
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

RECOMMENDATION SYSTEM FOR MODERN
TELEVISION

Diogo dos Reis Gonçalves

TRABALHO DE PROJETO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

Trabalho de Projeto orientado pelo Prof. Doutor Francisco José Moreira Couto
e co-orientado pelo Prof. Doutor Paulo Ricardo Pacheco Rodrigues Trezentos

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32333693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

RECOMMENDATION SYSTEM FOR MODERN
TELEVISION

Diogo dos Reis Gonçalves

TRABALHO DE PROJETO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

Dissertação orientada pelo Prof. Doutor Francisco José Moreira Couto
e co-orientado pelo Prof. Doutor Paulo Ricardo Pacheco Rodrigues Trezentos

2015

Acknowledgements

These nine months wouldn’t be possible without the support of most people in my life.
I would like to thank my parents and friends for supporting me and for understanding the
reason why I didn’t have time for them. I thank my University colleagues that helped me
reach this academic level and every time I needed inspiration for this thesis.

I would like to thank my supervisors for letting me explore this subject and for guiding
me through it when necessary.

I would like to thank my colleagues at Caixa Mágica for the opportunity I had to deve-
lop my thesis in this interesting subject and all the support given during its development.

Thanks to every family that was excited to share their television consumption habits
with me, allowing me to do a whole evaluation step that otherwise wouldn’t be possible.

Finally, I would like to thank everyone who reads my thesis.

iii

Resumo

Atualmente cada vez mais pessoas consomem serviços de televisão e de streaming de
vı́deo, tanto em casa como na rua usando os seus dispositivos móveis. Um fornecedor de
televisão disponibiliza aos seus clientes milhares de conteúdos cujo acesso está limitado
no tempo. Assim torna-se necessário que o utilizador decida que conteúdos visualizar.
Vários estudos indicam que essa decisão é morosa e que os utilizadores têm dificuldade
em descobrir algo diferente do que estão habituados nos canais que geralmente veem. Os
métodos habituais para descoberta de novos conteúdos não são suficientes.

Os sistemas de recomendação permitem aos utilizadores encontrar conteúdos que
sejam do seu interesse, baseando-se nos seus gostos ou nos interesses de determinada
população. Quando os utilizadores entram em contacto com este tipo de sistemas, o
seu interesse e satisfação com o serviço aumenta, resolvendo-se assim alguns proble-
mas de procura de conteúdos. Os atuais fornecedores de televisão apresentam siste-
mas de recomendação básicos que não exploram funcionalidades como a explicação
das recomendações e a utilização dos programas vistos pelo utilizador na geração de
recomendações. Estas funcionalidades podem ser encontradas em sistemas de recomend-
ação existentes em outras áreas.

O objetivo deste trabalho foi desenvolver um sistema de recomendações para forne-
cedores de televisão que permite aos seus clientes ultrapassar as atuais dificuldades. Foi
desenvolvido um sistema de recomendações que utiliza os dados normalmente existentes
num serviço de televisão, apresentando o resultado numa interface apelativa e adequada
para o efeito. As recomendações incluem explicações como tentativa de melhorar o inte-
resse do utilizador pelo sistema.

O sistema de recomendações desenvolvido é composto por vários componentes inde-
pendentes que se ligam entre si e que podem ser integrados num sistema existente. O
primeiro componente é o conjunto de fontes de dados que fornecem o sistema. Estes da-
dos incluem informação sobre os programas, os utilizadores e as classificações implı́citas
e explı́citas que os mesmos dão aos programas. De seguida, existe um componente que
processa as fontes de dados e converte-os num formato unificado usado pelos restantes
componentes do sistema. Durante este processo, é realizada a conversão de classificações
implı́citas para explı́citas, permitindo reaproveitar os algoritmos de recomendação exis-
tentes para este tipo de classificação. Esta conversão é realizada através de uma fórmula

v

desenvolvida nesta tese que tem em conta a relação que existe entre os programas e os
episódios vistos pelos utilizadores.

O componente seguinte trata as recomendações. Os dados e as classificações exis-
tentes são processados e são fornecidos a vários tipos de algoritmos de recomendação
que geram uma lista de programas recomendados. Os algoritmos usados neste processo
baseiam-se em técnicas de recomendação existentes como filtragem colaborativa e base-
adas em conteúdo. Por outro lado, foram projetados e testados algoritmos criados com o
domı́nio televisivo em mente usando informação sobre o horário e canal de transmissão
de cada programa e a relação com os programas visualizados anteriormente. Estes algo-
ritmos foram agrupados através de técnicas de recomendação hibridas, em que se junta
o melhor de cada um dos algoritmos para melhorar o sistema, após uma avaliação dos
mesmos.

Após a geração das recomendações, existe um componente com o objetivo de adicio-
nar explicações a cada um dos programas recomendados e de agrupa-los por temas rela-
cionados. Neste processo é criado um perfil do utilizador com base nas recomendações, e
são gerados grupos de programas com base em propriedades em comum entre eles, como
a sua popularidade, a sua categoria, atores em comum, entre outra informação estruturada
que seja disponibilizada na fonte de dados original. Estes grupos são ordenados conso-
ante as preferências do utilizador, através do perfil do utilizador gerado. Cada programa
recomendado é associado a uma dessas listas. As explicações individuais consistem na
relação dos programas recomendados com esse perfil e com outros programas visualiza-
dos anteriormente. O resultado deste componente é um conjunto de listas de programas
recomendados ao utilizador em que cada programa tem uma explicação associada.

O componente seguinte é responsável por executar o sistema de recomendações sem-
pre que é atualizada a lista de programas disponı́veis ao utilizador (tipicamente uma vez
por dia nos operadores de televisão existentes) e sempre que existe uma nova visualização
por parte do utilizador. O resultado das recomendações é guardado em memória estando
sempre pronto para ser mostrado ao utilizador. Isto permite que o utilizador tenha sempre
acesso às recomendações e que as mesmas sejam atualizadas sempre que exista necessi-
dade. Esta funcionalidade está disponı́vel através do componente seguinte, os Web Ser-
vices. O objetivo deste componente é disponibilizar as funções descritas de forma a que
possam ser usadas pela interface desenvolvida.

O último componente é a interface de utilizador. Esta interface gráfica apresenta, de
uma forma simples e semelhante às interfaces de televisão existentes, as recomendações
e as explicações das mesmas ao utilizador. As recomendações estão divididas pelos gru-
pos gerados pelo componente das explicações. Este componente foi usado para testar o
sistema de recomendações com utilizadores.

Este sistema de recomendações foi avaliado com duas metodologias de avaliação. A
primeira foi a avaliação offline. Esta avaliação consiste em testar os vários algoritmos

vi

criados e usados nesta tese, usando diferentes métricas de avaliação. As métricas usadas
foram a cobertura dos algoritmos, o tempo de execução, o erro médio quadrático glo-
bal e o erro médio quadrático de cobertura. Para este processo de avaliação foi usado
um conjunto de dados composto por dados de visualização de programas e por meta da-
dos que descrevem os mesmos. Este conjunto de dados foi dividido em várias partes
iguais temporalmente de forma a testar a evolução do sistema ao longo do tempo. A
avaliação demonstrou que os melhores resultados globais foram apresentados pelos al-
goritmos hı́bridos. O melhor resultado de cobertura foi um dos algoritmos criados espe-
cificamente para o domı́nio televisivo, que apresenta uma diferença significativa quando
comparado com os outros algoritmos. No geral, os algoritmos de recomendação apresen-
taram valores semelhantes para as métricas avaliadas.

A outra etapa das avaliações tratou os testes com utilizadores. Estes testes têm o ob-
jetivo de encontrar as preferências dos utilizadores face aos sistemas de recomendação
televisivos em geral, validar as recomendações e explicações geradas pelo sistema de
recomendações e determinar o interesse dos utilizadores pelos tipos de explicações con-
templadas no sistema. Para esta etapa foi utilizado o algoritmo hibrido que apresentou
o melhor resultado na etapa anterior. A realização destes testes implicou o recrutamento
de utilizadores que autorizassem a recolha do seu perfil de visualização televisivo du-
rante um perı́odo alargado de tempo, de forma a ter dados para executar o sistema de
recomendações. Durante os testes, o utilizador interagiu com a interface do sistema de
recomendações e respondeu a perguntas que lhe foram colocadas. Nestes testes concluiu-
se que no geral o utilizador era favorável às recomendações e às explicações do mesmo,
sendo que este aumentava a sua satisfação e eficiência no processo de escolha de um
programa para ver.

Neste momento a área das recomendações está a ter um grande destaque por parte dos
operadores de televisão. Neste trabalho propõe-se uma abordagem que apresenta bons
resultados por parte da satisfação dos utilizadores e que apresenta técnicas de explicação
inexistentes nos sistemas dos operadores existentes. No futuro poder-se-á melhorar este
trabalho com a inclusão de novas técnicas de recomendação, outras métricas de avaliação
e a realização de testes integrados num operador real em que se possa avaliar durante um
perı́odo mais alargado a influência das recomendações nos utilizadores.

Palavras-chave: Sistemas de recomendação, Televisão, Explicações, Interfaces de
Utilizador

vii

Abstract

Nowadays, people spend more time watching television contents than ever before.
Television providers offer their customers thousands of programmes, available for watch-
ing for a limited amount of time with recent technologies such as time-shifting, and new
ways to watch them such as streaming using their own personal devices. It is impossible
for someone to be aware of and to watch every available video, so one has to make the
decision on what to watch. Having such a large amount of content available, viewers need
to decide on what to watch. Recent research shows that some people get frustrated when
searching for something to watch due to the vast amount of programmes which they are
presented with.

Recommendation systems enable users to find content which they are interested in
through their own preferences while also taking the interests of other users into consider-
ation, allowing their customers to overcome their current difficulties.

The goal of this thesis was to develop a modular recommendation system for television
providers. This system uses the information generally available in these environments to
predict the user’s interest on programmes, including his or her implicit intent. Existing
recommendation techniques were studied and evaluated and new TV domain specific al-
gorithms were developed. Techniques were combined to form a hybrid algorithm capable
of generating predictions for any programme in the system.

An explanations module was built to generate descriptions that define the reason why
a specific item or group of items was recommended. It allows users to be more inter-
ested in the recommendations given by the system. Predictions and explanations are then
displayed on a user interface.

Two evaluation methods were used to validate the produced recommendation system.
Offline evaluations were used to compare the algorithms and it was demonstrated that
the use of hybrid algorithms improved the system. Controlled evaluations made by users
were also an object of study, through which the system was praised for its general quality,
as well as for the availability of the previously mentioned explanations. Most users felt
there was an improvement in comparison to existing recommendation systems.

Keywords: Recommender Systems, Television, Explanations, User Interfaces

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Planning . 3
1.5 Document Structure . 4

2 Related Work 7
2.1 Recommendation Systems Approaches 7

2.1.1 Recommendation System Model 8
2.1.2 Collaborative filtering . 8
2.1.3 Content-based filtering . 14
2.1.4 Hybrid filtering . 14
2.1.5 User Feedback . 15

2.2 Explaining Recommendations . 15
2.2.1 Explanation Aims . 15
2.2.2 Presenting Recommendations 16
2.2.3 Explanation Styles . 17

2.3 Evaluation . 17
2.3.1 Evaluation Measures . 18
2.3.2 Datasets . 19

2.4 User Experience . 20
2.4.1 Soliciting Feedback . 20
2.4.2 Presenting Recommendations 20
2.4.3 Providing Explanations . 20
2.4.4 Big Screen Interface . 21

2.5 TV Recommendation Systems . 21

xi

2.6 Frameworks . 22
2.7 Real World Cases . 23
2.8 Challenges . 24
2.9 Summary . 25

3 Work 27
3.1 A TV Recommendation System Model 27
3.2 System Modules and Pipeline . 27

3.2.1 Data Sources . 28
3.2.2 Data Preprocessor . 29
3.2.3 Recommender Module . 31
3.2.4 Explanations Generator . 34
3.2.5 Recommendations Dispatcher 38
3.2.6 Web Services . 38
3.2.7 Recommendations Frontend . 38

3.3 Implementation . 39
3.3.1 Data Sources and Data Preprocessor 39
3.3.2 Recommender Module . 40
3.3.3 Explanations Module . 40
3.3.4 Recommendations Frontend . 40

3.4 Summary . 41

4 Offline Evaluation 43
4.1 Dataset . 43

4.1.1 TV Ratings Dataset . 43
4.1.2 Assembled dataset . 45

4.2 Evaluated Measures . 45
4.3 Results . 46

4.3.1 Baseline Functions . 46
4.3.2 Collaborative-filtering Algorithms 47
4.3.3 Content-filtering Algorithms . 47
4.3.4 Hybrid Algorithms . 48
4.3.5 Discussion . 48

5 User Studies 51
5.1 Objectives . 51
5.2 Evaluation Method . 51

5.2.1 User Evaluation Session . 52
5.3 Results . 52

5.3.1 Sample Characterization . 52

xii

5.3.2 Session . 54
5.3.3 User Feedback . 55
5.3.4 Explanations . 56

5.4 Discussion . 58

6 Conclusion 61

A User Studies - Questions 65

Bibliography 75

xiii

List of Figures

2.1 An example user-item rating matrix. 8

3.1 Pipeline Overview . 28
3.2 Recommendations Screen . 39

5.1 Results for question ”How often do you use your cable TV operator rec-
ommendation system?” . 53

5.2 Results for the questions about recommendation system usage 54
5.3 Results for the question about recommendation system type 54
5.4 User interest by category position . 55
5.5 User interest in the presented items . 55
5.6 User feedback . 56
5.7 User sentences . 56
5.8 Explanation title results . 57
5.9 Explanation details results . 57

xv

List of Tables

1.1 Project Milestones and Tasks . 4

3.1 Structured data after running the preprocessor module 29
3.2 Possible category titles . 36
3.3 Possible item explanations . 36
3.4 Methods available for interaction with data 39
3.5 List of used Lenskit algorithms . 40

4.1 TV Ratings Dataset count . 44
4.2 Example item . 44
4.3 Example session of a user that watched a portion of the example item . . 44
4.4 Evaluation Results . 46

xvii

Chapter 1

Introduction

1.1 Motivation

Today, more than ever, people subscribe to cable TV providers and streaming services [16,
13]. They spend more time watching television contents than before. They watch televi-
sion not only at home, in their living room, but also everywhere else using their mobile
devices. On a typical cable TV provider, costumers have access not only to live TV but
also to VOD (video on demand) services. More recently, cable TV providers started of-
fering week-long time-shifting services for several TV channels, allowing customers to
watch their favourite shows at a later time. This means costumers are free to choose be-
tween 29,000 different video programmes on a given time [31]. It is impossible for a
person to watch every video available so they have to choose what to watch. People also
have preferences on what they like to watch. With hundreds of different channels and
thousands of time-shifted programmes, people might feel lost when assigned the task of
finding something interesting to watch. Studies show that nearly half the people spend
more than 10 minutes channel surfing or browsing the EPG (Electronic Program Guide)
trying to find something to watch and almost 90% feel they watch the same channels
over and over again [16]. More than half get frustrated when trying to find something to
watch. Nowadays, the typical ways people have available for finding what to watch on a
set-top-box like the EPG are not good enough.

Recommendation systems help users finding content they are interested in and can be
based on multiple factors like what they previously watched or what they like. Although
missing or hidden on most cable TV providers, clients that have access to recommendation
systems find the service helpful, tend to be more satisfied with their cable TV provider
and also tend to purchase more content [16, 5].

Most current recommendation systems for cable TV providers deliver limited func-
tionality [1], missing features such as unobtrusively capturing user feedback [34] and rec-
ommendation explanations, which are shown to increase user satisfaction and usage [42].

1

Chapter 1. Introduction 2

1.2 Objectives

This thesis aims at building an application for set-top boxes or interactive TVs that allows
users to quickly and intuitively get recommended TV programmes and movies to watch
without requiring any user interaction. It also aims to provide explanations for every rec-
ommended programme. Being available directly on the set-top box means users do not
need to reach for other sources of information. They can make a choice in the same envi-
ronment they use to watch TV. To achieve this goal, the work described in the following
sections must be studied, developed and evaluated.

Recommendation Engine

The first aim for this thesis is to build a recommendation engine suited for the cable TV
reality. Each item, be it a live programme or a time-shifted one, has metadata attached
to it. The system should be able to use information from those items and provide recom-
mendations based on that information. Active user interaction with the system like item
rating and passive interactions like content watching should also be used as an input to
the system. The result will provide the user with a way to find new programmes to watch
and new episodes from previously watched programmes.

Explaining Recommendations

Recommendation explanations improve the user’s trust and satisfaction in the system [35,
43]. They allow the user to better understand the reason why an item is recommended and
to make a decision based on additional information associated with an item. A module to
generate explanations will be made to supplement the recommendation engine. Evalua-
tions will be made to find out if the module improves the user’s experience.

User Interface

It is important to have good algorithms for item recommendation but the way they are
shown to the user have an equal impact on the effectiveness of the system. An inter-
face made to display recommendations in a television environment will be developed and
evaluated.

1.3 Contributions

The contributions of this work are:

• A Recommendation System pipeline that can be integrated with a cable TV provider
data sources.

Chapter 1. Introduction 3

• An implicit feedback mapping algorithm that converts implicit user watching ses-
sions to an explicit rating value, allowing existing explicit rating algorithms to be
reused.

• Three recommendation techniques built for the TV domain:

– Item Episode Mean Rating predicts the rating for future programme episodes
based on the user’s watching history for past episodes.

– Item Broadcast Time generates predictions based on the time periods when
the user watches TV.

– Item Broadcast Channel generates predictions based on the channels the user
watches.

• Two hybrid techniques that combine existing algorithms:

– Mixed Recommender predicts the ratings by using the best algorithm that cov-
ers each item. The chosen algorithms were those that performed better in the
offline evaluation.

– TV Hybrid Recommender uses a set of heuristics that employ different hy-
bridization methods that depend on some known properties about the users
and the items.

• An explanations design and algorithm for describing a list of recommendations.

• Offline evaluations with an implicit dataset were performed. When comparing all
algorithms, it was shown the TV Hybrid Recommender presented the best global
RSME value and Item Episode Mean Rating presented the best coverage RMSE.

• User Studies were performed with users who provided their TV watching history.
Most users rated the system efficiency and their own satisfaction positively and
wished to continue using this recommendation system in the future.

1.4 Planning

Table 1.1 presents the original milestones and tasks defined for this project. The plan was
successfully followed on time with some adjustments. Originally both the recommenda-
tion engine and explanations module were under a unique milestone. A new milestone
was conceived to allow to better develop a standalone explanations module. Because of
this, the interface design milestone was slightly reduced. Finally, the System Evaluation
milestone required a preparation phase not contemplated in the original project plan, but
that did not affect the defined schedule.

Chapter 1. Introduction 4

Start date End date Duration Task
09/2014 09/2014 2 weeks Define project goals and requirements
09/2014 10/2014 4 weeks Research related work on recommendation engines

- Recommendation Algorithms
- Recommendation Frameworks
- User Interfaces
- Existing Video/TV providers recommendation services

10/2014 11/2014 3 weeks Research existing datasets
- Build a dataset

11/2014 11/2014 2 weeks Write the preliminary report

12/2014 03/2015 15 weeks Develop a recommendation engine adapted for the
cable tv reality
- Choose the appropriate technology and recommendation
methods
- Specification and detailed design
- Codification of the system
- Tests

03/2015 05/2015 9 weeks Design and build an interface to display
recommendations
- Specification and detailed design
- Codification of the system
- Tests

05/2015 05/2015 3 weeks System Evaluation
05/2015 06/2015 4 weeks Write thesis

Table 1.1: Project Milestones and Tasks

1.5 Document Structure

This document is structured as follows:

• Chapter 2 - Related Work - Presents the concepts necessary to understand recom-
mendation systems, explanations, recommendation system evaluation and other re-
lated concepts addressed in this work.

• Chapter 3 - Recommendation System - Describes the developed recommendation
system pipeline and implementation.

• Chapter 4 - Offline Evaluation - Presents the evaluation steps and results for offline
evaluation

• Chapter 5 - User Studies - Presents the evaluation steps and results for user studies

• Chapter 6 - Conclusion - Describes the conclusion and future work.

Chapter 1. Introduction 6

Chapter 2

Related Work

2.1 Recommendation Systems Approaches

A recommendation system is a tool that assists users by providing suggestions. The user
can use that information to make a decision like what products to buy, what books to read
or what videos to watch [38, 37]. Generally, a recommendation system suggests items
to users. To be able to provide suggestions, the recommendation system needs to predict
which items are useful for the user. There are two main types of techniques [2]:

Collaborative filtering is the prediction of what a user likes based on their similarity to
other users. A prediction is based on the interactions other similar users had with
the system. An item might be recommended to a user as a result of being popular
within similar users.

Content-based filtering is based on the analysis of the likeness between the items the
user interacts with. The prediction of an item the user might like is related to the
similarity with other items the user interacted with.

In addition to these types, some authors [38] also identify other types:

Demographic recommenders provide recommendations based on the demographic pro-
file of the user. It’s inspired on the fact that users that share the same demographics
might be interested in the same items.

Knowledge-based is a type of recommender that uses a domain knowledge to relate the
user requirements with the items properties. This type of recommender is applied
in contexts where users typically do not purchase the same items, such as when
buying an apartment.

Community-based recommenders make predictions based on data from the friends of
the user’s friends. They are inspired on collaborative filtering recommenders but
they restrict the users that influence the recommendations.

7

Chapter 2. Related Work 8

All the mentioned techniques are typically combined to improve the recommendations
and to reduce the disadvantages of each individual technique. The resulting method is
called the hybrid recommender system. Two or more recommendation methods can be
combined to create a hybrid system.

2.1.1 Recommendation System Model

In a typical recommendation system, there are users and items. Let U be the list of
participating users and I the list of items the users can interact with. Users can rate items.
These ratings are represented in a user-item matrix R. In Figure 2.1, a numeric user-item
rating matrix is presented, representing a system where the user would have to rate items
with a numeric value from 1 to 5.

I1 I2 I3 I4 I5 I6 . . . In
U1 3 5 2
U2

U3 4 2 3
...
Un 5 2

Figure 2.1: An example user-item rating matrix.

Each row represents a user and each column represents an item. The values represent
the rating given by a user to an item, meaning item 5 was rated 5 by user 1 and rated 3
by user 3. Other users did not rate item 5. This matrix is generally sparse, most values
are missing. Generally there are users with no ratings associated, meaning they didn’t
rate any item, and also items with no user ratings. The objective of the recommendation
system is to generate a list of items it predicts the user would be interested in. In other
words, a recommendation system should be able to fill the missing values of the matrix.
In this example, to predict which value would user n rate the item 5, the system would
compare the user current ratings with the ratings of the users that rated item 5.

This is generally known as the top-N recommendation problem [14]. A list of recom-
mendations is defined as follows:

Given a user-item matrixR and a set of items I that have been rated by a user,
identify an ordered set of items X such that |X| ≤ N and X ∩ I = ∅

2.1.2 Collaborative filtering

Recommendation systems based on collaborative filtering methods allow users to make
decisions based on the opinion of other users [36].

Collaborative algorithms depend on the feedback not only from the current active user
but also by the users of the system. It is necessary to store the feedback provided by the

Chapter 2. Related Work 9

user. In collaborative algorithms, user ratings are generally represented in a user-item
matrix such as the one presented in section 2.1.1.

There are two main types of collaborative filtering algorithms: memory based [15] and
model based [7], both detailed in the following sections. But first, baseline techniques are
presented and detailed.

2.1.2.1 Baseline Predictors

Baseline techniques provide a way to get non personalized recommendations and to have
a base value to compare other algorithms. They can also be used as a fallback when other
algorithms of the system are not able to provide a recommendation for the desired user-
item pair [19]. The most common techniques use the average user or item ratings as the
predicted rating.

Item Mean Baseline
This technique returns the mean rating of an item for all predictions, based on the ratings
provided by other users. A common implementation [19] defines it as follows:

ru,i = µ+ bi

ru,i is the value of the predicted user-item rating. µ is the global mean rating for all
the items in the system, and bi is the item’s average rating, without the global rating. It is
calculated with the following formula:

bi =

∑n
k=1 xk − nµ
n+ γ

The number of existing ratings for item i is n. xk is the value of one of those ratings.
γ is an optional damping factor.

User Mean Baseline
A technique similar to the previous one which instead returns the mean user rating for all
predictions.

ru,i = µ+ bu

Where bu is the user’s average rating, defined as

bu =

∑n
k=1 xk − nµ
n+ γ

User and Item Mean Baseline
A generic variation of the previous baseline techniques can be defined as

ru,i = µ+ bi + bu

Chapter 2. Related Work 10

This allows the baseline prediction to be calculated using both previously defined
formulas, returning a rating that is based on the average user ratings and in the average
item ratings from the other users.

2.1.2.2 Memory Based

Memory based algorithms use the entire matrix of ratings directly when calculating rec-
ommendations. Their first step is to find the user neighbors, a list of similar users, by
correlating user’s ratings on items. Then, they calculate the user preferences over an item
comparing the user’s rankings with its neighbors.

An example formula of a memory based implementation for item based filtering:

ru,i =

∑
j∈Ku(i)

wi,jri,j∑
j∈Ku(i)

|wi,j|

Ku(i) is the list of items rated by user u similar to the item i. wi,j is the weight the item
has in the calculation. This list can be generated by any similarity computation method
presented later in this Section.

Memory based algorithms are typically partitioned in multiple components that have
an impact on overall quality of the recommendation system [15]:

Item based and User based filtering
Collaborative filtering can be user based or item based. User based methods are based on
the opinion of users with similar tastes when providing a recommendation. Item based
methods rely on the ratings given to similar items. Both types are based on similar tech-
niques, described in this Section.

[15] identifies five criteria to help to choose between both types of filtering: accuracy,
efficiency, stability, justifiability and serendipity. They depend mainly on the number of
users and items of the system and the number of ratings pairs.

Rating Normalization
Different users might have the same opinion on an item but assign different ratings to
it. A user might only use the positive values on the rating scale and another user might
be more open to use the full scale. Although they share the same opinion on a movie,
they rate it differently. This discrepancy when rating the same opinion is problematic for
recommendation algorithms. The following rating normalization algorithms may be used
to overcome this situation:

• Gaussian normalization method
This approach, also known as mean-centering, was proposed by [36]. It suggests
a solution to the shift of average rating by subtracting the user ratings from the

Chapter 2. Related Work 11

user averages. It also proposes a solution to the different rating scales problem by
dividing the ratings with the variance:

r̂u,i =
ru,i − ru√∑
i(ru,i − ru)2

This formula can also be used by item-item collaborative algorithms by replacing
the user average ranking with the item’s average.

• Decoupling normalization method
This method, suggested by [25] calculates the probability for the item to be pre-
ferred by the user. If there is a high probability the user rates items with a value
less or equal than a specific rating, then it is reasonable to assume those items are
preferred by the user.

Pr(R is preferred) = Pr(Rating ≤ R)− Pr(Rating = R)/2

R is a rating value. The first term calculates the probability an item is rated a value
less or equal than R. The second term calculates the probability an item is rated R.
A value with the majority of ratings means it is not a special rating, so the second
term is subtracted to the first term, reducing the preference over values with many
ratings.

• Baseline Subtracting User Vector
A baseline function, like the ones identified in Section 2.1.2.1, can be used to nor-
malize a user vector [19].

r̂u,i = ru,i − bu,i
The normalized rating is calculated by subtracting the baseline value to the original
user rating. Its usefulness depends on the chosen baseline function.

Similarity Computation
Similarity functions are used to calculate how similar two items or two users are. A
higher value means they are more related to each other. For example, similarity between
two users should be high if both users rated the same items equally, meaning they have
identical tastes.

• Cosine-Based Similarity
A similarity measure that transforms each user ratings in a vector and calculates the
cosine between both vectors

wu,v = cos(−→u ,−→v) =
∑

i∈I ru,irv,i√∑
i∈Iu r

2
u,i

√∑
i∈Iv r

2
v,i

Each vector contains the ratings the user gave to the items and zero for unrated
items. This method does not take into account the effects of mean and variance.

Chapter 2. Related Work 12

• Pearson Correlation Similarity
A correlation-based measure, used by [36], that removes the effects of mean and
variance.

wu,v =

∑
i∈I(ru,i − ru)(rv,i − rv)√∑

i∈I(ru,i − ru)2
√∑

i∈I(rv,i − rv)2

Neighbourhood Selection
A large recommender system might have millions of items and users to use as an input
to the recommendations. It is difficult to store all those values in memory. According
to [15], there are a number of techniques to filter the number of neighbours used in the
computations to the best candidates.

• Top-N Filtering A list of the N nearest neighbours, the most similar, is kept, for
each user. The value of N must be carefully selected. [21] found N = 20 is a good
starting point with a value up to 50. They found higher values don’t bring better
results.

• Threshold filtering Keep a list of all the neighbours with a similarity weight larger
than a chosen threshold. A high value means only high quality neighbours are kept.
Unfortunately there might not be sufficient users to keep neighbours for every user.
The ideal threshold value depends on the data and must be evaluated. [41] evaluated
different thresholds values with multiple algorithms.

• Negative filtering Discard negative rating correlation data and only keeps the other
values. Negative values generally don’t have a significant impact on the results [15]
as. it depends on the dataset.

2.1.2.3 Model Based

Instead of using the full matrix when generating recommendations, user ratings on items
can be used as training data to build a model that recognizes patterns and makes predic-
tions. Model based algorithms use machine learning and data mining techniques [7] to
build such kind of recommender. Predictions are generated based on the previously built
model. A common model based algorithm is the SVD factorization technique.

SVD-Based
Singular Value Decomposition (SVD) is a matrix factorization technique. [39] suggested
the application of SVD to the collaborative filtering problem. SVD is the factorization of
a matrix R in three other matrices:

R = U · S · V T

Chapter 2. Related Work 13

When applied to the collaborative filtering problem, R is the user-item matrix, U and V
are the user and the item matrix and S is a diagonal matrix with the rank of matrix R as
its side. After doing the factorization this technique allows you to reduce the side size of
S and lowering the size of the other matrices U and VT . This means an approximation
of an original matrix R can be stored in much less size. This value is known as the
number of features a user and an item are represented. Those features are automatically
inferred and denote characteristics that identify the user and the items, such as action
movie. Unfortunately, generally it is not possible to identify what the features mean. A
prediction is then generated by calculating a dot-product between matrices.

To use SVD it is required that the matrix must be complete, with no missing values.
The user-item matrix has to be prepared to work with this technique. [39] suggests to
use the averages to fill the matrix missing values. Others suggest alternate algorithms to
calculate SVD using only the known values, such as FunkSVD [20].

2.1.2.4 Slope One

Slope One [28] is a fast alternative to the presented memory and model based collaborative
filtering schemes. The authors consider it is a fast algorithm and easy to implement. Their
tests presented similar results when compared to typical collaborative algorithms.

This method is based on the difference between two items’ ratings. Assuming a user u
and a set of items S(u) that represents the items rated by u, they can calculate a prediction
for item i. First, they calculate the difference between the ratings the other users made
between item i and the other items in S(u). Then, they calculate the average of the sum
between the rating u made to each item from S(u) and its respective average.

The formula is defined as:

P (u)i =
1

card(Ri)

∑
j∈Ri

(devi,j + uj)

devi, j is the average deviation between the rating of two items i and j, Ri is defined
as Ri = {j|j ∈ S(u), j 6= i, card(Si,j(x)) > 0} and card(Ri) is the number of items in
Ri.

There are two variations of this scheme that try to overcome some limitations: The
Weighted Slope One scheme takes into consideration the number of ratings observed for
each rating. If an item has more ratings than another, it should be more trusted when
calculating the prediction. This variation adds an associated weight to each item. The
other variation, Bi-Polar Slope One, adds the concept of liked and disliked items, and
takes only into considerations ratings of the same type when calculating the deviation.

Chapter 2. Related Work 14

2.1.3 Content-based filtering

Content-based recommendation systems use the item’s content and metadata to provide
recommendations. The recommendation system analyses the items and provides recom-
mendations based on the associations between them so it is fundamental to be able to
represent the item’s data in a structured way.

A content-based filter is generally structured in three different components, according
to [29]:

Content Analyser

The Content Analyser’s purpose is to present the documents in a way suited for processing
by the other components. It analyses the unstructured documents and provides them as
structured data, e.g. an unstructured text can be converted to a structured keyword list.

Most common content analysers use a Vector Space Model representation and infor-
mation retrieval techniques such as word stemming and TF-IDF [29].

Other techniques can be used, [32] compares the usage between Vector Space Model,
Random Indexing and Logistic Regression for a TV-show recommender. [29] describes
semantic analysis using ontologies.

Profile Learner

This component combines the user feedback with the data provided by the Content Anal-
yser to build a user profile. A user profile contains the user preferences in the context of
the recommendation system. For example, it can be a list of the TV programme categories
with its associated weight.

Filtering Component

This component takes a list of items to recommend and compare them with the user
preferences on the user profile. Any algorithm like Cosine Similarity can be used to
calculate the similarity between the items and the users.

2.1.4 Hybrid filtering

Hybrid algorithms are used to combine the strengths of multiple recommendation algo-
rithms. There are multiple techniques to combine the algorithms. [8] identifies the fol-
lowing techniques:

Weighted A weighted recommender combines the scores of all algorithms to produce a
weighted score. Each algorithm has an associated weight that may be adjusted.

Chapter 2. Related Work 15

Switching This technique decides which algorithm to use depending on some programmed
criteria. For example, a system may use a fallback algorithm if it doesn’t have con-
fidence to use the main algorithm.

Mixed A mixed recommender shows recommendations from multiple algorithms at the
same time.

Cascade Cascade methods use first a recommender algorithm and then another to refine
the recommendation.

Most real world recommendation systems, such as those identified in Section 2.7, use
hybrid filtering methods.

2.1.5 User Feedback

Generally, the most common recommendation systems approaches require and assume
that the provided user feedback is an explicit intent like an item rating, as shown in the
previous sections. Users can explicitly give their opinions on items using a numeric scale
ranking [36] or by selecting a binary value such as a “like” or “dislike” [3]. These types
of ratings can also appear in other forms, like the user assigning stars to an item instead
of assigning a number.

Explicit feedback is not the only approach the system has to get the user interests.
When interacting with a system, users also implicitly provide their opinions. This in-
formation can be extracted by analysing the user interactions with the system such as
purchased items or watched items. This is known as implicit feedback [34]. Collabo-
rative algorithms are generally tweaked to work with explicit feedback, but they can be
tweaked to work with implicit feedback by value mapping [5, 24].

2.2 Explaining Recommendations

A recommendation system typically generates a list of one or more items to recommend
to a user. The user after looking to the information provided by the system has to decide
if those items are worth exploring. If the system just provides a list of items, it doesn’t
provide any additional information that may help the user decide or known the reason-
ing behind the recommendations [22]. Recommendations Explanations try to solve this
problem by backing the recommendations with explanatory data.

2.2.1 Explanation Aims

Explanations in recommendation systems are built with different purposes in mind, de-
pending on the aims of the system developer. [42] distinguish 7 different aims found in
current recommendation systems that identify the purpose of explanations:

Chapter 2. Related Work 16

Transparency An usability principle [33] explaining how the system works. There are
critical systems where it is fundamental the user knows and understands how the it
works and what it did to provide a recommendation, like medical systems.

Transparency is often discussed as a component of white box and black box [22], or
transparency and justification. The black box model supports that explanations are
produced independently of the underlying recommendation algorithm. The white
box model supports the usage of explanations to represent how the algorithm pro-
cessed the items.

Scrutability It allows the users to tell the system it is wrong. The system should provide
the necessary means so the user knows the recommendation is wrong and is able to
correct it.

Trust Increase users’ confidence in the system. Transparency and interaction with the
recommendation system increases users’ trust. Users come back to use the recom-
mendation system if they trust the system.

Effectiveness Help the user to take good decisions.

Persuasiveness Convince the users to try or buy. A recommendation system might
change the will the user has to consume an item. [22] studied 21 different inter-
faces recommending the same movie and ranked them by persuasiveness.

Efficiency Help users to make decisions faster. It is considered to be another usability
principle [33].

Satisfaction Increase user enjoyment and ease of use. A recommendation system may
be made to be fun to use. Users may like the addition of a recommendation system.

A recommendation system can’t do well in the 7 listed criteria so a trade-off has to
be made. For example, [42] consider that satisfaction in recommendation systems for TV
shows are more important than effectiveness.

2.2.2 Presenting Recommendations

Recommendations can be presented in multiple ways. How they are presented influences
the used explanation methods. [42] identify these forms of explanation presentation:

Top Item The recommendation system presents and explains just the best item for the
user.

Top N-items Show multiple related items at once. The explanation may be at the level
of the group or at the level of each individual item.

Chapter 2. Related Work 17

All items Present every recommended item to the user and allow him to navigate through
them and find why an item has an high or a low rating.

Similar items Present a list of similar items when one is selected.

2.2.3 Explanation Styles

As we have seen there are many things that affect the objective of an explanation, so there
are many things that can be added to a recommendation system that work as an explana-
tion. These explanation styles may be related to the underlying recommendation system,
but that is not necessarily true. According to [43] there are the following explanation
types:

Collaborative-Based Explanations based on other users’ behaviour. These kind of ex-
planations allow the user to find what similar users, or users in the same situation
did when interacting with items. In [22], of the 21 different collaborative-based
interfaces, the most preferred by the users was a graph that represented the number
of similar users that rated the movie positively, neutral or negatively.

Content-Based Explanations based on the content of the recommended items. Although
these recommendations can also be based on user similarity, the explanation is
based on a property similar between the items rated and recommended items. A
movie recommendation system may recommend a movie because the user likes a
participating Actor.

Case-Based Reasoning Comparison between recommended items and previously rated
items, omitting the similar properties between them.

Knowledge and Utility-Based Explanations based on the similarity between the user
needs and the items properties.

Demographic Explanations based on the demographic information about the user.

2.3 Evaluation

Evaluating recommender systems allows to help choosing between multiple candidate
algorithms and to analyse if they are improving the user experience. There are multiple
evaluation methods available. According to [40], there are three types of evaluation for
recommendation systems:

Offline Experiments These kind of experiments typically use previously collected data
on the user’s behaviour with the system, so they don’t require real users. This
data can be used to determine if the recommendation system can predict the users’

Chapter 2. Related Work 18

behaviour. It is of limited use because it assumes the user will behave or make the
same choices with the presence of a recommendation system but it is low cost and
easy to use. Generally the collected data is partitioned in a training set that the
recommendation system uses to generate predictions and a test set, a portion of the
data that is used to compare the predictions with the real user ratings.

User Studies Tests with recruited users. We have them interacting with the system and
observing what they do, and then making them questions before, during and after
the test. This kind of tests can be used to evaluate the influence of the recommen-
dation system and the overall user satisfaction. They give the most granularity of
data and feedback but they take much time and are costly, requiring to have a set
of users willing to do the tests. Tests with recruited users are effective when study-
ing TV recommendation systems. [1] tested their TV recommender interface in a
controlled laboratory emulating a living room environment.

Online Evaluation These tests involve deploying the recommendation system to a run-
ning service and evaluating how the users behaviour change. We can compare sys-
tems and determine which one the users interact with more. Users are normally
unaware they are being used for testing. These kind of tests give the best evidence
of the usefulness of the system. They require an existing system with real users and
we have to be careful how we choose the users and how the changes are displayed,
to be sure they represent the whole user base of the system.

2.3.1 Evaluation Measures

Generally, studies assume that a good recommendation system is one that correctly pre-
dicts the items the user prefers [23]. Depending on the objective of the recommendation
system there are adequate accuracy measures that may be used.

In recommendation experiments the most common objective is measuring the accu-
racy of ratings prediction. The most used metrics are based on the Mean Absolute Error
(MAE) metric [23]. The successful Netflix contest used the Root Mean Squared Error
(RMSE) metric to compare the competing algorithms, and inspired most related research
to be based on that metric [4].

• Mean Absolute Error (MAE)
For a recommendation algorithm f and a test set Rtest, MAE is defined as [15]:

MAE(f) =
1

|Rtest|
∑

rui∈Rtest

|f(u, i)− rui|

A lower MAE means the algorithm produced predictions with less error than a
higher value

Chapter 2. Related Work 19

• Root Mean Squared Error (RMSE)
RMSE compared to MAE penalizes large errors on predictions.

RMSE(f) =
1

|Rtest|

√ ∑
rui∈Rtest

(f(u, i)− rui)2

Both these metrics are sometimes presented in a variant normalized to the ratings
scale.

Multiple TV related studies [24, 5] acknowledge these metrics can be useful but pro-
pose alternative metrics they feel are more adequate to implicit TV feedback. An Italian
IPTV recommender system [5] was evaluated with a leave-one-out approach. For each
user they removed each rated item individually and then checked if it appeared on the
newly generated top 5 recommended items. The recall metric was the percentage of hits.
To evaluate another recommender system, [24] built a measure named rank, that com-
pared the actual watched data with their algorithms proposed ranking. Lower values in
this metric meant the watched items were better ranked.

Some studies consider that although accuracy metrics are useful they don’t capture
some aspects of user satisfaction [30, 45]. Other fields like items coverage and serendipity
should also be considered.

2.3.2 Datasets

Due to the importance of recommendation systems evaluation, there have been multiple
efforts in assembling and providing datasets. Such datasets allow to train and validate
algorithms.

The most common datasets used in movie recommendation systems are:

MovieLens Collection of datasets by GroupLens with diverse quantities of explicit rat-
ings collected through MovieLens from 1995 to 2009.

Netflix This dataset was assembled for the Netflix Prize contest for collaborative filtering
algorithms [4]. It contains over 100 million explicit ratings made in the Netflix
service between 1998 and 2006.

MovieTweetings Dataset based on explicit public ratings made by Twitter Users in IMDB [17].
This dataset contains data collected since 2013 and it is updated daily. It is possible
to extend this dataset with information from Twitter because, unlike the previous
datasets, the user identities are public.

Chapter 2. Related Work 20

2.4 User Experience

Users need to have a way to interact with the recommendation system for it to be useful.
A recommendation system for set top boxes and smart TVs must have special considera-
tions. On one hand, it should be adapted for TV navigability and be usable with a remote
control and a big screen. People don’t usually like to waste much time when navigating
on TV [16], so on the other hand it needs to display recommendations well so users don’t
lose themselves or stop using the system.

There are multiple areas to explore when developing a recommendation system user
interface [44, 19]:

2.4.1 Soliciting Feedback

Soliciting feedback in TV recommendation systems should not distract the user from
watching TV [44]. As explained earlier, users provide feedback while they are interacting
with the system. The system unobtrusively gathers implicit feedback from user interac-
tions. Generally recommendation systems ask for explicit feedback. It can be provided by
the means of a numeric scale [36] or a discrete scale [3]. When designing its presentation
and interaction method, users are influenced by the component’s colour, size, scale range
and images [44].

2.4.2 Presenting Recommendations

After generating recommendations, the system must communicate them to the user. Typ-
ically the algorithms provide a value of how relevant the recommendation is to the user.
That value can be used when presenting the recommendation to the user. Generally it
is used to order the ranking showing the most relevant first. Other approaches use it to
highlight the most relevant recommendations, by showing it with in a larger space [27].
Presenting recommendations is also related to providing explanations as detailed in Sec-
tion 2.2 and in the next Section.

2.4.3 Providing Explanations

Explanations, detailed in Section 2.2, influence recommendation presentation. When
users ask others for recommendations they can ask why they get those recommenda-
tions. Explaining recommendations may improve the users trust and satisfaction in the
system [35]. The user interface should be able to show the user why such recommenda-
tion is given.

Chapter 2. Related Work 21

2.4.4 Big Screen Interface

Due to the input interface limitations and the typical distance the user has to the TV the
interface must respect specific user experience guidelines. There are multiple modern
guidelines such as those provided by Google1, Samsung2 and Amazon3. These guidelines
suggest how to provide an intuitive navigation

2.5 TV Recommendation Systems

Over the years there have been studies about the implementation of TV recommendation
systems.

• TV Advisor [11] was a project that researched the usage of implicit vs. explicit
user profiling and what kind of recommendation algorithm fitted the best to the
problem of TV programmes recommendations. The service was available as an
HTML interface.

• Personal EPG [18] used user profiles to match them with TV programmes. It in-
troduced a method to create profiles automatically by observing channel tuning and
then by clustering algorithms. The authors built a recommender interface adapted
for interactive TV terminals.

• PTV, a personalized TV guide [10] was a recommender system, that the user could
interact with in a PC and WAP based devices over the Internet. It collected the
user preferences by asking him to fill a form on the first run and then by collecting
feedback on the programmes. It included both collaborative and content based
algorithms, depending on the context.

• TV Scout [6] was a web based filtering system that solved the cold-start problem
by presenting itself as a retrieval system and lowering the user barrier to entry by
not asking the users preferences upfront.

• TiVo [3] is a set-top-box that provides TV recommendations based on item-item
collaborative filtering algorithms. It provides recommendations by showing a list
of programs the user might be interested in and by auto-recording recommender
programmes.

1https://developer.android.com/design/tv/patterns.html
2http://www.samsungdforum.com/UxGuide/2014/01_principles_for_

designing_applications_for_samsung_smart_tv.html
3https://developer.amazon.com/public/solutions/devices/fire-tv/docs/

design-and-user-experience-guidelines

https://developer.android.com/design/tv/patterns.html
http://www.samsungdforum.com/UxGuide/2014/01_principles_for_designing_applications_for_samsung_smart_tv.html
http://www.samsungdforum.com/UxGuide/2014/01_principles_for_designing_applications_for_samsung_smart_tv.html
https://developer.amazon.com/public/solutions/devices/fire-tv/docs/design-and-user-experience-guidelines
https://developer.amazon.com/public/solutions/devices/fire-tv/docs/design-and-user-experience-guidelines

Chapter 2. Related Work 22

• TV Predictor [27], a recommender application for smart TVs and mobile devices
using industry standards to content management. It provided recommendations
for both implicit and explicit recommendations. It also contains an auto zapping
features, meaning the system will change the channels automatically based on its
recommendations.

2.6 Frameworks

There are many appropriate recommendation frameworks to use as a base for a recom-
mendation system. They range from a simple algorithms collection to a full system ready
to integrate on a current application. This list focus on recently updated and maintained
open-source Java tools. In the end some alternative tools are mentioned.

LensKit

LensKit is a framework allowing the construction, testing and evaluation of recommen-
dation systems [19]. Its base implementation focuses on collaborative filtering algorithms
and ratings but there are some community extensions to add content-based filtering al-
gorithms. It is designed to be easily extensible. The system receives user feedback and
items as input and returns a Top-N recommendation or a predicted rating. This framework
also includes tools to test and evaluate the resulting system and to compare algorithms.
Overall, the tool was built with research in mind and it is referenced in many research
papers.

easyrec

easyrec4 is a ready to use recommendation system. It integrates with current applications
using a Rest API. One of its main advantages is it does not need an expert on programming
or recommendation systems to be used. It includes a graphical user interface to setup the
algorithms. It also has features for the advanced users allowing it to be extended with
new recommendation methods. This framework works with collaborative filtering meth-
ods. It also contains plugins to add basic content-based filtering but it requires manual
configuration.

LibRec

LibRec5 is a library for recommendation systems. It contains a collection of state-of-the-
art recommendation algorithms. It is heavily focused on algorithms research. This library
contains an evaluator for multiple measures for recommendation systems testing.

4http://easyrec.org/
5http://www.librec.net/

http://easyrec.org/
http://www.librec.net/

Chapter 2. Related Work 23

Sifarish

Sifarish6 is a collection of recommendation algorithms and solutions based on Apache
Hadoop.

In addition to these Java frameworks there are outdated alternatives and other lan-
guages frameworks. Duine framework is similar to LensKit and has an Explanations API,
but its last update was in 2009. PredictionIO is similar to easyrec but less modular. Li-
bRec is often compared to MyMediaLite, but the programming language is C#. There are
also more broad tools like Apache Mahout and Weka.

2.7 Real World Cases

In this Section I present some commercial and research projects that use and depend on
recommendation systems.

Netflix

Netflix is one of the most popular online video streaming services for on demand movies
and TV series. Content recommendation is a fundamental research area for their busi-
ness model. In 2006 they launched the Netflix Prize competition offering prizes to those
who build the best collaborative filtering algorithms. This competition has generated an
increase in research and innovation in the area. The winner algorithm used hundreds of
predictive models to reach the final goal.

The Netflix service is built around recommendations [4]. The home screen, the first
screen the user sees, features dozens of personalized recommendations. This emphasis
shows not only it is important to have good recommendation algorithms but also a good
user interface design. While developing the recommendations system, Netflix took into
account several criteria like optimization for accuracy and diversity, knowing that an ac-
count can be shared by various family members and people have different moods when
using the service at different times. They found it is important that the user is aware of
why the contents are recommended through explanations. Items are ranked by weighing
popularity of an item with its predicted rating for the user.

YouTube

YouTube is the largest community driven video sharing website. It allows users to watch
and upload their own videos. One of the challenges they face is content discovery and

6https://github.com/pranab/sifarish

https://github.com/pranab/sifarish

Chapter 2. Related Work 24

recommendation [12]. Users have to find new and interesting videos easily. Their rec-
ommendation system is a top-N recommender. It is based on the videos metadata and
the user’s interactions with the content. There is implicit interaction like the user video
history and explicit like video ratings. The purpose of the system is to recommend high
quality videos relevant to the user interests.

Recommended videos are those the user will most probably watch after having watched
an initial video. This definition is the base of the recommendation system. They use as-
sociation rule mining and co-visitation counts techniques.

User Interfaces are considered very important. Every recommendation contains the
videos basic information like the title and the thumbnail. It also contains a basic explana-
tion on why the video is being recommended with a link to the previously watched video
that triggered the recommendation.

2.8 Challenges

Below is a list of challenges identified in literature and studies about the subject.

1. Implicit Feedback Generally recommendation systems use the user preferences
over items to calculate recommendations. For example, a service might ask the user
to rate books in order to have data on user preferences. In the context of television,
users might be asked to rate TV programmes in order to know their preferences.
Unfortunately that would reduce the usefulness of the system because it would only
work if the user rated the items and not every user is interested in that cognitive
load [34]. It must be identified a way to obtain the user preference without asking
for the explicit ranking. An implicit ranking can be calculated using data about
the interaction of the user with the system, like how long a user took to watch a
program. Such kind of ranking is not perfect, e.g. a user may like a program he
didn’t have time to finish. The challenge here is how to take this implicit feedback
and transform it on something that reflects the user preference.

2. Sparse Data and Items The items available to the users change daily. A program
is only available for a few days unless it is rebroadcast. So it is difficult to have
multiple users to give feedback on the same item. The recommendation system
should be able to recommend items even if no user watched them.

3. Who’s watching? A television set is normally used by different members of a fam-
ily. One member’s preference is different from another. The feedback fed to the rec-
ommendation system may refer to the tastes of different users. A recommendation
system should be able to identify the user or be prepared to do recommendations
for the whole family.

Chapter 2. Related Work 25

4. Real-time requirements If the user asks the system for recommendations, but it
takes much time to answer, his mood will drop and he will not use that function
again. Also, the items available change daily. An item today might not be available
tomorrow. A recommendation system must be prepared to continuously update the
items it recommends and be fast as possible to not bore users.

5. Quality of metadata To recommend programs based on their content there has to
be information available about them. It’s not an easy task to classify their content
automatically because they are based on video and audio streams and sometimes
their content is made live (for live TV programmes). For that reason, the content
metadata has to have quality and include information like the program actors, cate-
gories, etc.

2.9 Summary

This chapter introduces the necessary concepts to understand this work and used tech-
niques. It starts by describing recommendation systems and its types of techniques. Then
the two main techniques, Collaborative filtering and Content-based filtering, were de-
tailed. These techniques are combined in the next chapter to form a recommendation
system.

The steps required to design explanations were introduced in this chapter. In the
next chapter they are used to design a new explanations module. User experience for
recommendation systems was explored in this chapter and is the basis for the interface
developed in the following chapter.

The survey of academic and commercial recommendation systems allows to see what
they solve and what can be explored in the next chapter, such as the used algorithms.
Some of the presented challenges are developed in this thesis: A mapping function is
built to contribute to the Implicit Feedback challenge, content-filtering algorithms were
used for the Sparse Data and Items challenge and the Real-time requirements challenge
was explored with the development of a dispatcher module.

Offline Evaluation and User Studies were two evaluation techniques presented in this
chapter and are used to evaluate the developed system.

Chapter 3

Work

3.1 A TV Recommendation System Model

The recommendation system model used in this thesis is based on the model described in
section 2.1.1. In a TV recommendation system, U is the list of participating users and I
the list of programmes the users can interact with. A television programme contains one
or more episodes E. An episode is a broadcast slot assigned for a programme that is not
a repetition. This means a movie would contain one episode and a recurring programme
like a TV Series would contain many episodes.

Each user expresses their interest for items by rating them. This rating is expressed on
a scale of 0 to 10, meaning that a higher rating means a higher preference on watching an
item. The relation between the users and the items is represented in a user-item matrix, as
explained previously in Section 2.1.2.

Ratings may be given either explicitly by the users or generated by using implicit data
from user interaction with the system. In this context, one possible source for implicit
data would be the watched time for each item.

The main objective of a recommendation system for set top boxes is to generate lists of
recommendations. The recommendation system generates multiple recommendation lists
that are used through the set-top-box application. These lists are dynamic and specific to
the user context.

3.2 System Modules and Pipeline

To produce a recommendation system, it is necessary to develop multiple components
that will be connected together. The developed components and pipeline is presented in
Figure 3.1. This pipeline allows the integration in an existing system by replacing just
the input and output components. Its data model is based on the TV Recommendation
System model presented in the previous section.

1. Data Sources The source information, also known as dataset, required to generate

27

Chapter 3. Work 28

Data Preprocessor Recommender

Explanations
Generator

Recommendations
Dispatcher

Web Services

Recommendations
Frontend

EPG and Programmes

Users

User Views

User Ratings

Raw
Data

Structured Data List of Items

Structured
Recommendations

Structured
Data

List of
Items

Categories and
Explanations

Figure 3.1: Pipeline Overview

recommendations, detailed in Section 3.2.1.

2. Data Preprocessor This component converts the information provided from the
data sources to the format expected by the recommender. It also processes implicit
mapping, as detailed in Section 3.2.2.1.

3. Recommender The recommender component uses the algorithms detailed in Sec-
tion 3.2.3 to analyse and generate lists of recommendations.

4. Explanations Generator This component makes a user profile based on the recom-
mended items and organizes the items in personalized lists for the users. It provides
an explanation for each recommended item, as described in Section 3.2.4.

5. Recommendations Dispatcher This module, presented in Section 3.2.5, is respon-
sible for caching and refreshing user recommendations. It allows the system to
provide recommendations even when the recommender component is generating
new ones.

6. Web Services Allows the frontend to request user recommendations to the recom-
mendations dispatcher component.

7. Recommendations Frontend The frontend where the recommendations are dis-
played, presented in Section 3.2.7

3.2.1 Data Sources

Recommending television programmes requires access to multiple types of data. The data
can come from one or multiple different data sources. The following list enumerates the
required data types and the information expected from them. It is based on the model
presented in Section 3.1.

1. EPG and Programmes The list of items to recommend, including programmes
which have been or are soon to be broadcast. This kind of data is generally struc-
tured as an EPG for live TV and lists for VOD content. These items usually have

Chapter 3. Work 29

associated metadata, like the broadcast date, a small description, its category and
participating people.

2. User Metadata The list of users that interacted implicitly or explicitly with the
system. It may optionally contain the interests and demographics of the users.

3. User Views The largest source of feedback from the users is the visualization data
for the programmes. It is an implicit source of information because no extra action
from the users is necessary besides their channel selections.

4. User Ratings The other source of feedback is the ratings the users give to the items
they watched. This is an explicit source and so generally it contains less data.

3.2.2 Data Preprocessor

Although the required data sources are all from the TV domain, its raw data is generally
structured in a unique way, depending on their format and original source. This compo-
nent takes the raw data from the data sources and converts it to the format used by the
recommender system, presented in Table 3.1. This allows to reuse and integrate this sys-
tem with any existing infrastructure that provides this information, just by replacing this
component. An infrastructure that provided data using multiple CSV files would require
a different data preprocessor implementation when compared to a system with its data
structured and saved in a database.

Data Type Parameters

User User Id, Registration Date, List of Properties, List of Sessions,
List of Ratings, List of Programmes

Programme Programme Id, Title, List of Properties, List of Users, List of Episodes
Episode Episode Id, Parent Programme, Start Date, Duration, Season Number,

Episode Number
Session Session Id, Episode Id, User Id, Start Date, Duration
Rating Rating Id, Program Id, User Id, Date, Rating Value
Property Property Id, Property Type, Property Value

Table 3.1: Structured data after running the preprocessor module

A user watches episodes and rates programmes. A programme has one or more
episodes. A property represents a piece of metadata associated to a programme. This
metadata can be an actor, a director, a year, a description, or any other metadata available
on the original data source.

As part of the data conversion, this component is tasked with mapping between im-
plicit and explicit feedback. This process allows to use algorithms only intended for
explicit feedback and is described in the next Section.

Chapter 3. Work 30

3.2.2.1 Implicit Feedback Mapping

Most recommendation algorithms and evaluation measures are based on explicit feedback
by the users, as explained earlier in Section 2.1.5. Although it is possible to collect and use
explicit feedback on TV programmes, there are advantages in using implicitly collected
feedback. When watching TV, users generally tend to minimize interactions. Asking
for the user opinion on each watched programme is not necessary when they implicitly
disclose that information when they choose to watch a programme. This technique is
common in other fields like search engines. Instead of asking the user to rate the web
pages they visited, the click data on the results page and time spent on the web pages are
commonly used as implicit feedback [26].

In this thesis the goal was to find a way to convert the implicit user intents to an explicit
value representing the rating the user would give to an item. As seen in Section 2.1.5,
research has shown there is a good correlation between both types of feedback. Research
based on explicit ratings algorithms and metrics can be reused. The conversion methods
presented in Section 2.1.5 could be used to solve this problem. They provide an explicit
rating by calculating the percentage of the programme that was watched by the user. I
did not use them because they assume each broadcast item is a unique programme, so I
suggest an alternative that takes advantage of the relation between a programme and its
episodes.

For each user item pair (U , I) consider those items who had at least one watched
episode E. It is considered an episode was partially watched if the user has viewed at
least 5 consecutive minutes of it. This allows to discard watching sessions that represented
channel surfing.

For each watched item, consider the list K of all the episodes broadcast from the first
watched episode. Then sum all minutes watched from the first watched episode and divide
it with the sum of the programmes duration. The value is multiplied by 10 to give a rating
in the desired scale. The following formula represents this method:

ru,i = 10 ·
∑

e∈K ew∑
e∈K ed

Unlike other methods, episodes broadcast before the first time the user watched the
programme are not considered because it would have a negative impact on the rating for
long running series. For instance, if a user never watched a long running series, he might
not know the programme was aired or he simply didn’t use the service before.

If the user watched a whole episode of that show, we could infer he liked it, even if he
didn’t watch the previous shows.

Another possibility would be to only count the watched shows but that would mean
the system thought the user liked the programme even if the user never watched new
episodes of it. If we count all the following programmes, the calculated rating would

Chapter 3. Work 31

drop with time, lowering suggestions of episodes of the same and related shows. We can
say with more confidence the user did not like the show after he first watched than if he
never watched at all. So, a rating value is not fixed, it evolves with time.

3.2.3 Recommender Module

This component is responsible to process the structured user and ratings data and return a
list of recommendations personalized to the user. There are multiple algorithms that can
be used as part of this process. The used and evaluated algorithms are presented in this
Section.

3.2.3.1 Techniques

There are multiple algorithms a recommendation system can use to generate its recom-
mendations, as shown in Section 2.1. In this section I list the approaches tested and used
in the developed recommendation system. Most techniques are based on previous work
while others were developed in this thesis with this specific domain in mind. Most tech-
niques assume explicit feedback and take advantage of the mapping function developed
in Section 3.2.2.1.

Baseline Functions
These methods were introduced in Section 2.1.2.1, and are generally used as a fallback

when the other algorithms aren’t able to provide personalized recommendations.
Item Mean Rating, described previously at Section 2.1.2.1, returns the item’s mean

rating. This function is used as a baseline for item based collaborative algorithms. A
similar function, named User Mean Rating, that returns the user’s average rating is also
tested in a similar way. Finally, the hybrid Item and User Mean Baseline was tested and
compared.

Collaborative-filtering Algorithms
The collaborative algorithms listed here were introduced in Section 2.1.2 and they are

typically used when items have been previously rated by different users. The first type of
techniques that were evaluated are the User-User and Item-Item Memory algorithms from
Section 2.1.2.2. These algorithms can be customized with different similarity and ratings
normalizer functions. Those variations were also evaluated.

The second family of techniques used is the FunkSVD Matrix Factorization family of
techniques introduced in Section 2.1.2.3. Multiple iteration sizes and speeds were tested.

Finally, the Slope One techniques, introduced in Section 2.1.2.4 were tested. Both
generic Slope One and Weighted Slope One algorithms were evaluated as a possible al-
ternative to the previous collaborative filtering algorithms.

Chapter 3. Work 32

Content Filtering Algorithms
Content filtering algorithms, Section 2.1.3, are best used when we have or can extract

metadata from items.
Item Vector Scorer is a content based recommender module1 for LensKit. It was tested

with content categories, tags, directors and actors.
Other techniques not based on previous research were developed in this thesis, for

the purpose of testing specific ideas about the television domain. Those techniques are
described here:

Item Broadcast Time
The objective of this technique is to recommend programs broadcast when the user
typically watches television. The inverse function allows to increase less expected
recommendations by the user, trying to improve the system’s serendipity. This is
considered to be a content filtering algorithm because it is based on the broadcast
time of the items. It calculates the item rating depending on the broadcast date of
its episodes. It first creates a representation of the user’s time habits and then it uses
the representation to calculate the programme rating.

For each user, there is a user time vector that represents the likelihood the user
watched TV at a given minute of the day. Assuming the user watched TV for n
days and a day contains minutes m, we have a function wu(d,m) that represents if
a user was watching TV on a given minute of a day

wu(d,m) =

{
1 ifwatched

0 else

We can calculate the chance the user watched TV at a given minute of the day with:

Wu(m) =

∑k
d=1wu(d,m)

k

Where k is the total number of days considered. Finally, we calculate the rating
the user would give to the programme by calculating the average of the chances the
user watched TV during the period the programme was broadcast:

Ru,i = 10 ·
∑s+l

m=sWu(m)

l

s is the programme start minute and l is its length. This formula can also be used
with different time periods, like considering the weekend and week in separate
when doing the calculations.

1Available at http://eugenelin89.github.io/recommender_content_based/

http://eugenelin89.github.io/recommender_content_based/

Chapter 3. Work 33

Item Broadcast Channel
This technique recommends programs based on the channels the user typically
watches. To calculate it, we sum the number of minutes thr user watched the chan-
nel where the programme is broadcast and divide it by the total watched minutes.

Item Episode Mean Rating
User ratings for previously rated programmes change over time, since a program
is made by several episodes. This algorithm analyses the user history regarding
the rating of previous episodes then it predicts the rating of new episodes using a
weighted average to calculate the overall program rating.

In Section 3.2.2.1 an implicit mapping algorithm was defined. It was also defined
the list Ku,i containing the user u ratings for all the episodes of item i broadcast
from the first watched episode. For this algorithm we define an extension, Kpu,i,
that adds toKu,i the predicted ratings for the episodes broadcast in the target period.

The predicted value is calculated with the following formula:

Pu,i =
1

2k−1
K1 +

k∑
n=2

1

2k−n+1
Kn

Kn is the n-th rating on the listKu,i. This formula uses the values from the previous
episodes to calculate the predicted value to the next episodes, where more recent
values have a greater influence on the final prediction.

The result of Pu,i is assigned to the new episodes in Kpu,i. Then this list is used as
an input to the implicit mapping algorithm explained earlier, outputting a rating for
the item.

3.2.3.2 Hybrid Techniques

As shown in Section 2.1.4, a recommendation system is generally composed of multiple
techniques connected to improve the overall system quality. In this Section I present two
different approaches to hybrid recommenders that connect the techniques from the last
Section. These hybrid techniques were built after evaluating the individual techniques so
I had the required information to know how each recommender could complement the
other. The evaluation results are presented in chapter 4.

Mixed Recommender
A recommender based on a mixed hybridization method. It starts by running the first
recommendation method. For the items that were not covered by it, it then runs the next
recommender. It fallbacks to the next algorithm until every item was processed or until it
reaches the last algorithm. The algorithms were chained as follows:

Chapter 3. Work 34

1. Item Episode Mean Rating
2. User-User Collaborative Scorer (with Baseline Subtracting Normalizer and Cosine

Similarity)
3. User Item Baseline Mean Rating

The algorithms with the best evaluations are the first in the list and the ones with the
best coverage are in the end. Overlapping coverage algorithms should be avoided.

TV Hybrid Recommender
This technique is composed by a set of heuristics that employ weighted, switching and
mixed hybridization methods. The objective was to make a recommender that used a
specific algorithm for each different situation:

• Recurring Programme
– User has watched it before
∗ Item Episode Mean Rating

– User has never watched it before
∗ Item-Item Collaborative Filtering
∗ Item Broadcast Time

• New Programme
– Item Vector Scorer
– Item Broadcast Time

3.2.4 Explanations Generator

The explanations generator module receives a list of recommendations from the recom-
mender module and organizes it in multiple categorized lists, providing a personal ex-
planation for each recommended item. To establish the explanation objectives and style,
the guidelines introduced by [43] and presented in Section 2.2 were followed. Then an
algorithm that solved the requirements set in the first step was built.

3.2.4.1 Designing Explanations

Explanation Aims
The first step to provide explanations for this recommendation system was to choose
which aims presented in Section 2.2 would be more appropriate to the TV domain and to
the objectives of the system. I’ve listed the impact each aim would have in the system and
then chose the most suitable ones.

• Transparency - Although it is interesting to allow the user to see how the system
works, this isn’t a critical recommendation system and as such this system can be
implemented either as a black box or a white box model.

Chapter 3. Work 35

• Scrutability - Allowing users to tell the system it is wrong is important since it
makes assumptions of the user tastes with the collection of implicit feedback

• Trust - User trust is important if we want the user to come back to the system.

• Effectiveness - An effective system is not necessary because users don’t have to
pay or consume the whole item. It is not critical as a decision to choose where to
go on vacation.

• Persuasiveness - Persuasive systems increase the number of items the user buys,
but it can also decrease the users trust in the long term. This is not an important aim
since this system doesn’t include items the user must pay to watch.

• Efficiency - One of the identified problems people have with current systems is they
take some time to find something to watch, as such efficiency is important to this
system.

• Satisfaction - As identified previously by other authors, satisfaction in an entertain-
ment application is very important.

After listing all the aims, those which seem more important for this project are Satis-
faction and Efficiency. The other aims are more important when applied to more serious
systems that don’t target entertainment or require the user to make more serious or expen-
sive decisions.

Presentation and Interaction
The next step was to choose the adequate presentation and interaction methods for recom-
mendations and explanations, detailed in Sections 2.2.2 and 2.4. For this recommendation
system, the most adequate presentation technique for explanations is the top-n items rec-
ommendation because the underlying system already provides an ordered list of recom-
mended items. The recommended items are organized in multiple top-n lists, grouped by
a common property, and each item has an individual text description that tries to improve
the explanation.

User interaction with the recommendation system is limited to the interaction methods
a television set provides. Users do not like to navigate or input text on their televisions.
As such, typical interaction like listing the user preferences and rating the items is limited,
and the system should be able to provide explanations without feedback.

Explanation Styles
The final step on explanation design was to choose the explanation style, as presented in
Section 2.2.3. Collaborative and Content-based explanations were chosen because the un-
derlying algorithms and data support the required information to generate an explanation.

Chapter 3. Work 36

For each item, an explanation consisting of a title and a subtitle will be generated. The
objective is to generate a specific title and subtitle that describe the items, tailored for the
user. Items are grouped by title, and each subtitle details the item individually.

The following table lists the titles generated by the explanations algorithm.

Explanation Style Type Format Example

Collaborative Popular Popular Items Popular Items
Collaborative User People like you also like People like you also like
Collaborative Item Fans of [item] also like Fans of Breaking Bad

also like
Content-based Actors Programmes with [actor] Programmes with

Andrew Lincoln
Content-based Directors Programmes directed

by [director]
Programmes directed
by Christopher Nolan

Content-based Year Programmes from [year] Programmes from
the 1980 decade

Content-based Channel Programmes broadcast
on [channel]

Programmes broadcast
on FOX Movies HD

Content-based Category [category] Programmes Sports Programmes

Table 3.2: Possible category titles

These titles explain to the user why and how the items are grouped and in some situa-
tions they also present a hint to why they were shown to the user.

The generated subtitle tries to clear why each individual item was presented:

Explanation Style Type Format Example

Collaborative Popular Popular Item Popular Item
Collaborative User People like you also like People like you also like
Content-based Same Item Because you watched

a previous episode
Because you watched a
previous episode

Content-based Similar Item Because you watched
[item]

Because you watched
Breaking Bad

Content-based Actors Programmes with [actor] Because you like
Andrew Lincoln

Table 3.3: Possible item explanations

3.2.4.2 Explanation Algorithm

The algorithm for the explanations design presented in the previous Section is based on
feature vector manipulation.

The input for the explanation algorithm is the list of predictions generated for the user
by the recommendation module, and the item’s metadata.

Chapter 3. Work 37

1. Build Vector Feature Space
For each item property available in the items provided by the recommender module,
add to a list representing the vector features space. Those properties are based on
the types listed in Table 3.2.

Vfs = {Actor1, Actor2, . . . , Category1, . . .}

This vector space can be used to represent any kind of item, group of items and
users of the system.

2. Generate Item Vectors
For each item, make a feature vector and assign each item property to it.

3. Generate Category Vectors Lists
Generate all valid combinations of category vectors. Iterate over all item vectors
and create combinations of the defined properties. Group, without duplicates, the
combinations from all items.

4. Generate User Vector
Generate a user vector based on the items predicted by the recommender module.
For each predicted item, sum its vector multiplied with the prediction score

−→
Uu =

∑
i∈I

(ru,i)
−→
Ii

−→
Uu is the user vector, I is the list of recommended items, ru,i is the predicted rating
and
−→
Ii is the item’s vector.

5. Calculate similarity between User and Categories
For each category, calculate the cosine similarity between the category vector and
the user vector, then sort the results in descending order.

6. Assign items to Category
Sort all programmes by its predicted rating, in descending order. Assign each pro-
gramme to the first category that contains one of its properties. After that, cycle
through all the lists and delete those lists with less than 3 programmes, and truncate
the lists with more than 20 items. Repeat the algorithm to reassign the removed
programmes. Repeat until all programmes are assigned.

Chapter 3. Work 38

3.2.5 Recommendations Dispatcher

This module is responsible for caching and refreshing user recommendations. It runs the
recommendation and explanation modules and saves the results locally so the system is
always prepared to serve recommendations. There are two triggers used to refresh the
recommendations:

• Once per day, during the night, the system refreshes all user recommendations. In
most cable TV operators the EPG and items available to the user change every day,
so the system has to run once a day to always have updated recommendations.

• When a user is watching a programme, update the user recommendations so they
reflect the updated user profile.

3.2.6 Web Services

Web Services connect the Frontend application to the recommendations dispatcher mod-
ule. For this project, only the action to request the recommendations list is necessary.

3.2.7 Recommendations Frontend

The final step on the development of this project was to develop a User Interface that
allows the users to see and try recommendations. This interface is presented to the users
as part of the user evaluation phase. The objective was to make an interface the users felt
familiar that could be connected to existing set top box and Smart TVs interfaces, based
on the guidelines presented in Section 2.4. The interface presents the recommendations
and their respective explanations.

3.2.7.1 Recommendations Screen

This screen, shown in Figure 3.2, is the main menu of the recommendation interface. It
shows personalized recommendations and explanations to the user. It follows the typical
structure TV applications use to show lists of multimedia items: Items are grouped by
categories. The category title is shown above the list of items. Each row represents a
category. Each item is represented by an image that depicts the item content. The item
title and explanation are shown below the currently selected item.

Navigation between items is done using the device remote control. Navigation be-
tween items of the same category is done using the left and right keys, while navigation
between categories is done by pressing the up and down keys. To select and preview the
item details, the user should press the enter key.

Chapter 3. Work 39

Figure 3.2: Recommendations Screen

3.3 Implementation

This Section shows the implementation details of the modules described in the previous
Section.

3.3.1 Data Sources and Data Preprocessor

The Data Preprocessor module was implemented as a Java Interface that provides multiple
methods for data interaction with the structures defined on Table 3.1. Each one of those
structures were also implemented as Java classes. The following table shows the available
methods presented by the data preprocessor for interaction with the data:

Data Type Methods

User list system users, get user details, get user ratings
Programme list available programmes, get programmes properties, get user ratings
Properties list programmes
Ratings list explicit ratings, list implicit raw ratings

Table 3.4: Methods available for interaction with data

The objective is to extend this interface and abstract data source differences. For this
project, two different implementations of this interface were built: one for the offline
evaluation data set, presented in Section 4.1, which was based in CSV files, and another
one for user studies, based on Neo4j databases.

Chapter 3. Work 40

3.3.2 Recommender Module

The base of the recommender module is the Lenskit Framework. The data preprocessor
is connected to this component, using a custom LensKit Data Access Object (DAO), their
interface for data collection.

Recommendation algorithms, in LensKit, are implemented as a ItemScorer subclass.
An ItemScorer is an interface that defines methods where you provide a user and a list of
items to predict, and it returns a vector with the predicted score for each item. The list of
classes available in LensKit is shown in Table 3.5.

Algorithm Name LensKit Scorer Class

Baseline Functions
Item Mean Rating ItemMeanRatingItemScorer
User Mean Rating UserMeanItemScorer
Collaborative-filtering Algorithms

User User Scorer UserUserItemScorer
Item Item Scorer ItemItemScorer
FunkSVD FunkSVDItemScorer
Slope One Scorer SlopeOneItemScorer
Weighted Slope One Scorer WeightedSlopeOneItemScorer
Content Filtering Algorithms

Item Vector Scorer TFIDFItemScorer

Table 3.5: List of used Lenskit algorithms

For the other implemented algorithms, first a model builder class was done that builds
the user model, and then a custom lenskit class.

For the hybrid algorithms, a simple scorer class was built that delegated to the other
scorers, depending on set rules.

3.3.3 Explanations Module

The explanations module was implemented as a Java class without any dependency to
the LensKit Framework, except for its Sparse Vector implementation for easy and fast
manipulation of vectors.

3.3.4 Recommendations Frontend

The user interface was implemented as a HTML5 single page application. It interacts
with the recommendation system by using its Web Services. The following HTML5
technologies were used:

Bootstrap Framework for building HTML5 responsive interfaces. Used to build the ap-
plication layout.

Chapter 3. Work 41

jQuery JavaScript library for simple cross-platform DOM interactions and AJAX calls.

jQuery Transit CSS3 Animations using the jQuery animation methods, allowing to use
the device GPU acceleration.

Moonstone UI An HTML5 library to build TV user interfaces. Although the full library
wasn’t used, some CSS components were adapted.

3.4 Summary

This chapter presents the development of a recommendation system pipeline and its mod-
ules. The three objectives defined in Section 1.2 were met. First, a recommendations
engine was built and is part of the pipeline. An explanations module implements the
objective of providing explanations for recommendations. This module presents an ap-
proach to improve user satisfaction not present in other recommendation systems for cable
TV. Finally, a User Interface was built to show and evaluate recommendations.

Other components had to be developed to meet the mentioned objectives. The implicit
feedback mapping algorithm allows to generate recommendation without requiring the
user to change its behaviour when watching TV. New recommendation techniques were
developed with the TV domain in mind.

In the next chapters, evaluations are performed. Offline Evaluations are used to eval-
uate if the developed recommendation algorithms are an improvement when compared
with the other used techniques. User Studies are used to evaluate the user satisfaction in
the system and are used to evaluate if it improves over their cable TV providers recom-
mendation systems.

Chapter 4

Offline Evaluation

The first step to validate the developed recommendation system is offline evaluations.
This Section is based on the evaluation methods presented in Section 2.3. This Section
focus on the evaluation of the recommendation algorithms.

4.1 Dataset

In Section 2.3.2 a list of public datasets was presented. These datasets have been used
extensively in research and even used to evaluate algorithms in the TV watching domain.
They belong to a similar but different domain, the movies domain. Although similar, the
TV domain has important differences such as the predominance of implicit rating data
and the time restrictions in the items consumption. As such, there is the need to find or
build a more appropriate dataset. As far as I am aware, as of the publication of this thesis,
there is no public dataset that satisfies the requirements presented in Section 3.2.1.

4.1.1 TV Ratings Dataset

TV ratings are usually measured by installing devices in voluntary households that col-
lect TV watching data. This information together with an archive of the broadcast pro-
grammes can be used as a dataset that fulfils the requirements.

I was able to get a portion of data originally collected for the measurement of Por-
tuguese TV ratings. It covers Portuguese free-to-view TV channels for a time span of six
months. It contains a basic user profile, a list of broadcast programmes and user watch-
ing sessions. We can extract the implicit data which makes it a good candidate to an
evaluation dataset. A summary of the data in this dataset is available on Table 4.1.

43

Chapter 4. Offline Evaluation 44

Type Total

Users 2,071
Items 1,640
Episodes 17,264
View Sessions 2,148,035
Channels 4

Table 4.1: TV Ratings Dataset count

Items are organized and ordered like an EPG. Each channel has a list of programmes
ordered by their start date. Each programme is associated to an item by its title. An item
is a group of programmes that share the same title, like multiple episodes of a TV Series.
Each item contains the basic details required for basic content-filtering techniques. They
contain a title and subtitle and a hierarchy of up to three nodes identifying the category.

Field Example Value

channel 3
start date 1996-01-08 22:51:14
duration 4573
title Noite De Estreia
subtitle Pulp Fiction
main category Ficção
sub category Filme
third category Suspense

Table 4.2: Example item

A user watching session consists of information on the periods a user was tuned to a
channel. This information in association with the items broadcast data can be used to find
how long each user watched each item.

Field Example Value

user id 17382723
channel 3
start date 1996-01-08 21:54:00
end date 1996-01-08 22:51:00
duration 61

Table 4.3: Example session of a user that watched a portion of the example item

Chapter 4. Offline Evaluation 45

4.1.2 Assembled dataset

The TV Ratings dataset presented in the previous Section doesn’t contain detailed meta-
data, so content-filtering algorithms can’t be completely tested. To fully test the presented
algorithms, I needed to use another source for the items metadata. An assembled dataset,
nicknamed ”TV Provider Dataset”, was produced. It consists of the TV Ratings Dataset
with collected metadata from IMDB. The data collected from IMDB is the creation date,
directors and participating actors.

4.1.2.1 Item Mapping between data sources

A simple mapping algorithm was defined to map items between the two data sources.
IMDB provides a search function that allows to search program titles in Portuguese.

• For each item in ”TV Ratings Dataset”

– Search IMDB for programmes with the same title

∗ For each returned item

· If the programme date is less than or equal the broadcast date and it
is of the same category (Movie or TV Series), use this item.

4.2 Evaluated Measures

Each algorithm will be evaluated and compared with the same set of measures. The first
evaluated measure will be the item’s coverage. It is the percentage of items the algorithms
were able to produce a prediction. An algorithm might not be useful if it isn’t able to
produce predictions for most of the items in the system, even if it scores well on other
measures. This means the algorithm would have a low recall.

RMSE is one of the most popular measures for recommendation systems evaluation.
It will be used to compare the predicted user ratings to their actual rating. The Netflix
RMSE implementation will be used, which means the result is adjusted to the 0 to 5
scale. Two variants of this measure will be used. First we define Global RMSE, that
returns the RMSE calculation for all items, including those not covered by the algorithm.
The other measure, Coverage RMSE, only covers the items predicted by the algorithm.
Global RMSE allows one to compare between all algorithms, while the coverage RMSE
is better to compare between algorithms of the same type.

Finally, the time the algorithm takes to produce recommendations will be measured.
If an algorithm takes too long to generate predictions, they might be outdated when pre-
sented to the user.

Chapter 4. Offline Evaluation 46

Algorithm
Global
RMSE

Coverage
RMSE Coverage Time (s)

Baseline Functions
Item Mean Rating (I MR) 1.331 1.331 100.0% 3.57
User Mean Rating (U MR) 1.316 1.316 100.0% 10.45
User and Item Mean Rating (U/I MR) 1.287 1.287 100.0% 10.85
Collaborative-filtering Algorithms
User User (U/I MR, Gaussian, Cosine) 2.294 0.963 71.2% 147.34
User User (U/I MR, Gaussian, Pearson) 2.301 0.983 71.2% 133.09
User User (U/I MR, Baseline Norm., Cosine) 2.277 0.912 71.4% 222.89
User User (U/I MR, No Normalizer, Cosine) 2.309 1.005 71.4% 126.10
User User (U/I MR, Decoupling, Cosine) 2.291 0.953 71.2% 150.79
Item Item (I MR, Baseline Norm., Cosine, 20 Neighb.) 2.306 0.997 71.4% 25.37
Item Item (I MR, No Normalizer, Cosine, 20 Neighb.) 2.344 1.100 71.4% 16.97
Item Item (I MR, Baseline Norm., Pearson, 20 Neighb.) 2.301 0.984 71.4% 29.47
Item Item (I MR, Baseline Norm., Pearson, 10 Neighb.) 2.305 0.994 71.4% 22.79
Item Item (U/I MR, Baseline Norm., Cosine, 20 Neighb.) 2.301 0.984 71.4% 23.20
Item Item (U/I MR, Baseline Norm., Pearson, 20 Neighb.) 2.297 0.972 71.4% 28.99
Item Item (U/I MR, Baseline Norm., Pearson, 10 Neighb.) 2.298 0.974 71.4% 22.99
FunkSVD (Features=10; Iterations=125) 2.304 0.993 71.4% 21.32
FunkSVD (Features=25; Iterations=125) 2.294 0.965 71.4% 21.93
FunkSVD (Features=25; Iterations=500) 2.310 1.008 71.4% 51.34
FunkSVD (Features=50; Iterations=500) 2.295 0.971 71.4% 96.90
Slope One Scorer 4.656 1.640 49.8% 22.12
Weighted Slope One Scorer 4.657 1.654 49.8% 37.43
Content Filtering Algorithms
Item Vector Scorer 2.092 2.058 93.8% 11.90
Item Broadcast Time w/Channel 2.363 1.770 71.2% 17.17
Item Episode Mean Rating 2.873 0.214 21.7% 13.18
Hybrid Techniques
Mixed Recommender 1.012 1.012 100.0% 200.00
TV Hybrid Recommender 0.963 0.963 100.0% 34.08

Table 4.4: Evaluation Results
The highlighted rows represent the algorithms produced in this thesis and bold values

represent the best values for each metric.

4.3 Results

The evaluation results are shown in Table 4.4. In this Section the presented results are
discussed and the algorithms are compared.

4.3.1 Baseline Functions

The first three evaluated algorithms are baseline functions. All three algorithms were
able to get full item coverage and so their global and coverage RMSE values are equal.
The baseline algorithm with the lowest error value was the User and Item Mean Rating.
Mixing both the user and item means is useful because they complement each other.
Although the RMSE value is similar, the second best baseline algorithm was User Mean

Chapter 4. Offline Evaluation 47

Rating. It means the user mean is better than the item mean, when predicting an item.
All algorithms are relatively fast, with the Item Mean Rating being the fastest.

4.3.2 Collaborative-filtering Algorithms

Most of the evaluated algorithms belong to this type of approach. Every algorithm, except
the ones based in Slope One techniques, present similar coverage values.

Both Slope One and the Weighted Slope One algorithms present the worst values of
this category and the overall system, both on the RMSE and the coverage metrics. They
present an error even worse than the baseline. Their authors [28] say they are generally
comparable with the other collaborative algorithms, so it might not work as expected in
the TV domain.

The other evaluated algorithms generally had an RMSE value lower than 1 for cov-
ered items, with a few exceptions. The algorithm with the lowest error was the User-
User Collaborative-filtering variant, with User and Item Mean as baseline, Cosine as the
similarity function and the Baseline Normalizer function. Unfortunately, it also was the
slowest evaluated algorithm. In general, algorithms that used Cosine similarity presented
better values.

FunkSVD presents similar values when compared to the User-User algorithms but it
is much faster. The best variant was the one with 25 features processed in 125 iterations,
the values suggested by the LensKit documentation. More iterations and features didn’t
improve the overall score.

The last algorithm family in this Section is the Item Item Collaborative filtering. They
generally presented worse values than the previous two algorithms but not significantly.
Generally we found out that 20 neighbours is a better value than 10, having better scores.
I also found out that Pearson Similarity performed better than Cosine Similarity for Item
Item algorithms, unlike User User algorithms.

All algorithms in this Section had a worse global RMSE than the baseline functions,
although significantly better coverage RMSE values.

4.3.3 Content-filtering Algorithms

Item Vector Scorer was the only tested content filtering algorithm previously implemented
for Lenskit. It has a high coverage but it has a high error value compared to most of the
other algorithms. The evaluated collaborative filtering algorithms are better in finding the
probable user rating than this.

The other two algorithms evaluated in this Section were developed in this thesis. The
first is the Item Broadcast Time. Although better than the previous algorithm, the RMSE
value is higher than the baseline methods, meaning the date and channel the items are
broadcast is not a good indicator of the observed user ratings.

Chapter 4. Offline Evaluation 48

The other algorithm is the Item Episode Mean Rating. It has a higher coverage RMSE
when compared to the other algorithms, but the lowest coverage, meaning that it can only
generate predictions for a smaller set of items.

In terms of speed, these algorithms were almost as fast as the baseline ones.

4.3.4 Hybrid Algorithms

Using multiple techniques in a recommender is a clear advantage. These algorithms
present a complete coverage and they also present the best global RMSE values.

The Mixed Recommender has the second best Global RMSE. Most of the other algo-
rithms have a better coverage value. It is also very slow.

TV Hybrid Recommender has a good coverage RMSE when compared to other algo-
rithms and it is also relatively fast, being a good candidate for the next step of evaluations.

4.3.5 Discussion

This step was important to understand the differences between the algorithms and how
they would fit in a production recommender system. Testing each algorithm individually
allowed to create two proposals of hybrid techniques. One of which has a greater RMSE
when compared to the individual techniques, and full coverage.

Sometimes developing algorithms with the target domain in mind makes sense, like
the ”Item Episode Mean Rating”. This algorithm is not generic like the others, but under-
standing the specific domain allowed to achieve low values of RMSE, although with low
coverage.

It is interesting to see how most techniques had a coverage RMSE around 0.9 to 1.0,
and how difficult it is to reduce this value without having slower algorithms or reducing
the coverage. The user’s behaviour is unpredictable and so it is not easy to have a model
that accurately predicts the user rating.

Offline Evaluation was good to easily compare the algorithm performance when pre-
dicting what the user watches without the influence of a recommendation system, but we
can’t really test its feasibility without including direct user interaction. In the next chapter
user studies were performed and the system was evaluated, to see the impact this system
had on user behaviour and experience. The algorithm that was chosen for this step was
the TV Hybrid Recommender.

Chapter 4. Offline Evaluation 50

Chapter 5

User Studies

5.1 Objectives

In this stage of the project, I developed and performed user evaluations to further validate
the work developed in the thesis. As presented in Section 2.3, user studies allow to test
for changes in user behaviour when in front of a recommendation system and they also
allow to directly ask them questions and feedback on the system.

The objectives of this stage were:

• Understand and validate the TV consumption habits detailed in Section 1.1 and the
user interest for TV recommendation systems.

• Find out the type of TV recommender system the user prefers.

• Evaluate the quality of generated recommendations and explanations for the users.

• Determine the user interest for each type of explanations contemplated in the sys-
tem.

• Validate the targeted explanation aims.

• Gather user opinions and interest on the developed recommender system.

5.2 Evaluation Method

Due to the nature of this project, it was necessary to find users willing to have their
television consumption habits recorded, so it would be possible to generate and test per-
sonalized recommendations. It was also necessary to have a dataset that matched the time
period and channels the users watched. These questions were solved after recruiting users
and after assembling a dataset using public EPG services available on the internet.

The users’ television usage was recorded for a month, and then the recommender
generated a list of predictions for the week after.

51

Chapter 5. User Studies 52

To test the recommendation interface, the objective was to mimic the TV user experi-
ence. A computer running a HTML5 browser was setup with an infrared receiver. This
allowed to control the interface with a remote control, emulating the TV experience. Be-
fore the experience, users were asked what was their cable TV provider, allowing us to
configure the same TV remote they usually use.

5.2.1 User Evaluation Session

Before starting the evaluation, I introduced the user to the subject of this thesis and to the
application the users were going to evaluate.

The first step was to ask demographic questions about the user, like gender, age and
academic qualifications. The user was also asked about how many people watch TV in
their homes. During the evaluation process, the user did not have to input the answers, the
interviewer filled the answers instead. Then the user had to answer questions about their
TV consumption, like the frequency they watch TV and how long they generally take
to find something to watch. Finally, before interacting with the system, they answered
some questions about the recommendation system of their TV provider and their interest
in recommendation systems in general.

After this step, the user is asked to freely interact with the recommendation system for
the first time and their recommendations. The interviewer then asks the user to rate the
categories, the recommended items and the explanations, for the first twelve categories.
During this step, the participants were asked to think out loud, and the results were an-
notated by the interviewer. In the end of this step, the users were asked if any of the
categories below, the rated ones, should be better positioned in the list and also to give
general comments about the system.

After this, the user had to rate some sentences about their perception of the system,
like rating the quality of the recommendations and their satisfaction using the system.
Finally, the user had to rate their interest in the explanation categories and descriptions,
presented in Section 3.2.4. The evaluation session ends with a final comment from the
user.

The full questionnaire is available in appendix A.

5.3 Results

5.3.1 Sample Characterization

13 users from 8 different households participated in this evaluation. Every household had
a Cable TV subscription. 46% of the users were aged between 18 and 24 years and 30%
were over 34 years old. Most people were graduated, 62% of people had a Bachelor’s
degree. Only one user was still graduating. 92% of the people had at least 3 family

Chapter 5. User Studies 53

members at home that watched television. 85% of the users watch television every day,
and the other users said they watch TV every week. When asked if they watched TV with
their family, most answered at least once per week.

About 54% of the users say they take between 5 to 10 minutes before finding a pro-
gramme to watch. The most mentioned used method in this process is channel surfing.
Then, users mentioned using the time shifting capabilities of their cable TV provider to
watch new episodes of their favorite programmes.

46%

39%

15%

How often do you use your cable TV operator

recommendation system?

Never used Rarely Sometimes

Figure 5.1: Results for question ”How often do you use your cable TV operator recom-
mendation system?”

When asked if their current cable TV provider had a recommender system, 84% an-
swered positively. The other users weren’t sure. 46% of the users said they never used it
and only 15% said they use it sometimes, as seen in Figure 5.1.

When asked about their satisfaction in their cable TV recommender system, everyone
that answered rarely in the previous question, also answered rarely in this question. The
users that answered sometimes, were satisfied most of the time.

Users were asked if they thought recommendation systems and explanations are im-
portant. On Figure 5.2 it can be seen that people find favourable the existence of recom-
mendation systems and are very favourable to explanations.

For the last question the objective was to find if users preferred either a more con-
servative or a more serendipitous recommendation system. The results can be seen in
Figure 5.3. This question didn’t have a middle option on purpose, so the user had to
choose a side. Most users selected values near the middle, with most of them choosing
slightly more conservative values.

Chapter 5. User Studies 54

0

1

2

3

4

5

6

7

8

How important are television recommendations

systems for you?

How important are recommendation

explanations for you?

Interest in Recommendation Systems

No Importance Little Importance Some Importance Important Very Important

Figure 5.2: Results for the questions about recommendation system usage

1 2 3 4 5 6 7 8 9 10

Largely

Conservative
Largely

Serendipitous

Figure 5.3: Results for the question about recommendation system type

5.3.2 Session

During the interaction with the developed recommender system, users had to navigate
through the suggestions and rate the presented categories, programmes and explanations.
To generate these recommendations, the complete recommendation pipeline was used.
The recommendation algorithm in use was TV Hybrid Algorithm and the system was run
with the user watching history data collected earlier. It should be noted again that the
categories and programmes were presented to the user in a personalized order. Here we
are evaluating the capability of the system to present items the user likes first and not the
user interest on a particular category.

I asked the users to rate their interest for the top twelve categories that were presented
to them. Every user liked at least eight of the presented categories. On the graph 5.4
we can see how the users liked each presented category. The users tend to prefer the
categories presented first, with the first category chosen by the system being unanimously
approved by them.

Then the users were asked to rate the individual items and explanations. This allowed
me to validate the previous result. The results are shown in Figure 5.5. On the left chart
we have the percentage of items liked by category position. The categories that appear
first have better results. In the right chart, we can see the percentage of items liked by its

Chapter 5. User Studies 55

100%
92% 92% 92%

85%
77% 77% 77% 77%

85%

69%
62%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

User interest in nth category

Figure 5.4: User interest by category position

position in the category. The items are shown in groups of four. The items that appear
first have a better rating than the others.

87,5% 86,3% 86,5%
82,7% 81,5% 79,6%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

01 - 04 05 - 08 09 - 12 13 - 16 17 - 20 > 20

User interest in nth item
92,6% 91,0% 92,3% 90,1%

77,6% 76,6% 76,0% 76,0%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

1st

Category

2nd

Category

3rd

Category

4th

Category

5th

Category

6th

Category

7th

Category

8th

Category

User interest in items on nth category

Figure 5.5: User interest in the presented items

5.3.3 User Feedback

After using the system, users were asked some questions regarding their opinion on what
they interacted with. As presented in Figure 5.6, in a scale of 1 to 10, on average, people
rated 7.54 for the recommendations quality, 6.85 for the categories order and 7.77 for
explanations quality. Most people were satisfied with the overall quality of the system
and the explanations quality. One user was not satisfied with the order of the presented
categories, and rated it 4. In Figure 5.7, the results of the sentences the user had to rate
regarding their opinion on the system are shown. In terms of usability users agreed that
the system is clear, efficient, and they are satisfied when they use it. Most people felt

Chapter 5. User Studies 56

they were more likely to watch programmes they usually didn’t watch. Some people felt
explanations were important, but there were more users that felt otherwise. When asked
about the reasons, one user said most recommended programmes were self-explanatory,
so it wasn’t necessary to look at the text.

1 2 3 4 5 6 7 8 9 10

Recommendations Quality

Category Order

Explanations Quality

Figure 5.6: User feedback

1 2 3 4 5 6 7 8 9 10

This recommendation system is clear

This recommendation system is efficient

I am satisfied when I use this recommendations system

With this recommendation system I'm more interested in

watching programs that I usually do not watch

I would use this recommendations system in the future

Explanations were important to decide whether the program

was of my interest or not

Figure 5.7: User sentences

5.3.4 Explanations

Users were asked to rate the available explanation categories and descriptions. The results
are presented in Figure 5.8. Most categories were liked by the users. The most liked
category was ”New episodes of your favourite programmes”, where most people rated
the maximum value. Most of the other categories were also rated positive. The category

Chapter 5. User Studies 57

3

3,5

4

0 2 4 6 8 10 12

People like you also like

New
episodes of

your favorite
programmes

Programmes
of [Favorite
Category]

Fans of
[Favorite

Programme]
also like

People like
you also like

1 2 3 4 5 6 7 8 9 10

New episodes of your favorite programmes

Programmes of [Favorite Category]

Fans of [Favorite Programme] also like

People like you also like

Programmes with [Favorite Actor]

Popular Programmes

Programmes broadcast in [Favorite TV Channel]

Programmes directed by [Favorite Director]

Programmes from the year [Favorite year]

Figure 5.8: Explanation title results

0 2 4 6 8

Similar users also
watched programmes…

Popular programme

0

2

4

6

8

10

12

Because you watched a previous episodeSimilar users also watched this programmeSimilar users also watched programmes from the same categoryPopular programme
1 2 3 4 5 6 7 8 9 10

Because you watched a previous episode

Similar users also watched this programme

Similar users also watched programmes from the same

category

Popular programme

Because you watched [Programme]

Because you like [Actor]

Because you like [Director]

Figure 5.9: Explanation details results

people liked least was ”Programmes from the Year X”, although there were users that also
gave a very favourable score to it.

When asked if they missed any explanation type, most users said they didn’t. Those
who did suggest explaining a programme based on what their friends profile and another
person suggested explanations based on the time slot the programme was broadcast.

Finally users were asked to evaluate the explanation types that described an individual
item. The results are shown in Figure 5.9. Again, the most rated explanation was ”because
you watched a previous episode”. Everyone rated the maximum score, meaning no one
had doubts about its meaning. The description people liked less was the one that justified

Chapter 5. User Studies 58

the recommendation because the user likes the director of the programme.

5.4 Discussion

User Studies allowed to test with real users the TV Hybrid Recommender algorithm. It
was the algorithm that had the best result in the Offline Evaluation step. This allowed to
get user’s feedback and suggestions that otherwise were impossible to get.

Here I discuss the objectives for this evaluation step, defined in Section 5.1.
Comparing these results with the studies [16] previously referenced in Section 1.1,

we observe that these users don’t have the same problems finding a programme to watch
because on average they take less time. Most users tried their cable TV provider recom-
mender system at least once but most didn’t like it. Only a few users told they used it
when looking for something to search. Nevertheless, they all felt a good recommender
system was important and most were very interest in recommendation explanations.

When asked if the users preferred a more conservative or a more serendipitous rec-
ommender system, most opted for a balance between the two options, with a slight pref-
erence for more conservative systems. A result that supports this preference is that the
most preferred explanation type was when a programme the user watches was shown
with the caption ”because you previously watched”. Most users, while thinking aloud,
commented recommendations on programmes they usually see improved their satisfac-
tion, as long as they were properly labelled. It also allowed them to look more carefully
to the more serendipitous recommendations. Most users answered they were more in-
terested in watching new programmes, with this recommendation system. When asked
directly about the recommendations and explanations quality, users approved the system.

Users liked most of the explanations contemplated by the system with just a few ex-
ceptions. Most did not want alternative explanations, since these covered most of the use
cases. Users also validated the defined explanation aims, saying it is efficient and it makes
them satisfied. Besides this positive feedback from the users, there was an interesting be-
haviour during the thinking aloud phase that divided the users. Sometimes the system
provided an explanation that the user felt was wrong, like explaining the user liked a pro-
gramme because he watched another programme he didn’t watch. Some users liked the
wrong explanation, because it allowed them to easily ignore the recommendation while
others didn’t like at all that the wrong explanation appeared.

Overall, most users wanted to continue to use this recommender system in the future.
This study represented a small sample of users that interact with television. Due to the re-
quirements of this study it is difficult to gather a larger sample. Ideally this project would
be integrated in a production system and online studies would be performed, allowing to
reach more users and to study the user behaviour for longer periods of time.

Chapter 5. User Studies 60

Chapter 6

Conclusion

This thesis studied and built a recommendation system, an area that is rapidly changing
and which is currently very relevant. During the development of this thesis, the biggest
Cable TV providers in Portugal released new products with focus on content recommen-
dation1 2. Nevertheless, the user study performed in this thesis allowed to see there is
still much room for improvement in current recommendation systems, and this work tries
to provide an alternative implementation with a significant focus on implicit user feed-
back. Most common algorithms were compared and tests showed they perform better
when combined in hybrid recommender systems. Having two error metrics, one based on
item’s coverage and another based on all items in the system, allowed to better understand
why the items coverage is important. Explanations are not a new concept in many current
recommendation systems, but Cable TV providers seem to generally ignore this possibil-
ity. Here, an explanations component with focus on simple text-based descriptions was
built and shown to be liked by its users.

Objectives

This thesis objectives were meet:

• Recommendation Engine A complete pipeline that allows to generate and evaluate
recommendations was built. It includes a recommendation engine able to generate
recommendations tailored for television, based on the user profile. Many algorithms
were tested and some were created for the TV domain. Two hybrid algorithm im-
plementations were made. After evaluations, TV Hybrid Recommender was chosen
to be used and tested with real users.

• Explaining Recommendations A module for explanations generation was built.
An algorithm for explanations was created based on a list of requirements. Users

1NOS renova plataforma Iris e estabelece novos standards internacionais http://goo.gl/7k9uze
2MEO revoluciona experiência de ver TV em Portugal com nova interface inteligente http://goo.

gl/YjQx2a

61

http://goo.gl/7k9uze
http://goo.gl/YjQx2a
http://goo.gl/YjQx2a

Chapter 6. Conclusion 62

liked it and it is a good differentiator to existing recommenders in cable TV providers.
As it is independent of the recommendations module, many algorithms can easily
be tested without affecting recommendations.

• User Interface A user interface to show recommendations was built. It is similar
to existing interfaces but allowed to perform user evaluations. Only the recommen-
dations screen was developed.

Challenges

In section 2.8, challenges for recommendation systems were defined. Here, I explain how
the developed work has addressed some of the challenges described.

• Implicit Feedback This thesis proposed a new solution to the implicit feedback.
Users can use the recommendation system just by watching television like they
are used to. It implements a implicit to explicit mapping function. This allows
to reuse the existing algorithms. Although it wasn’t compared to other existing
mapping functions by the users, we identified some problems that were fixed by
this implementation. During the user studies step, users generally acknowledged
them or someone in their families saw the identified programmes.

• Sparse Data and Item The developed hybrid algorithms use content-filtering al-
gorithms that are able to generate recommendations when no user rated the item
before. During user studies there was no specific test related to this, but since the
user sample was reduced, most items didn’t have any rating at all, meaning those
recommendations were based just in content based algorithms. As said previously,
users were generally favorable to the given recommendations, so the system was
able to overcome this challenge.

• Real-time requirements A component, Recommendations Dispatcher, was built to
solve this challenge. Recommendations are always cached and ready to be served
to the user. New recommendations are generated to all the users when items are
added or removed. Recommendations are also generated when a user is watching
an item.

The other two challenges were not addressed:

• Who’s Watching This is an interesting challenge because some users said they
would rather not see recommendations for other household members. A simple so-
lution might be having user profiles and asking the user to select a profile before
they watch TV. Less pervasive methods have been researched, like using accelerom-
eters in remote controls to identify who is watching [9].

Chapter 6. Conclusion 63

• Quality of Metadata This challenge wasn’t explored because it was not difficult to
find and use structured information about TV programmes on the internet, such as
websites like IMDB. It would be interesting if that information could be extracted
automatically from the audio and video streams but such approach would be out of
the scope of this thesis.

Future Work

This thesis focused on a subset of the much larger recommendation systems investigation
area. Due to the time limitations of a thesis, it was not possible to further detail some
mentioned topics.

There are many algorithms and alternative approaches to recommendations that could
have been tested like Knowledge-based and Community-based techniques. Both tech-
niques would probably allow to generate better and more interesting explanations to the
users.

For offline evaluations, other metrics could have been used. There are other not ad-
dressed techniques less used than RMSE but they could give a very different result. Only
implicit ratings were tested, a dataset with both implicit and explicit ratings would better
depict a real system. User Studies would benefit from a larger user base. All user studies
were based on profiles with watching data collected during one month. Testing the rec-
ommender with users with varying periods of user profiles would allow to check how the
recommender works over time. Although the system is prepared to generate recommen-
dations for every type of users, from the first time user to the recurring user, no tests were
made to validate it. This system would also benefit from Online Evaluations. It would
allow to have access to more users and faster algorithm iterations.

Finally, the user interface could be further developed to test different ways of present-
ing recommendations and explanations and to allow to provide feedback like telling the
system it provided a wrong recommendation.

Chapter 6. Conclusion 64

Appendix A

User Studies - Questions

User Profile

• Age

• Education Level

Television Usage

• Number of people that watch television at your home
(Numeric Answer)

• How often do you watch TV at home?
(Every Day, Every Week, Every Month, A couple of times per year, Never)

• How often do you watch TV with other people at home?
(Every Day, Every Week, Every Month, A couple of times per year, Never)

• How long, in minutes, does it take on average to choose a programme to
watch?
(Numeric Answer)

• Which factors influence your decision of which programme to watch?
(Free Text Input)

• What is your Cable TV operator?
(Free Text Input)

• Does your Cable TV operator provide access to a Recommendation System?
(Yes, No, I don’t know)

• How often do you use your Cable TV recommendation system?
(Always, Many times, Sometimes, Rarely, Never used)

• Are you satisfied when you use your Cable TV recommendation system?
(Always, Many times, Sometimes, Rarely, Never used)

65

Appendix A. User Studies - Questions 66

• How important are television recommendations systems for you?
(Very Important, Important, Some Importance, Little Importance, No impor-
tance)

• How important are recommendation explanations for you?
(Very Important, Important, Some Importance, Little Importance, No impor-
tance)

• In your opinion, where would you position a recommendation system?
(Scale: 1 - Largely Conservative; 10 - Largely Serendipitous)

Evaluated System Feedback

• Evaluate the following criteria:
(Scale: 1 - 10)

– Recommendations Quality

– Categories Order

– Explanations Quality

• Evaluate your opinion on the following sentences:
(Scale: 1 - Completely Disagree; 10 - Completely Agree)

– I would use this recommendations system in the future

– I am satisfied when I use this recommendations system

– Explanations were important to decide whether the programme was of
my interest or not

– This recommendation system is efficient

– This recommendation system is clear

– With this recommendation system I’m more interested in watching pro-
grammes that I usually do not watch

• Comments
(Free Text Input)

Explanation Types

• Evaluate the importance of the following category titles for recommended pro-
grammes:
(Scale: 1 - Not Important; 10 - Very Important)

– Popular Programmes

– People like you also like

– New episodes of your favorite programmes

– Fans of [Favorite Programme] also like

Appendix A. User Studies - Questions 67

– Programmes with [Favorite Actor]

– Programmes directed by [Favorite Director]

– Programmes from the year [Favorite year]

– Programmes broadcast in [Favorite TV Channel]

– Programmes of [Favorite Category]

• Evaluate the importance of the following descriptions for recommended pro-
grammes:
(Scale: 1 - Not Important; 10 - Very Important)

– Because you watched a previous episode

– Similar users also watched this programme

– Similar users also watched programmes from the same category

– Popular programme

– Because you watched [Programme]

– Because you like [Actor]

– Because you like [Director]

– General User Comments

User Comments
(Free Text Input)

Appendix A. User Studies - Questions 69

Bibliography

[1] Jorge Abreu, Pedro Almeida, and Bruno Teles. Tv discovery & enjoy: A new ap-
proach to help users finding the right tv program to watch. In Proceedings of the
2014 ACM International Conference on Interactive Experiences for TV and Online
Video, TVX ’14, pages 63–70, New York, NY, USA, 2014. ACM.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions. IEEE
Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005.

[3] Kamal Ali and Wijnand van Stam. Tivo: Making show recommendations us-
ing a distributed collaborative filtering architecture. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’04, pages 394–401, New York, NY, USA, 2004. ACM.

[4] Xavier Amatriain. Big & personal: Data and models behind netflix recommen-
dations. In Proceedings of the 2nd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and
Applications, BigMine ’13, pages 1–6, New York, NY, USA, 2013. ACM.

[5] Riccardo Bambini, Paolo Cremonesi, and Roberto Turrin. A recommender system
for an iptv service provider: a real large-scale production environment. In Francesco
Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender
Systems Handbook, pages 299–331. Springer US, 2011.

[6] Patrick Baudisch and Lars Brueckner. Tv scout: Lowering the entry barrier to per-
sonalized tv program recommendation. In Paul De Bra, Peter Brusilovsky, and
Ricardo Conejo, editors, Adaptive Hypermedia and Adaptive Web-Based Systems,
volume 2347 of Lecture Notes in Computer Science, pages 58–68. Springer Berlin
Heidelberg, 2002.

[7] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, UAI’98, pages 43–52, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc.

71

Bibliography 72

[8] Robin Burke. Hybrid recommender systems: Survey and experiments. User Mod-
eling and User-Adapted Interaction, 12(4):331–370, November 2002.

[9] Keng-Hao Chang, Jeffrey Hightower, and Branislav Kveton. Inferring identity using
accelerometers in television remote controls. In Proceedings of the 7th International
Conference on Pervasive Computing, Pervasive ’09, pages 151–167, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[10] Paul Cotter and Barry Smyth. Ptv: Intelligent personalised tv guides. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence and Twelfth Con-
ference on Innovative Applications of Artificial Intelligence, pages 957–964. AAAI
Press, 2000.

[11] Duco Das and Herman ter Horst. Recommender systems for tv. 1998.

[12] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. The youtube video recommendation system. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10, pages 293–296, New York,
NY, USA, 2010. ACM.

[13] Instituto Nacional de Estatı́stica. Subscribers of subscription television ser-
vice. http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_

indicadores&indOcorrCod=0006870, acessed in 2014.

[14] Mukund Deshpande and George Karypis. Item-based top-n recommendation algo-
rithms. ACM Trans. Inf. Syst., 22(1):143–177, January 2004.

[15] Christian Desrosiers and George Karypis. A comprehensive survey of
neighborhood-based recommendation methods. In Francesco Ricci, Lior Rokach,
Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook,
pages 107–144. Springer US, 2011.

[16] Digitalsmiths. Q1 2014 Video Discovery Trends Report: Consumer Behavior Across
Pay-TV, VOD, OTT, Connected Devices and Next-Gen Features. Durham, NC, USA,
2014.

[17] Simon Dooms, Toon De Pessemier, and Luc Martens. Movietweetings: a movie
rating dataset collected from twitter. In Workshop on Crowdsourcing and Human
Computation for Recommender Systems, CrowdRec at RecSys 2013, 2013.

[18] Michael Ehrmantraut, Theo Härder, Hartmut Wittig, and Ralf Steinmetz. The per-
sonal electronic program guide - towards the pre-selection of individual tv programs.

http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0006870
http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&indOcorrCod=0006870

Bibliography 73

In Proceedings of the Fifth International Conference on Information and Knowledge
Management, CIKM ’96, pages 243–250, New York, NY, USA, 1996. ACM.

[19] Michael D. Ekstrand, Michael Ludwig, Joseph A. Konstan, and John T. Riedl.
Rethinking the recommender research ecosystem: Reproducibility, openness, and
lenskit. In Proceedings of the Fifth ACM Conference on Recommender Systems,
RecSys ’11, pages 133–140, New York, NY, USA, 2011. ACM.

[20] Simon Funk. Netflix update: Try this at home. http://sifter.org/˜simon/
journal/20061211.html, 2006.

[21] Jon Herlocker, JosephA. Konstan, and John Riedl. An empirical analysis of de-
sign choices in neighborhood-based collaborative filtering algorithms. Information
Retrieval, 5(4):287–310, 2002.

[22] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collaborative
filtering recommendations. In Proceedings of the 2000 ACM Conference on Com-
puter Supported Cooperative Work, CSCW ’00, pages 241–250, New York, NY,
USA, 2000. ACM.

[23] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, January 2004.

[24] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In In IEEE International Conference on Data Mining (ICDM
2008, pages 263–272, 2008.

[25] Rong Jin, Luo Si, ChengXiang Zhai, and Jamie Callan. Collaborative filtering with
decoupled models for preferences and ratings. In Proceedings of the Twelfth Inter-
national Conference on Information and Knowledge Management, CIKM ’03, pages
309–316, New York, NY, USA, 2003. ACM.

[26] Thorsten Joachims and Filip Radlinski. Search engines that learn from implicit
feedback. Computer, 40(8):34–40, August 2007.

[27] Christopher Krauss, Lars George, and Stefan Arbanowski. Tv predictor: Personal-
ized program recommendations to be displayed on smarttvs. In Proceedings of the
2Nd International Workshop on Big Data, Streams and Heterogeneous Source Min-
ing: Algorithms, Systems, Programming Models and Applications, BigMine ’13,
pages 63–70, New York, NY, USA, 2013. ACM.

[28] Daniel Lemire and Anna Maclachlan. Slope one predictors for online rating-based
collaborative filtering. CoRR, abs/cs/0702144, 2007.

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html

Bibliography 74

[29] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-based recom-
mender systems: State of the art and trends. In Francesco Ricci, Lior Rokach,
Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Handbook,
pages 73–105. Springer US, 2011.

[30] Sean M. McNee, John Riedl, and Joseph A. Konstan. Being accurate is not enough:
How accuracy metrics have hurt recommender systems. In CHI ’06 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’06, pages 1097–1101,
New York, NY, USA, 2006. ACM.

[31] ZON Multimédia. Impactos ZON na economia portuguesa 2007-2012. Lisboa,
Portugal, 2013.

[32] Cataldo Musto, Fedelucio Narducci, Pasquale Lops, Giovanni Semeraro, Marco
de Gemmis, Mauro Barbieri, Jan H. M. Korst, Verus Pronk, and Ramon Clout.
Tv-show retrieval and classification. In Giambattista Amati, Claudio Carpineto,
and Giovanni Semeraro, editors, IIR, volume 835 of CEUR Workshop Proceedings,
pages 179–182. CEUR-WS.org, 2012.

[33] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’90,
pages 249–256, New York, NY, USA, 1990. ACM.

[34] Douglas Oard and Jinmook Kim. Implicit feedback for recommender systems. In in
Proceedings of the AAAI Workshop on Recommender Systems, pages 81–83, 1998.

[35] Pearl Pu and Li Chen. Trust building with explanation interfaces. In Proceedings
of the 11th International Conference on Intelligent User Interfaces, IUI ’06, pages
93–100, New York, NY, USA, 2006. ACM.

[36] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: An open architecture for collaborative filtering of netnews. In Pro-
ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,
CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[37] Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM, 40(3):56–
58, March 1997.

[38] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B.
Kantor, editors, Recommender Systems Handbook, pages 1–35. Springer US, 2011.

[39] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Applica-
tion of dimensionality reduction in recommender system – a case study. In IN ACM
WEBKDD WORKSHOP, 2000.

Bibliography 75

[40] Guy Shani and Asela Gunawardana. Evaluating recommendation systems. In
Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Rec-
ommender Systems Handbook, pages 257–297. Springer US, 2011.

[41] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for
automating “word of mouth”. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’95, pages 210–217, New York,
NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[42] Nava Tintarev and Judith Masthoff. A survey of explanations in recommender sys-
tems. In Proceedings of the 2007 IEEE 23rd International Conference on Data
Engineering Workshop, ICDEW ’07, pages 801–810, Washington, DC, USA, 2007.
IEEE Computer Society.

[43] Nava Tintarev and Judith Masthoff. Designing and evaluating explanations for rec-
ommender systems. In Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B.
Kantor, editors, Recommender Systems Handbook, pages 479–510. Springer US,
2011.

[44] Jeroen Van Barneveld and Mark Van Setten. Designing usable interfaces for tv
recommender systems. In Personalized Digital Television, volume 6 of Human-
Computer Interaction Series, pages 259–285. Springer Netherlands, 2004.

[45] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-
proving recommendation lists through topic diversification. In Proceedings of the
14th International Conference on World Wide Web, WWW ’05, pages 22–32, New
York, NY, USA, 2005. ACM.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Planning
	Document Structure

	Related Work
	Recommendation Systems Approaches
	Recommendation System Model
	Collaborative filtering
	Content-based filtering
	Hybrid filtering
	User Feedback

	Explaining Recommendations
	Explanation Aims
	Presenting Recommendations
	Explanation Styles

	Evaluation
	Evaluation Measures
	Datasets

	User Experience
	Soliciting Feedback
	Presenting Recommendations
	Providing Explanations
	Big Screen Interface

	TV Recommendation Systems
	Frameworks
	Real World Cases
	Challenges
	Summary

	Work
	A TV Recommendation System Model
	System Modules and Pipeline
	Data Sources
	Data Preprocessor
	Recommender Module
	Explanations Generator
	Recommendations Dispatcher
	Web Services
	Recommendations Frontend

	Implementation
	Data Sources and Data Preprocessor
	Recommender Module
	Explanations Module
	Recommendations Frontend

	Summary

	Offline Evaluation
	Dataset
	TV Ratings Dataset
	Assembled dataset

	Evaluated Measures
	Results
	Baseline Functions
	Collaborative-filtering Algorithms
	Content-filtering Algorithms
	Hybrid Algorithms
	Discussion

	User Studies
	Objectives
	Evaluation Method
	User Evaluation Session

	Results
	Sample Characterization
	Session
	User Feedback
	Explanations

	Discussion

	Conclusion
	User Studies - Questions
	Bibliography

