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Abstract 

 

Patients with coarctation of the aorta (CoAo) often show a Doppler flow pattern 

with diastolic flow in the descending aorta. The effect of arterial stiffness on CoAo 

flow pattern was described in-vitro and with computer models. Study of Doppler 

flow patterns may provide helpful data to support the decision of CoAo treatment. 

Fifty studies were obtained in 31 patients (14 women, 21.5±15.5 years of age). In 

19 patients, studies were performed before and after intervention. Systolic 

invasive gradients were measured (Sgrad). Doppler parameters measured at the 

time of invasive evaluation, included Doppler corrected gradient (Dgrad), diastolic 

velocity at end of T wave (DVT), end diastolic velocity (DVQ), systolic and diastolic 

half pressure times (SHPTc and DHPTc) and velocity runoff (VRc). Arterial stiffness 

was assessed by measuring pulsed wave velocity (PWV) between right carotid and 

radial arteries. 

With simple regression models, Sgrad showed correlation with Dgrad, DVT, DVQ, 

SHPTc, DHPTc and VRc (p<0.01). The best multiple linear regression model 

provided the formula Sgrad = −4.61 + 0.75 × Dgrad + 0.06 × DHPTc (R2=0.77). A 

binary variable named Sign were Sign=0 if Sgrad<20 mmHg and Sign=1 if 

Sgrad≥20 mmHg was created. The best multiple logistic regression model provided 

the formula 𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛

) = −4.70 + 0.12 × Dgrad + 0.06 × DHPTc − 0.0008 × Dgrad ×

DHTPc. A cutoff value of 0.34 for 𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛

) resulted in a sensibility of 96% and 

specificity of 74% for this model. 

A variable named DTail was obtained with DTail=0 if DHPTc=0 and DTail=1 if 

DHPTc>0. In the group with Sgrad below 30mmHg, a negative correlation was 

found between DTail and PWV (p=0.05) suggesting that low aortic stiffness may 

contribute to persistent diastolic flow in the descending aorta. 

Doppler systolic and diastolic parameters correlated well with severity of CoAo. In 

mild to moderate CoAo, Doppler diastolic flow in the descending aorta was more 

likely in patients with lower arterial stiffness. 
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Resumo 

 

A coartação da aorta (CoAo) é uma cardiopatia congénita caracterizada pelo 

estreitamento de um segmento da aorta torácica ou abdominal, mais 

frequentemente localizada no istmo aórtico. O Doppler codificado a cor e o Doppler 

espectral são ferramentas utilizadas no ecocardiograma transtorácico de rotina 

que permitem a avaliação do fluxo sanguíneo na aorta descendente. Em pessoas 

sem cardiopatia, o padrão de fluxo Doppler na aorta descendente apresenta uma 

velocidade máxima inferior a 2 metros por segundo e o fluxo ocorre apenas em 

sístole. Em doentes com CoAo, o padrão de fluxo Doppler apresenta um aumento 

da velocidade de fluxo sanguínea na aorta descendente e, em alguns casos, exibe 

uma persistência de fluxo em diástole, denominada extensão diastólica. 

A gravidade da doença tem sido avaliada de forma invasiva, semi-invasiva ou com 

técnicas mais complexas, estudando a relação entre o diâmetro da CoAo e o 

diâmetro da aorta ao nível do diafragma (CoAo/DAo). No estudo de Carvalho et al. 

(1990), que utilizou a variável CoAo/DAo calculada por angiografia como 

referência padrão de gravidade da doença, o estudo por Doppler demonstrou ser 

mais eficaz em avaliar a gravidade da CoAo quando as quantificações Doppler 

sistólicas e diastólicas foram consideradas em conjunto. No estudo de Tan et al. 

(2005), utilizando a variável CoAo/DAo obtida por ressonância magnética e 

estudos Doppler antes e após implantação de stent, a velocidade de fluxo Doppler 

diastólica na onda T permitiu prever a gravidade da CoAo. Apesar da relação entre 

quantificações diastólicas do padrão de fluxo Doppler e a gravidade da CoAo ter 

sido descrita anteriormente, estudos prévios não utilizaram os gradientes 

invasivos. 

Inicialmente pensou-se que a persistência de fluxo em diástole na aorta 

descendente de doentes com CoAo dependia apenas da gravidade da CoAo. 

Estudos prévios in-vitro (Tacy et al., 1999) e com modelos computacionais 

(DeGroff et al., 2003) sugeriram que a rigidez arterial deve ser considerada na 

avaliação de doentes com CoAo, visto que a extensão diastólica aumenta quando a 

rigidez arterial diminui. 
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Assim, é objetivo desta dissertação descrever a relação entre o padrão de fluxo 

Doppler da CoAo, os gradientes invasivos da CoAo e a rigidez arterial, num grupo 

selecionado de doentes, utilizando modelos de regressão. 

 

Cinquenta estudos foram obtidos em 31 doentes (14 mulheres, 21.5±15.5 anos de 

idade). Em 19 doentes, foram realizadas avaliações antes e após intervenção 

percutânea (dilatação com balão e/ou implantação de stent). Nos 50 estudos 

obtidos, 12 foram apenas de diagnóstico, 19 foram prévios à intervenção 

percutânea e 19 foram obtidos após a intervenção percutânea. Foram medidos os 

gradientes sistólicos invasivos (Sgrad) no cateterismo cardíaco. Por 

ecocardiograma transtorácico foram avaliados vários parâmetros de Doppler 

obtidos na altura do procedimento invasivo, que incluíram o gradiente de Doppler 

corrigido (Dgrad), a velocidade diastólica no final da onda T (DVT), a velocidade 

em telediástole (DVQ), os tempos de hemipressão sistólicos e diastólicos (SHPTc e 

DHPTc) e a velocidade runoff (VRc – tempo para a velocidade decrescer do seu 

valor máximo até 33%). VRc, SHPTc e DHPTc foram corrigidos com a fórmula de 

Bazett para normalizar as medições de tempos para diferentes valores de 

frequência cardíaca. A rigidez arterial foi estimada através da medição da 

velocidade da onda de pulso (PWV - pulse wave velocity) entre as artérias carótida 

e radial direita, por tonometria. 

Através de regressão linear simples, Sgrad apresentou relação com Dgrad, DVT, 

DVQ, SHPTc, DHPTc e VRc (p<0.01). O modelo de regressão linear múltipla foi 

obtido, resultando na formula Sgrad = −4.61 + 0.75 × Dgrad + 0.06 × DHPTc. 

Apesar de Dgrad ter como objetivo estiar o valor que Sgrad por ecocardiografia, o 

modelo de regressão linear múltipla demonstrou que as variáveis que devem ser 

utilizadas para prever Sgrad são Dgrad e DHPTc. Este modelo apresentou um 

melhor ajustamento aos dados comparando com o modelo que inclui apenas a 

variável Dgrad (R2 = 0.77 incluindo Dgrad e DHPTc versus R2 = 0.74 incluindo 

apenas Dgrad), demonstrando que DHPTc resolve parte da imprecisão de Dgrad 

em prever Sgrad. 

Foi criada uma variável binária Sign onde Sign = 0 se Sgrad apresentasse valores 

inferiores a 20 mmHg e Sign = 1 se Sgrad apresentasse valores iguais ou superiores 

a 20 mmHg. O modelo de regressão logística múltipla foi obtido, resultando na 
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formula 𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛
) = −4.70 + 0.12 × Dgrad + 0.06 × DHPTc − 0.0008 ×

Dgrad × DHTPc. Porque a consequência de uma CoAo não tratada tem um impacto 

significativo na saúde do doente, foi escolhido o cutoff de 0.34 para 

𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛
) que resultou em 96% de sensibilidade e 74% de especificidade para 

este modelo, ou seja apenas 4% de falsos negativos e 26% de falsos positivos. Para 

os doentes identificados como falsos positivos no modelo de regressão logística 

proposto, a consequência é apenas a realização de um cateterismo de diagnóstico 

que tem baixa probabilidade de complicações. 

Os estudos prévios que demonstraram o efeito da rigidez arterial no padrão de 

fluxo Doppler simularam esse efeito para CoAo com o mesmo grau de severidade. 

Posto isto, foi estudada a relação de PWV com as restantes variáveis na amostra 

inteira e em grupos selecionados de doentes. Como esperado, não foi encontrada 

relação significativa entre PWV e as restantes variáveis nos 28 doentes em que foi 

obtida medição de PWV (em 22 doentes não foi obtida medição de PWV). Através 

de análise gráfica, o grupo com Sgrad inferior a 30 mmHg foi selecionado (19 

doentes). Para avaliar a relação entre PWV e DHPTc neste grupo, foi obtida uma 

nova variável DTail com DTail = 0 se DHPTc fosse também igual a zero e DTail = 1 

se DHPTc apresentasse valores superiores a zero. Neste grupo com Sgrad inferior a 

30 mmHg, verificou-se uma correlação negativa entre DTail e PWV através do 

modelo de regressão logística com a formula 𝐿𝑛 (
𝑝𝐷𝑇𝑎𝑖𝑙

1−𝑝𝐷𝑇𝑎𝑖𝑙
) = 6.69 − 0.94 × PWV, 

com p=0.05 para o teste da razão de verosimilhanças. Este modelo prevê que para 

cada redução de 1 metro por segundo da PWV, existe uma probabilidade 2.57 

vezes maior para DTail = 1, no grupo de doentes com Sgrad inferior a 30 mmHg. 

Este achado é concordante com os estudos prévios in-vitro e com modelos 

computacionais. Uma artéria com menor rigidez aumenta de diâmetro quando a 

onda de pulso a atravessa e depois regressa ao diâmetro basal. Na presença de 

CoAo, este retorno ao diâmetro basal no início da diástole pode ser o responsável 

pelo fluxo sanguíneo tardio que resulta na extensão diastólica. Por outro lado, uma 

artéria com maior rigidez não sofre o aumento de diâmetro fisiológico quando a 

onda de pulso a atravessa. Assim, a ausência de extensão diastólica em doentes 

com CoAo significativa pode ser devido a uma rigidez arterial aumentada. A 
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relação significativa entre PWV e DTail sugere que a rigidez arterial reduzida pode 

contribuir para persistência de fluxo em diástole, sobretudo em doentes com CoAo 

ligeira ou moderada. Em doentes com CoAo grave, o obstáculo significativo parece 

induzir per se a presença de extensão diastólica, seja o PWV baixo ou elevado.  

 

Em suma, Dgrad e DHPTc são variáveis obtidas por Doppler espectral no 

ecocardiograma que podem ser utilizadas para prever o gradiente invasivo da 

CoAo, Sgrad. Em doentes com CoAo ligeira a moderada, a rigidez arterial parece 

influenciar o valor de DHPTc visto valores mais elevados de DHPTc serem mais 

prováveis em doentes com menor rigidez arterial. Estes resultados foram obtidos 

pela aplicação de modelos de regressão que permitiram construir fórmulas 

matemáticas que podem ser utilizadas ao estudar os doentes com CoAo. 

 

PALAVRAS-CHAVE: Coartação; Gradientes invasivos; Rigidez arterial 
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Preface 

 

Coarctation of the aorta (CoAo) is a congenital heart disease (CHD) characterized 

by the narrowing of a segment of the aorta. Color and spectral Doppler, tools used 

in standard routine echocardiography studies, allow for evaluation of blood flow in 

the aorta. In normal subjects, Doppler flow pattern in the descending aorta shows 

a peak velocity lower than 2 meters per second and flow occurs only during 

systole. In patients with CoAo, Doppler flow pattern shows an increased velocity in 

the descending aorta and, in some cases, a persistence of flow in diastole often 

referred as a diastolic tail. Color Doppler provides information of the narrowing 

site whereas spectral Doppler allows for quantitative analysis. 

 

Previous studies have described a relation between CoAo Doppler flow pattern and 

CoAo severity. Using in-vitro and computer models, a relation between CoAo 

Doppler flow pattern and arterial compliance was demonstrated. 

Carvalho et al. (1990) conducted a study where indices of severity of CoAo derived 

from non-invasive Doppler echocardiography were compared with measurements 

derived angiography. Using 24 studies from 17 patients, Doppler variables, 

including peak systolic and diastolic gradients and time to half peak systolic and 

diastolic velocities, were compared to a single angiography variable, ratio of CoAo 

diameter to the diameter of descending aorta at the level of diaphragm. A peak 

systolic gradient above 40 mmHg or time to half peak diastolic velocity above 100 

ms were found to be highly specific for detecting an angiographic ratio below 0.5, 

with diastolic measurements more sensitive for diagnosis of severe coarctation 

than systolic measurements. They concluded that Doppler echocardiography was 

an effective non-invasive method of assessing severity of CoAo, particularly when 

systolic and diastolic events were considered together. 

Another study conducted by Tan et al. (2005) focused on evaluating the effect of 

successful stenting on the CoAo Doppler flow pattern and identifying TTE indexes 

that could be used for follow-up. A TTE analysis before and after stenting included 

the variables peak systolic pressure gradient, diastolic velocity, end-diastolic tail 

velocity, systolic and diastolic velocity half-time index, systolic and diastolic 
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pressure half-time index. All TTE variables were compared to a single value for 

CoAo severity evaluation, the CoAo index (defined by the ratio of the narrowest 

coarctation cross-sectional area to the area of the abdominal aorta at diaphragm 

level) measured by magnetic resonance imaging. Diastolic velocity above 193 

centimeters per second and a diastolic/systolic velocity ratio above 0.53 were 

highly predictive for a CoAo index below 0.25, and thus severe CoAo. 

Using an in-vitro pulsatile flow model with four levels of CoA severity, Tacy et al. 

(1999) studied the relation between Doppler flow patterns at CoAo site and aortic 

compliance (calculated from local arterial stiffness). Diastolic runoff, defined as 

time between Vmax and 33% Vmax, had a positive linear relation with aortic 

compliance. They concluded that absence of a longer diastolic runoff in Doppler 

flow pattern should not exclude the diagnosis of significant CoAo. 

In a computer model study, DeGroff et al. (2003) sought to investigate fluid and 

wall mechanics present in CoAo. They studied the relationship between diastolic 

runoff in Doppler flow pattern and aortic compliance (calculated from local arterial 

stiffness), using 3 computational numeric models of CoAo. In these simulations, the 

degree of diastolic runoff increased with arterial compliance. It was concluded that 

an increased aortic compliance induced greater dilatation and stored energy 

upstream the CoAo site in systole, with downstream release of the stored energy in 

diastole as the aortic wall recoils. 

 

Although the relation between diastolic quantifications from the CoAo Doppler 

flow pattern and CoAo severity was already described, previous studies used 

variables obtained with the diameter of CoAo and not invasive gradients. But 

persistence of flow in diastole in the descending aorta of CoAo patients was 

thought to be solely dependent on lesion severity. Previous in-vitro and computer 

model studies suggested that arterial stiffness and compliance should be 

considered when evaluating a patient with CoAo, since the diastolic tail increases 

with decreasing arterial stiffness. 

Therefore, this dissertation aims to describe the relation between CoAo Doppler 

flow pattern, CoAo invasive gradients and arterial stiffness, in a group of selected 

patients, using regression models. 
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1 Biological Background 

 

This section is meant to describe CoAo and the concept of arterial stiffness. It 

provides an overview of CoAo definition, morphology and pathophysiology, 

diagnosis and treatment options. The concept of arterial stiffness is also described 

in this chapter. 

 

 

1.1 Coarctation of the aorta 

CoAo, or aortic coarctation, refers to narrowing of a segment of the thoracic or 

abdominal aorta, but it is most commonly located to the aortic isthmus 

(juxtaductal CoAo). CoAo is the seventh most common form of CHD, occurring in 

approximately 5 to 7% of CHD patients (approximately 36 per 100 000 live births), 

more likely in males. In some patients, CoAo manifests soon after birth, whereas in 

others it manifests at an older age. Whether it is genetic, environmental or 

hemodynamic, no single cause for CoAo has been proven. Abnormal flow 

distribution during fetal life with decreased aortic flow has long been suspected 

and histologic studies have demonstrated ductal tissue circumferentially 

surrounding the juxtaductal portion of the aorta. The role of genetic factors is 

increasingly recognized, for example CoAo occurs in approximately 12% of 

patients with Turner syndrome. CoAo is commonly associated with bicuspid aortic 

valve, ventricular septal defect and almost every type of CHD, particularly left 

heart obstructive lesions. A high incidence of associated cardiac abnormalities 

suggests that CoAo is a more complex defect than isolated narrowing of the aorta. 

(Lai et al., 2009) 

 

1.1.1 Morphology 

A juxtaductal CoAo usually results from narrowing of the aortic isthmus, in the 

proximal descending aorta at the arterial duct insertion. Different morphologic 

CoAo patterns can be distinguished based on age at diagnosis. In fetus and infant 

CoAo, the distal transverse aortic arch between the left common carotid and left 
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subclavian arteries is often hypoplastic, the angle between the ascending aorta and 

transverse arch is acute, the aortic isthmus is diffusely hypoplastic, and the arterial 

duct is usually patent. In older children and adult CoAo, aortic arch hypoplasia is 

less common, the coarctation segment is usually discrete and collateral arteries 

bypassing the CoAo are common. Unrelated to the age at diagnosis, the CoAo 

segment is characterized by luminal narrowing due to thickening of intima and 

media layers, hypoplasia and/or tortuosity. The length of the stenotic segment 

varies and the proximal descending aorta immediately past the CoAo often exhibits 

post-stenotic dilation. (Lai et al., 2009) 

The morphology of abdominal CoAo is different from juxtaductal CoAo in that the 

involved segment is often long, the involvement of the renal and mesenteric 

vessels is common and the aortic media is thickened. (Lai et al., 2009) 

 

 

 

Figure 1: Normal aortic arch (left) and aortic arch with CoAo (right). 
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1.1.2 Pathophysiology 

CoAo is usually well tolerated in the fetus because blood flow to the lower body 

and the placenta is supplied predominantly through the arterial duct. But 

narrowing of the aortic isthmus may result in diversion of blood flow from the 

aorta to the arterial duct and pulmonary artery. As a result, the right ventricle 

dilates whereas the left ventricle is pressure loaded, resulting in the ventricular 

size disproportion in the fetus. The hemodynamic burden imposed by severe CoAo 

manifests after birth as the foramen ovale closes and the arterial duct constricts 

and ultimately closes. As a result, the cardiac output and flow to the lower body 

must cross the narrow aortic segment. Under these conditions, systolic blood 

pressure in the upper body is increased. With no patent arterial duct, systolic 

blood pressure is low distal to the CoAo, clinically manifesting as reduced pulse 

amplitude in the femoral arteries. In the neonatal period, a patent arterial duct 

may be present, allowing right-to-left systolic flow from the main pulmonary 

artery to the descending aorta, providing adequate perfusion to the lower body 

and normal volume of the femoral pulse. In the absence of an associated cardiac 

lesion, oxygen saturation in the upper extremities is greater than that in the lower 

extremities, a phenomenon called differential cyanosis. Constriction and closure of 

the arterial duct in neonates with severe CoAo may also lead to left ventricular 

dysfunction. (Lai et al., 2009) 

Later in life, during childhood or in adults, CoAo is usually diagnosed either due to 

a heart murmur, low pulse amplitude in the lower extremities or systemic 

hypertension. Multiple collateral vessels tend to develop between the high-

pressure aortic branches proximal to the CoAo and the low-pressure distal to the 

CoAo. (Lai et al., 2009) 

 

1.1.3 Diagnosis 

Clinical diagnosis of CoAo usually rests on identifying a blood pressure difference 

between the upper and lower extremities, information that can be obtained by 

palpation of both radial and femoral arteries. If a substantial difference between 

the two is found, coarctation of the aorta should be suspected. In a patient without 
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cardiac disease, blood pressure should be the same in upper and lower extremities. 

If the systolic blood pressure is at least 20 mmHg higher in the arms when 

compared to the legs, it is very likely that the patient has CoAo. In neonates or 

infants, the signs of congestive cardiac failure may be also present. (Johnson & 

Moller, 2014) 

Transthoracic Echocardiography (TTE) provides adequate diagnostic information 

in most CoAo cases. However, some patients may require other diagnostic 

modalities, such as magnetic resonance imaging, computed tomography or 

angiography (Lai et al., 2009). 

The basic elements of a standard TTE study are two-dimensional (2D) images 

enhanced by Doppler, color Doppler and M-mode information in multiple imaging 

planes. The TTE is organized by acoustic “windows” from which the heart is 

examined. In pediatric echocardiography, a segmental approach should always be 

used to describe all of the major cardiovascular structures in sequence, allowing 

the imaging of any structural or functional CHD. Any laboratory performing a 

pediatric echocardiogram should have a written examination protocol that 

outlines the views to be obtained, the imaging modalities and the methods for 

recording. (Lai et al., 2009) 

The main goals of echocardiographic examination in the setting of CoAo are: 

evaluation of heart situs and segmental cardiac anatomy; evaluation of aortic arch 

anatomy; color Doppler evaluation of the flow profile in the descending aorta; 

assessment of spectral Doppler flow pattern at the CoAo site; evaluation of flow in 

the arterial duct; evaluation of morphology, size and function of the ventricles, 

inflow and outflow; identification of associated anomalies (Lai et al., 2009). Cross-

sectional images for evaluation of aortic arch anatomy, that reveal the narrowing 

site, are usually best obtained with the transducer positioned near the 

suprasternal notch. Color Doppler shows a turbulent signal at the CoAo site and 

spectral Doppler shows high-velocity flow to the descending aorta, sometimes with 

persistence of blood flow in diastole. In neonates, the diagnosis may be difficult 

due to the presence of the ductus arteriosus. (Johnson & Moller, 2014) 
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Figure 2: Color Doppler (left) and spectral Doppler (right) in CoAo. 

 

Obtained by cardiac catheterization, an invasive diagnosis method, angiography is 

the gold standard imaging method for demonstrating the CoAo morphology. 

Invasive pressure measurements demonstrate systolic hypertension proximal to 

the coarctation and a gradient at the site of the coarctation, shown by pullback of 

the catheter across the lesion during pressure recording. (Johnson & Moller, 2014) 

 

1.1.4 Treatment options 

Treatment options for correction of CoAo include surgery, percutaneous balloon 

angioplasty and endovascular stent implantation. Surgery is the prefered 

treatment option for CoAo in neonates or for severe/complex CoAo anatomy in all 

patients. Balloon angioplasty and/or stent implantation are commonly used for 

treatment of CoAo in older children and adults. Balloon dilation of native 

coarctation avoids some surgery disadvantages but it is often less effective. 

Implantation of a metallic stent at the time of balloon dilation may provide better 

results but in small patients the stents do not allow for growth. Evaluation after 

surgery or transcatheter treatment of CoAo is similar to that of a native CoAo. 

Potential complications after treatment of CoAo that should be addressed include 

residual CoAo (immediately after treatment), recoarctation (development of 

narrowing after successful treatment), aneurysm formation, aortic dissection and 

persistent arterial hypertension. (Johnson & Moller, 2014) 
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Figure 3: Treatment options for CoAo: surgery (left), balloon dilatation (middle) and 

stenting (right). 

 

 

1.2 Arterial Stiffness 

The mechanical behavior of the circulatory system is extremely complex. Arteries 

are known to have viscoelastic properties and powerful adaptive mechanisms. 

Arterial stiffness, and the opposite concept of arterial compliance, is related mainly 

to the viscoelastic properties of arteries. Local and regional arterial stiffness can be 

measured at various sites along the arterial tree. The downside is that elastic 

properties of arteries vary along the arterial tree. (Laurent et al., 2006) 

Local arterial stiffness can be measured through high quality imaging methods, 

such as magnetic resonance imaging or computed tomography. Usually it is 

obtained by measuring the difference between the area or diameter of the artery in 

systole and in diastole. (Laurent et al., 2006) 

Pulse wave velocity (PWV) is generally accepted as a simple, non-invasive and 

reproducible measurement to determine regional arterial stiffness. Carotid-

femoral PWV has been used in epidemiological studies demonstrating the 

predictive value of aortic stiffness for cardiovascular events. (Laurent et al., 2006) 

Because compliant arteries suffer a small increase in diameter when the pulse 

wave passes through, this arterial wall motion absorbs some of the energy 

produced by the left ventricle in systole. This small and brief dilatation of the 

artery slows down the velocity of the pulse wave, but the propagation of the pulse 
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wave is more efficient due to arterial wall elasticity. Therefore, PWV is lower in 

more compliant arteries and higher in stiffer arteries (Figure 4). 

 

 

 

Figure 4: Difference of blood flow velocity in compliant (left) and stiff (right) arteries. 
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2 Statistical background 

 

This section is meant to describe theoretical knowledge for simple and multiple 

linear and logistic regression, explaining how to build regression models and how 

to evaluate them.  

 

 

2.1 Linear Regression 

In regression, when a variable Y is influenced by a variable X, Y is called the 

dependent variable and X is the independent variable. If Y is a continuous variable, 

linear regression aims to represent the influence of one or more independent 

variables on Y through a straight line, called the regression line. (Oliveira, 2009) 

 

2.1.1 Simple linear regression 

In the particular case of simple linear regression, it is assumed that there is only 

the relationship between X and Y. Represented by Yx, each element of the 

population is described by the values of X and Y. A linear regression model allows 

for the equation: 

𝑌𝑥 = 𝜇𝑥 + 𝜀𝑥 =  𝛽0 + 𝛽1𝑥 + 𝜀𝑥 . 

In this equation: 𝑌𝑥 is the dependent variable; μx is the mean value of the 

dependent variable 𝑌𝑥 when the value for the independent variable X is 𝑥; 𝜀𝑥 is the 

statistical error corresponding to possible unknown effects to 𝑌𝑥 beside the effect 

of 𝑥; β0 is the mean value of the dependent variable when the independent variable 

is equal to zero; β1 is the change in the mean value of 𝑌𝑥 for each unit of X. Hence, Y 

answers to X trough a straight line (regression line) with origin in β0 and slope 

equal to β1. The values for ε for the different elements in the population are not 

related and should be independent by having a Gaussian probability distribution. 

(Gomes, 2011) 

Assuming a random sample of size equal to n of a population Y with the 

characteristic X, ((𝑥1, 𝑌1),...,( 𝑥𝑛, 𝑌𝑛)), such as 𝑌𝑖 = 𝜇𝑖 + 𝜀𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 , with 

i=1,…,n, 𝜀𝑖 ⋂ 𝑁(0, 𝜎) and 𝑌𝑖 ⋂ 𝑁( 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖 , 𝜎), we can estimate the parameters 
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of the regression model, β0 and β1, by the method of ordinary least squares or the 

method of maximum-likelihood estimation. (Gomes, 2011) 

The method of least squares is a standard approach to estimate β0 and β1, where 

the regression line is obtained by defining the point where the variance of the 

distance of that point to all others is minimal (Oliveira, 2009). So, this method 

consists on finding the values that produce the minimum value of 𝑆𝑄 =  ∑ (𝑛
𝑖=1 𝑌𝑖 −

𝛽0 − 𝛽1𝑥𝑖)2 using the partial derivatives of SQ with respect to 𝛽0 and 𝛽1. 

Another method for estimation of the parameters of the regression model is the 

maximum-likelihood estimation. Through the assumptions defined earlier for 

the population Y and 𝑌𝑖 , we can conclude that (Y1,…Yn) is a vector of variables Yi 

with Gaussian distribution with 𝜇𝑥 = 𝛽0 + 𝛽1𝑥 and 𝜎, the log-likelihood function is: 

ln 𝐿 (𝛽0, 𝛽1, 𝜎2) = −
𝑛

2
ln(2π𝜎2) −

1

2𝜎2
∑ (𝑌𝑖 − 𝛽0 − 𝛽1𝑥𝑖)2𝑛

𝑖=1 . The estimators for β0 

and β1 can be found by using the partial derivatives of ln 𝐿 with respect to 𝛽0 and 

𝛽1. Both of these methods provide the estimator for β1 and β0 through the 

formulas: 

𝛽̂1=  
∑ (𝑛

𝑖=1 𝑥𝑖 − 𝑥̅)(𝑌𝑖 − 𝑌̅)

∑ (𝑛
𝑖=1 𝑥𝑖 − 𝑥̅)2

 

and 

𝛽̂0=  𝑌̅ − 𝛽̂1𝑥̅ . 

The properties of these estimators stand that 𝛽̂1is an unbiased estimator for β1, as 

𝛽̂0 is an unbiased estimator for β0. Both methods also provide the estimator for 𝜎2 

through the formula: 𝜎̂2 = ∑ (𝑌𝑖 − 𝛽̂0 − 𝛽̂1𝑥𝑖)2𝑛
𝑖=1 / 𝑛 . (Gomes, 2011) 

For testing the significance of the independent variable X, the test null hypothesis 

(H0) states that there is no significant alteration in the mean value of the 

dependent variable Y when X changes (H0 : β1=0), were the alternative hypothesis 

(H1) states that there is a significant alteration in the mean value of Y when X 

changes (H1 : β1≠0 or β1>0 or β1<0). Analysis of Variance (ANOVA) table in used to 

analyze the simple regression model. In an ANOVA table (Table 1), the column 

headings are usually “Source”, “DF”, “SS”, “MS”, “F” and “P”, were “Source” is the 

source of variation in the data (Regression, Error and Total), “DF” is the degrees of 

freedom in the source, “SS” is the sum of squares due to the source, “MS” is the 
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mean sum of squares, “F” is the test statistic F and “P” is the p-value for the F-test. 

(Pennsylvania State University, 2015) 

 

Source DF SS MS F P 

Regression m-1 𝑆𝑆𝑅𝑒𝑔 = ∑(

𝑛

𝑖=1

𝑌̂𝑖 − 𝑌̅)2 𝑀𝑆𝑅𝑒𝑔 =
𝑆𝑆𝑅𝑒𝑔

(𝑚 − 1)
 

𝑀𝑆𝑅𝑒𝑔

𝑀𝑆𝐸
 p-value 

Error n-m 𝑆𝑆𝐸 = ∑ 𝜀𝑖
2

𝑛

𝑖=1

 𝑀𝑆𝐸 =
𝑆𝑆𝐸

(𝑛 − 𝑚)
   

Total n-1 𝑆𝑆𝑇𝑜𝑡 = ∑(

𝑛

𝑖=1

𝑌𝑖 − 𝑌̅)2    

Table 1: ANOVA table with n the total of data, m groups being compared, SS the sum of 

squares where 𝑆𝑆𝑇𝑜𝑡 = 𝑆𝑆𝑅𝑒𝑔 + 𝑆𝑆𝐸 , Y the dependent variable, 𝑌̂ the estimator for Y, 𝑌̅ 

the mean of Y, 𝜀 the statistical error and i=1,…,n. 

 

Assuming the null hypothesis and with n-2 degrees of freedom in all simple 

regression models, the test statistic F has F distribution with parameters (1, n-2). 

With the level of significance of 100(1-α)%, it is also possible to obtain a 

confidence interval for 𝛽1, through [𝛽̂1 − 𝑡
(𝑛−2,

𝛼

2
)
𝑆𝛽̂1

 , 𝛽̂1 + 𝑡
(𝑛−2,

𝛼

2
)
𝑆𝛽̂1

 ], with 

𝑆𝛽̂1
= √

𝑀𝑆𝐸

∑ (𝑛
𝑖=1 𝑥𝑖−𝑥̅)2 . It is also possible to estimate the strength of the linear relation 

between X and Y through the square of the sample correlation coefficient (square 

of 𝑟𝑋𝑌), called the determination coefficient (R2): 

𝑅2 =
𝑆𝑆𝑅𝑒𝑔

𝑆𝑆𝑇𝑜𝑡
=  

∑ (𝑛
𝑖=1 𝑌̂𝑖 − 𝑌̅)2

∑ (𝑛
𝑖=1 𝑌𝑖 − 𝑌̅)2

=
[∑ (𝑥𝑖 − 𝑥̅)(𝑛

𝑖=1 𝑌𝑖 − 𝑌̅)]2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑛

𝑖=1 𝑌𝑖 − 𝑌̅)2
= [

𝑠𝑋𝑌

𝑠𝑋𝑠𝑌
]

2

  

that assumes values within the interval [0,1], were R2≈1 means that there is a 

perfect relation between X and Y while R2≈0 means that there is no relation. 

(Gomes, 2011) 

The residuals of the model should obey the Gauss Markov assumptions: the 

expected value is equal to zero for all observations (unbiased); conditional 

variance is a constant (homoscedasticity); have Normal distribution; the residuals 

are all uncorrelated. Verifying these assumptions can be performed by the analysis 

of the residuals, where a visual examination of the residuals plot alone provides 

indications of possible violation of the Gauss Markov assumptions (Figure 5). 

http://www.psu.edu/
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Figure 5. Possible plots of the residuals. The horizontal line marks the zero. The top left 

plot shows Normal distribution of the residuals. The top 3 plots are all of homoscedastic 

residuals, but the middle and right are biased residuals. The bottom 3 plots are all of 

heteroscedastic residuals, but only the left is unbiased. 

 

If the points in a residual plot are randomly dispersed around the horizontal axis 

with no particular pattern, a linear regression model is appropriate for the data 

because the residuals are homoscedastic (homogeneity of variance) and unbiased, 

otherwise a non-linear model is more appropriate. If the point in a residual plot 

are dominant in one side of the horizontal line marking the zero, this means that 

the distribution of the residuals is not normal. If the dispersion of the residuals is 

not constant and increase for greater values of the predicted values, this is called 

heteroscedasticity and may be corrected by changing the dependent variable (for 

example, using logarithm). When the residuals plot show a particular pattern, the 

residuals are biased, even if there is homoscedasticity. After a visual examination 

of the residuals plot, it is possible to test if the residuals have a normal distribution 

using, for example, the Kolmogorov-Smirnov test. (Oliveira, 2009) 
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2.1.2 Multiple linear regression 

The aim for multiple linear regression is to find a linear equation that can predict 

the mean value of the dependent variable Y as a function of p independent 

variables Xj, with j=1,…,p. Considering an individual of the population with the 

characteristics 𝐱 = (𝑥1, … , 𝑥𝑝), if there is a linear relation with the value associated 

to the characteristic Y (𝑌𝑥), that value can be described by the equation: 

𝑌𝑥 = 𝜇𝑥 + 𝜀𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀𝑥 . 

In this model: 𝑌𝑥 is the dependent variable; 𝜇𝑥 is the mean value of the dependent 

variable; 𝛽0 is the mean value of the dependent variable when the value of all 

independent variable is equal to zero; 𝜀𝑥 is the statistical error corresponding to 

possible unknown effects to 𝑌𝑥 beside the effect of x. The coefficients 𝛽𝑗 indicate 

the changes in the mean value 𝜇𝑥 for each unit of 𝑥𝑗 , when all other variables 𝑥𝑗 are 

constant. This model allows for accessing the marginal effect for each variable 𝑥𝑗 in 

𝜇𝑥. (Gomes, 2011) 

Assuming a sample of size equal to n of a population Y with the characteristic X 

where 𝜀𝑖 ⋂ 𝑁(0, 𝜎), 𝑌𝑖 ⋂ 𝑁( 𝜇𝑖 , 𝜎) and 𝐸(𝜀𝑖𝜀𝑗) = 0 (i≠j), then: 

𝑌𝑖 = 𝜇𝑖 + 𝜀𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 ,   with i=1,…,n 

or in the matrix form: 

𝐘 = 𝐗𝛃 + 𝛆 , where 𝐘 = [

𝑌1

⋮
⋮

𝑌𝑛

] , 𝐗 = [

1 𝑥11

⋮ 𝑥21

… 𝑥1𝑝

⋮ 𝑥2𝑝

⋮ ⋮
1 𝑥𝑛1

⋮ ⋮
… 𝑥𝑛𝑝

] , 𝛆 = [

𝜀1

⋮
⋮

𝜀𝑛

] and 𝐸(𝐘) = 𝐗𝛃 . 

Similar to the simple linear regression, both methods of ordinary least squares and 

of maximum-likelihood estimation provide the same estimators for the vector 

𝛃. When estimating the parameters of the model, vector 𝛃 = (𝛽0, … , 𝛽𝑝), the 

method of least squares consists on finding the values that produce the minimum 

value of 𝑆𝑄(𝛽0, 𝛽1, … , 𝛽𝑝) =  ∑ 𝜀𝑖
2𝑛

𝑖=1 = ∑ (𝑛
𝑖=1 𝑌𝑖 − 𝛽0 − 𝛽1𝑥𝑖1 − ⋯ − 𝛽𝑝𝑥𝑖𝑝)2, or in 

the matrix form 𝑆𝑄(𝛃) = 𝜀𝑇𝜀 = (𝐘 − 𝐗𝛃)𝑇(𝐘 − 𝐗𝛃), by using the partial derivatives 

of SQ with respect to 𝛃. In the alternative maximum-likelihood estimation method, 

the aim is to maximize the log-likelihood function, 𝐿(𝛽0, … , 𝛽𝑝 , 𝜎2) =

∏ ∅𝑛
𝑖=1 (

𝑌𝑖−𝜇𝑖

𝜎
)/𝜎 , were ∅ is the probability density function of the reduced 

Gaussian distribution, by finding the values for 𝛃 that maximize the logarithm of 
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the log-likelihood function using the partial derivatives of 𝑙(𝛃, 𝜎2) with respect to 

𝛃. Both methods provide the formula: 

𝛃̂ = (𝐗𝑇𝐗)−1𝐗𝑇𝐘 . 

𝛃̂ is a vector with (p+1) components. The mean value of 𝛃̂ is 𝛃 and the matrix of 

covariance of 𝛃̂, 𝐶𝑜𝑣(𝛃̂), is 𝜎2(𝐗𝑇𝐗)−1. (Gomes, 2011) 

The ANOVA table can also be obtained for statistical inference of the multiple 

simple regression model (Table 1). 𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑝−1
 is a unbiased estimator for 𝜎2. If 

𝛽̂𝑗−𝛽1

√𝑀𝑆𝐸[(𝐗𝑇𝐗)−1]𝑗𝑖

∩ 𝑇𝑛−𝑝−1, with j=1,…,p and i=1,…,n, then the T-test of the coefficients 

states that there is significant change in the mean value of Y when X changes if 

|𝛽̂𝑗|

√𝑀𝑆𝐸[(𝐗𝑇𝐗)−1]𝑗𝑖

> 𝑡𝑛−𝑝−1;1−𝛼/2 . (Gomes, 2011) 

If 𝛉 = 𝐂𝑇𝛃 is a linear combination of the elements of 𝛃, then 𝛉̂ = 𝐂𝑇𝛃̂ is a best 

linear unbiased estimator (BLUE) according to the Gauss-Markov theorem . 𝛉̂ is a 

Gaussian vector with 𝐸(𝛉̂) = 𝐂𝛃 and 𝐶𝑜𝑣(𝛉̂) = 𝜎2𝐂(𝐗𝑇𝐗)−1𝐂𝑇. (Faraway, 2002) 

If the aim is to test 𝐻0: 𝛉̂ = 𝐡 versus 𝐻1: 𝛉̂ ≠ 𝐡, one option is to use the test statistic: 

𝐹 =
(𝛉̂ − 𝐡)𝑇(𝐂(𝐗𝑇𝐗)−1𝐂𝑇)−1(𝛉̂ − 𝐡) 

𝑞 𝑀𝑆𝐸
 

Assuming 𝐻0, this test statistic has F distribution with parameters (q, n-p-1) and 

𝐂 = [𝐜1
𝑇 , … , 𝐜𝑞

𝑇] is the matrix with the linear combinations interesting to test. For 

example, if the aim is to test if β1=0 and β2 + β3=0, then we have q=2, 𝐜1
𝑇 =

[0 1 0 0 … 0] , 𝐜2
𝑇 = [0 0 1 1 … 0] and 𝐡 = [

0
0

]. (Gomes, 2011) 

As seen in the simple linear regression, the determination coefficient (R2) is 

defined by 𝑅2 =
∑ (𝑛

𝑖=1 𝑌̂𝑖−𝑌̅)2

∑ (𝑛
𝑖=1 𝑌𝑖−𝑌̅)2 =

𝑆𝑆𝑅𝑒𝑔

𝑆𝑆𝑇𝑜𝑡
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇𝑜𝑡
 . But R2 raises with the number of 

parameters, not allowing a reliable information of the number of variables to 

include in the model. Therefore, R2 is often replaced by the adjusted-R2, or 𝑅𝑎
2, 

defined by: 

𝑅𝑎
2 = 1 −

𝑀𝑆𝐸

𝑀𝑆𝑇𝑜𝑡
= 1 −

∑ (𝑛
𝑖=1 𝑌𝑖 − 𝑌̂𝑖)

2/(𝑛 − 𝑝 − 1)

∑ (𝑛
𝑖=1 𝑌𝑖 − 𝑌̅)2/(𝑛 − 1)

 

and whose name comes from the fact that it can be calculated using the same 

values for R2 adjusted with the respective degrees of freedom. (Gomes, 2011) 
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As a consequence of 𝛃̂, it is possible to find the predicted values 𝐘, corresponding 

to the values in the linear regression line, and find the residuals through 𝐞 = 𝐘 − 𝐘. 

The analysis of the residuals should be performed the same way as it was 

described in the simple linear regression model. 

A multiple regression model should not have unnecessary independent variables 

and should have all significant independent variables to explain the variability of 

the dependent variable. Including unnecessary independent variables in the 

regression model may lead to imprecise estimators for the coefficients due to 

excessive fitting of the data, a problem called overfitting. On the other hand, by not 

including all significant independent variables, its effect on the dependent variable 

will be distributed on the other independent variables, biasing the coefficients. 

(Oliveira, 2009) 

Selecting the variables according to the higher value of R2 always leads to the 

choice of the complete model. Even when using the adjusted-R2, this correction is 

still not enough and tends to select too many variables. If the model has less than 

the necessary independent variables, the estimator for 𝜎2 tends to be higher than 

the complete model, therefore it is important to seek a model that has a small value 

for MSE. Backward elimination is a method of selecting the best subset of the 

"complete model" (model with all independent variables) through eliminating one 

by one the independent variables with the higher p-values in the T-test until all 

variables included in the model have p-value lower than the chosen level of 

significance. Another method is to select the independent variables sequentially, 

evaluating the importance of each dependent variable by identified the model 

which produces the lowest value of MSE, called Forward selection. Bidirectional 

elimination is a combination of the two methods. (Gomes, 2011) 

In multiple regression, one independent variable should not be completely 

determined by one or several other independent variables, but it is also possible to 

violate this condition through the presence of multicollinearity. It is important to 

identify and also solve this problem without compromising the quality of the 

model. Sometimes, a simple analysis of the correlation matrix is enough to realize 

the presence of multicollinearity and which independent variables are correlated. 

(Oliveira, 2009) Another method for evaluating the presence of multicollinearity is 
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the term 
1

1−𝑅2 , referred to as a variance inflation factor (VIF). The square root of 

VIF explains how much larger the standard error is, compared with what it would 

be if that variables were uncorrelated. (Hsieh, 1998) 

Another situation that can occur in multiple regression is interaction and 

confounding, Interaction occurs when the effect of one independent variable on 

the dependent variable is not the same for every values of another independent 

variable. For example, when studying the relation between different hospitals 

(dependent variable) and time form diagnosis to treatment, the CoAo severity may 

motivate different times. Confounding happens when adding an independent 

variable provides an alternative explanation for the relation between the 

dependent variable and another independent variable. For example, because in 

CoAo patients different ages require different treatments (Chapter 1.1.4), the 

patient’s age changes the relation between arterial hypertension (dependent 

variable) and type of treatment. These problems are difficult to recognize and the 

solution might be to remove the variable causing the problem or to build separate 

regression models (Oliveira, 2009). 
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2.2 Logistic Regression 

 

Binary regression models are a consequence of a categorized dependent variable. 

Logistic regression model are a particular case of binary regression models where 

the dependent variable assumes only the values 0 and 1. 

 

2.2.1 Simple logistic regression 

Considering a regression model where the dependent variable 𝑌𝑥 has a Bernoulli 

distribution, or 𝑌𝑥 ∩ 𝐵(𝑝𝑥), the probability mass function is  𝑃(𝑌𝑥 = 𝑦) = 𝑝𝑥
𝑦(1 −

𝑝𝑥)1−𝑦, or 𝑌𝑥 {
0 1 − 𝑝𝑥

1 𝑝𝑥
 . For each element of this population, the simple logistic 

model aims to find the constants 𝛽0 and 𝛽1 that resolve the formulas: 

𝜇𝑥 = 𝑝𝑥 =
exp (𝛽0+𝛽1𝑥)

1+exp (𝛽0+𝛽1𝑥)
    and     𝐿𝑛 (

𝑝𝑥

1−𝑝𝑥
) = 𝛽0 + 𝛽1𝑥 (canonic link). 

This means that 𝑝𝑥 has a logistic function and the logarithm of the odds, 𝐿𝑛 (
𝑝𝑥

1−𝑝𝑥
), 

is linear with 𝑥 (Figure 6). (Gomes, 2011) 

 

 

Figure 6: 𝜇𝑥 has a logistic function (left) and 𝐿𝑛 (
𝑝𝑥

1−𝑝𝑥
) is linear with 𝑥 (right). 

 

The maximum-likelihood estimation method, used in linear regression aims to find 

the estimators for 𝛽0 and 𝛽1 that maximize the log-likelihood function defined by 

the formula: 𝐿𝑛 𝐿 (𝒚, 𝒙) = ∑ 𝑙𝑖 = ∑[𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖) − 𝐿𝑛 (1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖))]. The 

estimators for β0 and β1 can be found by using the partial derivatives of the log-
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likelihood function. Both of these methods provide the equation: 

{
∑

𝜕𝑙𝑖

𝜕𝛽0

𝑛
𝑖=1 = ∑ (𝑛

𝑖=1 𝑦𝑖 − 𝑝𝑖) = 0

∑
𝜕𝑙𝑖

𝜕𝛽1

𝑛
𝑖=1 = ∑ 𝑥𝑖(𝑛

𝑖=1 𝑦𝑖 − 𝑝𝑖) = 0
 . Or in the matrix form: 𝐗𝑇(𝐘 − 𝐩) = 0  with Y and 

𝐩 size nx1 matrixes and 𝐗𝑇 = [
1 … 1
𝑥1 … 𝑥𝑛

]. These equations do not have an 

analytical solution, therefore in is necessary to use an iterative method. 

Considering a U function such as 𝑈(𝛽0, 𝛽1) =(∑
𝜕𝑙𝑖

𝜕𝛽0

𝑛
𝑖=1 , ∑

𝜕𝑙𝑖

𝜕𝛽1
)𝑇𝑛

𝑖=1 , the Newton-

Raphson method can be applied. [−
𝜕𝑈

𝜕𝛃
] is the partial derivative matrix of U and it 

can be replaced by 𝐗𝑇𝐖𝐗 with 𝐖 = 𝐷𝑖𝑎𝑔(𝐩(1-p)). This iterative method aims to 

find the values of β0 and β1 where the U function is close to zero. With 𝛃 = (𝛽0, 𝛽1), 

this can be obtained through the formula: 

𝛃(𝑚+1) = 𝛃(𝑚) + [𝐗𝑇𝐖𝐗]
𝛃(𝑚)
−1 [𝐗𝑇(𝐘 − 𝐩)]

𝛃(𝑚)
−1 . 

After finding the estimators for 𝛃, the analysis the logistic regression model should 

be performed. In logistic regression, the Deviance of a model is calculated by 

comparing the simple regression model (M) to the perfectly adjusted model (Ms) 

or to the null model (M0) (Oliveira, 2009). Assuming L as the likelihood function, 

the likelihood-ratio is calculated by 𝜆1 =
𝐿(𝑀)

𝐿(𝑀𝑠)
  and the measurement of the 

Deviance of M to Ms is calculated by 𝐺1 = −2𝐿𝑛(𝜆1). In the same way, assuming 

𝜆0 =
𝐿(𝑀0)

𝐿(𝑀𝑠)
 , the measurement of the Deviance of M0 to Ms is 𝐺0 = −2𝐿𝑛(𝜆0). A 

higher Deviance translates into a larger difference between the two model that are 

being compared. Because 𝜆0 ∩ 𝜒𝑛−1
2  and 𝜆1 ∩ 𝜒𝑛−2

2 , the value for 𝐺0 − 𝐺1 can be 

compared to the 𝜒1
2 quantil of chosen level of significance. This test is called the 

likelihood-ratio test. (Gomes, 2011) 

Other statistical tests can be used in evaluating the logistic regression model such 

as the Wald test, the Score test, the Hosmer-Lemeshow test. (Gomes, 2011) 

In the case of a continuous independent variable and because the canonic link is 

the logarithm of the odds, it is possible to estimate the Odds Ratio (OR) for each 

unit of the independent variable through OR = exp (𝛽1). (Oliveira, 2009) 
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The Receiver Operating Characteristic (ROC) curve is used to evaluate the 

capacity of the model to discriminate between “Y=1” and “Y=0” and it is obtained 

using the sensibility and specificity curves. By means of choosing a cutoff value c, 

𝑌̂ = 1 if the result for the odds is equal or higher than c. The sensibility of a model 

is the probability of correctly predicting “Y=1”, calculated by (𝑌̂ = 1|𝑌 = 1) =

𝑃(𝑌̂=1 ∩ 𝑌=1)

𝑃(𝑌=1)
 . The specificity of a model is the probability of correctly predicting 

“Y=0”, calculated by 𝑃(𝑌̂ = 0|𝑌 = 0) =
𝑃(𝑌̂=0 ∩ 𝑌=0)

𝑃(𝑌=0)
. The probability of false 

negatives can be calculated by 1 − 𝑃(𝑌̂ = 1|𝑌 = 1) and the probability of false 

positives can be calculated by 1 − 𝑃(𝑌̂ = 0|𝑌 = 0). Different cutoff values for the 

model provide different values of sensibility and specificity. (Gomes, 2011) 

The area under the ROC curve measures the percentage of the data that is correctly 

categorized, therefore reflecting the performance of the model. Authors suggest 

that a logistic regression model should have an area under the ROC curve above 

80% for the data to have clinical interest. (Oliveira, 2009) 

 

2.2.2 Multiple logistic regression 

A regression model with the dependent variable Y where 𝑌 ∩ 𝐵(𝑝) and 

𝑌 {
0 1 − 𝑝
1 𝑝

, but instead of one independent variable there are p independent 

variables, 𝐱 = (𝑥1, … , 𝑥𝑝), is a multiple logistic regression model. The mean value of 

Y conditional to x is E[𝑌𝑖|𝐱𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑝)] = 𝜇𝑖 = 𝑝𝑥𝑖
. Then, the formulas for the 

multiple logistic regression are: 

𝑝𝑥 =
exp (𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝)

1+exp (𝛽0+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝)
       and        𝐿𝑛 (

𝑝𝑥

1−𝑝𝑥
) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝. 

Similar to the simple logistic regression, the aim is to find the estimators for 𝛃 =

(𝛽0, 𝛽1, … , 𝛽𝑝) that maximize the log-likelihood function, in this case defined by: 

𝐿𝑛 𝐿 (𝒚, 𝒙) = ∑[𝑦𝑖(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝) − 𝐿𝑛 (1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝))]. This 

method also results in 𝐗𝑇(𝐘 − 𝐩) = 0  with Y and 𝐩 size nx1 matrixes and 𝐗𝑇 a size 

(p+1)xn matrix, which means no analytical solution. Using the iterative Newton-

Raphson method, the estimators for the coefficients 𝛃 = (𝛽0, 𝛽1, … , 𝛽𝑝) can be 
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obtained through the same formula explained in the simple logistic regression:  

𝛃(𝑚+1) = 𝛃(𝑚) + [𝐗𝑇𝐖𝐗]
𝛃(𝑚)
−1 [𝐗𝑇(𝐘 − 𝐩)]

𝛃(𝑚)
−1 . (Gomes, 2011) 

After finding the estimators for 𝛃, evaluation of the model can be made through a 

value that represents a relative measurement of the information lost in a particular 

model, called Akaike’s Information Criterion (AIC). With k parameters and L the 

likelihood of the model, this value can be calculated by AIC = −2[𝐿𝑛(𝐿) − 𝑘]. The 

best model should have low AIC. (Gomes, 2011) 

To select the best set of variables for the multiple logistic regression model, it is 

necessary to first understand how each independent variable behaves in relation 

to the dependent variable (for example, using plot analysis). Then, an analysis of 

the importance of each independent variable should be performed, using a 

quantitative values such as the Deviance and likelihood-ratio test (see Chapter 

2.2.1) and the value of AIC. Similar to the multiple linear regression, the selection 

of the best set of variables can be performed through backward elimination (best 

subset of the complete model), forward selection (selecting independent variables 

sequentially) or bidirectional elimination (combination of backward elimination 

and forward selection). (Gomes, 2011) 

In multiple logistic regression, ROC curve analysis can also be used to evaluate the 

performance of the selected model model. (Oliveira, 2009) 
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3 Methods and Results 

 

Our sample included 31 patients with CoAo that underwent cardiac catheterization 

in Santa Cruz Hospital. Native CoAo was found in 23 patients and 8 patients 

underwent previous intervention. Overall mean age was 21.5 years, form patients 

between 4 and 62 years old, and 14 were women.  In 19 patients, data was 

obtained from before and after intervention (balloon dilatation and/or stenting). 

Therefore, 50 cardiac catheterization studies were included, 12 with only 

diagnostic data, 19 with data before percutaneous intervention and 19 with data 

after percutaneous intervention (Figure 7).  

 

 

 

 

 

                                                                               

 
 

Figure 7: Study sample. 

 

Because there was no significant modification to the patient’s aortic arch before or 

after cardiac catheterization, TTE and arterial stiffness studies performed within 

45 days before or after were not excluded from the data. In the TTE studies 

associated to the diagnostic only cases and before intervention, 28 studies were 

performed the same day or the day before intervention and only 3 studies 

performed within 45 days before intervention. In the TTE studies associated to the 

data after the cardiac catheterization, 17 studies were preformed 1 day after 

intervention and only 2 studies performed within 45 days after intervention. Form 

the arterial stiffness studies associated to the diagnostic only cases and before 

intervention, 14 studies were performed the same day or the day before 

19 After 
intervention 

 

19 Before 
intervention 

12 Diagnosis 

      

50 Cardiac Catheterization studies 

31 patients 
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intervention and only 2 studies were performed within 45 days before 

intervention. In the arterial stiffness studies associated to the data after cardiac 

catheterization, 11 studies were preformed 1 day after intervention and only 1 

study was performed within 45 days after intervention. In total there were 28 

arterial stiffness studies performed and, because there are 50 cardiac 

catheterization studies, 22 patients had missing data for the arterial stiffness 

study. 

The variables included in the data were obtained by cardiac catheterization, TTE 

and arterial stiffness studies (Table 2). 

 

Method Variables 

Cardiac 

Catheterization 
Sgrad – Systolic invasive gradient 

TTE 

 

Dgrad – Doppler corrected gradient 

DVT - Diastolic velocity at the end of T wave 

DVQ - Diastolic velocity at Q wave 

SHPTc - Systolic half pressure time 

DHPTc - Diastolic half pressure time 

VRc - Velocity runoff 

 

Arterial 

Stiffness 
PWV – Pulse wave velocity between right carotid and radial arteries 

Table 2. Variables included in the study. 

 

In the cardiac catheterization, systolic invasive gradients were measured (Sgrad) 

with an invasive catheter and a Transpac® disposable pressure transducer. 

TTE studies were all performed with the Vivid7® ultrasound machine from 

General Electric®. TTE variables included were obtained by measuring the 

Doppler corrected gradient (Dgrad), diastolic velocity at end of T wave (DVT), 

diastolic velocity at Q wave (DVQ), systolic and diastolic half pressure times 

(SHPTc and DHPTc) and velocity runoff (VRc). Doppler gradients are obtained 

through the Bernoulli’s formula were the gradient is equal to 4 times the squared 
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Doppler velocity, which reads ∆𝑝 = 𝑝1 − 𝑝2 = 4𝑣2. Dgrad was obtained by 

subtracting the Doppler gradient before the CoAo site to the Doppler gradient after 

the CoAo site, measured in millimeters of mercury (mmHg). Both in meters per 

second (m/s), DVT as measured at the end of the electrocardiographic T wave, 

marking the beginning of the diastole, while DVQ was measured at the 

electrocardiographic Q wave, marking the end of the diastole. SHPTc was defined 

as the time for the maximum value of the Doppler gradient to decrease to half its 

value, while DHPTc was defined as the time for the Doppler gradient starting at the 

electrocardiographic T wave to decrease to half its value, both in milliseconds 

(ms). VRc was defined as the time for velocity to decrease from maximum value 

(Vmax) to 33% Vmax, in m/s. VRc, SHPTc and DHPTc were corrected with Bazett’s 

formula, where the time is divided by the squared root of the RR interval, which is 

calculated through the heart rate, to resolve the problem that different heart rates 

produce different time measurements in each cardiac cycle. 

Arterial stiffness studies were assessed by tonometry, with the Sphygmocor® 

equipment, and the variable included in the data was obtained by measuring 

pulsed wave velocity (PWV). PWV was measured between right carotid and radial 

arteries, in order to avoid any influence that the CoAo obstruction may have in the 

left radial artery and in the femoral arteries. The method used for measuring the 

PWV (Figure 8) consists on subtracting the time between the electrocardiographic 

Q wave and the start of the carotid pulse wave (t1) to the time between the 

electrocardiographic Q wave and the start of the radial pulse wave (t2), where ∆t = 

t1 - t2. It is also necessary to subtract the distance between the sternal furcula and 

the location of the radial pulse (d1) to the distance between the sternal furcula and 

the location of the carotid pulse (d2), where ∆d = d1 - d2. Then, PWV is a velocity 

calculated by the simple formula ∆t / ∆d, in m/s. 
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Figure 8. Method used for measuring the PWV with tonometry. 

 

Overall, mean Sgrad was 23.5 mmHg, mean Dgrad was 32.2 mmHg, mean DVT was 

1.0 m/s, mean DVQ was 0.3 m/s, mean SHPTc 101.5 ms, mean DHPTc 70.1 ms, 

mean VR 368.7 ms and mean PWV was 7.18 m/s. 

To describe the relation between CoAo Doppler flow pattern, CoAo invasive 

gradients and arterial stiffness, the results were divided into results for invasive 

gradients and results for arterial stiffness. In the results for invasive gradients, 

only the relation between CoAo Doppler flow pattern and CoAo invasive gradients 

was studied. In the results for arterial stiffness, the relation between CoAo Doppler 

flow pattern and arterial stiffness was studied. All statistical analysis was 

performed using R version 3.1.2 software. 
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3.1 Invasive Gradients 

Scatter plot analysis between Sgrad and the different TTE variables was performed 

(Figure 9). All plots suggest a positive relation with Sgrad. The variables Dgrad and 

DHPTc seemed to have the best linear relation with Sgrad. Dgrad seems to slightly 

overestimate Sgrad. The variables SHPTc, DVT and DVQ also showed a positive 

relation with Sgrad. The variable VRc showed a better linear relation for Sgrad 

bellow 30 mmHg.  
 

 

 

 

 

Figure 9: Scatter plot analysis between Sgrad and the different TTE variables. The black 

lines correspond to the regression line for the simple linear regression models. The black 

dots in the VRc plot represent the simple regression model for Sgrad above and below 30 

mmHg. 
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Linear regression models were obtained with Sgrad as the dependent variable. 

Using the level of significance of 5%, a significant relation between variables was 

defined as a p-value for the statistical tests inferior to 0.05. Using simple linear 

regression models, all TTE variables showed a significant relation with Sgrad and a 

positive 𝛽1 coefficient: the model using Dgrad had 𝛽1 = 0.93 with p-value = 1.59x10-

15; the model using DHPTc had 𝛽1 = 0.17 with p-value = 2.62x10-9; the model using 

SHPTc had 𝛽1 = 0.13 with p-value = 0.007; the model using DVT had 𝛽1 = 13.94 

with p-value = 7.49x10-8; the model using DVQ had 𝛽1 = 27.76 with p-value = 

6.39x10-9; and the model using VRc had 𝛽1 = 0.06 with p-value = 1.65x10-6. 

Because all TTE variables showed a significant relation with Sgrad, the complete 

multiple linear regression model included all 6 variables. Backward elimination, 

forward selection and bidirectional elimination methods for selecting the best 

multiple regression model were used. All three methods provided the same 4 

variables Dgrad, DHPTc, SHPTc and DVT with the formula Sgrad = −0.10 + 0.82 ×

Dgrad + 0.13 × DHPTc − 0.05 × SHPTc − 6.19 × DVT. Because SHPTc had a p-

value of 0.18 for the T-test and also had a negative coefficient, contrary to what 

was observed in the simple linear regression model, SHPTc was removed from the 

multiple linear regression model. The multiple linear regression model that 

included the 3 variables (Dgrad, DHPTc and DVT had negative coefficient for the 

variable DVT, opposing to what was observed in the simple linear regression 

model. Therefore, the variable DVQ was also removed from the model. The best 

multiple regression model (Figure 10) included the 2 independent variables Dgrad 

and DHPTc and provided the formula: 

 

𝐒𝐠𝐫𝐚𝐝 = −𝟒. 𝟔𝟏 + 𝟎. 𝟕𝟓 × 𝐃𝐠𝐫𝐚𝐝 + 𝟎. 𝟎𝟔 × 𝐃𝐇𝐏𝐓𝐜. 

 

This model has a test statistic F equal to 76.9 and with a p-value of 1.51x10-15. Both 

coefficients had a p-value inferior to 0.05 for the T-test, were the coefficient for the 

variable Dgrad had p-value = 9.87x10-9 and the coefficient for the variable DHPTc 

had p-value =0.02. This model’s determination coefficient (R2) was equal to 0.766 

and the adjusted R2 was equal to 0.756, meaning that the model provides a good fit 

for the data. 
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Figure 10: Best multiple regression model for the dependent variable Sgrad, obtained 

with R software. 

 

Multicollinearity of the model was studied through the analysis of the correlation 

matrix and calculation of the VIF of the model (Figure 11). The square root of VIF 

explains that the standard error is 1.4 times larger than what it would be if the 

variables were uncorrelated, thus the multicollinearity of the model was 

considered not to be significant and no variable was removed from the model. 

 

 

 

 

Figure 11: Multicollinearity studied by correlation matrix and VIF. 

 

By scatter plot analysis, the residuals of the model seem to be unbiased but 

heteroscedastic (Figure 12). The Normal Q-Q plot seems to demonstrate heavy 
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tailed residuals, but the Kolmogorov-Smirnov normality test for the residuals had a 

p-value = 0.46 which means that, for a level of significance of 5%, the residuals of 

the model were considered to have a Normal distribution. 

 

 

 

Figure 12: Scatter plot (left) and Normal Q-Q plot (right) of the residuals. 

 

Because of the apparent heteroscedastic residuals and the heavy tailed Normal Q-Q 

plot of the residuals, multiple generalized regression models were obtained but 

with no improvement of the model’s R2 or of the residual’s distribution. 

 

Logistic regression models were obtained by transforming the dependent 

variable Sgrad into a binary variable named Sign. This new variable represents the 

presence or absence of a significant invasive gradient, were Sign = 0 if Sgrad is 

inferior to 20 mmHg and Sign = 1 if Sgrad is superior or equal to 20 mmHg, such 

as: 

Sign {  
0 1 − 𝑝Sign

1 𝑝Sign
 

From the hole sample, 23 patients had Sign = 0 and 27 patients had Sign = 1. 

Scatter plot analysis between Sign and the different TTE variables was performed 

(Figure 13). All plots suggest that higher values for all TTE variables are more 
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likely to be associated with Sign = 1. A significant result was found by noticing that 

all patients with DVQ superior to zero had Sign = 1. 

 

 

 

 

 

Figure 13: Scatter plot analysis between Sign and the different TTE variables. Notice that 

all patients with DVQ superior to zero had Sign = 1. 

 

Simple logistic models were obtained with each TTE variable as the independent 

variable. Using the level of significance of 5%, a significant relation between 

variables was defined as a p-value for the likelihood-ratio test inferior to 0.05. With 

Sign as the dependent variable of the simple logistic model: the model using Dgrad 
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had 𝛽1 = 0.14 with p-value = 0.0001; the model using DHPTc had 𝛽1 = 0.003 with p-

value = 1.14x10-5; the model using SHPTc had 𝛽1 = 0.002 with p-value = 0.04; the 

model using DVT had 𝛽1 = 0.29 with p-value = 0.003; the model using DVQ had 𝛽1 = 

0.52 with p-value = 2.06x10-5; and the model using VRc had 𝛽1 = 0.001 with p-value 

= 3.23x10-5. All TTE variables and a positive 𝛽1 coefficient and all p-values for the 

likelihood-ratio test were inferior to 0.05 which means that higher values of the 

TTE variables Dgrad, DHPTc, SHPTc, DVT, DVQ and VRc are more likely to be 

associated with Sign = 1. 

Due to the significant relation with Sign in the simple logistic regression, the 

complete multiple logistic regression model included the variables Dgrad, DHPTc, 

SHPTc, DVT and VRc. The variable DVQ had to be excluded from the multiple 

regression model because fitted probabilities numerically 0 or 1 occurred due to 

the fact that all patients with DVQ>0 had Sign=1. Backward elimination, forward 

selection and bidirectional elimination methods for selecting the best multiple 

regression model were also used. All three methods provided the same 3 variables 

Dgrad, DHPTc and DVT with the formula for the logarithm of the odds 

ratio: 𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛
) = −3.88 + 0.12 × Dgrad + 0.11 × DHPTc − 4.24 × DVT. Because the 

coefficient for the variable DVT was negative and opposing to what was observed 

in the simple linear regression model, this variable was removed from the model. 

After removing DVT the p-value of the likelihood-ratio test for the coefficient 

DHPTc became not significant. Instead of removing the variable DHPTc, AIC of 3 

logistic regression models was compared (Figure 14). The model with only Dgrad 

as the independent variable had an AIC of 42.32. The model with Dgrad and DHPTc 

had an AIC of 40.45. The model that includes the independent variables Dgrad, 

DHPTc and their interaction has an AIC of 40.33, which means that this model 

provides more information. The model that included the interaction between 

Dgrad and DHPTc was considered the best model (Figure 14) and provided the 

formula: 

 

𝑳𝒏 (
𝒑𝑺𝒊𝒈𝒏

𝟏−𝒑𝑺𝒊𝒈𝒏
) = −𝟒. 𝟕𝟎 + 𝟎. 𝟏𝟐 × 𝐃𝐠𝐫𝐚𝐝 + 𝟎. 𝟎𝟔 × 𝐃𝐇𝐏𝐓𝐜 − 𝟎. 𝟎𝟎𝟎𝟖 × 𝐃𝐠𝐫𝐚𝐝 × 𝐃𝐇𝐓𝐏𝐜 . 
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The coefficients had a p-value inferior to 0.05 for the likelihood-ratio test, were the 

coefficient for the variable Dgrad had p-value = 0.006, the coefficient for the 

variable DHPTc had p-value =0.046 ant the coefficient for the interaction between 

Dgrad and DHPTc had p-value =0.059. 

 

 

 

 

Figure 14: Best logistic multiple regression model for odds ratio of the dependent 

variable Sign, obtained with R software. 

 

For further evaluation of the logistic regression model, the ROC curve (Figure 16) 

was obtained through the sensibility and specificity curves (Figure 15). The area 

under the ROC curve was 93.4%, reflecting the percentage of the data that was 

correctly predicted by this model. 
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Because it is more important no to have false negatives for a significant invasive 

gradient (Sign = 1) the best cutoff value choice for 𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛
) of this logistic model 

is 0.34, resulting in a sensibility of 96% and specificity of 74% (Figure 17), which 

means that this model has only 4% of false negatives and 26% of false positives. 

When comparing the ROC curve of the selected model to the model that included 

only the independent variable Dgrad, the area under the ROC curve for the simple 

regression model was lower (91.5%), with a best cutoff value choice of 0.26 

resulting in a lower sensibility (93%) and lower specificity (65%). 

 
 

 

Figure 15: Sensibility and specificity curves of the multiple logistic model. 

 
 

 

Figure 16: ROC curve of the multiple logistic model. 
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Figure 17: Sensibility and specificity values for choosing the cutoff of the model. 
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3.2 Arterial Stiffness 

Previous studies with in-vitro (Tacy et al., 1999) and computed models (DeGroff et 

al., 2003) have suggested that the diastolic tail increases with decreasing arterial 

stiffness, in CoAo with the same degree of stenosis. The aim is to find out if and in 

what way arterial stiffness is influencing the diagnosis of CoAo severity. Therefore, 

the TTE variables included for this subchapter are the ones that were included in 

the multiple linear and logistic regression models seen in the subchapter 3.1, 

which are Dgrad and DHPTc. The variable Dgrad suggests CoAo severity because it 

estimates the invasive gradient, but it does not measure the diastolic tail. The 

variable DHPTc can be used for demonstrating diastolic tail due to the fact that 

patients with DHPTc equal to zero have no diastolic tail and, for the patients that 

have diastolic tail, higher DHPTc means more significant diastolic tail. Because the 

in-vitro and computed model studies used only CoAo with the same degree of 

stenosis, the variable Sgrad was used in this subchapter for selecting groups of 

patients with similar CoAo severity. 

The variable PWV determines the patients that have stiffer arteries (lower PWV) 

and the patients that have more compliant arteries (higher PWV). 

Scatter plots between Sgrad and the TTE variables, Dgrad and DHPTc, were 

obtained (Figure 18). Patients with lower PWV were represented by green dots 

and patients with higher PWV were represented by red dots. Because the mean 

value for PWV in our sample was 7.18 m/s, patients with lower PWV were defined 

as the patients with PWV bellow or equal to 7.18 m/s, and patients with higher 

PWV were defined as the patients with PWV above 7.18 m/s. In the scatter plot 

between Sgrad and Dgrad, no difference was found between patients with higher 

and lower PWV. In the scatter plot between Sgrad and DHPTc, patients with higher 

PWV seem to have lower values of DHPTc, but only in the group of patients with 

Sgrad bellow 30 mmHg. 
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Figure 18: Scatter plots between Sgrad and the TTE variables, Dgrad and DHPTc. In the 

group of patients with Sgrad bellow 30 mmHg (horizontal line in the left plot), patients 

with higher PWV seem to have lower values of DHPTc. The black dots are from patients 

without measurement of PWV (missing data). 

 

Using simple linear regression, no significant relation was found between PWV and 

the variables Sgrad, Dgrad or DHPTc in the 28 patients with PWV measurement 

(22 patients had missing data for PWV). Using the level of significance of 5%, a 

significant relation between variables was defined as a p-value for the F-test 

inferior to 0.05. None of these simple linear regression models had a significant 

relation between the two variables: the model between Sgrad and PWV had p-

value = 0.80; the model between Dgrad and PWV had p-value = 0.44; and the model 

between DHPTc and PWV had p-value = 0.27. 

Since the in-vitro and computed model studies used only CoAo with the same 

degree of stenosis, PWV was studied in groups with similar Sgrad. Because the 

scatter plot between Sgrad and DHPTc showed that patients with higher PWV 

seem to have lower values of DHPTc when Sgrad is bellow 30 mmHg, the group of 

patients with Sgrad inferior to 30 mmHg was studied (total of 19 patients). The 

scatter plot between Sgrad and DHPTc in this group was obtained (Figure 19), with 
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the same green and red codification for patients with lower and higher PWV used 

in Figure 17. 

 

 

 

Figure 19: Scatter plot between Sgrad DHPTc, in the group of patients with Sgrad bellow 

30 mmHg. Patients with higher PWV seem to have lower values of DHPTc. The black dots 

are from patients without measurement of PWV (missing data). 

 

Because DHPTc was equal to zero in most patients with higher PWV, the variable 

DHPTc was turned into a binary variable named diastolic tail (DTail). DHPTc 

higher than zero means that there is a diastolic tail in the Doppler flow pattern. 

Therefore, DTail was equal to 1 if DHPTc was higher than zero and equal to 0 if 

DHPTc was also equal to zero. The boxplot for the relation between PWV and this 

variable was obtained (Figure 20). 

 



 

 
37 

 

 

 

Figure 20: Boxplot between PWV and DTail, in the group with Sgrad bellow 30 mmHg. 

 

The simple logistic regression model with DTail as the independent variable and 

PWV as the independent variable was obtained (Figure 21) and provided the 

formula: 

𝑳𝒏 (
𝒑𝑫𝑻𝒂𝒊𝒍

𝟏−𝒑𝑫𝑻𝒂𝒊𝒍
) = 𝟔. 𝟔𝟗 − 𝟎. 𝟗𝟒 × 𝐏𝐖𝐕 . 

 

Using the level of significance of 5%, a significant relation was defined as a p-value 

for the likelihood-ratio test inferior to 0.05. The model had a negative coefficient 𝛽1 

and a p-value = 0.0495 for the likelihood-ratio test, which means that lower values 

of PWV are more likely to be associated with DTail = 1, in the group of patients 

with Sgrad bellow 30 mmHg. 

The OR of this model (Figure 20) explained that if PWV is 1 m/s lower, patients 

have a 2.57 times higher chance of DTail = 1, in the group of patients with Sgrad 

bellow 30 mmHg. 
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Figure 21: Simple logistic regression model with DTail as the independent variable and 

PWV as the independent variable (top). OR of DTail for each unit of PWV (bottom). 
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4 Discussion 

 

Using scatter plot analysis and simple regression models, it was possible to identify 

a relation between CoAo invasive gradients, or Sgrad, and all individual TTE 

variables: Dgrad, DHPTc, SHPTc, DVT, DVQ and VRc. 

Because Dgrad aims to estimate the value of Sgrad through echocardiography, a 

significant relation between these two variables was expected. But Dgrad does not 

estimate precisely Sgrad, most of the times it overestimates Sgrad by about 10 to 

20 mmHg. Thus, it was important to study the relation between Sgrad and other 

TTE variables in order to find if they may resolve the inaccuracy of Dgrad in CoAo 

patients. 

SHPTc and DHPTc reflect the presence of diastolic tail in the CoAo Doppler flow 

pattern. A higher SHPTc means that the peak systolic pressure takes a longer time 

to decrease, so blood flow during diastole is more likely. DHPTc is easier to 

understand. DHPTc can assume the value zero because in a normal aortic arch 

there is no diastolic tail. In a CoAo patient, a longer time for the peak diastolic 

pressure to decrease (higher DHPTc) reflects a more significant diastolic tail. The 

significant relation found between Sgrad and both SHPTc and DHPTc suggested 

that diastolic tail is related to CoAo invasive gradients. This finding is in 

accordance to what was described by Carvalho (1990), but with CoAo severity 

estimated using invasive gradients instead of diameter ratios. 

DVT and DVQ also reflect the presence of a diastolic tail. A higher the DVT means 

that the diastolic tail is more significant. An observation of DVQ above zero means 

that diastolic tail is present even at end diastole. The significant relation found 

between Sgrad and both DVT and DVQ also suggested that diastolic tail is related 

to CoAo invasive gradients. This finding is in accordance to what was described by 

Tan (2005), but also using invasive gradients instead of diameter ratios. 

VRc was the variable used in in-vitro and computer model studies to describe the 

presence of a diastolic tail. Because VRc measures the time for the maximum 

velocity to decrease to 33% its value, higher VRc suggests a more significant 

diastolic tail. Significant relation between VRc and Sgrad was found using simple 
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linear regression. This finding also supports that diastolic tail is related to CoAo 

invasive gradients. 

Using multiple linear regression, the best model was represented by the formula 

Sgrad = −4.61 + 0.75 × Dgrad + 0.06 × DHPTc. This showed that the variables 

that should be used to predict Sgrad were Dgrad and DHPTc. This model had a 

better fit for the data in comparison to the model using only Dgrad (R2 = 0.77 

including Dgrad and DHPTc versus R2 = 0.74 including only Dgrad). Thus, DHPTc 

seems to resolve part of the inaccuracy of Dgrad in predicting Sgrad. 

The limitation of this model was that residuals seemed to be unbiased but 

heteroscedastic. Multiple generalized regression models did not improve the 

residual’s distribution. 

 

A logistic model that predicts the odds of a significant invasive gradient may be 

useful in selecting the patients that would benefit from treatment. The variable 

Sign was built with Sign = 0 if Sgrad < 20 mmHg and Sign = 1 if Sgrad ≥ 20 mmHg. 

The use of a cutoff value of 20 mmHg was due to the fact that surgical or 

percutaneous treatment of CoAo is usually performed if Sgrad is equal or above 20 

mmHg.  

Sign showed a significant relation with all TTE variables using simple logistic 

regression. Dgrad, DHPTc, SHPTc, DVT, DVQ and VRc are more likely to be 

associated with Sign = 1. The first significant result was found by noticing that all 

patients with DVQ superior to zero had Sign = 1. This means that if there is 

persistence of blood flow at the end of diastole, Sgrad is always above 20 mmHg 

and treatment should be considered. For the rest of the TTE variables, these 

finding are clarified in the same way explained in their relation with Sgrad. 

Using multiple logistic regression, the best model was represented by the formula 

𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛
) = −4.70 + 0.12 × Dgrad + 0.06 × DHPTc − 0.0008 × Dgrad × DHTPc. 

The variables included for the multiple logistic model are the same included in the 

multiple linear model. But in the logistic case, the best model included the 

interaction between Dgrad and DHPTc. The interaction term means that the effect 

of one independent variable on Sign is different for different values of the other 

independent variable. In this model, although the odds for Sign increases with both 
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independent variables, the effect of Dgrad was higher if DHPTc was lower, as well 

as the effect of DHPTc was higher if Dgrad was lower. When we look at the Doppler 

flow pattern, this finding makes sense. When Dgrad is higher, the diastolic slope 

that follows tends to be sharper, thus the time for the diastolic pressure to 

decrease becomes slightly shorter, which translates to a lower DHPTc value. In the 

same way, a lower value of Dgrad tends to have a diastolic slope a little less sharp, 

therefore the time for the diastolic pressure to decrease becomes slightly longer, 

thus DHPTc is higher. 

The multiple logistic model had an area under the ROC curve of 93.4%, reflecting 

most of the data is correctly predicted by this model. The best cutoff value choice 

for 𝐿𝑛 (
𝑝𝑆𝑖𝑔𝑛

1−𝑝𝑆𝑖𝑔𝑛
) was 0.34, resulting in a sensibility of 96% and specificity of 74%. 

With this cutoff value, only 4% of patients that need treatment are not identified 

(false negatives) with the cost that 26% of patients are incorrectly identified with a 

significant invasive gradient (false positives). The consequence of an untreated 

CoAo has a substantial impact on the patient’s health as it often evolves into 

arterial hypertension. A higher number of false positives has only the consequence 

of submitting patients to angiography, an invasive diagnostic technique with low 

likelihood of complications. Therefore, when estimating CoAo severity by TTE, it is 

more beneficial for the multiple logistic model to identify almost all patients that 

need treatment. 

When comparing the ROC curve of the selected model to the model that included 

only the independent variable Dgrad, a lower area under the ROC curve was found 

for the simple regression model (91.5%), also suggesting that DHPTc seems to 

resolve part of the inaccuracy of Dgrad in predicting significant Sgrad (Sign). 

 

By simulating the same CoAo severity, previous in-vitro and computed model 

studies suggested that diastolic tail increases with decreasing arterial stiffness. The 

aim was to find if and in what way arterial stiffness influences the models obtained 

earlier to predict Sgrad. 

As expected, no significant relation was found between PWV and the variables 

Sgrad, Dgrad or DHPTc in the 28 patients with PWV measurement. Absence of a 

significant relation between PWV and both Sgrad and Dgrad showed that higher 
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arterial stiffness does not mean higher degrees of CoAo severity. The absence of 

relation between PWV and DHPTc showed that, when all degrees of CoAo severity 

are included, PWV does not have a significant influence on diastolic tail. Therefore, 

the next step was to choose a group of patients with the same degree of CoAo 

severity. 

In the group of patients with Sgrad bellow 30 mmHg (19 patients), scatter plot 

reflected that higher PWV seemed to have lower values of DHPTc. Therefore, 

representing patients with mild and moderate CoAo severity, this became the 

group for studying how PWV may influence DHPTc. But in this group of patients 

with Sgrad bellow 30 mmHg, higher PWV had a lot of DHPTc values equal to zero, 

hence the need for the variable DTail. 

The simple logistic model with the formula 𝐿𝑛 (
𝑝𝐷𝑇𝑎𝑖𝑙

1−𝑝𝐷𝑇𝑎𝑖𝑙
) = 6.69 − 0.94 × PWV 

explained that PWV 1 m/s lower had a 2.57 times higher chance of DTail = 1, in the 

group of patients with Sgrad bellow 30 mmHg. This finding is in agreement with 

previous in-vitro and computed model studies. A compliant artery increases in 

diameter when the pulse wave passes through. After the pulse wave has passed, 

the artery recoils.  In the presence of a CoAo, the recoil in the begging of diastole 

may be responsible for the late blood flow that results in the diastolic tail. On the 

other hand, a stiff artery does not have a physiological increase in diameter when 

the pulse wave passes and no significant recoil in diastole. Therefore, the absence 

of a diastolic tail in a significant CoAo may be due to an increased arterial stiffness. 

The significant relation between PWV and DTail suggests that low arterial stiffness 

may contribute for the persistence of flow in diastole in CoAo, but only in patients 

with mild or moderate stenosis. In severe stenosis, a significant obstacle may incite 

a diastolic tail, whether the patient has high or low PWV. 

This result was obtained from few data due to the fact that this is a rare disease 

and tonometry is not in everyday use for studying CoAo patients. These findings 

should be considered as suggesting this phenomenon and more arterial stiffness 

studies in CoAo patients should be performed. 

 

In conclusion, Dgrad and DHPTc are TTE variables obtained by spectral Doppler 

analysis that can be used to predict invasive gradients, Sgrad, which quantifies the 
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severity of CoAo. But in patients with mild or moderate CoAo severity, the arterial 

stiffness may influence the DHPTc value. Higher values of DHPTc are more likely in 

patients with lower arterial stiffness, and vice versa. 

These finding where possible by use of regression models. Parametric and non-

parametric statistical tests alone could have provided information about the 

presence or absence of a statistical significant relation between variables. 

However, regression models improve the same information by providing the 

quantification of the influence of those statistical significant variables. With these 

quantifications it is possible to obtain mathematical formulas that can be applied 

when studying patients. 
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A R Scripts 

 

The scripts corresponding to the data processing are shown below. CoAo invasive 

gradients study was performed using linear regression (script A.1) and logistic 

regression (script A.2). Study of arterial stiffness influence using the variable PWV 

was also performed (script A.3). 

 
 
 
 
 
 
A.1 Invasive Gradients - Linear Regression 
 
 
############################## 
### Tese - Susana Cordeiro ### 
###### Linear Regression ##### 
############################## 
 
coao=read.table("CoAoDiast.txt",h=T) 
names(coao) 
length(coao$age) 
 
 
### Dependent variable : 
# Sgrad = sgrad --- invasive pressure gradient 
 
### Independent variables : 
# Dgrad = gradc ---- Doppler method to estimate Sgrad 
# DHPTc = dthpc ---- Diastolic half pressure time 
# SHPTc = sthpc ---- Systolic half pressure time 
# DVT = dvt ----- velocity at the end of T wave 
# DVQ = dvq ----- velocity at wave 
# VRc = drc --- time from Vmax to decrease to 33% Vmax 
 
 
names(coao) 
vari=c("drc","dvt","dvq","sthpc","dthpc","gradc") 
coao=coao[,c("sgrad",vari)] 
summary(coao) 
 
 
 
 
 
 



Appendix A 

 
48 
 

################################################### 
 
### SIMPLE LINEAR REGRESSION:  
 
### Dgrad = gradc 
plot(sgrad~gradc,coao,xlim=c(0,100),ylim=c(0,100));abline(mgradc) 
mgradc=lm(sgrad~gradc,coao);summary(mgradc) 
abline(a=0,b=1,col=2,lty=2) 
# Dgrad slightly overestimates Sgrad 
 
### DHPTc = dthpc 
plot(sgrad~dthpc,coao) 
mdthpc=lm(sgrad~dthpc,coao);summary(mdthpc) 
abline(mdthpc) 
 
### SHPTc = sthpc 
plot(sgrad~sthpc,coao) 
msthpc=lm(sgrad~sthpc,coao);summary(msthpc) 
abline(msthpc) 
 
### DVT = dvt 
plot(sgrad~dvt,coao,col=3) 
mdvt=lm(sgrad~dvt,coao[coao$dvt!=0,]);summary(mdvt) 
abline(mdvt,col=2) 
 
### DVQ = dvq 
plot(sgrad~dvq,coao) 
mdvq=lm(sgrad~dvq,coao);summary(mdvq) 
points(fitted(mdvq)~dvq,col=2,pch=19,coao) 
# Because of a lot of zeros --- new variable was tested 
coao$dvqc=as.factor(with(coao,ifelse(dvq==0,0,1))) 
 
### VRc = drc 
plot(sgrad~drc,coao[coao$sgrad>30,], ylim 
=c(0,100),xlim=c(0,1200),col=3) 
points(sgrad~drc,coao[coao$sgrad<30,],pch=19,col=2) 
# drc > 400 then sgrad > 30 
# there is a different behaviour for sgrad > 30 mmHg 
# new variable drcc 
coao$drcc=with(coao,ifelse(drc<400,1,0)) 
boxplot(sgrad~drcc,coao) 
plot(sgrad~drc,coao) 
mdrc=lm(sgrad~drcc+I(drc*drcc),coao);summary(mdrc) 
points(fitted(mdrc)~coao$drc,pch=19,col=3) 
 
 
############################################## 
 
### Final Graph 
 
par(mfrow=c(3,2)) 
 
plot(sgrad~gradc,coao,xlim=c(0,100),ylim=c(0,100),font.lab=2,pch=19, 
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col=2,ylab="Sgrad",xlab="Dgrad"); abline(mgradc); 
abline(a=0,b=1,col="gray70",lty=2) 
 
plot(sgrad~dthpc,coao,font.lab=2,pch=19,col=4,ylab="Sgrad", 
xlab="DHPTc");abline(mdthpc) 
 
plot(sgrad~sthpc,coao,font.lab=2,pch=19,col="cadetblue",ylab="Sgrad", 
xlab="SHPTc"); abline(msthpc) 
 
plot(sgrad~dvt,coao,font.lab=2,pch=19,col="forestgreen",ylab="Sgrad", 
xlab="DVT"); abline(mdvt) 
 
plot(sgrad~dvq,coao,font.lab=2,pch=19,col=3,ylab="Sgrad",xlab="DVQ"); 
abline(mdvq) 
 
plot(sgrad~drc,coao[coao$sgrad<30,],font.lab=2,ylim 
=c(0,100),xlim=c(0,1200), 
col="darkgoldenrod2",ylab="Sgrad",xlab="VRc") 
points(sgrad~drc,coao[coao$sgrad>30,],pch=19,col="darkgoldenrod2") 
points(fitted(mdrc)~coao$drc,col="gray40") 
 
 
############################################## 
 
### MULTIPLE LINEAR REGRESSION 
 
mod_nulo=lm(sgrad~1,coao) 
mod_completo=lm(sgrad~.,coao) 
m1=lm(sgrad~drc+dvt+dvq+dthpc+sthpc+gradc,coao);summary(m1) 
library(MASS) 
form=~drc+dvt+dvq+dthpc+sthpc+gradc 
m5=stepAIC(mod_nulo,scope=list(lower=~1,upper=form), 
direction="forward"); 
m3=stepAIC(mod_nulo,scope=list(lower=~1,upper=form), 
direction="both"); 
m4=step(m1,direction="backward"); 
summary(m5);summary(m3);summary(m4) 
#Second try: drcc+dvqc replaced drc+dvq, producing the same best model 
 
coao$Sgrad=coao$sgrad 
coao$Dgrad=coao$gradc 
coao$DHPTc=coao$dthpc 
model=lm(Sgrad~Dgrad+DHPTc,coao);summary(model) 
 
 
############################################## 
 
### Muticolinearity 
X=model.matrix(model) 
XX=cbind(X,Y=coao$sgrad) 
cor(XX[,-1]) 
library(car) 
vif(model) # vif = variance inflate factor 
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### Residuals 
par(mfrow=c(1,2)) 
plot(residuals(model),main="Residuals Plot",xlab="", 
ylab="",pch=19,col="cyan4"); abline(0,0) 
#plot(density(rstudent(model))) 
qqnorm(residuals(model), main="Residuals \n Normal Q-Q Plot" 
,pch=19,col="cyan4"); qqline(residuals(model)) 
mean(rstudent((model)));sd(rstudent((model))) 
ks.test(rstudent(model),"pnorm",0,1) 
 
 
########################################## 
 
### Generalized Regression Model 
 
coao$sgrad[coao$sgrad==0]=1 
m8=glm(sgrad ~ gradc + dthpc,gaussian,coao) 
m9=glm(sgrad ~ gradc + dthpc,Gamma,coao) 
summary(m8);summary(m9) 
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A.2 Invasive Gradients - Logistic Regression 

 
 
############################## 
### Tese - Susana Cordeiro ### 
##### Logistic Regression #### 
############################## 
 
coao=read.table("CoAoDiast.txt",h=T) 
cut=20 
coao$sign=with(coao,ifelse(sgrad>=cut,1,0)) 
summary(as.factor(coao$sign)) 
 
 
### Dependent variable - Sign: 
# Sign = 1 if invasive pressure gradient above 20 mmHg 
# Sign = 0 if invasive pressure gradient bellow 20 mmHg 
 
### Independent variables : 
# Dgrad = gradc ---- Doppler method to estimate Sgrad 
# DHPTc = dthpc ---- Diastolic half pressure time 
# SHPTc = sthpc ---- Systolic half pressure time 
# DVT = dvt ----- velocity at the end of T wave 
# DVQ = dvq ----- velocity at wave 
# VRc = drc --- time from Vmax to decrease to 33% Vmax 
 
 
 
names(coao) 
vari=c("drc","dvt","dvq","sthpc","dthpc","gradc") 
coao=coao[,c("sign","sgrad",vari)] 
summary(coao) 
 
 
########################################################### 
 
### SIMPLE LOGISTIC REGRESSION: 
 
par(mfrow=c(3,2)) 
 
### Dgrad = gradc 
boxplot(gradc~sign,coao,col="coral3",ylab=expression(bold("Sign")), 
xlab=expression(bold("Dgrad"))) 
mgradc=glm(sign~gradc,binomial,coao);summary(mgradc) 
 
### DHPTc = dthpc 
boxplot(dthpc~sign,coao,col="cornflowerblue", 
ylab=expression(bold("Sign")), 
xlab=expression(bold("DHPTc"))) 
mdthpc=lm(sign~dthpc,coao);summary(mdthpc) 
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### SHPTc = sthpc 
boxplot(sthpc~sign,coao,col="cadetblue",ylab=expression(bold("Sign")), 
xlab=expression(bold("SHTPc"))) 
msthpc=lm(sign~sthpc,coao);summary(msthpc) 
 
### DVT = dvt 
boxplot(dvt~sign,coao,col="forestgreen",ylab=expression(bold("Sign")), 
xlab=expression(bold("DVT"))) 
mdvt=lm(sign~dvt,coao[coao$dvt!=0,]);summary(mdvt) 
 
### DVQ = dvq 
boxplot(dvq~sign,coao,col="darkolivegreen3", 
ylab=expression(bold("Sign")), 
xlab=expression(bold("DVQ"))) 
mdvq=lm(sign~dvq,coao);summary(mdvq) 
# When dvq>0, sign is always equal to 1 
 
### VRc = drc 
boxplot(drc~sign,coao,col="darkgoldenrod2", 
ylab=expression(bold("Sign")), 
xlab=expression(bold("VRc"))) 
mdrc=lm(sign~drc,coao);summary(mdrc) 
 
 
 
### Likelihood-ratio test ### 
 
pval=c(0);nome=c(0) 
tab=list(); prop=list() 
vari=c("drc","dvt","sthpc","dthpc","gradc") #dvq was removed 
k=length(vari) 
for (i in 1:k) 
{ 
  g=glm(sign~coao[,vari[i]],binomial,coao) 
  anova(g,test="Chisq") 
  (pval[i]=anova(g,test="Chisq")$"Pr(>Chi)"[2]) 
} 
cbind(vari,pval) 
# age and pwv are not significant 
# all 5 TTE variables have p-value < 0.05 
 
 
 
################################################################ 
 
### MULTIPLE LOGISTIC REGRESSION: 
 
form=sign~drc+dvt+sthpc+dthpc+gradc 
modcomp=glm(form,binomial,coao) 
mod_nulo=glm(sign~1,binomial,coao) 
 
library(MASS) 
mfor=stepAIC(mod_nulo,scope=list(lower=~1,upper=form), 
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direction="forward"); 
mboth=stepAIC(mod_nulo,scope=list(lower=~1,upper=form), 
direction="both"); 
mback=step(modcomp,direction="backward"); 
cbind(coao$sign,fitted(mback)) #there are estimated values equal to 1 
summary(mfor);summary(mboth);summary(mback) 
 
# all 3 methods produce the same model mselec 
mselec=glm(sign~gradc+dthpc+dvt,binomial,coao);summary(mselec) 
# but dvt coefficient negative and opposing to the simple regression, 
so dvt was removed 
 
coao$Sign=coao$sign 
coao$Dgrad=coao$gradc 
coao$DHPTc=coao$dthpc 
 
m1=glm(Sign~Dgrad,binomial,coao) 
m2=glm(Sign~Dgrad+DHPTc,binomial,coao) 
m3=glm(Sign~Dgrad*DHPTc,binomial,coao) 
AIC(m1,m2,m3) 
# The model with inferior AIC includes the interaction 
summary(m3) 
 
model=glm(Sign~Dgrad*DHPTc,binomial,coao);summary(model) 
 
 
 
 
 
####################################### 
 
### ROC Curve 
 
library(ROCR) 
fit<-model$fitted 
par(mfrow=c(1,2)) 
pred <- prediction(fit,coao$sign) 
 
# Sensibility and Specificity 
sensibilidade <- performance(pred,"tpr") 
plot(sensibilidade, main="Sensibility and Specificity",col=4,lwd=3) 
especificidade <- performance(pred,"tnr") 
plot(especificidade,add=T,col=2,lwd=3) 
legend("bottomright", "Sensibility (blue)   \nSpecificity (red)  ") 
 
# ROC Curve 
area <- performance(pred, "auc") 
area 
plot(sensibilidade@y.values[[1]]~1-
especificidade@y.values[[1]],t="l",lty=1, 
lwd=3, xlab="1-Specificity", ylab="Sensibility", main= "ROC Curve",) 
abline(1,-1, lty=2, lwd=2) 
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# Values of Dgrad and DHPTc for Sign == 0 and == 1  
cbind(fitted(m2),sg=coao$sgrad,model.matrix(m2)[,-
c(1,4)])[coao$sign==0,] 
cbind(fitted(m2),sg=coao$sgrad,model.matrix(m2)[,-
c(1,4)])[coao$sign==1,] 
 
# Values for Sensibility and Specificity 
cbind(sensibilidade@x.values[[1]],sensibilidade@y.values[[1]], 
especificidade@y.values[[1]]) 
#Choosing a cut of 0.34, the model has a sensibility of 96% and 
specificity 74% 
 
 
 
### ROC curve for the model with only Dgrad as the independent 
variable 
 
model2=glm(Sign~Dgrad,binomial,coao) 
 
fit<-model2$fitted 
pred <- prediction(fit,coao$sign) 
area <- performance(pred, "auc") 
area 
 
# Values for Sensibility and Specificity 
cbind(sensibilidade@x.values[[1]],sensibilidade@y.values[[1]],especifi
cidade@y.values[[1]]) 
#Choosing a cut of 0.26, the model has a sensibility of 93% and 
specificity 65% 
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A.3 Arterial Stiffness 

 
 
############################## 
### Tese - Susana Cordeiro ### 
##### Arterial Stiffness ##### 
############################## 
 
coao=read.table("CoAoDiast.txt",h=T) 
coao$sign=with(coao,ifelse(sgrad>=20,1,0)) 
 
 
### Variables : 
# PWV = pwv -- pulse wave velocity, measurement for arterial stiffness 
# Sgrad = sgrad --- invasive pressure gradient 
# Dgrad = gradc ---- Doppler method to estimate Sgrad 
# DHPTc = dthpc ---- Diastolic half pressure time 
# DTail ---- presence or absence of DHPTc 
 
############################################################### 
 
### Graph analysis 
 
mean(coao$pwv,na.rm=TRUE) 
#PWV bellow and above mean value was chosen as high or low PWV 
 
# PWV and Sgrad 
par(mfrow=c(1,2)) 
plot(sgrad~gradc,t="n",coao,ylab=expression(bold("Sgrad")), 
xlab=expression(bold("Dgrad"))) 
points(sgrad~gradc,pch=19,coao) 
points(sgrad~gradc,pch=19,coao[coao$pwv>7.18,],col=2) 
points(sgrad~gradc,pch=19,coao[coao$pwv<=7.18,],col=3) 
legend("topleft", "Low PWV (green) \nHigh PWV (red)") 
# As expected, PWV does not seem to be associated with Dgrad 
 
# PWV and DHPTc 
plot(sgrad~dthpc,t="n",coao,ylab=expression(bold("Sgrad")), 
xlab=expression(bold("DHPTc"))) 
points(sgrad~dthpc,pch=19,coao) 
points(sgrad~dthpc,pch=19,coao[coao$pwv>7.18,],col=2) 
points(sgrad~dthpc,pch=19,coao[coao$pwv<=7.18,],col=3) 
abline(30,0) 
legend("topleft", "Low PWV (green) \nHigh PWV (red)") 
#Under 30 mmHg, there seems to be association 
 
 
# PWV and DHPTc, in Sgrad<30mmHg 
par(mfrow=c(1,1)) 
plot(sgrad~dthpc,t="n",coao,ylab=expression(bold("Sgrad")), 
xlab=expression(bold("DHPTc")),ylim=c(0,35),xlim=c(0,100), 
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main="Sgrad < 30 mmHg") 
points(sgrad~dthpc,pch=19,coao[coao$sgrad<30,]) 
points(sgrad~dthpc,pch=19,coao[coao$pwv>7.18&coao$sgrad<30,],col=2) 
points(sgrad~dthpc,pch=19,coao[coao$pwv<=7.18&coao$sgrad<30,],col=3) 
legend("topleft", "Low PWV (green) \nHigh PWV (red)") 
 
#Boxplot 
dthpcc=as.factor(ifelse(coao$dthpc>0,1,0)) 
boxplot(coao$pwv[coao$sgrad<30]~dthpcc[coao$pwv!="NA"&coao$sgrad<30], 
col=(c(2,3)),ylab=expression(bold("PWV")), 
xlab=expression(bold("DTail")),main="Sgrad < 30 mmHg") 
 
 
 
################################################################ 
 
#Linear regression - All patients and all Sgrad 
summary(lm(sgrad~pwv,coao)) 
summary(lm(gradc~pwv,coao)) 
summary(lm(dthpc~pwv,coao)) 
 
################################################################# 
 
 
### PWV and DTHPc in patients with Sgrad < 30 mmHg ### 
 
base1=coao[,c("sign","sgrad","dvq","pwv","drc","dvt","sthpc", 
"dthpc","gradc")];base1=subset(base1,pwv>=0) 
base1[order(base1$pwv),] 
base1$DTail=with(base1,ifelse(dthpc==0,0,1)) 
base1=subset(base1,sgrad<30) 
length(base1$pwv) 
base1$PWV=base1$pwv 
 
 
### Binary Regression Model: 
m=glm(DTail~PWV,binomial,base1);summary(m) 
 
# ODDS 
1/exp(coef(m)[2]) 
1/exp(confint(m))[2,] 
 
 
 


