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Abstract

We consider the classical Cramér-Lundberg risk model with claim sizes that are mixtures of
phase-type and subexponential variables. Exploiting a specific geometric compound representation,
we propose control variate techniques to efficiently simulate the ruin probability in this situation.
The resulting estimators perform well for both small and large initial capital. We quantify the
variance reduction as well as the efficiency gain of our method over another fast standard technique
based on the classical Pollaczek-Khinchine formula. We provide a numerical example to illustrate
the performance, and show that for more time-consuming conditional Monte Carlo techniques, the
new series representation also does not compare unfavorably to the one based on the Pollaczek-
Khinchine formula.
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1. Introduction

The study of ruin probabilities for insurance risk models is a classical topic in applied probability, see
e.g. [16]. Explicit formulas for ruin probabilities are available only in specific situations. One such
instance is the classical Cramér-Lundberg risk model when claim sizes are of phase-type, see e.g. [3] for
more details. However, the tail of such phase-type distributions is exponentially bounded [14], whereas
insurance data often suggest heavy tails [1]. In the presence of heavy tails one then typically has to
resort to approximations or simulations, and to achieve accuracy for either of the two can be challenging.
While highly efficient simulation techniques for ruin probabilities for exponentially bounded claims are
available for a long time already (e.g. using Lundberg conjugation [3, Ch.XV]), the field of efficient
simulation for heavy tails has only advanced significantly in more recent years and is an active field of
research (cf. [5, 11, 12, 15] and [4] for an overview).

Among the many possible modelling approaches for insurance claim sizes, in this paper we will be
interested in mixture models, where with a certain probability ε a new claim is of a heavy-tailed type
and with probability 1− ε it is of a certain light-tailed type. Such a co-existence of heavy and light
tails is very intuitive in practice, see e.g. [13, 18]. For small ε, [19] used a perturbation approach to
devise a numerical approximation scheme for the determination of ruin probabilities in the presence of
heavy tails in the spirit of corrected phase-type approximations. Their approach relied on an alternative
representation of the Pollaczek-Khinchine (PK) formula that converges more quickly as ε→ 0, see also
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[10]. Inspired by this approach, in this paper we want to study the potential of such an alternative
representation for general mixture models and not necessarily small ε. The focus here will be to see
whether large claim approximations can be used more efficiently as control variates in a simulation
procedure than for algorithms based on the classical PK formula. We will show both theoretically and in
a numerical implementation that this is indeed the case. The results in principle apply to any situation
where claim sizes are a mixture between a tractable light-tailed and a heavy-tailed distribution for
which the convolution of the two can be calculated explicitly. Moreover, even if the latter convolution
can not be evaluated explicitly, the series representation can be advantageous.

We will also study the performance of the alternative series representation for a conditional Monte
Carlo method developed by Asmussen & Kroese [6]. The latter can be applied to the PK formula and
leads to a significant reduction of variance for the ruin probability estimator, but at a considerable
additional computational cost. It will turn out that for this case, our series representation has no
significant advantage over the classical PK approach, but the performance is not worse either.

The rest of the paper is organised as follows. Section 2 describes the risk model based on the mixture
of light- and heavy-tailed claims and provides some preliminaries. In Section 3, we then construct a new
control variate estimator for the ruin probability based on subexponential properties, which can exploit
the advantage of exact ruin probability formulas for the light-tailed component in the mixture. We
provide error bounds, investigate the tail behaviour, and quantify the resulting variance reduction when
using the control variates, as well as the advantage of our approach to the analogous one based on the
PK formula. We also consider the introduction of this alternative series representation for a conditional
Monte Carlo framework in the spirit of [6]. In Section 4, we then perform numerical experiments and
analyse the results. Finally, we conclude in Section 5.

2. Model description and preliminaries

We start with a short description of phase-type and subexponential distributions in Sections 2.1 and 2.2,
as they are building blocks for the risk model of this paper, which is introduced in Section 2.3.

2.1 Phase-type distributions

Consider a state space E = {1, 2, . . . , p, p + 1} and a Markov jump process {Xt}t≥0 evolving on E.
Assume that the first p states are transient and the last remaining state p+1 is absorbing. The intensity
matrix of this process is given by

Λ =

(
T t

0 0

)
,

where T is a p × p-dimensional sub-intensity matrix, and it consists of the jump rates between the
transient states. The initial distribution of {Xt}t≥0 on the transient states 1, . . . , p is defined by the
vector π = (π1, . . . , πp) with πk = P(X0 = k) for k = 1, . . . , p. Let e be a p-dimensional column vector
of 1’s and t = −Te. A phase-type distribution is then defined as the absorption time τ of Xt, that is,
τ := inf{t > 0|Xt = p+ 1} follows a phase-type distribution with parameters π,T .

Phase-type distributions are natural and tractable extensions of the exponential distribution (which
is retrieved for p = 1), in the sense that their density and distribution functions are explicitly given for
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x > 0 by the formulae

f(x) = π exp(Tx)t and F (x) = 1− π exp(Tx)e,

where the exponential of a matrix M is defined as

exp(M) =

∞∑
n=0

Mn

n!
.

The class of phase-type distributions has various attractive properties (it is e.g. closed under mixing,
convolutions, exceedances, ordering etc.) and for phase-type distributed insurance claims there exist
explicit formulas for ruin probabilities in a number of models (see [3, Ch.IX] for details). In addition,
the class is dense (in the sense of weak convergence) among all distributions on the positive real line, so
that in principle one may approximate any distribution arbitrarily well with a phase-type distribution.
However, by construction phase-type distributions have an exponentially bounded tail, which is often
too restrictive in applications.

2.2 Subexponential distributions

In many situations, distributions with a tail heavier than exponential are a better description of the
data. Among these, an important subclass is the one of subexponential distributions S, i.e. for any
n ∈ N,

F ∗n(u) ∼ nF (u), as u→∞, (1)

where F (u) = 1 − F (u) is the tail of the underlying distribution function F , see e.g. [17]. This
mathematical definition is built around the intuition that the tail behavior of sums of independent such
random variables is determined by the largest among them. The class of subexponential distributions
comprises most heavy-tailed distributions of practical interest (including the Lognormal, Pareto, and
heavy-tailed Weibull distribution). However, for exact calculations this class is not amenable and
one typically has to resort to simulation in order to determine quantities like ruin probabilities with
subexponential claims, and the latter is known to be challenging due to the rare event character (cf. [3,
Ch.XV]). In the sequel, we will need the following well-known asymptotic property of subexponential
distributions (see e.g. [9, Cor.3.18] or [3, Cor.X.1.11]):

Property 2.1. Let F ∈ S and let A be any distribution with a lighter tail, i.e. A(u) = o
(
F (u)

)
. Then

for the convolution A ∗ F of A and F we have A ∗ F ∈ S and (A ∗ F )(u) ∼ F (u).

2.3 The model

Consider the classical Cramér-Lundberg risk model for the surplus process of an insurance portfolio.
The premium inflow is assumed at a constant rate (w.l.o.g. 1 per unit time) and claims arrive according
to a homogeneous Poisson process {N(t)}t≥0 with rate λ. The claim sizes Uk

D
= U are i.i.d. with

common distribution function G, and are independent of {N(t)}. If u is the initial capital, the surplus
at time t is then given by

R(t) = u+ t−
N(t)∑
k=1

Uk.
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We also define the claim surplus process S(t) = u − R(t) and its maximum M = sup0≤t<∞ S(t).
The probability ψ(u) of ultimate ruin is then

ψ(u) = P(M > u). (2)

In addition, we assume that the safety loading condition ρ = λEU < 1 holds and thus the well-known
Pollaczek-Khinchine (PK) formula

1− ψ(u) = (1− ρ)
∞∑
k=0

ρk(Ge)∗k(u) (3)

can be used for the evaluation of the ruin probability. Here Ge(u) =
∫ u
0

(
1 − G(x)

)
dx/EU is the

distribution function of the stationary excess claim size U e, see e.g. [3].

In this paper, we assume that claim sizes are of a mixture type. Concretely, U is phase-type with
probability 1 − ε and heavy-tailed (subexponential) with probability ε, where ε ∈ (0, 1). The phase-
type claim sizes Bk

D
= B and the subexponential claim sizes Ck

D
= C are both assumed to have finite

means µB and µC , respectively. Denote by G̃e(s), F̃ ep (s), and F̃ eh(s) the Laplace transforms of the

stationary excess claim sizes U ek
D
= U e, Be

k
D
= Be, and Cek

D
= Ce, respectively. Moreover, we set δ := λµB

and θ := λµC , which means that the phase-type and heavy-tailed claims are responsible for expected
aggregate claim size (1− ε)δ and εθ per unit time, respectively. The expected overall aggregate claim
size is then given by ρ = (1− ε)δ+ εθ. In terms of Laplace transforms, the Pollaczek-Khinchine formula
can be written as

Ee−sM = (1− ρ)
∞∑
k=0

ρk
(
G̃e(s)

)k
=

1− ρ
1− ρ G̃e(s)

=
1− (1− ε)δ − εθ

1− (1− ε)δF̃ ep (s)− εθF̃ eh(s)
. (4)

Using representation (4), it was shown in [19] that ψ(u) can be expressed as a series expansion
involving the ruin probability of a risk process with purely phase-type claim sizes (base model). One
easy way to establish a phase-type base model is by simply considering that G(x) = (1− ε)Fp(x) + ε,
x ≥ 0, i.e. discard all heavy-tailed claim sizes. This base model, for which the claim size distribution
has an atom at zero, is equivalent to the compound Poisson risk model in which claims arrive at rate
(1− ε)λ and follow the distribution of B. We denote by M• the supremum of its corresponding claim
surplus process and we set ρ• = (1− ε)δ. The PK formula for this base model takes the form

Ee−sM
•
=

1− ρ•

1− ρ•F̃ ep (s)
. (5)

We denote by ψ•(u) the phase-type approximation of ψ(u) that is obtained when we apply Laplace
inversion to (5). The following series expansion of ψ(u) for the general risk process was shown in [19,
Th.1]. In order to keep this paper self-contained, we repeat the short proof here in the present notation.

Theorem 2.2 ([19]). We have

ψ(u) =
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

∞∑
k=1

(
εθ

1− ρ•

)k
Ak(u), (6)

where Ak(u) = P(M
•
0 +M•1 + · · ·+M•k +Ce1 + · · ·+Cek > u) and M•k

D
=M•. This expansion converges
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for all values of u.

Proof. It can easily be derived that U e = IBe
k+(1−I)Cek, where I ∼ Bernoulli

(
ρ•/(ρ•+εθ)

)
. Therefore

G̃e(s) =
ρ•

ρ• + εθ
F̃ ep (s) +

εθ

ρ• + εθ
F̃ eh(s), and we find by virtue of the binomial identity

(
G̃e(s)

)`
=

1

(ρ• + εθ)`

∑̀
k=0

(
`

k

)
(ρ•)`−k

(
F̃ ep (s)

)`−k
(εθ)k

(
F̃ eh(s)

)k
.

Combining Equations (4) and (5), we get

Ee−sM = (1− ρ• − εθ)
∞∑
`=0

∑̀
k=0

(
`

k

)
(ρ•)`−k

(
F̃ ep (s)

)`−k
(εθ)k

(
F̃ eh(s)

)k
= (1− ρ• − εθ)

∞∑
k=0

(εθ)k
(
F̃ eh(s)

)k ∞∑
`=k

(
`

k

)
(ρ•)`−k

(
F̃ ep (s)

)`−k
= (1− ρ• − εθ)

∞∑
k=0

(εθ)k
(
F̃ eh(s)

)k 1(
1− ρ•F̃ ep (s)

)k+1

= (1− ρ• − εθ)
∞∑
k=0

(εθ)k
(
F̃ eh(s)

)k 1

(1− ρ•)k+1

(
Ee−sM

•
)k+1

=
1− ρ
1− ρ•

∞∑
k=0

(
εθ

1− ρ•

)k (
F̃ eh(s)

)k(
Ee−sM

•
)k+1

.

We obtain the provided series expansion for ψ(u) via Laplace inversion and using ψ•(u) = P(M•0 > u).
The convergence is granted by

∣∣∣Ee−sM•
∣∣∣ ≤ 1 and

∣∣∣F̃ eh(s)∣∣∣ ≤ 1, while εθ < 1− ρ• due to the stability
condition ρ < 1.

Theorem 2.2 provides an alternative interpretation for M , i.e. M D
=
∑N

k=0(M
•
k +C

e
k), where C

e
0 := 0

and N is a geometric random variable N ∼ Geom
(

1−ρ
1−ρ•

)
. In general, the term corresponding to

k = 0 is explicit. Note that for various subexponential distributions associated with Cek, the term
corresponding to k = 1 in (6) can be also calculated explicitly, so that

ψ(u) =
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

εθ

1− ρ•
P(M•0 +M•1 + Ce1 > u)︸ ︷︷ ︸

explicit

+
1− ρ
1− ρ•

∞∑
k=2

(
εθ

1− ρ•

)k
Ak(u).

Thus, to approximate ψ(u), we only need to have an estimate for

ϕ(u) : =
1− ρ
1− ρ•

∞∑
k=2

(
εθ

1− ρ•

)k
Ak(u) =

(
εθ

1− ρ•

)2

EAN+2(u)

=

(
εθ

1− ρ•

)2

P(M•0 +M•1 + · · ·+M•N+2 + Ce1 + · · ·+ CeN+2 > u), (7)
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which we want to approximate by simulating the tail of

V
D
=M•0 +M•1 + Ce1 +

N+2∑
k=2

(M•k + Cek), (8)

with N ∼ Geom
(

1−ρ
1−ρ•

)
.

Using the above representation, we propose in Section 3 efficient variance reduction techniques for
this simulation based on suitably chosen control variates.

3. Control variate techniques

Let Z(u) be the random variable we must simulate in order to calculate its expectation ϕ(u) = EZ(u).
The idea of a control variate is to use another random variable W (u), which has a known expectation
EW (u) and is strongly correlated with Z(u). Thus, the deviation of the simulated from the exact
value of W (u) may be used for improving the simulation accuracy for Z(u). If

(
Z(i)(u),W (i)(u)

)
,

i = 1, 2, . . . , κ, are independent copies of
(
Z(u),W (u)

)
, then an efficient control variate estimator is

defined as
ϕ̂κ(u) := ẑκ(u) + α̂κ

(
ŵκ(u)− EW (u)

)
, (9)

where

ẑκ(u) =

∑κ
i=1 Z

(i)(u)

κ
, ŵκ(u) =

∑κ
i=1W

(i)(u)

κ
, α̂κ = −

∑κ
i=1

(
Z(i)(u)− ẑκ(u)

)(
W (i)(u)− ŵκ(u)

)∑κ
i=1

(
W (i)(u)− ŵκ(u)

)2 .

(10)
Note that this choice of α̂κ based on the empirical correlation of Z(u) and W (u) optimizes the variance
gain, see e.g. [1, 4]. We assume now that the distribution of Ce belongs to the class of subexponential
distributions satisfying (1). The construction of the concrete W (u) below is inspired by Property 2.1
given in Section 2.2. That is, for sufficiently large u, only the maximum of the subexponential claims
will substantially contribute to the probability in (7).

3.1 Max of heavy tails

It is immediately obvious from Equation (7) that we may take

Z(u) =

(
εθ

1− ρ•

)2

1{V >u}, (11)

and this variable will have the desired mean EZ(u) = ϕ(u). We also define, for fixed n ∈ N, the
random variable

Vn := max{Ce1 , . . . , CeN+2}1{N+2≤n}, (12)

which will serve as a component of the control variate of Z(u).

Definition 3.1. For a fixed n ∈ N, define the control variate

Wn(u) =

(
εθ

1− ρ•

)2

1{Vn>u}. (13)
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The nth order approximation ϕn(u) = EWn(u) of ϕ(u) is then

ϕn(u) =

(
1− ρ
1− ρ•

) n∑
k=2

(
εθ

1− ρ•

)k
P
(
max{Ce1 , . . . , Cek} > u

)
. (14)

By construction, ϕn(u) underestimates ϕ(u). Next we collect some properties of this approximation.

3.1.1 Properties of the approximation

The following lower and upper bounds for the approximation error can be obtained.

Proposition 3.2 (Error bounds). The error of the approximation ϕn(u), n ∈ N, is bounded from above
and below as follows:(

εθ

1− ρ•

)n+1

A1(u) ≤ ϕ(u)− ϕn(u) ≤
(

εθ

1− ρ•

)n+1

+

(
1− εθ

1− ρ•

)(
εθ

1− ρ•
F eh(u)

)2 1−
(

εθ
1−ρ•F

e
h(u)

)n−1
1− εθ

1−ρ•F
e
h(u)

.

Proof. For simplicity of notation, we set p := εθ
1−ρ• . The error of the approximation is equal to

ϕ(u)− ϕn(u) = (1− p)
∞∑
k=2

pnAk(u)− (1− p)
n∑
k=2

pkP
(
max{Ce1 , . . . , Cek} > u

)
= (1− p)

n∑
k=2

pk
(
Ak(u)− P

(
max{Ce1 , . . . , Cek} > u

))
+ (1− p)

∞∑
k=n+1

pkAk(u).

For the upper bound, we use P
(
max{Ce1 , . . . , Cek} > u

)
= 1−

(
F eh(u)

)k and Ak(u) ≤ 1 to obtain

ϕ(u)− ϕn(u) ≤(1− p)
n∑
k=2

pkP
(
max{Ce1 , . . . , Cek} ≤ u

)
+ (1− p)

∞∑
k=n+1

pk = pn+1 + (1− p)
n∑
k=2

(
pF eh(u)

)k
.

For the lower bound, we take Ak(u) ≥ P
(
max{Ce1 , . . . , Cek} > u

)
when k ≤ n and Ak(u) ≥ A1(u)

otherwise, to calculate

ϕ(u)− ϕn(u) ≥ (1− p)
∞∑

k=n+1

pkA1(u) = pn+1A1(u),

and the proof is complete.

Proposition 3.3 (Tail behaviour). For Ce ∈ S, the nth approximation

ψn(u) :=
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

εθ

1− ρ•
P(M•0 +M•1 + Ce1 > u) + ϕn(u)

of the target ruin probability ψ(u) has the following tail behaviour:

ψn(u) ∼
εθ

1− ρ

(
1− (n+ 1)

(
εθ

1− ρ•

)n
+ n

(
εθ

1− ρ•

)n+1
)
F eh(u), u→∞.
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Proof. The approximation ψ•(u) has a phase-type representation; therefore, it is of order o
(
F eh(u)

)
. The

same holds for the tail of the distribution of M•0 +M•1 . Moreover, since Ce ∈ S, from Property 2.1 we
obtain P(M•0 +M•1 +Ce1 > u) ∼ F eh(u). Finally, from P

(
max{Ce1 , . . . , Cen} > u

)
≤ P(Ce1+ · · ·+Cen > u)

and (1), we deduce that P
(
max{Ce1 , . . . , Cen} > u

)
∼ nF eh(u), which leads to the following result by

inserting these asymptotic estimates into Definition 3.1:

ψn(u) ∼
(
1− εθ

1− ρ•

) n∑
k=1

k

(
εθ

1− ρ•

)k
F eh(u) =

εθ
1−ρ•

(
1− (n+ 1)

(
εθ

1−ρ•
)n

+ n
(

εθ
1−ρ•

)n+1
)

1− εθ
1−ρ•

F eh(u)

=
εθ

1− ρ

(
1− (n+ 1)

(
εθ

1− ρ•

)n
+ n

(
εθ

1− ρ•

)n+1
)
F eh(u).

Proposition 3.3 (in comparison with Theorem 5 in [19]) shows that ψn(u) nearly captures the
asymptotic behaviour of the exact ruin probability

ψ(u) ∼ εθ

1− ρ
F eh(u), (15)

being off by a factor
(
1− (n+ 1)

(
εθ

1−ρ•
)n

+ n
(

εθ
1−ρ•

)n+1
)
∈ (0, 1). As expected, the tail of ψn(u)

underestimates the tail of ψ(u).

3.1.2 Variance reduction

We consider now the bivariate simulation of i.i.d. copies of the random variables V and Vn:(
V (i), V (i)

n

)
, i = 1, 2, . . . , κ. (16)

For each fixed n ∈ N, the estimator (9) takes the form

ϕ̂nκ(u) := ẑκ(u) + α̂κ
(
ŵκ(u)− ϕn(u)

)
. (17)

We can now establish our main result.

Theorem 3.4 (Variance reduction). For each fixed n ∈ N, the variance of the estimator (17) behaves
asymptotically as

Var
(
ϕ̂nκ(u)

)
∼
(

εθ

1− ρ•

)n+3 1 + n
(

1−ρ
1−ρ•

)
1−ρ
1−ρ•

·
F eh(u)

κ
, as u→∞ (18)

and satisfies

Var
(
ϕ̂nκ(u)

)
Var
(
ẑκ(u)

) → (
εθ

1− ρ•

)n−1 1 + n
(

1−ρ
1−ρ•

)
1 + 1−ρ

1−ρ•
, as u→∞. (19)

Proof. Since Eẑκ(u) = ϕ(u), we know from [4] that the proposed estimator has variance

1−
(
rn(u)

)2
κ

VarZ(u), (20)
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with correlation coefficient rn(u) = Corr
(
Z(u),Wn(u)

)
. By the definition of Vn, {Vn > u} ⊆ {V > u}

and consequently 1{V >u} · 1{Vn>u} = 1{Vn>u}. We calculate,

Cov
(
Z(u),Wn(u)

)
=

(
εθ

1− ρ•

)4

Cov
(
1{V >u} · 1{Vn>u}

)
=

(
εθ

1− ρ•

)4 (
E
(
1{V >u}1{Vn>u}

)
− E1{V >u}E1{Vn>u}

)
=

(
εθ

1− ρ•

)4 (
P
(
Vn > u

)
− P

(
V > u

)
P
(
Vn > u

))
=

(
εθ

1− ρ•

)4

P
(
Vn > u

)
P
(
V ≤ u

)
.

Similarly, we find

Var
(
Z(u)

)
=

(
εθ

1− ρ•

)4

P
(
V > u

)
P
(
V ≤ u

)
, and

Var
(
Wn(u)

)
=

(
εθ

1− ρ•

)4

P
(
Vn > u

)
P
(
Vn ≤ u

)
.

Hence, it is immediate that

1−
(
rn(u)

)2
=

1− P
(
Vn > u

)
/P
(
V > u

)
1− P

(
Vn > u

) . (21)

Following Proposition 3.3, we calculate

P
(
Vn > u

)
∼
(
1− εθ

1− ρ•

) n∑
k=2

k

(
εθ

1− ρ•

)k−2
F eh(u)

=
2− εθ

1−ρ• − (n+ 1)
(

εθ
1−ρ•

)n−1
+ n

(
εθ

1−ρ•
)n

1− εθ
1−ρ•

F eh(u)

and

P
(
V > u

)
∼

2− εθ
1−ρ•

1− εθ
1−ρ•

F eh(u),

as u→∞. We finally obtain

P
(
Vn > u

)
P
(
V > u

) → 1−
(n+ 1)

(
εθ

1−ρ•
)n−1

− n
(

εθ
1−ρ•

)n
2− εθ

1−ρ•
,

so that

1−
(
rn(u)

)2 → (n+ 1)
(

εθ
1−ρ•

)n−1
− n

(
εθ

1−ρ•
)n

2− εθ
1−ρ•

,

and the statement of the theorem follows.
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The above theorem quantifies the asymptotic variance reduction for fixed n as u increases, this
reduction being arbitrarily large when n is increased sufficiently.

3.2 Conditional Monte Carlo

While the approach of Section 3.1 is the focus of this paper, for purposes of comparison and completeness
we are also interested in the performance of the alternative series representation for the conditional
Monte Carlo estimate and its variance reduction proposed in [6]. To that end, let us recap here its
idea and present its application to our series representation. Define X?

0 = M•0 and Xk = M•k + Cek,
k = 1, 2, . . . , so that V D

= X?
0 +

∑N+2
k=1 Xk, where N ∼ Geom

(
1−ρ
1−ρ•

)
as before. Equation (7) can then

be written as

ϕ(u) =

(
εθ

1− ρ•

)2

P(X?
0 +X1 + · · ·+XN+2 > u).

Note that for fixed k ≥ 1 and mk := max{X1, . . . , Xk}, we have

P(X?
0 +X1 + · · ·+Xk > u) = kP(Sk > u−X?

0 , Xk = mk)

= kP(Xk > mk−1, Xk > u−X?
0 − Sk−1) = kEFX

(
mk−1 ∨ (u−X?

0 − Sk−1)
)
,

where FX is the common c.c.d.f. of the Xk’s and S` =
∑`

k=1Xk, S0 = 0. Consequently, the random
variable

Z?(u) =

(
εθ

1− ρ•

)2

(N + 2)FX
(
mN+1 ∨ (u−X?

0 − SN+1)
)
,

has the target probability ϕ(u) as its expectation. Notice that this variable plays the same role as Z(u)
in the previous approach.

We can further introduce NFX(u) as a control variate for the number of summands (see e.g. [11]).

Definition 3.5. We use the control variate

W ?(u) =

(
εθ

1− ρ•

)2

(N + 2)FX(u).

The resulting approximation ϕ?(u) = EW ?(u) of ϕ(u) then is

ϕ?(u) :=

(
εθ

1− ρ•

)2
(

εθ

1− ρ
+ 2

)
FX(u).

This control variate leads to the following Asmussen-Kroese (AK)-type estimator:

ψ̂?κ(u) := ẑ?κ(u) + α̂?κ
(
ŵ?κ(u)− ϕ?(u)

)
, (22)

where ẑ?κ(u), ŵ?κ(u), and α̂?κ are calculated via (10) using Z?(u) and W ?(u).

Remark 3.6. An alternative approach is to set X?
1 =M•0 +M•1 +Ce1 and Xk =M•k +Cek, k = 2, 3, . . .
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and write Equation (7) as

ϕ(u) =

(
εθ

1− ρ•

)2

P(X?
1 +X2 + · · ·+XN+2 > u).

Observe that all the random variables on the right hand side of this equation are heavy-tailed and
independent, but not identically distributed. Thus, using the AK estimator for non i.i.d. random
variables established in [8], we could instead construct a control variate based on the conditional Monte
Carlo estimator

Z?(u) =

(
εθ

1− ρ•

)2
(
FX?

1

(
m?
−1 ∨ (u− SN+1 +X1)

)
+ (N + 1)FX

(
m?
−(N+2) ∨ (u− SN −X?

0 )
))
,

where m?
−1 = max{X2, . . . , XN+2} and m?

−k = max{X?
1 , X2, . . . , Xk−1, Xk+1, XN+2}.

3.3 Comparison with the Pollaczek-Khinchine expansion

For reference and the purpose of comparison, we also consider the estimators analogous to the ones
in Sections 3.1 and 3.2 using the usual PK series expansion of the ruin probability in (3), which we
rewrite as

ψ(u) = (1− ρ)ρGe(u)︸ ︷︷ ︸
explicit

+(1− ρ)
∞∑
k=2

ρk
(
1− (Ge)∗k(u)

)
︸ ︷︷ ︸

:=ϕ◦(u)

.

Define the random variables N◦ ∼ Geom(1− ρ),

V ◦ =
N◦+2∑
k=1

U ek ,

V ◦n = max{U e1 , . . . , U eN◦+2}1{N◦≤n−2},

and let S◦n =
∑n

k=1 U
e
k as well as m◦k = max{U e1 , . . . , U ek}. With this notation, the following equations

define the analogous control variate estimators of ϕ◦(u):

Z◦(u) = ρ21{V ◦>u} Z◦,?(u) = ρ2(N◦ + 2)Ge(m◦N◦+1 ∨ (u− S◦N◦+1))

W ◦n(u) = ρ21{V ◦
n>u} W ◦,?(u) = ρ2(N◦ + 2)Ge(u),

and the associated empirical estimator

ϕ̂◦,nκ (u) := ẑ◦κ(u) + α̂◦κ
(
ŵ◦κ(u)− ϕ◦n(u)

)
. (23)

Observe now that the distributional behaviour of the variable U e is slightly different from that of
Cek. Recall that U

e = IBe
k + (1− I)Cek, where I ∼ Bernoulli

(
ρ•/(ρ• + εθ)

)
. Hence,

P(U e > u) =
ρ•

ρ• + εθ
P(Be > u) +

εθ

ρ• + εθ
P(Ce > u) ∼ εθ

ρ• + εθ
P(Ce > u),

as u→∞. Moreover, since Ce is subexponential, the above relation implies that U e is subexponential
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as well. Consequently,

P(m◦k > u) ∼ k εθ

ρ• + εθ
P(Ce > u) = k

εθ

ρ• + εθ
F eh(u).

Using the above asymptotic expression and following the proof of Theorem 3.4, we obtain the next
result.

Theorem 3.7. For each fixed n ∈ N, the variance of the estimator (23) behaves asymptotically as

Var
(
ϕ̂◦,nκ (u)

)
∼ ρn+3 1 + n (1− ρ)

1− ρ
· εθ
ρ
·
F eh(u)

κ
, as u→∞,

and satisfies
Var
(
ϕ̂◦,nκ (u)

)
Var
(
ẑ◦κ(u)

) → ρn−1
1 + n (1− ρ)
1 + (1− ρ)

, as u→∞. (24)

It follows that we can compare the asymptotic effect on the variance between the two different series
expansions for the ruin probability, as well as the effect on the proportion of variance reduction due to
the use of control variates:

Corollary 3.8. For each fixed n ∈ N, the following relations hold:

Var
(
ϕ̂nκ(u)

)
Var
(
ϕ̂◦,nκ (u)

) ∼ [ εθ

1− ρ•

/
ρ

]n+2 1 + n
(

1−ρ
1−ρ•

)
1 + n(1− ρ)

, as u→∞, (25)

and[
Var
(
ϕ̂nκ(u)

)
Var
(
ẑκ(u)

) ] · [Var(ϕ̂◦,nκ (u)
)

Var
(
ẑ◦κ(u)

) ]−1 → [
εθ

1− ρ•

/
ρ

]n−1 1 + n
(

1−ρ
1−ρ•

)
1 + n(1− ρ)

· 1 + (1− ρ)

1 +
(

1−ρ
1−ρ•

) , as u→∞.

Notice that the inequality εθ
1−ρ• < ρ is actually equivalent to the net profit condition ρ < 1. As a

consequence, the terms involving powers of εθ
1−ρ• /ρ < 1 in the above result guarantee (for large n) a

better performance of our new series representation over the classical Pollaczek-Khinchine expansion.

Remark 3.9. Note that the quantity ρ• depends on ε and that εθ
1−ρ• is increasing in ε for each fixed

aggregate claim rate ρ. Correspondingly, the smaller the proportion ε of heavy-tailed claims is, the
more our new series representation outperforms the classical Pollaczek-Khinchine expansion. The
latter is intuitive, since the largest term will then dominate the others even more strongly, making our
approximation even more efficient. The above expressions allow to quantify this effect.

4. Numerical experiments

In this section, we test and numerically illustrate the efficiency of our proposed technique, and compare
it to the analogous classical simulation techniques based on the PK representation (3) (see also [3,
Ch.XV.2]).

To perform our numerical experiments, we need to specify a mixture claim size distribution for
which the distributions of M•0 +M•1 +Ce1 and M•1 +Ce1 can be evaluated explicitly; note that the second
convolution is only required for the AK estimator.
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4.1 Mixture of exponential and Pareto claim sizes

For the phase-type claim sizes we choose an exponential distribution with rate µ, i.e. Fp(u) = F ep (u) =

e−µu, and µB = 1/µ. For the heavy-tailed claim sizes we consider a shifted Pareto distribution with
shape parameter a > 1 and scale b > 0, i.e. Fh(u) = (1 + u/b)−a and F eh(u) = (1 + u/b)−(a−1), u ≥ 0,
with µC = b/(a− 1).

The two tail probabilities of the aforementioned sums of variables are explicitly available. For
instance, for µ = 3, a = 2, b = 1, ε = 0.1 and ρ = 0.99 they are given by

P(M•0 +M•1 + Ce1 > u) =
1

25.600.000.000(1 + u)
×

(
− 41200(223427 + 264627u)

+ 297(1 + u)

(
400e−309u/400(292973 + 91773u)

+ 31827(1691 + 891u)e−309(1+u)/400
(
Ei
(309(1 + u)

400

)
− Ei

(309
400

))))

P(X1 > u) =
103

400(1 + u)
+

297

320000
×

(
800e−309u/400

+ 618e−309(1+u)/400
(
Ei
(309(1 + u)

400

)
− Ei

(309
400

)))
, (26)

where Ei(z) = −
∫∞
−z

e−t

t dt is the exponential integral. For all other parameters that we consider, analo-
gous formulas are used. Finally, we calculate P

(
max{Ce1 , . . . , Cek} > u

)
= 1−

(
1− (1 + u/b)−(a−1)

)k.
4.2 Parameters

In all our experiments, we fixed µ = 3 and b = 1, while we considered various combinations for the
remaining parameters. Motivated by [19], we focused mainly on the cases ρ ∈ {0.9, 0.99, 0.999}, where
simulations involving heavy tails can be considerably problematic (known as the heavy-traffic regime in
the related queueing context, cf. [2]) and where the first two terms of (14) are known to be unable to
close the gap between the approximation and the exact ruin probability even for values of ε = 0.1. For
the remaining parameters we tested ε ∈ {0.1, 0.7} and a ∈ {2, 3, 4}.

4.3 Results

In all the presented examples, the order of ψn(u) is equal to n = 100 and the number of simulations is
κ = 10, 000.

We plot in Figure 1 the simulated ruin probability that is obtained using the Monte Carlo estimator
(11) together with the heavy-tail approximation (15). The dashed black lines depict the error bounds
in Proposition 3.2. We observe in both graphs that the lower bound converges to the heavy-tail
approximation (15) as u→∞. This behaviour is observed for any n and is in accordance with theory.
A similar statement holds for any u as n→∞. Further empirical tests show that this convergence in
n is remarkably fast. However, one cannot draw a safe conclusion for which choice of parameters the
lower bound is below or above the heavy-tail approximation. Finally, we observe in the left graph that
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the upper bound is not very tight, as expected by Proposition 3.2, since the chosen parameters give
εθ/(1− ρ•) = 0.875. The bound becomes tighter in the right graph, where εθ/(1− ρ•) = 0.25.

From this point on, let us fix the parameters to a = 2, ε = 0.1, and ρ = 0.99 to allow for com-
parability between Figures 2 and 3. Moreover, we use a log-log scale. In Figure 2, we plot the MC
estimate (11) (blue solid line) together with the control variate extension (17) (black dashed line)
against the heavy-tail approximation (15). We observe that the control variate technique outperforms
the crude estimate (11) across the entire range of u (see the variance plot on the right). Figure 2
also compares the simulation results with the ones based on the classical PK formula described in
Section 3.3. For the crude version, the latter are competitive for large u, but perform worse for
small u. However, for the control variate, our new approach is always significantly and convincingly
better. This nicely illustrates the theoretical asymptotic results of Section 3: note that for the present
choice of parameters the control variate asymptotically reduces the variance by a factor 0.09 (the
constant on the right-hand side of (19)) for our series representation, to be compared with 0.73 for
the analogous constant on the right-hand side of (24) for the PK representation. Related to that,
the constant on the right-hand side of (25) in Corollary 3.8 is 0.12, which means that our series rep-
resentation reduces the asymptotic variance by almost 90%, when control variates are used in both cases.

In Figure 3, we plot the simulated ruin probability with the AK estimator (blue solid line) and
its control variate extension from Section 3.2 as a function of the heavy-tail approximation (15). We
consider in the plot both the PK and our new series expansion. One recognises that the asymptotic
behaviour according to (15) (red dotted line) is recovered for all four estimators for sufficiently large u.
The right graph illustrates that the introduction of the control variate is a significant improvement in
terms of variance reduction for both the PK and our series, and that the two latter approaches perform
similarly. The overall variance is much lower than for the method underlying Figure 2. However, one
should keep in mind that in terms of computation time the AK estimator in Figure 3 is much more
time-consuming (about 20–50 times in our implementations), as the integrals (26) have to be evaluated
κ times, whereas for the method in Figure 2 only once for the explicit term in front.

For large ρ, the number of summands tends to be large, and the results of the presented simulations
suggest that the approximation

P(M•0 +M•1 + · · ·+M•k + Ce1 + · · ·+ Cek > u) ≈ P
(
max{Ce1 , . . . , Cek} > u

)
(27)

is better than the one employed using the usual PK series expansion

P(U e1 + · · ·+ U ek > u) ≈ P
(
max{U e1 , . . . , U ek} > u

)
. (28)

Intuitively, the latter is comprised of mixtures of heavy-tailed and light-tailed variables, and hence
the number of heavy tailed variables is thinned down, which is a drawback that our new method does not
have. This is further supported by the plot in the left panel of Figure 4, where the empirical correlations
between the control variates are given. Concretely, when simulating from (28), only 100 · εθρ % of our
U ek ’s will actually be heavy-tailed and thus one loses too much information from the original presence
of heavy-tailed Cek’s, in contrast to (27) where only the light tails are omitted and all heavy tails are
kept. Consequently, the new control variate is much more efficient, cf. the factors εθ/ρ in Corollary 3.8.
In contrast, for the AK estimator the control variate does not significantly differ for the two series
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representations, and therefore – while the control variate itself is a huge improvement over the crude
estimate (cf. Figure 3 (right)) – there is no improvement from using the alternative representation.

Figure 1: The simulated ruin probability with MC estimator (11) (blue solid line together with its 95% confidence interval
in orange) and the heavy-tail approximation (red dotted line), as a function of the initial capital u. The black dashed
lines represent the error bounds in Proposition 3.2. Model parameters: a = 3 (both) and {ε, ρ} = {0.7, 0.9} (left) or
{ε, ρ} = {0.1, 0.7} (right).

5. Conclusion

In this paper, we introduced an alternative series expansion for the PK formula in the Cramér-Lundberg
model for the case when claims are mixtures of distributions with heavy and light tails. We showed
that this can give rise to a significant improvement of simulation algorithms based on this series, both
for large and small values of initial capital.

When using the AK conditional Monte Carlo technique, the new series representation performs
similarly as the original one based on the PK formula. Both these AK procedures (and particularly
their control variate extensions w.r.t. N) have a significantly lower variance for a fixed simulation size
when compared to the method of Section 3.1. However, the AK estimator is quite slow because it has
to evaluate an improper integral in every iteration for the chosen mixture model. Hence, whenever time
matters, the first simulation method based on (17) is preferred, and there our new series is a significant
improvement. The latter is particularly the case also in the heavy-traffic regime where simulation is
known to be difficult. In addition, the performance is quite convincing also for moderate and low initial
capital.

In addition, it is hard or even impossible to use the AK estimator when the distribution of
M•1 + Ce1 is not known explicitly. On the other hand, our estimator can be used even if the probability
P(M•0 +M•1 + Ce1 > u) cannot be calculated in a closed form. In such cases, one can simply simulate
that latter probability as well and adapt the theoretical results in Sections 3.1.1 and 3.1.2 accordingly.

In addition, although we concretely considered a mixture of a phase-type and a subexponential
distribution in this paper, the results still hold if we replace Fp(x) by any distribution for which
ψ•(u) = P(M•0 > u) has a closed form, e.g. matrix-exponential distributions (cf. [7]). In addition, one
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Figure 2: The simulated ruin probability with MC estimator (11) (blue solid line together with its 95% (blue solid line)
and the control variate extension (17) (black dashed line) against the heavy-tail approximation (15), plotted in a log-log
scale. The corresponding estimates based on the PK formula are depicted in pink and dashed green. Model parameters:
a = 2, ε = 0.1, and ρ = 0.99. The respective empirical variances are presented on the right.

can further modify our approach in order to evaluate ψ•(u) via simulation for any other light-tailed
distribution, which is known to produce effortlessly reliable simulation outputs.

Finally, we would like to point out that the ruin probability of the more general Sparre Andersen
model also has a Pollaczek-Khinchine-type formula with respect to the ladder height distribution ([3,
Ch.VI]). Our estimator is also valid for this model as long as the ladder height distribution can be
found explicitly, which is for instance the case when the inter-occurrence times belong to the class of
distributions with rational Laplace transform.
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