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Summary

Scientists have long quantified empirical observations by developing mathematical models that
characterize the observations, have some measure of interpretability, and are capable of making
predictions. Dynamical systems models in particular have been widely used to study, explain,
and predict system behavior in a wide range of application areas, with examples ranging
from Newton’s laws of classical mechanics to the Michaelis-Menten kinetics for modeling
enzyme kinetics. While governing laws and equations were traditionally derived by hand, the
current growth of available measurement data and resulting emphasis on data-driven modeling
motivates algorithmic approaches for model discovery. A number of such approaches have been
developed in recent years and have generated widespread interest, including Eureqa (Schmidt
& Lipson, 2009), sure independence screening and sparsifying operator (Ouyang, Curtarolo,
Ahmetcik, Scheffler, & Ghiringhelli, 2018), and the sparse identification of nonlinear dynamics
(SINDy) (Brunton, Proctor, & Kutz, 2016). Maximizing the impact of these model discovery
methods requires tools to make them widely accessible to scientists across domains and at
various levels of mathematical expertise.
PySINDy is a Python package for the discovery of governing dynamical systems models from
data. In particular, PySINDy provides tools for applying the SINDy approach to model dis-
covery (Brunton et al., 2016). Given data in the form of state measurements x(t) ∈ Rn, the
SINDy method seeks a function f such that

d

dt
x(t) = f(x(t)).

SINDy poses this model discovery as a sparse regression problem, wherein relevant terms in
f are selected from a library of candidate functions. Thus, SINDy models balance accuracy
and efficiency, resulting in parsimonious models that avoid overfitting while remaining inter-
pretable and generalizable. This approach is straightforward to understand and can be readily
customized using different sparse regression algorithms or library functions.
The PySINDy package is aimed at researchers and practitioners alike, enabling anyone with
access to measurement data to engage in scientific model discovery. The package is designed
to be accessible to inexperienced practitioners, while also including options that allow more
advanced users to customize it to their needs. A number of popular SINDy variants are
implemented, but PySINDy is also designed to enable further extensions for research and ex-
perimentation. The package follows object-oriented design and is scikit-learn compatible.
The SINDy method has been widely applied for model identification in applications such as
chemical reaction dynamics (Hoffmann, Fröhner, & Noé, 2019), nonlinear optics (Sorokina,
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Sygletos, & Turitsyn, 2016), thermal fluids (Loiseau, 2019), plasma convection (Dam, Brøns,
Juul Rasmussen, Naulin, & Hesthaven, 2017), numerical algorithms (Thaler, Paehler, &
Adams, 2019), and structural modeling (Lai & Nagarajaiah, 2019). It has also been extended
to handle more complex modeling scenarios such as partial differential equations (Rudy, Brun-
ton, Proctor, & Kutz, 2017; Schaeffer, 2017), systems with inputs or control (Kaiser, Kutz,
& Brunton, 2018), corrupt or limited data (Schaeffer, Tran, & Ward, 2018; Tran & Ward,
2017), integral formulations (Reinbold, Gurevich, & Grigoriev, 2020; Schaeffer & McCalla,
2017), physical constraints (Loiseau & Brunton, 2018), tensor representations (Gelß, Klus,
Eisert, & Schütte, 2019), and stochastic systems (Boninsegna, Nüske, & Clementi, 2018).
However, there is not a definitive standard implementation or package for applying SINDy.
Versions of SINDy have been implemented within larger projects such as sparsereg (Quade,
2018), but no specific implementation has emerged as the most widely adopted and most
versions implement only a limited set of features. Researchers have thus typically written
their own implementations, resulting in duplicated effort and a lack of standardization. This
not only makes it more difficult to apply SINDy to scientific data sets, but also makes it
more challenging to benchmark extensions to the method against the original and makes such
extensions less accessible to end users. The PySINDy package provides a dedicated central
codebase where many of the basic SINDy features are implemented, allowing for easy use and
standardization. This also makes it straightforward for users to extend the package in a way
such that new developments are available to a wider user base.

Features

The core object in the PySINDy package is the SINDy model class, which is implemented as
a scikit-learn estimator. This design was chosen to make the package simple to use for a
wide user base, as many potential users will be familiar with scikit-learn. It also expresses
the SINDy model object at the appropriate level of abstraction so that users can embed it into
more complicated pipelines in scikit-learn, such as tools for parameter tuning and model
selection.
Applying SINDy involves making several modeling decisions, namely: which numerical dif-
ferentiation method is used, which functions make up the feature library, and which sparse
regression algorithm is applied to learn the model. The core SINDy object uses a set of default
options but can be easily customized using a number of common approaches implemented in
PySINDy. The package provides a few standard options for numerical differentiation (finite
difference and smoothed finite difference), feature libraries (polynomial and Fourier libraries,
as well as a class for creating custom libraries), and sparse regression techniques (sequentially
thresholded least squares (Brunton et al., 2016), LASSO (Tibshirani, 1996), and sparse re-
laxed regularized regression (Zheng, Askham, Brunton, Kutz, & Aravkin, 2018)). Users can
also create their own differentiation, sparse regression, or feature library objects for further
customization.
The software package includes tutorials in the form of Jupyter notebooks. These tutorials
demonstrate the usage of various features in the package and reproduce the examples from
the original SINDy paper (Brunton et al., 2016).
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