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Abstract: The importance of habitat factors in designing marine reserves and evaluating their 
performance over time has been regularly documented. Over three biennial sampling periods, we 
examined the effects of vegetated coverage and habitat diversity (i.e., patchiness) on fish density, 
community composition, and species-specific patterns along a gradient of protection from harvest 
in the shallow Spanish southern Mediterranean, including portions of the Tabarca marine reserve. 
With the exception of two herbivores (Sarpa salpa and Symphodus tinca), vegetated cover did not 
significantly affect fish densities, while habitat diversity was an influential factor across all three 
sampling periods. Overall, fish density was more positively associated with more continuous 
vegetated or unvegetated habitats, and was greatest in areas of highest protection (Tabarca II – Isla 
Nao site). These patterns were usually observed for four abundant fish species (Boops boops, Chromis 
chromis, Oblada melanura, and S. salpa). Fish community composition was distinct in the most 
protected portion of the Tabarca reserve, where it was also most stable. Our findings align with 
previous investigations of the Tabarca reserve and its surrounding areas, and demonstrate its 
continued effectiveness in conserving fish biomass and habitat. Together with effective 
management, marine reserves can facilitate greater species abundance, more stable biological 
communities, and resilient ecosystems. 

Keywords: demersal fish communities; habitat continuity; habitat diversity; marine reserves; 
Mediterranean; spatial management 
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1. Introduction 

Marine reserves can be effective for conserving marine species, enhancing fishery populations, 
and protecting essential habitats [1–9]. Recovery of multiple targeted and protected species has been 
observed through regulated spatial management practices, with additional benefits extending to 
marine communities within protected areas [8–15]. Recent investigations have examined the effects 
of habitat complexity, continuity, and distribution on marine community composition, including 
their effects on the recovery of overfished species [16–22]. Additionally, the quality and connectivity 
of marine habitats are critical factors in determining ecosystem functioning, maintaining biodiversity, 
and can affect fishery stock status [22–27]. These factors are especially important, as human and 
climate-related stressors continue to influence the extent, health, and composition of protected 
marine ecosystems and their habitats [3,20–22,25,28–32]. 

Limitations of reserve design in the recovery of impacted marine ecosystems [2,33–40], including 
habitat-related effects on reserve spillover potential [41–45], and delayed responses of populations to 
protection, have been identified. Some investigations have found no significant difference in response 
variables within and outside marine protected areas (MPAs) [46–52], only partial predatory biomass 
buildup as a result of longer generation times, larger associated territories, and species-specific traits 
[2,7,8,11,53–55], as well as varying cascading effects to multiple trophic levels in marine reserves [55–
61]. These studies illustrate the importance of scale as it affects reserve performance [2,46,50]. Of 
particular relevance has been the degree of protection afforded to the habitat of a given species, its 
structural complexity, and differential vulnerability of species to harvest and anthropogenic effects 
among habitats in reserve design [2,3,19–27,41–44,53,55]. Therefore, continued investigation of the 
effects of habitat as related to the effectiveness of MPAs remains a priority, particularly in coastal and 
nearshore areas subject to high human pressures [62–65].  

In the Mediterranean, multiple investigations have demonstrated the effectiveness of marine 
reserves and habitat factors for increasing depleted fishery biomass and conserving biodiversity, 
including their influences on spillover potential and their differential effects on ecologically 
important species [20,41–44,65–71]. Demersal fishes, in particular, are greatly affected by the quantity 
and quality of habitat encompassed in Mediterranean protected areas, given their strong site fidelities 
[41–44,66–72]. Recommendations to assess reserve-protective effects with those from habitat through 
multiscale spatial-integrated approaches have also emerged [73–77], especially for evaluating 
responses of reef and seagrass-associated fish assemblages—the abundances of which have been 
affected by overfishing and habitat degradation [17,20–23,25,27,75–77]. These spatial factors have 
been partially considered in previous evaluations of the Tabarca marine reserve in southeast Spain, 
where some positive responses by fish populations and marine communities have been observed, 
and spillover gradients developed in relation to the degree of protection and habitat distributions 
[41–44,67–69,72]. Many of these investigations have taken place within deeper or limited portions of 
the reserve, with only partial consideration of habitat patchiness and vegetated coverage in shallower 
locations more frequently affected by human use [41–44,67–69,72]. They have also been mostly 
conducted within and immediately surrounding the reserve during single-snapshot surveys, or with 
trends examined over short timeframes. Thus, continued studies in shallower, more regularly 
accessible portions of the Tabarca reserve and its nearby surrounding areas are warranted for 
additional evaluation of its effectiveness. Additionally, while previous studies have highlighted 
depletions of commercially important species in southeast Spain, and examined the effects of human 
pressures on its coastal habitats, their differential effects on protected and unprotected shallow, 
coastal fish communities have remained less frequently documented [41–44,67–69,72]. 

Recurring samplings of marine reserves and their surrounding areas are useful to account for 
changes in protected and nearby unprotected populations, in addition to habitat dynamics 
[54,57,66,70,78,79]. Long-term monitoring in the Scandola marine reserve (Corsica, northwest 
Mediterranean) suggests differential stabilization of fish assemblages in more continuous seagrass 
versus patchy rocky reef habitats [66,78]. These factors also influence community composition 
throughout protected and unprotected areas, which likewise contribute to reserve stability and long-
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term trends in population performance [12–14,58–60,66,70,78]. Therefore, the variable influences of 
such spatiotemporal factors on reserve functioning warrant continued investigation. 

We examined the effects of habitat coverage and diversity on fish community composition and 
species-specific patterns within shallow areas along a gradient of marine protection. We chose to 
focus on shallow, coastal fish communities in accessible areas that would potentially be subject to 
more frequent human use and probable disturbance. Our specific hypotheses were that greater 
degrees of protection would result in significantly higher densities of fish species, and altered 
community composition among sites. In addition, we proposed that greater seagrass coverage and 
lower habitat diversity in a given sampling area (i.e., more continuous habitats) would most likely 
occur in protected areas, which would favor higher fish densities, as observed in long-term studies 
of other Mediterranean reserves [66,78]. 

2. Materials and Methods 

2.1. Study Sites 

The southeastern Mediterranean coast of Spain, including coastal regions of Alicante, Santa Pola, 
and the Tabarca marine reserve (Figure 1), has been previously described [41–44,80–85]. Nearshore 
habitats within these sites include shallow rocky substrates, macroalgae dominated sediments (with 
Caulerpa spp. most abundant), and extensive seagrass beds (dominated by Posidonia oceanica and 
Cymodocea nodosa), which house numerous species of demersal fishes and macroinvertebrates [41–
44,80–85]. Outside of the Tabarca reserve, the study area, extending from the northern limits of Cabo 
de las Huertas (CH) to the southern point of Santa Pola (SP) just offshore the Centro de Investigación 
Marina de Santa Pola (CIMAR), is open to fishing and has been historically overexploited [41–44,80–
86]. Additional anthropogenic pressures, including the effects of land reclamation, eutrophication, 
desalination, tourism, and marine litter, have been documented in this region [85,87–92].  
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Figure 1. Map of the Alicante region of the Spanish coast, including sampling sites (dots) at Cabo de 
las Huertas (CH), Santa Pola (SP), and the Tabarca marine reserve (Isla Nao—T2 and Isla de Tabarca—T3. 

Approximately 4 km offshore from SP, the Tabarca marine reserve (~1400 ha., established 1986) 
surrounds Nueva Tabarca Island—of which, the marine community composition and the effects of its 
protected status have previously been investigated [41–44,67,68,72,84,85,93,94]. The reserve is 
divided into three zones with a gradient of protection levels and allowable uses [41–44,84,85]. These 
include a deeper, easternmost 100 ha. integral reserve area (Tabarca I; not sampled in this study), 
where all activities except scientific study are prohibited; a 630 ha. buffer zone containing Isla Nao 
(Tabarca II, T2; sampled in this study), where selective artisanal fishing gear for pelagic species is 
allowed; and the peripheral/transitional zone containing Nueva Tabarca Island (Tabarca III, T3; 
sampled in this study), where selective fishing gear and recreational activities (swimming, diving, 
boating) are permitted. Further details regarding zoning, management, administration, participation, 
monitoring, and scientific oversight have been previously published [72,81,84,85,90]. The entire 
reserve serves as a no-take zone for species targeted by trammel nets, which are banned throughout 
this protected area [41]. 

2.2. Methods 

Fish density and community composition within the Tabarca protected area (T2, T3) and 
surrounding locations outside the reserve (CH, SP) were investigated using daytime visual surveys 
(0800–1600) during three separate sampling periods. Initial surveys occurred from 3–10 September 
2009 and were followed by subsequent returns to the study sites during 30 August to 8 September 
2011 and 2–11 September 2013. These periods were consistently selected for optimal sampling 
potential of fish communities during end of summer and early fall seasons. Each year, visual surveys 
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were conducted within two coastal unprotected sites (CH and SP; Figure 1) and two areas within the 
Tabarca protected area: T2 and the southern coast of the island of Tabarca (T3). Equivalent sampling 
efforts were conducted during 2009 and 2011 (n = 42 transects; Table 1), while the number of survey 
transects was increased in 2013 (n = 61) to allow for a more comprehensive evaluation of fish 
community composition. Within each site, initial 2009 survey locations were haphazardly chosen (i.e., 
by tossing the transect tape measure in a random direction, allowing it to sink, and swimming to it) 
in depths no greater than 5 m within areas containing a variable mixture of sandy, rocky, or seagrass 
(Posidonia oceanica dominant) bottoms. Surveys were executed as 50 m-long × 2 m-wide transects, 
which were swum by pairs of snorkelers along a tape laid out on the bottom in a randomized 
direction and following a two-minute acclimation period. Transect start and endpoints were 
additionally recorded by Global Positioning System (GPS) to allow for subsequent return to these 
same survey locations. Using a dive slate, a given snorkeler recorded the number of demersal and 
pelagic fish per species observed along the bottom and in the water column within the 100 m2 
transect. Additionally, information regarding the percent composition of bottom substrate (i.e., sand, 
rock, and species of seagrass or macroalgae) was recorded along transects at every five meters. To 
ensure consistency across sampling periods, all teams were trained thoroughly and consistently by 
the same instructors before carrying out visual surveys. Additionally, during trainings, some 
transects by paired divers were repeated as back-to-back surveys to test performance and accuracy. 

Table 1. Number of visual surveys conducted per year (2009–2013) at a given site within and 
surrounding the Tabarca marine protected area. 

Site 2009 2011 2013 
Cabo de las Huertas 6 6 9 

Santa Pola (CIMAR) 12 12 16 
Tabarca II (Isla Nao) 12 12 16 

Tabarca III (South Coast) 12 12 20 
Total 42 42 61 

Total and species-specific fish densities (number of fish m−2) were calculated per transect and 
substrate classification for all three survey years. The fraction of total vegetated (seagrass and 
macroalgae) cover and a Shannon–Wiener index of bottom habitat diversity accounting for substrate 
classifications listed in Table S1 were calculated for each transect. To examine the rigor with which 
we replicated exact transect paths across the three sampling periods, we calculated the coefficients of 
variation for the fraction of vegetated bottom cover across the three sampling periods for each 
transect (mean and SD for each transect). Coefficients of variation varied in magnitude, but many 
were large, indicating significant technological error (GPS inherent offset) when attempting to locate 
the same transect over the three sampling periods. Given these observations, data were assumed to 
meet the assumptions for functional independence. Thus, we opted to analyze fish density data for 
all fishes and the five-most abundant species separately for each of the three sampling periods.  

Two-way effects of site (location) with bottom percent vegetated cover and habitat diversity on 
fish densities were examined through univariate analyses of covariance (ANCOVAs) and post-hoc 
Newman–Keuls multiple pairwise testing [95,96]. Given the continuous values for vegetated cover 
and habitat diversity, ANCOVAs allowed for testing their degree of influence on fish densities among 
locations. Previous studies have shown the utility of using ANCOVAs to examine habitat effects on 
fish densities and other biological metrics [97,98]. For each ANCOVA model, the homogeneity of 
regression slopes assumption was examined through the incorporation of an interaction term (i.e., 
percent vegetated cover*location or habitat diversity*location) into a given model. Among all models 
(n = 36), no significant interactions were observed except for in one species-specific case. Additionally, 
spatiotemporal differences in fish community composition were measured using non-metric 
multivariate dimensional scaling (nMDS), analyses of similarity (ANOSIMs), and similarity 
percentages (SIMPER) analyses with PAST 3.22 software [99]. Density data were log-transformed to 
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meet assumptions of parametric univariate testing (Levene’s test: F2,142 = 1.291; p = 0.278), and square-
root transformed for multivariate analyses. 

3. Results 

A total of 40 fish species were observed among sites, with the majority present in P. oceanica or 
rock bottom habitats at sites T2 and T3, which were within the Tabarca marine reserve (Table S1). For 
total fish density, no significant effect of percent vegetated cover was observed, while site was 
significant for all three sampling periods (Table 2). Additionally, a significant effect of bottom habitat 
diversity on total density was consistently observed during all years (Table 3), while site was also 
significant in 2009 (p = 0.000) and 2011 (p = 0.021). Post-hoc comparisons showed higher total densities 
occurring at T2 than at SP (outside the Tabarca marine reserve) during all years when also accounting 
for percent vegetated cover (Figures 2 and S1), and during 2009 and 2011 when also accounting for 
bottom habitat diversity (Figures 3 and S2). When accounting for vegetated cover, total fish density 
was generally higher at T2 than at CH (outside the Tabarca marine reserve) and T3, except in 2013. 
During 2011, no significant difference was observed among total densities when only accounting for 
habitat diversity (Tables 2 and 3, Figures S1 and S2). Similarly, higher densities were also observed 
in T3 compared to SP during 2011 and 2013 when also accounting for percent vegetated cover. No 
significant difference in total fish density was observed between CH and T3 during any of the 
sampling periods.  

 

(a) 
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(b) 

Figure 2. (a) Relationships (Global R2) between the percentage of vegetated area surveyed and annual 
average density for all fishes and the five most abundant species per survey site (Cabo de las Huertas—
CH; Santa Pola—SP; Tabarca II—T2; Tabarca III—T3). Global R2 values depict overall global fit for each 
ANCOVA model. (b). Relationships (Global R2) between the percentage of vegetated area surveyed 
and annual average density for all fishes and the five most abundant species per survey site (Cabo de 
las Huertas—CH; Santa Pola—SP; Tabarca II—T2; Tabarca III—T3). Global R2 values depict overall 
global fit for each ANCOVA model. 

Some differences across sites were found for abundant species, particularly when accounting for 
percent vegetated cover (Table 2; Figures 2 and 3 and Figures S1 and S2). For Chromis chromis 
(Mediterranean Chromis), significant differences in fish density were generally observed across sites 
during sampling years, but trends varied (Tables 2 and 3; Figures 2a and 3a, Figures S1 and S2). 
Overall, densities were generally highest in T2 Posidonia habitats (Table S1). In 2009, densities for C. 
chromis were significantly higher in CH and T2 than in SP and T3 when accounting for either percent 
vegetated cover or bottom habitat diversity. Additionally, a significantly negative influence of habitat 
diversity on C. chromis density was also observed during 2009 (p = 0.030) and 2011 (p = 0.015; Table 3; 
Figure 3b). During 2011, C. chromis densities were highest in T2 than all other sites when accounting 
for percent vegetated cover, while no significant differences among sites were found when 
accounting for habitat diversity. In 2013, densities were significantly higher in CH than in SP or T3 
when accounting for either percent vegetated cover (p = 0.017) or habitat diversity (p = 0.020), and a 
significant interaction between percent cover and location was also observed (p = 0.023; Table 2). 
During this year, a negative relationship between vegetated cover and C. chromis density was 
observed in CH, while neutral relationships were observed for all other sites (Figure 2a). 
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(a) 

 

(b) 

Figure 3. (a). Relationships (Global R2) between Shannon–Wiener habitat diversity index and annual 
average density for all fishes and the five most abundant species per survey site (Cabo de las Huertas—
CH; Santa Pola—SP; Tabarca II—T2; Tabarca III—T3). Global R2 values depict overall global fit for each 
ANCOVA model. (b). Relationships (Global R2) between Shannon–Wiener habitat diversity index and 
annual average density for all fishes and the five most abundant species per survey site (Cabo de las 
Huertas—CH; Santa Pola—SP; Tabarca II—T2; Tabarca III—T3). Global R2 values depict overall global 
fit for each ANCOVA model. 
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In 2011, densities for Boops boops (Bogue) were significantly lower at SP than at all other sites 
when accounting for percent cover (p = 0.019), with significant effects of habitat diversity observed 
during 2011 (p = 0.004) and 2013 (p = 0.025; Tables 2 and 3; Figures 2a and 3a, Figures S1 and S2). For 
all years, B. boops densities were generally highest in Posidonia and rock habitats in T2 and T3 (Table 
S1). In 2011 and 2013, Oblada melanura (Saddled Seabream) densities in T2 were significantly higher 
than all other sites when accounting for percent cover, with significant effects of habitat diversity 
similarly observed during these years. O. melanura densities were generally highest in T2 and T3 
Posidonia habitats (Table S1). Neutral to negative relationships between habitat diversity and B. boops 
and O. melanura densities were additionally observed (Figure 3a,b). Densities for Symphodus tinca 
(East Atlantic Peacock Wrasse) in 2013 were significantly highest in T3 among all sites when 
accounting for either percent cover (p = 0.003) or habitat diversity (p = 0.004; Table 3; Figures S1 and 
S2). Densities were generally highest in T2 and T3 Posidonia and rock habitats (Table S1). An 
additional significant and overall positive effect of percent vegetated cover (p = 0.001) was observed 
for 2009 S. tinca densities (Table 2; Figure 2b). Although no significant differences across sites were 
observed for Sarpa salpa (Salema Porgy) densities, significant effects of percent vegetated cover (2009, 
p = 0.014) and habitat diversity (2011, p = 0.027; 2013, p = 0.014) were found. Densities were generally 
highest in T2 and T3 Posidonia habitats (Table S1). Overall significant negative relationships between 
habitat diversity and S. salpa densities were observed, in addition to a negative relationship between 
S. salpa density and vegetated cover during 2009 (Figure 2b). 

nMDS ordinations (Figure 4) and ANOSIM analyses revealed significant differences in fish 
community composition among sites within and across years (Table 4). Community composition in 
T2 consistently differed from that of all other sites across years, while no significant differences in 
composition were observed between CH and SP or CH and T3. Although no difference in 
composition was observed between SP and T3 in the period 2009–2011, these sites were found to 
differ significantly in 2013 (p = 0.0015). Among these sites, differences in the abundance of O. 
melanura, S. sarpa, C. chromis, S. tinca, and Diplodus annularis (Annular Seabream) contributed most 
toward composition dissimilarities (Table 5). Additionally, Trachurus trachurus (Atlantic horse 
mackerel) contributed up to 11.2% of the differential composition observed between T2 and all other 
sites in 2009, but did not have any contribution during other periods. Differences in composition 
among SP and T2 in 2013 were additionally influenced (9.5%) by a differential abundance of 
Thalassoma pavo (Ornate Wrasse). 
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Table 2. Analysis of covariance (ANCOVA) results examining within-year variability related to the 
percentage of total vegetated Caulerpa and Posidonia habitat (%vegetated) and location (site) for 
density (fish m−2) of all fishes and the five most abundant species. Significant values (p < 0.05) and 
factors for which significance was observed in a given year are indicated in bold. Interactions 
(%Vegetated*Location) between factors that were significant in at least one given year are additionally 
included below. All other interactions were non-significant (p > 0.05). 

 2009 2011 2013 
 df F Pr > F df F Pr > F Df F Pr > F 

Model (All Fishes) 7 4.985 0.001 7 5.440 0.000 7 4.951 0.000 
Error 34   34   53   

%Vegetated 1 2.127 0.154 1 0.071 0.792 1 0.367 0.547 
Location 3 10.580 <0.0001 3 11.838 <0.0001 1 8.666 <0.0001 

%Vegetated*Location 3 0.343 0.794 3 0.833 0.485 3 2.764 0.051 
Model (Boops boops)  1.250 0.304  2.682 0.025  1.258 0.289 

%Vegetated  0.197 0.660  3.307 0.078  1.309 0.258 
Location  2.544 0.072  3.779 0.019  1.268 0.295 

%Vegetated*Location  0.306 0.821  1.376 0.267  1.230 0.308 
Model (Chromis chromis)  2.390 0.042  2.247 0.054  3.224 0.006 

%Vegetated  0.965 0.333  0.347 0.560  1.077 0.304 
Location  4.125 0.013  4.511 0.009  3.702 0.017 

%Vegetated*Location  1.129 0.351  0.618 0.608  3.460 0.023 
Model (Oblada melanura)  1.151 0.356  2.524 0.033  3.976 0.001 

%Vegetated  0.026 0.873  2.114 0.155  0.665 0.419 
Location  2.662 0.064  4.131 0.013  7.692 0.000 

%Vegetated*Location  0.015 0.998  1.053 0.382  1.364 0.264 
Model (Sarpa salpa)  2.172 0.062  2.560 0.031  1.105 0.374 

%Vegetated  6.778 0.014  3.923 0.056  2.522 0.118 
Location  0.769 0.520  0.175 0.913  1.308 0.281 

%Vegetated*Location  2.041 0.127  0.756 0.527  0.429 0.733 
Model (Symphodus tinca)  3.413 0.007  1.166 0.348  3.912 0.002 

%Vegetated  12.222 0.001  2.659 0.112  3.830 0.056 
Location  2.266 0.099  0.776 0.516  5.352 0.003 

%Vegetated*Location  1.625 0.202  1.058 0.380  2.500 0.069 
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Table 3. Analysis of covariance (ANCOVA) results examining within-year variability related to 
Shannon–Wiener habitat diversity index and location (site) for density (fish m−2) of all fishes and the 
five most abundant species. Significant values (p < 0.05) and factors for which significance was 
observed in a given year are indicated in bold. Interactions (Habitat Diversity*Location) between 
factors that were significant in at least one given year are additionally included below. All other 
interactions were non-significant (p > 0.05). 

 2009 2011 2013 
 df F Pr > F df F Pr > F df F Pr > F 

Model (All Fishes) 7 4.938 0.001 7 6.375 <0.0001 7 4.945 0.000 
Error 34   34   53   

Habitat Diversity 1 4.974 0.032 1 30.024 <0.0001 1 25.690 <0.0001 
Location 3 9.489 0.000 3 3.696 0.021 3 1.428 0.245 

Habitat Diversity*Location 3 0.374 0.772 3 1.171 0.335 3 1.547 0.213 
Model (Boops boops)  1.165 0.348  2.742 0.023  1.098 0.378 

Habitat Diversity  0.757 0.390  9.436 0.004  5.295 0.025 
Location  1.764 0.173  1.564 0.216  0.118 0.949 

Habitat Diversity*Location  0.701 0.558  1.689 0.188  0.679 0.569 
Model (Chromis chromis)  3.287 0.009  2.118 0.068  1.730 0.122 

Habitat Diversity  5.144 0.030  6.520 0.015  0.003 0.955 
Location  3.687 0.021  1.584 0.211  3.549 0.020 

Habitat Diversity*Location  2.269 0.098  1.184 0.330  0.487 0.693 
Model (Oblada melanura)  1.573 0.177  2.360 0.044  3.221 0.006 

Habitat Diversity  2.654 0.113  8.323 0.007  13.384 0.001 
Location  1.948 0.140  2.209 0.105  2.422 0.076 

Habitat Diversity*Location  0.837 0.483  0.523 0.669  0.632 0.598 
Model (Sarpa salpa)  0.391 0.901  1.826 0.114  1.358 0.242 
Habitat Diversity  0.001 0.979  5.357 0.027  6.475 0.014 

Location  0.796 0.504  1.867 0.154  0.108 0.955 
Habitat Diversity*Location  0.116 0.950  0.608 0.614  0.902 0.446 
Model (Symphodus tinca)  1.683 0.146  1.291 0.284  2.361 0.035 

Habitat Diversity  1.181 0.285  0.010 0.919  0.831 0.366 
Location  0.045 0.987  1.173 0.335  4.968 0.004 

Habitat Diversity*Location  0.908 0.448  1.836 0.159  0.264 0.851 
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Table 4. Analysis of similarity (ANOSIM) results examining within-year and cross-year variability of 
fish community composition among study sites (Cabo de las Huertas—CH; Santa Pola—SP; Tabarca II—
T2; Tabarca III—T3). Significant values (p < 0.005) are indicated in bold. 

Within Years    
 2009 2011 2013 

Sites R p-Value R p-Value R p-Value 
CH vs. SP −0.02 0.5344 0.17 0.066 0.12 0.0972 
CH vs. T2 0.40 0.0029 0.51 0.0004 0.38 0.0008 
CH vs. T3 0.08 0.2381 −0.22 0.9938 0.16 0.0432 
SP vs. T2 0.38 0.0001 0.57 0.0001 0.55 0.0001 
SP vs. T3 0.06 0.0967 0.10 0.0713 0.17 0.0015 
T2 vs. T3 0.47 0.0001 0.32 0.0015 0.37 0.0001 

Across Years     
 2009 vs. 2011 2011 vs. 2013 2009 vs. 2013 

Site R p-Value R p-Value R p-Value 
CH 0.47 0.005 −0.05 0.6339 0.39 0.0041 
SP 0.36 0.0003 0.14 0.0176 0.33 0.0002 
T2 0.22 0.0026 −0.02 0.5677 0.20 0.0056 
T3 0.30 0.0007 0.24 0.0026 0.28 0.0004 

Across years, no significant difference in community composition was observed in T2, while 
composition changed in CH between 2009 and 2013 (p = 0.0041). Additionally, changes in composition 
were observed for SP and T3 between 2009 and 2011 (p(SP) = 0.0003; p(T3) = 0.0007) and between 2009 
and 2013 (p(SP) = 0.0002; p(T3) = 0.0004). Differential abundance of O. melanura, S. salpa, S. tinca, D. 
annularis, and Diplodus vulgaris (Common Two-Banded Seabream) contributed most toward 
composition dissimilarities within sites across years. Additionally, differences in the abundance of C. 
chromis in CH contributed highly (26.1%) toward composition variability between 2009 and 2013. 

 
Figure 4. Non-metric multidimensional scaling (nMDS) ordinations with 95% confidence ellipses per 
site (Cabo de las Huertas—CH, black solid circles; Santa Pola—SP, black open circles; Tabarca II—T2, 
gray solid squares; Tabarca III—T3, gray open squares). 



Water 2020, 12, 1537 13 of 22 

Table 5. Similarity Percentages (SIMPER) analysis results examining within-year and cross-year 
differences in fish community composition among study sites (Cabo de las Huertas—CH; Santa Pola—
SP; Tabarca II—T2; Tabarca III—T3) for which significant differences in composition were observed. 
Values presented as average dissimilarity and percent dissimilarity (in parentheses) for the top six 
contributing taxa per site comparison. 

Within Years       

Year Sites Oblada 
melanura 

Sarpa 
salpa 

Chromis 
chromis 

Symphodus 
tinca 

Diplodus 
annularis 

Thalassom
a pavo 

2009 

CH 
vs. T2 

18.8 
(28.0%) 

5.5 
(8.2%) 

13.0 
(19.4%) 

4.7 (7.1%) 3.5 (5.3%) 2.8 (4.2%) 

SP vs. 
T2 

23.5 
(28.8%) 

7.5 
(9.2%) 

15.6 
(19.1%) 

6.3 (7.7%) 4.0 (4.8%) 3.7 (4.6%) 

T2 vs. 
T3 

20.0 
(26.1%) 

7.9 
(10.3%) 

13.4 
(17.5%) 5.5 (7.2%) 5.0 (6.6%) 3.3 (4.3%) 

2011 

CH 
vs. T2 

27.3 
(33.4%) 

16.8 
(20.6%) 

16.0 
(19.5%) 3.4 (4.2%) 4.6 (5.6%) 3.3 (4.1%) 

SP vs. 
T2 

30.5 
(35.5%) 

17.7 
(20.7%) 

15.6 
(18.2%) 3.9 (4.5%) 1.4 (1.6%) 4.5 (5.2%) 

T2 vs. 
T3 

30.6 
(37.1%) 

16.5 
(20%) 

15.0 
(18.1%) 

3.5 (4.2%) 1.3 (1.5%) 3.6 (4.3%) 

2013 

CH 
vs. T2 

36.6 
(44.5%) 

7.5 
(9.2%) 

14.5 
(17.6%) 

4.8 (5.8%) 1.9 (2.3%) 7.1 (8.6%) 

SP vs. 
T2 

40.6 
(45.1%) 

8.3 
(9.2%) 

11.2 
(12.5%) 8.7 (9.6%) 1.2 (1.3%) 8.6 (9.5%) 

SP vs. 
T3 

12.3 
(15.5%) 

7.7 
(9.7%) 1.2 (1.5%) 27.6 (34.9%) 8.4 (10.6%) 1.0 (1.3%) 

T2 vs. 
T3 

30.4 
(36.9%) 

10.2 
(12.4%) 

6.8 (8.2%) 15.4 (18.8%) 4.7 (5.7%) 4.8 (5.8%) 

Across Years       

Years Site 
Oblada 

melanura 
Sarpa 
salpa 

Symphodus 
tinca 

Diplodus 
annularis 

Diplodus 
vulgaris 

Chromis 
chromis 

2009 vs. 
2011 

SP 
20.4 

(23.3%) 
15.6 

(17.8%) 
11.6 

(13.2%) 11.4 (13.1%) 7.9 (9%) 0.0 (0.0%) 

T3 17.2 
(20.4%) 

14.1 
(16.8%) 

3.6 (4.2%) 15.1 (17.9%) 11.1 (13.1%) 4.0 (4.7%) 

2009 vs. 
2013 

CH 15.6 
(18.7%) 

9.6 
(11.5%) 

4.1 (5%) 7.8 (9.3%) 5.3 (6.4%) 21.8 
(26.1%) 

SP 17.6 
(19.9%) 

14.2 
(16%) 

18.4 
(20.7%) 

10.8 (12.2%) 6.7 (7.6%) 0.0 (0.0%) 

T3 
13.5 

(16.5%) 
13.8 

(16.8%) 
17.6 

(21.5%) 10.1 (12.4%) 7.4 (9.0%) 2.9 (3.6%) 

4. Discussion 

Examining the influences of vegetated cover and habitat diversity on fish density throughout a 
gradient of reserve protection illustrated the differential importance of these factors at the species 
and community level. Although vegetated cover did not significantly affect fish densities apart from 
the two herbivores (S. sarpa, S. tinca) during the 2009 sampling period, habitat diversity was a 
commonly influential factor across all three sampling periods. Overall, and as expected, fish density 
was positively associated with less diverse and therefore more continuous vegetated or unvegetated 
habitats among sampling areas, and was greatest in areas of highest protection (T2). Among all sites, 
fish community composition was distinct in the most protected portion of the Tabarca reserve (T2), 
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where it was also most stable. These findings generally support our initial hypotheses, and 
demonstrate the effectiveness of protection and habitat dynamics toward reserve functioning in 
shallow coastal areas. They additionally align with previous investigations conducted throughout 
other portions of the Tabarca reserve and its surrounding areas [41–44,67,68,72,85]. 

The influence of habitat, particularly continuity, in supporting fish populations and 
communities has been shown throughout multiple studies, especially within reef and seagrass 
systems [16–27,41–44,100–102]. In addition, these factors have been shown to contribute directly to 
the responses of fishes within reserve systems, including among locations throughout the 
Mediterranean [3,17,21,23,36,41–44,67,68,72,85]. Forcada et al. [41,42] found that a lack of continuous 
habitat within the Tabarca reserve served as a bottleneck for effective spillover of targeted finfishes in 
the eastern and southern portions of the reserve. Similarly, Goñi et al. [44] observed that biomass 
export was most associated with continuous habitats across the reserve boundaries in the north and 
west regions. Overall habitat quality, particularly degradation of P. oceanica seagrass beds and their 
degree of patchiness, has been shown to affect fish community composition, density, and recovery 
[16–27,41–44,65,66,68,70,71,84,100–102]. As observed for other portions of the Mediterranean, the 
importance of continuous shallow rocky substrate and degree of protection in influencing fish density 
was also shown in our study [20,53,67,68,71,77,103,104], especially given the less consistent 
relationship with vegetated cover in a given transect. These findings demonstrate that higher fish 
densities are generally associated with less diverse and more protected habitats, independent of 
percent vegetated cover within a given transect. Generally, lower habitat diversity and the highest 
community stability were observed in our most protected sampling sites (T2). These findings 
reinforce those by Seytre and Fracour [66] and Fraschetti et al. [70], which demonstrated relationships 
among fish community stability, fishing prohibitions, and continuity of rocky or vegetated habitats 
in Mediterranean reserves.  

In our study, negative relationships between fish density and habitat diversity were found for 
four abundant species (B. boops, C. chromis, O. melanura, S. sarpa) during at least one sampling period. 
Additionally, these species were often observed at the greatest densities in the most protected areas 
of the reserve. The importance of continuous habitats and greater protection in promoting the 
productivity of these species within the Tabarca reserve was previously observed by Ojeda-Martinez 
et al. [72]. They attributed these results to the faster growth and higher fecundity associated with 
these small fish species, in addition to more suitable habitats. Additional studies have also 
demonstrated the importance of complex and continuous habitats in promoting the abundance of 
these reef and seagrass associated species [42,102–104]. As observed in our study, Symphodus spp. did 
not benefit as much from high protection, as potentially related to increased predation pressure in 
the reserve and the importance of rocky substrate and vegetated cover for these species [72,105]. 
However, other studies have shown seasonal variation in their feeding behaviors and habitat 
affinities [106–107], suggesting that there may be differential reliance on habitats within and outside 
the reserve boundaries throughout a given year. Our findings suggest continued effectiveness of the 
Tabarca reserve protections in fostering more continuous and less fragmented or anthropogenically 
disturbed habitats, which in turn has allowed for ongoing enhancement of these populations [41–
44,66]. Given their importance to piscivores, increased abundance of Symphodus spp. may also 
partially facilitate higher densities of mid- and upper trophic level species (e.g., groupers) in the 
reserve as noted in previous studies [41–44,67,85].  

As climatic and anthropogenic pressures continue to affect Mediterranean coastal habitats 
[62,65,86–93,108–109], ongoing multiyear monitoring of reserve effectiveness, habitat quality, and 
biological stability remains necessary. Recurring examination of marine reserves among their 
encompassed habitats has demonstrated the importance of spatial management protections toward 
maintaining and enhancing biological communities [54,57,66,70,78,79]. Regular monitoring of 
reserves has shown varying spatiotemporal responses to management actions, with differential 
effects among depths, substrates, and species [41–44,54,57,66,70,78,79]. Our study found that habitat 
factors in repeatedly sampled locations influenced the degree of response observed for fish species 
among sites and substrates over time. Evaluations of reserve performance may occur as snapshots 
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before and after establishment [50,52,59,61], and, if so, interannual variability in biological responses 
will not be readily captured. Therefore, regularly continued monitoring of reserve performance 
remains necessary to monitor reserve effects, which vary at different scales and are influenced by 
multiple ecological processes [50,52,59,61,66,70,72]. Factors including trophodynamics, habitat 
degradation, thermohaline properties, and management actions, among other natural pressures, can 
intermittently affect reserve functioning and additionally warrant continued attention at finer scales 
[2,3,9,14,21–23,33,36–46,53,61,66–77]. In addition, the utility of multiple monitoring periods to 
determine reserve stability or identify novel factors affecting a given reserve has been repeatedly 
demonstrated [50,52,59,61,66,70,72,93]. 

Our study highlights the ecological consequences of continued exploitation and human activity 
throughout southeastern Spanish coastal regions. Low fish densities and high patchiness of habitats 
continue to be observed in unprotected areas as a result of continued fishing pressure, destructive 
practices, nutrient loading, and desalination [85,87–92,104,105,108–110]. While 22 reserve networks 
occur in portions of the Spanish Mediterranean, they only make up ~8% of the exclusive economic 
zone [111,112]. Although management actions are working to address some stressors, their 
effectiveness has been limited to specific locations [85,87–92,104–105,108–110]. In addition, as other 
ocean uses and the human population continue to increase throughout the Mediterranean, their 
effects are likely to intensify within shallow coastal habitats, reinforcing the importance of ongoing 
protections and broader management approaches [62–65,85,87–92,104–105,108–110]. Given emergent 
effects of biological invasions and climate-driven changes to Mediterranean ecosystems, ongoing 
efforts that include spatial protections are urgently needed to preserve the integrity of their habitats, 
marine populations, and coastal communities. As recently documented, it is likely that in the time 
since our study, many factors have continued to affect both unprotected and protected regions of the 
western Mediterranean [62–65,80,85,87–93,103,105,108–110,113–115]. While our study was initiated 
ten years prior to its publication, the information contained in this work provides valuable baselines 
for which to compare ongoing monitoring of shallow fish communities and their habitats within and 
surrounding the reserve. We additionally reinforce the observed stability of fish communities and 
recurring habitat continuity within its most protected shallow areas for which continued 
investigations are warranted. 

This study complements others that have demonstrated the effectiveness of marine reserves in 
enhancing fish populations over time, promoting habitat integrity, and housing distinct and more 
speciose biological communities as a result of diminished human pressures [8–22,41–44,66–72,84,116–
117]. These types of results have been recurrently observed in portions of the Tabarca marine reserve, 
mainly where more continuous habitats occur [41–44,66–72,84]. Continued monitoring of the Tabarca 
reserve and its surrounding areas will be essential as additional stressors affect the coastal 
Mediterranean, and as differential responses within and outside the reserve occur among species and 
their habitats [41–44,62–65,67,68,72,84,85,87–93,104–105,108–110,113–115]. Future evaluations of the 
relationships among habitat patchiness, community composition, and fish population dynamics 
should be carried out among depths and expanded upon from our examination of shallow coastal 
areas. These studies can provide needed information on reserve functioning, in addition to the degree 
of human impacts in unprotected areas, and can be applied toward expanding or refining reserve 
boundaries as warranted. Given broader management actions occurring within the Spanish 
Mediterranean and throughout the European Union [117–121], approaches such as those for the 
Tabarca marine reserve provide a means for buffers on human activities while facilitating ecosystem-
based strategies that consider multiple species, their habitats, and environmental factors. These 
investigations additionally advance understanding of longer-term multiscale reserve effects—the 
results of which can be applied toward enhancing other conservation efforts. As positive biological 
responses continue to be observed in this reserve [41–44,62–65,67,68,72,84,85] and throughout other 
reserves in the western Mediterranean [20,43,44,59,66,70,76,77], there is potential for ongoing 
enhancement of coastal habitats and marine communities. Together with more robust, progressive, 
and systematic management actions, broader spatial approaches that include marine reserves can 
contribute toward facilitating healthier and more resilient ecosystems. 
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Supplementary Materials: Table S1. Average annual densities (fish m-2; ±SE) of all fish species per survey site 
and habitat classification. Figure S1. Least-squares mean density (fish m-2; ±SE) of all fishes and the five most 
abundant species per survey site. Uppercase letters indicate significant differences (p < 0.05, analysis of 
covariance examining site and %vegetated cover, with post-hoc Newman–Keuls tests) among sites for all fishes. 
Lowercase letters indicate significant differences (p < 0.05, analysis of variance examining site and %vegetated 
cover, with post-hoc Newman–Keuls tests) among sites for a given species. Figure S2. Least-squares mean 
density (fish m-2; ±SE) of all fishes and the five most abundant species per survey site. Uppercase letters indicate 
significant differences (p < 0.05, analysis of covariance examining site and habitat diversity, with post-hoc 
Newman–Keuls tests) among sites for all fishes. Lowercase letters indicate significant differences (p < 0.05, 
analysis of variance examining site and habitat diversity, with post-hoc Newman–Keuls tests) among sites for a 
given species. 
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