures 5.35 to 5.40, a 1.9 m tall human is simulated at different relative velocities. The 

velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 

 

Figure 5.39: Micro-Doppler signature of 1.9 m human at relative speed of 0.5 m/sec. 

 

Figure 5.40: Micro-Doppler signature of 1.9 m human at relative speed of 1 m/sec. 
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Figure 5.41: Micro-Doppler signature of 1.9 m human at relative speed of 1.5 m/sec. 

 

Figure 5.42: Micro-Doppler signature of 1.9 m human at relative speed of 2 m/sec. 
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Figure 5.43: Micro-Doppler signature of 1.9 m human at relative speed of 2.5 m/sec. 

 

Figure 5.44: Micro-Doppler signature of 1.9 m human at relative speed of 3 m/sec. 

Finally, at a frequency of 2.4 GHz, a simulation was run with a 1.9 m tall human being. 

This simulation revealed that height is a factor that cannot be neglected while investigating 

the human micro-Doppler. 

At a lower speed of 0.5 m/sec, a human of 1 m tall recorded 70 Hz, one of 1.3 m recorded 

80 Hz, one of 1.6 m recorded 90 Hz and eventually one of 1.9 m recorded 100 Hz. Thus, 

there is a significant difference from a human measuring 1 m to one of 1.9 m. This 

difference is justified by the length of the limbs. A 1 m tall human has short limbs, which 

produce lower micro-Doppler frequency shift. Contrary to one of 1 m, a person of 1.9 m 

exhibits higher micro-Doppler frequency shift due to the long limbs. 
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Another important observation that has to be mentioned is the chance of distinguishing the 

different limbs from the spectrogram observation. By observing all the spectrograms at 

2.4 GHz, one cannot differentiate the limbs with accuracy. One can conclude that using a 

2.4 GHz frequency as the centre frequency of the radar would allow one to detect a human 

but not to classify the return signal. At 2.4 GHz, the possibility of differentiating the 

micro-Doppler coming from the legs and hands is low while using the short-time Fourier 

transform (STFT). Therefore, the next section is devoted to another simulation at a higher 

frequency than 2.4 GHz. The simulation at a higher frequency than 2.4GHz enables one to 

analyse different spectrograms in respect of the frequency. 

5.4.1.2 Simulation of a walking human at 15 GHz radar with 0.01 m resolution 

range 

The following simulations are conducted with a radar centre frequency of transmission at 

15 GHz. The transmit frequency has been kept at 15 GHz while varying the height of the 

human and the velocity. The velocity used for this simulation varies from 0.5 to 3 m/sec, 

as in the simulation at 2.4 GHz centre frequency. The height varies as well, as in the 

simulation at 2.4 GHz centre frequency from 1 m to 1.9 m. Therefore, 1 m, 1.3 m, 1.6 m 

and 1.9 m have been retained as simulation test height. Figures 5.13 to 5.16 showed the 

corresponding height with their model. For this simulation, the radar is located at position 

(X=10 m, Y=0 m, Z=2 m), while the human is located at the origin of the body fixed 

system (X=0 m, Y=0 m, Z=0 m). These simulations made use of the human model 

presented in [97]. 

5.4.1.2.1 Simulation of a walking human of 1 m tall at different velocities 

From Figures 5.41 to 5.46, a 1 m tall human is simulated at different relative velocities. 

The velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 
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Figure 5.45: Micro-Doppler signature of 1 m human at relative speed of 0.5 m/sec. 

 

Figure 5.46: Micro-Doppler signature of 1 m human at relative speed of 1 m/sec. 
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Figure 5.47: Micro-Doppler signature of 1 m human at relative speed of 1.5 m/sec. 

 

Figure 5.48: Micro-Doppler signature of 1 m human at relative speed of 2 m/sec. 
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Figure 5.49: Micro-Doppler signature of 1 m human at relative speed of 2.5 m/sec. 

 

Figure 5.50: Micro-Doppler signature of 1 m human at relative speed of 3 m/sec. 

By simply changing the operational frequency of the radar, one can observe how great the 

difference is when the radar is working at 2.4 GHz and when it is working at 15 GHz. 

Even at a velocity as low as 0.5 m/sec one is able to differentiate between the return signal 

coming from the legs and the one coming from the arms. In addition, using high frequency 

allows one to distinguish the different limbs from the torso. The torso spectrogram is seen 

clearly and is distinguishable from the legs and arms. 

Furthermore, while at 2.4 GHz with a velocity of 0.5 m/sec the target modulated the signal 

to obtain the micro-Doppler frequency shift of 70 Hz, at 15 GHz the same velocity gave a 

micro-Doppler shift peak of 300 Hz. This micro-Doppler frequency is even higher than the 
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micro-Doppler generated by an adult human while radar is transmitting at 2.4 GHz 

frequency. 

5.4.1.2.2 Simulation of a walking human of 1.3 m tall at different velocities 

In Figures 5.47 to 5.52, a 1.3 m human is simulated at different relative velocities. The 

velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 

 

Figure 5.51: Micro-Doppler signature of 1.3 m human at relative speed of 0.5 m/sec. 

 

Figure 5.52: Micro-Doppler signature of 1.3 m human at relative speed of 1 m/sec. 
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Figure 5.53: Micro-Doppler signature of 1.3 m human at relative speed of 1.5 m/sec. 

 

 

Figure 5.54: Micro-Doppler signature of 1.3 m human at relative speed of 2 m/sec. 
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Figure 5.55: Micro-Doppler signature of 1.3 m human at relative speed of 2.5 m/sec. 

 

 

Figure 5.56: Micro-Doppler signature of 1.3 m human at relative speed of 3 m/sec. 

Comparing a human being of 1 m tall with one of 1.3 m, a difference in micro-Doppler 

peak can be observed. Taking the case when the person is walking at 0.5 m, a peak of 300 

Hz is observed when the human is 1 m tall, while 380 Hz is observed when the human is 

1.3 m tall, thus a 80 Hz difference in micro-Doppler is reported for a 30 cm increase in 

height. 

The main differences are observed in the frequency and time domain. When the velocity of 

the human increases, this decreases the time taken by the human to complete one complete 

cycle. This is the case when observing the human at a velocity 0.5 m/sec rather than 3 
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m/sec. In the first case the period of one cycle is 0.8 s, while in the second case the period 

is 0.3 s. This factor is necessary to reveal the human velocity. 

5.4.1.2.3 Simulation of a walking human of 1.6 m tall at different velocities 

In Figures 5.53 to 5.58, a 1.6 m human is simulated at different relative velocities. The 

velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 

 

Figure 5.57: Micro-Doppler signature of 1.6 m human at relative speed of 0.5 m/sec. 

 

Figure 5.58: Micro-Doppler signature of 1.6 m human at relative speed of 1 m/sec. 
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Figure 5.59: Micro-Doppler signature of 1.6 m human at relative speed of 1.5 m/sec. 

 

 

Figure 5.60: Micro-Doppler signature of 1.6 m human at relative speed of 2 m/sec. 
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Figure 5.61: Micro-Doppler signature of 1.6 m human at relative speed of 2.5 m/sec. 

 

 

Figure 5.62: Micro-Doppler signature of 1.6 m human at relative speed of 3 m/sec. 

The same behaviour observed from 1 m to 1.3 m is observed again here. Though the 

micro-Doppler increases, it does not increase in the same proportion as the proportion 

from 1 m to 1.3 m. This reveals that the height of a human is not proportional to the micro-

Doppler that the human produces when impinged on by a radar signal. This simulation 

confirmed the result of the cylinder. When the height is increased, greater reflection is 

expected. The non-proportionality of the height and the return signal, in this case micro-

Doppler frequency, deserves attention. The height related to the micro-Doppler frequency 

is non-linear. 
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5.4.1.2.4 Simulation of a walking human of 1.9 m tall at different velocities 

In Figures 5.59 to 5.64, a 1.9 m tall human is simulated at different relative velocities. The 

velocities at which the human is walking are 0.5 to 3m/sec, increasing each time by 

0.5 m/sec. 

 

Figure 5.63: Micro-Doppler signature of 1.9 m human at relative speed of 0.5 m/sec. 

 

Figure 5.64: Micro-Doppler signature of 1.9 m human at relative speed of 1 m/sec. 
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Figure 5.65: Micro-Doppler signature of 1.9 m human at relative speed of 1.5 m/sec. 

 

Figure 5.66: Micro-Doppler signature of 1.9 m human at relative speed of 2 m/sec. 
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Figure 5.67: Micro-Doppler signature of 1.9 m human at relative speed of 2.5 m/sec. 

 

Figure 5.68: Micro-Doppler signature of 1.9 m human at relative speed of 3 m/sec. 

In conclusion to this section, one can see that the micro-Doppler frequency return is related 

to the operational frequency of the radar, the height of the human being and finally the 

velocity of this human being. Therefore, it is imperative to analyse the human return 

spectrogram by considering the operational frequency of the radar, the height of the human 

being and the velocity of the human being. To illustrate the relationship between the 

operational frequency of the radar, the height of the human being and finally the velocity 

of the human being, Tables 5.7 and 5.8 present the peak micro-Doppler frequency of each 

simulation at different velocities, heights and frequencies. 
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Table 5-7: Peak return at 2.4 GHz frequency. 

  Frequency of 2.4 GHz 

 Velocity 0.5 m/sec 1 m/sec 1.5 m/sec 2 m/sec 2.5 m/sec 3 m/sec 

Height 1 m 70 100 120 150 190 210 

1.3 m 80 110 150 180 210 240 

1.6 m 90 120 170 200 220 280 

1.9 m 100 140 180 210 260 290 

 

Table 5-8: Peak return at 15 GHz frequency. 

  Frequency of 15 GHz 

 Velocity 0.5 m/sec 1 m/sec 1.5 m/sec 2 m/sec 2.5 m/sec 3 m/sec 

Height 1 m 300 450 590 720 880 1000 

1.3 m 340 520 680 820 990 1150 

1.6 m 400 590 750 940 1100 1280 

1.9 m 450 680 800 1080 1200 1400 

 

Figure 5.62 gives a graphical representation of the two tables above. The Y-axis represents 

the micro-Doppler frequency peaks of each simulation at a specific velocity. On the other 

hand, the X-axis represents the velocity at which the human was walking in the simulation 

while the micro-Doppler frequency was sampled. The dashed line represents the 

simulation done at 2.4 GHz while the solid line represents the simulation done at a 

frequency of 15 GHz. Series 1 and 5 curves represent the micro-Doppler frequency of a 1 

m human being. Series 2 and 6 represent the micro-Doppler frequency of a 1.3 m human 

being. Series 3 and 7 represent the micro-Doppler frequency of a 1.6 m human being. 

Series 4 and 8 represent the micro-Doppler frequency of a 1.9 m human being. One can 

observe the difference in micro-Doppler return in the same condition but at a different 

frequency. 
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Figure 5.69: Peak micro-Doppler at different heights and frequency. 

All the micro-Doppler frequencies are below 290 Hz when the radar is working at 2.4 

GHz, while at 15 GHz the lower frequency is at 300 Hz. Thus, using a radar working at 2.4 

GHz and trying to classify the micro-Doppler may be almost impracticable when using 

STFT. If one would like to classify a target at this frequency, investigation of different 

processing algorithms will be important. 

5.5 CONCLUDING REMARKS 

The results obtained after simulation and experiments prove that one can detect the 

presence of a human being despite the presence of an appliance. Thus, while using a 

micro-Doppler as human signature, care must be taken when selecting the radar frequency. 

Starting with the three-blade fan, one can see that at 2.4 GHz the number of ridges is the 

same as for the two ridges at a frequency of 20 GHz. The same behaviour has been 

observed with a two-blade fan at 2.4 GHz and 20 GHz, demonstrating that using a higher 

frequency produced a high micro-Doppler frequency.  
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On the other hand, the simulation involving a human revealed that at 2.4 GHz one is able 

to detect the human being even though there is no possibility of detecting different limbs 

of the body. However, at 24 GHz the different limbs can be detected at a height lower than 

1 m. In addition, the spectrogram revealed a different pace at different heights. This 

characteristic allows one to distinguish between tall and short humans. For example, when 

comparing Figure 5.41 and Figure 5.59, both simulations are conducted at the same speed 

but at different heights of 1 m and 1.9 m, respectively. At 1 m height the time taken for 

one pace is 0.4 second, while at 1.9 m height the time is 0.8 second. Thus, at a height of 1 

m a human covers a shorter distance than at 1.9 m. From that one can establish the height 

of the person. 



 

 

 

CHAPTER 6   CONCLUSION AND FUTURE 

WORK 

6.1 THESIS CONTRIBUTION 

In Chapters 1 and 2 of this thesis, a considerable number of TWRI techniques have been 

enumerated, among them the medium through which the signal travels from the radar to 

the target, the possibility of detecting a weak target behind the wall, the possibility of 

detecting a human being lying against the wall and the possibility of detecting a target with 

a lower RCS.  

In this thesis, the use of the micro-Doppler frequency of the return signal to differentiate 

the target from clutter was presented. Micro-Doppler frequency is an efficient way of 

extracting and classifying micro-movement from different objects exhibiting different 

movements as a whole. It was demonstrated in Chapter 3 how a human and a moving 

object are subject to micro-movement related to micro-Doppler frequency, though the 

entire object is subject to Doppler frequency. It was demonstrated after simulation that the 

influence of the wall while using the Doppler effect is minimised. These results correlated 

with previous findings in the literature [76]. In the same perspective, using an FMICW 

removes the strong return of a transmitted signal from the wall [69, 70]. Thus, using the 

micro-Doppler effect to differentiate the different parts of the body and the FMCW radar 

minimised the effect of the wall on the signal significantly. This research considered 

activities happening in residential accommodation. 

The research for this thesis achieved the primary scientific objective of detecting human 

activities behind a wall in the presence of appliances. The target was mobile and non-

cooperative and micro-Doppler return was sensed with an FMCW radar. In addition, this 

research achieved more scientific objectives by designing a low-cost FMCW radar to 

collect and analyse radar signatures. The choice of the FMCW radar has been justified by 

the fact that the wall effect had to be minimised. 

Research reported in the literature did not consider a small chest area when detecting 

human beings. The additional contribution of this thesis is to consider that in the home 

environment people of different height may live together. Therefore, assuming that the 

subject behind the wall will always be adult might disregard some parameters necessary 

for the evaluation of the radar. Simulation considering human beings of different height 
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has thus been presented. The simulation revealed that a spectrogram produced by an adult 

is significantly different from one produced by a child. A highly sensitive radar is 

recommended to be used to be able to detect children as targets. The experiment with 

children responded to the research question considering humans with lower chest RCS. 

A significant contribution of this thesis was the simulation, experimentation, processing, 

and analysis of diverse micro-Doppler signatures coming from the vicinity under 

investigation. The micro-Doppler signature of what was suspected of being the most 

mobile object in a home environment was simulated and discussed. The object that was 

assumed to be inducing the Doppler effect was a fan. 

To answer the research question on weak victims after an earthquake, velocity 

discrimination had to be used. Therefore, the radar had to be set up to detect any micro-

Doppler frequency near to the zero value.  

It was concluded that using a radar working at a frequency of 2.4 GHz while a fan and a 

human are positioned behind each other will make the target undetectable, even if it is 

exhibiting motion. For this reason, the radar frequency has to be chosen with particular 

care to satisfy two conditions. The first is to choose a radar signal that can penetrate 

building material with less disintegration. The second is that the higher the radar frequency 

is, the higher the probability that the return signal will be capable of being classified with a 

high degree of certainty. It has been simulated and demonstrated that at 2.4 GHz 

frequency, the radar can detect the presence of activities without distinguishing the 

provenance of the micro-Doppler. This is the case in Figure 5.22, while in the same 

conditions but different frequency as shown in Figure 5.41 the micro-Doppler coming 

from the legs, arms and torso can be seen clearly. 

On the other hand, using a frequency as high as 15 GHz demonstrated that one can detect 

the presence of a human being regardless of the person’s age. Thus, to be able to detect 

children with a high probability of distinguishing different parts of the body, a high 

frequency is recommended. 

In this research, computer simulation analysis played a crucial role in theoretical 

development. In addition, because of the limitation in terms of the frequency of the radar 

the researcher built, the simulation provided more flexibility. This was seen when the 

simulation could run at different frequencies without requiring hardware design. 

The design and evaluation of the cost-effective FMCW radar emanated from this thesis. 

Because of its modularity, the FMCW that was built yielded high performance and was 
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less sensible to noise. In addition, the modularity aspect of the FMCW radar reduced the 

complexity and made it a practical sensor for industrial and research applications. 

This dissertation contributed to the design and detailed analysis of the classification of a 

target behind a wall based on micro-Doppler features. In addition, the researcher 

demonstrated the way to extract human micro-Doppler in the presence of a fan. This is the 

case when two micro-Doppler signals are overlapping. Besides that, the antenna used in 

the experiment was made in the laboratory. Furthermore, a printed circuit board was 

designed and tested for radar signal generation. 

 

6.2 FUTURE WORK 

Micro-Doppler signals coming from a human being need more investigation and further 

improvement. In this thesis, the researcher considered a moving object as an element that 

can obstruct a target behind a wall. This thesis can be continued by investigating the 

propagation of the signal through other appliances before it reaches the human being. 

Taking the case where the signal has to travel through the wall, then through a fridge and 

thereafter to the target may reveal the incapacity of the radar to detect a target in these 

conditions. 

A frequency of 2.4 GHz can penetrate building material with less deterioration of the 

signal, but another method that will extract overlapping signals is required. 
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APPENDIX A: SUMMARY OF LITERATURE RELATED TO THIS RESEARCH  

Table A-1: Summary of literature related to this research. 

Reference Journal Journal 

Impact 

Factor (IF)1 

Frequency 

band of 

interest 

Contribution to body of scholarly knowledge 

[67] IEEE Transactions on 

Microwave Theory 

and Techniques 

2.897  –  This paper reviewed different techniques used in radar communication for motion 

detection, displacement and localisation. In this publication, the radar is assisted by 

using on-board signal-processing algorithms; these are capable of playing crucial 

roles in various areas, such as health care and care of the elderly, veterinary 

monitoring, human–computer interaction, structural monitoring and wind 

engineering. Thus, one can see that portable short-range non-contact microwave 

radar systems could be applied in many areas. 

[68] IEEE Transactions on 

Microwave Theory 

and Techniques 

2.897 2.3 to 2.8 GHz Merging the FMCW and sum-difference pattern detection approaches, the authors 

could determine the distance and azimuth from the radar to the target (human) 

hidden by a wooden partition wall. To distinguish a human being from a stationary 

object, the authors used dynamic spectral subtraction, which allowed the extraction 

of human motion or vital signs. The authors were able to distinguish between two 

different humans when using the decomposition of the Doppler signal.  
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Table A-1: Summary of literature related to this research. 

Reference Journal Journal 

IF 

Frequency 

band of 

interest 

Contribution to body of scholarly knowledge 

[69] IEEE Transactions 

on Geoscience and 

Remote Sensing 

4.942 0.7-2.2 GHz The authors used frequency-modulated interrupted continuous wave (FMICW) signals to 

remove the strong return of the transmitted signal from the wall. The effectiveness of the 

technique has been validated through numerical simulations and experiments. FMICW is 

typically an FMCW that is switched on and off with a complementary sequence of the 

transmitter and the receiver. The technique is effective in detecting stationary and mobile 

targets and breathing owing to the removal of the wall returns. Combining FMICW with 

other wall removal techniques could be of great interest to mitigate the influence of the 

wall on the desired target under investigation. 

[70] 

 

IEEE Transactions 

on Antennas and 

Propagation  

2.957 0.5-2 GHz In TWRI systems, antennas are fundamental to the system to radiate power towards the 

area of interest. As the radar is transmitting in a wide range, the antenna should have well-

matched impedance across the bandwidth. In addition, the radiation has to be focused 

towards the target under investigation. The publication presents an FMCW while using a 

patch-like antenna. After simulation and design of the antenna, the paper finds agreement 

between the simulated result and the antenna that was designed. After design, the antenna 

was fine-tuned using simulation results and subsequently showed strong wall-removal for 

through-wall detection of stationary targets and moving people. Furthermore, the antenna 

had a smaller factor and was made of a less expensive substrate compared to its 

counterpart.  

1
 WoS journal IF as listed on the IEEE Xplore website (www.ieeexplore.org) [May 2018] 
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Table A-1: Summary of literature related to this research. 

Reference Journal Journal 

IF 

Frequency 

band of 

interest 

Contribution to body of scholarly knowledge 

[71] IEEE Transactions 

on Image 

Processing 

4.828 ------- While comparing conventional contrast measures such as the sum of squared intensity to 

the higher order statistics, the publication finds that higher order statistics are more 

sensitive to errors in wall parameters. Thus, the publication presents an autofocusing 

technique based on high-order statistics to mitigate error implied by an unknown wall. By 

running many simulations to compare their proposed technique to others, the publication 

claims greater effectiveness from their approach. 

 

 

 

 

 

 

 

 

 

1 WoS journal IF as listed on the IEEE Xplore website (www.ieeexplore.org) [May 2018] 
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Table A-2: Summary of previous works related to through-the-wall imaging using micro-Doppler effect. 

Reference Journal Journal 

IF2 

Type of radar 

used 

Frequency 

band of 

interest 

Algorithm 

used 

Summary 

 

[18] IEEE 

Transactions on 

Geoscience and 

Remote Sensing 

4.942 Doppler radar 2.4 GHz Support 

vector 

machine 

The researchers investigated a method to classify 

different human activities from their returned micro-

Doppler activities. Thereafter, collecting the Doppler 

spectrogram, a support vector machine (SVM) was 

trained for different activities. Using the SVM, the 

authors found the optimal parameters through fourfold 

cross-validation. Their classification was more than 90% 

accurate. In addition, different possibilities of 

classification of human activities were investigated, such 

as classification over an extended time, at oblique angles 

with respect to the radar, and through a wall. 

The classification was challenging when the experiment 

was done through a wall. At an oblique approach angle 

above 30° with respect to the radar the degradation of the 

signal was significant. It was recommended that 

distributed sensors be investigated to classify the 

activities of humans moving in any direction. 

 
2 WoS Journal IF as listed on the IEEE Xplore website (www.ieeexplore.org) [May 2018]  
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[72] IEEE 

Transactions on 

Geoscience and 

Remote Sensing 

4.942 Doppler radar 2.4 GHz Finite-

difference 

time domain 

(FDTD) 

A simulation of a TWR is run to detect micro-Doppler 

movement behind the wall. The wall is modelled using 

the FDTD and the human motion is modelled from a 

primitive based prediction applied to model the scattered 

returns. The core of the authors’ investigation was to 

determine the effect of a homogenous and 

inhomogeneous wall on human-generated micro-

Doppler. Contrary to [73], the paper found that TWR 

exposed only very minor distortions on the actual 

Doppler frequencies. Experimental and theoretical 

analysis supported the findings. The paper compared the 

two and three dimensions and found that even though the 

3-D one offered improved performance, the 2-D one did 

not deviate significantly from the 3-D one. In terms of 

range, the method used in the paper could be used for 

high-range resolution even though the preliminary results 

showed significant degradation of the signal.  

[74] IEEE 

Transactions on 

Geoscience and 

Remote Sensing 

4.942 Noise radar 400–720 

MHz 

Empirical 

mode 

decomposition 

and Hilbert 

transform 

The paper presents a noise radar that combines real-time 

ranging, an imaging and Doppler capability as a single 

portable package. The paper uses different stand-off up 

to 9 metres and could detect the micro-Doppler. To 

remove the effect of the wall, the paper presents a time-

gating method. In addition, the back and side walls effect 
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could be removed using time gating if the layout of the 

building was known or if background radar data were 

available to use a background subtraction method. 

[75] IEEE 

Transactions on 

Geoscience and 

Remote Sensing 

4.942 Continuous wave 

Doppler radar 

(CWDR) and 

ultra-wideband 

pulse–Doppler 

(UWBPD) 

3 GHZ Short-time 

Fourier 

transform 

(STFT) 

The authors built two prototype radars based on field 

programmable gate arrays. The CWDR was cost-

effective; on the other hand, it was only capable of 

detecting a single human at a time. This method was 

used in applications where range detection was not 

required. On the other hand, the UWBPD was capable of 

multiple-object detection and real-time target tracking. In 

addition, UWBPD demonstrated both a high-resolution 

range profile and micro-Doppler signature simultaneous 

acquisition. After comparison the conclusion was that the 

UWBPD offers more advantage than the CWDR if used 

in TWRI or where there is debris. 

[76] IEEE 

Transactions on 

Antennas and 

Propagation 

1.873 SAR 24 GHz Generalised 

likelihood 

ratio test 

technique 

When SAR is used in a through-the-wall system, it 

provides high resolution and recognition of the target, 

using the SAR to collect the Doppler spectrum and 

analyse the non-uniform motion induced by the Doppler 

effect and target focusing. After analysis, the authors 

found that the wall parameters could have a strong 

impact on target focusing while using an SAR image. 

This influence on the target motion complicated the 
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range estimation. In addition, the authors affirm that the 

presence of the wall has less impact on the micro-

Doppler while using the SAR. In contrast, the presence 

of the wall is responsible for target smearing, defocusing 

and target displacement in the azimuth. While using the 

time-frequency analysis, a target with micro-Doppler 

demonstrated a high detection performance gain over 

that of the stationary one.  

[77] IEEE Access 3.244 Doppler radar  5.8 GHz Deep 

convolutional 

neural 

network 

(DCNN) 

Recognising human gesture is research of great interest 

in micro-Doppler radar. Human gesture aids recognition 

of the target. The authors investigated the use of micro-

Doppler to recognise human hand gestures. They used 10 

gestures to validate their concept. The gesture spectrum 

was collected in the absence of any obstruction between 

the radar and the target. The Doppler spectrogram was 

analysed with a DCNN. The DCNN showed an 

improvement up to 93.1% of recognition accuracy while 

using seven gestures. Lower performance was observed 

when using 10 gestures. With 10 gestures the paper 

reports an accuracy of 85.6%. The paper finds that 

depending on the distance to the radar and the aspect 

angle, the micro-Doppler signatures could vary. Multiple 

human gesture recognition has been identified as a 
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research gap that has not been bridged. 

[78] IET Radar, Sonar 

and Navigation 

1.509 SAR 9.375 GHz Phase-

switched 

screen 

Knowing that micro-Doppler induces defocusing on the 

target, the authors used the micro-Doppler effect to 

introduce jamming in SAR imaging. This method is used 

to protect an aerial object, which is a micro-Doppler 

generator. 

[79] IEEE 

Transactions on 

Geoscience and 

Remote Sensing 

4.942 Pulse Doppler 

radar transmitting 

a linear-

frequency-

modulated  

15 GHz Information-

theoretic (IT) 

Using IT feature selection techniques, the authors could 

classify different activities performed by a human 

subject. The IT technique was used because it did not 

require many features to classify the different activities. 

At a signal-to-noise ratio over 10 dB and with a 

minimum of 1 s of data, the results showed that their 

approach yielded 96% correct classification for the target 

moving along the radar line of sight. On the other hand, 

correctness of over 65% has been observed for tangential 

motion. A meticulous choice of features is necessary, as 

all the features do not contain a high level of 

information. Thus, by reducing the number of features to 

be analysed, the computational requirement is decreased 

as well.  

[80] IET Signal 

Processing 

1.298 Dual-frequency 

radars 

903 MHz 

and 921 

MHz 

Maximum 

likelihood 

(ML) 

Using dual-frequency radars, the authors derived the ML 

as an estimator of the micro-Doppler motion parameters. 

By applying the iteratively reweighted non-linear least 
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squares algorithm to solve the ML estimator for the 

micro-Doppler returns, their method has shown 

improvement while being applied to simulated data. 

[81] IEEE Geoscience 

and Remote 

Sensing Letters 

2.761 Pulse radar 8 GHz Block-sparse 

forward-

backward 

time-varying 

autoregressive 

(BS-

FBTVAR). 

To analyse the micro-Doppler signatures produced by 

rigid-body targets, a parametric time-frequency method 

was used. By using the basis expansion method, the 

authors presented the conventional FBTVAR model in 

linear form.  

Subsequently, the BS-FBTVAR model was developed 

by applying the block sparsity lying in the time-invariant 

parameters’ vectors owing to the rigidity of the targets. 

The complex value block sparse Bayesian learning 

algorithm was used to solve the BS-FBTVAR model. 

While comparing the conventional joint time–frequency 

(TF) and the proposed TF, it was found that the proposed 

TF had ameliorated denoising performance. 

[82] IEEE Sensors 

Journal 

2.512 Linear frequency 

modulated pulse 

radar 

Ka band Time-

frequency 

spectrogram 

The paper presents the way to differentiate the return of a 

micro-Doppler signature coming from a single walking 

person, two people walking, and a moving wheeled 

vehicle. From the time-frequency spectrograms, the 

paper reproduces a 3-D micro-Doppler feature vector. 

After comparison between the existing method of micro-

Doppler extraction and the result obtained, higher 
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classification accuracy with higher discriminative ability 

was achieved using this method. The paper mentioned 

that a knowledge gap remained in respect of the 

extraction of micro-Doppler features while in the 

presence of noise and when the target was not 

cooperative. 

[83] IET Radar, 

Sonar and 

Navigation 

1.509 Passive radar 666 MHz Joint time-

frequency 

domain 

The paper investigated extracting the micro-Doppler of a 

fast-rotating target. A tomography method has been 

found effective and feasible to image fast-rotating targets 

using passive radars. Experiment and simulation 

substantiated the statement of extracting micro-Doppler 

from narrowband continuous wave radar. To be able to 

get the data projection, a joint time-frequency has been 

used to process the micro-Doppler data. 

[84] IEEE 

Transactions on 

Aerospace and 

Electronic 

Systems 

4.942 Multi-static radar 4 GHz STFT The sensitivity of human-activity recognition is low 

when the movements are not forward or backward in the 

line of sight of the radar antenna. Thus, the author 

proposed the use of a multi-static radar consisting of two 

bi-static micro-Doppler sensors to reduce the effect of 

low sensitivity of a monostatic radar. The classification 

of micro-Doppler signatures is enhanced when using 

multiple sensors rather than a monostatic radar. This is 

due to the different aspect angle formed by the signal and 
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the target. 

[85] IEEE 

Geoscience and 

Remote Sensing 

Letters 

2.761 Multi-static radar 2.4 GHz Singular value 

decomposition 

The paper presents multi-static radar and investigates a 

micro-Doppler spectrogram collected from three sets of 

human activities. At the most favourable aspect angle, 

the paper achieves high classification accuracy of above 

98%. To reduce the unwanted effect brought about by 

the aspect angle, the paper proposed future research 

investigation in order to optimise the classification 

performance.  

[86] IEEE 

Transactions on 

Geoscience and 

Remote Sensing 

4.942 Stepped 

frequency radar  

10 GHz STFT The paper finds that transmitting the radar signal via 

diffraction in the wall corner decreases the detection of 

target returns. This phenomenon has been used to 

separate the transmitted and reflected signal. The paper 

subsequently processes the received signal using the 

STFT. The paper demonstrates that it is possible to 

detect breathing and the presence of a walking man 

behind a wall. The paper uses the return signal coming 

from a metallic sphere placed in the shadow region 

behind the corner, using the moving target indicator to 

test the extraction of the real time return signal. 

[87] IET Radar, 

Sonar and 

Navigation 

1.509 Continuous-wave 

monostatic 

Doppler radar 

6.5 GHz STFT The paper investigates the extraction of the micro-

Doppler signature through the wall and in free space. 

The paper finds that it is possible to distinguish between 
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different targets based on the micro-Doppler returns 

under certain circumstances. Furthermore, distinguishing 

between different human beings depends on the activities 

conducted. In addition, the authors find that two different 

targets can be separated only when they are travelling in 

the same direction and at different speeds. The paper 

identifies a shortcoming: the TWR affects the signal 

magnitude response of the Doppler spectrogram in terms 

of attenuation and fading. The Doppler spectrogram is 

affected to a limited degree by the distortion, so a signal 

can be detected in TWR. 

 

 



 

 

 

 

APPENDIX B: IMAGE OF THE SIGNAL GENERATOR 

BOARD 

 

The board used to generate the ramp signal of the radar as given in section 4.2.1, titled 

radar design, is expanded in this section. 

From Figure B.1 to Figure B.7 the figures represent the different circuits on the printed 

circuit board (PCB). Figure B.1 presents the microcontroller and the different components 

required for its basic functionality. 

 

Figure B.1: Microcontroller PIC32MX664F128H. 

 

Figure B.2 represents the Ethernet circuit. The ENC28J60 from Microchip is the integrated 

circuit used for the Ethernet connection. 
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Figure B.2: ENC28J60 schematic. 

The Ethernet connection has been placed on the board to allow the data to be sent and 

received from a laptop RJ45 connector. 

 

Figure B.3: Ethernet transformer. 

Figure B.3 is the Ethernet transformer with its required component around the chip. 
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Figure B.4: Oscillator schematic for the ENC28J60. 

Figure B.4 represents the oscillator circuit of the Ethernet chip. The oscillator provides the 

clock for the ENC28J60. 

 

 

Figure B.5: Voltage regulator capacitor. 

Figure B.5 presents different signal smoothing capacitors that are connected to the 

microcontroller. 

Figure B.6 presents the ramp signal generator circuit. An operational amplifier with PNP 

transistor has been used in combination with the microcontroller to generate the ramp 

signal. 



 

Department of Electrical and Electronic Science 144 

University of Johannesburg  

 

Figure B.6: Ramp signal generator circuit. 
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Figure B.7: Voltage regulator power supply circuits. 

Figure B.7 represents the power supply circuits for the entire board. The board accepts an 

input voltage from 12 to 24 V. The input voltage is regulated, then yields 3.3 V and 5 V to 

supply different circuits on the board. 
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Figure B.8: Programming interface. 

Figure B.8 presents the header where the microcontroller is programmed through the Pickit 

3. The Pickit 3 is a programmer supplied by Microchip. 

 

Figure B.9: Oscillator for microcontroller. 

Figure B.9 presents the oscillator circuit to provide the clock signal to the microcontroller. 
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The circuit layout of each components is included in this appendix. Circuit layouts of 

Figures B.1 to B.9 are given in figures B.10 to B.11. Figures B.10 and B.11 present the 

PCB board as top layer and bottom layer respectively. 

 

 
Figure B.10: Top layer view of the PCB. 

 
Figure B.11: Bottom view of the PCB. 

75mm 
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The board is 75 mm in diameter. This board was designed to generate the sawtooth signal 

that is input to the radar. This part is the first stage of the FMCW radar. On the board 

PIC32MX695F512H is the processor.  

Figure B.12 represents the two layers of the PCB. 

 

Figure B.12: Front of the board. 

Figure A.13 shows the bottom of the board. 

 

Figure B.13: Back of the board. 
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The MPLAB X IDE functions that were used to generate the ramp signal from the circuit 

board. Comments next to coded lines briefly describe the functionality of the 

lines/functions. The version of the MPLAB X IDE is 5.10 and the compiler used is XC32 

V1.44. 

 
 

//============================================================================== 

//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    main.c 

// Function:    The aim of this program is to generate a ramp signal for the 

//              FMCW radar. 

//============================================================================== 

//============================================================================== 

 

 

 

/* ************************************************************************** */ 

/* ************************************************************************** */ 

/* Section: Included Files                                                    */ 

/* ************************************************************************** */ 

/* ************************************************************************** */ 

/* This section lists the other files that are included in this file. 

 */ 

#include <xc.h> 

#include "config.h" 

#include "delays.h" 

#include "adc.h" 

 

#define discharge_pin LATDbits.LATD11 

 

 

/* end of the incluse section Files*/ 

 

//=============================== Globals variables============================= 

int adc_voltage_measurement = 0; 

int adc_voltage_upper = 0; 

int adc_voltage_lower = 0; 

int adc_sensor_3_measurement = 0; 

 

int voltage_channel = 0XFF; 

 

mailto:trikwabam@gmail.com
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//=============================== End of Globals variables====================== 

/*begin of the main function */ 

 

int main() { 

 

    SYSTEM_Initialize();                                          // Initialise 

the uC 

    initADC();                                                    // Initialise 

the ADC 

    Delay_ms(2000);                                               // Delay of 

2000 millisecond 

    discharge_pin = HIGH;                                         // Set up the 

pin high 

    while (1){                                                     

        adc_voltage_measurement = readADC(voltage_channel);       // Measure the 

voltage on the AN15 pin 

        if (adc_voltage_measurement> adc_voltage_upper)           // Check the 

condition 

        { 

          discharge_pin = LOW;                                    //If the 

condition is Ok bring the digital pin low 

          while (adc_voltage_measurement> adc_voltage_lower)      // Continue 

check 

          { 

           adc_voltage_measurement = readADC(voltage_channel);      //loop until 

the capacitor is discharged    

          } 

          discharge_pin = HIGH;                                    // Bring back 

pin D11 high 

        } 

    } 

     

     

    return 0; 

} 

 

/* ***************************************************************************** 

 End of the main function  

 */ 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    config.h 

// Function:    Prepares functions for configuration. 

//============================================================================== 

 

#ifndef _CONFIG_H    /* Guard against multiple inclusion */ 

#define _CONFIG_H 

#include <xc.h> 

#include "pin_manager.h" 

#include <stdint.h> 

#include <stdbool.h> 

 

#define _XTAL_FREQ  40000000 

 

/** 

 * @Param 

    none 

 * @Returns 

    none 

 * @Description 

    Initializes the device to the default states configured in the 

 *                  MCC GUI 

 * @Example 

    SYSTEM_Initialize(void); 

 */ 

void SYSTEM_Initialize(void); 

 

//void OSCILLATOR_Initialize(void); 

 

    /* Provide C++ Compatibility */ 

#ifdef __cplusplus 

} 

#endif 

 

#endif /* _EXAMPLE_FILE_NAME_H */ 

 

/* ***************************************************************************** 

 End of File 

 */ 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    config.h 

// Function:    Prepares functions for PIN configuration. 

//============================================================================== 

 

#ifndef PIN_MANAGER_H 

#define PIN_MANAGER_H 

 

#define INPUT   1 

#define OUTPUT  0 

 

#define HIGH    1 

#define LOW     0 

 

#define ANALOG      1 

#define DIGITAL     0 

 

#define PULL_UP_ENABLED      1 

#define PULL_UP_DISABLED     0 

 

 

 

void PIN_MANAGER_Initialize (void); 

 

/** 

 * @Param 

    none 

 * @Returns 

    none 

 * @Description 

    Interrupt on Change Handling routine 

 * @Example 

    PIN_MANAGER_IOC(); 

 */ 

void PIN_MANAGER_IOC(void); 

 

#endif // PIN_MANAGER_H 

 

 //End of File 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    adc.h 

// Function:    Prepares functions for adc. 

//============================================================================== 

 

#ifndef ADC_H 

#define ADC_H 

 

#ifdef __cplusplus 

extern "C" { 

#endif 

 

void initADC(); 

int readADC(); 

 

#ifdef __cplusplus 

} 

#endif 

 

#endif /* ADC_H */ 

 

//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    delays.h 

// Function:    Prepares functions for delays. 

//============================================================================== 

 

#ifndef DELAYS_H 

#define DELAYS_H 

 

#ifdef __cplusplus 

extern "C" { 

#endif 

 

    void Delay_ms(unsigned int n); 

    void Delay_us(unsigned int n); 

     

#ifdef __cplusplus 

} 

#endif 

 

#endif /* DELAYS_H */ 

//============================================================================== 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    config.h 

// Function:    Contains functions for configuration. 

//============================================================================== 

 

 

// PIC32MX695F512H Configuration Bit Settings 

 

// 'C' source line config statements 

 

// DEVCFG3 

// USERID = No Setting 

#pragma config FSRSSEL = PRIORITY_7     // SRS Select (SRS Priority 7) 

#pragma config FMIIEN = OFF             // Ethernet RMII/MII Enable (RMII 

Enabled) 

#pragma config FETHIO = OFF             // Ethernet I/O Pin Select (Alternate 

Ethernet I/O) 

#pragma config FUSBIDIO = OFF           // USB USID Selection (Controlled by Port 

Function) 

#pragma config FVBUSONIO = OFF          // USB VBUS ON Selection (Controlled by 

Port Function) 

 

// DEVCFG2 

#pragma config FPLLIDIV = DIV_2         // PLL Input Divider (2x Divider) 

#pragma config FPLLMUL = MUL_20         // PLL Multiplier (20x Multiplier) 

#pragma config UPLLIDIV = DIV_2         // USB PLL Input Divider (2x Divider) 

#pragma config UPLLEN = OFF             // USB PLL Enable (Disabled and Bypassed) 

#pragma config FPLLODIV = DIV_2         // System PLL Output Clock Divider (PLL 

Divide by 2) 

 

// DEVCFG1 

#pragma config FNOSC = PRIPLL           // Oscillator Selection Bits (Primary Osc 

w/PLL (XT+,HS+,EC+PLL)) 

#pragma config FSOSCEN = OFF            // Secondary Oscillator Disable 

(Disabled) 

#pragma config IESO = OFF               // Internal/External Switch Over 

(Disabled) 

#pragma config POSCMOD = XT             // Primary Oscillator Configuration (XT 

osc mode) 

#pragma config OSCIOFNC = ON            // CLKO Output Signal Active on the OSCO 

Pin (Enabled) 
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#pragma config FPBDIV = DIV_2           // Peripheral Clock Divisor (Pb_Clk is 

Sys_Clk/2) 

#pragma config FCKSM = CSDCMD           // Clock Switching and Monitor Selection 

(Clock Switch Disable, FSCM Disabled) 

#pragma config WDTPS = PS1048576        // Watchdog Timer Postscaler (1:1048576) 

#pragma config FWDTEN = OFF             // Watchdog Timer Enable (WDT Disabled 

(SWDTEN Bit Controls)) 

 

// DEVCFG0 

#pragma config DEBUG = OFF              // Background Debugger Enable (Debugger 

is disabled) 

#pragma config ICESEL = ICS_PGx2        // ICE/ICD Comm Channel Select (ICE 

EMUC2/EMUD2 pins shared with PGC2/PGD2) 

#pragma config PWP = OFF                // Program Flash Write Protect (Disable) 

#pragma config BWP = OFF                // Boot Flash Write Protect bit 

(Protection Disabled) 

#pragma config CP = OFF                 // Code Protect (Protection Disabled) 

 

// #pragma config statements should precede project file includes. 

// Use project enums instead of #define for ON and OFF. 

#include "config.h" 

 

void SYSTEM_Initialize(void) 

{ 

     

    PIN_MANAGER_Initialize(); 

    

} 

 

 

 

/** 

 End of File 

*/ 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    config.h 

// Function:    Contains functions for PIN configuration. 

//============================================================================== 

 

#include <xc.h> 

#include "pin_manager.h" 

 

void PIN_MANAGER_Initialize(void) 

{ 

     

    LATB = 0x0; 

    LATC = 0x0; 

    LATD = 0x0; 

    LATE = 0x0; 

    LATF = 0x0; 

    LATG = 0x0; 

    AD1PCFG= 0x8000; 

    TRISB = 0x0; 

    TRISC = 0x0; 

    TRISD = 0x0; 

    TRISE = 0x0; 

    TRISF = 0x10; 

    TRISG = 0x100; 

} 

 

 

void PIN_MANAGER_IOC(void) 

{     

} 

 

/** 

 End of File 

*/ 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    adc.c 

// Function:    Contains functions for adc. 

//============================================================================== 

 

#include "adc.h" 

#include <xc.h> 

 

//=============================== initADC ====================================== 

void initADC() 

{ 

    AD1CON1 = 0x00E0;                           // Automatic conversion, no 

waiting for the DONE interrupt. 

    AD1CSSL = 0;                                // No scanning of inputs. 

    AD1CON2 = 0;                                // Mux A, Vdd/Vss as Vref+/-. 

    AD1CON3 = 0x1FFF;                           // Tsamp = 32 x Tad     VERY 

IMPORTANT NB NB!!! = 750 Hz sampling rate!!!!!!!!! 

    AD1CON1bits.ADON = 1;                       // Switch on adc. 

} 

//============================================================================== 

//=============================== readADC ====================================== 

int readADC(int ch) 

{ 

    AD1CHSbits.CH0SA = ch;                      // Selects AN of choice for 

analog input. 

    AD1CON1bits.SAMP = 1;                       // Start sampling process. 

    while(!AD1CON1bits.DONE);                   // Wait for conversion. 

    return ADC1BUF0;                            // Return the result. 

} 

//============================================================================== 
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//============================================================================== 

// Author:      trikwabam@gmail.com (author of this thesis) 

// Project:     FMCW radar signal generator 

// Created:     27 July 2017 

// Filename:    delays.c 

// Function:    Contains functions for delays. 

//============================================================================== 

 

#include "delays.h" 

#include <xc.h> 

 

//============================== Definitions =================================== 

#define SYSCLOCK 40000000L              // System clock @ 40 MHz 

#define PBCLOCK 20000000L               // Peripheral clock @ 20 MHz 

#define PBCLMS  20000L                  // Cycle for one millisecond. 

#define PBCLUS  20L                     // Cycle for one microsecond. 

//============================================================================== 

 

//========================= Delay function in ms =============================== 

void Delay_ms(unsigned int n)                                                   

// Delays by n amount in milliseconds. 

{ 

    T1CON = 0x8000; 

    while(n--) 

    { 

        TMR1 = 0; 

        while(TMR1 < PBCLMS); 

    } 

    T1CONCLR = 0x8000; 

} 

 

//========================= Delay function in us =============================== 

void Delay_us(unsigned int n)                                                   

// Delays by n amount in microseconds. 

{ 

    T1CON = 0x8000; 

    while(n--) 

    { 

        TMR1 = 0; 

        while(TMR1 < PBCLUS); 

    } 

    T1CONCLR = 0x8000; 

} 
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APPENDIX C: IMAGE OF THE PATCH ANTENNA 

IMAGE OF THE PATCH ANTENNA 

The antenna that was built is a patch antenna. Figures C.1 to C.3 present the patch antenna. 

Figure C.3 presents the patch antenna covered with a clear sheet of plastic to prevent 

humidity from reaching the metallic material. In the centre of the antenna one can see the 

feed point. The enclosure used comes from an old broken antenna. 

A patch or microstrip antenna comprises a thin metallic patch on a dielectric substrate to 

radiate an EM wave. In multiple applications where size, weight, and performance are 

important constraints, it is always preferable to use an embedded low-profile microstrip 

antenna. As the radar has to be portable, a low-weight and non-cumbersome antenna is 

preferable rather than its counterparts such as a dish antenna. 

Figure C.1 represents the top layer of the antenna design. 

 

Figure C.1: Antenna design. 

The dimensions of the antenna are 285 mm by 285 mm. 
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Figure C.2: Zoom-in view of the antenna. 

 

 

Figure C.3: Antenna front. 

Figure C.4 presents the same antenna, where the substrate is visible underneath the patch. 

 

The substrate electromagnetic property is an element that strongly influences the antenna 

size and performance. For this antenna design, the choice has been a substrate with a 

thickness of 3 mm, permittivity 𝜀𝑟 = 9  and substrate loss tangent of 𝑡𝑎𝑛𝛿 = 0.0009. 

To calculate the width of the patch, the following formula has been used: 

𝑊𝑒 =
𝑐

2𝑓0√
𝜀𝑟 + 1

2

                                                             (B. 1) 
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radiation 
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After calculating the width, the effective dielectric constant has to be computed. Therefore, 

based on the height and the width of the patch antenna, the dielectric constant can be found 

with the following formula: 

𝜀𝑒𝑓𝑓 =
𝜀𝑟 + 1

2
+

𝜀𝑟 − 1

2
[1 + 12

ℎ

𝑊𝑒
]

1
2
                                      (B. 2) 

The calculation of the effective length is done using the following formula: 

𝐿𝑒𝑓𝑓 =
𝑐

2𝑓0√𝜀𝑒𝑓𝑓

 .                                                        (B. 3) 

Afterward, the calculation of the length extension is found using the following formula: 

∆𝐿 = 0.412ℎ
(𝜀𝑒𝑓𝑓 + 0.3) (

𝑊𝑒

ℎ
+ 0.264)

(𝜀𝑒𝑓𝑓 − 0.258) (
𝑊𝑒

ℎ
+ 0.8)

 .                                 (B. 4) 

Having determined the effective length and the length extension, the actual length of the 

patch can be calculated as follows: 

𝐿 = 𝐿𝑒𝑓𝑓 − 2∆𝐿                                                           (B. 5) 

where the parameters from (B.1) to (B.5) are represented as follows: 

𝑐  is the speed of light, 

𝑓0 is the resonance frequency, 

𝑊𝑒 is the width of the patch antenna, 

𝐿 is the length of the patch, 

ℎ is the thickness, and 

𝜀𝑟 is the relative permittivity of the dielectric substrate. 
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Figure C.4: Substrate. 

Figure C.5 presents the enclosure of the antenna. 

 

 

Figure C.5: Enclosure used. 
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