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SUMMARY 

Homocysteine has been established as a risk factor for cardiovascular disease (CVD) by 

mechanisms incompletely defined. S-Adenosylhomocysteine (SAH) is the metabolic precursor of 

homocysteine that accumulates in the setting of hyperhomocysteinemia and is a negative regulator of 

most cell methyltransferases.  

This thesis project investigated whether methylation imbalance, caused by excess SAH, 

disrupts endothelium homeostasis and favors the establishment of a pro-atherogenic phenotype. 

To experimentally address this possibility, studies were conducted in human endothelial cells, 

in which SAH accumulation was induced using either a pharmacologic or a siRNA approach. As the 

major regulator of vascular homeostasis, the endothelium exerts a number of vasoprotective effects 

that are largely mediated by nitric oxide (NO), the most potent endogenous vasodilator. Decreased 

NO bioavailability is a principal manifestation of underlying endothelial dysfunction, an early marker of 

atherosclerosis and CVD. To determine whether excess SAH alters NO bioavailability, the expression 

and activity of endothelial nitric oxide synthase (eNOS), and NO production were monitored in cells. 

These experiments showed that excess SAH increased the levels of eNOS mRNA but caused a 

decrease in eNOS protein and activity, to decrease cellular production of NO. 

Another important feature of endothelial dysfunction is oxidative stress. Studies in endothelial 

cells revealed that a hypomethylating environment, induced by excess SAH, impairs, not only NO 

production, but also the cellular redox state.  Glutathione peroxidase-1 (GPx-1) is a selenoprotein and 

a major cellular antioxidant. A link between homocysteine-associated suppression of GPx-1 and 

endothelial dysfunction had been reported previously; however, the causal molecular mechanisms 

remained unresolved.  The experiments presented here demonstrate a specific mechanism by which 

SAH-mediated hypomethylation suppresses GPx-1 expression and leads to inflammatory activation of 

endothelial cells. The expression of a subset of selenoproteins (including GPx-1) is dependent on a 

specific methylation of the selenocysteine-tRNA (Sec-tRNA).  Thus, SAH accumulation was found to 

inhibit the formation of this methylated isoform of Sec-tRNA resulting in decreased GPx-1 expression, 

as well as alterations in the expression of other selenoproteins, to promote oxidative stress and a 

pro-inflammatory activation state in endothelial cells. 

The observation that Sec-tRNA methylation is decreased by excess SAH, suggests that other 

RNA species may also be targets for SAH-mediated hypomethylation. Therefore, the effect of SAH on 

methylation modifications was determined in total and size-fractionated RNA samples from our cell 

model. Additionally, to confirm these observations, RNA methylation was analyzed in tissue samples 

from a hyperhomocysteinemic mouse model, where SAH accumulation results from a genetic 

disorder affecting homocysteine metabolism.  Conditions of excess SAH altered the content of some 



Summary 

xiv 

RNA methylation modifications, suggesting that specific RNA methyltransferases may be more 

susceptible to inhibition by SAH.    

The activation of endothelial cells that occurs during atherogenesis is characterized by the 

up-regulation of adhesion molecules, which by recruiting circulating leukocytes favor their 

transendothelial migration. In a series of studies, the physiological relevance of SAH-induced 

endothelial cell activation was demonstrated by determining that these SAH-activated cells promoted 

leukocyte adhesion and migration.  Further, the role of DNA hypomethylation on the SAH-induced 

up-regulation of adhesion molecules was examined. ICAM-1 (intercellular adhesion molecule 1) was 

found to be up-regulated by SAH accumulation as well as by a DNA methyltransferase inhibitor, 

suggesting that its expression may be regulated by DNA methylation.  Analysis of its promoter 

methylation; however, showed that it was demethylated in untreated cells, suggesting that it may be 

regulated by factors other than DNA promoter methylation in response to excess SAH.  

To understand better the factors involved in the pro-inflammatory activation of endothelial 

cells, the role of NFkB (nuclear factor kappa B) in SAH-induced responses was examined. These 

studies establish a role for NFkB in the endothelial cell response to SAH and further link these 

responses to a suppression of the epigenetic regulator EZH2 (enhancer of zeste homolog 2).  EZH2 

is a methyltransferase that regulates gene expression by mediating a repressive histone methylation. 

These results identify EZH2 as a new target of SAH regulation important in inflammatory responses, 

demonstrating that EZH2 suppression and NFkB activation mediated by excess SAH accumulation 

may contribute to its adverse effects in the vasculature. 

Overall, these studies implicate SAH as a key modulator of epigenetic mechanisms by 

compromising RNA, DNA, and histone methylation. More importantly, our results clearly present SAH 

as a key player in the disruption of endothelial homeostasis, supporting a role for SAH as an 

important mediator of homocysteine-associated vascular disease.  

 

 

Key words: S-Adenosylhomocysteine, hyperhomocysteinemia, hypomethylation stress, endothelial 

dysfunction, pro-inflammatory phenotype. 
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SUMÁRIO 

A doença cardiovascular é a principal causa de morte nos países desenvolvidos, facto que 

reflete a insuficiência das atuais medidas terapêuticas e de prevenção para esta patologia. 

O aumento do conhecimento sobre os mecanismos moleculares na origem da doença cardiovascular 

poderá assim contribuir para a resolução deste importante problema de saúde pública. A elevação 

dos níveis circulantes de homocisteína é um fator de risco para a ocorrência de doença 

cardiovascular; no entanto, os mecanismos fisiopatológicos subjacentes à relação entre a 

hiperhomocisteinémia e a doença cardiovascular, embora intensamente estudados, permanecem 

ainda por elucidar.  

A homocisteína é um aminoácido sulfurado, em cujo metabolismo as vitaminas do grupo B 

atuam como importantes cofatores ou substratos. Em estudos clínicos, nos quais a concentração de 

homocisteína plasmática foi significativamente reduzida através da administração destas vitaminas, 

não foram observados os efeitos cardio-protetores esperados. Uma teoria alternativa propõe a 

S-adenosilhomocisteína (SAH), o precursor metabólico da homocisteína que se acumula em 

situações em que esta se encontra elevada, como um marcador mais fidedigno do risco de doença 

cardiovascular associado a situações de hiperhomocisteinémia. Sendo a SAH um regulador negativo 

da atividade enzimática da maioria das metiltransferases celulares, que atuam sobre diversos 

compostos (incluindo moléculas como DNA, RNA e proteínas), a sua acumulação poderá originar, 

teoricamente, um ambiente celular de hipometilação.  

A presente tese investigou a possibilidade de o desequilíbrio das reações de metilação 

celulares, provocado pela elevação dos níveis intracelulares de SAH, perturbar a homeostase 

endotelial, favorecendo o estabelecimento de um fenótipo pró-aterogénico e a ocorrência de doença 

cardiovascular. Para tal, desenvolveu-se um modelo de estudo com base em células endoteliais 

humanas, nas quais a acumulação de SAH foi induzida através de abordagens genéticas (RNA de 

interferência) ou farmacológicas (inibição da atividade da enzima responsável pela síntese de SAH,  

a SAH hidrolase). 

O endotélio é o principal regulador da homeostasia vascular, exercendo uma série de efeitos 

vasoprotetores que são largamente mediados pelo óxido nítrico (NO), um potente vasodilatador 

endógeno. A diminuição da biodisponibilidade do NO é uma manifestação importante da disfunção 

endotelial e um marcador precoce de aterosclerose e doença cardiovascular. O trabalho 

experimental desenvolvido revelou que o excesso de SAH diminui os níveis endoteliais de NO, os 

quais estão diretamente relacionados com a diminuição, quer dos níveis de proteína eNOS (sintase 

do óxido nítrico endotelial), quer da sua atividade enzimática. 

Outra característica importante da disfunção endotelial é um aumento de stress oxidativo. 

Várias selenoproteínas, incluindo a glutationa peroxidase-1 (GPx-1), são componentes enzimáticos 
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dos principais sistemas antioxidantes celulares. Estudos anteriores relataram a existência de uma 

associação entre a supressão de GPx-1, induzida por um excesso de homocisteína, e a ocorrência 

de disfunção endotelial, sem no entanto conseguir esclarecer os mecanismos moleculares 

subjacentes. Adicionalmente, encontra-se descrito que a expressão de um subconjunto de 

selenoproteínas, entre as quais a GPx-1, depende da metilação específica do RNA de transferência 

necessário à incorporação do aminoácido selenocisteína (Sec-tRNA). Interessantemente, os 

resultados das nossas experiências revelaram que um ambiente de hipometilação, induzido por um 

excesso de SAH, altera não só a produção de NO, mas também o estado redox celular. 

Efetivamente, as experiências aqui apresentadas demonstraram a existência de um mecanismo 

específico através do qual a hipometilação suprime a expressão de GPx-1 e leva à ativação 

inflamatória das células endoteliais. Os resultados revelaram que a acumulação de SAH inibe a 

formação da isoforma metilada do Sec-tRNA, o que resulta na diminuição da expressão da GPx-1, 

bem como em alterações na expressão de outras selenoproteínas, promovendo, desta forma, um 

estado de stress oxidativo e de ativação pró-inflamatória das células endoteliais.  

A observação de que a metilação do Sec-tRNA é reduzida por um excesso de SAH sugere a 

possibilidade de que outras espécies de RNA possam ser igualmente alvos da hipometilação 

mediada pela acumulação intracelular de SAH. Para averiguar esta possibilidade, foram 

quantificadas modificações de metilação, quer em RNA total, quer em diferentes espécies de RNA 

obtidas por fracionamento de acordo com o seu tamanho molecular, extraídas de amostras do nosso 

modelo celular. Adicionalmente, estas observações foram avaliadas em amostras de tecido obtidas a 

partir de um modelo animal de hiperhomocisteinémia, no qual a acumulação de SAH resulta de uma 

deficiência da enzima CBS (cistationina β-sintetase) envolvida no catabolismo da homocisteína. Em 

ambas as condições estudadas, os resultados revelaram alterações nos níveis de modificações por 

metilação do RNA, sugerindo que as metiltransferases específicas de RNA são suscetíveis à inibição 

da sua atividade enzimática pela acumulação de SAH. 

O estado de ativação de células endoteliais que ocorre durante a aterogénese caracteriza-se 

por um aumento da expressão de citocinas e moléculas de adesão, as quais recrutam leucócitos 

circulantes, favorecendo a sua migração transendotelial e a formação das placas de ateroma. 

A relevância fisiológica da ativação endotelial induzida pela SAH foi demonstrada numa série de 

estudos, nos quais se observou um aumento da expressão de moléculas de adesão e um acréscimo 

na capacidade das células endoteliais promoverem a adesão de leucócitos e a sua subsequente 

transmigração.  

A metilação do DNA é um mecanismo epigenético que pode regular a expressão genética, 

estando a hipometilação das regiões promotoras tipicamente associada com a ativação da expressão 

dos genes correspondentes. Por esta razão, após a confirmação de que SAH induz uma 

hipometilação global do DNA no modelo celular utilizado, foi examinado o papel desta hipometilação 
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na sobre-expressão de moléculas de adesão. Os resultados revelaram que a expressão endotelial de 

ICAM-1 (intercellular adhesion molecule-1), uma importante molécula de adesão, era regulada 

positivamente não só por uma acumulação de SAH induzida no nosso modelo celular, mas também 

pela utilização de um inibidor específico das metiltransferases do DNA. No entanto, a quantificação 

dos níveis de metilação no promotor do gene ICAM1 revelaram um estado de hipometilação nas 

células controlo, ou seja, com níveis normais de SAH. Estes dados demonstram que a indução da 

expressão de ICAM-1 por SAH é mediada por fatores independentes da hipometilação do seu 

promotor. 

Como referido, o excesso de SAH induz um fenótipo pró-inflamatório nas células endoteliais. 

Assim, e com o intuito de compreender melhor os mecanismos moleculares subjacentes, foram 

examinadas as vias de ativação do NFkB (nuclear factor kappa B), um conhecido promotor da 

resposta inflamatória. Os resultados estabelecem um papel da ativação do NFkB nesta resposta 

inflamatória, sugerindo que a supressão do regulador epigenético EZH2 (enhancer of zeste homolog 

2) possa contribuir para esta resposta. O EZH2 é uma histona metiltransferase que regula 

negativamente a expressão genética através da metilação específica das histonas (nomeadamente 

ao estabelecer a trimetilação da lisina 27 na histona H3, ou seja a marca epigenética H3K27me3). A 

acumulação de SAH em células endoteliais resultou numa diminuição da expressão e atividade de 

EZH2, que subsequentemente determinou um aumento de expressão de citocinas pro-inflamatórias e 

moléculas de adesão celular. Estes resultados revelaram assim um novo alvo para a SAH na 

regulação da resposta inflamatória endotelial, demonstrando que a supressão de EZH2 e a ativação 

de NFkB, mediadas pelo excesso de SAH, contribuem para os seus efeitos adversos no endotélio. 

Considerados em conjunto, estes estudos implicam a SAH como um metabolito chave na 

modulação de mecanismos epigenéticos, ao comprometer a metilação do DNA, do RNA e das 

histonas, e mostram claramente que a acumulação de SAH desempenha um papel determinante na 

perturbação da homeostasia do endotélio. Como referido anteriormente, a SAH é o precursor 

metabólico da homocisteína. Os resultados aqui apresentados demonstram um papel importante da 

SAH como  mediador da doença vascular associada à hiperhomocisteinémia, suportando a hipótese 

da SAH ser um possível marcador mais fidedigno do que a própria homocisteína.  

 

Palavras-chave: S-adenosilhomocisteína, hiperhomocisteinémia, stress de hipometilação, disfunção 

endotelial, fenótipo pro-inflamatório. 
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1. Homocysteine Metabolism 

Homocysteine was identified by the Nobel laureate Vincent DuVigneaud in 1932 during his 

pioneering studies on sulfur amino-acid chemistry. In fact, he first discovered the disulfide 

homocystine, and only later identified its reduced form, an intermediate of methionine metabolism, 

which he named homocysteine (1).  

Homocysteine metabolism is shown in Figure 1. Homocysteine is formed by the demethylation 

of the essential amino acid, methionine, via the formation of two intermediate compounds, 

S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) (2). Methionine is first converted to 

SAM through the catalytic action of methionine adenosyltransferase enzymes (MATs). MAT transfers 

the adenosyl moiety of ATP to the methionine molecule, forming SAM, a highly energetic compound. 

SAM is the major methyl-donor compound for cellular methylation reactions, which are catalyzed by 

specific methyltransferases that target important biomolecules, such as DNA, RNA, proteins, and 

lipids (2). Nevertheless, in mammals, most methyl groups transferred from SAM are used in creatine 

formation, in phosphatidylcholine synthesis, and in the generation of sarcosine from glycine (3). After 

the transfer of a methyl group, the methylated product is formed and SAM is converted to SAH.  

Importantly, because SAH has nearly the same, or even higher affinity for the catalytic site of most 

SAM-dependent methyltransferases than SAM, SAH is a potent inhibitor of these methyltransferases 

and the SAM/SAH ratio is often used as an indicator for intracellular methylation capacity (4).  

SAH is further converted into homocysteine and adenosine by SAH hydrolase (SAHH), which 

is ubiquitously expressed in mammalian tissues. The formation of homocysteine from methionine via 

the transmethylation pathway is the only pathway for homocysteine biosynthesis in humans (2).  

Importantly, the SAH hydrolase reaction is reversible and presents a thermodynamic 

equilibrium that strongly favors SAH synthesis rather than its hydrolysis (5). However, under normal 

physiological conditions the reaction is directed towards SAH hydrolysis due to the rapid metabolism 

or export of homocysteine. Homocysteine is located at a metabolic branch point and can be either 

conserved by remethylation back to methionine or irreversibly degraded to cysteine via the 

transsulfuration pathway (5).  

Homocysteine can be remethylated back to methionine by two alternative metabolic pathways, 

the folate-dependent or independent remethylation pathways (Figure 1). 5-Methyltetrahydrofolate 

(5-MTHF) is the active folate derivative and the main circulating form of folate in plasma. In the folate 

dependent-pathway, 5-MTHF supplies the methyl group used by methionine synthase (MS) to 

remethylate homocysteine and produce methionine and tetrahydrofolate (THF). THF is then 

converted to 5,10-methylenetetrahydrofolate (5,10-MeTHF) in the presence of serine and vitamin B6 

by the enzyme serine hydroxymethyltransferase (SHMT). After reduction by 

5,10-methylenetetrahydrofolate reductase (MTHFR), 5,10-MeTHF is converted into 5-MTHF, which 

will be available for the remethylation of a second molecule of homocysteine. MTHFR uses flavin 
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adenine dinucleotide (FAD; the active form of vitamin B2) as a cofactor. The folate-dependent 

remethylation pathway is present in nearly all cells (3, 6).  Additionally, in liver and kidney, 

remethylation also occurs by the folate independent pathway in which methyl groups are donated by 

betaine (also known as trimethylglycine, a derivative of choline oxidation), in a reaction catalyzed by 

the enzyme betaine-homocysteine methyltransferase (BHMT) (3, 6).  

Figure 1 - Schematic representation of homocysteine metabolism. MAT (methionine 
adenosyltransferase), SAHH (S-adenosylhomocysteine hydrolase), CBS (cystathionine 

-synthase), CGL (cystathionine γ-lyase), MS (methionine synthase), SHMT (serine 
hydroxymethyltransferase), MTHFR (5,10-methylenetetrahydrofolate reductase), BHMT 
(betaine-homocysteine methyltransferase).  

 

Homocysteine can be irreversibly metabolized through the transsulfuration pathway, which is 

mainly confined to the liver, kidney, small intestine and pancreas (7). In the first step of this pathway, 

cystathionine β-synthase (CBS) catalyzes the condensation of homocysteine and serine to form 

cystathionine using pyridoxal phosphate (PLP or vitamin B6) as a co-factor (5).  Cystathionine is 

further metabolized to produce cysteine by another PLP-requiring enzyme, cystathionine γ-lyase 

(CGL) (5, 8). In addition to protein synthesis, cysteine is used in the synthesis of glutathione, an 

important cellular antioxidant (5, 9). The sulfur end product of cysteine metabolism is sulfate, which 

can be excreted by the kidneys (10). 

In addition to the homocysteine metabolic pathways, and to maintain the optimal intracellular 

levels of homocysteine, cells may also export homocysteine. The mechanisms that regulate 

homocysteine export into the extracellular compartment are not completed defined. Nevertheless, two 

types of transport of homocysteine across the cell membranes were suggested: one involving the 
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removal of the reduced form of homocysteine (with a free thiol group) to the extracellular 

compartment, and the other the transport of the oxidized, disulfide forms of homocysteine, that are 

most abundant in plasma, into cells (11). In plasma, the majority (98-99%) of homocysteine is rapidly 

oxidized, reacting with free thiol-containing molecules (including small thiol molecules such as 

homocysteine or cysteine, and proteins with free cysteines, such as albumin) to form disulfides. The 

remaining 1-2% of plasma homocysteine remains in its reduced form (5, 11). Total plasma 

homocysteine includes the sum of the circulating homocysteine molecules either in its reduced or 

oxidized forms.   

Homocysteine can be cleared from the organism by urinary excretion, but 98-99% of plasma 

homocysteine is reabsorbed in the kidney (12).  The remethylation and transsulfuration pathways play 

major roles in maintaining circulating homocysteine levels. Nevertheless, when renal function is 

compromised, homocysteine levels often become elevated (5, 12). 

2. Hyperhomocysteinemia 

The intracellular concentration of homocysteine is under tight control. Once formed in the cell, 

homocysteine is either metabolized to cysteine or remethylated to methionine or exported from the 

cell.  Hence, cellular export of homocysteine reflects the balance between homocysteine production 

and its catabolism. Persistent elevation of homocysteine in the blood defines the condition called 

hyperhomocysteinemia. In healthy adults, fasting homocysteine concentrations in plasma are usually 

within a 5-15 µmol/L range (13–15). Hyperhomocysteinemia is classified according to the levels of 

homocysteine accumulated, as mild (15-30 µmol/L), moderate (31-100 µmol/L), or 

severe (>100 µmol/L) (14, 16, 17).  

Several factors can contribute to the circulating levels of homocysteine. In fact, plasma 

homocysteine levels are influenced by various non-genetic as well as genetic determinants.  

Non-genetic determinants of plasma homocysteine include inadequate concentrations of        

B vitamins that play a vital role in the metabolism of homocysteine. As mentioned in the previous 

section, folate is a primary substrate for homocysteine remethylation and other B vitamins, such as 

vitamin B12, vitamin B6, and vitamin B2, are co-factors for the major homocysteine regulating enzymes 

(Figure 1). As such, plasma concentrations of homocysteine are inversely related to plasma 

concentrations of folate, vitamin B12 and vitamin B6, as well as to the intake of these vitamins (18). The 

most consistent association has been found with lower folate intake or with lower plasma 

concentrations of folate (17). A modest inverse relationship has been reported between plasma 

concentrations of vitamin B2 and homocysteine; however, this association is restricted to subjects 

carrying the MTHFR 677TT genotype (see below). In addition, normal kidney function maintains 

optimal plasma levels of homocysteine, and impaired renal function is often associated with mild to 

moderate hyperhomocysteinemia (5, 12). Plasma homocysteine concentrations increase with age. In 
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fact, homocysteine levels approximately double from childhood to old age (2, 5). Gender also 

significantly affects concentration of plasma homocysteine, with males having higher levels than 

females (5, 17). A rise in plasma homocysteine concentrations with menopause has been also 

described (17). Lifestyle factors can also modulate the circulating levels of homocysteine. Tobacco 

smoking, high coffee consumption, alcoholism, and lack of exercise are examples of lifestyle factors 

associated with mild hyperhomocysteinemia (19).  Several pharmacological agents can also disturb 

homocysteine metabolism, such as certain anti-carcinogenic agents (e.g. methotrexate or 

sulfasalazine) and anticonvulsants (e.g. carbamazepine or phenytoin) (22). Lastly, pathologic 

conditions, such as hypothyroidism, psoriasis, lymphoblastic leukemia and other malignancies, were 

also associated with hyperhomocysteinemia (22). 

Genetic determinants cause mild to severe hyperhomocysteinemia. Severe 

hyperhomocysteinemia is caused by rare genetic defects in either homocysteine transsulfuration or 

remethylation pathways. CBS deficiency or classical homocystinuria, an autosomal recessive disorder 

that affects the transsulfuration pathway, is the most common inborn error of homocysteine 

metabolism (20). In addition to severe hyperhomocysteinemia and homocystinuria, the biochemical 

phenotype of CBS deficiency also includes hypocysteinemia, and hypermethioninemia, due to 

increased homocysteine remethylation (20). Phenotypic consequences of CBS deficiency include 

thromboembolism and vascular occlusion, skeletal abnormalities, dislocation of the optic lenses, 

marfanoid features, and varying degrees of neurological impairment. In these patients, early 

homocysteine-lowering treatment significantly reduces the risk of life-threatening vascular events 

despite imperfect biochemical control of homocysteine levels (20).  

Other genetic causes of hyperhomocysteinemia include disorders that cause cobalamin 

(vitamin B12) deficiency. Inborn errors of cobalamin metabolism can affect its absorption, transport, as 

well as its intracellular metabolism, namely adenosylcobalamin synthesis, methionine synthase 

function, or both (21). 

Several pieces of evidence lead to the conclusion that the more common mild forms of 

hyperhomocysteinemia are, at least partially, genetically based (22). For this reason, almost every 

gene involved in homocysteine metabolism has been analyzed for functional polymorphisms that 

could affect the circulating concentrations of homocysteine, and many genetic variants have been 

identified. However, one MTHFR polymorphism has been the most consistently associated with 

plasma homocysteine variability. In fact, the major known genetic determinant of plasma 

homocysteine levels in the general population is the 677C>T variation in the MTHFR gene (23). 

MTHFR is a FAD-dependent enzyme involved in the folate-dependent remethylation of homocysteine. 

The common MTHFR C677T polymorphism determines the synthesis of a thermolabile enzyme with 

reduced activity (24). Homozygosity for the thermolabile MTHFR variant increases the plasma 

concentrations of homocysteine by approximately 25% in individuals with low folate status (25). 
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3. Hyperhomocysteinemia and Cardiovascular Disease 

Cardiovascular diseases (CVD) are the number one cause of death in the Western 

industrialized world. Meta-analyses have shown that, in the general population, mild 

hyperhomocysteinemia is an independent risk factor for CVD, with a prevalence around 5%           

(19, 26, 27). 

The hypothesis that elevated homocysteine may contribute to vascular disease was suggested 

by McCully (1969) on the basis of postmortem observations of widespread arterial disease in young 

patients with markedly elevated homocysteine concentrations due to different genetic causes           

(1, 6, 28). These observations formed the basis for the so-called Homocysteine Theory that suggests 

the importance of hyperhomocysteinemia in the development of atherosclerosis. McCully raised the 

important question of whether mild to moderate elevations of homocysteine, common in the general 

population, would increase the risk of vascular disease (1, 29).  

In 1976, Wilcken and Wilcken provided the first evidence for an association between impaired 

homocysteine metabolism and CVD in the general population (30). Since these observations, data 

from a large number of clinical and epidemiological studies have implied an important role for mild 

hyperhomocysteinemia as an independent risk factor for CVD and related-mortality (26). Large 

meta-analysis studies concluded that every increase of 5 μmol/L in plasma concentration of 

homocysteine increases the risk of CVD by approximately 20%, independently of traditional risk 

factors, such as diabetes, hypertension, smoking and hypercholesterolemia (31). 

3.1. Homocysteine and Endothelial Dysfunction and Activation 

Increased levels of plasma homocysteine are associated with various forms of vascular 

disease, including arterial and venous thrombosis, in which a common feature is endothelial 

dysfunction, an early step in atherogenesis. The term 'endothelial dysfunction' refers to the 

impairment of the normal homeostatic properties of the vascular endothelium, which include 

endothelium-dependent regulation of vascular tone, hemostasis, and inflammation. A decrease of 

nitric oxide bioavailability and an impairment of cell redox balance are major features of endothelial 

dysfunction (Figure 2). Endothelial dysfunction often leads to a pro-inflammatory state (endothelial 

activation) that precedes the formation of atherosclerotic plaques (32). The detrimental effect of 

homocysteine on the endothelium may explain the increased risk for CVD associated with 

hyperhomocysteinemia (33). 
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Figure 2 - Schematic representation of major steps of the atherosclerosis process.  

 

The mechanisms by which homocysteine promotes endothelial dysfunction are not fully 

understood, although several effects known to disturb endothelial homeostasis have been associated 

with hyperhomocysteinemia (summarized in Figure 3). 

   

 

Figure 3 - The harmful effects of homocysteine in the endothelium (red dots indicate that these 
effects were previously suggested to be associated with elevated SAH).  
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Different studies have reported increased oxidative stress and impaired vasodilation, due to 

decreased nitric oxide (NO) bioavailability, in the context of hyperhomocysteinemia. Cellular oxidative 

stress is characterized by an increase in oxidants over antioxidants, which leads to an imbalance of 

the redox state. Increased levels of reactive oxygen species (ROS), such as hydrogen peroxide, 

superoxide anions and hydroxyl radicals, contribute to a more oxidant environment (34). There are 

several means by which homocysteine can promote ROS accumulation, these include: 

homocysteine’s auto-oxidation, endothelial nitric oxide synthase (eNOS) uncoupling, and the inhibition 

of the activity of important antioxidant enzymes, such as glutathione peroxidase-1 (GPx-1) or 

superoxide dismutase (SOD) (35–37). The reaction of superoxide with NO produces the strong 

oxidant peroxynitrite (ONOO-) and, simultaneously, decreases NO bioavailability (33). NO is 

considered a major endogenous anti-atherosclerotic molecule, as it is a potent vasodilator, and it 

inhibits monocyte and platelet adhesion, smooth muscle cell proliferation, and low density lipoprotein 

(LDL) oxidation (38, 39). Increased plasma levels of homocysteine have been associated with 

impaired vascular tone, due to the decrease in NO bioavailability and increase of endothelin-1 (ET-1), 

a potent vasoconstrictor (35). Vascular dysfunction was observed in an animal model of diet-induced 

mild hyperhomocysteinemia (40). Moreover, oxidative stress was shown to contribute to this 

association in various in vivo studies (41, 42). In addition, decreased levels of NO were observed in 

several vascular beds obtained from mice with mild hyperhomocysteinemia (35). Importantly, elevated 

homocysteine levels have also been associated with an increase of asymmetric dimethylarginine 

(ADMA) in endothelial cells (43). ADMA is a by-product of the hydrolysis of methylated proteins and 

an endogenous inhibitor of NO synthases (43). Therefore, ADMA has been suggested as a mediator 

of reduced NO availability during hyperhomocysteinemia (44). 

Moreover, homocysteine induces endothelial inflammation and activation of the coagulation 

cascade, further contributing to the progression of atherosclerotic lesions. In studies using cell and 

animal models, homocysteine triggered the activation of NFkB, a transcription factor known to 

stimulate the production of cytokines, chemokines, leukocyte adhesion molecules, and hematopoietic 

growth factors (45). In other studies using vascular endothelial cells, homocysteine increased the 

expression of important adhesion molecules, such as E-selectin and vascular cell adhesion protein-1 

(VCAM-1) (46, 47). These adhesion molecules and cytokines enhance the binding of leukocytes to 

the endothelium and promote their transmigration to the vessel wall. More recently, it was shown that 

in humans, plasma levels of homocysteine correlate with those of interleukin 6 (IL-6) and interleukin-1 

(IL-1) receptor antagonist (39, 48). Cell culture studies also showed that homocysteine induces 

activation of the coagulation cascade, favoring a pro-coagulant state and platelet adhesion. 

Endothelial cells exposed to homocysteine had increased levels of tissue factor (TF) and enhanced 

activation of factor V to Va (2). Plasma of patients with coronary artery disease showed a correlation 

between homocysteine and fibrinogen, an acute-phase protein involved in vascular inflammation and 
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a marker of endothelial dysfunction. Von Willebrand factor, another marker of adverse changes to the 

endothelium, was also found increased in plasma from hyperhomocysteinemic patients with 

premature arterial disease (2). 

Endoplasmic reticulum (ER) stress is another deleterious effect associated with high 

concentrations of homocysteine. ER stress is characterized by an accumulation of misfolded proteins 

in the ER lumen, which triggers the unfolded protein response (UPR) and increases the expression of 

stress response genes, such as GRP78 and GRP94. ER stress can induce inflammation and 

apoptosis, which can favor the progression of atherosclerotic lesions (39). 

Several pathways contribute to homocysteine’s harmful effects on the endothelium to promote 

vascular disease progression. For example, both ROS release and ER stress can activate apoptosis 

(45).  Oxidative stress contributes to LDL oxidation and the formation of foam cells, which are 

determinants of atherosclerotic plaque growth. Together with enhanced activation of coagulation 

pathways, decreased NO levels lead to increased platelet aggregation.  Furthermore, as has been 

shown in vascular cells from animal models of hyperhomocysteinemia, homocysteine-induced 

peroxynitrite can induce apoptosis and reduce cyclin A levels, promoting cell cycle arrest and 

preventing replacement of damaged endothelial cells (36, 39).  Thus, effects of excess homocysteine 

on the endothelium promote a cascade of events that will affect surrounding cells and tissue, 

contributing to CVD. 

3.2. S-Adenosylhomocysteine and Cardiovascular Disease 

As discussed above, several studies concluded that elevations of plasma homocysteine in the 

mild to moderate range were an independent risk factor for CVD in general population.  Subsequently, 

to unequivocally establish the causal effect of increased plasma homocysteine in the promotion of 

CVD, several randomized controlled studies were conducted to examine whether 

homocysteine-lowering B-vitamin therapy would decrease the occurrence of adverse cardiovascular 

events. Surprisingly, despite a substantial, quick and long lasting effect on lowering the 

concentrations of plasma homocysteine, the majority of these intervention trials and the subsequent 

follow-up meta-analysis studies have shown no clear clinical benefit of these vitamin treatments on 

vascular disease risk and mortality (49–53). An alternative theory proposes that SAH, rather than 

homocysteine, may be a more accurate measure of CVD risk (54–57). SAH is the homocysteine 

precursor that accumulates in the setting of hyperhomocysteinemia and growing evidence shows that 

B-vitamin treatments that reduce plasma homocysteine fail to lower plasma (58) and intracelular SAH 

(59). 

To date, association studies between SAH and CVD are still scarce, possibly due, in part, to 

the sample preparation methodologies necessary to preserve SAH that can be difficult in large-scale 

studies. Nevertheless, experiments in mice have established an association between excess SAH 
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and CVD (60), suggesting SAH as a more sensitive biomarker for atherosclerosis than homocysteine 

(56). A prospective cohort study in coronary angiographic patients showed that increased plasma 

SAH levels are significantly correlated with an increase in CVD events (57). Moreover, a 

cross-sectional cohort study of 402 individuals with low CVD risk, found an association between SAH 

and subclinical atherosclerosis, implicating SAH as a marker of early atherosclerotic disease (61). 

Taken together, these observations support the concept that SAH, rather than homocysteine, may be 

the culprit in the CVD risk that has been associated with hyperhomocysteinemia. Nevertheless, the 

underlying molecular mechanisms are still elusive. 

4. S-Adenosylhomocysteine and Cell Hypomethylation 

SAH is the homocysteine precursor that accumulates in the setting of hyperhomocysteinemia 

due to the reversibility of SAH hydrolase reaction. As discussed above, the SAH hydrolase reaction is 

reversible and presents a thermodynamic equilibrium that strongly favors SAH synthesis rather than 

its hydrolysis. Therefore, increased homocysteine levels can lead to SAH accumulation as well. In 

fact, several studies report SAH accumulation under conditions of hyperhomocysteinemia in humans 

and in animal models (62–65).  

Homocysteine metabolism is biochemically linked to the methylation status of several 

biomolecules. In fact, cell methyltransferases use SAM as a methyl donor to methylate various 

targets, including DNA, RNA, and proteins (66). A common feature of these reactions is the 

production of SAH. SAH is, simultaneously, a by-product and a potent inhibitor of the activity of 

SAM-dependent methyltransferases. In fact, SAH has nearly the same (or greater) affinity for the 

catalytic site of most methyltransferases than SAM (4). Hence, homocysteine-induced SAH 

accumulation may inhibit the activity of cell methyltransferases, thereby disrupting methylation 

homeostasis and promoting a hypomethylating environment. Targets of SAH-mediated methylation 

inhibition include key determinants of gene expression: DNA, RNA, and proteins. Therefore, DNA, 

RNA, or protein hypomethylation are potential mechanistic links between hyperhomocysteinemia and 

CVD and may contribute to the molecular basis of homocysteine-induced vascular toxicity. 

4.1. Targets of S-Adenosylhomocysteine-Mediated Methylation Inhibition  

4.1.1.  DNA 

DNA methylation plays an important role in the epigenetic regulation of gene expression. 

Epigenetics refers to heritable traits that are not a consequence of the DNA sequence (67, 68). 

Epigenetic marks, such as DNA methylation, regulate gene expression during development and 

adulthood, and they can determine cell and tissue specific gene expression. 
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Methylation of the carbon 5 position of the cytosine ring (Figure 4) is the most common 

modification on the double helix, and this cytosine methylation can modulate the transcriptional 

potential of genomic DNA (69).  

 

 

 

 

Figure 4 – Chemical structure of 5-methylcytosine. 

In differentiated mammalian cells, cytosine methylation can occur in any nucleotide context; 

however, more than 98% occurs in cytosines (C) that are followed by guanines (G), in a CpG 

dinucleotide context (70).  

CpG islands are sequences present in the genome that have a CG-rich base composition and 

high density of CpG dinucleotides (71). The majority of the annotated gene promoters, including 

promoters of housekeeping genes, tissue-specific genes and developmental regulator genes, contain 

CpG islands (71).  

DNA methylation is generally associated with a repressed chromatin state and inhibition of 

transcriptional initiation. Repression by DNA methylation has been demonstrated for promoters that 

contain CpG islands and also for promoters with low CpG density (72).  

Cytosine methylation in DNA is accomplished by the action of three DNA methyltransferases 

(DNMTs): DNMT1, DNMT3A, and DNMT3B. DNMT1 is responsible for maintenance of the DNA 

methylation patterns during replication, while the DNMT3A and DNMT3B function as de novo 

methyltransferases (69). Importantly, SAH has been shown to inhibit the in vitro methyltransferase 

activity of each of the DNMT enzymes (73). Accordingly, excess SAH levels have been strongly 

associated with altered gene expression in several studies (74–76). Therefore, SAH-induced damage 

to the endothelium can be partially due to impaired activity of DNMTs.  

SAH has been shown to disturb promoter methylation of different genes, including, the PDGF 

(platelet-derived growth factor) gene (74), the stress response-related p66Shc (76), genes involved in 

the regulation of cholesterol biosynthesis, such as SREBF1 (sterol regulatory element binding 

transcription factor-1) and LDLR (LDL receptor) (75), and those involved in cell stress and cell cycle 

regulation, such as the BNIP3 (BCL2/adenovirus E1B 19kDa interacting protein 3) gene (77). 

Additionally, the inflammatory genes IL1B (interleukin 1 beta), IL6, IL8 (interleukin 8), and ICAM1 

(intercellular adhesion molecule-1), that were shown to be regulated by DNA methylation in cancer 

cells (78, 79), are possible targets of SAH-mediated regulation. 

Several lines of evidence support the notion that an elevation of homocysteine can lead to 

DNA hypomethylation, secondary to inhibition of DNMTs by SAH, and that DNA hypomethylation may 

contribute to atherosclerotic disease mechanisms (62, 64, 68, 80, 81). For instance, plasma 
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homocysteine concentration correlates positively with SAH levels and negatively with lymphocyte 

DNA methylation status in healthy individuals and in patients with CVD (64, 65). In another example, 

a significant reduction in the genomic methyl cytosine content was detected in advanced human 

atherosclerotic lesions (82) and in vascular lesions of mice lacking apolipoprotein E (ApoE), a 

well-established animal model of atherosclerosis (83). Similarly, another recent study showed that 

DNA hypomethylation is present in human atherosclerotic carotid plaques (84). Although several 

studies report global hypomethylation in atherosclerotic plaques (67, 84), some report global 

hypermethylation (85). The basis for these differences is unclear, but may relate to the stage of the 

plaque (86), or whether or not the plaque is symptomatic (i.e., had a rupture) (80). Nonetheless, many 

studies have identified specific genes that are hypomethylated in atherosclerotic plaques and can be 

determinants for disease (81). Additional analysis is necessary to determine whether SAH or 

homocysteine can potentiate the hypomethylation of specific genes that contribute to atherosclerosis.  

4.1.2.  RNA 

Although much less studied than other SAM-methylation targets, RNA is highly methylated. 

There are almost one hundred different methylation modifications in RNA described so far (87). 

However, due, in part, to the highly demanding techniques necessary for studying RNA modifications, 

the function of most RNA modifications is unknown. Different RNA species, such as tRNA, rRNA, 

mRNA, snRNA, and miRNA, are differently methylated. Interestingly, some RNA methyltransferases 

target different RNA species, while others are specific for a single RNA species (88).  

 The importance of RNA methylation is illustrated by the 5’ methylation cap in mRNA, which is 

critical for mRNA stability and efficient gene expression (89). Several mechanisms have been 

proposed for tRNA and rRNA methylation-mediated regulation of translation and codon decoding (88). 

RNA methylation has been shown to affect basic cellular processes, such as RNA decoding and 

synthesis, maturation, transport, and splicing. The role of methylation in RNA function depends on the 

RNA molecule that is being methylated, as well as the location within that molecule, and within the 

nucleotide.   

Even though RNA methylation can occur on nitrogen, oxygen, and carbon, nitrogen is the 

most modified atom within the pyrimidine or purine base rings (88). Nucleotides are usually 

methylated on the nucleotide base or ribose, and 2′-O-methylation is the most common type of ribose 

methylation (90). Recently, the fat mass and obesity-associated protein (FTO) and the alkylation 

repair homolog-5 (ALKBH5) were reported to mediate m6A (N6-methyladenosine)* demethylation (89, 

91, 92). The discovery that RNA methylation can be a highly dynamic modification raises the question 

                                         
*
 Chemical structure of various RNA modifications can be found in Chapter 4.2.  
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of whether these modifications can regulate gene expression. RNA methylation is per se an addition 

of information to the RNA sequence and its flexibility further increases RNA complexity and diversity. 

The lack of information on the function of specific RNA methylations, as well as the fact that 

several RNA methyltransferases still lack characterization, makes the study of these modifications in 

normal and disease conditions challenging. There are no studies on the effects of 

hyperhomocysteinemia on RNA methylation, although cell culture studies, as well as studies using 

purified enzymes, have shown that specific RNA methylation modifications are sensitive to SAH 

accumulation (93–96). One study conducted in rabbits experiencing myocardial infarction reported 

altered patterns of liver tRNA methylation in these stressed rabbits compared to controls (97).            

In particular, m1A (1-methyladenosine)* content was decreased in rabbits experiencing myocardial 

infarction, whereas m7G (7-methylguanosine)* and m1G (1-methylguanosine)* content was increased 

(97); however, the specific function of each of these modifications remains unclear as is the molecular 

basis for these changes (97). Several studies have also reported hypo- and hyper-methylation of 

specific tRNA modifications in different types of cancers, such as, hepatoma, adenocarcinoma, breast 

and lymphoid cancers (90, 98–103). Likewise, impaired rRNA methylation was found in leukemic blast 

cells, where rRNA maturation was compromised (104, 105).  Additionally, genome-association studies 

have also implicated different gene variants of the mRNA demethylase FTO gene in cancer, neuronal 

development, and renal and cardiovascular diseases (92, 106).  

tRNA is the most heavily modified RNA species and some of these modification may have 

important roles in mediating cellular stress responses (107).  In 2010, the activity of ALKBH8, a 

mammalian methyltransferase that is able to methylate a number of different tRNA residues, was 

reported (107). Its activity includes modifications that are essential for the correct translation of 

a subset group of selenoproteins (proteins that contain selenocysteine in their polypeptide chain)    

(107, 108).  Selenocysteine (Sec) carrying tRNA (Figure 5) recognizes a UGA codon, which is a 

common signal for translation termination, as a target for Sec incorporation (107, 109, 110).  Thus, 

Sec-tRNA is essential for efficient translation of selenoproteins. There are two major Sec-tRNA 

isoforms, mcm5U (5-methoxycarbonylmethyluridine) and mcm5Um (5-methoxycarbonyl-

methyl-2'-O-methyluridine), which differ by a single methyl group at the ribose of the U at position 34 

(Figure 5) (107, 109). ALKBH8 is responsible for the conversion of cm5U (5-carboxymethyluridine) to 

mcm5U, and the 2’-O-ribose methylation to form mcm5Um doesn’t occur without the prior synthesis of 

the mcm5U (107, 108). Several selenoproteins rely on the presence of mcm5Um to be efficiently 

translated, including GPx-1. GPx-1 is a major antioxidant in human cells and its impaired translation is 

associated with high homocysteine levels (37). Songe-Møller et al. found that mice lacking ALKBH8 

showed decreased mcm5U and mcm5Um content in tRNA with a consequent decrease in GPx-1 

expression and increased susceptibility for oxidative stress (107).  Subsequent studies have also 

shown that a deficiency of ALKBH8 suppresses the expression of GPx-1 and other selenoproteins to 
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cause oxidative stress in mouse embryonic 

fibroblasts (111). Importantly, in addition to 

GPx-1, many other selenoproteins are involved 

in cell detoxification and redox regulation. 

Furthermore, selenium deficiency has also 

been associated with oxidative stress and 

cancer (109, 112). Therefore, impaired 

Sec-tRNA methylation may contribute to 

endothelial dysfunction due to its key role in 

the expression of the selenoproteome. 

  

 

 

 

Figure 5 - Human selenocysteine (Sec)-tRNA. 
The sequence and structure of the Sec-tRNA is 
shown at the top and the chemical modifications of 
the wobble uridine at position 34 of the anticodon 
(U34) are shown at the bottom. mcm

5
U, 

5-methoxycarbonyl-methyluridine; mcm
5
Um, 

5-methoxycarbonyl-methyl-2′-O-methyluridine. 

4.1.3.  Protein 

Protein methylation is a widespread post-translational modification that modulates protein 

function and increases the structural diversity of the proteome. Furthermore, protein methylation can 

be reversible, similar to phosphorylation or acetylation, adding another means to regulate 

protein-protein interactions, protein stability, protein localization, and/or enzymatic activity (113). 

Protein methylation has been reported for many different amino acids, such as histidine, cysteine, 

aspartic acid, glutamic acid, serine, and threonine, although methylation has been most commonly 

observed on lysine and arginine residues (114). Currently, 50 different protein lysine 

methyltransferases (PKMTs) and 11 protein arginine methyltransferases (PRMTs) are known (115). 

PKMTs can catalyze the transfer of one, two, or three methyl groups from SAM to lysine residues in a 

protein polypeptide chain, producing mono-, di-, or tri-methyl-lysine residues. Likewise, PRMTs can 

also mono-, di-, or tri-methylate arginine residues. Additionally, PRMTs-mediated di-methylation can 
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be symmetric, generating symmetric dimethylarginine (SDMA) residues, or asymmetric, producing 

ADMA residues (116, 117).   

PKMTs and PRMTs methylate a wide variety of proteins involved in diverse cell processes, 

such as transcriptional regulation, protein localization, signal transduction, RNA metabolism, and DNA 

repair (117–119).  

The methylation of histones is a well-known epigenetic mechanism that regulates gene 

expression. Histones are nuclear proteins that package the DNA into units referred to as 

nucleosomes, which constitute the fundamental units of chromatin (67). Histones are susceptible to 

different types of modifications, including lysine and arginine methylation. Methylation of histone can 

influence gene expression by modulating chromatin structure (67, 120). The effects of histone 

methylation on chromatin activation depend on the specific residues that are methylated (120). 

Methylation of lysines 4, 36 and 79 in histone H3 are mainly associated with active transcription, while 

methylation at lysines 9 and 27 are associated with gene repression and heterochromatin formation. 

Furthermore, the methylation status (mono-, di-, or trimethylation) of a single lysine residue can be 

determinant for gene expression. For example, trimethylated histone H3 lysine 4 (H3K4) is a mark of 

active promoters, while di- and trimethylated histone H3 lysine 9 (H3K9) residues are strongly 

associated with transcriptional repression (120). Methylation of the histone H3 arginines 17 and 26 is 

associated with active chromatin, whereas the methylation of histone H3 arginine 2 and 8, and 

methylation of histone H4 arginine 3, are associated with gene repression and heterochromatin 

formation (121, 122).  

Histone methylation is also highly dynamic. The removal of methyl moieties at arginine and 

lysine residues is carried out by histone demethylases. JMJD6 is the only known histone arginine 

demethylase in humans and it is responsible for the removal of the H3R2me2, H4R3me1, and 

H4R3me2 marks (123). Histone lysine methylation is also reversible, and several demethylases have 

been identified. Histone lysine demethylases (KDM) were classified into different families (KDM 1-7) 

based on their substrate specificities and protein domain organization (117). 

The establishment and maintenance of epigenetic gene silencing is fundamental to cell 

homeostasis (124). The Polycomb group (PcG) of proteins are negative epigenetic regulators of 

transcription and represent evolutionarily conserved multiprotein complexes: the Polycomb repressive 

complexes (PRCs) (125). There are two main PRCs: PRC1 and PRC2. PRC2 catalyzes the 

di-methylation and tri-methylation of histone H3 at lysine 27 (H3K27me2/3), which is a central feature 

of PcG-silenced chromatin; while PRC1 catalyzes lysine 119 mono-ubiquitylation of histone H2A 

(H2AUb1) (126). PRC2 complex is involved in the initiation of gene silencing, whereas PRC1 is 

responsible for stabilizing and maintaining gene repression. Enhancer of zeste homolog 2 (EZH2) is a 

SAM-dependent histone lysine methyltransferase (HKMT) that is the catalytic component of PCR2 

and epigenetically silences gene expression by mediating the H3K27me3 methylation (124, 127). 
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UTX (ubiquitously transcribed tetratricopeptide repeat on X chromosome demethylase) and JMJD3 

(jumonji domain containing 3 demethylase) are H3K27-specific histone demethylases, which are 

capable of removing di- and tri-methylation of H3K27 (117). 

G9a/GLP is another major epigenetic silencing machinery in eukaryotes. G9a and G9a-Like 

Protein (GLP) are two H3K9 HKMTs (128). Several different demethylases were reported to remove 

H3K9 methylation, including members of the KDM families 1, 3, 4, 5 and 7 (117). Very recently, 

functional crosstalk between PCR2 and G9a/GLP was reported (128). Notably, G9a enzymatic activity 

in stem cells was shown to control EZH2 recruitment and H3K27me3 content at a subset PRC2-target 

genes genome wide.  In a more targeted study in differentiated cells, the activities of G9a and EZH2 

were coordinately linked with the suppression of cyclooxygenase 2 (129).  Experimental evidence 

suggests that G9a may contribute to the monomethylation of H3K27 to facilitate the docking of EZH2 

and promote the establishment of the repressive H3K27me3 mark on PCR2 target genes (128). 

Interestingly, similar to EZH2, G9a also relies on SAM as the methyl-donor compound for its HKMT 

activity (129, 130). 

Recent studies revealed that EZH2 epigenetically regulates cell proliferation, spreading, and 

angiogenesis in endothelial cells (131). Additionally, EZH2 target genes encode several inflammation 

mediators, including pro-inflammatory cytokines that can induce endothelial cell expression of 

adhesion molecules (131). As SAM-dependent HKMTs, EZH2 and G9a may be targets for              

SAH-dependent inhibition of their methyltransferases activities.  As such, these observations raise the 

possibility that deregulation of epigenetic control mediated by EZH2/G9a, via SAH accumulation, may 

contribute to endothelial dysfunction and CVD. In support of this idea, excess SAH was found to 

cause a loss of the repressive histone marks, H3K27me3 and H3K9me3 (132, 133). Moreover, a 

reduction in global histone H3K27me3 in atherosclerotic plaques was just reported (134).  

Nonetheless, the methylation of non-histone proteins has also been associated with disease. 

Perna et al. suggested, for the first time, the involvement of protein hypomethylation in 

hyperhomocysteinemia, reporting that SAH induced a decrease of methyl esterification of erythrocyte 

membrane proteins of patients with renal function impairment (135). Garcia and colleagues also 

observed that a decrease in the SAM/SAH ratio in rats resulted in impaired arginine methylation of 

proliferator-activated receptor-γ co-activator-1 (PGC-1α), a transcriptional co-activator that regulates 

genes involved in energy metabolism (136).  

Our group reported the SAH-mediated effects on global protein arginine methylation in vitro 

and in vivo (137, 116, 138).  In these studies, we observed that protein arginine methylation is a more 

susceptible target for SAH-mediated inhibition than DNA methylation (116). Furthermore, we found 

hypomethylation of proteins, including histones, in two independent animal models of 

hyperhomocysteinemia (137, 138). These results provide evidence that protein methylation is a target 

for SAH-mediated inhibition during hyperhomocysteinemia and lay the groundwork for further studies 
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of specific protein methylation targets that may contribute to vascular disease. In support of these 

findings, an alteration of histone (and DNA) methylation in human atherosclerotic carotid plaques has 

been recently reported (84). 
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Cardiovascular diseases (CVD) are the number one cause of death globally, therefore it is 

important to improve our understanding of the molecular mechanisms contributing to these diseases. 

Hyperhomocysteinemia is a common risk factor for CVD; however, the mechanisms underlying this 

association, although extensively studied, remain to be fully elucidated. The overall hypothesis of the 

thesis is that accumulation of the homocysteine precursor, S-adenosylhomocysteine (SAH), may 

contribute to the vascular toxicity associated with hyperhomocysteinemia by disturbing cellular 

methylation via its effects as an inhibitor of methyltransferases. To explore this possibility, the main 

goals of the thesis are: 

 

- to clarify the role of SAH accumulation in endothelial dysfunction and activation; 

- to identify molecular targets that are disturbed under excess SAH in endothelial cells; 

- to investigate whether hypomethylation contributes to the harmful effects of SAH in  

endothelial cells. 

 

In Chapter 3 we characterize an endothelial cell model of SAH intracellular accumulation used 

in this and subsequent studies. Additionally, we investigate the role of excess SAH in nitric oxide (NO) 

bioavailability, by monitoring endothelial nitric oxide synthase expression and activity, as well as NO 

production in our cell model. NO is an endogenous major player in endothelial homeostasis.  

 

Chapter 4 explores the effects of SAH-mediated hypomethylation in RNA, and it 

encompasses two sub-chapters. In Chapter 4.1, we demonstrate that excess SAH modulates the 

expression of selenoproteins by impairing the methylation of a uridine within the tRNA that carries 

selenocysteine (tRNASec). Glutathione peroxidase-1 (GPx-1) is a selenoprotein and major 

antioxidant enzyme. Oxidative stress is a hallmark of endothelial dysfunction. We monitored GPx-1 

expression and activity in our cell model. Moreover, we demonstrated that suppression of GPx-1 by 

SAH promoted oxidative stress by increasing hydrogen peroxide accumulation and that exposure to 

SAH also resulted in inflammatory activation of endothelial cells. In Chapter 4.2, we expanded our 

studies of RNA methylation by assessing the effect of SAH on methylation modifications in total and 

size-fractionated RNA samples from our cell model. Further, to confirm our observations we 

additionally analyzed RNA methylation in tissue samples from a hyperhomocysteinemic mouse 

model, where SAH accumulation results from endogenously disturbed homocysteine metabolism. 

 

DNA is an established target for the SAH-mediated inhibition of methyltransferase activity. In 

Chapter 5, we investigate the effects of excess SAH in endothelial activation, to examine further the 

expression of adhesion molecules in response to SAH and the effects of their up-regulation on 

leukocyte transmigration. Here, we also compared the effects of SAH accumulation to those of a DNA 
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methyltransferase inhibitor, identifying specific adhesion molecules that are affected by both of these 

stresses and assessing the role of DNA hypomethylation in these effects.  

 

Chapter 6 clarifies the role of the inflammatory mediator NFkB in the endothelial activation 

promoted by excess SAH. Recent evidence suggests that histone hypomethylation may be a 

consequence of SAH accumulation. To understand better the effects of excess SAH on endothelial 

cell activation, we additionally examine whether SAH suppresses the activity of the histone 

methyltransferase EZH2 to contribute to endothelial cell activation via the activation of NFkB.   

 

Lastly, in Chapter 7, the results presented in the previous chapters are considered together 

and discussed in the light of the initial aims of this thesis. Then, some possible paths for future 

investigation are also discussed. 
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ABSTRACT 

Hyperhomocysteinemia (HHcy) is a risk factor for vascular disease, but the underlying 

mechanisms remain incompletely defined. Reduced bioavailability of nitric oxide (NO) is a principal 

manifestation of underlying endothelial dysfunction, which is an initial event in vascular disease. 

Inhibition of cellular methylation reactions by S-adenosylhomocysteine (SAH), which accumulates 

during HHcy, has been suggested to contribute to vascular dysfunction. However, thusfar, the effect 

of intracellular SAH accumulation on NO bioavailability has not yet been fully substantiated by 

experimental evidence. The present study was carried out to evaluate whether disturbances in cellular 

methylation status affect NO production by cultured human endothelial cells. Here, we show that a 

hypomethylating environment, induced by the accumulation of SAH, impairs NO production. 

Consistent with this finding, we observed decreased endothelial NO synthase (eNOS) expression and 

activity, but, by contrast, enhanced NOS3 (gene encoding eNOS) transcription. Taken together, our 

data supports the existence of regulatory post-transcriptional mechanisms potentially modulated by 

cellular methylation leading to impaired NO production by cultured human endothelial cells. As such, 

our conclusions may have implications for the HHcy-mediated reductions in NO bioavailability and 

endothelial dysfunction.  

Key Words: S-adenosylhomocysteine, methylation, endothelial dysfunction, nitric oxide 

bioavailability, endothelial nitric oxide synthase. 
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1. INTRODUCTION 

Hyperhomocysteinemia (HHcy) is a risk factor for vascular disease, but the underlying 

mechanisms remain incompletely defined (1). 

Cellular methylation potential is determined by the concentrations of the homocysteine 

precursor, S-adenosylhomocysteine (SAH). SAH inhibits virtually all S-adenosylmethionine 

(SAM)-dependent-methyltransferases, which in turn, catalyze the transfer of a methyl group from 

SAM to a wide variety of target molecules (including DNA and proteins), forming SAH and the 

methylated substrate (2). SAH is further converted into homocysteine and adenosine by a reversible 

reaction catalyzed by SAH hydrolase, which favors SAH production. When homocysteine 

accumulates, its precursor, SAH, will accumulate, as well. Elevated homocysteine was shown to be 

directly associated with increased extracellular and intracellular SAH concentrations in vivo (1). 

Increasing evidence indicates that homocysteine may be regarded as a cellular demethylating agent, 

at least at the DNA level. In fact, we and others have observed an association between high levels of 

homocysteine and SAH, which, in turn, is correlated with global DNA hypomethylation status (1). 

In addition, several studies support the existence of epigenetic mechanisms in the context of 

homocysteine-related endothelial dysfunction (2).  

Vascular disease begins with endothelial dysfunction, a sensitive indicator of the 

atherosclerotic process, occurring even before the clinical manifestations of the pathology and 

predicting adverse clinical outcomes (3, 4). Reduced bioavailability of nitric oxide (NO) and 

consequent impairment of endothelium-dependent vasodilation result in endothelial dysfunction. Nitric 

oxide is synthesized by endothelial cells from the amino acid, L-arginine, via the enzymatic action of 

endothelial nitric oxide synthase (eNOS), and is an important mediator of intracellular signaling and a 

potent anti-atherogenic molecule responsible for the maintenance of vascular homeostasis (5). 

Endothelial NOS expression is subject to significant degrees of regulation from transcriptional to 

post-translational levels (3, 4). Asymmetric dimethylarginine (ADMA) is an endogenous competitive 

inhibitor of eNOS, and is derived from the proteolysis of methylated arginine residues in proteins (6). 

Methylation of arginine in proteins is carried out by protein-arginine methyltransferases type 1 

(PRMTs 1), transferring one methyl group from SAM to various proteins and forming, in addition, SAH 

(7). SAH is further hydrolysed to homocysteine. Because of the metabolic link between ADMA and 

homocysteine, ADMA has been suggested as a potential mediator of endothelial dysfunction in HHcy 

(8–10). Evidence from animal models and clinical studies have suggested that accumulation of ADMA 

contributes to impaired NO generation and disease pathogenesis (11). 

Several in vivo studies, either in animal models (12–14) or in humans with severe (15), mild 

(16, 17), or transient (18, 19) HHcy, showed that endothelial dysfunction is a key vascular phenotype 

occurring in the setting of HHcy; however, the mechanistic understanding of the association between 

HHcy and impaired NO bioavailability remains to be completely defined. The present study was 
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designed to evaluate whether a hypomethylating environment, induced by accumulation of the 

homocysteine precursor, SAH, perturbs NO production by cultured human endothelial cells.   

2. MATERIALS AND METHODS 

Cell Culture and Treatments – Human umbilical vein endothelial cells (HUVEC) were 

obtained from umbilical cords of healthy fetuses from uncomplicated pregnancies and vaginal 

deliveries from healthy mothers, as described (20), or commercially obtained from Lonza. The cord 

was collected in buffered solution [4 mmol/L KCl, 140 mmol/L NaCl, 11 mmol/L D-glucose (Merck), 

10 mmol/L HEPES (Gibco), and 1% antibiotic–antimycotic solution (Sigma)], and stored at 4ºC. 

Within 4 days, cells were isolated by collagenase (Gibco) treatment, and were cultured essentially as 

previously described (20). Cells were grown in coated six-well plates (6 x 10 cm2), 75 cm2 flasks or 

100 cm2 disks depending on subsequent analysis.  

All experiments were performed at 80% confluence and between the fourth and sixth passage. 

After the removal of the culture medium, fresh medium, either without (control) or with increasing 

concentrations of an SAH hydrolase inhibitor (adenosine dialdehyde, ADA) (5, 10, and 20 mol/L) 

was added. After 24 h of incubation, lactate dehydrogenase (LDH) release was evaluated in the cell 

culture medium using the Cytotoxicity Detection Kit (Roche Diagnostic GmbH). 

 

Metabolite Analysis – Aliquots of the medium were collected from cells grown in six-well 

plates after 24h of incubation and stored at –20°C for further homocysteine and ADMA analysis. 

HUVEC were then extensively washed with ice-cold phosphate-buffered saline (PBS) and exposed to 

denaturation buffer for 15 min at 4°C. Denaturation buffer consisted of 1.5 mmol/L MgCl2, 

10 mmol/L KCl, 1 mmol/L DTT (Merck), 10 mmol/L HEPES (Gibco), and 1.0 mmol/L PMSF (Sigma) 

(pH 7.9), containing containing 1% (V/V) Triton X-100 (Merck). The cell lysate was centrifuged at 4°C, 

1,200 rpm, for 10 min. The supernatant (cytosol) was collected, and two aliquots were taken. 

One was promptly deproteinized with an equal volume of 10% perchloric acid and stored at –20°C for 

further SAM and SAH evaluation, and the remainder was immediately frozen and kept at –20°C until 

protein determination.  

Extracellular total homocysteine levels, defined as the total concentration of homocysteine 

after reductive cleavage of all disulfide bonds, was determined by HPLC analysis according to Araki 

and Sako (21), with minor modifications. Extracellular ADMA concentrations were measured by HPLC 

with fluorescence detection as described previously (22), using modified chromatographic separation 

conditions (23). Intracellular SAH and SAM concentrations were analyzed by LC-MS/MS (24).  

 

NO Levels – Nitric oxide production in response to intracellular SAH accumulation was 

measured by the Griess reaction (25). For this purpose, cells were grown in six-well plates. Culture 
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medium was replaced 24 h before incubations, which were conducted in 0.8 mL of basal endothelial 

cell culture medium without phenol red. After 12 h and 24 h of incubation, aliquots of culture medium 

were collected for NO2
- quantification. In addition, incubations for 18 h with 1 mmol/L of 

L-NG-nitroarginine (L-NNA) (Cayman Chemicals), an eNOS inhibitor, in the presence and in the 

absence of 20 mol/L of ADA, were also performed. Freshly collected (200 L) cell culture 

supernatants were mixed with 200 L Griess reagent (1:1 mixture of 1% sulphanilamide in 5% H3PO4 

and 0.1% naphthylethylenediamine dihydrochloride in water) and incubated in 96-well plates for 

10 minutes at room temperature. Absorbance at 543 nm was recorded. Cells were lysed and protein 

concentrations were determined. Nitrite concentration was calculated using sodium nitrite standards 

and normalized by cellular protein concentration (moles of NO2
- / mg of cell protein). 

 

Western Blotting – Western blot was performed for analysis of eNOS levels, using four 

independent cultures. 30 cm2 of 80% confluent HUVEC was used for each sample. Cells were 

washed 3 times with ice-cold PBS, directly lysed in cell lysis buffer containing protease inhibitors 

(Sigma), collected with a cell scraper, and sonicated. After centrifugation, the obtained supernatant 

was used for total protein determination and Western blot analysis. Protein concentrations were 

quantified using the DC Protein Assay (Biorad). 

Protein samples (20-30 g) were separated on 10 % SDS-polyacrylamide gels and transferred 

onto nitrocellulose membranes (Amersham, GE Healthcare). The membranes were incubated with 

anti-eNOS (at a 1:500 dilution; Cell Signalling) and anti--actin (at a 1:400 dilution; Sigma) antibodies. 

A secondary anti-rabbit IgG HRP secondary antibody (Cell Signaling) at a 1:2000 dilution was used. 

Primary antibody incubation was performed overnight at 4°C, and secondary antibody incubation was 

performed for 1–1.5 hours at room temperature. An ECL Plus Western Blotting Detection System was 

used for protein detection (GE Healthcare), membranes were exposed to Amersham Hyperfilm HCl 

(GE Healthcare), and a VersaDoc scanning system (BioRad) was used for densitometric analysis. 

 

eNOS Activity – eNOS activity was determined by measuring the efficacy of conversion of 

[3H]-Arg to [3H]-citrulline in protein extracts from cultured cells using a commercial kit (Cayman 

Chemicals), according to the manufacturer’s instructions. Four independent cultures were used. 

Briefly, cells were grown to confluence in 100 cm2 disks, treated with 20 mol/L of ADA for 24 

hours, washed with PBS, harvested in PBS containing 1mmol/L of EDTA, and centrifuged. The 

obtained pellet was lysed in 100 L of lysis buffer, centrifuged, and 10 L of the obtained supernatant 

were incubated with 40 L of reaction buffer containing [3H]-Arg for 60 minutes at 37ºC. Reactions 

were terminated by addition of 400 L of Stop Buffer from the kit. Cell lysates were applied to a cation 

exchange resin column from the kit. The citrulline was eluted, radioactivity determined, and 

normalized via protein concentration. 
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Reverse Transcription and Quantitative PCR – Total RNA was extracted from three 

independent cultures using the RNeasy Minikit (Qiagen) and was reverse transcribed (2 g) into 

cDNA using oligo(dT) SuperScript II Reverse Transcriptase (Invitrogen). Specific primers for NOS3 

gene (NM_000603.3): 5’-CGTCCCTGTGGAAAGACAAG-3’ and 5’-CACGATGGTGACTTTGGCTA-3’, 

were designed with the Universal Probe Library Assay Design Center (Roche Applied Science). 

EIF4A2 gene (NM_001967.3) was used as an internal control gene (primers: 

5’-GTGTGAACTGGACCCTGTTG-3’ and 5’-TATTTAACATTCAAACTTCATTAAGACATG-3’). 

Amplification reaction assays were performed in triplicate and contained 1×SYBR Green PCR 

Mastermix (Applied Biosystems) and primers at optimal concentration. A hot start at 50ºC for 2 min, 

was followed by an extension period at 95ºC for 10 minutes and then for 40 cycles at 95ºC for 15s 

and 60ºC for 1 min, using the 7300 Real Time PCR System (Applied Biosystems). Fluorescence 

emission was detected for each PCR cycle and the Ct (threshold cycle) values were determined. 

 

Statistical Analysis – Data are presented as means ± SD. Statistical evaluation of the data 

was performed by paired Student’s t test for comparisons between two groups, and by one-way 

analysis of variance followed by Dunnett’s test for comparisons between more than two groups. 

A value of p<0.05 was regarded as significant. 

3. RESULTS 

Intracellular SAH and SAM levels – As shown in Figure 1A, ADA was effective in promoting 

a significant SAH intracellular accumulation, confirming its inhibitory effect on SAH hydrolase. 

SAM levels remained unaltered (189 ± 50, 216 ± 22, 169 ± 50 and 203 ± 30 pmol/mg protein for 

ADA 0, 5, 10 and 20 μmol/L, respectively, p=NS for trend). A significant (p<0.01 versus control) 

decrease in intracellular SAM/SAH ratio was observed (5.8 ± 1.6, 1.8 ± 0.2, 1.0 ± 0.3 and 0.8 ± 0.1 for 

ADA 0, 5, 10 and 20 μmol/L, respectively), which was exclusively defined by the increasing levels of 

SAH. 

 

Figure 1 - Intracellular SAH (A), and extracellular homocysteine (Hcy) (B) and ADMA (C) concentrations 
in HUVEC incubated in culture medium supplemented with increasing concentrations of ADA for 24 h. 
Data are presented as means ± SD.  (**p< 0.01 versus control, n≥3; *p< 0.05 versus control, n=6). 
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Lactate dehydrogenase (LDH) – Cell LDH release (average ± SD, n=3), an indicator of 

cytotoxicity, after 24 h of incubation, in the absence (control: 100 ± 8 %) or presence of the tested 

ADA concentrations [(ADA 5 mol/L: 111 ± 16 %; ADA 10 mol/L: 110 ± 17 % and 

ADA 20 mol/L: 105 ± 12 %] were similar. Therefore, a possible cytotoxic effect for the ADA was ruled 

out in the present study.  

 

NO levels under intracellular SAH accumulation – We measured nitrite, a metabolite of 

NO, as an index of endothelial NO production. We observed a decrease in extracellular nitrite 

concentrations, after 12 and 24 h of incubation, which, for the highest ADA concentration tested, 

reached statistical significance (Fig. 2). The observed difference of extracellular nitrite concentrations, 

observed in the absence and the presence of 20 mol/L of ADA, was abolished by co-incubation with 

1 mmol/L of L-NNA, an eNOS inhibitor (Fig. 3). 

 

Figure 2 - Nitrite levels in HUVEC culture medium measured by the Griess reaction. 
HUVEC were incubated in culture medium supplemented with increasing 
concentrations of ADA for 12 or 24h. Data are presented as means ± SD, and are 
representative of 3 different cell lines (*p< 0.05 versus control). 

 

Figure 3 - Nitrite levels in HUVEC culture medium supplemented with 0 and 20 mol/L 
concentrations of ADA in the absence and in the presence of L-NNA (1 mmol/L) after 
18 h of incubation. Data are presented as means ± SD (*p< 0.05 versus control, n=3). 
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eNOS: transcriptional and translational levels and enzymatic activity under intracellular 

SAH accumulation (eNOS protein and activity) – The expression of eNOS protein was studied 

using Western blot analysis. A typical band with a molecular mass of approximately 140 kDa was 

detected with an anti-eNOS antibody, with β-actin used as reference. Relative expression of eNOS 

was significantly reduced by intracellular SAH accumulation (Fig. 4A1). 

 

Figure 4 - eNOS expression in HUVEC cultured with increasing concentrations of ADA after 24 h of 
incubation.  Data are means ± SD. (A1), relative eNOS expression was determined by Western blotting with 

antibodies against eNOS and -actin. Densitometry was performed on 4 blots. A representative blot is 
shown. (*p<0.05 versus control). (A2), eNOS activity was measured in HUVEC incubated in the absence or 

presence of 20 mol/L of ADA after 24 h by measuring the conversion of L-arginine to L-citrulline in cell 
lysates. Four different experiments were performed each in duplicate. (*p<0.05 paired Student t-test versus 
control). (B), Real-time quantitative RT-PCR of relative NOS3 mRNA levels of three or more independently 
prepared cDNA pools representing independent RNA isolations. (*p<0.05 versus control). 

The functionality of the eNOS protein was assessed by monitoring the efficacy of L-arginine to 

L-citrulline conversion in cell lysates. Compared to controls, cells incubated with 20 mol/L ADA for 

24 h showed a significant decrease in eNOS activity (p<0.05) (Fig. 4A2).   

 

eNOS: transcriptional and translational levels and enzymatic activity under intracellular 

SAH accumulation (NOS3 mRNA) – NOS3 mRNA levels were quantified by RT-qPCR. As opposed 

to the ADA-induced decrease of eNOS protein and activity, a significant increase of NOS3 gene 

transcription was found directly related to the intracellular accumulation of SAH (Fig. 4B). 
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4. DISCUSSION 

The major finding of the present study is that intracellular accumulation of SAH resulted in 

impaired NO production by cultured human endothelial cells. Furthermore, decreased eNOS protein 

expression and corresponding enzymatic activity were observed, but increased NOS3 mRNA levels 

were found.  

Homocysteine metabolism is biochemically linked to the principal epigenetic tag 

(5-methylcytosine) found in DNA (2). Inhibition of cellular methylation reactions by SAH, which 

accumulates in the setting of HHcy, has been suggested to contribute to vascular dysfunction. 

Accordingly, several studies support the existence of epigenetic mechanisms in the context of 

homocysteine-related endothelial dysfunction (2). However, thus far, the effect of intracellular SAH 

accumulation on NO bioavailability has not yet been fully examined. The present study was designed 

to evaluate whether a hypomethylating environment, caused by intracellular SAH accumulation, 

contributes to the impairment of endothelium-dependent NO production in cultured human endothelial 

cells. 

Because SAH hardly crosses the cell membrane (20, 26), the intracellular accumulation of the 

homocysteine precursor, SAH, was achieved through the pharmacological inhibition of SAH hydrolase 

by an adenosine analogue, ADA. As shown in Figure 1, increasing concentrations of ADA were 

effective in increasing intracellular SAH levels. Supporting our previous observations, the levels of 

SAH exclusively determined the decrease in SAM/SAH ratio since SAM levels remained constant 

over the range of ADA concentrations used (20). Homocysteine export from the HUVEC reflects an 

imbalance between its intracellular production and metabolism. Therefore, and as expected, a 

decrease in the concentration of extracellular homocysteine was observed (Fig. 1B), confirming the 

inhibitory effect of ADA upon SAH hydrolase. 

The rapid metabolism and short half-life of NO brings additional difficulties to its analytical 

assessment (25). However, the measurement of nitrite, a metabolite of NO, is currently used as an 

index of endothelial NO production (25). As shown in Figure 2, with increasing concentrations of ADA, 

a dose-dependent decrease in extracellular nitrite levels was observed in our system. This effect was 

abolished in the presence of the eNOS inhibitor, the L-NNA (Fig. 3). This finding confirmed that the 

decreased nitrite formation caused by intracellular SAH accumulation was due to impaired 

NO synthesis by eNOS. Previous studies also found that NO release from cultured endothelial cells 

was impaired in the presence of elevated homocysteine (27). In addition, in hyperhomocysteinemic 

mice with endothelial dysfunction, elevated SAH and decreased SAM/SAH ratio were observed (12). 

ADMA is an endogenous and potent inhibitor of eNOS that was found to accumulate in different study 

models including in humans with HHcy and vascular disease (11). Consequently, the accumulation of 

ADMA was suggested to contribute to reduced NO generation in homocysteine-dependent endothelial 

dysfunction (11). Our results suggest that the accumulation of the homocysteine precursor, SAH, is 
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not responsible for the ADMA accumulation observed in the setting of HHcy. In fact, an SAH 

intracellular accumulation (Fig. 1A) was associated with decreased extracellular ADMA levels 

(Fig. 1C) in our cellular model. In addition, a significant impaired NO production was observed 

(Figs. 2-4). Therefore, our results suggest the existence of an ADMA-independent mechanism 

triggered by SAH accumulation that may contribute to the HHcy-related impaired NO bioavailability.  

Interestingly, it has been recently suggested that the increase in ADMA levels, seen in humans with 

HHcy and vascular disease, is probably due to the decline of renal function and is not directly related 

to HHcy-dependent metabolic changes, nor contribute to endothelial dysfunction (28, 29).  

Nitric oxide is generated in endothelial cells from conversion of L-arginine to L-citrulline by the 

enzymatic action of eNOS, which in turn is encoded by the NOS3 gene. To investigate whether the 

observed impairment in endothelial NO bioavailability was caused by decreased eNOS expression, 

we focused on its translational and transcriptional expression. As shown in Figure 4A1, decreased 

eNOS protein levels were observed, suggesting eNOS down-regulation by intracellular SAH 

accumulation. In agreement with these observations, an homocysteine-induced decrease in eNOS 

protein levels was seen using human aortic endothelial cells in a prior study (30).  

We also examined the functionality of eNOS protein, monitoring the efficacy of L-arginine to 

L-citrulline conversion by cell lysates. Compared to controls, cells incubated with 20 mol/L of ADA 

for 24 h showed a significant decrease in eNOS activity (Fig. 4A2), which is consistent with our 

findings of decreased nitrite levels (Fig. 2) and decreased eNOS levels (Fig. 4A1). Previous reports 

concerning homocysteine-induced disturbances in eNOS activity are controversial. In fact, no effect 

(31) or down-regulation (32) by homocysteine upon eNOS activity had been reported previously in 

cultured endothelial cells.  

Surprisingly, we found that relative NOS3 mRNA levels were significantly increased by 

intracellular SAH accumulation (Fig. 4B). We, and others, have already shown that global DNA 

hypomethylation is induced by SAH accumulation (1, 20). It is well known that DNA methylation is an 

epigenetic mechanism of gene regulation and that decreased methylation patterns usually are related 

to increased transcription of target genes by several mechanisms (2). However, it has been previously 

shown that in eNOS-expressing cells the core promoter CpG dinucleotides are fully demethylated 

(33). Accordingly, it was reported that treatment of human endothelial cells with a DNA 

methyltransferase inhibitor did not alter the levels of NOS3 mRNA, as it did in eNOS non-expressing 

cells (33). These observations led us to exclude DNA hypomethylation as causing the increase in 

NOS3 mRNA levels observed in our model. However, DNA is not the only target for the 

SAH-mediated inhibition of SAM-dependent methyltransferases, and multiple targets may be affected, 

including proteins implicated in eNOS expression in human endothelial cells. An example of this point 

is the forkhead box O 1 (FoxO1) transcription factor, which acts as transcriptional repressor of NOS3 

expression. Recent data showed that protein arginine methyltransferase 1 (PRMT1) methylates 
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FoxO1, which in turn hinders its phosphorylation and export to cytoplasm, thus augmenting the 

expression of FoxO1 target genes (34). The same authors showed that, in a HUVEC model, the 

knockdown of PRMT1 induced NOS3 expression (34). Moreover, our data show that intracellular SAH 

accumulation was associated with decreased extracellular ADMA concentrations, as well as 

increased relative NOS3 mRNA levels. Recent observations by our group showed that 

protein-incorporated ADMA is strongly decreased by SAH intracellular accumulation in HUVEC (35), 

indicating that PRMT1 is a target for SAH-mediated inhibition and suggesting that FoxO1-methylation 

may be subsequently reduced by SAH. Taken together, these findings suggest that PRMT1 was 

subjected to SAH-mediated inhibition, causing FoxO1 hypomethylation and the observed 

SAH-dependent enhanced NOS3 transcription (Fig. 4B).  

Regulation of eNOS protein levels is a complex process that is mediated at several levels, 

including post-transcriptionally (36). In fact, our paradoxal observations concerning eNOS 

transcriptional and translational levels disclose the existence of post-transcriptional events to be 

ascertained. Similar observations have been reported in different contexts. For example, in livers from 

patients with alcoholic hepatitis, NOS3 mRNA was found to be increased, but eNOS activity 

decreased, despite no differences in eNOS protein expression compared with non-alcoholic livers 

(37). In addition, exercise training of diabetic animals was shown to lead to an increase in left 

ventricular eNOS protein and a concomitant decrease in NOS3 mRNA (38).  

In conclusion, we observed that a hypomethylating environment, due to increased intracellular 

levels of SAH, impairs NO production by cultured human endothelial cells. This finding may have 

implications in the HHcy-mediated reduction in NO bioavailability and endothelial dysfunction. Taken 

together, our results clearly suggest that post-transcriptional events may be crucial mechanisms in the 

regulation of NO synthesis, and their modulation by the cellular methylation potential demands further 

investigation.  
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ABSTRACT 

S-Adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the 

precursor for the cardiovascular risk factor homocysteine. We have previously identified a link 

between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase-1 

(GPx-1) and endothelial dysfunction.  Here, we demonstrate a specific mechanism by which 

hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses 

GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 

and a subset of other selenoproteins is dependent on the methylation of the tRNASec to the Um34 

form; the formation of methylated  tRNASec facilitates translational incorporation of selenocysteine at a 

UGA codon.  Our findings demonstrate that SAH accumulation in endothelial cells suppresses the 

expression of GPx-1 to promote oxidative stress.  Hypomethylation stress, caused by SAH 

accumulation, inhibits the formation of the methylated isoform of the tRNASec and reduces GPx-1 

expression.  In contrast, under these conditions, the expression and activity of thioredoxin 

reductase-1, another selenoprotein, is increased.  Furthermore, SAH-induced oxidative stress creates 

a pro-inflammatory activation of endothelial cells characterized by up-regulation of adhesion 

molecules and an augmented capacity to bind leukocytes.  Taken together, these data suggest that 

SAH accumulation in endothelial cells can induce tRNASec hypomethylation which alters the 

expression of selenoproteins, such as GPx-1, to contribute to a pro-atherogenic endothelial 

phenotype.

Key Words: tRNA methylation, S-adenosylhomocysteine, selenoprotein, oxidative stress, cell 

adhesion, endothelial cell, glutathione peroxidase. 
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1. INTRODUCTION 

S-Adenosylhomocysteine (SAH) is an intermediate of homocysteine metabolism, which in 

excess is a feedback inhibitor of most cellular methylation processes. Methyltransferases use 

S-adenosylmethionine (SAM) to methylate a wide range of substrates, such as DNA, RNA, proteins 

and other biomolecules, and SAH is generated by every SAM-dependent methylation reaction (1,2).  

During hyperhomocysteinemia, which is an independent risk factor for cardiovascular disease, 

homocysteine’s precursor SAH accumulates as well, since the reaction catalyzed by SAH hydrolase 

(SAHH) thermodynamically favors SAH synthesis over its hydrolysis to homocysteine.  DNA 

hypomethylation has been correlated with increased levels of SAH in mice and humans with 

hyperhomocysteinemia (3,4).  More recently, we have shown that increased levels of SAH also lead 

to protein arginine hypomethylation in rodents (5,6).  

We have previously reported that homocysteine can induce oxidative stress through 

glutathione peroxidase-1 (GPx-1) down-regulation by decreasing its translation; however, the 

underlying mechanism remains unknown (7).  GPx-1 is a major antioxidant protein that uses GSH as 

a cofactor to reduce hydrogen peroxide (H2O2) to water and other hydroperoxides to their 

corresponding alcohols (8).  Antioxidant agents, such as GPx-1, are crucial for maintaining endothelial 

homeostasis.  In fact, antioxidant deficiency may lead to intracellular accumulation of reactive oxygen 

species (ROS) creating oxidative stress (8,9).  Oxidative stress is a major contributor to 

atherosclerosis and vascular dysfunction.  An increase in ROS leads to LDL oxidation, decreases 

nitric oxide (NO) bioavailability, and induces the activation of transcription factors such as nuclear 

factor κB (NFκB) to promote the expression of adhesion molecules, such as intercellular adhesion 

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) (10-12).  The binding and 

transmigration of leukocytes from the lumen of vessels into the vessel wall is mediated by the 

presence of these adhesion molecules at the endothelial cell surface (10,13).  Work by us and others 

has shown that GPx-1 deficiency can induce the expression of these key adhesion molecules by 

regulating ROS flux, thus, promoting atherogenesis (14-17).  Furthermore, decreased activity of 

GPx-1 was shown to be independently associated with an increased risk of cardiovascular events in 

human subjects (17).   

GPx-1 and its several paralogs (GPx-2, GPx-3, GPx-4 and GPx-6) are part of the human 

selenoproteome, which comprises proteins that carry selenium incorporated in their polypeptide chain 

in the form of the amino acid, selenocysteine (Sec) (18). Selenoprotein expression relies on the ability 

of a Sec-carrying tRNA (tRNA[Ser]Sec) to recognize UGA, not as a stop codon, but as the site of 

incorporation of Sec during translation.  For this, additional cofactors are necessary (19).  The 

selenoprotein-encoding transcripts contain a stem-loop structure (Sec insertion sequence) within their 

3’-UTR which, together with translational cofactors, contribute to Sec incorporation (18,19).  Sec is 

synthesized on tRNA[Ser]Sec, which is first aminoacylated with Ser, and then enzymatically converted to 
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Sec (20).  The mammalian tRNA[Ser]Sec population consists of two major isoforms that differ by a single 

methyl group on the ribosyl moiety at position 34, 2’-O-methylribose (21). The highly modified base at 

position 34 is 5-methoxycarbonylmethyluridine (mcm5U), and thus, the two isoforms are designated: 

mcm5U and 5-methoxycarbonylmethyluridine-2’-O-methylribose (mcm5Um) (21). Loss of the 

isopentenyladenosine (iA6) at position 37 (e.g., by site substitution of A37 with G) prevents 

2’-O-methylribose (Um34) formation at position 34 (22).  The A37>G37 mutation or 

selenium-deficiency conditions reduce Um34 formation and decrease the expression of a subset of 

selenoproteins, designated stress-related selenoproteins, such as GPx-1 and selenoprotein W.  

On the other hand, these changes have less effect on the expression of another subset of 

selenoproteins, designated housekeeping selenoproteins, such as the thioredoxin reductases, TrxR1 

and TrxR2 (21,23).  

In the current study, we analyzed the link between SAH-induced hypomethylation and the 

expression of selenoproteins.  We determined that SAH accumulation suppresses GPx-1 expression, 

in part, by altering the methylation of tRNA[Ser]Sec.  Additionally, hypomethylation of the tRNA[Ser]Sec 

altered the expression of other selenoproteins, as shown by [75Se]- incorporation.  Furthermore, the 

SAH-induced hypomethylation environment caused an increase in ROS levels and a subsequent 

up-regulation of adhesion molecules.  These findings illustrate the functional consequences of 

hypomethylation on selenoprotein synthesis and cellular homeostasis, and their clear implications for 

vascular pathology. 

2. MATERIALS AND METHODS 

Cell Culture, Treatments and siRNA Transfection – Human umbilical vein endothelial cells 

(HUVEC) were cultured in EBM-2 media (Lonza) supplemented with EGM-2 additives (Lonza) without 

antibiotics at 37ºC in 5% CO2.  These culture conditions included 2% FBS, which added 7.5 nM Se, to 

the basal level of 30 nM Se (in the form of selenious acid) in the basal media.  Selenium was added in 

the form of sodium selenite in some experiments, as noted in the figure legend.  Experiments were 

performed between passage five and eight with cells 70-80% confluent.  Cells were treated with 

5-20 µM adenosine-2′,3′-dialdehyde (ADA) (Sigma) for 12-48 h.  Eight mM N-acetylcysteine (NAC) 

was used as an antioxidant in some experiments, as designated in the figure legend. 

Transfections with small interference RNA (siRNA) were performed using 

Lipofectamine® 2000 (Life Technologies) and 60 nM of stealth siRNA (Life 

Technologies) to SAHH mRNA (5’-ACGCCGUGGAGAAGGUGAACAUCAA-3’) or GPx-1 mRNA 

(5’-GGUUCGAGCCCAACUUCAUGCUCUU-3’).  All transfections were performed in parallel with 

scrambled control siRNAs, (5’-UUGGGAUUGUCCACUCUUCACCCGU-3’), for the SAHH control, or 

(5’- GGUAGCGCCAAUCCUUACGUCUCUU-3’) for the GPx-1 control. 
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SAM/SAH Analysis and SAHH Activity – In order to measure SAH and SAM intracellular 

metabolites, cell lysates were promptly deproteinized with an equal volume of 10 % perchloric acid 

and then quantified using tandem mass spectrometry, as described (24). 

SAHH activity was measured in the hydrolytic direction using an assay based on the reduction 

of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to formazan according to 

published methods (25,26).  The assay was performed on cell lysates, comparing equivalent amounts 

of protein for each condition.  Lysates were pre-incubated with MTT for 5 m prior to adding SAH to 

monitor SAHH specific reduction of MTT.   

  

Real-time PCR  – Total RNA was isolated using RNeasy Mini kit (Qiagen) and 0.5 µg of each 

sample was reverse transcribed using Advantage RT-for-PCR kit (Clontech). Relative mRNA 

quantification was performed by TaqMan Assays, using the PRISM 7900 HT Sequence Detector 

(Applied Biosystems).  The Ct method of relative quantification was used to compare gene 

expression, using β-actin as an endogenous control.  Real time PCR reactions used the TaqMan 

Universal PCR Master Mix (Life Technologies) and the following specific gene expression primers: 

4352935E, β-actin; Hs00829989_gH, GPx-1; Hs00164932_m1, ICAM-1; Hs04183463_g1, SAHH; 

and Hs00365485_m1, VCAM-1 (Life Technologies). 

 

Western Blotting – Antibodies to β-actin (Sigma-Aldrich), GPx-1 (Abcam), SAHH (RD 

Systems), ICAM-1, VCAM-1 (Santa Cruz), or the antibodies previously described for TrxR1 or TrxR2 

(27) were used as primary antibodies for Western blotting.  After 2 h of incubation with a secondary 

antibody linked to HRP, membranes were visualized using the ECL detection system (Amersham 

Biosciences). 

 

GPx Activity Assay – An indirect assay, based on absorbance changes after NADPH 

oxidation, was used to measure GPx-1 activity (27). 

 

TrxR Activity Assay – The assay is based on the direct reduction of DTNB 

(5,5’-dithio-bis(2-nitrobenzoic acid)) by thioredoxin reductase.  To account for nonspecific reduction of 

DTNB by other cellular enzymes, the change in DTNB reduction over time in the presence of the TxR 

inhibitor aurothioglucose is subtracted from the activity in the absence of inhibitor to determine 

TrxR-specific activity (28,29).   

 

GPx-1 Overexpression – GPx-1 was expressed in endothelial cells using an adenoviral 

vector (AdGPx-1) as described (30).  HUVEC were incubated with adenovirus for 24 h, prior to 

exposure to ADA or control media.  An adenovirus expressing β-galactosidase (Ad-βGal) was used 

as a control. 
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ROS Measurements – ROS were assessed by two independent methods. First, hydrogen 

peroxide (H2O2) released by endothelial cells was measured by the Amplex Red assay 

(Molecular Probes), using previously described methods (14).  Intracellular H2O2 was monitored using 

the highly specific biosensor HyPer2 expressed in lentivirus (31-33).  HUVECs were infected with 

virus particles (106 pfu/mL) in the presence of polybrene (4mM).  Upon treatment, live cells were 

monitored, in parallel with control samples, for 13 h using a microscope stage incubator (Tokai) and 

an Olympus IX81 inverted microscope with a DSU spinning disk confocal system and a Hamamatsu 

Orca ER cooled CCD camera.  Image acquisition was performed using a 40× oil immersion objective 

lens (Olympus), every 5 min.  The HyPer2 fluorescence ratio was calculated as described (32,33).  

For imaging of fixed cells, lentivirus-infected HUVEC were treated for 24 h, then washed and fixed 

with 4% paraformaldehyde in PBS for 20 min.  Fixed cells were mounted using DAPI-containing 

mounting media or DAPI-free mounting media (SouthernBiotech) and imaged.  Methamorph imaging 

software (Universal Imaging) was used for analysis. 

 

Flow Cytometry and Static Adhesion Assay – ICAM-1 surface expression was analyzed 

after cell staining with FITC-conjugated anti-ICAM-1 antibody (Santa Cruz Biotechnology).  Briefly, 

cells were trypsinized, washed with PBS, then incubated with antibody for 30 min, washed with PBS 

containing 0.1% NaN3, and analyzed using GUAVA EasyCyte 5HT FACS and InCyte software 

(Millipore).   

An adhesion assay using human leukocytes was performed under static conditions.  

Leukocytes (WBC) were isolated from blood samples of healthy individuals using a RBC lysis solution 

(Citogene).   The ethics committee at the Faculty of Pharmacy, University of Lisbon approved the 

study and a written informed consent was obtained from all participants.  After three washes with 

PBS, WBCs were resuspended at 6×106 cells/mL in PBS with Ca2+ and Mg2+ with 0.1% human serum 

and added to the confluent HUVEC monolayer.  The cell mixture was incubated for 20 min at 37ºC, 

5% CO2, after which cells were thoroughly washed with PBS without Ca2+ and Mg2+, trypsinized, and 

assessed for cell specific markers by flow cytometry.  An antibody mixture of PE anti-human CD31 

antibody (BioLegend) and PerCP anti-human CD45 antibody (BioLegend) was used to distinguish 

endothelial and leukocyte cell populations, respectively. 

 

[75Se] Labeling – HUVEC were labeled with 10 μCi/mL of [75Se]-selenious acid 

(1000 Ci/mmol, Research Reactor Facility, University of Missouri, Columbia, MO) for 24 h in cell 

culture media supplemented with or without ADA (20 µM).  Cells were then washed, lysed, and 

protein extracts separated on 10 % Bis-Tris gels (NuPage, Novex, Invitrogen).  Proteins were then 

transferred to a PVDF membrane (Invitrogen), exposed to Storage Phosphor Screen (GE) for 24 h, 

and analyzed with PhosphorImager (GE) (34). Finally, membranes were used for immunoblotting: 

anti-β-actin antibody was used to confirm equal protein loading of the samples. 
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Sec-tRNA Analysis – One gram of HUVEC cells was used for total RNA isolation and 

aminoacylation with [3H]-serine and 19 unlabelled amino acids as described (35,36).  The 

aminoacylated seryl-tRNA was fractionated on a RPC-5 column, first in the absence of Mg2+ and 

subsequently, in the presence of Mg2+.  Using this sequential chromatography approach, it is possible 

to quantify the relative tRNA[Ser]Sec to the total tRNASer, and separate the two major isoforms of 

tRNA[Ser]Sec, mcm5U and mcm5Um (35,36). 

 

Statistical Analysis – Means are provided + standard deviations.  Statistical analysis was 

performed on experiments repeated in 3-5 independent assays.  The statistical significance of 

differences among means (p<0.05) in experiments with more than two conditions was determined by 

ANOVA, followed by pairwise post-hoc comparisons with the Student-Newman-Keuls test.  

Alternatively, the Student’s t-test was used for comparison, in experiments with only two groups. 

3. RESULTS 

SAH accumulation in endothelial cells – SAH is a metabolite of methionine metabolism and 

an endogenous inhibitor of SAM-dependent methyltransferases.  SAH accumulation was induced by 

two different approaches: direct inhibition of SAHH by ADA or targeted knockdown of SAHH using 

siRNA.  ADA, an adenosine analog, is a strong inhibitor of SAHH activity that has been used 

previously by us and others (2,37).  Following HUVEC incubation with 20 µM ADA for 24 h, SAHH 

activity was reduced by 99.5 ± 0.8% (p<0.0001) (Fig. 1).  This treatment significantly decreased 

SAHH mRNA by 27.1 ± 2.9 % (p<0.0001) and 45.3 ± 2.9 % (p<0.0001) after 24 h and 48 h, 

respectively, with no statistically significant change in protein expression over this time course.   Using 

a specific siRNA against SAHH, enzymatic activity was suppressed by 66.5 ± 3.7% (p<0.0001) 48 h 

after transfection with corresponding decreases of 88.5 ± 6.5% (p<0.001) and 48.3 ± 15.8% (p<0.01) 

at the mRNA and protein level, respectively.  The SAM/SAH ratio, commonly used as an indicator of 

cell methylation status, was decreased by 6.1 ± 0.2-fold (p<0.001) after 24 h incubation with 20 µM of 

ADA, and 1.3 ± 0.2-fold (p<0.005) after 72 h of siSAHH transfection. 
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Figure 1 - Inhibition of cellular SAHH activity. (A). Adenosine dialdehyde (ADA) or siSAHH was used 
to decrease SAHH activity.  Means are significantly different by t-test. (***p<0.0001 versus control, 
n=3-4). (B). The effects of ADA or siSAHH on SAHH protein expression was examined by Western 
blotting.  Summary densitometry measurements, corrected for β-actin (actin) intensity, are shown below 
the immunoblots (n=3-4). (C). The effects of ADA or siSAHH on SAHH mRNA were measured by 
qRT-PCR using actin as an endogenous control. (**p<0.001, ***p<0.0001 versus control, n=3-4).  

GPx-1 activity under SAH accumulation – Homocysteine levels and GPx-1 activity are 

strong biomarkers for cardiovascular risk, with clinical studies suggesting that those with the lowest 

GPx-1 activity are at the greatest risk (17,38).  Our previous studies have shown that excess 

homocysteine suppresses GPx-1 expression by decreasing Se-dependent translation; however, 

although these findings linked suppression of GPx-1 to conditions that favored the intracellular 

formation of SAH, a role for SAH in the translational regulation of GPx-1 remained unresolved (7,39).  

To determine whether SAH modulates GPx-1 expression, we treated cells with ADA or siSAHH.  

Incubation of endothelial cells with increasing concentrations of the SAHH inhibitor, from 5 to 20 µM, 

resulted in a significant decrease of GPx-1 activity in a dose-dependent manner (Fig. 2A).  

ADA (20 µM) or the siRNA-mediated knockdown of SAHH significantly reduced GPx-1 protein 

expression by more than 27% (Fig. 2B).  Under these conditions, however, GPx-1 mRNA levels were 

not significantly altered, which is consistent with the hypothesis that SAH-induced hypomethylation 

affects GPx-1 expression at a translational level (Fig. 2C). 
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Figure 2 - Effect of SAH accumulation on GPx-1. (A). GPx-1 activity was measured by an indirect 
coupled enzymatic assay. Means were significantly different by ANOVA, followed by posthoc pairwise 
comparisons (n=4-5, *p<0.05, **p<0.005). (B). The effect of SAHH inhibition on the expression of GPx-1 was 
examined by Western blotting. A representative blot (top) and summary densitometry measurements, corrected 
for actin intensity (bottom) are shown, for 24 and 48 h in the presence and absence of ADA or siSAHH (n=3, 
*p<0.05, **p<0.005). (C). mRNA levels from the same experiments were measured by qRT-PCR using actin as 

an endogenous control. No significant difference was found between treatment groups. 
 

Hypomethylation induces endothelial oxidative stress – The enzymatic actions of GPx-1 

and other antioxidants diminish the damaging effects of ROS, like H2O2 (8).  Thus, we next assessed 

whether the ADA-induced suppression of GPx-1 altered cellular H2O2 accumulation in endothelial 

cells.  To do so, we measured cellular H2O2 levels by two different methods.  First, we used the 

Amplex Red assay to quantitate extracellular H2O2 levels.  After 24 h of exposure, we found an 

increase in H2O2 released to the media with increasing ADA concentrations (Fig. 3A).  Next, we used 

the biosensor Hyper2 to monitor intracellularly H2O2 flux.  Hyper2 is a biosensor that uses the 

regulatory domain of the E. coli H2O2–sensing protein, OxyR.  The HyPer2 probe has a fluorescent 

protein (circularly permuted yellow fluorescence protein) inserted into the OxyR domain, which allows 

the detection of fluorescence changes when the domain undergoes oxidation by H2O2 (31).  ADA 

induced a 2.5-fold increase in the production of intracellular H2O2 (Fig. 3B).  These findings suggest 

that hypomethylation stress promotes an oxidative imbalance in endothelial cells, most likely, due to 

the suppression of GPx-1.  

.  
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Figure 3 - H2O2 levels are increased by 
SAHH inhibition. (A). After 24 h of ADA 
exposure H2O2 release from cells was 
measured by Amplex Red. The results 
represent means from 3 independent 
experiments that were analyzed by ANOVA, 
followed by pairwise post hoc analysis 
(**p<0.005, ***p<0.0005 compared to 
control). (B).Intracellular H2O2 production 
was detected using the HyPer2 
fluorescence ratio. The graph shows the 
means of 3 independent experiments, for 
which fluorescence ratios were measured 
for 3-5 cells per condition over 13 h 
(**p<0.005 compared to control). (C). 
Representative images of HyPer2 
transfected cells 24 h following exposure to 
ADA-containing or control media are shown 
on the right. 

 

Oxidative stress induced by SAH accumulation promotes endothelial cell activation – 

Endothelial activation is a consequence of oxidative stress characterized by an increase in the 

expression of inflammatory cytokines and adhesion molecules, which promote adhesion and 

trans-endothelial migration of leukocytes (40,41). Thus, to determine whether SAH-induced oxidant 

stress augmented endothelial cell activation, we measured the expression of the adhesion molecules 

ICAM-1 and VCAM-1 following SAHH inhibition.  Figure 4 shows a positive correlation between a 

hypomethylation environment and adhesion molecule expression.  Both ADA and siSAHH 

significantly induced ICAM-1 and VCAM-1 expression detectable at the protein (Fig. 4A and 5A) and 

transcript levels (Fig. 4B).  

ICAM-1 and VCAM-1 expression has been associated with ROS levels, both in normal and in 

pathogenic conditions (10,41,42).  Therefore, in order to causally link endothelial activation with 

SAH-induced oxidative stress, endothelial cells were co-incubated with ADA and various antioxidants.  

Both ICAM-1 and VCAM-1 were induced by approximately two-fold (p<0.05) following ADA or siSAHH 

exposure (Fig. 4 and 5A).  Treatment with the antioxidant N-acetyl-cysteine (NAC) significantly 

attenuated the ADA-induced up-regulation of these adhesion molecules (Fig. 5A).  A similar effect 

was found with the antioxidants butylated hydroxyanisole (100 µM) and allopurinol (150 µM) (data not 

shown).  Similarly, overexpression of GPx-1 in endothelial cells minimized the effect of ADA exposure 

on adhesion molecules expression (Fig. 5B).  
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Figure 4 - Adhesion molecules expression is increased by pharmacological or siRNA-mediated 
suppression of SAHH. (A). The effect of 48 h SAHH inhibition on the expression of ICAM-1 and VCAM-1 was 
evaluated by Western blotting.  On the top, a representative blot is shown; on the bottom relative mean 
densitometry measurements are given, corrected for actin, for each protein and treatment condition.  Mean 
densitometry measurements were compared by the Student’s t-test (n=3-5, *p<0.05, **p<0.005, ***p<0.0005).  

(B). Gene expression levels from the same experiments were measured by qRT-PCR, using -actin gene 
expression as a control (*p<0.05, **p<0.005, ***p<0.0005).  

 
Figure 5 - Oxidative stress contributes to endothelial cell activation following SAHH inhibition.  (A).   
Control cells or cells exposed to ADA were incubated in the presence or absence of the antioxidant NAC (8mM). 
Western blot analysis was performed to evaluate ICAM-1 and VCAM-1 protein expression.  A representative 
blot is shown (left), as well as mean densitometry measurements, corrected for actin, for each protein and 
treatment condition (right).  Densitometry results were analyzed by ANOVA, followed by pairwise post hoc 
analysis (*p<0.05, **p<0.005; n=3).  (B). In the left panel, cells with overexpression of a control gene (β-Gal) or 
GPx-1 were incubated in the presence or absence of ADA (n=3).  Western blotting was used to evaluate 
ICAM-1 and VCAM-1 expression.  In the right panel, ICAM-1 and VCAM-1 expression was evaluated in the 
presence or absence of ADA and GPx-1 knockdown.  Mean densitometry measurements, normalized for actin, 
were analyzed as in A. 
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The specific role of GPx-1 in regulating adhesion molecule expression was further assessed by 

performing a knockdown of this antioxidant protein.  As shown in Figure 5B, GPx-1 knockdown 

potentiated the ADA effect:  ADA-induced ICAM-1 expression was increased 47.3% by the 

combination of siGPx-1 plus ADA compared with ADA alone (p<0.05).   VCAM-1 expression was also 

up-regulated by GPx-1 suppression, although the increase in expression was not significantly different 

between ADA and ADA treatment with GPx-1 knockdown.  These findings are consistent with a role 

for excess ROS, caused by the suppression of GPx-1, in mediating the SAH-induced up-regulation of 

endothelial adhesion molecules.   

 

Hypomethylation increases endothelium leukocyte-binding capacity – We next sought to 

determine whether the ADA-induced up-regulation of ICAM-1 and VCAM-1 was sufficient to enhance 

leukocyte binding.  We first confirmed that the induced up-regulation of ICAM-1 expression resulted in 

a corresponding increase in ICAM-1 at the cell surface where it is capable of leukocyte binding.  To 

do so, we used a fluorescently-tagged antibody to ICAM-1 and evaluated changes in the mean 

fluorescence intensity (MFI) by flow cytometry.   Using this method, cell surface detection of ICAM-1 

was significantly up-regulated by 1.6-fold at 48 h and by 2.1-fold at 72 h (p<0.05) following ADA 

exposure (Fig. 6A).  Next, to assess the leukocyte binding capacity of these endothelial cells following 

hypomethylation stress, we performed an adhesion assay.  In this assay, we co-incubated endothelial 

cells (control cells or those previously exposed to ADA) with leukocytes for 20 min in static conditions.  

After several washes, cells were detached and stained with fluorescent anti-CD31 or anti-CD45 

antibody in order to quantitate the number of endothelial cells (CD31+) and leukocytes (CD45+) by 

flow cytometry and to evaluate the number of leukocytes that remained attached to endothelial cells 

during the procedure.  Pre-exposure to ADA increased the number of leukocytes attached to the 

endothelial monolayer by 33.0% at 48 h (p<0.05) and 40.8% (p<0.05) at 72 h (Fig. 6B). These 

findings are consistent with the increase of cell surface-detectable ICAM-1.  The mean fluorescence 

intensity of the endothelial marker CD31 (platelet endothelial cell adhesion molecule-1 or PECAM-1), 

used to distinguish endothelial cells during the assay, was increased by 33.3% after 72 h of ADA 

treatment (p<0.0001), suggesting that it may also be up-regulated under hypomethylating stress. 

 

Figure 6 - Cell surface adhesion of 
leukocytes is enhanced by ADA exposure.  
(A). Flow cytometry was used to detect cell 
surface expression of ICAM-1 tagged with a 
fluorescent antibody following exposure to ADA 
for 48 h and 72 h  (n=3).  Means were compared 
at each time point between ADA treatment and 
no treatment by Student’s t-test (* p<0.05).  (B).  
Following a static adhesion assay, leukocytes 
that remained attached to the endothelial 

monolayer were labeled with a fluorescent-conjugated antibody (CD45) and counted by FACS.  Results are 
shown as means from 3 independent assays, normalized to the control and analyzed as in A (*p<0.05). 
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GPx-1 expression deregulation by Sec-tRNA hypomethylation – During Sec incorporation, 

Sec-tRNA[Ser]Sec recognizes the stop codon, UGA, as a site for Sec insertion (8,19,43).  As noted in 

the Introduction, mammalian tRNA[Ser]Sec is present in two main isoforms that differ by a methyl group 

in the wobble uridine (U34) of the anticodon (Fig. 7A) (21).  The mcm5Um isoform of tRNA[Ser]Sec has 

been shown to be required for the expression of stress-related selenoproteins that include GPx-1 

(21,23).  To determine whether excess SAH altered the methylation state of the tRNA[Ser]Sec, we 

treated cells with ADA and measured the levels of both isoforms, mcm5U and mcm5Um, following the 

specific labeling and chromatographic separation of [3H]-Ser-tRNA[Ser]Sec.  Figure 7B shows the 

chromatographic separation of the tRNA[Ser]Sec isoforms from control cells or cells under SAHH 

inhibition.  Preparations from control cells (Fig. 7B – left) show two different peaks that represent the 

presence of the mcm5U form (earlier-eluting peak) and the mcm5Um form (later-eluting peak).  

Following ADA exposure, the tRNA[Ser]Sec mcm5Um isoform is practically undetectable, suggesting that 

ADA-treatment blocks the formation of the critical isoform of tRNA[Ser]Sec necessary for optimal Sec 

incorporation in GPx-1 and other selenoproteins.   Interestingly, total tRNA[Ser]Sec levels were 

increased 1.7-fold with ADA exposure.  

We next used [75Se]-labeling, followed by gel electrophoresis, to study the expression of key 

proteins in the selenoproteome (Fig. 7C).  Overall, there are more than 25 selenoproteins that are 

encoded in 25 genes in humans (18,44).  To confirm the absence of changes in protein synthesis or 

other gel loading issues, β-actin immunoblotting was performed following radioautography of 

[75Se]-labeled proteins.  There were no differences detected in β-actin between control and treated 

samples.   In contrast, examination of the [75Se]-labeled proteins indicates alterations in selenoprotein 

expression in control cells compared with those in which SAH accumulation was induced.  The 

molecular mass of selenoproteins, such as GPx-1, GPx-4, thioredoxin reductase (TrxR) 1, Sep15 and 

MsrB1, have been previously characterized in mammalian cells and tissues (23) and these can be 

identified by their relative migration in the gel imaged in Figure 7C.   Consistent with the results of 

Western blotting and activity assays, ADA and siSAHH decreased the [75Se]-labeling of GPx-1.  The 

selenoproteins, GPx-4, Sep15 and/or MsrB1, were also suppressed by these treatments.  

Interestingly, the TrxR enzymes (TrxR1 and, to a lesser extent, TrxR2) showed increased expression.  

Western blot analysis was used to confirm the up-regulation of these TrxRs (Fig. 7D), illustrating the 

significant (p<0.05) up-regulation of TrxR1 by 36.8% and TrxR2 by 23.1% following ADA treatment.  

TrxR1 but not TrxR2 mRNA was also significantly up-regulated (Fig. 7E) and cellular TrxR activity 

was also significantly increased by ADA exposure (p<0.05) (Fig. 8A).  These findings are consistent 

with previous studies, which suggest that the expression of the TrxRs is less reliant on methylated 

tRNA[Ser]Sec than other selenoproteins, including GPx-1 (21,23,43).  
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Figure 7 - tRNA
[Ser]Sec

 hypomethylation and its effect on selenoproteome expression.  
(A). Structures of the mcm

5
U and mcm

5
Um isoforms of the wobble uridine (Um34). (B). Following 

aminoacylation with [
3
H]-serine, tRNA

[Ser]Sec
 isoforms were separated by reverse phase chromatography.  

A normal profile is shown on the left chromatogram (control cells), where mcm
5
U elutes earlier than the 

mcm
5
Um isoform.  On the right chromatogram, cells exposed to ADA are lacking the peak corresponding 

to the later-eluting mcm
5
Um isoform.  Note the differences in the Y-axis scale. (C). Duplicates of control 

cells or cells exposed to ADA or siRNA treatment were labeled for 24 h with 
75

Se.  Proteins were 
extracted, separated by gel electrophoresis, and labeled selenoproteins were detected using a 
PhosphoImager.  The protein marker sizes (in KDa) and select selenoprotein bands are indicated on the 
left and right sides of the image, respectively. (D). Protein extracts were prepared from total cell lysates 
treated and untreated with ADA, and Western blots were used to detect TrxR1 and TrxR2. 
A representative blot is shown; on the right relative mean densitometry measurements are shown, 
corrected for actin, for each protein and treatment condition.  Mean densitometry measurements were 
compared by the Student’s t-test (n=3, *p<0.05, **p<0.005). (E). TrxR1 and TrxR2 mRNA levels were 

measured in treated and untreated control samples by qRT-PCR using actin as endogenous control. 
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Figure 8 - The effects of excess selenium on TrxR1 and GPx-1 expression.  Selenium in the form of 
sodium selenite was added to media that contained 37 nM selenium for 48 h prior to exposure to ADA for 
an additional 48h in the presence and absence of Se. (A).  Effect of excess selenium on TrxR enzyme 
activity and TrxR1 protein expression.    Excess Se had no effect on TrxR1 activity (n=3) or expression 
(n=4) in the absence of ADA.  In the presence of ADA, the TrxR1 up-regulation of TrxR1 was not altered 
by excess Se. (B). Effect of excess selenium on GPx-1 activity (n=4) and GPx-1 protein expression (n=4) 
in the presence and absence of ADA.  Selenium did not significantly alter GPx-1 in the absence of ADA. 
In the presence of ADA, the suppression of GPx-1 was not decreased by excess Se. (C). Effect of excess 
selenium on ICAM-1 and VCAM-1 protein.   Excess Se did not lessen ADA-induced up-regulation of the 
ICAM-1 or VCAM-1.  For each graph, values that are not significantly different from no treatment or ADA 
are labeled a or b, respectively. 
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Se supplementation and hypomethylation – To determine whether excess selenium would 

mitigate the effects of ADA on GPx-1 and TrxR expression, we added additional Se to the culture 

media, which has 37.5 nM Se.  Addition of up to 100 nM Se for 4 d did not increase GPx-1 or TrxR1 in 

the absence of ADA (Fig. 8 A & B).  Similarly, in the presence of ADA, exposure to additional Se did 

not significantly alter the effects of ADA alone on GPx-1 or TrxR activity and expression, although at 

50 nM Se plus ADA there was a (non-significant) increase in GPx-1 protein. We next determined 

whether additional Se altered ADA-induced adhesion molecule up-regulation (Fig. 8C).  Western blot 

analysis shows that the ADA-induced up-regulation of ICAM-1 and VCAM-1 is unchanged by excess 

Se. 

4. DISCUSSION 

Methylation is essential for critical cell processes, including gene expression and protein 

function (45,46).  SAH, which is one of the most potent in vivo modulators of SAM-dependent 

methylation reactions, is an important regulator of cellular homeostasis.  The SAM-to-SAH ratio is 

thought to regulate intracellular methylation reactions, with many methyltranferases showing 

diminished activity when this ratio decreases (4,45).  Altered methylation patterns have been related 

to cellular dysfunction and disease, including cancer and cardiovascular disease (45,47,48). RNA 

methylation can regulate the structure and function of various RNA species.  tRNA is the most heavily 

modified RNA species and modifications to nucleotides in the anticodon loop, especially at the 

Wobble position (position 34), play an essential role in efficient mRNA decoding at the ribosome (49). 

SAH, which accumulates in the setting of hyperhomocysteinemia, has gained attention as an 

intracellular metabolite that may be responsible for the deleterious actions on the vasculature 

previously attributed to excess homocysteine (46).  Our studies are focused on the effects of SAH as 

a hypomethylating agent that alters endothelial function.  In particular, our results indicate that excess 

SAH decreases methylation of tRNA[Ser]Sec to alter the expression of the selenoproteins GPx-1 and 

TrxR.  We show that the resulting decrease in the expression of the antioxidant selenoprotein GPx-1 

leads to an increase in cellular H2O2 and a subsequent up-regulation of endothelial adhesion 

molecules expression.  Furthermore, the increase in adhesion molecules is sufficient to have a 

functional effect on cellular adhesion, augmenting the binding of leukocytes.  Recent studies have 

reported possible links between methylation impairment and vascular dysfunction (2,50,51); here, we 

demonstrate a specific mechanism by which hypomethylation stress can lead to inflammatory 

activation of endothelial cells. 

In our studies, we used two methodological approaches to promote SAH accumulation by 

targeting SAHH.  First, we used the specific SAHH inhibitor, ADA, which is known to cause 

SAH-induced hypomethylation stress (1,2).  Additionally, we used a targeted siRNA-mediated 

knockdown of SAHH. Two additional genes that encode the SAHH-like proteins -1 and -2 have also 
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been identified in mammalian systems (52,53), although a clear functional role for these proteins has 

yet to be made.  Nonetheless, in our targeted siRNA knockdown studies, we confirmed that siSAHH 

did not affect the levels of SAHH-like-1 and SAHH-like-2 mRNA. Overall, the effects of siSAHH 

paralleled those of SAHH inhibition, although the magnitude of the changes was lower with the 

siSAHH.  This difference may be explained by the time course of their action, since ADA has an 

almost immediate inhibitory action on SAHH activity, while the siRNA takes longer to achieve its 

maximal effect on SAHH expression.  Moreover, siSAHH resulted in only a 67% reduction of SAHH 

activity compared to the complete suppression achieved with ADA.  Nonetheless, targeted siRNA 

mediated knockdown of SAHH had qualitatively similar effects on altering the SAM/SAH ratio as the 

pharmacological approach.  An unanticipated result was the ADA-induced suppression of SAHH 

mRNA, although under the time-frame examined, this did not significantly alter SAHH protein.  This 

may be the result of a feedback mechanism in which excess SAH suppresses SAHH expression.    

Here, we show that oxidative stress can be promoted by excess SAH.  Our data is consistent 

with a role for hypomethylation in the suppression of GPx-1 expression (Fig. 2).  Our previous studies 

indicated that excess exogenous homocysteine, or conditions that promote homocysteine production 

in cells, reduce GPx-1 expression by a mechanism that involved decreased Se-dependent translation 

(7).  GPx-1 is one of the major antioxidants that can modulate overall oxidative stress (8).  Its role in 

vascular dysfunction has been widely studied as an important regulator of endothelial oxidative 

balance and its deficiency contributes to atherosclerosis in susceptible mice and patients with 

coronary artery disease.  Here, we observed a decrease in GPx-1 activity and protein expression 

following pharmacological inhibition or knockdown of SAHH with no significant decrease in GPx-1 

transcript levels.  Taken together, these findings suggest that GPx-1 is modulated by hypomethylation 

post-transcriptionally.  Previously, it has been suggested that the GPx-1 promoter is a target for 

epigenetic regulation by DNA methylation, as exposure to the DNA methyltransferase inhibitor 

5’-aza-2-deoxycytidine (5’-aza-dC) induced an up-regulation of GPx-1 in gastric carcinoma cells (54).  

In our study, however, hypomethylation stress did not increase GPx-1 expression.  Furthermore, in 

endothelial cells exposed to 5’-aza-dC, we did not observe an up-regulation in GPx-1 expression 

(data not shown), suggesting that GPx-1 regulation by DNA methylation may be cell-type specific.   

Our laboratory recently reported that GPx-1 deficiency is sufficient to augment the expression 

of ICAM-1 and VCAM-1 in human endothelial cells (14).  Here, we show that SAH accumulation also 

induces up-regulation of these adhesion molecules, possibly via the suppression of GPx-1 and the 

subsequent increase in cellular ROS (Fig. 9), which can activate signaling pathways that promote 

up-regulation of adhesion molecules (14).  Furthermore, we confirmed a role for GPx-1 in regulation 

of adhesion molecules by using gain and loss of function approaches.  GPx-1 overexpression 

decreased ADA-induced adhesion molecule up-regulation, while its knockdown augmented the 

effects of hypomethylation on adhesion molecule up-regulation.  
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ICAM-1, VCAM-1 and PECAM-1 can mediate the adhesion of leukocytes to the endothelium 

and their transmigration (10,11,55).  We demonstrated that hypomethylation stress in endothelial cells 

caused an increase in the cell surface expression of ICAM-1 and PECAM-1.  Although the magnitude 

of the increase in cell surface ICAM-1 was less than the magnitude of the up-regulation in total 

ICAM-1 expression, increased cell-surface expression of adhesion molecules following ADA-exposure 

was sufficient to increase leukocyte binding.  These findings suggest that the effects of 

hypomethylation may contribute to inflammatory pro-atherogenic changes in endothelial cells. 

We further demonstrated a role for oxidants in the SAH-induced up-regulation of adhesion 

molecules, as treatment with antioxidants attenuated the ADA-induced up-regulation of ICAM-1 and 

VCAM-1 (Fig. 5).  Interestingly, other studies in cancer-associated endothelial cells suggest that the 

ICAM1 gene promoter is a target for DNA methylation; thus, its expression may also be regulated 

epigenetically (56).  Nonetheless, a variety of antioxidant treatments lessened the expression of 

ICAM-1, as well as VCAM-1, in ADA-treated cells, suggesting that the SAH-induced reduction 

of GPx-1 and subsequent oxidant stress rather than DNA hypomethylation contribute to their 

up-regulation. 

 

Figure 9 - The role of hypomethylation on endothelial dysfunction and activation. Excess 
SAH induces hypomethylation stress capable of decreasing the available tRNA

[Ser]Sec
 isoform 

mcm
5
Um.  Lack of this tRNA

[Ser]Sec
 isoform decreases the expression of the antioxidant GPx-1 (as 

well as other selenoproteins).  Loss of GPx-1 causes an increase in cellular oxidants, promoting 
oxidative stress.  Oxidant stress contributes to increased expression of adhesion molecules that 
are responsible for an increased capacity to bind leukocytes, contributing to a pro-atherogenic 
environment.  Other possible mechanisms (represented by the dashed arrow), such as DNA 
hypomethylation, may also be involved in the up-regulation of adhesion molecules, such as ICAM-1 
and VCAM-1. 

GPx-1 is member of the selenoproteome, which comprises more than 25 proteins that contain 

selenium in the form of the Sec amino acid (18,21,44).  More than 50% of the selenoproteome is 

known to be involved in redox homeostasis, and selenium deficiency has been associated with 
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oxidative stress and cancer (18).  The unique translation mechanism exclusive to these proteins 

involves the recognition of the UGA codon, which in most circumstances signals translation 

termination, as a signal for Sec incorporation. Interestingly, Sec is synthesized directly on the tRNA 

that is initially charged with a Ser, which is subsequently enzymatically converted to Sec (20,57).  The 

two major tRNA[Ser]Sec isoforms, mcm5U and mcm5Um, which differ by a single methyl group, Um34, 

at position 34, modulate the expression of selenoproteins (21).  Theoretically, an effect of 

hypomethylation, due to SAH accumulation, on this tRNA will affect not only GPx-1 expression, but 

also expression of other members of the selenoproteome.  By using [75Se]-labeling, we found that 

many Sec-containing proteins were down-regulated following SAHH impairment.  Previous studies 

have shown that some selenoproteins are less sensitive to the loss of the mcm5Um isoform of 

tRNA[Ser]Sec than others.  In particular, the mcm5U isoform of tRNA[Ser]Sec supports the synthesis of a 

subclass of selenoproteins, designated as housekeeping selenoproteins (TrxR1 and TrxR2); whereas 

the methylated mcm5Um form, supports the expression of the stress-related subclass of 

selenoproteins (GPx-1, GPx-3, GPx-4, SelR, SelT, SelW) (21).  Accordingly, among the proteins that 

can be identified following selenium labeling, we found that hypomethylation results in an increase in 

TrxR1 expression, while GPx-1 and GPx-4 are diminished.  One limitation of our study is that we have 

not confirmed the suppressive effects of ADA on selenoproteins other than GPx-1.  Our results, 

however, clearly demonstrate a reciprocal regulation of TrxR1 and GPx-1, with a Pearson’s 

correlation coefficient of -0.647, p=0.0006, between TrxR and GPx-1 enzyme activities.  Interestingly, 

protein expression of the related TrxR1 and TrxR2 were both increased by ADA, although the 

mechanisms may be different: only the TrxR1 mRNA was increased with exposure to ADA.  It is well 

known that TxR1 is a target for transcriptional regulation by the stress-activated nuclear factor Nrf2 

(58-60).  Thus, oxidant stress caused by GPx-1 suppression may contribute to TxR1 up-regulation, 

although other factors may also play a role in augmenting TxR1 expression.  The reciprocal regulation 

of TrxR1 and GPx-1 has been reported previously in a variety of cancer cells (61) and these 

antioxidants enzymes may have complementary roles in regulating cellular redox.  Thus, similar to 

loss of GPx-1, knockdown of TrxR1 may increase H2O2 in endothelial cells, although of the TrxR 

enzymes, the TrxR2 appears to have a greater role in modulating intracellular H2O2 (62).  In our 

current study, however, modest up-regulation of TrxR enzymes was not sufficient to compensate for 

suppression of GPx-1 as H2O2 accumulated in ADA-treated endothelial cells. 

In our cell culture system, HUVEC were cultured with media containing 30 nM selenious acid 

plus 7.5 nM selenium from serum.  The addition of excess Se up to 100 nM had little effect on the 

expression of GPx-1 or TrxR as monitored by Western blots and enzyme activity assays (Fig. 8). The 

lack of an effect of additional Se in our cell system is consistent with previous studies reporting 

maximal expression of TrxR and GPx-1 when endothelial cells were cultured with 40 nM Se (63).  
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To date, the methyltransferase responsible for the methylation of mcm5U tRNA[Ser]Sec has not 

been identified, but our studies suggest that it may be particularly sensitive to SAH accumulation as 

its product is virtually undetectable after ADA treatment (Fig. 7B).  Recent studies have identified a 

methyltransferase, ALKBH8, which when complexed with TRM112, catalyzes the methyl esterification 

of cm5U to mcm5U (64,65).  Absence of ALKBH8 also inhibited the decoding of the UGA stop codon 

to Sec, causing reduced levels of GPx-1 in the liver of ALKBH8 deficient mice (64).  

Interestingly, besides the lack of the methylated form of tRNA[Ser]Sec, cells under SAH 

accumulation appeared to respond to the absence of this isoform by inducing tRNA[Ser]Sec production: 

ADA treatment  caused an approximate 1.7-fold increase in the overall levels of tRNA[Ser]Sec.  

The mechanism that regulates this feedback response is not clear, and needs further investigation.   

Our work elucidates a new mechanism by which hypomethylation can modulate selenoprotein 

expression.  As excess SAH can be found in conditions of elevated homocysteine and it inhibits 

methylation reactions, we propose that SAH accumulation may explain the effects of homocysteine on 

GPx-1 suppression.  Figure 9 summarizes the mechanism by which a hypomethylating environment 

can contribute to endothelial dysfunction and activation.  Thus, an accumulation of SAH inhibits the 

methylation of the tRNA[Ser]Sec necessary for efficient translation of GPx-1 and other selenoproteins.  

The impairment of this important antioxidant can lead to oxidant stress and endothelial activation, 

contributing to the up-regulation of ICAM-1 and VCAM-1 adhesion molecules, which may augment 

leukocyte binding to contribute to an atherogenic phenotype. 
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ABSTRACT 

S-Adenosylhomocysteine (SAH) is, simultaneously, a byproduct and a competitive inhibitor of 

most cellular methylation reactions, which is elevated in hyperhomocysteinemia. 

Hyperhomocysteinemia is a risk factor for vascular diseases by mechanisms incompletely defined. 

Our previous results have shown that elevated SAH levels suppress DNA and protein methylation and 

that SAH-induced hypomethylation can promote endothelial dysfunction. Recently, we have also 

found the hypomethylation of a specific tRNA modification under excess SAH.  RNA methylation has 

essential functions in maintaining RNA structure and function.  Here, we investigate the effects of 

SAH on 12 well-characterized RNA methylation modifications in total and size-fractionated RNA 

samples from human endothelial cells and mouse tissue samples.  

We found that endothelial accumulation of SAH reduces the presence of Cm, m1G, Gm, Am, 

and m6A modifications in total RNA. Methylation of the tRNA fraction was significantly affected by 

excess SAH with decreased Cm and Gm modifications by 30% and 25%, respectively. Lastly, we 

evaluated RNA methylation levels in a hyperhomocysteinemic mouse model that has elevated levels 

of tissue SAH. Our results revealed that hyperhomocysteinemia can promote both hyper- and 

hypo-methylation of RNA in vivo, depending on the RNA modification, RNA fraction, and tissue. 

These findings show that alterations in intracellular SAH affect RNA methylation, and provide insights 

into new pathways that may be altered in hyperhomocysteinemia. 

 

Key Words: S-adenosylhomocysteine, hyperhomocysteinemia, RNA modifications, RNA methylation.  
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1. INTRODUCTION 

High levels of homocysteine in plasma (hyperhomocysteinemia) have been associated with 

different pathologies (1–3). Homocysteine is a naturally occurring amino-acid formed during 

methionine metabolism, which begins with the synthesis of S-adenosylmethionine (SAM) (1). 

Each methylation reaction that uses SAM as a methyl donor results in the formation of 

S-adenosylhomocysteine (SAH), which can then be hydrolyzed to homocysteine by SAH hydrolase 

(SAHH) (1). Homocysteine is either rapidly exported from the cell, remethylated to methionine, or 

converted to cystathionine (1). Cystathionine -synthase (CBS) catalyzes the synthesis of 

cystathionine from homocysteine (1, 4). CBS deficiency is the most common inborn error 

of metabolism and can lead to severe hyperhomocysteinemia (4, 5). Homocysteine’s first association 

with vascular disease was noticed in patients with CBS deficiency (6). Later, homocysteine was found 

to be an independent risk factor for cardiovascular diseases, promoting endothelial dysfunction and 

atherosclerosis by mechanisms that are not completely understood (1, 2, 7, 8). Recently, SAH, rather 

than homocysteine itself, has been suggested as a more accurate measure of disease risk (9, 10).  

SAH, which accumulates in hyperhomocysteinemia, is not only a by-product of the majority of 

transmethylation reactions, but also a potent inhibitor of most SAM-dependent methyltransferases. 

Our previous work documented that excess SAH induces hypomethylation of DNA and proteins 

(including histones) (11–13).  

Unlike DNA and protein, the biological role of most RNA methylation modifications is still 

unknown, in part, due to the demanding techniques necessary for their detection and quantification 

(14). RNA methylation occurs in a diverse range of RNA species, such as tRNA, rRNA, mRNA, 

lncRNA, and snRNA, and it was shown to have a role in RNA function and stability (15). We have 

recently shown that a specific tRNA methylation can be impaired by excess SAH resulting in 

pro-atherogenic changes in endothelial cells (8).  Methyltransferases have varying degrees of 

sensitivity to the inhibitory effects of SAH  (16, 17). Several reports show RNA methyltransferase 

inhibition by SAH analogues; however, most of these studies were performed in vitro using purified 

enzymes (16–18). Moreover, impaired activity of RNA methyltransferases and demethylases can lead 

to altered gene expression, supporting a possible role of RNA methylation in disease pathogenesis  

(8, 19, 20).  

In this report, we analyzed the effects of SAH accumulation on global RNA methylation in 

order to identify specific RNA modifications altered by excess SAH.  In endothelial cells, we found that 

inhibition of SAHH activity decreased specific RNA methylations. Additionally, we found significant 

changes in RNA methylation in liver, kidney, and brain tissue from a hyperhomocysteinemic mouse 

model in comparison to wild-type mice, indicating that aberrant RNA methylation patterns are also 

found in vivo under endogenously increased SAH levels.  



Chapter 4.2 

79 

2. MATERIALS AND METHODS 

Cell Culture and Treatments – Human umbilical vein endothelial cells (HUVEC) (Lonza) 

were cultured in EBM-2 (Lonza) supplemented with EGM-2 aliquots excluding 

gentamicin/amphotericin-B (Lonza) at 37ᵒC and in 5% CO2. Experiments were performed between 

passages five and eight, and initiated with cells that were 70-80% confluent. Forty-eight h incubations 

were performed using the SAHH inhibitor, adenosine-2’,3’-dialdehyde (Sigma) 20 µM.   

 

CBS Mice – CBS deficient mice were originally generated by crossing the transgenic strain, 

Tg C57BL6, which carries a human CBS gene construct with a 833T>C (I278T) missense mutation 

and the mice Cbs gene (Tg Cbs+/+), with Cbs deficient animals (Cbs+/-) to generate Tg Cbs+/- mice (4). 

Heterozygous Cbs+/- and Tg Cbs+/- animals were then crossed to create mice that only express the 

human I278T CBS gene (Tg Cbs-/-). Transgenic CBS expression was under the control of a 

metallothionein promoter, which was activated by the addition of 25 mM zinc to the drinking water. 

Zinc-containing water was replaced by pure water after weaning. Prenatal transgenic gene expression 

allowed the mice to overcome the lethal phenotype of Cbs-/- (21). The animals were fed with standard 

rodent chow (Teklad 2018SX) and euthanized after day 50 after birth. Brain, liver, heart, and kidney 

tissues from five Tg Cbs+/+ and five Tg Cbs-/- mice were collected and promptly frozen (-80ᵒC). 

Homocysteine, SAM, and SAH levels were previously determined in the same mice (4). In the 

remainder of this paper, we refer to Tg Cbs+/+ and Tg Cbs-/- mice as Cbs+/+ and Cbs-/-, respectively.  

 

RNA Extraction – RNA was extracted from HUVEC using TRI Reagent® (Sigma) following 

manufacturer’s protocol.  Tissue extraction (50-70 mg) was started by pestle homogenization in 

TRI Reagent; after lysis, the same protocol was used. RNA precipitation was achieved using ice-cold 

ethanol (100%).  

 

RNA PAGE – RNA polyacrylamide gel electrophoresis (PAGE) was performed using a 10 % 

denaturing polyacrylamide gel with 8 M urea. We loaded 0.5-1 µg RNA with dye-free loading buffer 

(90% formamide, 1xTBE), and performed electrophoresis at 16W and room temperature. After PAGE, 

the gel was stained with SYBR® Gold (Life Technologies), and a fluorescence scanning (excitation 

488 nm, emission 520nm BP40) was performed with the Typhoon 9400 (GE Healthcare). 

 

IEX-Chromatography RNA Fractionation – RNA was analyzed by ion-exchange (IEX) 

chromatography with a DNAPac PA100 Column (Dionex) and the chromatography system BioLogic 

Duo-flow (BioRad) coupled to a diode array detector (DAD) (detection at 254 nm). Gradient-based 

chromatography was performed at 74ᵒC, with constant flow (1 ml/min), and using the pH 8 buffers: 

20 mM Tris-HCl (buffer A) and 20 mM Tris-HCl with 0.4 M sodium perchlorate (NaClO4, Sigma) 
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(buffer B). Buffers A and B were progressively mixed, starting with 20% of buffer B for 4 minutes, 

followed by 10% for 30 sec, and then gradually increasing from 20 to 100% during 30 min. Samples 

were collected at min: 17.5 (fraction a), 19.5 (fraction b), 21.5 (fraction c), and 25 (fraction d). After 

each run, RNA fractions were immediately precipitated by adding 0.1 vol 5 M ammonium acetate 

(Sigma) followed by 2.5 vol ice-cold ethanol.  After precipitation, RNA was further washed with ice 

cold 70% ethanol and resuspended in water. The chromatography column was washed with a 0.4 M 

NaClO4 solution (pH 12) before and between runs. 

 

LC-MS/MS Analysis of Methylated Nucleosides – HPLC coupled to tandem mass 

spectrometry was used for detection and quantification of twelve well-characterized modified 

nucleosides (Fig. 1) in the total RNA collected from tissue and cell samples, as well as in the RNA 

fractions collected during IEX-chromatography. Briefly, RNA was digested to nucleosides by the 

action of nuclease P1 (Sigma), nuclease snake venom phosphodiesterase (Worthington), and alkaline 

phosphatase (Fermentas) as previously described in (22). A mixture containing stable isotope-labeled 

internal standard (IS) was then added in constant amounts to each sample. 

The analysis of the modified nucleosides was performed on an Agilent 1260 HPLC series 

equipped with a DAD and a triple quadrupole mass spectrometer (Agilent 6460). A Synergi 4 µm 

Fusion-RP 80 Å LC Column (250 length and 2 mm inner diameter; Phenomenex) was used at 35°C. 

A chromatographic gradient was achieved using the solvents C (5 mM ammonium acetate buffer 

adjusted to pH 5.3 using acetic acid) and D (pure acetonitrile). The elution was performed at a 

constant flow rate (0.35 ml/min), starting with a linear gradient with buffer D increasing from 0% to 8% 

in 10 min, followed by an increase to 40% in the next 10 min, and then reaching 0% once more at 23 

min. The column was then rinsed for 7 min with 100% buffer C. DAD detection at 254 nm allowed the 

identification of the 4 canonical nucleosides before the effluent entered the mass spectrometer. The 

triple quadruple mass spectrometer is equipped with an electrospray ion source (Agilent Jet Stream). 

The ESI parameters were: gas (N2) temperature 350°C, flow 8 L/min, nebulizer pressure 50 psi, 

sheath gas temperature 350°C, sheath gas flow 12 L/min, and capillary voltage 3000 V. The MS was 

operated in the positive ion mode and modified nucleosides were monitored in the dynamic multiple 

reaction monitoring mode using the MassHunter software (Agilent). Commercially available modified 

nucleosides were used for the identification and determination of the specific retention times of m1A, 

m5C, m7G, Cm, m2G, Am (Sigma), Gm, m5U, Um (Berry & Associates), m1G, m6A, and m2
6A, were 

identified based on an E. coli nucleosides profile, where these modifications are highly abundant. All 

mass transitions and retention times used for identification of the modified nucleosides can be found 

in Supplementary Table 1. Agilent MassHunter qualitative analysis software was used for peak area 

determination. Comparison of modified nucleoside content between different samples was performed 
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after the normalization of the modified nucleoside peak to the corresponding IS peak area and, lastly, 

to the guanosine UV peak (23).  

 

Figure 1 - RNA methylation modifications. Chemical structure of the methylated nucleotides. 

3. RESULTS 

Fractionation of total RNA – Although there are some methyltransferases that methylate 

different RNA species, others specifically target an RNA subtype. Therefore, the effects of excess 

SAH on RNA methylation may differ among RNA species. In order to achieve a sized-base separation 

of different RNA species, we used IEX chromatography. PAGE was used to confirm the composition 

of various chromatographic fractions (Fig. 2).  The first eluting fraction collected (fraction a) was an 

attempt to recover RNA species that were smaller than tRNAs. However, the amount of RNA 

recovered after precipitation of this fraction was very low with no visible recovery of material on PAGE 

(Fig. 2A).  tRNAs are usually easily identified after gel electrophoresis separation by 2 strong bands 

with sizes approximately between 76 and 100 nucleotides (nt) (24). Fraction b provided a good 
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enrichment in tRNA (below 100 bp; Fig. 2A).  Separation of larger RNAs, such as mRNA and rRNA, is 

hard to achieve (24). We collected an intermediate-sized group of RNAs in fraction c (Fig. 2B). This 

fraction  contained  an  enrichment  of  RNAs  sized  between  100  and  350  nt  (fraction  c, Fig.  2A). 

 
Figure 2 - RNA fractionation. (A), PAGE of RNA from HUVEC and from mice liver was performed and 
stained with SYBR® Gold. The different RNA fractions collected during IEX chromatography separation were 
loaded in the elution order: fraction a (15ng), b (0.94 µg), c (0.45 µg), d1 (0.74 µg), and d2 (1 µg). Total RNA 
from CBS liver (1 µg) and HUVEC total RNA (1 µg) were loaded for comparison. A DNA ladder (Thermo 
scientifc) was used and the DNA fragment sizes are indicated (left). (B), IEX chromatograms of total RNA 
from CBS liver and cultured endothelial cells. A total of 60µg were injected for each sample. 

The final eluting peaks were originally collected as separate fractions (d1) and (d2); however, there 

was a weak size-based separation of these larger and later eluting RNAs (Fig. 2). Therefore, in 

subsequent experiments, these fractions were pooled into a single fraction d. RNA recovery following 

chromatography was 20-30%. On average, fraction d represented about 60% of the total RNA 

recovered; fraction c, as well as b, represented 20% each, and fraction a less than 0.01%. Greater 

RNA complexity was observed for liver tissue when compared with endothelial cells (Fig. 2A).  

Additionally, RNA PAGE patterns differed between tissues, although, there were no significant 

observable changes between RNA profiles (from PAGE and IEX-chromatography) of cells treated and 

untreated, or between RNAs of wild-type and Cbs deficient mice within the same tissue (data not 

shown).  

 

 Endothelial SAH accumulation and RNA methylation – SAH impairs endothelial cell 

function, possibly contributing to vascular disease (8). For this reason and in light of our prior work, 

we determined the effects of SAH on global RNA methylation in endothelial cells. In order to achieve 

intracellular accumulation of SAH, we used ADA to inhibit its hydrolysis by SAHH, as previously (25). 

Endothelial cell treatment with ADA results in an intracellular increase of SAH by over 6-fold (25). 

Nine different key RNA methylation modifications were analyzed in total RNA, and the content of eight 

of these was reduced following ADA treatment (Fig. 3A). ADA significantly decreased Cm, m1G, Gm, 

Am, and m6A content in endothelial total RNA by 16  2.6%, 18  7.0%, 11  6.1%, 7  1.5%, and 

9  1.2%, respectively (p < 0.05).  
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Figure 3 - Excess SAH effects on RNA 
methylation modifications in endothelial cells. 
Differences in the content of several methylated 
nucleosides following SAH accumulation were 
detected by LC-MS/MS. Each modified nucleoside 
was quantified using a stable isotope-labeled 
internal standard and normalized for total 
guanosine. The results obtained from RNA of 
ADA-treated cells were normalized to non-treated 
cells (Ctrl) and are shown on the left (n=3). The 
relative content of modified nucleosides from 
HUVEC total RNA. (A) and IEX-chromatography-
obtained HUVEC RNA fractions b (B) and d (C) is 
shown. Statistical significance of the difference 
between means was determined, by Student’s t 
test. *, p < 0.05 versus control. A(

12
C), nucleoside 

peak area; A(
13

C), nucleoside stable isotope 
labeled internal standard peak area; A(G) total 
guanosine UV peak area. 

 

 

Like total RNA, RNA from fraction b showed decreased levels of methylated ribonucleosides 

following ADA treatment (Fig. 3B). However, only the Cm and Gm modifications showed statistically 

significant differences, with decreases of 30  9.6% and 25  7.6% following ADA treatment, 

respectively (p < 0.05).  

Methylated nucleoside content in the intermediate-sized RNA fraction (fraction c), which 

includes RNAs like 5S and 5.8S rRNA and other non-coding RNAs, was not significantly different 

when comparing different treatment groups (Table 1). Interestingly, the methylated nucleosides that 

were found to be significantly decreased under ADA treatment in total RNA analysis also showed a 

trend toward a decrease in this intermediate fraction.  
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Finally, fraction d, which includes the larger RNAs, showed a significant reduction of Cm with 

ADA treatment by 10  3.0 % (p < 0.05; Fig. 3C). ADA treatment also led to a significant reduction of 

Am (p < 0.005) and an increase in m7G (p < 0.05).  

Table 1 - Methylation modifications content from intermediate-sized RNA from HUVEC. RNA 
fraction c collected during IEX-chromatography of untreated and ADA treated cells, was analyzed 

by LC-MS/MS. Quantificated values of modified nucleosides are shown as mean  standard error 
of the mean. Statistical significance of differences between means (p value) was calculated by 
Student’s t test. A(

12
C), nucleoside peak area; A(

13
C), nucleoside stable isotope labeled internal 

standard peak area; A(G) total guanosine UV peak area. 

 
 

SAH effects in RNA methylation in vivo – Human CBS deficiency significantly increases 

homocysteine levels in plasma and tissue (4). Similarly, SAH levels are significantly elevated in mice 

with impaired Cbs activity (4). To assess the effects of SAH on RNA methylation, we used RNA 

extracted from wild type (Cbs+/+) and Cbs knockout mice (Cbs-/-) liver, kidney, heart, and brain.      

RNA was fractionated by IEX chromatography and analyzed by LC-MS/MS for detection of 

methylated nucleosides (Table 2). Overall, most methylated nucleosides were not significantly altered 

in Cbs knockout mice compared with Cbs+/+. m5U levels were undetectable in fraction c and d. 

Moreover, m2G levels were very low or undetectable in fraction d.  

The comparison of the modified nucleoside content from different mice groups revealed a 

significant hypo- and hyper-methylation of specific moieties in Cbs-deficient mice compared to wild 

type. Specifically, Cm content was significantly decreased in RNA from liver fraction b and kidney 

fraction c, by 12  6.8 and 11  3.8 %, respectively (p < 0.05, Cbs-/- versus Cbs+/+; Fig. 4). Moreover, 

Gm levels from Cbs-/- mice liver RNA were also 10  6.6 % lower in fraction b (p < 0.05) and 

14  8.2 % lower in fraction d (p = 0.05). RNA Um content was also decreased in fraction c 

(8  5.1 %, p = 0.05) and d (16  6.8 %, p < 0.05) of Cbs-/- mice kidney. Finally, in brain, m1A, m5C, 

and m7G showed a trend toward an increase during hyperhomocysteinemia across all fractions; in 

brain fraction b, m1A, m5C, m1G, and m5U from Cbs-/- were significantly up-regulated by 11  6.8, 

11  5.6, 13  5.9, and 12  8.0 %, respectively (p < 0.05, Cbs-/- versus Cbs+/+; Fig. 5). 
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Figure 4 - Cm and Gm content from control and Cbs deficient mice liver, kidney and heart. Cm (left) 
and Gm (right) content from liver fractions b, c, and d of mice expressing Cbs (CBS +/+) and with Cbs 
deficiency (CBS-/-), was analyzed by LC-MS/MS. For each modified nucleoside, the detected peak area was 
normalized to the IS peak area and to total guanosine. The scatter plots show individual values, from three to 

five mice, mean  SD. Statistical significance was evaluated by Student’s t test. *, p < 0.05, **, p < 0.005 
versus CBS +/+. A(

12
C), nucleoside peak area; A(

13
C), nucleoside stable isotope labeled internal standard 

peak area; A(G) total guanosine UV peak area. 

4. DISCUSSION 

Good separation of total RNA by chromatography is difficult to achieve especially for larger 

RNAs, such as mRNA and rRNA (24). IEX chromatography has been especially useful in the analysis 

and purification of short, single-stranded RNA molecules (24). Here, we optimized an anion-exchange 

liquid chromatography protocol in order to separate different RNA populations. Denaturing conditions 

were used in order to aid in the elution of larger RNA species.  Using this method, we isolated and 

recovered three RNA populations based on their size (Fig. 2). Although we attempted to isolate 

smaller RNAs, such as miRNA (21-23 bp) and tRNA-derived RNA fragments (26), the recovery of 

RNA (in fraction a) was poor.  Our method, however, reproducibly isolated a population of RNAs with 

a maximum size of 100 nt (fraction b).  According to our PAGE results (Fig. 2A) and other reports 

(24), fraction b likely comprises the tRNA population and other non-coding RNAs, such as the small 

nuclear RNAs.  The intermediate fraction (c) probably consists of rRNAs and other noncoding RNAs. 

The strongest band in fraction c, observable in the PAGE gel, may be the highly abundant 5S rRNA,
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which is 121 nt in size (27). Size, polarity, and RNA conformation can influence chromatographic 

separation (24). In the case of the more abundant, large, and complex RNAs (fraction d), elution was 

compromised and column RNA retention could not be completely avoided; however, we were able to 

separate a fraction enriched in high-molecular-weight RNAs (> 400 nt), which should include mRNA, 

precursor mRNA, larger rRNAs (18S and 28S), and other long non-coding RNAs (24).   

Although more than 150 RNA modifications have been described, most have an unknown 

function (28). Importantly, about two-thirds of these modifications are methylations (14). We analyzed 

a panel of 12 different ribonucleoside methylations (Fig. 1), which are well characterized (14). All of 

the identified human methyltransferases that catalyze these methylation additions are 

SAM-dependent and, therefore, targets for SAH inhibition (14, 29).  

 

Figure 5 - Methylation modifications content from control and Cbs deficient mice brain tRNA. The 
tRNA-containing fraction obtained by IEX-chromatography (fraction b) of total RNA isolated from the brain 
of wild type (CBS +/+) and Cbs-deficient mice (CBS -/-) was analyzed by LC-MS/MS. Each scatter plot 

shows individual normalized peak areas from four mice, mean  SD. Statistical significance was 
evaluated by Student’s t test. *, p < 0.05 versus CBS +/+. A(

12
C), nucleoside peak area; A(

13
C), 

nucleoside stable isotope labeled internal standard peak area; A(G) total guanosine UV peak area. 
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Our previous studies in endothelial cells have shown that SAH inhibition by ADA induces a 

marked increase in intracellular SAH levels (8, 12, 25). Owing to the relevance of SAH in endothelial 

dysfunction, we used an endothelial cell model to test whether SAH promotes cellular RNA 

hypomethylation. ADA treatment reduced most of the methylated nucleosides studied. Five of these 

were significantly reduced (p < 0.05): three 2’-O-methylations (Cm, Gm, and Am), m1G, and m6A. 

These results suggest that 2’-O-methyltransferases may be particularly sensitive to SAH inhibition in 

endothelial cells. There are several classes of methyltransferases that can mediate the formation of 

these down-regulated modifications, such as the Rossmann-fold or SPOUT methyltransferases 

super-families (14, 29, 30). However, specific methyltransferase activity assays in the presence of 

excess SAH were not investigated in this report to address these possible specific mechanisms. 

Interestingly, a previous study using SAH analogues in a mouse macrophage cell line reported that 

m6A synthesis was inhibited to a greater extent in mRNA than m7G (31). In tRNA methyltransferases 

isolated from rat, the guanine-1 methyltransferase (m1G) had a low Ki for SAH, whereas the 

N2-guanine methyltransferase I (m2G) had a high Ki for SAH (17, 32), consistent with our findings in 

endothelial cells that showed a significant suppression of global m1G but not m2G levels. 

tRNA is the most heavily modified RNA species (14). Under excess SAH, greater differences 

were observed in the methylation content of the tRNA fraction than in the global RNA samples.  

For example, Cm and Gm were 14% more diminished in the tRNA fraction compared to total RNA. 

The fact that rRNA accounts for more than 80% of total RNA and that it is a stable RNA with a slow 

turnover may help to explain why modifications in total RNA show less variation. We observed a 

significant decrease in Cm and Gm in tRNA from ADA-treated cells. These 2’-O-methylation 

modifications are prevalent in the anticodon loop of the tRNA (14); thus, they may affect tRNA 

structure and decoding function.  

Analysis of RNAs sized between 100 and 350 nt (fraction c) from endothelial cells showed no 

significant changes in RNA methylation following ADA (Table 1). This group of RNA includes mainly 

5S and 5.8S rRNAs, which are heavily methylated but very stable, and, therefore, the effect of 

methyltransferases inhibition may be more difficult to detect. Nevertheless, the 2’-O-methylations 

detected, Cm, Gm and Am, showed a trend toward a decrease following ADA treatment. Likewise, 

2’-O-methylations, which are known to be highly prevalent in rRNA (33), are decreased in the RNA 

fraction that includes the larger rRNAs and mRNA (fraction d). 

 Since excess SAH altered RNA methylation in cultured endothelial cells, we next explored the 

possibility that these effects would be observed in a hyperhomocysteinemic animal model. Due to the 

reversibility of the SAHH-catalyzed reaction, SAH accumulates during hyperhomocysteinemia (11). 

Growing evidence supports the relevance of SAH in homocysteine’s associated pathology in the 

cardiovascular system (9, 34, 35). In order to investigate whether SAH impairs RNA methylation in 

hyperhomocysteinemia, we used a Cbs-deficient mouse model. Analyzing tRNA from liver, kidney, 
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heart, and brain, we observed that Cm and Gm were significantly reduced in the liver of Cbs-deficient 

mice. Total homocysteine and SAH liver levels were shown to be 33- and 9-fold higher, respectively, 

in Cbs-/- mice compared to Cbs+/+ (4). The decrease of Cm and Gm in Cbs-/-  liver was consistent with 

our observations in tRNA fractions isolated from ADA-treated cells, even though homocysteine 

metabolism is substantially different in hepatocytes and endothelial cells (1). Moreover Gm content is 

also significantly decreased in the rRNA- and mRNA-containing fraction from the liver of Cbs-/- mice. 

Importantly, these 2’-O-methylations can determine efficient translation by the ribosome (33, 36, 37); 

however, the consequences of these alterations for liver function remain unknown. Liver is a key 

regulator of homocysteine metabolism, and protein arginine hypomethylation was previously reported 

in this model (4).  In other mouse models of hyperhomocysteinemia, DNA hypomethylation was 

reported for liver (38); however, in our previous studies using the reported Cbs-deficient mice we 

found no changes in global DNA methylation (4). 

The kidney of Cbs-deficient mice presented significant hypomethylation in fraction c RNA, with 

significant reductions in the levels of Cm, Um (which was also significantly decreased in fraction d), 

and m2
6A. Hyperhomocysteinemia is highly associated with renal disease even though the 

mechanisms underlying this association are not fully understood (39, 40). Interestingly, although SAH 

levels are 7-fold higher in Cbs-/- kidney, neither DNA nor protein hypomethylation was found 

previously in the kidney of the Cbs-deficient mice (4). 

Most brain ribonucleoside methylations showed a trend toward an increase in detectable 

levels. In particular, the tRNA fraction in brain showed a significant increase in several base 

methylations, including m5C. Previous studies associated the loss of this methylation with neurologic 

impairment (41). Due to the importance of RNA methylation for brain function, a feedback mechanism 

that leads to its up-regulation may be triggered in the context of excess SAH or homocysteine. 

However, the mechanisms by which hypermethylation may occur during hyperhomocysteinemia 

remain unresolved. The fact that these modifications differ among tissues in Cbs-deficient mice 

suggests that tissue-specific methyltransferases may contribute to these differences. Importantly, 

brain is a highly heterogeneous tissue. RNA methyltransferases less sensitive to SAH-mediated 

inhibition, and the increased levels of SAM observed in the brain of these mice (4), could contribute to 

the observed hypermethylation. Alternatively, differences in the regulation of the RNA 

methyltransferases or demethylases, may contribute to these tissue-specific differences. The 

biological relevance of human RNA demethylases has been reported for m6A (19), but the existence 

of human or mouse demethylases for the remaining modifications have not yet been reported (29). 

Our results support possible regulation of RNA methylation by SAH in the setting of 

hyperhomocysteinemia. Specifically, our findings suggest that SAH accumulation may impair the 

activity of several 2’-O-methyltransferases. Interestingly, our previous studies implicated a 

2’-O-methylation modification (mcm5Um) in selenoproteome regulation in endothelial cells. We found 
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that excess SAH decreased mcm5Um content of selenocysteine-tRNA, impairing the synthesis of key 

antioxidant selenoproteins in endothelial cells and promoting oxidative stress and a pro-inflammatory 

response (8). Additional examination of the effects of SAH on the activity of 2’-O-methyltransferases 

could clarify their sensitivity to this metabolite. Unfortunately, several human RNA methyltransferases, 

including 2’-O-methyltransferases, still remain uncharacterized (42). Thus, much is left to discover 

about specific RNA methylations, their regulation, and significance for diseases, including 

homocysteine-associated pathologies. 

In summary, our work suggests that intracellular SAH can alter the activity of RNA 

methyltransferases in vitro and in vivo. Interestingly, SAH accumulation can result in both hypo- and 

hyper-methylation depending on the RNA modification. Additionally, we found that SAH-induced 

effects on RNA methylation are tissue-specific. 

The great number and complexity of RNA methylation modifications adds to the challenges of 

understanding their biological roles. Nonetheless, our study revealed additional mechanisms by which 

SAH may modulate cell homeostasis during hyperhomocysteinemia. Additional studies are necessary 

to determine whether these alterations in RNA methylation have significant biological effects. 
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 Supplementary material 

Supplemental Table 1 - Dynamic multiple reaction monitoring parameters used for identification and 

quantification of the ribonucleosides. Detection of the various nucleosides was performed in positive ion 

mode, and the cell accelerator voltage was set for 2 V. 
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ABSTRACT 

S-Adenosylhomocysteine (SAH) is a potent methylation inhibitor that has been associated with 

atherosclerosis. Our aim was to investigate the effects of SAH in endothelial activation, and assess 

whether DNA hypomethylation contributes to these effects. Intracellular SAH accumulation was 

induced in endothelial cells and cell activation was assessed by monitoring adhesion molecule 

expression and leukocyte transmigration in co-culture. A DNA-methyltransferase (DNMT) inhibitor 

was used to address the role of DNA hypomethylation in endothelial cell activation. 

Excess SAH increased the expression of several adhesion molecules, favored leukocyte 

transmigration, and lessened global DNA methylation (p<0.05). DNMT inhibition reproduced the 

up-regulation of ICAM-1 (intercellular adhesion molecule-1; p<0.05), suggesting that hypomethylation 

of the ICAM1 promoter may contribute to its up-regulation. However, detailed methylation analysis 

revealed that the ICAM1 promoter was fully demethylated prior to SAH accumulation or DNMT 

inhibition.  

We show that DNA hypomethylation can partially recapitulate the adverse effects of SAH in 

endothelial cells, but does so by mechanisms independent of adhesion molecule promoter 

hypomethylation. Our study confirms the physiological relevance of SAH-mediated endothelial cell 

activation showing that it favors leukocyte transmigration.  

 

Key Words: S-adenosylhomocysteine, DNA hypomethylation, endothelial activation, leukocyte 

transmigration, promoter methylation. 
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1. INTRODUCTION 

Hyperhomocysteinemia is an independent risk factor for cardiovascular disease (CVD) by  

mechanisms still incompletely defined (1). During hyperhomocysteinemia, the homocysteine 

precursor, S-adenosylhomocysteine (SAH), accumulates (2). Due, in part, to its ability to inhibit 

methyltransferases, SAH may contribute to the vascular toxicity of hyperhomocysteinemia (3–5).  

The endothelium plays a complex role in vascular biology. Endothelial dysfunction is an early 

step in the development of atherosclerosis and it is characterized by a redox imbalance and reduced 

bioavailability of vasodilators (6). Endothelial dysfunction usually progresses to a cell activation stage, 

in which an up-regulation of pro-inflammatory cytokines and cell adhesion molecules is observed (6). 

This pro-inflammatory response favors leukocyte adhesion to the endothelium, in which selectins, 

intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1) are key 

players (7). In a subsequent and determinant step in the formation of the atheroma plaque, leukocytes 

transmigrate through the endothelial cell layer, a process in which platelet endothelial cell adhesion 

molecule-1 (PECAM-1) is critical (8). 

Epigenetic modulation of gene expression has been widely associated with atherosclerosis   

(9, 10). Methylation of cytosine residues, usually found in a CpG dinucleotide context, is the main 

epigenetic modification present in DNA, and is usually associated with gene repression (10, 11). CpG 

islands are short DNA sequences with a high GC and CpG content that are predominantly 

nonmethylated in transcriptionally active genes (10).  

In the present study our goal was to investigate the role of excess SAH in endothelial 

activation and assessed whether SAH-induced DNA hypomethylation contributes to these effects. 

Here, we show that SAH-induced hypomethylating stress led to the up-regulation of key adhesion 

molecules and increased leukocyte transmigration. Importantly, the increased expression of adhesion 

molecules was partially replicated by the use of a specific DNA methylation inhibitor, suggesting a 

potential role for SAH-induced epigenetic alterations in homocysteine-associated pro-atherogenic 

responses in endothelial cells.  

2. MATERIALS AND METHODS 

Cell Culture and Treatments – Human umbilical vein endothelial cells (HUVEC) (Lonza) 

were cultured as previously reported (12).  Intracellular SAH accumulation was achieved by SAH 

hydrolase inhibition using adenosine-2’,3’-dialdehyde (ADA) (20 μmol/L; Sigma) for 48 h (5, 12). The 

DNA methyltransferase (DNMT) inhibitor 5’-aza-2-deoxycytidine (5-aza-dC) (Sigma) was used at a 

final concentration of 5 μmol/L for 48 h.   
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Flow cytometry – Flow cytometry was used to assess the expression of adhesion molecules 

in the cell surface as in (5). Adhesion molecules were stained independently with specific fluorescent-

conjugated antibodies for ICAM-1 (Santa Cruz Biotechnology), VCAM-1 (R&D Systems), E-selectin, 

and PECAM-1 (BioLegend). 

 

Quantitative RT-PCR – RNA isolation, cDNA synthesis, and real-time PCR were performed 

as described in (5), using the following gene expression primers (Life Technologies): ACTB 

(4352935E), ICAM1 (Hs00164932_m1), VCAM1 (Hs00365485_m1), SELE (Hs00950401_m1), 

PECAM1 (Hs00169777_m1). 

 

Transmigration assay – Transendothelial migration of leukocytes was monitored using the 

QCM™ leukocyte transendothelial migration colorimetric assay (Millipore). Leukocytes isolated from 

whole blood from three healthy individuals (after their informed consent) were incubated with HUVEC 

for 8 h. 

 

Global DNA methylation – 5-Methylcytosine (5-mC) levels were detected using the 5-mC 

DNA ELISA Kit (Zymo). 

 

Targeted bisulfite sequencing – The number and distribution of CpG islands in the ICAM1 

gene (NCBI Reference Sequence: NC_000019.10, chr19:10268500-10273000) were determined 

using the MethPrimer program (13). A genomic sequence (NCBI Reference Sequence: 

NC_000019.10, chr19: 10269583-10271319) including 138 CpG sites and comprising the ICAM1 

gene promoter and first exon (−1565 to +160, relative to the transcription start site at +1) was 

selected for targeted bisulfite sequencing. DNA was isolated (DNeasy Blood & Tissue Kit; Qiagen) 

from ADA or 5-aza-dC treated and untreated cells in duplicate from three independent experiments. 

Following bisulfite treatment and amplification of the target sequence, next generation sequencing 

was performed, followed by sequence alignment and data analysis (Zymo Research Corporation, 

Irvine, CA, USA).  A methylation ratio (MR) was calculated using the number of detected methylated 

CpGs divided by the total number of CpGs covered for every CpG site across the designated 

sequence.  

 

Statistical Analysis – Results are shown as mean  standard deviation. Statistical 

significance was determined using the Student’s t test. 
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3. RESULTS 

SAH-induced cell activation – In order to promote intracellular SAH accumulation, SAH 

hydrolase activity was inhibited with ADA. We have previously observed that HUVEC exposure to 

ADA increases intracellular SAH levels by more than 6-fold (5, 12). Moreover, excess SAH increased 

ICAM-1 and VCAM-1 expression (5). Accordingly, ICAM-1 and VCAM-1 were increased on the 

surface of ADA-treated cells by 2.10.5- and 1.30.5-fold, respectively (p<0.05; Fig. 1A). Additionally, 

PECAM-1 (1.30.1-fold, p<0.05) and E-selectin (1.20.1-fold, p<0.05) were both up-regulated at the 

cell surface.  However, although ADA significantly increased ICAM-1, VCAM-1, and E-selectin mRNA 

levels by 2.80.7-, 2.71.0-, and 2.00.3-fold (p<0.005), respectively, PECAM-1 mRNA levels were 

decreased by 30.121.3 % (p=0.05, Fig. 1B).  Pre-treatment with ADA significantly increased 

(2.21.3-fold, p<0.05 versus control; Fig. 1C) leukocyte migration across the endothelial cell 

monolayer (p<0.05 versus control; Fig. 1C).  

 

Figure 1 - SAH accumulation and cell activation. (A), Flow cytometry was used to detect the 
relative cell-surface expression of ICAM-1, VCAM-1, E-selectin, and PECAM-1, in control (Ctrl) and 
ADA treated HUVEC (ADA) (n=3-6). MFI, mean fluorescence intensity. (B), mRNA expression 
levels of ICAM1, VCAM1, SELE and PECAM1, were measured by quantitative RT-PCR to 
determine the effects of ADA compared to control (48 h; n=3-5). *, p < 0.05, **, p < 0.005,              
***, p < 0.0005 versus control.  (C), The ADA effect on the number of leukocytes that transmigrate 
through the endothelial monolayer was analyzed by a transendothelial migration colorimetric assay 
(n=3). NL, no leukocytes added. Absorbance was measured at 450 nm. *, p < 0.05, **, p < 0.005, 
***, p < 0.0005, versus control. 
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DNA hypomethylation and endothelial cell activation – Our previous studies demonstrated 

that excess SAH induces global DNA hypomethylation in HUVEC (2, 14). Accordingly, ADA treatment 

decreased 5-mC content by 22.36.3% (p<0.005; Fig. 2A). To address specifically the potential role 

of DNA hypomethylation in ADA-induced activation, cells were treated with a potent inhibitor of 

DNMTs, 5-aza-dC, which significantly (p<0.05) increased mRNA levels of ICAM-1 and E-selectin by 

2.30.2- and 2.50.7-fold, respectively, without affecting VCAM-1 expression (Fig. 2B). The E-selectin 

coding gene, SELE, lacks a CpG rich promoter (15), therefore, in order to assess whether SAH-

induced DNA hypomethylation could decrease specific promoter methylation, we focused our analysis 

on the ICAM1 gene (NCBI Gene ID:3383). Four CpG islands were identified in a region comprising 

the ICAM1 promoter and first exon (Fig. 2C). To examine CpG methylation in this region, we used 

targeted bisulfite sequencing and compared the cytosine methylation levels in DNA isolated from 

control, ADA-, and 5-aza-dC-treated cells. The average MR for the 138 detected CpGs sites was 

0.0090.03 (n=12), 0.0080.03 (n=6), and 0.0090.04 (n=6), for control, ADA, and 5-aza-dC treated 

cells, respectively. CpG sites with a MR below the 0.2 threshold are often considered as 

unmethylated (16). Thus, our results show extremely low levels of 5-mC in ICAM1 gene CpG rich 

region in control cells with no significant changes in methylation following ADA or 5-aza-dC treatment.  

 
Figure 2 - DNA hypomethylation effects and endothelial cell activation. (A), Relative 5-mC levels 
in DNA samples, from control and ADA treated cells (n=4), were determined by an ELISA assay using 
a specific anti-5-mC antibody. (B), ICAM1, VCAM1 and SELE expression changes induced by 
5-aza-dC, were monitored by quantitative RT-PCR (n=3-4). (C), Schematic representation of ICAM1 
gene (NCBI Gene ID:3383) and promoter region. Vertical black bars represent the seven ICAM1 
exons. The promoter and gene region included in the square () were analyzed by targeted bisulfite 
sequencing; the methylation ratios of the CpG sites (black circles) were all below 0.2 for control and 
treated samples (12 control, 6 ADA and 6 AZA treated samples) with no significant changes among 
treatments. 
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4. DISCUSSION 

Impaired methylation has been associated with several diseases, including CVD (17–20). Our 

research has explored the impact of excess SAH in endothelial dysfunction (2, 5, 14). In the present 

study, we examined the endothelial expression of key cell-surface proteins involved in the adhesion 

and transmigration processes to identify targets that may be up-regulated by SAH-induced DNA 

hypomethylation.  ICAM-1, VCAM-1, and E-selectin contribute to the early stages of leukocyte 

adhesion, whereas PECAM-1 is more important for their transmigration (7). We found that excess 

SAH increases the cell surface expression of all the aforementioned adhesion molecules. Similar to 

our previous studies (5), ICAM-1 and VCAM-1 mRNA levels were increased following ADA treatment. 

E-selectin transcript levels were also increased, although PECAM-1 mRNA levels were slightly 

decreased. Interestingly, the amount of PECAM-1 in the cell surface may not reflect the levels of 

PECAM-1 synthesis. In fact, in resting conditions, PECAM-1 is stored in intracellular compartments 

near the plasma membrane and, upon endothelial cell activation, PECAM-1 may translocate to the 

cell membrane, contributing to leukocyte transmigration (8, 21).  

DNA methylation is an important epigenetic mechanism of gene expression regulation, which 

we previously found to be impaired by excess SAH (2, 14). Here, we used an additional methodology 

to confirm the SAH-induced DNA hypomethylation in endothelial cells. Excess SAH can impair the 

methylation of several targets, such as proteins, RNA, and DNA (5, 14). To address specifically the 

role of DNA hypomethylation in up-regulating adhesion molecule gene expression, we inhibited 

DNMT activity using 5-aza-dC. Similar to ADA, 5-aza-dC treatment increased the expression levels of 

ICAM1 and SELE, suggesting that these genes are potential targets for regulation by SAH-induced 

DNA hypomethylation. PECAM-1 mRNA levels were unaffected by excess SAH and, therefore, 

PECAM-1 expression is less likely to be regulated by DNA hypomethylation under ADA treatment. For 

this reason, the effects of 5-aza-dC on PECAM-1 were not examined. VCAM-1 expression was not 

significantly altered by DNMT inhibition. This observation may be explained by the lack of a CpG rich 

promoter in the VCAM1 gene. The SELE promoter, however, does not have CpG islands; yet, its 

expression was increased following 5-aza-dC treatment. This observation may be explained by long-

distance epigenetic activation or indirect mechanisms of epigenetic regulation (as discussed further 

below) (11, 22).  

ICAM1, which has a CpG-rich promoter, was up-regulated by both ADA and 5-aza-dC 

treatments. To address whether ICAM1 promotor hypomethylation could explain these observations, 

we assessed its methylation status. The regulation of ICAM1 expression by alterations in its promoter 

methylation has been reported previously for tumor-conditioned endothelial cells, which had 

significantly higher ICAM1 promoter methylation with an associated repression of ICAM1 expression, 

compared to HUVEC (23, 24). Moreover, increased expression of ICAM-1 was correlated with 

decreased promoter 5-mC content in endothelial cells of Keshan disease patients (25).  Compared to 
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these previous studies, we analyzed an extended region of the promoter as well as the first exon of 

the ICAM1 gene. We found that CpG methylation was virtually undetectable in HUVEC under control 

conditions; neither ADA nor 5-aza-dC altered the methylation status at the 138 CpG sites analyzed. 

We cannot exclude the possibility that these agents may alter methylation in other regions of the 

ICAM1 gene or that they altered the expression of other regulatory molecules important for ICAM-1 

expression.  In fact, it was reported that ICAM-1 expression can be induced in response to p66shc 

up-regulation due to promoter hypomethylation (22). 

Previously, we found that SAH-induced expression of adhesion molecules increased leukocyte 

adhesion to endothelial cells (5). Here, we show that SAH-mediated cell activation also favors 

leukocyte transmigration. We provide evidence that excess SAH promotes DNA hypomethylation, 

which may contribute to the up-regulation of ICAM-1 and E-selectin by mechanisms that are still 

unclear.  DNA hypomethylation did not alter the methylation status of the ICAM1 promoter CpG 

islands, which were found to be unmethylated under basal conditions. Further analysis is needed to 

fully address the key methylation targets impaired by excess SAH. 

 

Figure 3 –Schematic representation of SAH induced-endothelial activation and transmigration. 
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ABSTRACT 

S-Adenosylhomocysteine (SAH) can induce endothelial dysfunction and activation, 

contributing to atherogenesis; however, its role in the activation of the inflammatory mediator NFkB 

has not been explored.  Our aim was to determine the role of NFkB in SAH-induced activation of 

endothelial cells.  Furthermore, we examined whether SAH, as a potent inhibitor of 

S-adenosylmethionine-dependent methyltransferases, suppresses the function of EZH2 

methyltransferase to contribute to SAH-induced endothelial cell activation.  We found that excess 

SAH increases the expression of adhesion molecules and cytokines in human coronary artery 

endothelial cells.  Importantly, this up-regulation was suppressed in cells expressing a dominant 

negative form of the NFkB inhibitor, IkB.  Moreover, SAH accumulation triggers the activation of both 

the canonical and non-canonical NFkB pathways and represses EZH2 activity, decreasing histone H3 

lysine 27 trimethylation.  EZH2 knockdown recapitulated the effects of excess SAH on endothelial 

activation, i.e., it induced NFkB activation and the subsequent up-regulation of adhesion molecules 

and cytokines.  Our findings suggest that suppression of the epigenetic regulator EZH2 by excess 

SAH may contribute to NFkB activation and the consequent vascular inflammatory response.  These 

studies unveil new targets of SAH regulation, demonstrating that EZH2 suppression and NFkB 

activation mediated by SAH accumulation may contribute to its adverse effects in the vasculature. 

 

Key Words: S-adenosylhomocysteine, endothelial activation, adhesion molecules, NFkB, methylation, 
EZH2.  
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1. INTRODUCTION 

S-Adenosylhomocysteine (SAH) is an inhibitor of cell methyltransferases that accumulates 

during hyperhomocysteinemia. SAH-induced hypomethylation of DNA, protein, and RNA have been 

associated with vascular disease (1–4). Elevated homocysteine in plasma is an independent risk 

factor for cardiovascular diseases (5).  We and others have suggested that SAH is a key mediator of 

homocysteine-associated atherogenesis (1, 6, 7). Our previous studies show that SAH can induce 

endothelial cell dysfunction and activation by decreasing nitric oxide production and increasing 

oxidative stress and leukocyte adhesion (1, 8).  The molecular mechanisms by which SAH induces a 

pro-inflammatory phenotype are, however, not completely understood.  Several studies have reported 

a role for the nuclear transcription factor kB (NFkB) in endothelial dysfunction and atherosclerosis   

(9–11). 

NFkB is a major regulator of important cell processes, such as inflammation, immunity, cellular 

proliferation, and apoptosis (12, 13).  NFkB complexes are composed of homo- or heterodimers of 

various NFkB family members, including p50, p52, p65 (RelA), RelB, and c-Rel (12, 14).  The NFkB 

pathway can be triggered by several stimuli, including inflammatory cytokines such as tumor necrosis 

factor- (TNF-) and interleukin-1 (IL-1), which initiate the classical pathway; or other stimuli such 

as the CD40 ligand, and lymphotoxin , which trigger the alternative NFkB pathway (12, 13).   

DNA and histones are well studied targets of methyltransferases that can modulate important 

cellular processes. Enhancer of Zeste homolog 2 (EZH2) is the catalytic core of the Polycomb 

repressive complex (PRC) 2 and establishes the major mark of transcriptional repression in 

mammalian cells: the trimethylation of lysine 27 on histone H3 (H3K27me3) (15). As an 

S-adenosylmethionine-dependent methyltransferase, EZH2 is a target for SAH-mediated inhibition. 

EZH2 modulates many cellular processes, including inflammation and cell adhesion, by targeting 

genes such as IL1B and CDH13 (16). The H3K27me3 mark can be removed by the Jumonji domain 

containing 3 (JMJD3) or the ubiquitously transcribed tetratricopeptide repeat on X chromosome (UTX) 

demethylases (17–19).  

We previously used human umbilical vein endothelial cells (HUVEC) to investigate the role of 

excess SAH in endothelial activation. Our findings showed that SAH-induced oxidative stress 

promotes an up-regulation of adhesion molecules (1), however, the molecular mechanisms by which 

redox changes activate inflammatory responses under excess SAH were not completely resolved.  

Here, we analyze the effects of SAH on human coronary artery endothelial cells (HCAEC), and 

demonstrate the role of SAH-mediated hypomethylation on NFkB activation and modulation of 

pro-inflammatory signals.  Additionally, we show that excess SAH suppresses the expression of EZH2 

and that EZH2 knockdown mimics the endothelial cell responses to excess SAH, suggesting that the 

suppression of this methyltransferase may contribute to SAH-mediated endothelial dysfunction.  
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2. MATERIALS AND METHODS 

Cell Culture and Treatments – Human coronary artery endothelial cells (HCAECs) were 

cultured at 37ᵒ C in 5% CO2. Cells were grown in EBM-2 supplemented (EGM-2-MV) medium (Lonza) 

without antibiotics. Experiments were performed between passages five and eight and with cells 70 to 

80% confluent. Treatments with adenosine-2’,3’-dialdehyde (ADA) (Sigma) were performed for 48 h at 

20 µM concentration. Tumor necrosis factor-α (TNF-) treatments (10 ng/mL; R&D systems) were 

performed for 24h. 

 

Real-Time PCR – RNeasy Mini kit (Qiagen) was used for RNA extraction. DNase (Qiagen) 

treatment was performed during the RNA extraction protocol, according to the manufacturer’s 

instructions. After reverse-transcription using the Advantage RT-for-PCR kit (Clontech), cDNA was 

used for real-time PCR reactions with TaqMan Universal PCR Master Mix (Life Technologies) and 

specific gene expression primers (Life Technologies): ACTB (-actin) (4352935E); ICAM1 

(Hs00164932_m1); SELE (Hs00950401_m1); VCAM1 (Hs00365485_m1); PECAM1 

(Hs00169777_m1); RELA (Hs00153294_m1); NFKB1 (Hs00231653_m1); NFKB2 (Hs00174517_m1); 

IL1B (Hs01555410_m1); TNFA (Hs01113624_g1); EZH2 (Hs00544833_m1); JMJD3 

(Hs00996325_g1); CDKN1A (Hs00355782_m1); CDKN2A (Hs00923894_m1).  PCR reactions were 

performed using a PRISM 7900 HT Sequence Detector (Applied Biosystems).  The CT method 

was used for relative quantification using -actin as the endogenous control. 

 

Nuclear Protein Extraction – Nuclear protein extracts were obtained with the NE-PER 

nuclear and cytoplasmic extraction reagents (Thermo Scientific) following the kit protocol. 

 

NFKB Inhibition – The dominant negative IkB adenovirus (AdIkBDN) (Vector Biolabs) was 

used to overexpress a recombinant form of the IKBα, which is resistant to its phosphorylation-induced 

degradation. HCAEC infection with AdIkBDN was performed simultaneously with ADA treatments. 

An empty adenoviral vector was used as a control (AdCtrl) (Vector Biolabs). 

 

Luciferase and -galactosidase Assays – A luciferase adenoviral expression vector 

(AdNFkB-Luc) (Vector Biolabs) controlled by a promoter containing five repeats of the NFkB enhancer 

element (TGGGGACTTTCCGC) was used to infect HCAECs that were simultaneously infected with a 

β -galactosidase expression vector (Vector Biolabs). HCAEC were infected with adenovirus for 24 h 

prior to treatments. Cell lysates were obtained using the reporter lysis buffer (Promega) and promptly 

used for the luciferase and β-galactosidase enzyme assays (Promega). Firefly luciferease activity was 
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measured using the 20/20n luminometer (Turner Biosystems), while β-galactosidase activity was 

measured by absorbance detection at 420 nm (SPECTRA MAX 190, Molecular Devices).  

 

Histone Extraction – Histone extracts were prepared using EpiQuik total histone extraction kit 

(Epigentek) following the manufacturer’s instructions. 

 

siRNA Transfections – Transfections with small interference RNA (siRNA) were performed in 

OPTI-MEM medium (Life Technologies) using lipofectamine 2000 (Life Technologies) and a stealth 

siRNA to EZH2 (5’-GACCACAGUGUUACCAGCAUUUGGA-3’) or a scrambled control siRNA 

(5’-GGUAGCGCCAAUCCUUACGUCUCUU-3’). The final siRNA concentration used was 52 nM.  

 

Statistical Analysis – All of the experiments were repeated three to five times. Results are 

shown as mean  standard deviation. Statistical significance of the differences between means was 

determined by Student’s t test or ANOVA followed by post-hoc multiple comparisons using the 

Newman-Keuls test for experiments with two or more conditions, respectively. 

 

3. RESULTS 

Endothelial cell activation by excess SAH – We previously showed that ADA-induced SAH 

hydrolase inhibition reduces the S-adenosylmethionine/SAH ratio over 6-fold in endothelial cells due 

to a significant accumulation of SAH.  In HUVEC, this treatment results in increased expression of 

adhesion molecules (1).  In Figure 1, we examined whether ADA modulates the expression of 

adhesion molecules in human endothelial cells derived from coronary artery (HCAECs), a type 

of endothelial cells more relevant to atherosclerotic vascular disease than HUVECs.   After 48h of 

incubation with the SAH hydrolase inhibitor (ADA), HCAECs had a 4.0  1.1- and 2.5  0.5-fold 

increase in the mRNA levels of the adhesion molecules ICAM-1 (intercellular adhesion molecule-1) 

and VCAM-1 (vascular adhesion molecule-1) (p < 0.005), respectively (Fig. 1A), similar to our 

previous findings in HUVECs (1). Two additional adhesion molecules were studied: E-selectin and 

PECAM-1 (platelet endothelial cell adhesion molecule-1). E-selectin transcripts were also increased 

by 5.2  1.0-fold (p < 0.005), whereas ADA significantly decreased PECAM-1 transcript levels by 

37.4  13.4 % (p < 0.0005) (Fig. 1A).  Accordingly, ICAM-1 and VCAM-1 protein levels were 

up-regulated by 2.2  0.4- and 3.5  0.8-fold (p < 0.0005), respectively, in ADA-treated HCAECs 

(Fig. 1B). 
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Figure 1 - SAH accumulation and cell activation. (A), mRNA expression levels of ICAM-1, 
E-Selectin, VCAM-1, and PECAM-1 were measured by quantitative RT-PCR to determine 
the effects of ADA 20 µmol/L (ADA) compared to control (Ctrl) (n= 3-5). (B), Western blot 
analysis of ICAM-1 and VCAM-1 following ADA treatment for 48 h. Summary densitometry 
measurements for five independent experiments is shown on the right of the representative 
immunoblots. **, p < 0.005, ***, p < 0.0005 versus control. 

NFkB pathway activation by excess SAH – We next examined whether ADA treatment 

activates the NFkB pathway.  To do so, we initially monitored p50 and p65, as they are the most 

abundant NFkB components in the canonical pathway (20). ADA treatment had no significant effect 

on the expression of the p50 and p65 encoding genes, NFKB1 and RELA, respectively (Fig. 2A). 

Activation of the canonical pathway is usually marked by the phosphorylation and degradation of the 

NFkB inhibitory protein IkB, releasing NFkB and allowing its migration to the nucleus (14). In order to 

study this process, we assessed IkB degradation and p65 translocation.  After ADA treatment, IkB 

levels decreased by 72.2  17.1 % (p < 0.005), and a 42.1  17.5 % increase of nuclear p65 protein 

was observed (p < 0.05; Fig. 2B&C). Taken together, these data support the notion that ADA induces 

activation of the NFkB canonical pathway. To confirm the effects of excess SAH on NFkB-induced 

transcriptional activation, we used an NFkB luciferase reporter construct (Fig. 2D).  TNF- was used 

as a positive control, as it is a well-known activator of NFkB in endothelial cells (21).  As expected, 

non-infected cells had no detectable luciferase activity, whereas infected cells treated with TNF- for 

24 h had a 4.4  0.6-fold increase in luciferase activity compared with infected cells not exposed to 

TNF-or ADA. Similarly, intracellular SAH accumulation significantly increased NFkB-dependent 

luciferase activity by 2.8  0.3-fold (p < 0.0005).  
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Figure 2 - NFkB pathway activation and its role in SAH-mediated up-regulation of adhesion molecules. 
(A), ADA-mediated changes in RELA (p65) and NFKB1 (p50) gene expression were measured by quantitative 

RT-PCR using -actin as an endogenous control (n=3). (B), IkBα protein degradation induced by ADA was 
evaluated by Western blot. A representative blot is shown on the left and summary densitometry measurements 
on the right (n=3). (C), Nuclear levels of p65.  Western blot was used to analyze nuclear extracts.  Shown are a 
representative Western blot (left) and a graph of the average densitometry measurements (right, n=3). (D), The 
ability of ADA to promote NFkB-mediated transcription was analyzed using an NFkB luciferase reporter 

adenovirus construct simultaneously with a -galactosidase vector (n=4). Luciferase expression was normalized 

to -galactosidase activity.  Results are shown for uninfected HCAECs (NV) and infected cells without treatment 
(Ctrl) or treated with ADA for 48 h (ADA) or TNF-α for 24 h (TNFα). E & F, Cells overexpressing dominant 
negative IkBα (AdIkBDN), infected with an empty control adenovirus (AdCtrl), and uninfected control cells (NV) 
were incubated in the presence or absence of ADA. (E), Quantitative RT-PCR was used to study differences in 
mRNA levels of ICAM-1, VCAM-1, and E-selectin. (F), Protein extracts were used for Western blot analysis. A 
representative immunoblot (left) and a summary densitometry measurements (right) are shown (n= 3). Note that 

the recombinant IkBDN migrates more slowly than the endogenous IkBα. A, B and C. *, p < 0.05, **, p < 0.005, 

***, p < 0.0005, versus control.  ANOVA, followed by the Newman-Keuls test for multiple comparisons, was 
used in the analysis shown in panels D, E and F. *, p < 0.05, **, p < 0.005, ***, p < 0.0005, versus the 
corresponding condition without ADA treatment. #, p < 0.0005, versus ADA treated cells with no virus or those 
infected with the AdCrl (ADA- AdCtrl). 
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IkB degradation is induced after its phosphorylation at serine residues S32 and S36 (22).  

To block NFkB activation, we overexpressed the dominant-negative mutant NFkB inhibitor (IkBDN), 

which lacks S32 and S36 and cannot be targeted for degradation (Fig. 2E&F) (23). Wild type IkB 

levels (lower molecular weight) are reduced after ADA treatment whereas the recombinant IkBDN 

(higher molecular weight) is modestly up-regulated by ADA treatment (Fig. 2F).  As shown in Figures 

2E&F, baseline adenoviral infection had no effect on the expression of adhesion molecules when 

compared to non-infected cells (NV). Upon ADA exposure, cells infected with the control adenovirus 

(AdCtrl) had a 4.2  0.3-fold up-regulation of ICAM-1 mRNA levels (p < 0.0005).  This effect was 

inhibited by the presence of the IkBDN (p < 0.0005).  Similarly, VCAM-1 and E-selectin transcript 

levels were reduced by IkBDN to 13.7  2.2 % and 6.1  1.5 % (p < 0.0005), respectively, in 

ADA-treated cells.  ADA significantly augmented ICAM-1 (1.6  0.2-fold) and VCAM-1 (1.9  0.3-fold) 

protein expression in cells transduced with the AdCtrl (p < 0.05).  These effects were attenuated by 

expression of the IkBDN (p < 0.0005, Fig. 2F). 

 

Alternative NFkB pathway activation – Unlike the canonical pathway, the non-canonical or 

alternative NFkB pathway is independent of IkB and involves p100 phosphorylation and processing 

to the NFkB active subunit p52 (24).  We analyzed the activation of the non-canonical NFkB pathway 

by monitoring changes in the expression of NFKB2 and its gene products, p100 and p52 (Fig. 3).  

There was a significant increase in NFKB2 gene expression (1.8  0.2-fold) following ADA treatment 

(p < 0.0005).  Western blot analysis revealed a 1.8  0.2-fold concomitant increase in p100 levels 

(p < 0.05) upon ADA exposure with evidence for increased p100 processing, as illustrated by the 

higher levels of p52 detectable under excess SAH compared to the control (2.5  0.4-fold increase; 

p < 0.005).   

We next used the adenoviral vector IkBDN to determine whether the NFkB canonical pathway 

modulates the non-canonical pathway (Fig. 3C&D). Although the presence of the control virus 

augmented the ADA-induced up-regulation of NFKB2 gene expression compared to ADA-treated cells 

with no virus, ADA treatment further increased NFkB2 mRNA levels 2.0  0.04-fold (p < 0.0005) in the 

AdCtrl cells.  In contrast, ADA-induced expression of NFKB2 was significantly attenuated by IkBDN 

(p < 0.0005).  Accordingly, endothelial cells infected with the AdCtrl also manifested a p52 increase 

(2.9  0.6-fold; p < 0.0005) with ADA treatment, which was abolished by the presence of IkBDN 

(p < 0.0005, Fig. 3D). 
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Figure 3 - Activation of the NFkB alternative pathway. (A), NFKB2 transcript levels from control 
and ADA-treated cells measured by quantitative RT-PCR (n=4). *, p < 0.05, **, p < 0.005, 
***, p < 0.0005, versus control. (B), Protein expression of p100 and p52 in HCAECs control and 
with ADA treatment. Representative Western blots (left) and summary densitometry analysis (right) 
are shown (n=3). The statistical analysis was performed as in A. (C), NFKB2 mRNA levels under 
SAH accumulation, analyzed by quantitative RT-PCR, for cells infected with AdIkBDN, the control 
adenovirus (AdCtrl), or control uninfected cells (NV) (n=3).  ANOVA with multiple comparisons was 
used for statistical significance analysis. ***, p<0.0005 versus the correspondent no ADA condition. 
#, p < 0.0005 versus ADA treated cells with no virus or infected with the AdCtrl. (D), Western blot 
analysis of p52 expression in cells infected with the AdIkBDN, the AdCtrl, or NV that were treated 
or untreated with ADA.  Representative blot is shown (top) with the densitometry measurements 
(below, n=3). Statistical analysis was performed as in C. 

SAH accumulation results in increased expression of pro-inflammatory cytokines – 

Interestingly, inflammatory cytokines, such as TNF- or IL-1, are not only NFkB activators, but also 

its downstream transcriptional targets (22, 25). ADA treatment increased the expression of IL1B and 

TNFA genes by 73.3  20.8- and 5.9  0.6-fold, respectively (p < 0.0005; Fig. 4A).  Notably, 

quantitative RT-PCR results showed very low basal expression of these cytokines in control cells.  

Likewise, the IL-1 cytokine is almost undetectable by Western blot in control cells (Fig. 4B), although 

its expression is significantly augmented by ADA (50.4  4.8-fold; p < 0.0005).  We next examined 

whether inhibiting NFkB pathways modulates ADA-induced cytokine expression (Fig. 4C).  

Unexpectedly, the ADA-induced up-regulation of IL1B expression was 63.1  3.2 % lower when the 

cells were infected with AdCtrl (compared to uninfected cells exposed to ADA), but still significantly 
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increased compared with cells not exposed to the SAH hydrolase inhibitor (12.8  1.1-fold; 

p < 0.0005).  IkBDN reduced the ADA-induced expression of IL1B by 63.4  2.4 % compared to the 

ADA-treated AdCtrl (p < 0.0005); however, IkBDN failed to eliminate completely ADA-induced IL1B 

up-regulation as IL1B expression remained 7.7  0.5-fold higher in IKBDN expressing cells with ADA 

compared to untreated IkBDN expressing cells (p < 0.005).  ADA-treated cells infected with the AdCtrl 

had substantially greater expression of TNFA when compared with uninfected cells exposed to ADA 

(p < 0.0005; Fig. 4C); nonetheless, TNFA up-regulation by ADA was completely abolished by IkBDN 

expression (p < 0.0005). 

 
Figure 4 - Expression of proinflammatory cytokines under SAH accumulation. (A), The 

mRNA levels of IL-1 and TNFα were measured by quantitative RT-PCR for control and 

ADA-treated cells (n=4). ***, p < 0.0005, versus control. (B), Western blot analysis of IL-1 protein 
expression induced by ADA treatment.  A representative blot is shown. Mean densitometry results 
are presented. Statistical significance was measured as for A. (C), Cytokine mRNA expression was 
determined for control and ADA treated cells infected with the adenovirus IkBDN (AdIkBDN), 
a control adenovirus (AdCtrl), or no virus (NV) by quantitative RT-PCR (n=3-4). A multiple 
comparison ANOVA statistical analysis was performed, and the significance of the differences 
between the means is indicated. ***, p < 0.0005, **, p<0.005 versus corresponding condition 
without ADA; #, p < 0.005, compared to ADA treated no virus or ADA treated AdCtrl. 

Excess SAH disturbs EZH2 and EZH2-related proteins – Previous studies have shown that 

SAHH inhibitors can suppress the activity of the S-adenosylmethionine-dependent methytransferase 

EZH2 (26). The balance between the activity of EZH2 and the demethylase JMJD3 modulates 

epigenetic regulation through H3K27me3.  EZH2 is known to suppress the expression of the 

senescence markers, cyclin-dependent kinase inhibitor 1A (CDKN1A/p21) and 2A (CDKN2A/p16) 

(27).  
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To determine whether EZH2 was altered by SAHH inhibition in HCAEC, we investigated the 

effects of ADA on the expression of EZH2; the EZH2-regulated genes, CDKN1A and CDKN2A; and 

the demethylase JMJD3 (Fig. 5A).  ADA treatment resulted in a 58.0  11.7 and 68.4  7.7 % 

reduction of EZH2 and JMJD3 mRNA levels, respectively (p < 0.005). CDKN1A gene expression was 

2.1  0.3-fold higher after ADA treatment (p < 0.005), whereas CDKN2A expression was not 

significantly changed. EZH2 protein levels decreased by 59.8  0.1 % with ADA treatment (p < 0.005; 

Fig. 5B).  SAH accumulation also decreased H3K27me3 content by 25.5  0.2 % (p < 0.05; Fig. 5C), 

consistent with a decrease in cellular EZH2 activity. Figure 5D suggests that SAH-mediated changes 

in EZH2 expression and activity are independent of NFkB activation, as the presence of IkBDN had 

no effect on ADA-induced suppression of EZH2 nor did it alter the ADA-induced increase of CDKN1A. 

 

Figure 5 - Effects of excess SAH on EZH2 and EZH2-related proteins. (A), EZH2, JMJD3, CDKN1A, and 
CDKN2A mRNA levels were studied by quantitative RT-PCR following ADA treatment (n=3).  **, p < 0.005, 
versus control. (B), Total protein extracts from control and ADA treated cells were used for Western blot 
detection of EZH2. A representative blot is shown on the left and the summary of densitometry analysis on 
the right (n= 3). Statistical analysis was performed as in A. (C), Western blot analysis of histone H3K27 
tri-methylation (H3K27me3) after ADA treatment. Data are analyzed as in A. *, p < 0.05, versus control. (D), 
EZH2 and CDKN1A protein expression was evaluated, by Western blot, in noninfected cells (NV) or those 
infected with the adenovirus IkBDN or adenovirus control (AdCtrl) in the presence or absence of ADA 
treatment. Representative blots are presented along with densitometry analysis (n=3-4). An ANOVA multiple 
comparisons test was used to analyze the statistically significant differences between means. **, p < 0.005, 
***, p < 0.0005, versus the corresponding condition without ADA treatment. 
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EZH2 knockdown mimics SAH-mediated effects on cell activation – To determine 

whether ADA-induced EZH2 suppression could contribute to the pro-inflammatory activation of 

endothelial cells, we knocked down EZH2 using a targeted siRNA (siEZH2) and analyzed the 

expression of adhesion molecules, CDKN1A, and IL-1 another known target of EZH2-associated 

epigenetic regulation (16).  EZH2 knockdown resulted in a 94.1  0.9 and 73.3  8.9 % 

reduction of EZH2 mRNA and protein levels, respectively (p < 0.005 vs siCtrl; Fig. 6). 

 

Figure 6 - Effects of EZH2 knockdown on NFkB and endothelial cell activation. (A), Quantitative 
RT-PCR results are presented for non-transfected (NT) and transfected cells with either a scrambled 
siRNA (siCtrl) or an siRNA directed to EZH2 (siEZH2) (n=3-4). (B), Western blot analysis was performed 
after knockdown of EZH2. Representative blots (top), along with densitometry analysis (below) are shown 
(n=3). Statistically significant differences between the means were determined by an ANOVA multiple 
comparisons test for panel A and B. *, p < 0.05, **, p < 0.005, ***, p < 0.0005, versus the non-transfected 
and siCtrl conditions.  #, p < 0.0005 significant only against siCtrl. 

Suppression of EZH2 expression increased CDKN1A mRNA and protein levels when compared to 

siCtrl treated cells by 2.3  0.4- and 1.3  0.1-fold, respectively (p < 0.005).  [The up-regulation of 

CDKN1A gene expression was also significant when comparing the siEZH2 and nontransfected cells, 
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but the protein levels were not significantly different between these groups.] A significant increase of 

4.8  1.4- and 2.6  0.5-fold was also observed for ICAM1 and VCAM1 expression following EZH2 

knockdown compared to siCtrl conditions (p < 0.05). The role of EZH2 on the expression of adhesion 

molecules was further confirmed by Western blot, where EZH2 knockdown resulted in a 1.5  0.1-fold 

increase of ICAM-1 expression (p < 0.0005, Fig. 6B).  EZH2 knockdown also resulted in a 

7.3  2.1-fold increase of IL-1 mRNA levels (p < 0.005). 

To determine whether EZH2 inhibition could promote NFkB activation, we monitored IkB 

degradation after EZH2 knockdown. Cells transfected with siEZH2 showed 23.0  7.6 % less 

IkB than those transfected with the siCtrl (p < 0.05). Furthermore, EZH2 knockdown increased 

NFKB2 gene expression 2.3  0.4-fold, supporting a possible role for EZH2 in modulating NFkB 

pathways in endothelial cells. 

4. DISCUSSION 

The role of homocysteine as a risk factor for cardiovascular disease (CVD) has been widely 

debated.  SAH, as a functionally important metabolite of homocysteine metabolism, has been 

suggested as a potentially more accurate indicator and determinant of CVD risk (28–30).  Our work 

has focused on targets that are impaired by excess SAH that may contribute to vascular disease 

development.  We have shown that SAH hydrolase inhibition using ADA induces intracellular 

accumulation of SAH and that excess SAH disturbs nitric oxide production and antioxidant systems in 

HUVECs (1, 8).  Here, we used primary endothelial cells derived from coronary arteries (HCAECs) to 

examine the mechanisms by which SAH promotes inflammatory activation. The adhesion of 

leukocytes to endothelial cells, which occurs during inflammatory diseases such as atherosclerosis, is 

complex and involves multiple interactions among endothelial and leukocyte surface molecules.  We 

monitored the expression of ICAM1 and VCAM1, as well as the expression of SELE, which encodes 

E-selectin, an adhesion molecule involved mainly in the early stages of the adhesion process, and 

PECAM1, which is required during the transmigration stage (31). SELE, ICAM1, and VCAM1 are all 

target genes for NFkB and their mRNA levels were all significantly increased by ADA, suggesting that 

NFkB may be activated by excess SAH (Fig. 1).  By contrast, PECAM1 expression was significantly 

decreased by ADA treatment.  Down-regulation of PECAM1 expression upon cell activation has been 

shown previously in various cell models, including endothelial cells (32–35).  Notably, although its 

global expression may be decreased, its redistribution to the cell surface to favor leukocyte 

transmigration is likely    (32–34, 36). In fact, in our previous work in HUVECs, we found evidence for 

increased cell surface expression of this adhesion molecule following cell activation by excess SAH 

(1). 
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We report a novel link between the hypomethylating agent SAH and NFkB activation. Using an 

NFkB luciferase reporter construct, we confirmed that ADA induced NFkB-dependent transcriptional 

activation.  Our data support an activation of both the canonical and non-canonical NFkB pathways in 

endothelial cells. Thus, IkB degradation and p65 nuclear migration were up-regulated and the 

expression and processing of p100 were enhanced by ADA. The crosstalk between canonical and 

non-canonical NFkB pathways is reported to exist at several different points in these activation 

cascades (37).  We found that the increased expression of the NFKB2 gene (Fig. 3) was dependent 

on the activation of the canonical pathway following ADA treatment (Fig. 3C).  The regulation of the 

NFKB2 gene by the canonical NFkB pathway has been previously described; however, studies 

suggest that increased expression of p100 may have a positive or negative effect on the subsequent 

activation of the non-canonical pathway (37).  p100 is the precursor of p52 and required for 

non-canonical pathway activation, but its accumulation (without degradation to p52) can paradoxically 

lead to the suppression of RelB nuclear translocation (37, 38). In our cell system, excess SAH not 

only resulted in an NFkB-dependent NFKB2 up-regulation, but also in increased processing of p100 

to p52. The non-canonical NFkB pathway is largely involved in lymphoid organ development and 

adaptive immune responses. Its role in endothelial cell function is largely unknown (38, 39).  

Interestingly, the expression of CXCL2, which is a pro-inflammatory cytokine involved in lymphocyte 

transendothelial migration, was reported to be dependent on activation of the non-canonical NFkB 

pathway in endothelial cells (40, 41).  Further investigation is necessary to clarify the role of the 

non-canonical NFkB pathway and CXCL2 expression in SAH-induced endothelial cell activation. 

NFkB pathways can be triggered by several factors, including pathogen exposure, 

inflammatory cytokines, radiation, and other stress signals (14, 42).  Interestingly, pro-inflammatory 

cytokines, such as IL-1 and TNF-, are not only NFkB targets, but also NFkB activators via their 

receptor-mediated actions.  We found that SAH accumulation caused a significant increase in the 

expression of IL1B and TNFA (Fig. 4).  IL-1 is synthesized as a precursor 33 kDa protein, which is 

cleaved by caspase-1, inducing the extracellular release of the processed 17 kDa form (43). Only the 

precursor form was detectable by Western blot following ADA treatment (Fig. 4B). [The mature form 

of IL-1was below the detection limit of the Western blot, possibly owing to its release from the cell 

and/or its low levels of production.] In order to understand whether increased cytokine production is a 

consequence of NFkB activation, we used the recombinant IkBDN.  Our results show that IkBDN 

completely suppressed the ADA-induced increase of TNFA.  IKBDN also significantly reduced, but did 

not eliminate, ADA-induced up-regulation of IL1B, as it remained elevated in comparison to untreated 

samples (Fig. 4C). These findings suggest that intracellular accumulation of SAH leads to cytokine 

production in response to NFkB activation, which may continue to augment and prolong cellular 

activation by promoting cytokine receptor-mediated activation of NFkB.  
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It is unclear why IkBDN failed to completely block the up-regulation of IL1Bby ADA; however, 

the IL1B promoter may be additionally regulated by other pathways, independent of NFkB. Our 

previous studies showed that ADA induced oxidant stress in endothelial cells (1, 13). Specifically, 

hypomethylation led to the suppression of GPx1 and other selenocysteine containing enzymes, which 

play an important role on the maintenance of cell redox balance (1, 44). Other studies, including our 

own in microvascular endothelial cells, indicate that decreased GPx1 expression can enhance 

inflammatory signaling in response to cytokines and endotoxins by increasing oxidants (45, 46).  In 

HCAECs, the use of antioxidants confirmed that oxidative stress also contributes to SAH-induced 

inflammatory activation; however, antioxidants were unable to eliminate ADA's effects on adhesion 

molecule up-regulation and they failed to block ADA-induced IkB degradation in HCAECs (data not 

shown).  

To understand better the effects of excess SAH on endothelial cell activation, we considered 

other pathways that might contribute to endothelial activation.  Recently, decreased levels of 

H3K27me3 were positively correlated with the progression of atherosclerosis (47). Here, we report 

that SAH accumulation can induce H3K27 hypomethylation (Fig. 5).  The H3K27me3 repressive mark 

is maintained by EZH2 and can be removed by JMJD3. We investigated the endothelial changes in 

EZH2 and JMJD3 expression under SAH accumulation promoted by ADA.  EZH2 is a possible target 

for SAH-directed inhibition, and our findings show that its gene expression is also decreased by 

excess SAH via an as-yet unknown mechanism. Furthermore, JMJD3 gene expression was 

down-regulated with excess SAH, suggesting that a feedback mechanism may be triggered due to 

lack of substrate. Interestingly, it was recently reported in cancer cell lines that JMJD3 suppression 

can be mediated by miRNA-941, which is up-regulated with DNA hypomethylation (48).  Similarly, 

EZH2 expression has been shown to be suppressed by microRNAs that may normally be 

transcriptionally repressed by DNA methylation (49).  Thus, similar mechanisms could contribute to 

JMJD3 or EZH2 suppression by excess SAH.    

EZH2 is known to mediate transcriptional repression of the cyclin-dependent kinase inhibitor 

CDKN1A and CDKN2A genes. CDKN1A and CDKN2A inhibit different cyclin-dependent kinases, 

contributing to a senescent phenotype by blocking cell cycle progression (27). Expression of 

CDKN1A, but not CDKN2A, was found to be significantly increased with SAH accumulation, most 

likely due to EZH2 inhibition, and suggesting that a senescent phenotype might be activated. 

Endothelial cell senescence has been associated with atherogenesis and could be another 

mechanism by which SAH contributes to vascular disease (50).  

Little is known about EZH2 interaction with NFkB pathway, especially in endothelial cells.  In 

breast cancer cells, the EZH2 protein caused an activation or repression of NFkB pathways 

depending on the estrogen receptor (ER) status of the cancer cells (51).  In ER-negative cancer cells, 

EZH2 physically interacted with NFkB heterodimers to promote the expression of a subset of NFkB 
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target genes; whereas in ER-positive cells, ER recruited EZH2-containing complexes to NFkB target 

genes to epigenetically silence them via histone methylation.  A different interaction was found 

between NFkB and EZH2 in endothelial cells infected with Kaposi sarcoma-associated herpesvirus in 

which latent viral genes were found to activate NFkB, leading to increased expression of EZH2 (52).  

In primary endothelial cells, we found a different association between EZH2 and NFkB that was 

caused by a loss of functional EZH2.  In fact, NFkB had no effect on EZH2 expression in HCAECs; 

rather, the loss of EZH2 promoted NFkB activation, with a concomitant increase of NFkB2 mRNA 

levels.   

In support of a role for EZH2 suppression in ADA-induced activation of NFkB, knockdown of 

EZH2 (Fig. 6) recapitulated the effects of ADA, activating NFkB and increasing the expression of 

adhesion molecules, and the pro-inflammatory cytokine IL1B.  Although the pro-inflammatory effects 

of EZH2 knockdown are less robust than those induced by SAH hydrolase inhibition, the knockdown 

caused many of the same inflammatory responses.  It is likely that the magnitude of these responses 

is lower with EZH2 knockdown as additional pathways (such as oxidative stress) that also contribute 

to endothelial cell dysfunction may be activated by SAH-accumulation.   Nonetheless, our results 

support a role for EZH2 suppression in the effects of excess SAH, and suggest that EZH2 

suppression may contribute to NFKB activation in endothelial cells.      

In conclusion, our studies implicate homocysteine’s precursor, SAH, in the activation of the 

canonical and non-canonical NFkB pathways.  Furthermore, excess SAH suppresses EZH2, 

decreasing the global levels of the repressive H3K27me3 mark. Based on these results, we believe 

that EZH2 suppression promotes the expression of inflammatory cytokines, such as IL-1, due to a 

decrease of the epigenetic mark H3K27me3 at the IL1B promoter (16, 25).  Up-regulation of IL-1 

may promote the continued stimulation of the NFkB pathway via activation of the IL-1 receptor.  

Thus, we suggest that SAH-induced EZH2 suppression can contribute to pro-inflammatory changes 

favoring atherogenesis. Our results reveal an important link between NFkB and PRC2 epigenetic 

regulation, which may be relevant to vascular disease (Fig.7).  
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Figure 7 - Potential mechanism(s) by 
which SAH causes endothelial 
activation. SAH can inhibit EZH2 activity, 
decreasing the repressive histone mark 
H3K27me3. H3K27me3 suppresses the 
expression of a number of genes, including 
CDKN1A and IL1B.  By stimulating its 

receptor, IL-1 can contribute to NFkB 
activation. Exposure to excess SAH 
activates both the canonical and 
non-canonical NFkB pathways. The 
canonical pathway involves IκB kinase 
complex (IKK) activation to induce IkB 
phosphorylation, triggering its 
ubiquitination-mediated degradation by the 
proteasome. Following IkB degradation, 
NFkB complexes (p65/p50) are free to 
migrate to the nucleus, activating 
transcription of its target genes.  SAH 
induces NFkB-mediated transcription of 

cytokines (such as IL-1, which can sustain 
further NFkB activation), adhesion 
molecules, and NFkB2.  The non-canonical 
pathway relies on the activation of 
NFkB-interacting kinase (NIK) and IKKα 
which mediates the phosphorylation of the 
NFkB2 gene product, p100, leading to its 
processing to p52, and subsequent 
migration of RelB/p52 to the nucleus.  SAH 
augments the accumulation of p52, which 
may contribute to endothelial cell 
activation. 
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Hyperhomocysteinemia is considered a risk factor for cardiovascular diseases; however, 

treatments that lower homocysteine have not yielded the anticipated protective effects in clinical 

studies. An alternative theory proposes that S-adenosylhomocysteine (SAH), the homocysteine 

precursor, rather than homocysteine itself, is a more accurate measure of the disease risk associated 

with hyperhomocysteinemia (1–3).  

Endothelial dysfunction and activation are early steps in the development of atherosclerosis; 

thus, understanding the effects of SAH on endothelial function is necessary to clarify its role in the 

molecular and pathological basis of vascular disease.  

As a strong inhibitor of most cell methyltransferases, SAH can affect different biomolecules by 

modulating their methylation state. DNA, RNA, and histone protein methylation relies on 

S-adenosylmethionine (SAM)-dependent methyltransferases and, therefore, these modifications are 

potential targets for SAH-mediated inhibition. Methylation of these biomolecules can modulate gene 

expression. While DNA and histone methylation are widely recognized as epigenetic factors that 

regulate gene expression, the effects of RNA methylation on gene expression are less understood.  

Nonetheless, several reports have recognized that RNA methylation is important for the control of 

translation and RNA processing (4, 5). 

Our work was mainly focused on the harmful effects of SAH, as an inhibitor of methylation 

reactions, to the endothelium. During our studies (Chapters 3-6) intracellular SAH accumulation was 

promoted by pharmacological inhibition of SAH hydrolase. This approach led to a robust increase in 

intracellular SAH, independently of homocysteine accumulation, and resulted in a reduction of the 

SAM/SAH (methylation) ratio1, an indicator of cell hypomethylation.  Under these conditions, we 

examined the molecular consequences of excess SAH and its role as a hypomethylating agent. In 

Chapter 4, to confirm that these effects were due to the suppression of SAH hydrolase activity, an 

siRNA was used to decrease the expression of SAH hydrolase. Importantly, the molecular knockdown 

approach yielded results similar to those obtained with the pharmacologically-based suppression of 

SAH hydrolase.  

Our results demonstrated that excess SAH can contribute to endothelial dysfunction by 

decreasing nitric oxide (NO) bioavailability (Chapter 3) and promoting oxidative stress (Chapter 4). 

Moreover, excess SAH can further sustain the progression of atherosclerosis by triggering an 

inflammatory response in endothelial cells (Chapters 4-6).  Thus, SAH accumulation can increase the 

expression of adhesion molecules and cytokines. Finally, endothelial accumulation of SAH favored 

leukocyte adhesion and transmigration through the endothelium, supporting a functional role of the 

molecular alterations observed in the endothelial cells. 

 

 

                                         
1
Biochemical characterization of the model, with quantification of relevant metabolites, is shown in Chapter 3.  
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Excess SAH and Endothelial Dysfunction 

As mentioned in Chapter 1, although hyperhomocysteinemia has been shown to promote 

endothelial dysfunction, the molecular mechanisms underlying this association remain unclear. Our 

results provide evidence for a role of excess SAH in endothelial damage, supporting the hypothesis 

that it may be a mediator in the association between homocysteine and vascular disease. In 

Chapter 3, we demonstrated that excess SAH decreases endothelial nitric oxide synthase (eNOS) 

protein levels and NO bioavailability. Nitric oxide is a major anti-atherothrombotic molecule, and within 

its pleiotropic effects to the endothelial layer (see Chapter 1 for more detail), it can protect against 

oxidative stress and inflammation, disturbances that are induced under excess SAH (Chapters 4-6). 

Moreover, an oxidative environment can also contribute to eNOS impairment (6). In Chapter 4, we 

showed that an SAH-induced hypomethylation environment can lead to the impairment of antioxidant 

systems and increase oxidative stress. Several reports demonstrate the role of reactive oxygen 

species (ROS) in the reduction of bioactive NO by chemical inactivation to form peroxynitrite and by 

inducing eNOS uncoupling (7). In fact, decreased eNOS expression and activity, as shown in Chapter 

3, was previously observed in an oxidative environment (7). Furthermore, the homocysteine-induced 

increase of hydrogen peroxide (H2O2) was previously suggested to render NO more susceptible to 

oxidative inactivation (8). Thus, SAH-mediated oxidative stress could also contribute to decreased NO 

bioavailability. 

Interestingly, although we observed decreased protein levels of eNOS, NOS3 gene expression 

(eNOS mRNA) was up-regulated (Chapter 3). Remarkably, it was recently reported that the NOS3 

gene may be regulated by histone methylation.  Specifically, its expression was inversely correlated 

with the histone methyltransferase activity of EZH2 (enhancer of zeste homolog 2) and the presence 

of the repression mark H3K27me3 (trimethylation of histone H3 on lysine 27) on the NOS3 promoter 

(9, 10). Therefore, EZH2 suppression and the resulting H3K27me3 down-regulation, which we 

observed under excess SAH (Chapter 6), may contribute to increased NOS3 gene expression. The 

basis for the SAH-mediated decrease in eNOS protein levels remains to be determined. However, 

previous findings implicated protein kinase C (PKC) pathways in the degradation of the eNOS protein 

under high homocysteine levels in aortic endothelial cells (11); possibly, SAH may similarly activate 

this pathway in our cell system. Nonetheless, studies of eNOS phosphorylation by PKC, and the 

possible rescue of eNOS expression by PKC inhibitors, are necessary to confirm this hypothesis. 

Oxidative stress is another key feature of endothelial dysfunction observed under excess SAH 

(Chapter 4).  Redox balance is essential in maintaining cellular homeostasis and, under physiologic 

conditions, cells maintain this balance through the production and elimination of ROS. Major ROS 

producers include the mitochondrial electron transport chain, the endoplasmic reticulum system, and 

NAD(P)H oxidase (NOX) complexes (12). Major ROS-scavenging enzymes include glutathione 

peroxidases, catalase, and superoxide dismutases (SOD) (12). The impairment of antioxidant 
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systems results in the accumulation of naturally produced ROS, including H2O2. We found that 

SAH-mediated down-regulation of glutathione peroxidase-1 (GPx-1) and potentially the suppression 

of other antioxidant selenoproteins, such as selenoprotein H (SelH), selenoprotein M (SelM), and 

methionine sulfoxide reductase B1 (MsrB1), can lead to increased accumulation of intra- and 

extracellular H2O2. Interestingly, decreased expression of GPx-1 was previously observed under 

hyperhomocysteinemia (13). Our recent work clarified the role of SAH in this previously established 

association, and illustrated the role of GPx-1 in the SAH-mediated inflammatory response (see 

below).  

Others have reported that catalase activity was decreased under increased homocysteine 

levels in human cultured cells (14). Likewise, homocysteine decreased the binding of 

extracellular-SOD to endothelial cell surfaces, leading to a reduced ability to protect endothelial cell 

surfaces from oxidative stress (15). However, the role of SAH in these alternative antioxidant 

pathways was not explored in our studies.   

 

Excess SAH and Endothelial Activation 

Endothelial cells undergo an activation process during the onset and progression of 

atherosclerosis. This activation is part of an inflammatory response that results in the expression 

of chemokines, cytokines, and adhesion molecules which mediate the interaction of the endothelium 

with leukocytes and platelets (16). The increased expression of cytokines and adhesion molecules 

prompts leukocyte homing, adhesion, and migration into the sub-endothelial space, favoring the 

progression of the atherosclerotic process (16).  

We have found that excess SAH mediates endothelial cell activation (Chapters 4-6) through 

oxidative stress-dependent (Chapter 4) and -independent mechanisms (discussed below). In Chapter 

4, we demonstrated that the SAH-induced down-regulation of the antioxidant GPx-1 resulted in 

increased expression of adhesion molecules, such as ICAM-1 (intercellular adhesion molecule-1) and 

VCAM-1 (vascular adhesion molecule-1), in human umbilical vein endothelial cells (HUVECs). 

Chapters 5 and 6 confirmed that SAH-induced the up-regulation of ICAM-1 and VCAM-1 and also 

provided evidence that additional adhesion molecules, specifically, E-selectin and/or PECAM-1, are 

up-regulated by SAH in HUVECs as well as endothelial cells from other vascular beds, such as the 

coronary artery (HCAECs). Importantly, we found that the up-regulation of these adhesion molecules 

resulted in their increased presence at the cell surface where they enhanced leukocyte adhesion 

(Chapter 4.1) and transmigration (Chapter 5), indicating that these SAH-induced changes can 

contribute to the atherogenic process.  Moreover, we have also established the ability of SAH 

accumulation to induce the expression of the inflammatory cytokines IL-1 (interleukin-1 beta) and 

TNF-α (tumor necrosis factor alpha) (Chapter 6). 
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Oxidative stress is a known activator of inflammation; ROS-activated transcription factors, 

such as NFkB and AP-1, mediate the expression of adhesion molecules and cytokines at the 

transcriptional level (16). In Chapter 4, we initially reported that SAH-induced oxidative stress 

promoted adhesion molecule expression. Our findings in Chapter 6 indicate that the up-regulation of 

the adhesion molecules and cytokines is highly dependent on the activation of the NFkB canonical 

pathway. The NFkB pathway is considered a prototypical pro-inflammatory signaling pathway.  The 

possibility of NFkB being activated by the SAH-induced oxidative stress was likely. However, 

co-treatments with an antioxidant (N-acetylcysteine) showed that oxidative stress only partially 

contributed to the observed inflammatory response in HCAECs as the reduced environment was not 

sufficient to suppress NFkB activation and, although, ICAM-1 up-regulation was decreased by the 

presence of exogenous antioxidants, it was not completely suppressed by this treatment 

(Supplemental Fig. 1). Conversely, during our studies in HUVEC (Chapter 4), antioxidants more 

completely suppressed inflammatory responses. Further investigation is necessary to understand the 

differences between these cell types. Although we measured ROS production in HUVEC following 

SAH exposure, the effects of SAH on ROS production was not examined in HCAEC. Thus, levels of 

ROS production in HCAECs should be assessed to determine if oxidant production (or impairment of 

antioxidant systems) differs between these cells.  Moreover, many inflammatory responses require 

both AP-1 as well as NFkB activation, and the relative importance of each of these pathways in 

inflammatory signaling, as well as the effects of antioxidants on these pathways, may differ between 

HCAEC and HUVEC.   

The initiator for the activation of the NFkB canonical pathway in HCAECs remains to be 

ascertained. Nonetheless, we observed that IL-1, a known activator of the NFkB pathway, was not 

completely suppressed when the canonical pathway was blocked by a dominant negative inhibitor. 

Thus, IL-1 up-regulation could be mediated by other SAH-induced mechanisms and may contribute 

to the initial activation of the NFkB pathway, which could then be further activated and sustained by 

the subsequent NFkB-mediated transcription of cytokine genes, including those encoding IL-1 (IL1B) 

and TNF-α (TNFA).   

We considered other pathways that could contribute to the endothelial cell inflammatory 

response that may be targets of SAH-mediated inhibition.  One possibility was EZH2.  EZH2 is a 

histone methyltransferase, which is part of the epigenetic regulator polycomb repressive complex 

PRC2. Recent analysis of a whole-genome mRNA expression array showed that EZH2 represses the 

expression of several inflammatory genes in endothelial cells, including IL1B (17), by adding the 

repressive histone mark H3K27me3 at these loci (18).  We found that SAH-mediated hypomethylation 

suppresses H3K27me3, therefore, this pathway may, in part, contribute to the up-regulation of IL-1 

by SAH.  



Chapter 7 

135 

Furthermore, our studies revealed a novel interaction between EZH2 and NFkB activation in 

endothelial cells. We found that targeted knockdown of EZH2 can promote NFkB activation and 

induce an inflammatory response, suggesting that SAH may promote inflammatory responses, in part, 

via its suppression of EZH2 activity. Interestingly, SAH also decreased the mRNA and protein levels 

of EZH2. These mechanisms of SAH-induced EZH2 suppression, as well as those involved in NFkB 

activation, warrant further investigation. Nonetheless, IL-1, a known target of EZH2-mediated 

suppression and an activator of NFkB, was up-regulated by EZH2 knockdown, and may mediate the 

link between EZH2 and NFkB. 

In summary, we found evidence that SAH can mediate homocysteine’s associated endothelial 

dysfunction and activation, two critical factors for the onset of atherosclerosis. A prolonged exposure 

to these stresses can also cause the dysfunctional endothelium to lose integrity, and progress to 

senescence (16). Senescence has been commonly found in atherosclerosis (16, 19). Interestingly, 

the H3K27me3 mark also represses the expression of the cell cycle regulator CDKN1A, and its 

up-regulation is a marker of cell senescence.  We found that CDKN1A was up-regulated by SAH 

accumulation (Chapter 6), suggesting that suppression of EZH2 by SAH may contribute to cell 

senescence.  

 

S-Adenosylhomocysteine-Induced Hypomethylation 

SAH toxicity is associated with its ability to inhibit SAM-dependent methyltransferases. As 

mentioned in Chapter 1, accumulation of SAH has been associated with DNA, RNA, and protein 

hypomethylation. In the presented studies, we found evidence for impaired methylation of RNA 

(Chapter 4), DNA (Chapter 5), and protein (Chapter 6), which may contribute to the harmful effects of 

SAH on the endothelium.  

 

RNA Methylation 

RNA is one of the major targets of SAM-dependent methyltransferases and, therefore, a 

potential target of SAH-mediated inhibition. However, the role of RNA methylation in 

hyperhomocysteinemia was not previously examined. One reason that may explain why this area has 

not attracted much attention is the limited knowledge regarding RNA modifications. Except for a few 

well studied modifications, the function of RNA methylation is poorly understood. The most 

well-known mRNA modification is the methylation cap on the mRNA 5’-end (m7G methylation), which 

is part of mRNA maturation process and is required for its stability, efficient gene expression, and cell 

viability (20, 21). More recently, m6A (N6-methyladenosine) and m5C (5-methylcytidine) modifications 

of mRNA were found to have a role in the circadian cycle, cancer, and neuronal development (20, 22, 

23). A common link among these studies is that they involved the analysis of m7G, m6A, and m5C 
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modifications in mRNA molecules. Compared with tRNA and rRNA, mRNA is much less modified, 

which can make the study of its specific modifications easier. tRNA is the most highly methylated 

RNA species and within one tRNA molecule a large diversity of methylation modifications can be 

found. Furthermore, in most cases, a particular modification is found at more than one position and in 

different types of RNAs (4). Most tRNA and rRNA methylations have been found to be important for 

their structure as well as for their mRNA decoding functions (24–26). Additionally, it is important to 

realize that the number of RNA methylation modifications is close to one hundred and that the 

biological role for most of these modifications is still unknown (27). The highly demanding techniques 

necessary for the study of these modifications may have limited the volume of research done in this 

field (4).  

In Chapter 4, we examined the importance of a specific RNA methylation modification, 

mcm5Um (5-methoxycarbonylmethyl-2′-O-methyluridine), in endothelial dysfunction induced by 

excess SAH. mcm5Um is present in the mammalian selenocysteine tRNA, at the wobble position of 

the anticodon, and it is necessary for translation of a subset group of selenoproteins. As shown in 

Chapter 4, the impairment of the translation of these proteins, especially GPx-1, can contribute to 

SAH-mediated oxidative stress. Importantly, the methyltransferase that catalyzes the final step in 

mcm5Um formation (i.e., methylation of the mcm5U to mcm5Um) is still unknown. Analysis of known 

methyltransferases indicated that the SPOUT family of methyltransferases target 2’-O-ribose 

methylations; however, none of the known enzymes have been shown to mediate the mcm5Um 

methylation (4, 27–29). 

Our findings uniquely show a possible role for RNA hypomethylation in endothelial 

dysfunction, that may potentially contribute to vascular disease in the context of 

hyperhomocysteinemia (Chapter 4.1).  

DNA and protein methylation were previously found to be inhibited by SAH accumulation and 

the hypomethylation of these biomolecules was observed previously in the context of 

hyperhomocysteinemia (30–35). Thus, in Chapter 4.2 we expanded our studies to examine additional 

forms of RNA methylation. We found that SAH accumulation can also impair other RNA methyl 

modifications in endothelial cells. Excess SAH reduced the content of several specific RNA methyl 

modifications, many of which were also targeted to the ribose 2’-OH-site of the ribonucleotide.  

As most of the known mammalian RNA methyltransferases are SAM-dependent, this study supports 

the concept that excess SAH can impair intracellular global methylation, including RNA methylation. 

However, the identification of the specific methyltransferases responsible for these modifications is 

essential to allow for further study of their inhibition by SAH and the biological roles of their 

modifications.   At the present time, major obstacles remain to achieve these goals: firstly, many 

methyltransferases still lack characterization; secondly, some modifications are catalyzed by more 

than one methyltransferases while some methyltransferases mediate more than one modification; and 
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lastly, some RNA-methyltransferases have specific RNA targets, while others can methylated different 

nucleotides and/or RNA species.   

In Chapter 4.2 studies, in addition to studying RNA methylation in endothelial cells, we 

examined RNA methylation in Cbs-deficient hyperhomocysteinemic mice.  Liver and kidney, organs 

associated with homocysteine metabolism, showed suppression of some RNA methylations that 

overlapped with our findings in human endothelial cells.  A surprising observation, however, was the 

increased RNA methylation in brain of hyperhomocysteinemic mice compared to wild type mice.  In 

addition to vascular diseases, hyperhomocysteinemia has been strongly associated with neurologic 

disorders (36), associations that may also be modulated by SAH accumulation. The possible 

existence of tissue-specific methyltransferases that are less sensitive to SAH accumulation, along 

with the fact that increased SAM levels are found in the brain of these hyperhomocysteimenic mice in 

comparison to wild type (33), could help to explain the increased methylation of RNA in these mice. 

Additionally, differential homocysteine and SAH metabolism in brain, or differences in the regulation of 

the RNA methyltransferases or demethylases may also contribute to these tissue-specific differences. 

The biological relevance of human RNA demethylases has been reported for m6A (37), but no other 

demethylases were yet identified for the methylation modifications studied, neither in mouse nor 

human (27). 

RNA methylation is known to affect basic cellular processes, such as RNA decoding and 

synthesis, maturation, transport, and splicing. Our findings support the possibility that SAH-induced 

impairment of some RNA methylation reactions may be relevant in a disease context (4). 

 

DNA Methylation 

The most extensively studied epigenetic mark is DNA methylation, which can regulate gene 

expression by modulating the chromatin structure and transcription factor binding (38). Several 

studies have reported the hypomethylating effects of SAH on DNA (35). In Chapter 5 we showed that 

endothelial cell accumulation of SAH resulted in reduced global DNA methylation.  

DNA methylation is mainly associated with gene repression when present at gene promoters. 

During our studies we questioned whether the observed up-regulation of NOS3 gene expression 

under increased SAH concentrations (Chapter 3) could be a result of gene promoter hypomethylation 

caused by SAH-mediated inhibition of DNA methyltransferases (DNMTs). However, an examination of 

the literature revealed that the NOS3 promoter is mainly hypomethylated in endothelial cells (39).   

In Chapter 5, we examined ICAM1 promoter methylation after finding that ICAM-1 was 

up-regulated by either accumulation of SAH, or the use of a specific DNMT inhibitor. A few studies 

previously reported that ICAM1 gene expression was regulated by promoter methylation in endothelial 

cells, but only in the context of cancer or other disease states (40–42). In our analysis, we found that 

the ICAM1 gene promoter was already hypomethylated in untreated endothelial cells. It is interesting 
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that although ICAM-1 is not highly expressed in unactivated endothelial cells, its promoter is mainly 

demethylated. Nonetheless, the ICAM1 promoter has several binding sites for different transcription 

factors and its regulation can be extremely complex (43). Transcription regulation by the activation of 

transcription factors may facilitate a quicker response to inflammatory signals than that regulated by 

changes in DNA methylation. Nevertheless, we observed ICAM-1 up-regulation under inhibition of 

DNMTs, suggesting that decreases in DNA methylation can still increase ICAM1 gene expression, 

either by modulating genomic regions that were not included in our analysis to directly modulate 

ICAM1 transcription, or by affecting the expression of other regulators of ICAM1 expression (such as 

transcription factors). 

Importantly, the consequences of SAH-induced DNA hypomethylation in cultured cells, 

genetically determined hyperhomocysteinemia, and, hyperhomocysteinemia acquired by malnutrition, 

may differ. In fact, most DNA methylation marks are settled during development and DNA methylation 

is considered a relatively stable epigenetic mark. Additionally, the endothelium is a quiescent 

monolayer with an estimated replication rate of 0.1 to 0.4% per day (44). Therefore, the effects of 

excess SAH on DNA hypomethylation on individuals with genetically determined 

hyperhomocysteinemia may be different from those who are exposed to higher SAH only during the 

later stages of life. Nevertheless, DNA methylation changes are associated with different diseases like 

cancer, and the sudden activation of specific genes could still be determinant for disease risk. 

Additionally, the relevance of DNA hypomethylation in vascular disease was further supported by a 

recently conducted genome-wide analysis to identify differentially methylated genes in human 

atherosclerotic lesions (45). The analysis revealed that hypomethylation of chromosomal DNA 

predominates in atherosclerotic plaques in comparison to healthy mammary arteries.  Nevertheless, 

atherosclerotic plaques may contain a variety of cells, some of which may be more susceptible to 

changes in DNA methylation due to their relative rates of cell division or their differential expression of 

other factors that influence DNA methylation, such as the ten-eleven translocation (TET) enzymes 

that may promote hydroxymethylation and the subsequent removal of methylcytosines (46). 

 

Protein Methylation 

Our work identified several targets of SAH-induced hypomethylation while investigating the 

molecular pathways by which SAH promotes cellular dysfunction.  Thus, our studies lead to the 

discovery that the histone modification H3K27me3 was also altered by SAH accumulation in 

endothelial cells (Chapter 6). H3K27me3 is the major epigenetic mark associated with Polycomb 

group (PcG)-mediated gene-repression.  As mentioned previously, we observed that SAH decreased 

cellular H3K27me3 and suppressed the expression of the EZH2 methyltransferase, which is 

responsible for this histone methylation.  EZH2 maintains the pluripotency of human stem cells, and 

its excess activity promotes tumor growth, but its function in differentiated cells is poorly understood 
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(17, 47). Recently, EZH2 suppression, via modifications in the H3K27me3 mark, was suggested to 

promote the expression of a variety of genes involved in adhesion of endothelial cells to fibronectin, 

and genes involved in angiogenesis (17). Interestingly, this report did not find an up-regulation of the 

adhesion molecules studied in this thesis (e.g. ICAM-1 and VCAM-1) following EZH2 knockdown; 

however, they reported that lack of EZH2 altered normal endothelial function by impairing cell-to-cell 

communication and angiogenic properties of these cells.  Similar to our findings, they found that EZH2 

suppression led to an increase in the expression of cytokines, such as IL-1.  

Our findings demonstrated SAH-mediated suppression of EZH2, and showed that its 

suppression may contribute to activation of inflammatory genes as well as the up-regulation of the 

CDKN1A gene, which is associated with a senescent phenotype. 

Like H3K27me3, the trimethylation of histone H3K9 has been associated with cardiovascular 

disease (48). G9a and G9a-Like Protein (GLP) are the two methyltransferases primarily responsible 

for H3K9 methylation (49). Although the crosstalk between H3K9 and H3K27 methylation was 

previously suggested, only recently has their actual functional interplay been shown (50). 

Mozzetta et al. demonstrated that EZH2 and G9a/GLP share a high number of common genomic 

targets and that G9a activity can modulate EZH2 recruitment to a subset of target genes.  Since 

G9a/GLP are also SAM-dependent methyltransferases, SAH accumulation may also inhibit G9a and 

GLP, further contributing to the impairment of EZH2 function.  In fact, a recent study (51) suggests 

that in vivo administration of the same SAH hydrolase inhibitor that we have used in our studies, or 

the use of a short hairpin RNA construct targeted to SAH hydrolase, specifically decreased H3K9me3 

in the aortic sinus of ApoE-/- mice.  Interestingly, these in vivo treatments, that significantly increased 

plasma SAH and reduced SAM/SAH ratio, were associated with increased vascular lesion size. 

However, as we have shown, many targets can be modified by increased SAH. Taken together, these 

and our own findings suggest the importance of further analysis to better understand the role of 

histone methylation in endothelial homeostasis and vascular disease. 

Methylation is a common post-translational modification in proteins, which can modulate their 

function and expression; therefore, many non-histone proteins may be affected by excess 

SAH-induced hypomethylation.  For example, Forkhead-box-O transcription factors (FOXOs) are 

emerging transcriptional regulators in endothelial cells, which may be modulated by methylation. 

Several studies have established an important role of FOXOs in cell proliferation, oxidative stress, 

and in the regulation of eNOS (52–54), suggesting that compromised activity of these transcription 

factors may contribute to impaired endothelial homeostasis. Furthermore, the regulation of FOXO 

factors by the SAM-dependent methyltransferase protein arginine methyltransferases-1 (PRMT1) was 

recently reported (52, 55). Thus, further investigation of the effects of SAH on the methylation and 

function of proteins, including FOXOs, may potentially uncover additional targets modified by excess 

SAH that contribute to hyperhomocysteinemia-related vascular dysfunction. 
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PERSPECTIVES 

Our studies have contributed to the understanding of the role of SAH as a mediator in 

hyperhomocysteinemia-associated vascular disease. Interestingly, some of the molecular 

disturbances found in the endothelium could similarly alter the function of other vascular cell types 

and their analysis may also uncover novel targets that can be relevant in vascular disease.  

Our findings also suggest other avenues of exploration, including the role of SAH and EZH2 

suppression in cell senescence that may impair cell cycle progression, contributing to vascular 

disease. Importantly, an accelerated endothelial cell senescent phenotype was observed in 

endothelial cells exposed to high homocysteine levels (56). In addition, inhibition of other histone 

methyltransferases by increased SAH levels may also alter gene expression and contribute to 

vascular disease. Therefore, the analysis of differentially methylated histone marks, such as 

H3K27me3 and H3K9me3, by chromatin immunoprecipitation and promoter arrays under conditions 

of excess SAH, or in in vivo hyperhomocysteinemia models, could uncover relevant gene targets 

involved in disease.  

The role of RNA methylation in SAH-mediated vascular dysfunction is another open field of 

research. Our studies suggest that the identification of the 2’-O-methyltransferases, which were 

mostly affected by SAH, could help to define new relevant targets of SAH-mediated inhibition. 

Following methyltransferase identification and characterization under excess SAH, antibodies to these 

methyltransferases can be used to pull down specific RNAs that they target 

(RNA-immunoprecipitation) and molecular techniques, such as microarrays or RNA sequencing, can 

be used to subsequently identify these subsets of RNAs. 

We believe that large-scale metabolomic studies of patient populations may clarify whether 

plasma SAH concentrations are a good biomarker for vascular disease. Nonetheless, it is not clear 

whether plasma levels of SAH are a good indicator of its intracellular concentrations. An alternative 

would be to measure intracellular SAH in leukocytes. Although studies of vascular tissue would be 

more informative, these would be difficult to perform in patient-based studies. Alternatively, the use of 

a hyperhomocysteinemic animal model, or an animal model in which pharmacological inhibitors are 

used to induce SAH accumulation, could provide new insights into the physiological relevance of the 

targets that are altered by excess SAH. 

In addition, it is important that cell biology studies of molecular mechanisms are integrated with 

clinical studies to identify the factors that contribute to human vascular disease. For example, 

although the use of plasma and peripheral blood cells have limitations, they could be used in parallel 

with cardiovascular tissue (e.g., samples obtained from patients with cardiovascular disease when 

subjected to surgical intervention) to better determine the correlations between elevated SAH, 

homocysteine, and disease in humans. Furthermore, these samples could be used to determine 

whether the key targets defined in our studies, such as eNOS, GPx-1, cytokines, adhesion molecules, 
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EZH2, and histone modifications correlate with the biochemical parameters, namely with SAH, and 

disease. 

Cardiovascular diseases are the leading cause of death in developed countries. Therefore, it is 

important to understand better the factors that contribute to these multifactorial diseases in order to 

accelerate the development of new drugs and improve prevention and treatment approaches.  

Our research has examined the biological importance of SAH accumulation in endothelial 

dysfunction and activation, considering the question of whether homocysteine is the real culprit of its 

associated vascular damage.  Our results implicate SAH in the pathophysiology of 

homocysteine-associated vascular disorders, as they demonstrate that excess SAH promotes an 

endothelial pro-atherogenic phenotype.  Nevertheless, our understanding of the role of homocysteine 

and its metabolites in cardiovascular disease is still incomplete, demanding further investigation. 
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Supplemental Material 

 

Suppl. Figure 1 – The effects of oxidative stress on NFkB activation by SAH. SAH accumulation was 
induced in human coronary endothelial cells using adenosine-2′,3′-dialdehyde (ADA; 20 µmol/L).  Cells were 
additionally incubated with eight mmol/L of the antioxidant N-acetylcysteine (NAC) or in the absence of the 
antioxidant (NT). Incubations were performed for 48h. ICAM-1, IkBα, p100, and p52 proteins were monitored 
by Western blot. A representative blot is shown on the left and summary densitometry measurements on the 
right (n=3). ANOVA, followed by the Newman-Keuls test for multiple comparisons, was used in the analysis 
shown. *, p < 0.05, **, p < 0.005, ***, p < 0.0005, versus control or NAC treated cells. #, p < 0.05 for 
co-treatment (ADA+NAC) versus ADA treated cells. 
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