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kPCA-Based Parametric Solutions Within the PGD Framework
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Abstract Parametric solutions make possible fast and

reliable real-time simulations which, in turn allow real time

optimization, simulation-based control and uncertainty

propagation. This opens unprecedented possibilities for

robust and efficient design and real-time decision making.

The construction of such parametric solutions was

addressed in our former works in the context of models

whose parameters were easily identified and known in

advance. In this work we address more complex scenarios

in which the parameters do not appear explicitly in the

model—complex microstructures, for instance. In these

circumstances the parametric model solution requires

combining a technique to find the relevant model param-

eters and a solution procedure able to cope with high-di-

mensional models, avoiding the well-known curse of

dimensionality. In this work, kPCA (kernel Principal

Component Analysis) is used for extracting the hidden

model parameters, whereas the PGD (Proper Generalized

Decomposition) is used for calculating the resulting para-

metric solution.

1 Introduction to Parametric Modeling

Many problems related to important societal and industrial

challenges require decision-making procedures to be

accomplished fast and reliably. These are in general data-

driven and arise from complex models expressed in the form

of partial differential equations. They involve usually

enormous amounts of information. In addition, very often,

solutions are needed in real-time. Moreover, there is an

industrial claim towards ‘‘democratization’’ of simulation,

so that these simulations can be employed by non-specialists

running deployed platforms such as smartphones or tablets.

To our knowledge, the solution of such complex computa-

tional models has been very often addressed by employing

high-performance computing running in supercomputers. It

is expected that, in the near future, real-time simulation,

optimization and control in applied sciences and engineer-

ing will be achieved by extensive usage of supercomputing

frameworks. Consequently, it is expected that important

advances in hardware and software for high-performance

computing will be achieved. On the contrary, there is also an

alternative approach to this end with an eye towards the

development of as simple as possible models (within a

prescribed degree of simulation realism, of course!). It can

now be foreseen that a new generation of simulation tech-

niques, beyond high-performance computing, will be

developed so as to improve efficiency or simply to allow

obtaining results in such challenging scenarios.
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gonzal@unizar.es

J. V. Aguado

Jose.Aguado-Lopez@ec-nantes.fr

E. Cueto

ecueto@unizar.es

E. Abisset-Chavanne

Emmanuelle.Abisset-Chavanne@ec-nantes.fr

F. Chinesta

francisco.chinesta@ec-nantes.fr

1 I3A, Universidad de Zaragoza, Maria de Luna s/n,

50018 Zaragoza, Spain

2 ESI Chair ‘‘Advanced Computational Manufacturing

Processes’’, ICI - High Performance Computing Institute

@ Ecole centrale de Nantes, Institut Universtaire de France,

1 rue de la Noe, BP 92101, 44321 Nantes Cedex 3, France

3 GEM, UMR CNRS - Centrale Nantes, 1 rue de la Noe,

BP 92101, 44321 Nantes Cedex 3, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-016-9173-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-016-9173-4&amp;domain=pdf
https://doi.org/10.1007/s11831-016-9173-4


As mentioned before, many problems in applied science

and engineering remain intractable, in spite of the

impressive progresses attained in modeling, numerical

analysis, discretization techniques and computer science

during the last decade. This is because their numerical

complexity, or the restrictions imposed by different

requirements make them unaffordable for today’s tech-

nologies. Many problems in the fields of parametric mod-

eling, inverse identification, process or shape optimization,

usually require, when standard techniques are employed,

the direct computation of a very large number of solutions

of the model for particular values of the parameters. When

the number of parameters increases such a procedure

becomes intractable.

The human being has developed throughout history dis-

tinct facilities for giving fast responses to these questions.

Thus, abaci were already used 2700 years B.C. in Mesopo-

tamia, for instance, as a means to cope with parametric

problems. However, the initial arithmetic was rapidly com-

plemented with more complex representations; some of

them were the charts and the nomograms. The just men-

tioned abaci allowed for fast calculations and data manipu-

lations. Nomograms can be easily constructed when the

mathematical relationship that they express is purely alge-

braic, eventually nonlinear. In these cases it was easy to

represent some outputs as a function of some inputs. Com-

putations necessary for such data representations were per-

formed ‘‘offline’’ and then used ‘‘online’’ in many branches

of engineering sciences for design and optimization.

However, these procedures fail when addressing more

complex scenarios. Thus, sometimes engineers dealt with

non-properly understood physics, and in that case the

construction of nomograms based on a too rude modeling

could be dangerous. Under these circumstances one could

proceed by making several experiments from which

defining a sort of experiment-based nomogram. In other

cases, mathematical objects to be manipulated consisted of

a system of complex coupled nonlinear partial differential

equations, whose solution for each possible combination of

the involved parameter values is simply out of reach for

modern computational resources. In these cases, it becomes

necessary to design a set of experiments or expensive

computational solutions for a sampling of possible states of

the system. For these, a simplified model, linking the inputs

to the outputs of interest is elaborated. These simplified

models have different names: surrogate models, meta-

models, response-surface methodologies, etc.

More recently, model order reduction (MOR) opened

new possibilities. MOR based upon techniques such as

Proper Orthogonal Decomposition, Proper Generalized

Decomposition or Reduced Basis is nowadays widely

considered from both fundamental and applicative

viewpoints.

Proper Orthogonal Decomposition (POD, also known as

Principal Component Analysis, PCA) is a general tech-

nique for extracting the most significant characteristics of a

system’s behavior and representing them in a set of ‘‘POD

basis vectors’’ [36, 44]. These basis vectors then provide an

efficient, low-dimensional representation of the system

behavior, which proves useful in a variety of ways. The

most common use is to project governing equations onto

the reduced-order subspace spanned by the POD basis

vectors. This yields an explicit POD reduced model that

can be solved in place of the original system. The POD

basis can also provide a low-dimensional description in

which to perform parametric interpolation, infill missing or

‘‘gappy’’ data, and perform model adaptation. There exists

an extensive literature on the topic and POD has been

applied broad application across fields [8, 9, 13, 16, 28, 58,

67, 68, 70, 73]. Some review of POD and its applications to

model order reduction can be found in [25, 57, 75].

Another family of model reduction techniques lies in the

use of Reduced Basis constructed by combining a greedy

algorithm and ‘‘a posteriori’’ error indicators. As for the

POD, the Reduced Basis method requires some amount

offline work. Once computed, however, the reduced basis

approach can be used online with the notable advantage of

a rigorous control of the solution accuracy, thanks to the

availability of error bounds. The reduced basis can be

enriched if the attained error is judged too high, by

invoking a greedy adaption strategy [47, 48, 65]. Useful

review works on the subject are [34, 49, 59, 61, 64, 66].

Techniques based on the use of separated representa-

tions are at the heart of the so-called Proper Generalized

Decomposition methods. Such separated representations

are rooted in the very classical method of separation of

variables due to Fourier. More recently, they have been

applied to quantum chemistry for approximating multidi-

mensional quantum wave-functions, e.g. Hartree-Fock and

post-Hartree-Fock methods [17]. In the eighties, Pierre

Ladeveze proposed the use of space-time separated repre-

sentations of transient solutions arising in strongly non-

linear models, defining a non-incremental integration

procedure [37, 38]. Separated representations were then

employed for solving highly multidimensional models.

These suffer the so-called curse of dimensionality [3, 4, 42]

and in the context of stochastic modeling [56]. They soon

were extended for separating space coordinates, thus

making possible the solution of models defined in degen-

erated domains such as plate and shells [14, 15] as well as

for addressing parametric models, where model parameters

were considered as model extra-coordinates. This ‘‘extra-

coordinate’’ assumption made possible an offline calcula-

tion of the parametric solution, that plays the role of a

meta-model or a computational vademecum, to be used

online for real-time simulation, optimization, inverse



analysis and simulation-based control [22]. Some recent

reviews concerning the PGD can be found in [20, 21, 24],

along with the recently published primer [23].

1.1 Proper Generalized Decomposition

Most of the existing model reduction techniques proceed

by projecting the problem solution onto a reduced basis

(this constitutes the wide class of projection-based model

order reduction methods [10]). Therefore, the construction

of the reduced basis usually constitutes the first step in the

solution procedure, giving rise to a second important dis-

tinction when classifying MOR techniques: a posteriori

versus a priori MOR [69]. One must be careful on the

suitability of a particular reduced basis when employed for

representing the solution of a particular problem, particu-

larly if it was obtained through snapshots of slightly dif-

ferent problems. This difficulty (at least partially)

disappears if the reduced basis is constructed at the same

time that the problem is solved (in other words: a priori

with no need for snapshots of different problems). Thus,

each problem has its associated basis in which its solution

is expressed. One could consider few vectors in the basis,

leading to a reduced representation, or all the terms needed

for approximating the solution up to a certain accuracy

level. The Proper Generalized Decomposition (PGD),

which is described in general terms in the next section,

proceeds in this manner.

When calculating the transient solution of a generic

problem, say u(x, t), we usually consider a given basis of

space functions NiðxÞ, i ¼ 1; . . .;N, the so-called shape

functions within the finite element framework. They

approximate the problem solution as

uðx; tÞ �
XN

i¼1

aiðtÞNiðxÞ:

This implies a space-time separated representation where

the time-dependent coefficients aiðtÞ are unknown at each

time instant (when proceeding incrementally) and the space

functions NiðxÞ are given ‘‘a priori’’, e.g., piece-wise

polynomials. POD and Reduced Basis methodologies

consider a set of global, reduced basis /iðxÞ for approxi-

mating the solution instead of the generic, but local, finite

element functions NiðxÞ. The former are expected to be

more adequate to approximate the problem at hand. Thus, it

results

uðx; tÞ �
XR

i¼1

biðtÞ/iðxÞ; ð1Þ

where it is expected that R � N. Again, Eq. (1) represents

a space-time separated representation where the time-

dependent coefficient must be calculated at each time

instant during the incremental solution procedure.

Inspired from these results, one could consider the

general space-time separated representation

uðx; tÞ �
XN

i¼1

XiðxÞ � TiðtÞ; ð2Þ

where now neither the time-dependent functions TiðtÞ nor
the space functions XiðxÞ are a priori known. Both will be

computed on the fly when solving the problem.

As soon as one postulates that the solution of a transient

problem can be expressed in the separated form (2), whose

approximation functions XiðxÞ and TiðtÞ will be determined

during the problem solution, one could make a step forward

and assume that the solution of a multidimensional prob-

lem uðx1; . . .; xdÞ could be found in the separated form

uðx1; x2; . . .; xdÞ �
XN

i¼1

X1
i ðx1Þ � X2

i ðx1Þ � . . . � Xd
i ðxdÞ;

and even more, expressing the 3D solution u(x, y, z) as a

finite sum decomposition involving low-dimensional

functions

uðx; y; zÞ �
XN

i¼1

XiðxÞ � YiðyÞ � ZiðzÞ;

or

uðx; y; zÞ �
XN

i¼1

Xiðx; yÞ � ZiðzÞ:

Equivalently, the solution of a parametric problem

uðx; t; p1; . . .; p}Þ could be approximated as

uðx; t; p1; . . .; p}Þ �
XN

i¼1

XiðxÞ � TiðtÞ �
Y}

k¼1

Pk
i ðpkÞ:

The performance of all these separated representations is

excelent in many cases, leading to important time savings.

However, the key point when considering such a separated

representation lies in the algorithm to be used for calcu-

lating the involved functions: TiðtÞ, XiðxÞ, PiðpÞ. Both

questions will be addressed in this section.

This kind of parametric modeling has been deeply

studied in a panoply of applications, where material and/or

process parameters [1, 2, 5, 14, 35, 39, 60, 74], initial

conditions [29, 31], boundary conditions [26, 27, 30, 55],

different scales [6, 19, 33] and parameters defining the

geometry [7] were considered extra-coordinates within the

PGD framework. All these parametric solutions were suc-

cessfully employed for performing real time simulations

(e.g. surgical simulation involving haptic devices involving

contact, cutting, etc.) [52], material homogenization [39],



real-time process optimization [26, 27], inverse analysis

and simulation-based control [29]. They where also

employed in dynamic data driven application systems.

1.2 Dimensionality Reduction

In the framework just described, model parameters are

explicitly defined. Initial conditions, boundary conditions,

material or process parameters or some geometrical

parameter defining the domain in which the model is

defined can easily be considered as parameters under this

framework. In all the treated cases these parameters were

explicitly given and the only difficulty was to transfer all

them into the extended weak form of the problem before

applying the PGD rationale to construct the parametric

separated representation [22, 23].

The difficulty appears as soon as the model contains

some hidden parameters, that are not explicitly known. In

that case, these parameters must be previously identified

and extracted and then introduced into the model before

computing its parametric solution.

This situation is found in many engineering applica-

tions. In this paper we address two of them. The first

concerns the parametrization of microstructures consisting

of inclusions into a matrix phase (a situation encountered in

the analysis of composite materials, for instance). The

second concerns patient-specific biomechanics modeling

for surgery simulation and planning, in which the solution

must encompass both parametric loading and organ shape

(patient-specific anatomy). In essence, this situation arises

whenever shape itself is a parameter of the model. How to

parametrize the shape of the domain with a minimal

number of degrees of freedom is thus a question of utmost

interest.

In this framework loads are easily parametrized because

their intensity and the region in which they apply can be

easily defined [55]. However, parameters defining the

organ shape (anatomy) are not explicitly available. No

CAD description or similar is available for organs and

consequently an extractor of the parameters defining the

organ shape is compulsory. These questions were addres-

sed in some of our former works [32, 45] in which some

preliminary answers were proposed based on the use of

Locally Linear Embedding (LLE) manifold learning

techniques.

POD, that is equivalent to PCA—Principal Components

Analysis—, can be viewed as an information extractor

from a raw data set that attempts to find a linear subspace

of lower dimensionality than the original space. If the data

has more complicated structures which cannot be well

represented in a linear subspace, standard PCA will not be

very helpful, leading to too many vectors in the base.

Fortunately, kernel PCA allows us to generalize standard

PCA to nonlinear dimensionality reduction [71, 72, 76].

Locally Linear Embedding (LLE) [63] results from a par-

ticular choice of the kernel within the kPCA framework

[77].

In [45] LLE was considered for performing suitable in-

terpolations on the data manifold available from offline

information. Thus, homogenized properties in heteroge-

neous microstructures were inferred in real-time and with a

minimum amount of calculation. In [32], again within the

LLE framework, parametric solutions related to organ

deformation for parametrized loads were interpolated on

the manifold defined by organ shapes to create patient-

specific surgery tools.

In the present work we move a step forward. More than

extracting a manifold for interpolating on it model solu-

tions (or parametric solutions), we propose to compute

parametric solutions by properly integrating on the mani-

fold defined by all possible domain geometries.

2 From PCA to kPCA

2.1 Principal Component Analysis—PCA—

Let us consider D observed variables defining the vector

y 2 RD. These are commonly referred to in the MOR lit-

erature as the snapshots of the system: nodal values of the

essential field of the mode throughout time in usual finite

element modeling, or parameter values at these nodal

locations, for instance. We assume that these variables are

therefore not uncorrelated and, notably, that there exists a

linear transformation W defining the vector t 2 Rd , where

d\D represents the unknown so-called latent variables,

according to

y ¼ Wt: ð3Þ

The transformation W, D� d, is assumed to verify the

orthogonality condition WTW ¼ Id, where Id represents

the d � d-identity matrix (WWT is not necessarily ID). The

existence of such a transformation is precisely at the origin

of PCA methods.

We assume the existence of M different snapshots

y1; . . .; yM , that can be stored in the columns of the D�M

matrix Y. The associated d �M reduced matrix ¤ contains

the associated vectors ti, i ¼ 1; . . .;M.

We assume that both observed and latent variables are

centered, that is
PM

i¼1 yi ¼ 0 and
PM

i¼1 ti ¼ 0. If it is not

the case, prior to proceed, observed variables must be

centered by removing the expectation of Efyg to each

observation yi, i ¼ 1; . . .;M. Since the exact expectation is

unknown, one commonly accepted procedure is to substi-

tute it by the sample mean.



PCA is able to calculate both d—the necessary number

of members in the basis of the reduced-order subspace—

and the transformation matrix W. PCA proceeds by guar-

anteeing maximal preserved variance and decorrelation in

the latent variable set t. From a statistical point of view,

therefore, it can be assumed that the latent variables in t are

uncorrelated (no linear dependencies among them) or

mutually orthogonal, thus constituting a basis. In practice,

this means that the covariance matrix of t, defined as

Ctt ¼ Ef¤¤ Tg; ð4Þ

for centered y data, is diagonal.

However, the observed variables are expected to be

correlated. The goal of PCA is then to extract the d

uncorrelated latent variables in t, according to

Cyy ¼ EfYYTg ¼ EfW¤¤ TWTg
¼ WEf¤¤ TgWT ¼ WCttW

T ;

that by pre-multiplying and post-multiplying by WT and W

respectively, and taking into account that WTW ¼ I, leads

to:

Ctt ¼ WTCyyW: ð5Þ

The covariance matrix Cyy can then be factorized by

applying the singular value decomposition,

Cyy ¼ VKVT ; ð6Þ

with V containing the orthonormal eigenvectors and K the

diagonal matrix containing the eigenvalues (non-negative

real numbers), assumed in descending order.

Substituting the factorized expression of the covariance

matrix (6) into Eq. (5) it results

Ctt ¼ WTVKVTW:

This equality holds only when the d columns of W are

taken collinear with d columns of V. If the PCA model is

fully respected, then only the first d eigenvalues in K are

strictly larger than zero; the other ones are zero.

The eigenvectors associated with these d nonzero

eigenvalues must be kept:

W ¼ VID�d;

yielding

Ctt ¼ Id�DKID�d:

This shows that the eigenvalues in K correspond to the

variances of the latent variables (the diagonal entries of

Ctt).

In real situations, some noise may corrupt the observed

variables. As a consequence, all eigenvalues of Ctt are

larger than zero, and the choice of d columns in V becomes

more difficult. Assuming that the latent variables have

larger variances than the noise, it suffices to choose the

eigenvectors associated with the largest eigenvalues. This

is the common practice in finite element model order

reduction procedures. A number of columns of V are kept

so as to preserve a chosen amount of the energy of the

system.

From a geometrical point of view, the columns of V

indicate the directions in RD that span the subspace of the

latent variables t. The name PCA then arises naturally

from the fact of keeping the components—columns—as-

sociated with the largest variance.

PCA constitutes a polyvalent method, developed, dis-

covered and re-discovered many times in different bran-

ches of applied science and engineering [36, 44, 46]. It

determines data dimensionality, builds an embedding

accordingly, and extracts the latent variables. However,

PCA is still based upon one critical assumption: the linear

dependency expressed by Eq. (3) between observed and

latent variables (in other words, between the reduced-

order and full-order models). It has been observed, how-

ever, that very often this is not the case. Frequently, latent

variables posses a manifold structure, and therefore it

simply does not exist a basis able to construct a projection

such as that in Eq. (3). This is the case, for instance, in

non-linear, large strain solid dynamics, where a slow

manifold can be found in which the displacement of the

solid evolves [53].

Nonlinear methods are often more powerful than linear

ones, because the connection between the latent variables

and the observed ones may be much richer than a simple

matrix multiplication.

Next section extends linear PCA to nonlinear dimen-

sionality reduction, and describes the so-called kernel

Principal Component Analysis—kPCA.

2.2 Kernel Principal Component Analysis (kPCA)

PCA works with the sample covariance matrix, YYT . On

the contrary, kPCA works with the matrix of pairwise

scalar products that defines the Gram matrix S ¼ YTY as it

is also the case of Multidimensional Scaling (MDS)

methods, also known as method of snapshots [43].

Multidimensional scaling methods construct a configu-

ration of points in a target metric space from information

about point distances. Among the most basic non-linear

dimensionality reduction method classification (that of

distance- or neighbourhood-preserving methods), MDS

falls within the first. In its classical version, MDS preserves

pairwise scalar products instead of pairwise distances (both

are closely related). Moreover, classical metric MDS



cannot achieve dimensionality reduction in a nonlinear

way. MDS proceeds from

S ¼ YTY ¼ ¤ TWTW¤ ¼ ¤ T¤ ;

whose eigenvalue decomposition results

S ¼ UKUT ¼ UK1=2
� �

K1=2UT
� �

¼ K1=2UT
� �T

K1=2UT
� �

;

from which it results

¤ ¼ Id�MK
1=2UT ;

being easy to prove the equivalence between MDS and

PCA [43].

The idea behind kernel-PCA methods is simple, yet

appealing: data not linearly separable in D dimensions,

could be linearly separated if previously projected to a

space in Q[D dimensions. Thus, surprisingly, kPCA

begins by projecting the data to an even higher dimensional

space. In other words, it proceeds by linearizing the

underlying manifold M. To this end, a mapping

/ : M � RD ! RQ; y ! z ¼ /ðyÞ;

is employed, where Q may be any dimension. One the

biggest advantages of this is that there is no need to

explicitly determine the analytical expression of the map-

ping / (it may be even infinite dimensional!).
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Fig. 1 Different positions of inclusions xs (top) and xr (bottom)
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The symmetric matrix U ¼ ZTZ has to be decomposed

in eigenvalues and eigenvectors. However, the mapped

data zi involved in U must be previously centered. It is

difficult to center it because the mapping is unknown.

Fortunately, centering can be achieved in an implicit way

by performing the double centering.

The mean of the j-th column of U reads liðzi � zjÞ, and
the mean of its i-th row reads ljðzi � zjÞ. The mean of all

entries of U reads li;jðzi � zjÞ. The double centering results

from

zi � zj � liðzi � zjÞ � ljðzi � zjÞ þ li;jðzi � zjÞ:

Now, the eigenvalue-eigenvector decomposition can be

performed on the double centered matrix, according to

U ¼ UKUT ;

from which it results

¤ ¼ Id�MK
1=2UT :

It is worth noting that the mapping / is used solely in

scalar products. This may result in a prohibitive compu-

tational cost if the mapping is performed onto a space of a

high number of dimensions, Q. However, it is possible to

simply avoid this difficulty and even / may stay unknown

if a kernel function j is found that directly gives the value

of the scalar product jðyi; yjÞ ¼ zi � zj. This property fol-

lows from Mercer’s theorem that establishes that if jðu; vÞ
is continuous, symmetric and positive definite, then it

defines an inner-product in the mapped space.

There exist many different kernels fulfilling Mercer’s

condition, also known as the ‘‘kernel trick’’. Among them:

– Polynomial kernels: jðu; vÞ ¼ ðu � vþ 1Þp, with p an

arbitrary integer;

– Gaussian kernels: jðu; vÞ ¼ exp � ku�vk2
2r2

� �
for a real r;

– Sigmoid kernels: jðu; vÞ ¼ tanhðu � vþ bÞ for a real b.

The choice of a specific kernel is quite arbitrary and mainly

motivated by the hope that the induced mapping / lin-

earizes the manifold to be embedded. If this goal is

reached, then PCA applied to the mapped data set should

efficiently reveal the nonlinear principal components of the

data set.

Remark Other methods proceed by reducing the dimen-

sionality by preserving the topology of data rather than

their pairwise distances. Topology preservation seems an

appealing route for dimensionality reduction, however,

they are in principle more difficult to implement. There

exist two variants, the ones that proceed on a predefined

topology and the more recent in which the topology is also

extracted from the data [43]. Locally Linear Embedding

(LLE) is a member of the vast family of techniques. In

opposition to most of techniques preserving topology by

keeping neighboring points close to each other, LLE is

based on conformal mappings. A conformal mapping that

represents a transformation that preserves local angles. The

preservation of local angles and local distances can be

Fig. 3 Thermal problem -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 4 One-dimensional manifold related to the square inclusion

moving along the domain diagonal

Fig. 5 One-dimensional manifold parametrization



interpreted as two different ways to preserve local scalar

products. This dimensionality reduction technique suc-

ceeded for defining robust interpolations and has been

employed in some of the author’s previous works [32, 45,

63].

2.3 kPCA Dimensionality Reduction

from A Numerical Example

To show how kPCA works, consider an idealized com-

posite microstructure. It is defined in a squared domain X
composed of D ¼ 40� 40 cells that contains an inclusion.

We allow this inclusion to move along one of the diagonals

of X. First we consider a squared inclusion xs � X, cov-
ering 5� 5 cells of X. Then, we consider a similar scenario

but now consisting in a 10� 5-cell rectangular inclusion

xr � X. Both cases are depicted in Fig. 1.

For each microstructure defined by a particular position

of the inclusions xk
s and xk

r , k ¼ 1; . . .;M ¼ 15, within X,
we define the phase field p(i, j) associated to each cell

Cði; jÞ � X:

pði; jÞ ¼
1 if Cði; jÞ � x;

0 if Cði; jÞ � X� x:

�

The phase field of each microstructure can be expressed as

a vector with binary entries, p 2 RD. Each constitutes a

column of matrix P. A Gaussian kernel with r ¼ 10 is

employed for dimensionality reduction. One of the

drawbacks of non-linear dimensional reduction is the need

for user-defined parameters. Typically, these include the

number of dimensions of the embedding space. The cor-

responding images p related to data in P in a three- and

two-dimensional embedding spaces are depicted in Fig. 2.

It can be noticed that, as expected, data belong to a man-

ifold of dimension one (more complex situations will be

addressed later), and moreover that kPCA succeeded to

separate both kind of microstructures, the ones composed

of a square inclusion from the ones related to the rectan-

gular inclusion.

3 Combining kPCA Dimensionality Reduction
and PGD-Based Parametric Solutions

We consider in this example a problem with a parametric

dependence. The difficulty comes from the fact that this

parametric dependence is not explicit. We do not know

even what the parameters are. This type of problems arises

naturally in the characterization and ulterior numerical

simulation of composite materials, for instance.

We consider the thermal problem illustrated in Fig. 3

that involves the temperature field uðxÞ, with

x 2 X ¼ ½0; 1�2, for any position of the inclusion x � X
along the domain diagonal and for any conductivity con-

trast a ¼ ki
km

(inclusion to matrix conductivity ratio), with

a 2 I ¼ ½amin ¼ 1; amax ¼ 10�. The steady-state heat
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Fig. 6 Space modes: T1ðxÞ (top-left); T2ðxÞ (top-right); T3ðxÞ (bottom-left) and T4ðxÞ (bottom-right)



transfer problem, with both conductivities (of matrix and

inclusion phases) assumed homogeneous and isotropic,

reads

r � kðxÞruðxÞð Þ ¼ QðxÞ; in X;

subjected to the prescribed homogeneous boundary con-

ditions, uðx 2 oXÞ ¼ 0. The source term QðxÞ has a unit

value inside the inclusion and vanishes elsewhere.

Since we are interested in calculating the parametric

solution for any position of the inclusion (along the domain

diagonal) and for any conductivity contrast a 2 I , the first

step consists in introducing both parameters explicitly into

the problem model.

For that purpose, we consider the one-dimensional

manifold associated to the inclusion location depicted in

Fig. 4, that can be parametrized as depicted in Fig. 5. Each

point in the manifold is related to one of the M ¼ 15

considered snapshots (positions of x on the domain diag-

onal). The manifold is defined by the polygonal joining the

different snapshots, even if smoother reconstructions can

be defined by using splines, for instance. The manifold is

parametrized by the curvilinear coordinate s and each

vertex is defined by a coordinate si and the associated

phase field pi.

When considering a particular position s, the phase field

can be approximated using the simplest interpolation

schema, the piece-wise linear interpolation defined from

pðsÞ ¼
XM

i¼1

NiðsÞpi; ð7Þ

that for 2	 i	M � 1,

NiðsÞ ¼

s� si�1

si � si�1

si�1 	 s	 si

siþ1 � s

siþ1 � si
si 	 s	 siþ1

8
><

>:
;

where N1ðs1 	 s	 s2Þ ¼ s2�s
s2�s1

and NMðsM�1 	 s	 sMÞ
¼ s�sM�1

sM�sM�1
.

It is important to notice that Eq. (7) constitutes a sepa-

rated representation with functions NiðsÞ depending on the
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coordinate describing the one-dimensional manifold. In

turn, phase fields pi are vectors collecting nodal values of

pðxÞ for each considered snapshot. Thus, in a more com-

pact form, it can be written as

pðx; sÞ ¼
XM

i¼1

FiðxÞ � GiðsÞ:

Within this rationale, the conductivity parametrization

results

kðxÞ ¼ km þ kmða� 1Þpðx; sÞ

¼ km þ kmða� 1Þ
XM

i¼1

FiðxÞ � GiðsÞ:

The parametric temperature field can now be written in the

separated form

uðx; a; sÞ �
XN

i¼1

TiðxÞ � SiðsÞ � AiðaÞ: ð8Þ

In order to construct such a separated representation, we

consider the triply-weak form

Z

X

Z

I

Z sM

s1

u
ðx; a; sÞ � r km þ kmða� 1Þðð

XM

i¼1

FiðxÞ � GiðsÞÞruðx; a; sÞÞ dx da ds ¼ 0;

and proceed by calculating iteratively each functional

product involved in the separated representation (8). At

each iteration a nonlinear problem must be solved, and for

that purpose an alternated direction fixed point algorithm is

considered. For the implementation details the interested

reader can refer to [23] and the numerous references

therein.

Figures 6, 7, 8 depict the four more significative modes

involved in the separated representation (8),

TiðxÞ; i ¼ 1; � � � ; 4, SiðsÞ; i ¼ 1; � � � ; 4 and AiðaÞ; i ¼
1; � � � ; 4 respectively.

Figure 9 depicts the points at which the solution will be

particularized, in the left column the manifold is embedded

in a 2D dimensional space whereas in the right column

these points appears on the one-dimensional manifold now

embedded in a 3D space.
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Finally Figs. 10 and 11 depict respectively the solution

at the five positions for a ¼ 5:5 (Fig. 10) and the solution at

the central point for a ¼ 1, a ¼ 5:5 and a ¼ 10 (Fig. 11).

4 Patient-Specific Computational Liver
Vedemecums

Among the problems in which shape plays a prominent

role, those in the field of biomechanics have utmost

importance. What we mean by shape in biomechanics is

actually anatomy. The problem could thus be formulated in

loose terms as: what makes a liver to be a liver (in terms of

shape, of course) and therefore be easily recognized by a

surgeon? What is the minimal number of parameters that

must be employed to properly characterize and identify a

human liver? Characterizing the mechanical response of

such a parametric liver would make it possible to have the

definitive patient-specific model for surgery simulation

and/or planning.

One of the most successful approaches to this type of

problems within the framework of reduced-order models is

that of free-form models [11, 41, 51]. Particularly note-

worthy for biomechanics applications is its application to

hemodynamics [40, 50, 62]. Essentially, free-form defor-

mations consider the embedding of the model within a

cube. By deforming this cube, and assuming an affine

deformation of the solid within the cube, a parametrization

of the shape of the model is obtained in terms of the nodal

discretization of the embedding cube.

4.1 Parametrizing Shapes

Computational vademecums can be used for very different

purposes. Real-time simulation for surgery planning and

training, for instance, is one of these possible applications

[52]. These vademecums represent the response, in the

form of a displacement field u ¼ uðx; sÞ as a function of the
physical point considered, x, and the location s of the load

provoked by the surgical instrument. In a previous work,

the authors employed Locally Linear Embedding tech-

niques to properly interpolate these computational vade-

mecums obtained for different anatomies [32]. Thus, a new

patient anatomy was firstly interpolated on the manifold of

vademecums to obtain his/her own vademecum.

Here, this approach has been generalized so as to obtain

a completely general vademecum in which shape is a

parameter itself. Indeed, shape is parameterized by a

minimal number of degrees of freedom dictated by the

application of kPCA techniques to a set of 75 livers. These

organs were obtained by affinely deforming a reference

anatomy. More details can be found in [32]. The set of 75

livers is shown in Fig. 12.

Every liver model is then embedded within a mesh

composed by 43� 31� 37 elements, thus making 49321

nodes. A level set (distance) field is then computed and

nodal values stored for each sample in a set of vectors

Y ¼ fy1; . . .; y75g, yi 2 R49321, see Fig. 13.

These high-dimensional vectors yi serve as a precise

identification of every anatomy in the sample. However,

49321 values do not constitute an appropriate

parametrization of liver geometry, for obvious reasons.

These 75 high-dimensional vectors are analyzed by

Fig. 9 Points in the 1D manifold embedded in a 2D (left) and 3D

(right) spaces



employing kPCA methods, by employing Gaussian ker-

nels, taking r ¼ 95� 103. Tests done with up to 500 dif-

ferent livers showed that the embedding manifold is

actually flat, see Fig. 14. Surprisingly, all the 500 cases lie

very accurately in a square domain.

This implies that it is possible to work on a flat space of

shapes, parameterized by the embedding coordinates

ti 2 R2, (whatever they mean physically), and that the

considered anatomies lie actually within a square. It is

therefore possible to mesh the shape space by employing

Delaunay triangulations over the set of embedded vectors.

Back to the set of 75 livers, the resulting triangulation of

the convex hull of shapes is shown in Fig. 15.

Once the shape space has been properly identified and

parameterized, it is possible to establish the weak form of

the problem. What we call a vademecum [22] is actually a

parametric solution for the problem at hand, that is com-

puted off-line once for life, and is then evaluated fast once

needed. Therefore, our parametric solution for this prob-

lem, or shape vademecum, would be u ¼ uðx; s; tÞ, thus
representing the displacement field of a liver, for any load

position on its surface s and for any geometry (anatomy)

t ¼ ðt1; t2Þ 2 R ¼ convðtiÞ. Here, convð�Þ stands for the

convex hull of the set of points.

4.2 Developing the Vademecum

To develop the sought weak for of the parametric problem,

we start by the (static, for simplicity) equilibrium equa-

tions, namely,

r � rþ b ¼ 0 in X; ð9Þ

where b represents the volumetric force applied to the

body. The domain is subjected to the following boundary

conditions

u ¼ �u on Cu

rn ¼ �t on Ct:

�C � Ct represents the portion of the boundary of the organ

where the load can be applied (region accesible to the

surgeon). After multiplying both sides of Eq. (9) by an

admissible variation of the displacement, u
, and inte-

grating over the domain X, the standard weak form of the

problem is obtained. However, in this case we face a
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Fig. 10 Reconstructed solution at the five points depicted in Fig. 9 for a ¼ 5:5



parametric problem. In this case, the (triply-)weak form

will consist in finding the displacement u 2 H1ðXÞ �
L2ð �CÞ � L2ðRÞ such that for all u
 2 H1

0ðXÞ � L2ð �CÞ �
L2ðRÞ [54]:
Z

R

Z

�C

Z

X
ðrsu


ÞTrdXd �C ¼
Z

R

Z

�C

Z

Ct2

ðu
ÞT tdCd �C; ð10Þ

where rsu represents the symmetric part of the gradient of

displacements, C ¼ Cu [ Ct represents the boundary of the

solid, divided into essential and natural regions, and where

Ct ¼ Ct1 [ Ct2, i.e., regions of homogeneous and non-ho-

mogeneous, respectively, natural boundary conditions.

The load t acts on a moving position s. It is therefore

expressed as tðx; sÞ ¼ tdðx� sÞ, where d represents the

Dirac-delta function.This Dirac-delta term should be reg-

ularized for computation purposes and approximated by:

tj �
Xm

i¼1

f ij ðxÞgijðsÞ;

by performing a singular value decomposition of the load,

for instance, and truncating the number of terms m ac-

cording to some error tolerance.

As mentioned before, PGD proceeds in an iterative way,

constructing an approximation to the solution composed by

a finite sum of separable functions. Let us assume that, at

iteration n of this algorithm, convergence has been

attained, giving

unj ðx; s; tÞ ¼
Xn

k¼1

Fk
j ðxÞ � Gk

j ðsÞ � Hk
j ðtÞ;

where the term uj refers to the j-th component of the dis-

placement vector, j ¼ 1; 2; 3 and functions Fk, Gk and Hk

represent the separated functions used to approximate the

unknown field, obtained in previous iterations of the PGD

algorithm.

The algorithm now proceeds by looking for an

improvement of this approximation in a subsequent itera-

tion. The (nþ 1)-th term will therefore incorporate an

unknown functional product:

unþ1
j ðx; s; tÞ ¼ unj ðx; s; tÞ þ RjðxÞ � SjðsÞ � TjðtÞ; ð11Þ

where RðxÞ, SðsÞ and TðtÞ are the sought functions that

improve the approximation.

The admissible variation of the displacement is obtained

after straightforward application of the rules of variational

calculus,

u
j ðx; s; tÞ ¼ R

j ðxÞ � SjðsÞ � TjðtÞ þ RjðxÞ � S
j ðsÞ � TjðtÞ

þ RjðxÞ � SjðsÞ � T

j ðtÞ:

ð12Þ

At this point several options are at hand so as to determine

the new triplet of functions R , S and T. The most fre-

quently used, due to both its easy of implementation and

good convergence properties, in general, is a fixed-point

algorithm in which functions R, S and T are sought itera-

tively. For details on this algorithm, we refer the interested

reader to any of our previous works in the field [54, 55].

Once Eqs. (11) and (12) have been substituted into the

weak form of the problem (10), the matrix form of the

problem is obtained. At this point it is worth noting that

several approaches have been investigated in the literature

to linearize the problem if, as is it very often the case, it

presents non-linear constitutive equations. For instance,

explicit linearizations are possible [54], as well as the

employ of Taylor expansions [55] to avoid the computation

of the full-order tangent stiffness problem. The application
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Fig. 11 Reconstructed solution at the central point depicted in Fig. 9

for a ¼ 1 (top), a ¼ 5:5 (middle) and a ¼ 10 (bottom)



of well-stablished techniques such as the Empirical Inter-

polation method [12, 18] is also another possibility. Its

application within the framework of PGD methods is

deeply analyzed in [23].

Finally, as technical detail, it is worthy of mention that

integration on the shape space R ¼ convðtiÞ is done by

employing the underlying Delaunay triangles shown in

Fig. 15.

4.3 Results

To test the just presented technique, we have taken one of

the livers as a reference anatomy and have calculated its

own vademecum uref ¼ uðx; sÞ following standard PGD

methods [54]. Hence, no shape dependence is considered.

Fig. 12 A group view of the 75 different liver geometries considered for this example

Fig. 13 Distance field computed for one particular instance of the 75

different livers in the sample
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the squared, flat, geometry of the resulting embedding, showing that

there are two relevant parameters in the set



This liver has then be eliminated from the set and the above

procedure has been applied with the remaining 74 livers.

We therefore check the accuracy of the just presented

technique in providing an accurate approximation to this

reference vademecum.

We have also calculated the distance field (in the form

of a high-dimensional vector yref) for the reference anat-

omy. When the kPCA algorithm is applied to yref vector so

as to give tref coordinates in the embedded space, this point

appears as the blue diamond in Fig. 16. On the other hand,

given the nodal connectivity of the triangle to which yref
pertains, one could employ standard finite element shape

function so as to interpolate yref from its three neighbors.

The resulting geometry is shown as a red square in the

same Fig. 16, showing the accuracy of the kPCA projection

onto the embedding space.

But the true interest of this method is to obtain, once

particularized, a vademecum for the reference geometry of

the form u ¼ uðx; s; trefÞ and to compare it with urefðx; sÞ.
Both are defined over slightly different domains. In fact, if

we compare the distance field generated by both anatomies

(the reference one and the interpolated one), the obtained

error on L2-norm is 5.77 %. The error in the predicted

displacement field, measured as

kuðx; s0; trefÞ � urefðx; s0ÞkL2 ;

for a particular load position s0, was 8.539 %, which is

judged enough for this type of applications where the

dispersion in mechanical properties of living tissues, for

instance, is much more than that. Load positions different

to s0 give of course different errors, but of the same order

of magnitude.

Figure 17 shows the difference in geometry between the

reference geometry and the one computed by the vade-

mecum. As can be noticed, both agree to a reasonable

degree of accuracy, not easily distinguishable by the human

eye. In Fig. 18 a comparison is made between deformed

configurations for one particular load position s0. Again,

the accuracy of the approximation is noteworthy.

If compared to our previous approach to the problem,

based upon an interpolation of standard vademecums

uðx; sÞ for different geometries, employing weights given

by LLE embedding of the high-dimensional vectors zi, the

obtained accuracy is of the same order, cf. [32]. The error

in the predicted geometry is very similar (about 5 % in L2-

norm), while the error in the predicted displacement field is

somewhat less in the present work.

We must also highlight the fact that we have worked

with only 75 livers. The algorithm is prepared so as to be

fed by a continuous stream of data coming from new
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Fig. 15 Delaunay triangulation of the set of 75 livers in the

embedding space
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patients that will very much improve the result by refining

the sampling of the shape space.

5 Conclusions

In this work we proved the ability of kPCA to extract the

relevant parameters associated to microstructures or

shapes. As soon as nonlinear dimensionality reduction

applies, a parametric solution using the just extracted

parameters can be envisaged within the PGD framework.

This PGD approximation is constructed on top of the just

found relevant features of the geometric description of the

domain. Thus, by combining nonlinear dimensionality

reduction and Proper Generalized Decomposition powerful

parametric solutions can be constructed, including param-

eters with full physical meaning and others that where

extracted in a transparent way for the user.

The two numerical examples described and discussed

prove the extremely high potential of the approaches here

proposed. The resulting methods is a sort of mixed a priori/

a posteriori, linear/non-linear model order reduction

method. Indeed, while the parametric space is identified a

posteriori and non-linearly, the PGD part of the proposed

algorithm construct a priori (and linearly) the high-di-

mensional approach to the parametric solution.

This mixed approach shows great promise in a wide

variety of problems. Particularly, those in which shape, in

its broadest sense, is one of the parameters of the solution.
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