
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

VULNERABILITY DISCOVERY IN POWER LINE
COMMUNICATIONS

Fernando Baptista Leal Alves

Dissertação orientada pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira

Neves e co-orientado pelo Prof. Doutor Alysson Neves Bessani

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2015

Acknowledgements

In first place I thank my advisors for accepting me for this thesis. Both taught me a
lot. Prof. Nuno is excellent at raising the bar, and prof. Alysson - who I work with for
two and a half years - always provided excellent feedback to improve my work. Thank
you for this opportunity. Next to my advisors, I thank Francisco Aragão and Manuel José
Mendonça for the time they spent helping me with the thesis. Francisco provided me
with an excellent jump start on hacking, and Manuel introduced me to the world of Linux
device drivers. Without their help this work would have never reached this point.

I thank my parents for their support, and a very special thanks to my brother Daniel
who listened to me and read a bit of this thesis without understanding a thing, besides
being my daily comrade. Next, I thank all my friends for support and company, specially
for César Santos, João Caetano, João Vieira, José Simões and Soraia Meneses Alarcão,
for all the lunch and snack time conversations. The time spent with them allowed me
to recharge batteries and keep on working. They also read my thesis, which tested their
patience. For all my friends, my thanks.

Last but not (at all!) least, I thank my girlfriend and love Soraia Meneses Alarcão, not
only for actually loving me (who knows how), but for being my friend, my companion,
and my special little girl. You were always present and lighten my mood with your care.
For making my days brighter, thank you.

i

Funding

This work was partially supported by the EC through project FP7 SEGRID (607109), by
national funds of Fundação para a Ciência e a Tecnologia (FCT) through project UID/-
CEC/00408/2013 (LaSIGE).

Para a Soraia.

Resumo

A comunicação em powerline é uma forma de transmissão de dados através da rede
eléctrica. Esta é usada para a passagem de corrente e transmissão de dados, utilizando as-
sim a mesma infra-estrutura para duas funcionalidades, ambas essenciais nos dias de hoje.
Existem ligações de banda estreita e larga em comunicação por powerline, dependendo
da frequência da onda eléctrica. Devido à baixa frequência e à distância entre pontos,
em redes industriais existem apenas ligações de banda estreita, providenciando veloci-
dades até 500kB/s. Em redes caseiras a frequência da onda eléctrica é alta, permitindo
comunicação em powerline com velocidades de banda larga (várias centenas de MB/s).

Esta forma de comunicação tem dois principais usos: redes domésticas e redes indus-
triais. Em redes domésticas, a comunicação em powerline é utilizada para estender uma
ligação Internet já existente, através dos fios eléctricos de uma casa. O objectivo é obter
conectividade em qualquer ponto de uma casa sem recorrer a repetidores, redes sem fios,
ou à instalação de novos cabos. Para este efeito são utilizados adaptadores de powerline,
que são ligados às tomadas eléctricas. O router que serve de ligação à internet é conec-
tado através de um cabo Ethernet a um destes adaptadores. Note-se que este é um router
comum, obtido através de uma instalação de internet tı́pica. Ao estar ligado ao adaptador
de powerline, o router transmite dados através da rede eléctrica. Outros adaptadores de
powerline podem então ser ligados a outras tomadas da mesma casa, e a estes podem ser
ligados computadores, impressoras, ou quaisquer outros equipamentos que se deseje que
tenham uma ligação à rede, obtendo sinal tal como a partir de uma ligação directa ao rou-
ter. Assim, a partir de qualquer tomada é possı́vel obter ligação à Internet para qualquer
computador ou dispositivo caseiro.

As redes industriais são compostas por vários elementos que formam a distribuição de
serviços num paı́s, como é o caso da rede eléctrica, gás e água, entre outras utilizações.
Neste ambiente, a comunicação em powerline permite que a rede eléctrica já existente
seja utilizada para a passagem de informação, como leituras de contadores ou o envio
de alarmes. Os principais utilizadores da comunicação em powerline são as companhias
eléctricas, que com esta forma de comunicação podem usar a sua infra-estrutura para
fornecer electricidade e obterem leituras automáticas de contadores inteligentes (conta-
dores com poder de processamento e ligações de rede). Com estas leituras actualiza-
das em tempo real, as companhias eléctricas conseguem ter um controlo elevado sobre o

v

equilı́brio necessário entre a produção e o consumo de electricidade. Se este equilı́brio não
for mantido, podem ocorrer picos de tensão ou quebras na distribuição eléctrica, caso haja
electricidade na rede a mais ou menos (respectivamente). Os picos de tensão são capazes
de danificar equipamentos ao ponto de ficarem irreparáveis. As quebras na distribuição
causam a paragem do funcionamento de alguns elementos ligados à rede eléctrica. Esta
situação pode também ser perigosa, visto que, por exemplo, comboios eléctricos requerem
um fornecimento continuado de corrente para o seu correcto funcionamento.

Na rede eléctrica a corrente é transmitida através de uma onda sinusoidal. A modelação
desta onda é o que permite a comunicação em powerline. Às várias amplitudes de onda
podem ser atribuı́dos valores lógicos - por exemplo, podemos atribuir à amplitude mı́nima
da onda o valor lógico 0 e à amplitude máxima o valor lógico 1. Outras configurações
mais complexas são possı́veis. A onda eléctrica é modulada de modo a que se consi-
gam ler os valores pretendidos na amplitude da onda, atingindo assim a passagem de
informação na mesma infra-estrutura que providencia electricidade.

As companhias que produzem dispositivos para powerline juntaram-se em alianças,
de modo a que todos os dispositivos produzidos pelos membros sejam padronizados e
compatı́veis entre si. Estes standards podem ser de acesso livre ou apenas para membros
da aliança. A maioria destes protocolos inclui mecanismos de segurança. No entanto,
alguns destes mecanismos já foram demonstrados como sendo inseguros, permitindo (por
exemplo) que atacantes controlem a rede ou os dispositivos em si.

Este trabalho é orientado à procura de vulnerabilidades de segurança em protocolos
de powerline. Apresentamos um resumo de alguns dos protocolos usados actualmente, e
efectuamos uma descrição mais aprofundada do protocolo HomePlug. Este é o protocolo
escolhido para análise neste trabalho, visto ser amplamente usado em ambientes caseiros
e por existir um fácil acesso a adaptores HomePlug. Identificámos uma vulnerabilidade
de desenho presente num dos mecanismos de troca de chaves criptográficas, que permite a
um atacante que escute a rede durante a execução do protocolo obter as principais chaves
de rede, conseguindo assim completo acesso à rede e à informação trocada nesta.

Para provar na práctica esta vulnerabilidade, precisamos de escutar a rede eléctrica.
Dado que não sabemos construir um dispositivo que ouça a transmissão de dados na rede
eléctrica, optámos por modificar um adaptador já existente que corre uma versão mini-
malista de Linux. Efectuámos com sucesso actualizações ao firmware do adaptador, de
modo a conseguirmos acesso remoto com privilégios de administrador. Por acedermos ao
adaptador conseguimos roubar informações e chaves criptográficas, o que só por si é uma
contribuição apesar de não ser o objectivo deste trabalho. Acesso a um novo elemento da
rede permite-nos fazer novos ataques, e como tal apresentamos várias possibilidades de
ataque à rede e a dispositivos utilizando adaptadores de powerline.

Neste adaptador analisámos a execução do protocolo vulnerável, corremos um ana-
lisador de tráfego, colocámos binários, device drivers, e explicamos como modificar o

vi

núcleo e o bootloader. Infelizmente, nenhum dos testes realizados serviu para provar na
práctica a vulnerabilidade. Apesar de concluirmos que alguma informação do HomePlug
chega a user level, as mensagens especı́ficas do HomePlug continuam encobertas, fora do
nosso alcance. Algumas possibilidades ainda estão em aberto para obter estas mensagens
são descritas, sendo uma possı́vel continuação deste trabalho.

Palavras-chave: Powerline, Segurança, Chaves criptográficas, Hacking.

vii

Abstract

Powerline communication (PLC) is a form of data transfer, where the electric infras-
tructure is used for both power supply and network connection. PLC can be employed in
industrial or home environments. In home environments, powerline is used to extend the
internet connectivity through the house’s electric infrastructure. Powerline adapters are
connected to a house’s power sockets, and these adapters provide connectivity throughout
the house. A router is linked to one of the adapters to establish the connection, and other
adapters are used to decode the powerline signal. These adapters provide an easy manner
to extend a home network without the use of various routers, Wi-Fi, repeaters or new ca-
bles. In industrial environments, PLC is used (for example) to provide real time data about
the electric consumption in the electric grid, allowing fine control of the required/used
electricity. With this control, electric suppliers produce electricity more efficiently, re-
ducing production costs and prices for the final consumers. Device manufacturers created
alliances to standardize their products, developing protocols and guidelines to this effect.
We present a summary of some of these standards. These protocols include security mea-
sures in their specifications (like cryptography), but some protocols have already been
proven unsafe. In this work, we study the HomePlug protocol which is commonly used
to extend connectivity inside homes. We describe a design vulnerability present in the
HomePlug, in one of the cryptographic key exchange mechanisms. An attacker who lis-
tens to the medium can steal the critical network keys. To prove this vulnerability, we
created a malicious adaptor by updating it with malicious firmware. Although we ran a
large battery of tests in the adaptor, we were unable to prove the vulnerability. Never-
theless, we provide an insight on a series of attacks that can be done using a malicious
adaptor as an attack point, which can be used in the future to extend this work.

Keywords: Powerline, Security, Network keys, Hacking.

ix

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 4
1.2 Goals . 5
1.3 Contributions . 6
1.4 Work plan . 6
1.5 Structure of the document . 8

2 Related work 9
2.1 Home environment standards . 9

2.1.1 HD-PLC . 10
2.1.2 HomePlug Alliance . 10
2.1.3 IEEE 1901 standard . 11

2.2 Industrial environment standards . 11
2.2.1 DNP3 . 11
2.2.2 G3 . 12
2.2.3 Meter-BUS . 13
2.2.4 Meters and More . 13
2.2.5 Open Smart Grid Protocol . 13
2.2.6 Powerline Intelligent Metering Evolution 14
2.2.7 Zigbee . 14
2.2.8 IEEE 1901.2 standard . 14

2.3 Vulnerabilities in PLC . 15
2.3.1 DNP3 . 15
2.3.2 HomePlug . 15
2.3.3 M-BUS . 16
2.3.4 OSGP . 16
2.3.5 Zigbee . 17

xi

2.4 HomePlug protocol and devices . 17
2.4.1 HomePlug in practice . 17
2.4.2 The HomePlug protocol . 18
2.4.3 HomePlug adaptors . 23

3 HomePlug key exchange mechanisms and our attack plan 27
3.1 NMK exchange mechanisms . 27

3.1.1 Security analysis . 29
3.1.2 An alternative more secure to UKE 30

3.2 Exposing the UKE security flaw . 31
3.2.1 The Devolo dLAN WiFi 500 powerline adaptor 32

4 Implementation and evaluation 35
4.1 Experimental setup . 35
4.2 Modifying the Devolo dLAN 500 WiFi 36

4.2.1 Extract firmware . 36
4.2.2 Modifying/adding files . 37
4.2.3 Rebuilding the firmware . 37
4.2.4 Bypassing the security . 37
4.2.5 Updating the target adaptor . 38

4.3 Obtaining access to the adaptor . 38
4.4 Execution flow of the UKE protocol on our adaptor 40
4.5 Running binaries on the adaptor . 42

4.5.1 Cross-compiling . 42
4.5.2 Cross-compiling tcpdump . 44
4.5.3 Cross-compiled binaries results 44

4.6 Adding drivers . 46
4.6.1 Kernel, kernel objects, drivers, and physical/Ethernet drivers . . . 46
4.6.2 Cross-compiling drivers . 47
4.6.3 Cross-compiling dvlbutton . 47
4.6.4 Cross-compiling a network driver 49
4.6.5 Testing DSA driver . 50

4.7 Changing kernel/bootloader . 52
4.8 Discussion . 53

5 Conclusions 55
5.1 Future work . 56

A UKE details 59

B Devolo dLAN 500 Wifi update sequence 63

xii

C Makefiles 67
C.1 Simple native Makefile . 67
C.2 Simple cross-compiling Makefile . 67
C.3 Makefile for dvlbutton . 68
C.4 Makefile for DSA driver . 68

Glossary 73

Bibliography 82

xiii

List of Figures

1.1 Example of a simple powerline network connecting a computer and an
ISP router. 2

1.2 Example of a sinusoidal modulation to transmit data. 3

2.1 Distribution of PLC protocols across Europe. 12
2.2 Examples of powerline adaptors. 18
2.3 Practical example of a simple powerline network. 19
2.4 Example of a complex powerline connection with two networks. 20
2.5 Examples of the logical interface isolation and the HomePlug network

layers. 21

3.1 Comparison of NDE and NUD. 28
3.2 Diagram of the UKE protocol. 30
3.3 Proposed solution to the UKE vulnerability. 31

4.1 Representation of our experimental setups. 36

B.1 Web update sequence (1). 63
B.2 Web update sequence (2). 64
B.3 Web update sequence (3). 65
B.4 Web update sequence (4). 66

xv

List of Tables

1.1 Comparison between the various technologies used to extend connectivity. 2

2.1 PLC standards, publishing alliances, websites and versions/publish dates. 10

3.1 Representation of the firmware update structure. 33

4.1 Equivalent native and MIPS cross-compile toolchain GCC calls. 43

A.1 UKE message 1. 59
A.2 UKE message 2. 59
A.3 UKE message 3. 60
A.4 UKE message 3 encrypted payload. 60
A.5 UKE message 4. 61
A.6 UKE message 4 encrypted payload. 61

xvii

Chapter 1

Introduction

Powerline communication (PLC) is a form of data transfer through the alternate electric
current (AC) conductor, using it for both network and power supply [1]. Its main advan-
tage is the use of a single infrastructure for these two purposes. The re-use of the electric
infrastructure reduces costs, since there is no need for two installations - one for electricity
and one for network connectivity. The electric wave has different frequencies depending
on the distance between connection points, due to the nature of the electric current and
distribution. Connections inside homes have high frequencies (1.8-250 MHz), allowing
broadband connections (data rates up to several hundred MB/s), while high voltage ca-
bles use low frequencies (3-500 kHz), providing narrowband network (data rates up to
500 KB/s) [1].

Broadband powerline networks are available for household environments. Home PLC
offers comfort to users by creating a network using the existing electric infrastructure of
the house, which is employed to extend connectivity to the various rooms. The need for
this kind of network comes from the typical internet installation case, where an Internet
Service Provider (ISP) sets up a router in a division of the house. Devices in this room
get internet access by connecting directly to the router with an Ethernet cable, but in
the remaining divisions of the house there is no signal. To extend the router’s signal,
one can use Wi-Fi (if the router has such capability), signal repeaters (for Wi-Fi), extend
new network cables, or powerline. It is also possible to install more routers, but this is
typically more expensive and a cheaper solution usually suffices. Powerline adaptors’
main advantages are reliability and simplicity, which is a trade off with some initial cost
of buying the equipment. These provide connection speeds ranging from 200Mb/s up to
1200Mb/s depending on the adaptor, but the signal can be affected by many factors that
might force a decrease on the bandwidth. Table 1.1 compares some aspects of powerline
with other signal extending solutions.

A simple example scenario of extended connectivity using powerline is present in
Figure 1.1. An internet connection is provided by the ISP, as we commonly have in our
homes. Then, the ISP’s router is connected to one adaptor through an Ethernet cable and

1

Chapter 1. Introduction 2

Solutions Signal range Cost Signal robustness
Powerline Up to 300m ±e45 for 2 adaptors Influenced by medium noise
Wi-fi and Varies; ±e30 Influenced by physical
signal repeaters typically ±20m aspects (walls, etc)
Cables High Installation cost (±e40) Very high
Extra Routers High Installation + router Equal to cables and/or wi-fi

cost (±e70)

Table 1.1: Comparison between the various technologies used to extend connectivity.

this adaptor is linked to the power strip through a power plug. Somewhere else in the
house, another adaptor is linked to a power plug on the same power strip. Note that in
home environments, there is typically only one power strip throughout all rooms. Finally,
the computer is connected to the second adaptor, gaining access to the router without
installing any extra cables through the house. Powerline in home environments can also
be used to provide easy integration with the Internet of Things (IoT) [2], since devices (for
example, a fridge) can be easily connected to home controllers, and also to the internet.

Figure 1.1: Example of a simple powerline network connecting a computer and an ISP
router.

Narrowband powerline is used in industrial environments. These represent electricity
distribution, Supervisory Control And Data Acquisition (SCADA) systems [3], and other
infrastructure elements that provide services to homes or industries. Industrial powerline
networks are used primarily for data collection, and typically cover large geographical
areas. The power grid is one of the main industrial environments where powerline com-
munication is used. In the power grid, the balance between produced and consumed
energy must be kept. If too much energy is being produced, voltage peaks occur. These
may damage hardware circuits, typically shutting them down and possibly impairing them
beyond repair. On the other hand, if too little energy is injected on the grid, a power out-
age may happen, meaning that there is not enough energy for all connected elements and
some of these will shut down due to lack of power. Both events are problematic and can
affect society in general. For example, electric trains require a continuous electric supply
to function correctly.

Chapter 1. Introduction 3

For a better control of the energy produced/consumed, electric utilities are replacing
classic electric meters with smart meters [4]. These meters use powerline communica-
tion to provide periodic readings to the utilities, transmitting a more accurate value of
how much energy is being demanded on the power grid at all times. By knowing how
much energy is necessary, power generation can be adjusted to match the demands. This
fine control over the electric production improves the safety of the power grid, as well
as reducing electric generation costs - which should also mean decreased costs for the
consumers.

Nowadays, companies have organized themselves in alliances to define PLC standards
for their products, ensuring that all devices created by the members are compatible. Most
of them focus either on home or industrial networks. For instance, the PRIME alliance
defines a standard for industrial networks (see Chapter 2 for other examples).

The AC electric supply is defined by a voltage oscillation according to a sinusoidal
function [5]. This sinusoidal defines the minimum/maximum voltage values and the fre-
quency of the electric wave. Powerline communication is possible by using this sinu-
soidal, modulating the wave to control its behaviour and read logical values from the
amplitude of the wave. Given maximum wave amplitudes −α and α, then −α could be
interpreted as binary 0 and α as binary 1. The wave would be modulated so that the peaks
−α and α would match the bits of the transmitted data. A simple example is illustrated in
Figure 1.2. In the amplitude of the wave we can read logical values that correspond to the
bits of a file to be transmitted (using α = 220, which is the typical voltage value supplied
in our homes).

Figure 1.2: Example of a sinusoidal modulation to transmit data.

Other configurations are possible by modulating the wave and reading various logical
values. Orthogonal frequency-division multiplexing (OFDM) [6, 7] is one of the princi-
pal techniques used in powerline communications to modulate the sinusoidal wave. It is
a popular modulation technique that is used in several contexts like digital television and
audio broadcasting, DSL Internet access, wireless networks, and 4G mobile communica-
tions. It is the modulation technique that prevents devices connected to the circuit from
being affected by the changes to the sinusoidal wave. An equilibrium between the positive

Chapter 1. Introduction 4

and negative voltages must be kept, or otherwise the modulation will cause voltage peaks
that can damage circuits.

The wave frequency and modulation technique are the key factors that influence the
transmission speed of the powerline. Other factors like the quality of the cables and the
noise imprinted by devices connected to power supply [8] also influence the transmission
speed (the higher the noise, the lower the speed).

1.1 Motivation

The powerline network can be a sensible component because it might transmit critical in-
formation. In industrial environments is sent information used to control heavy machinery
and critical services over the powerline. For example, on the power grid, the network is
used to transmit electric consumption readings and commands that are used to change the
behaviour of field units (e.g., circuit breakers). Here, various attacks are possible, includ-
ing changing the messages in transit or access the data to profile users. In the first case,
an attacker tampers with the values sent by smart meters, with the objective of leading
the electric utility to believe there is too little or too much power in the grid, causing a
power outage or peak respectively. An attacker could also change the electric consump-
tion values measured by the meter to make users pay for more or less energy than actually
consumed. The second attack can reveal personal information about the consumers. By
profiling the electric consumption of a house, an attacker may discover which devices are
connected and if there are people present in the house at a given time [9, 10]. In addition,
this information could be illegally used for marketing purposes. In home environments,
the powerline is used to extend an internet connection. By accessing the powerline an
attacker can listen or tamper with the users’ internet traffic.

To protect communications, PLC standards resort to cryptographic approaches, such
as encrypting the transmitted messages. To encrypt communications, every participant
must possess the same encryption keys. So a reliable method is required to distribute
these keys - a key distribution protocol must be robust. If there are flaws in the distribution
mechanism, an attacker can compromise the key provisioning and steal the keys to listen
to the network, change its messages, or impersonate participants of a network, amongst
other attacks. We can classify key distribution methods into two categories: those that use
the existing network and those that use an out-of-band mechanism. Methods that use the
network always require some previous information exchange or a trusted third party [11].
Examples of these methods are Kerberos [12], signed Diffie-Hellman protocol [13], or
Secure Sockets Layer (SSL) [14]. Out-of-band mechanisms require a secondary secure
channel to transmit some data (such as identities, nonces - unpredictable random numbers
- or keys) that allows the establishment of a secure channel on the insecure network. The
out-of-band mechanisms are designed according to the environment in question. A few

Chapter 1. Introduction 5

examples are the users of the devices that exchange the data directly [15], by inputting the
data in the devices, or through a dedicated connection (e.g., a separate cable connecting
the devices directly).

Poweline communications have already been attacked to some extent [16, 17, 18, 19,
20, 21, 22]. An example is presented next for each environment. In industrial connections,
the DNP3 standard can be used for communications in the power grid. This standard has
no security measures whatsoever, meaning an attacker with access to the network can
freely tamper with every element present in it [16]. In home environments, the Zigbee
protocol is vulnerable to denial of service attacks [21].

There are two key factors that make attacking the powerline difficult: access to the
specifications, and access to the medium (to attack the protocols). Most protocols are
closed, and only the device manufacturers can read them. Most of the information present
in this work about these protocols was found on various sites on the internet. To access the
powerline medium specific equipment is required, either by building a device or through
commercial products. Building such device implies advanced knowledge on hardware
circuits and electric components. The other solution is to reverse engineer [23] a com-
pliant device. The technical specifications of these devices are mostly closed access as
well. This means that attacking the devices or the powerline protocols is mainly black
box testing [24] and reverse engineering. Given the underlying difficulties, we believe
that any contributions made in this area are significant.

1.2 Goals

With this work we intend to assess the security of a chosen PLC protocol. If vulnerabilities
exist, we explain why they are present and provide solutions. The chosen protocol was
the HomePlug [25], mainly because it is used extensively in countries in Europe and also
due to easy access to compliant devices. Our goals are to make a security analysis of the
protocol, and if any flaws are found to prove their existence in theory and practice. For
this work, we aim to answer three main research questions:

Q1: Are there any design vulnerabilities in the HomePlug protocol?

Q2: Are the key exchange mechanisms of the HomePlug robust?

Q3: Can we break the security of the protocol in a realistic scenario? i.e.,

Q3.1: Can we infiltrate/modify a HomePlug adaptor?

Q3.2: Can we use this adaptor to demonstrate experimentally the design security
flaws that are eventually found?

Q3.3: Can we demonstrate the flaws in a realistic scenario?

Chapter 1. Introduction 6

1.3 Contributions

We present an overview of the current powerline standards, both in industrial and home
environments. Since our target is the HomePlug protocol, we provide a complete sum-
mary of it. This work identifies a flaw in one of the cryptographic key exchange mecha-
nisms of HomePlug. An attacker who listens to this key exchange can steal the network
keys, and freely infiltrate a HomePlug network. We explain the theory behind the flaw
and the planning on how we intended to demonstrate it.

To access the powerline network and do the attack, we needed a HomePlug Sniffer.
Since we do not possess the expertise to build a powerline Sniffer, we reverse engineered
and hacked a Devolo dLAN 500 WiFi adaptor, which is HomePlug compliant. We chose
this device in particular because it runs Linux, an operating system we are familiar with.
We provide a complete description of our malicious adaptor’s components and how it
works. We introduced malicious software in the adaptor by abusing the update mecha-
nism. We obtained root access to the adaptor, gathered its configurations and some critical
keys. We also cross-compiled binaries to it [26, 27], changed/added kernel objects, in-
cluded a new network driver, and explained how to change its kernel and bootloader. By
hacking a powerline adaptor we get access to a new element in a network, which has the
perspective of a relay between two points. Using this network position, we provide sug-
gestions for a series of potentially dangerous network attacks using powerline adaptors as
attack vectors.

We traced the execution of the flawed protocol in our adaptor. However, the adap-
tor limits the access to the HomePlug specific messages, which preclude the complete
demonstration of the flaw. We present the adaptor’s behaviour during the protocol execu-
tion, but somehow it prevents specific messages from being displayed in traffic analysers.
We were unable to read the majority of HomePlug messages, including the ones required
to demonstrate the identified flaw of the protocol. We also triggered the protocol manually
using a program made by us, in an attempt to separate the protocol from its implementa-
tion in the adaptor. Unfortunately, this also provided no results. Nevertheless, we believe
that information about the HomePlug messages (if not the packets themselves) reach the
Linux user space. We enumerate possible changes that can be done in an attempt to obtain
the HomePlug messages and disclose the vulnerability.

Concluding, we positively answer research questions Q1, Q2, and Q3.1. Although we
traced the execution of the flawed protocol in our adaptor, it was not enough to give Q3.2
an affirmative answer. Consequently, Q3.3 remains unanswered.

1.4 Work plan

This work was developed in LaSIGE - Laboratório de Sistemas Informáticos de Grande
Escala, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa,

Chapter 1. Introduction 7

under the supervision of professor Nuno Neves and professor Alysson Bessani.
The original work plan starts on 01/10/14 and finishes on 30/06/15, with the following

phases:

(1) 01/10 - 28/11: Study of a set of powerline protocols. Selection of a protocol to
study for the remainder of the thesis;

(2) 01/12 - 31/12: Analysis of the protocol for security flaws;

(3) 01/01 - 31/01: Design of solutions to detect vulnerabilities in the configuration or
implementation of the protocol;

(4) 15/01 - 15/06: Implementation of the solutions and evaluation;

(5) 01/04 - 30/06: Description of the work in a report or thesis.

In the original work plan our study target was the PRIME protocol [28, 29], which is
used by Energias de Portugal (EDP) for communication in the power grid. To efficiently
run practical tests, we proposed a flexible attack tool to streamline the vulnerability testing
process. We have access to the PRIME protocol specification because it is open access.

To test if the communication in the Portuguese smart grid is safe, we need access to
the specific powerline devices used by EDP, which use a unique implementation of the
PRIME protocol. Although smart meters are available on the market, the specific meters
produced for EDP are not available for purchase. Obtaining the EDP smart grid elements
is a long bureaucratic process, and we did not have access to them in time for this work.

Since we had to choose a new protocol, the HomePlug was our next target. We found
the guidelines online [25], and HomePlug compliant devices are easy to obtain - they
can be bought in any electronics store - and are fairly cheap (around e45 for two simple
adaptors). We bought some of these adaptors, hoping we could obtain the HomePlug
messages on a computer connected to them. After testing with traffic analysers running in
a computer connected to one of these adaptors, we discovered that the powerline messages
do not leave the powerline network. This means that in order to obtain a Sniffer, we have
to either build one or make a HomePlug adaptor malicious. We opted for the second
option, and successfully hacked a HomePlug adaptor. Nevertheless, hacking the adaptor
was done in place of the attack tool since we did not have time to do both.

There was a small delay in the delivery of this document, because the student while
working in this thesis, was also completing his contribution to the BioBankCloud pro-
ject [30]. Fernando gathered data and finished writing a paper from October to the start
of February, which was when the final article was submitted. Smaller contributions were
also provided until the paper was finally accepted, in mid-June [31].

Summarizing, steps (1) and (2) were finished successfully, and the HomePlug protocol
is our target. For step (3) we had proposed a flexible attack tool, but later we found we

Chapter 1. Introduction 8

had to build a specific Sniffer for the HomePlug. This lead us to construct the Sniffer in
place of the tool. Steps (4) and (5) were also successfully completed, although there was
a small delay in the delivery of the thesis.

1.5 Structure of the document

This document is structured as follows:

• Chapter 2 - Related work: Describes some of the existing powerline protocols, their
known vulnerabilities and reviews the most important features of the HomePlug
protocol.

• Chapter 3 - HomePlug key exchange mechanisms and our attack plan: Presents a
the key exchange mechanisms of the HomePlug, the security design flaw we dis-
covered, and how we intend to demonstrate it.

• Chapter 4 - Implementation and evaluation: Explains the implementation of our
work and the obtained results.

• Chapter 5 - Conclusions: Summarizes the contributions of the thesis and discusses
future work.

Chapter 2

Related work

This chapter presents some of the protocols currently in use for PLC. These protocols are
employed to guarantee the compliance of the products from various device manufactur-
ers. The standards are divided into two categories: standards for industrial and for home
environments. PLC in home environments is mainly used to extend network connectivity
throughout a house. In industrial environments PLC is utilized to provide connections be-
tween various elements of large infrastructures, industry, and services. In Table 2.1 there
is a summary of the most relevant PLC protocols. It also mentions the IEEE 1901 [32]
and 1902.1 [33] standards, which are two of the base standards for PLC.

Some of the consortia do not provide open access to their guidelines, requiring in
some cases a membership fee. Since we do not have such membership, we had no access
to the guidelines/protocols documentation, and therefore only a summary is presented of
the information that was available in the Internet.

Later in this chapter, we explain some security vulnerabilities found in PLC protocols.
The already disclosed security issues were used as inspiration for our security analysis of
the HomePlug standard, which is the protocol chosen for this work. An in depth dis-
cussion about the HomePlug protocol and its compliant devices is presented in the last
section of this chapter.

2.1 Home environment standards

Home environments are characterized by a low voltage/high frequency electric infrastruc-
ture. The high frequency of the electric wave allows broadband data rates, like a connec-
tion through an Ethernet cable. Thus, in home environments the powerline can be used
to extend internet connections and/or to provide broadband connections between devices,
such as for media streaming. In the following we briefly describe the main protocols used
for this purpose.

9

Chapter 2. Related work 10

Name Consortium Website (http://) Standard Standard
date version

Home Environment
HD-PLC HD-PLC Al-

liance
www.hd-plc-org/ ? ?

HomePlug
Alliance

HomePlug
Alliance

www.homeplug.org/ 2013 1

IEEE 1901 IEEE standards.ieee.org/ 2010 1
Industrial Environment

DNP3 Distributed Net-
work Protocol
Group

www.dnp.org/ 2010 3

G3 G3-PLC Al-
liance

www.g3-plc.com/ 2011-2014 2.0 - 1.1

EN 12757-2/3
(M-BUS)

European Stan-
dard

www.m-bus.com/ 1998 4.8

Meters and More Meters and More
Open Technolo-
gies

www.metersandmore.com/ ? ?

OSGP OSGP Alliance www.osgp.org/ 2012 1
PRIME PRIME Alliance www.prime-alliance.org/ 2014 1.4
Zigbee Zigbee Alliance www.zigbee.org/ 2010 - 2013 1.0 - 1.2
IEEE 1901.2 IEEE standards.ieee.org/ 2013 1

Table 2.1: PLC standards, publishing alliances, websites and versions/publish dates.

2.1.1 HD-PLC

The focus of HD-PLC is the creation of a simple PLC network in a home environ-
ment [34]. The HD-PLC alliance only provides some information on the physical layer
of their protocol, which is similar to the physical layer of the HomePlug (e.g., modulation
technique). As they maintain their protocols closed, we have no further information about
their network topology.

2.1.2 HomePlug Alliance

The HomePlug Alliance provides a standard for PLC in home environments [25, 33].
The guidelines define the usage of an electric infrastructure as a network, resorting to the
electrical medium as a network extension. This network can be used by various devices to
communicate with each other, just like Ethernet cables or Wi-Fi. A HomePlug network is
created by connecting adaptors (small electronic devices that modulate the electric wave
to transfer data) to power plugs and pushing a button present in these adaptors. Then,
devices (such as computers) can be linked through an Ethernet cable to these adaptors for
connectivity.

We chose the HomePlug for this mainly due to ease of access to HomePlug compliant

Chapter 2. Related work 11

devices. These devices can be bought in electronic stores, and are fairly cheap. Also, there
is little work done around the HomePlug, which means this is also a great opportunity to
find something new that might be relevant to the scientific community.

2.1.3 IEEE 1901 standard

The IEEE 1901 standard is designed for high speed communication devices via pow-
erline [33]. This standard focuses on the balanced and efficient use of the powerline
communications channel assuring that the desired bandwidth and quality of service may
be provided. Security issues related to the privacy of communications are also addressed.
The standard describes only the physical layer and the medium access to the data link
layer, as defined by Open Systems Interconnection (OSI) model.

2.2 Industrial environment standards

Industrial environments comprise large infrastructures, such as electric distribution. Over
large cables, the frequency of the electric wave is low (when compared to home installa-
tions), providing only narrowband connections. However, these data rates are sufficient
for their purpose, which is transmitting data readings from meters.

Figure 2.1 presents the distribution of these protocols across Europe. Spain uses both
PRIME and Meters and More protocols, but the last one is less spread.

2.2.1 DNP3

DNP3 is the third version of the Distributed Network Protocol [35]. The development of
DNP is centered on achieving open, standards-based interoperability between substation
computers, Remote Terminal Units (RTUs), Intelligent Electronic Devices (IEDs), and
master stations of the electric utility. This specification covers multiple communication
layers (such as physical and link), and the protocol may interconnect with the TCP/IP
protocol to use the Internet with the PLC link. On the application level, DNP uses an
event oriented data reporting for improved bandwidth efficiency.

The DNP master gathers control information about its network in the form of events,
which are related to noteworthy status changes and classified according to a priority pol-
icy. There are four priority Classes, labelled from 0 to 3. The 0 Class is special, since it
is defined as the “static” or current status of the monitored data. This means that Class 0
does not contain events, but the status of the device.

The RTUs monitor data points (e.g., smart meters) and generate events when data
should be reported. Although RTUs can also be configured to spontaneously report Class
1, 2, or 3 data, in the normal use case RTUs buffer the events. The master queries RTUs
for an Integrity Poll (a combined read of Class 1, 2, 3 and 0 data), causing the RTUs to

Chapter 2. Related work 12

Figure 2.1: Distribution of PLC protocols across Europe.

send all gathered events and static data to the Master station. The received data can be
processed all together or divided by classes, allowing different priority schemes.

2.2.2 G3

G3 contains a set of guidelines for various smart grid applications, including electric-
ity utilities, equipment manufacturers, system integrators, and IT vendors [36, 37]. Fu-
ture versions may include other areas, such as power grid management, remote meter
management, and electric vehicle charging, as well as supporting interoperability among
vendors. The G3 protocol implements IPv6 on top of the PLC MAC layer to emulate a
typical internet connection between two elements of the smart grid. This allows the usage
of well-known safe and secure protocols on the smart grid. Two network architectures
are proposed, one that is centralized and another decentralized. In the centralized archi-
tecture, data concentrators simply act as a network gateway and the meters dialogue only
with the central servers. In the decentralized architecture, the data concentrators operate
as an application relay, with different levels of autonomy.

Chapter 2. Related work 13

2.2.3 Meter-BUS

Meter-BUS (M-BUS) is an European standard (EN 13757-2,3) for the remote reading of
meter values [38]. It can be used for multiple types of meters, such as electricity, water
or heat. The M-BUS follows a bus topology, where all devices are connected. A master-
slave approach is used, where the master coordinates the communications of the slaves,
which in this case are the meters.

M-BUS is inspired by the OSI model, providing an implementation of the physical,
data, network and application layers. The other layers of the OSI model are not applicable
to M-BUS, since M-BUS is a bus system and not a network. The physical, data and net-
work layers handle the data transmission between master and slaves, while the application
layer is oriented to the management of the meters and to data collection.

2.2.4 Meters and More

Meters and More Open Technologies is a group focused on protocols for the smart grid
from the distribution side. Their guidelines are oriented towards electric metering and
distribution from stations to homes. Meters and More maintains a closed protocol de-
scription. However, we obtained some information about the protocol through the Open
Meter project [39], which has some project with details about Meters and More (Deliver-
ables D5.1, D5.2, and D5.3).

Meters and More uses a tree topology, where data concentrators are in the root posi-
tion and act as masters. The non-root non-leaf tree nodes are called “A-Nodes”, and are
typically repeaters. “A-Nodes” manage the sub-network bellow them in the tree, act as
slaves to the concentrators and as masters to the “B-Nodes”. The “B-Nodes” are the leaf
nodes of the tree which are the customer end devices, such as smart meters. The Meters
and More communication structure is based on the OSI model, defining physical, MAC
and application layers.

2.2.5 Open Smart Grid Protocol

The Open Smart Grid Protocol (OSGP) is designed to support the communication re-
quirements of a large scale deployment of smart-grid devices and utility suppliers [40].
OSGP provides its own communication standard inspired by the OSI model, divided in
three layers: physical (OSI layer 1), communication (OSI layers 2-6) and application
(OSI layer 7). The physical layer handles data transmission over the physical medium.
The communication layer ensures communication between parties (like the IP protocol),
and implements security on the network. The OSGP application layer offers a “Structured
Query Language (SQL)” like language, where all the information of the grid is kept in
tables. A global table is maintained in the master, which contains the status of all the
elements present in the grid. The various elements of the smart grid make queries to those

Chapter 2. Related work 14

tables to send/receive data. This SQL like architecture aims to provide a highly efficient
data transfer between the different devices in the grid.

2.2.6 Powerline Intelligent Metering Evolution

The Powerline Intelligent Metering Evolution (PRIME) Alliance is defining an interop-
erable standard for industrial networks [28, 29]. PRIME is designed for the management
of the power grid, and is currently deployed in Asia, Oceania, Americas and Europe,
including Portugal.

This protocol organizes the network in a tree, where the root node is the coordinator,
usually placed on a data concentrator. Other devices in the grid are nodes of the tree. The
master controls every node in the network. Branch nodes (as in non-leaf non-root nodes)
act as switches for the nodes below them in the tree. Leaf nodes are terminal nodes.
Nodes can communicate between themselves (peer-to-peer), with the master node or with
broadcasts to the network. When a leaf node receives a connection request from another
device trying to join the network, it asks to master for a promotion to become a branch,
and then starts routing communication between the requesting node and the master.

PRIME provides its own communication layers inspired by the OSI model, imple-
menting physical, MAC, and network (IPv4, and IPv6) layers. Above that, there is an
application layer, where the smart grid software is implemented.

2.2.7 Zigbee

The Zigbee Alliance produces standards for connections between smart objects in dif-
ferent environments [41]. Zigbee presents a standard for PLC, although the core of its
products is wireless communication.

The Smart Energy Profile (which is the Zigbee protocol for smart grids) implements
a Representational State Transfer (REST) [42] architecture. It is built around the core
actions of get, head, put, post, and delete, with the addition of a lightweight
subscription mechanism. This mechanism is used when a client wishes to be notified of
changes to a resource on a server.

The objective of this protocol implementation is to avoid distinctions between servers
or clients. When a device exposes a resource acts as a server, and when interacts with a
resource is a client. This allows a fully flexible network.

2.2.8 IEEE 1901.2 standard

The IEEE 1901.2 standard specifies communications for low-frequency narrowband pow-
erline devices [32]. It addresses grid to utility metering, grid automation, and electric
vehicle to charging station. Lighting and solar panel PLC are also potential uses of this
communications standard. The standard addresses the necessary security requirements

Chapter 2. Related work 15

that assure communication privacy and allow use for security-sensitive services. This
standard defines the physical layer and data link layer specifications.

2.3 Vulnerabilities in PLC

Some of the previous protocols have already been successfully attacked (for example
DNP3 [16], HomePlug [17, 18], M-BUS [19], OSGP [20], Zigbee [21, 22]). This section
explains these attacks.

2.3.1 DNP3

Attacks on DNP3 are particularly worrisome because almost full control of the DNP3
network is possible, due to the non-existence of security mechanisms [16]. DNP3 im-
plementations typically do not employ encryption, authentication and authorization, and
devices simply assume that all messages are valid.

The DNP infrastructure is composed of a master unit (which is the central controller
of the grid), outstation devices and network/communication paths. Ninety-one different
attacks against the DNP infrastructure have been identified, with different impact degrees
ranging from denial of service to obtaining control of the master unit.

2.3.2 HomePlug

The key implementation of HomePlug AV networks is unsafe [17]. All HomePlug devices
have by default the same Network Membership Key (NMK), which is used to control the
admission of devices into a network. After a successful admission, a device receives
a Network Encryption Key (NEK), which is used to protect communications between
devices of the network. Since this key is always the same, a malicious user can enroll into
any network using the default NMK and listen to the traffic (since it receives the NEK).

The attack previously described can be further amplified [18]. A third key is used
by devices in a HomePlug network, the Device Access Key (DAK). This key is derived
from the device’s MAC address, and can be used to force the enrolment of a device into
a network. Note the difference between keys: one is used by devices to join a network;
the other is used to make a device join a network. The author believes that these MAC
addresses/DAK were not supposed to be discoverable. However, since they are, an at-
tacker can bring devices into his network, thus eventually obtaining full control of their
communications (usually home devices, like computers).

In this thesis, we present other possible attacks to the HomePlug protocol using adap-
tors as attack vectors. Since an adaptor is a relay between two points, by accessing the
adaptor and the flowing traffic, an attacker can act as Man-in-the-Middle [11].

Chapter 2. Related work 16

2.3.3 M-BUS

A security analysis of the M-BUS protocol was performed, disclosing a list of major is-
sues [19], ranging from inadequate key length to disclosure and manipulation of encrypted
message contents:

• The standard recommends a 64-bit key, while the current suggested key size is at
least 128-bit [43];

• Inappropriate key and Initialization Vector (IV) [11] derivation may disclose plain-
texts [11];

• Missing integrity protection allows the modification of messages without detection;

• The synchronization mechanism is not authenticated, and by attacking the system’s
clock an attacker may cause a repetition of the key used in stream cypher [11];

• Due to lack of authentication for network management an attacker can become a
rogue network relay point;

• The M-BUS system possesses alarms for attacks, and an attacker can recognize if
these alarms have been triggered - this is useful to known if messages sent to a
device contain (in)correct values;

• The key update mechanism is flawed and may lead to key disclosure.

The security analysis classifies M-BUS as insecure and incapable of competing with
the current security challenges.

2.3.4 OSGP

A series of vulnerabilities in the OSG protocol have been identified [20]. The encryption
and message-authentication mechanisms were designed to be lightweight, which reduces
the security robustness. It is possible to completely recover the authentication and en-
cryption keys by exploiting weaknesses in the digest function [44] and RC4 stream cipher
algorithm [45].

The OSGP digest function does not adhere to any crypto standard and its design does
not provide a secure message authentication code (MAC). A robust MAC function is
irreversible, but the OSGP digest does not possess this property. RC4 should not be
employed due to the known issues [46, 47, 48, 49].

Moreover, the standard does not provide entity authentication on the source of mes-
sages. Broadcasts are authenticated using the flawed digest function, which provide mes-
sage authentication but not source authentication - a proper digital signature should pro-
vide both. Since firmware updates in OSGP are sent through broadcast messages, an at-
tacker could send malicious firmware to all devices of the network. The firmware would

Chapter 2. Related work 17

be correctly authenticated with the flawed digest, and since the message source is not
verified, the devices accept the update as legitimate.

2.3.5 Zigbee

Zigbee networks are vulnerable to a series of different attacks [21, 22]. The Zigbee speci-
fication supports two security levels: High Security (also referred to as Commercial Secu-
rity) and Standard Security (also referred to as Residential Security) [21]. The Standard
Security level transmits the network key in plain text during a device registration. An
attacker who sniffs the network easily captures the key, and then can listen to all network
traffic.

Zigbee devices use nonces (a unique random number) as part of the encryption key
for further protection. However, this leaves the network open to the so called Same-Nonce
Attack. If an attacker can cause devices to choose the same nonce twice, he will gather
information about the plaintext. This attack is possible if the attacker can force devices to
reboot to default values, which makes them repeat the nonces.

Zigbee devices are also vulnerable to denial of service attacks. These devices utilize a
frame counter to prevent replay attacks, where each time a frame is received the device’s
frame counter is updated with the frame’s sequence number. This counter has a maximum
value given by a 32-bit counter, and is reset when the network key is refreshed. A frame
is discarded if it has a sequence number lower than the counter. An attacker can send
a frame with the maximum sequence number, which will be set as the device’s frame
counter. From that point on, all frames will be discarded because the frame counter will
always have a sequence number higher than the received frames. This attack can be
performed even if the frames are encrypted.

The Zigbee devices are also vulnerable to physical attacks, since keys can be stolen
with direct access to a Zigbee device [22]. Unless devices are protected from physical
tampering, an attacker can steal keys and then emulate the device to obtain access to the
network.

2.4 HomePlug protocol and devices

This section describes the most important features of the HomePlug standard. We begin
with a simple example of a network created using HomePlug adaptors, and then present
the most relevant aspects of the protocol. We also explain the functioning of HomePlug
compliant devices and some details of their topology.

Chapter 2. Related work 18

2.4.1 HomePlug in practice

The HomePlug protocol is designed for use inside homes, to ease the extension of net-
work connectivity. In the rest of this document, HomePlug complaint equipment will be
referred to as adaptors, and other electronic gadgets linked to adaptors for connectivity
as devices. Examples of adaptors are displayed in Figure 2.2, and devices are equipment
like computers, routers, printers, fridges, and televisions.

(a) Devolo
dLAN 500 duo+

(b) D-Link
DHP-P309AV

(c) TP-Link
TL-PA4020PKIT

(d) Devolo
dLAN 500 WiFi

Figure 2.2: Examples of powerline adaptors.

Figure 2.3 shows a practical example of a powerline connection representing our test
bed. An Ethernet cable connects the computer to the adaptor on the left. The other adaptor
(on the right) is connected to a router through another Ethernet cable. The router is not
seen in the figure due to the configuration of the room. The two adaptors communicate
through the electric extension, representing two plugs of a house.

To establish a connection between devices (in the figure, between the PC and the
router), we couple the adaptors to power plugs, and link the devices to the adaptors.
However, this does not suffice. First, the adaptors must establish their own network.
The most simple mechanism to establish a HomePlug network is to push the HomePlug
buttons of each adaptor - all adaptors are manufactured with at least one button. We push
the buttons, wait a short time period, and the network between adaptors is created. Only
then the connection between the computer and the router is enabled. In summary, first
the adaptors establish a primary connection between themselves, then provide network
connectivity to the devices linked to them.

2.4.2 The HomePlug protocol

Since home environments are characterized by low voltage/high frequency electric capa-
bilities, it is possible to offer broadband powerline communication between devices. The
protocol is focused on providing a simple and secure network extension solution, while
being user friendly.

Chapter 2. Related work 19

Figure 2.3: Practical example of a simple powerline network.

HomePlug adaptors establish their own private network, and is through this network
that the devices connected to the adaptors exchange the packets. In the following sections
we provide an overview of the HomePlug networks.

Establishing a network

The first step to create a HomePlug network is to connect HomePlug compliant adaptors
to power plugs on the same power strip (these adaptors are presented in more detail in
Section 2.4.3). adaptors in different power strips are physically isolated, and therefore
cannot communicate. Then, a HomePlug network must be established. These are defined
by all adaptors possessing the same Network Membership Key (NMK). A network is
composed of one or more adaptors. Given n adaptors, any subset of them can be combined
to form different networks, with the restriction that an adaptor can only be part of one
network. adaptors in different networks are logically isolated from each other. To create
networks or add adaptors to an existing network, one of the NMK provisioning methods
described in Section 3.1 would be employed. Each network will have its unique Network
Identifier (NID), calculated with an hash of the NMK.

Once the adaptors are in the desired network they can communicate among them-
selves, and provide connectivity to their devices (e.g., computers, routers, printers). Fig-

Chapter 2. Related work 20

ure 2.4 shows an example of a set of adaptors creating two networks, where the dashed
lines represent the separation between powerline networks. Since there is a separation
amongst adaptors, the devices connected to them are also logically separated. The devices
on the left network are unable to communicate through the powerline with the devices on
the right.

NMK A NMK B

Figure 2.4: Example of a complex powerline connection with two networks.

Communication in HomePlug networks

The HomePlug protocol has its foundations in the physical (electrical) medium. As with
any physical shared medium, adaptors must communicate in turns to avoid collisions be-
tween two or more messages - overlapping messages generate noise and preclude efficient
communication. To prevent message tangling, HomePlug defines transmission beacons,
during which participants have the medium for themselves. The network coordinator (see
below) defines beacon lengths and attributes beacons to the participants in round-robin.
Network participants can also ask for more beacons or longer beacons, by sending a re-
quest to the coordinator.

The HomePlug protocols are organized in layers. On top of the physical layer there
is an Ethernet layer. Each network participant has a pre-defined MAC address, which
uniquely identifies it. Participants communicate with each other through Ethernet mes-
sages.

Figure 2.5 shows a simple powerline connection and the different network interfaces

Chapter 2. Related work 21

included in an adaptor. Messages sent by computer A reach the HomePlug participant
(adaptor) HA through an Ethernet cable (in interface eth1) and then they are sent through
the powerline to adaptor HB (through interface eth0). The adaptors isolate the network
interfaces eth0 and eth1, mediating the connection between them. This means that
there is no direct access from the computer to the (physical) powerline.

Physical layer

Management (0x88e1)

Ethernet + Higher level protocolseth1 eth1

eth0 eth0

AB

HB HA

Figure 2.5: Examples of the logical interface isolation and the HomePlug network layers.

Since the HomePlug adaptors control which messages go through a specific inter-
face, they can exchange management messages among themselves through the powerline
interface, hidden from the devices connected to them. This creates the HomePlug man-
agement layer. Management messages are solely transmitted over the powerline and the
adaptors never redirect these messages to the devices connected to them. In addition, in
the HomePlug standard it is mentioned that some management messages are meant to be
only transmitted over the powerline and never through the Ethernet (MAC layer). This
is a security measure, since it prevents computers from sniffing or spoofing management
messages. Only adaptors can listen or tamper with these messages, since they have ex-
clusive access to the management layer. The management messages exchanged between
HomePlug adaptors are normal Ethernet messages, with a specific ethertype (0x88e1).
Figure 2.5 presents a visual representation of these layers.

HomePlug network coordinators

Each HomePlug network has a coordinator. The coordinator manages the other adaptors
present in the network, and both the physical and the Ethernet layers. It is also the co-
ordinator that accepts adaptors into its network. The role of coordinator is dynamic, in
the sense that any of the remaining participants can become the new coordinator if the
current one leaves the network (depends on adaptor configuration; see Section 2.4.3 for
more details).

Chapter 2. Related work 22

The coordinator can decide to separate its network into sub-networks, “for secure
distribution of different Network Encryption Keys” (NEK - presented below) [25]. Each
sub-network will have its own sub-coordinator, and all the sub-coordinators communicate
with the main coordinator for message exchanges that need to cross the sub-networks, as
well as for management messages between sub-networks. Each sub-network will have its
NMK and NEK. The main coordinator will possess all of the NMKs of the sub-networks
it manages. In addition, each network and sub-network has a Network Identifier (NID).

Security

The traffic generated by the devices is encrypted while transferred between adaptors, and
integrity is checked (only) at physical level. All key exchange mechanisms define specific
keys to encrypt the protocol messages. Most of the management messages exchanged are
also encrypted. The HomePlug standard defines multiple encryption keys, each for a
different context. Nonces are also used in some management messages to prevent replay-
attacks 1 [11]. The encryption algorithm employed by the HomePlug is the Advanced
Encryption Standard (AES) [50], which is the current standard for encryption in networks.

In the next subsection we give a summary of the most relevant keys. First we present
the default keys, placed in adaptors during the manufacturing process. Then we describe
the keys to encrypt the frames exchanged in the network, and finally we present the keys
to establish private channels between two adaptors.

Default keys

• Device Access Key (DAK): The DAK is a unique key placed in the adaptor during
the manufacturing process. Besides identifying the adaptor, the DAK can be used to
send the NMK to another adaptor, through the “Providing NMK using DAK” pro-
tocol (detailed in Section 3.1). The DAK must never be sent through the network,
which means that if adaptor A wants to share the NMK with adaptor B using B’s
DAK, A must obtain B’s DAK by some other mean than the network - through the
user or some other out-of-band mechanism. This key is used as a MAC encryption
key.

• Network Membership Key (NMK): Adaptors always come with a default NMK.
The network membership key defines which adaptors are part of a network. Home-
Plug defines alternative methods for the transmission of new NMKs (see Section 3.1).
It is through the NMK that the NEK is distributed to the participants of a network.
NMK is a network encryption key, changed when an adaptor joins a network.

1Attacks where previously sent messages are re-sent by an attacker, re-enacting a previous interaction
among participants of a network.

Chapter 2. Related work 23

Network encryption keys

• Network Encryption Key (NEK): This key is used to encrypt almost all messages
exchanged between adaptors, as only a few management messages are allowed to
be sent unencrypted. The traffic generated by the devices (e.g., computers) linked
to the adaptors is encrypted with this key when it is transferred over the powerline.
The device’s traffic is encrypted before being sent over the powerline and decrypted
when leaving it.

Encryption keys for private channels

• Point-to-point Encryption Key (PPEK): This key is used to encrypt point-to-point
physical messages. Point-to-point encryption is supported on optional basis by the
adaptors. Please, see below the End-to-end Encryption Key.

• Temporary Encryption Key (TEK): The TEK is used to encrypt messages during
key exchange protocols on private channels between two adaptors. A new TEK is
generated for each instance of a key exchange. TEKs have a limited life span and
are never re-used. TEKs are provisioned using the adaptor’s DAK or through the
Unicast Key Exchange (described in Section 3.1).

• End-to-end Encryption Key (EEK): This key is used to encrypt point-to-point
Ethernet messages. Both this key and the PPEK are used only when two adap-
tors wish to establish a private long duration channel between them. This key is
distributed using the EDK (see below).

• EEK Distribution Key (EDK): This key’s sole purpose is to distribute the EEK.
The message providing an adaptor with the EDK has to be encrypted with the adap-
tor’s DAK.

As mentioned in Section 2.4.2, only adaptors have access to the HomePlug manage-
ment layer, where network configurations and encryption keys are exchanged. This can be
considered a security measure, since it increases the difficulty to attack these messages.
Nevertheless, it is possible to build modules capable of accessing the physical layer of
powerline communication. An example module has already been built, using specific
hardware components and is capable of sniffing simple powerline communications [51].

2.4.3 HomePlug adaptors

HomePlug adaptors are small electronic gadgets that when connected to the same power
strip can communicate through the powerline. These adaptors can modulate the electric
current’s sinusoidal to create a custom wave. This wave is perceived only by other adap-
tors, and does not influence the devices that are connected to a plug just for electric power

Chapter 2. Related work 24

(like televisions). The technique used by these adaptors to modulate the wave is outside
the scope of this work.

Adaptors may not work as expected if there are current controlling/modelling devices
between them. Devices like Uninterruptible Power Supply (UPSs) may change the mod-
ulation created by the adaptors, thus changing/removing the information imprinted in the
electric wave. In addition, these adaptors are sensitive to the noise that normally exists
in the power strip, as any device that is connected may change the electric sinusoidal [8].
Since the adaptors depend on the quality of the sinusoidal to communicate, noise in the
power strip influences its communication speed and range. The quality of the cables of
the power strip also impacts the quality of the signal. On environments with noise, the
adaptors reduce the communication speed to increase their robustness to errors.

The adaptors have at least one Ethernet plug, and they may have a power plug that
can be used just like any other plug on walls. This plug is present for commodity. Since
the adaptor must use a plug, it provides one so that users do not “spend” a plug for
each adaptor. The Ethernet plug is used to connect the adaptor to other devices, like
computers, printers, etc. The adaptors generally have between one to three blinking light
emitting diodes (leds). The leds usually indicate if the adaptor is on, if it is connected to
other adaptors and if there is a device connected to it. The adaptors also possess a button.
A short press on the button makes an adaptor join/create a HomePlug network. A long
press removes the adaptor from its current network. The purpose of the button is further
explained in Section 3.1.

There are also HomePlug adaptors with Wi-Fi capabilities. These adaptors provide a
Wi-Fi signal just as a normal router, except that it gets its Internet connection from the
powerline. They may also contain Ethernet plugs.

Device organization

The HomePlug adaptors that were analysed had chips made by Qualcomm Atheros [52],
which is a developer of semiconductors for network communications. Besides produc-
ing the chips, Qualcomm released an open source toolkit called Open Powerline Toolkit
(open-plc) [53]. This software suite is used to interact with these chips, which are config-
ured using two files with names ending in .pib and .nvm.

The Parameter Information Block (PIB, stored in a .pib file) contains configurable
attributes of the adaptor. The main attributes are the adaptor’s MAC address, the keys
DAK and NMK, and the coordinator status. Note that the coordinator status attribute is
not discriminated in the standard but defined by Qualcomm. Adaptors can be in one of
the following five statuses:

• Auto: The adaptor joins existing networks if capable and in alternative creates its
own network.

Chapter 2. Related work 25

• Never: The adaptor never takes the role of coordinator, which means that the adap-
tor will never create its own network.

• Always: The adaptor will always try to be the coordinator of the network where it
is present. If this is not possible, it will form its own network.

• User Assigned: The user chooses the role of the adaptor, meaning it is not in a
preconfigured status.

• Covert: We could not find what this status means.

The .nvm is a file that stores the firmware for the chip. This file is divided into six
components: Chain Manifest, Memory Control Applet, Custom Module Update Applet,
Power Management Applet, Generic Image, and Runtime Firmware. The information
about the .nvm was retrieved from the chknvm tool that is included in the open-plc
toolkit. We have no further details about the chip’s firmware, since its structure is closed
source. As stated in chknvm’s manual: “Qualcomm Atheros firmware file structure and
content is proprietary to Qualcomm Atheros, Ocala FL USA. Consequently, public infor-
mation is not available.”

Typical HomePlug adaptors only have a MAC address and as uploadable files, a .pib
and an .nvm. However, the HomePlug adaptors with Wi-Fi capabilities require extra
internal management - the Devolo adaptors with Wi-Fi capabilities we analysed include a
minimalist Linux kernel and a file system.

Chapter 2. Related work 26

Chapter 3

HomePlug key exchange mechanisms
and our attack plan

This chapter describes mechanisms used for key distribution in the HomePlug protocol.
We identify a flaw in the Unicast Key Exchange (UKE), and present a solution to over-
come the vulnerability using a simple out-of-band mechanism.

We executed some initial tests to disclose the UKE flaw using a computer, but these
were unsuccessful. In an attempt to demonstrate experimentally the vulnerability, we will
modify a Devolo adaptor to make it perform malicious actions, such as listening to the
network. This chapter explains the planning of the attack, and the technical details of the
target adaptor.

3.1 NMK exchange mechanisms

The HomePlug protocol supports three NMK exchange mechanisms. These are used to
allow an adaptor to join a network. Recall that a HomePlug network is defined by all
adaptors in possession of the same NMK.

Providing NMK by direct entry (NDE)

With this method a user inputs the NMK directly into the adaptors. The standard does not
describe how or by what means the key is provided. Adaptors are not required to provide
a text entry interface, and during this work we did not come across an adaptor with such
capability. However, there are mechanisms to directly provide the NMK to the adaptor,
like programs: faifa [54], Qualcomm Atheros Open Powerline Toolkit [53], or Devolo’s
cockpit [55].

This method has the disadvantage of burdening the user with the task of providing the
NMK, which may present some issues - for example, faifa is a command line program,
which is typically a difficult to use interface for non-technical users. Besides, it is only
available in Linux.

27

Chapter 3. HomePlug key exchange mechanisms and our attack plan 28

Providing NMK using DAK (NUD)

The NUD can be employed to add an adaptor to an existing network. Recall that a single
adaptor creates its own network, and therefore if two adaptors A and B have different
NMKs each adaptor has its own network. If the user wants to form a single network with
both adaptors, the adaptor A can provide B its NMK by encrypting it with B’s DAK key.
From then on, B will use A’s NMK and both adaptors will be in the same network. This
method is illustrated and compared to NDE in Figure 3.1. E(BD, NMK) means that the
message containing the NMK is encrypted with the key BD, the B’s DAK key.

(a) Providing NMK by direct entry (NDE).

(b) Providing NMK using DAK (NUD).

Figure 3.1: Comparison of NDE and NUD.

However, since the DAK can never be sent through the network, this means that A can
only receive B’s DAK through an out-of-band mechanism. As with NDE, this method
requires a user with access to programs and knowledge on how to provide a key to an
adaptor.

Providing NMK using Unicast Key Exchange (UKE)

The UKE is also known as the simple connect method. HomePlug adaptors are not ex-
pected to possess an interface for text entry, but are expected to have a button. This button

Chapter 3. HomePlug key exchange mechanisms and our attack plan 29

is used to call the UKE and to remove the adaptor from the current network (by pressing
the button for 10 seconds or more). The UKE is a simple protocol with four messages,
where in the end both adaptors possess the same NMK, thus being in the same network
(depicted in Figure 3.2, further details in Appendix A).

To call the UKE, the user pushes the button of one adaptor for one second. This causes
the adaptor to enter into simple connect mode, and to periodically send CM SC JOIN.re-
quest messages. These “join request” messages are used to signal neighbouring adaptors
that there is an adaptor trying to join an existing network. Then, the user pushes the but-
ton of a second adaptor. This also causes the second adaptor to enter the simple connect
mode, and to periodically send CM SC JOIN.request messages. Once an adaptor in sim-
ple connect mode receives a CM SC JOIN.request, it sends a CM SC JOIN.confirm. The
“join confirm” is transmitted only by an adaptor in simple connect mode who received a
“join request”, meaning that the UKE will only be executed by adaptors who have been
commanded by a user to be part of the same network. There is a time interval in which
both buttons must be pushed, defined by the manufacturer of the adaptor. This interval is
suggested to be between 30 seconds and 2 minutes [25].

Then the UKE protocol is executed. The first two UKE messages contain a random
key generated by each participant (CM GET KEY.request/confirm). The keys included in
these two messages are concatenated to produce a TEK key, used to encrypt the remaining
two UKE messages (CM SET KEY.request/confirm) where the NMK is exchanged. Note
that the standard states that UKE messages may be sent through the Ethernet, but the
“join” messages may not (refer to Section 2.4.2).

3.1.1 Security analysis

The main characteristic of the key exchange mechanisms of the HomePlug protocol is
that they always require direct intervention from a user to be safe. In any of the first two
methods mentioned in Section 3.1 there are secure ways to place the NMK in the adaptors
- we assume a network administrator would handle this task with ease. An attacker cannot
(or should not) be able to obtain the keys exchanged using the out-of-band mechanisms.
The UKE is vulnerable to a sniffing attack because the first two messages of the protocol
are sent unencrypted over an open network. It is not possible to safely exchange keys in
the insecure network because adaptors have no previous information about each other, and
the presence of a trusted third party in the environment is not predicted. Even if a trusted
third party would be present - for example, a Kerberos system - adaptors would have to
be registered in Kerberos before being able to authenticate each other. The burden of such
task would be put upon the user, and would be similar to the first two NMK exchange
mechanisms - direct user intervention and user know-how are required.

In the environments where the UKE is assumed to be employed - users without knowl-
edge or means to use the other key distribution methods - the key exchange is insecure. An

Chapter 3. HomePlug key exchange mechanisms and our attack plan 30

Figure 3.2: Diagram of the UKE protocol.

attacker with capabilities to listen to the powerline can obtain the two messages, creating
the same TEK key as the adaptors. With this key, the attacker can decrypt the following
two messages, obtaining the NMK. With the NMK the attacker can be part of the network.
Recall that it is through the NMK that the NEK is transmitted (see Section 2.4.2) - the
attacker waits for the NEK provisioning messages, encrypted with the same NMK that
was obtained. With the NEK the attacker can listen to all traffic in the network, insert new
packets, etc. These conclusions answer affirmatively research questions Q1 and Q2.

Furthermore, the HomePlug protocol says the following about the UKE: “This mech-
anism trades off convenience for users and low-cost user interfaces for lowered security.
Simultaneous execution of this mechanism can cause networks to admit stations other
than those desired by the user, and sufficiently equipped and sophisticated attackers can
compromise the key exchange itself, so this is only recommended for nonsensitive infor-
mation applications.” The UKE protocol was designed trading safety for usability. The
protocol designers know the flaw is there, all that remains is to practically prove it.

3.1.2 An alternative more secure to UKE

After explaining the security flaw, one can think of potential solutions. We propose an
alternative to the UKE using a simple out-of-band mechanism. Together with every set
of adaptors we purchased (most come in pairs) came two Ethernet cables. One of these
cables could be used to connect the two adaptors. This creates an effective out-of-band

Chapter 3. HomePlug key exchange mechanisms and our attack plan 31

mechanism, since no other entity can read the traffic exchanged through that cable. Fig-
ure 3.3 presents a representation example of our approach.

Figure 3.3: Proposed solution to the UKE vulnerability.

If an Ethernet cable is connected between two adaptors, they can assume that the user
desires to make them part of the same network. Using this out-of-band connection the
adaptors could identify themselves and use the UKE to exchange the NMK, exactly as
explained in Section 3.1 but now resorting to the Ethernet cable as the communication
medium. This solution is simple and safe, since key exchange is accomplished over a se-
cure channel. This mechanism does not prevent a malicious user from adding a malicious
adaptor to a network, but preventing physical access to the adaptors is outside the scope
of this work. We focus only on remote network access and infiltration.

3.2 Exposing the UKE security flaw

To expose the UKE security flaw we need to listen to the packets exchanged during pro-
tocol execution. To do this, we tried using the wireshark program [56] to collect all
messages exchanged in the network. The tool was run on a computer connected to an
adaptor. We were able to observe HomePlug messages about:

• Bridging informations [57];

• Software version information;

• Network information: NID, MAC addresses of the present adaptors, transmis-
sion/reception rates, amongst others;

• Ethernet physical settings;

• Vendor messages (messages designed by adaptor manufacturers, not discriminated
in the standard), for which we have no information about their format.

Chapter 3. HomePlug key exchange mechanisms and our attack plan 32

This very simple attack allowed us to obtain the MAC addresses of adaptors that are
present in the network. However, these are mostly innocuous messages and not the ones
we require. We experimented triggering the UKE in the adaptors, but the protocol mes-
sages did not reach wireshark. The UKE packets only travel in the HomePlug manage-
ment layer, and are never forwarded to the computer. So, to capture these packets, it is
necessary to be in the same position as an adaptor and access the management layer. To
do so, we intend to modify an adaptor to make it collect the UKE packets. As mentioned
in Section 2.4.3, the Wi-Fi adaptors include a Linux kernel and file system. Since these
have well known formats, and given the need for a malicious adaptor, a part of our work
was to modify a Devolo dLAN WiFi 500 powerline adaptor (described in Section 3.2.1).
This was our target, hereafter mentioned as the malicious adaptor.

Creating a device capable of listening to the powerline medium is possible, but it
would probably take too much time and effort because we do not have any experience
assembling hardware devices. Therefore, the attack plan is as follows:

(1) Obtain remote access to the adaptor;

(2) Read the UKE packets:

(a) Connect to the network;

(b) Get access to the management layer;

(c) Read the UKE packets.

To accomplish step (1) we need to analyse the firmware of the adaptor to understand
if it is possible to include programs for remote access like telnet [58] or ssh [59]. By
accessing the adaptor one should be able to connect to the network, thus completing step
(2a). To read the traffic, we need to run a traffic analyser. When this task is completed,
we should have full access to the network, thus accomplishing steps (2b) and (2c).

3.2.1 The Devolo dLAN WiFi 500 powerline adaptor

The Devolo dLAN WiFi 500 [60] has a chip that handles both powerline communication
and Wi-Fi. The chip includes a MIPS processor, and complex circuits that implement the
HomePlug management layer. We are not sure if the chip managed all HomePlug packets
by itself, and this issue is further discussed in Chapter 4.

A crucial part for this work is the structure of the firmware that can be uploaded to the
adaptor. From the Devolo’s ftp update site [61], we downloaded a .deb file, that contains
a series of files. One of these files is the firmware for the adaptor (a .dvl file), whose
structure is visually represented in Table 3.1. This file is started with the Devolo magic
number - in Unix systems, a magic number is a numerical or text value that identifies a
file format or protocol - followed by six sections. Each section begins with its length,

Chapter 3. HomePlug key exchange mechanisms and our attack plan 33

followed by its Four Character Code (FourCC - in the table represented as 4CC), which
is a sequence of four bytes used to uniquely identify data formats, and terminated by a
Cyclic Redundancy Check (CRC). We used the FourCC codes to identify the sections
present in the update.

• File system type (FST): The type of file system present in the image. In our case it
is SquashFS, which is an lzma compressed read-only file system used in embedded
systems.

• Device type (DT): The type of adaptor to which this update is meant for. The type
is defined by the code name given by Devolo to its products. In our case, the type
is “norwich”.

• Original Equipment Manufacturer (OEM) variant: We assume this field is
meant for variants of this product. In our case, this field comes empty.

• Kernel: A minimalist linux kernel used for embedded systems. Our adaptor has
a uImage Debian kernel, version 2.6.31. A uImage is a kernel image file that has
a U-Boot wrapper that includes the OS type and loader information. The Das U-
Boot [62] (Universal Bootloader) is an open source, primary boot loader used in
embedded devices to package the instructions to boot the device’s operating system
kernel.

• File system (FS): The actual file system included in the update. This file system
will be decompressed and will replace the one in the adaptor.

• Version: The version of the firmware update in the following format: v2.3.5 2014-
08-25 0025, where v2.3.5 is the firmware version, 2014-08-25 is the release date,
and 0025 is the Subversion revision. Subversion is a version control system, that
can track changes in projects [63].

Devolo magic number FST length FST 4CC FST FST CRC

DT length DT 4CC DT DT CRC OEM length OEM 4CC

OEM CRC Kernel length Kernel 4CC Kernel

Kernel

Kernel CRC FS length FS 4CC FS

FS

FS

FS CRC Version length Version 4CC Version Version CRC

Table 3.1: Representation of the firmware update structure.

Chapter 3. HomePlug key exchange mechanisms and our attack plan 34

Instead of using the GNU implementation of the C standard library (glibc) as is usual
on Linux, the adaptor has the µClibC [64], version 0.9.30. Since the amount of persistent
memory is only 32MB, the adaptor only stores the bare minimum files. While glibc is
intended to fully support all relevant C standards across a wide range of hardware and
kernel platforms, µClibC focuses on reducing space usage. µClibC is much smaller than
glibc by enabling or disabling features according to space requirements.

The dLAN 500 WiFi offers a web interface for management tasks, such as password
protecting the adaptor, checking the adaptor’s status, or updating its firmware. The web
interface is supported by a thttpd [65] server, which is a minimalist http server used for
embedded devices. This server has its root in /var/www/.

The adaptor has six network interfaces, ath0, br0, eth0, eth1, lo and wifi0.
Each interface has its own MAC address.

• ath0 is the virtual interface created by Atheros chips for wifi0;

• br0 is the Ethernet bridging interface [57];

• eth0 is the interface where the adaptor receives packets from the device connected
to the Ethernet plug;

• eth1 is used to exchange with other adaptors the packets received from eth0;

• lo is the loopback interface;

• wifi0 is the interface for wi-fi connections.

Chapter 4

Implementation and evaluation

This chapter presents the actual changes made to our adaptor, how they were performed,
and the results obtained. Here we provide a full explanation on how to place malicious
firmware in the adaptor by exploiting the update mechanism, in order to obtain remote
root access. This led us to a series of possible attacks with powerline adaptors. We also
explain the tracing of the execution of the UKE protocol, followed by a description on
how to cross-compile binaries, kernel objects and the kernel/bootloader for the adaptor.
Each section contains the reasoning behind each step of this work and a summary of the
major achievements. But first, we begin by presenting the experimental setup.

4.1 Experimental setup

Our setup is composed of:

• Dell Optiplex-380: The x86 computer where most of this work was done, including
accessing to the adaptor and cross-compiling. This computer is running Elementary
OS version Luna, which is based on the Ubuntu kernel version 12.04.

• Devolo dLAN 500 WiFi: This is the HomePlug powerline adaptor that was modi-
fied and used as an attack vector. The original firmware version was 3.1.0.

• D-Link DHP-P309AV, TP-Link TL-PA4020PKIT and Devolo dLAN 500 duo+:
For the D-Link the firmware version is 3.01, and 1.1 for the TP-Link. The Devolo
does not indicate its firmware version. These adaptors were used as victims, and no
changes were made on them.

We have two setup configurations for our experiments (see Figure 4.1). Our adaptor
is the Wi-Fi adaptor marked with the crossbones. In Setup 1, our adaptor is used as
an active part of the network, while in Setup 2 our adaptor is passively listening to the
network established by the other two adaptors. All adaptors have a computer connected
to inject communications. In Setup 2 we connected a laptop to a router through the victim
adaptors, while our malicious adaptor and computer are in a separate network.

35

Chapter 4. Implementation and evaluation 36

(a) Setup 1

(b) Setup 2

Figure 4.1: Representation of our experimental setups.

4.2 Modifying the Devolo dLAN 500 WiFi

After downloading and analysing the firmware of a Devolo dLAN 500 WiFi, we found
out it could be modified. Since it runs Linux, we could change it to get full access to the
adaptor. We explain in the next subsections how to update the adaptor with a malicious
firmware.

4.2.1 Extract firmware

As mentioned in Section 3.2.1, the updates for the Devolo adaptor come in a .dvl file,
which includes a linux kernel and file system. To extract the various components of the
.dvl file, we used a tool called Firmware Modification Kit (FMK) [66]. FMK has a script
extract-firmware.sh that separates the file system from the various other components of
the update. FMK’s extract-firmware.sh extracts components identified by the bash tool
binwalk. Although binwalk does not recognize the six sections of the .dvl file,
it obtains the file system, which suffices for our purposes. In alternative, we could also
manually extract the sections using the dd command.

Chapter 4. Implementation and evaluation 37

4.2.2 Modifying/adding files

Now that we have the file system, we can modify it. We can freely edit text files or
scripts, including shell scripts. One valuable target to change is the rcS script, present
in /etc/init.d/. The rcS is executed by the kernel at root level once the file system is
mounted [67].

Adding executables can also be done. However, recall that our adaptor runs in a
MIPS architecture, while most personal computers run a x86 architecture. This means
that executables compiled for x86 do not run correctly in the Devolo adaptor. Therefore,
extra effort is required to add executables to our adaptor, since our machines are x86.

4.2.3 Rebuilding the firmware

After all the changes have been done to our adaptor’s firmware, we must rebuild the update
image to then feed it to the adaptor. To achieve this, we use FMK again, more specifically
the build-firmware.sh script. This script re-unites the image parts and updates internal
checksums (for example, the file system includes a checksum). If files are added to the
file system and it becomes larger than the original size, it is necessary to use the -min
option on the rebuild script. Even if with this option sometimes the new file system is still
larger than the original, and in this case the rebuild script refuses to create the image. This
protection exists because, as said on the script, “Building firmware images larger than the
original can brick your device!”. (“Bricking a device” is a slang term for leaving a device
unusable). Since this is a bash script, we commented the section that prevents the image
building. However, the creators of FMK are correct, and attention to the size of the new
image must be paid. If we feed to the adaptor an image larger than what it supports, it
will likely break the update process and leave the adaptor permanently unusable.

4.2.4 Bypassing the security

As mentioned in Section 3.2.1, the firmware update contains six sections. Each section
begins with its length and ends with a 128-bit Cyclic Redundancy Check (CRC) [68]. Any
changes to any of the sections of the firmware update imply modifications to its length
and CRC. This can be done using a binary edition program, like ghex [69], where we
can change directly the octets present in a file. Furthermore, the sections file system type,
OEM variant, and version are encrypted using XOR keys, one for each section. The keys
were extracted from the binary executable chunk in the folder /usr/bin/ of our adaptor’s
file system using the IDA program [70]. The CRC is updated after the encryption of these
sections.

The remaining step is to change the version of the firmware update. When the adaptor
receives an update it checks the received firmware version. As long as the version is

Chapter 4. Implementation and evaluation 38

different from the one currently installed, the adaptor accepts it. The version is also a
section, so after modifying the version its CRC must also be updated.

4.2.5 Updating the target adaptor

Updating our adaptor can be done in one of two ways: through its web interface or
through a program (faqfwupdate) provided in the downloaded .deb (not the .dvl
file). Through the web interface we just have to navigate to the update firmware menu
(Main Page → Management → Update Firmware) and feed it the update file. The web
update sequence can be seen on Appendix B.

The faqfwupdate program is a command line executable, and the command to run
it is in the same folder, in the file commandline update.txt. To use the program, the update
must be located in the same folder as the program, and with the same name as the original
update. We find the web interface easier to use, but found no noteworthy advantages or
disadvantages of each method.

4.3 Obtaining access to the adaptor

In this section we explain how to change the adaptor to access it remotely. We analysed
the files of our adaptor’s file system, in order to understand where we could make changes
that would allow us root access. A starting point is the shadow file, where passwords are
kept. No changes were required because, as we can see in the following excerpt, the user
root has no defined password:

root::10933:0:99999:7:::

A password for a user in the shadow file should appear between the first and second
colons. If there is no password defined, that field is empty (as is in our case). To have
remote access to the adaptor we use the already present telnet program [58]. The
telnet daemon is started with the rcS, but is only available when the adaptor is booting.
We removed the encasing condition, making the telnet daemon always available.

In addition, the adaptor is protected through iptables [71], configured to block
telnet’s default port (23), amongst others. So, to open the port 23 of our adaptor (so
we can have telnet connections to it), in the end of rcS we added the following code to
insert a new rule in iptables:

/sbin/iptables -A INPUT -m state --state NEW -m tcp \
-p tcp --dport 23 -j ACCEPT

To update our adaptor we need its IP address if we want to use the web interface. The
easiest way to discover our adaptor’s IP address is to use the faqfwupdate program
(mentioned in Section 4.2.5), but using the command in the commandline check.txt file.

Chapter 4. Implementation and evaluation 39

The faqfwupdate sends who-is-there broadcasts and identify the Devolo adaptors with
IP addresses in the network. Thus, using the terminal we can easily get the adaptor’s IP
address to access the adaptor’s web page:

$ pwd
(...)/devolo-firmware-dlan500-wifi_3.1.0-1_i386/firmware/
devolo-firmware-dlan500-wifi
$ rm update.log && ./faqfwupdate /onlycheck
/parsableprogress /logfile:update.log ; grep -m 1 http \
update.log
##FIRMWARE_UPDATE_STATUS## 1 0 100 0 f4:06:8d:0d:af:d9 pen-
ding
[faq] received hello on random port: <dLAN 500 WiFi>
<f4:06:8d:0d:af:d9> <10.10.104.98> <255.255.0.0>
<http://10.10.104.98/cgi-bin/htmlmgr?_file=sysinfo>
<0017eb29ad> -> OK
$

In this example the adaptor’s IP address is 10.10.104.98.
With these changes we successfully modified a firmware update to our adaptor and

successfully updated the adaptor with it, granting us remote root access to it (using
telnet). This is a major step, since it allows us to run custom programs directly on
the adaptor providing us access to the powerline from the adaptor’s perspective - which
is the most realistic attack scenario. By having remote access to our adaptor we answer
positively research question Q3.1.

Through modifications in the rcS script we also had access to some important informa-
tion. The sysmgrd program (started in the rcS) manages the majority of the system, such
as handling calls like the button push (as can be seen in Section 4.6). During the adaptor’s
boot process, the sysmgrd reads a file in /etc/devolo/ called defaults.xml, which contains
the default settings of the adaptor. That file is processed and a new file is created in /tmp/,
called config, that contains the current configuration of the adaptor, including the Wi-Fi
Protected Access (WPA) key for Wi-Fi access, DAK and NMK. This file is deleted when
the boot process is complete. So, during boot we copy it to the root of the http server
running on the adaptor (and named it def2.xml), adding the following code to the end of
rcS:

cat /tmp/config > /var/www/def2.xml

By accessing the adaptor through its web interface we can read this file remotely, typ-
ing in a browser <adaptor’s IP address>/def2.xml. Obtaining these keys is
itself a security breach and a contribution, although not the main objective of this work.
Nevertheless, stealing the NMK and accessing the adaptor open new attack possibilities:

• An update like the one described above is carried out in a most seamless way. There
is only a brief period during which the adaptor is unavailable, which is during its

Chapter 4. Implementation and evaluation 40

boot process. A user will experience only a short network interruption (about 15
seconds), which will most likely pass unnoticed. Even if the user notices the net-
work disruption, its cause cannot be directly associated with a malicious firmware
update.

• Using this update an attacker can steal the NMK and place new adaptors in the
network without notice.

• By stealing the WPA key it is possible to connect other devices with Wi-Fi transceiv-
ers to the network.

• A powerline adaptor is a new place to attack a network or its elements. By remotely
accessing one, an attacker can to listen to the network, inject packets, etc.

• As explained in Section 2.4.2, the adaptor mediates all traffic to and from the con-
nected devices. Since it is a routing point, a malicious adaptor can redirect all the
traffic of the connected devices to another computer, where it could be all listened,
spoofed, modified, etc.

• By updating the adaptor it is possible to change its NMK (by changing the de-
faults.xml file). This means an attacker can update adaptors to change the network
configuration. This is a powerful capability - it allows to isolate devices from the
underlying network, create network partitions, network bottlenecks, etc. Isolated
devices can be attacked without the detection of the remaining devices [72], and
network partitions are a challenge for distributed systems [73].

4.4 Execution flow of the UKE protocol on our adaptor

In this section we present our analysis of the UKE protocol running in our adaptor. In
order to understand if the HomePlug messages reach kernel/user space, we started by
running the already included tcpdump program [74]. Since tcpdump is running di-
rectly on the adaptor, it should provide us with the packets passing through the powerline
with no restrictions (as mentioned in Section 2.4.2). Initially, we ran tcpdump with no
options on all interfaces. This provided the expected results - a huge amount of IP and
IPv6 traffic originated from our computer. It shows that tcpdump is running correctly,
but it is hard to analyse a huge amount of traffic. So, we added filters. First, we restricted
to packets with the ethertype 0x88e1, which is the ethertype of HomePlug messages,
using the following options:

tcpdump -XX -e -i any ether proto 0x88e1

The -XX, -e switches are for making tcpdump more verbose and to show packet head-
ers. Unfortunately, this did not provide the messages meant to go over the powerline

Chapter 4. Implementation and evaluation 41

only. We experimented placing each interface in promiscuous mode using ifconfig,
running tcpdump and then triggering the UKE protocol. Unfortunately, we still got no
UKE packets or HomePlug messages. We also repeated this test on each interface but
using less restrictive options - just filtering IP packets:

tcpdump -XX -e -vv -i <iface> not ip and not ip6

In this case we use the -vv option for making tcpdump even more verbose - the -vv is
not available when listening to all interfaces at the same time (with the “any” interface).
We tried with both our setups, using our malicious adaptor as part of the protocol and only
as a Sniffer, but the results were the same - we did not read the UKE packets. No new
packets were captured - the results were the same as running wireshark in our computer.

Since tcpdump provided no results, we traced the execution of the UKE on our
adaptor. When the button is pushed to start the UKE protocol, the sysmgrd starts another
program, the simpleconnectd. By reading the kernel logs we saw that when the
simpleconnectd is started the sysmgrd opens a new network interface, ath1. The
technical descriptions we found say that Atheros chips use athX interfaces as virtual
nodes, in place of directly accessing the wifi0 interface. We find odd that a virtual node
for Wi-Fi is created when we start the UKE, so we ran tcpdump directly on ath1:

tcpdump -XX -e -vv -i ath1

tcpdump prints three IPv6 packets shortly after the button is pressed, and produces no
more results until the interface is closed when the UKE ends. These three packets are
always the same even in different executions of the UKE, and show no relevant informa-
tion - we thought they could be parts of legitimate UKE packets, but they would have
to possess different parts between executions. Also, none of the packets show the static
parts of the UKE messages, such as the correct ethertype, or the management message
type. Also, wireshark running in our computer does not capture these three IPv6 packets.
We do not know why this happens or what the meaning of those packets is.

We did not get UKE packets on ath1, but the command ifconfig shows that the
interface is being used to send packets - the transmission number (tx) and byte count
increase while the simpleconnectd program is executing. We did not find which
program is sending those packets.

We explored the simpleconnectd’s execution using the strace command - we
get the simpleconnectd’s pid using the ps command, then feed the pid to strace
with the -p option. Using the strace we observe that the simpleconnectd keeps
trying to read packets from the kernel using the recvfrom function in a network socket.
When we push the button on the second adaptor to start the pairing, that adaptor also
sends UKE packets. Shortly after the second adaptor starts the UKE, simpleconnectd
writes to log “[SimpleConnect#AJoinerHasBeenSuccessfullyAdded]”. We assume this

Chapter 4. Implementation and evaluation 42

message indicates a “join confirm” was received. Then, simpleconnectd writes to
log “[SimpleConnect#EventEnd]”, which we correlate with the end of the UKE. strace
shows the packets read using recvfrom, but none of the packets shown are part of the UKE
protocol. However, some information must reach the user level, or else we would not find
an application managing the UKE. Our conclusion is that the received HomePlug packets
are hidden from us, as well as those sent - we did not find the process that is sending the
UKE messages. We also used strace on the sysmgrd, but the tracing did not reveal
any connections between this program and the networking system or the UKE.

Other files present in the adaptor have functions mentioning the NMK or NEK, such as
sysmgrd, dlancontrol, libdlan.so, or libdevolo.so (seen using the strings com-
mand1). This reinforces the idea that the HomePlug messages (or at least some informa-
tion) reaches user level but are in some way filtered and passed only to specific programs
developed by Devolo.

After observing the behaviour of the adaptor during the UKE, we see that the Home-
Plug packets are in some way covert. Our next step is to build a program that triggers the
UKE. But first, we update the tcpdump program included in our adaptor.

4.5 Running binaries on the adaptor

The adaptor contained an older version of tcpdump. After realizing that tcpdump was
not capturing the packets, we decided to update it to the latest version at the time (libpcap
1.7.2 and tcpdump 4.7.3). This requires compiling the latest version of tcpdump and
place it on our adaptor. This section explains the mechanisms for cross-compiling [26,
27], the binaries that were produced and the results that were obtained.

4.5.1 Cross-compiling

We cannot just place compiled binaries in the adaptor, since it possesses a different CPU
architecture from our computer (x86 in our computer, MIPS in our adaptor). To overcome
the different architectures, we need to cross-compile [26, 27]. A cross-compiler is capable
of compiling on a computer with a certain CPU architecture a program for another CPU
architecture. In our case, we use a cross-compiler to compile programs on a x86 CPU for
a MIPS CPU.

We used the Buildroot µClibC cross-compiler toolchain [75]. This toolchain was
selected because it uses the micro C library µClibC instead of the standard C library,
just as our adaptor does. Also, we used an old version (2009.11), which uses the same
µClibC version (0.9.30), GNU Compiler Collection (GCC) version (4.3.3) and kernel
headers (2.6.31) as our adaptor. Once the cross-compiler is set, we can use it to generate
executables for our adaptor.

1Prints the strings of printable characters contained in files.

Chapter 4. Implementation and evaluation 43

To use the toolchain, we replace the native GCC compiler calls with calls to the
toolchain’s GCC, while adding a few extra parameters - specially the target architec-
ture we want to cross-compile to. Since this work was developed in Linux, we added the
toolchain GCC to the system’s path for ease of use. Therefore, we can call the toolchain’s
GCC on the terminal by typing $ mips-linux-uclibc-gcc. Table 4.1 presents
examples of equivalent native and toolchain GCC calls.

Native GCC
1 gcc example.c -o example < flags >

2 ./configure --with-shared --prefix=/usr
3 make default V=1

Toolchain GCC
1 mips-linux-uclibc-gcc example.c -o example < flags >

2 CC=mips-linux-uclibc-gcc ./configure --with-shared
--prefix=/usr --target=mips

3 make ARCH=mips CROSS COMPILE=mips-linux-uclibc- default V=1

Table 4.1: Equivalent native and MIPS cross-compile toolchain GCC calls.

Even with the toolchain set up, we must be careful when placing executables in the
adaptor since library issues may arise. Even though µClibC contains the standard C li-
brary, other libraries may be needed and will have to be added manually, because the
adaptor only contains the libraries it needs. This means obtaining the libraries compiled
to MIPS or compiling the libraries to MIPS, which may not be trivial (or feasible since the
source code is required). Furthermore, to correctly run an executable, the libraries used
to compile and, later on, dynamically linked during runtime must be the same [76]. To
avoid this issue we can create static executables that contain in themselves all the libraries
and binaries they need to run (no linking is done in runtime - only in compile time). The
advantage of static executables is that they do not depend on the libraries in the device,
thus avoiding library issues. The disadvantage is that these binaries are much larger than
their dynamically linked equivalents.

After the executable is compiled, we can test it. However, the executable only runs
correctly on a MIPS processor, and, following our case, it was generated on a x86 ma-
chine. So, to run generated executables for MIPS or other architectures on a x86 ma-
chine, we need an emulator. The Quick Emulator (QEMU) [77] has such capabilities
as it can be used as a full virtual machine, or just as a runtime emulator. After in-
stalling QEMU, on the command line we can call $ qemu-mips < args > (or $
qemu-< platform >< args > for other CPU architectures) and give as argument our
MIPS executable. System dependent features (such as networking) are not guaranteed to
run correctly, but for simple programs it suffices.

Chapter 4. Implementation and evaluation 44

4.5.2 Cross-compiling tcpdump

tcpdump depends on libpcap. Consequently, to compile tcpdump both libpcap and
tcpdump sources must be in the same folder as in the following example:

$ tree -L 1
.
|-- libpcap-1.7.2
|-- tcpdump-4.7.3
$

First, we cross-compiled the lipcap by using the following command on the libpcap
folder:

$ CC=mips-linux-uclibc-gcc ./configure --host=mips \
--with-pcap=linux && make

resulting in a libpcap.a compiled for MIPS. Then, we moved to the tcpdump folder
and used the same command. The final result was a fully functional updated tcpdump
successfully cross-compiled for MIPS.

4.5.3 Cross-compiled binaries results

Following these steps we successfully placed cross-compiled binaries for MIPS on our
adaptor. Some binaries were compiled using the static GCC directive, others using the
adaptor’s libraries. Amongst the binaries placed in the adaptor we emphasize the latest
version of tcpdump and the program startUKE, presented below.

Updated tcpdump

We used our newly cross-compiled tcpdump on our adaptor in an attempt to obtain the
HomePlug management messages. We re-ran all mentioned tests, but got no new results.

Updated strace

As with tcpdump, we tried to update strace to the latest version since it could provide
new results. The version in the adaptor was the 4.5.20, while the latest release at the time
was the 4.10. However, there were incompatibilities with the MIPS system since it does
not support the large file system (64-bit pointers to files - MIPS only supports 32-bit
pointers), and the cross-compiling was unsuccessful.

Triggering the UKE protocol

The startUKE program was made by us in an attempt to trigger the UKE protocol. The
idea was that by triggering the UKE we could see the remaining packets. Since the stan-
dard specifies that the UKE packets can be transmitted over the MAC layer, we hoped

Chapter 4. Implementation and evaluation 45

that triggering the protocol by sending packets over the MAC layer, the remaining packets
would also be sent over the MAC, where we could read them with tcpdump. We used
the example packets of the HomePlug documentation for the UKE protocol, in Annex
J (presented succinctly in Appendix A), and followed the standard’s description of the
CM SC JOIN.request/confirm messages. As mentioned in Section 3.1, the “join” mes-
sages are not supposed to be visible through the Ethernet, which could ruin this test since
we are sending these messages through the Ethernet - the only interface we have access
to. In this test we take the place of adaptor 1 (so we are in place of sending the first UKE
message).

We successfully built the program and used it on the adaptor, and it successfully sends
messages to the other powerline adaptor, as depicted in Setup 1 (Section 4.1, Figure 4.1).
The program starts by sending CM SC JOIN.request messages, every second. We cap-
tured these messages with tcpdump. Then, we pushed the button of the second adaptor,
to make it enter simple connect mode and also send CM SC JOIN.request messages. We
should get a CM SC JOIN.confirm, but we did not capture it. Nevertheless, we continued
our attempt. Then, the program sent the first UKE message, the CM GET KEY.request,
and we captured it on tcpdump. The other powerline adaptor always answered our mes-
sage with the correct following UKE message (CM GET KEY.confirm - also captured on
tcpdump) but using the deny request code, thus terminating the UKE.

Pressing the button manually in the second adaptor is not a completely realistic sce-
nario for a network infiltration, since physical access to the adaptor is not assumed. Never-
theless, it could be used to demonstrate that the UKE is vulnerable to a sniffing attack. In
addition, the push button action can be emulated using the open-plc’s programs int6k,
plctool or amptool, with the -B switch. These programs provide a push button mes-
sage that can be send to the adaptor’s chip, having the same effect as the physical button
push. The different programs are compatible with the different versions of the Atheros’
chips. Note that adaptor is not required to answer the push button message - the remote
push button capability is configured in the .pib.

The main reason we found for the UKE being cancelled by the other adaptor is that we
may have never received the CM SC JOIN.confirm, which is a requirement for the UKE.
Triggering the UKE without using the “join” messages produced the same results. There
are other possibilities for our failure. The format of our packet could be wrong, or some
fields present in the message could be outdated or incoherent with the current state of the
network. For example, one of the fields is the protocol run number. If this value is kept by
the adaptors and is sequential, we have no way of knowing which value we should place
in this field - we would require a correct message to extrapolate what would be the next
sequence number. Making the protocol run number sequential can avoid/difficult replay
attacks - it is a reasonable assumption.

Since we do not have access to HomePlug messages, this leads us to one of two

Chapter 4. Implementation and evaluation 46

conclusions:

(1) HomePlug messages remain in the chip, never reaching the kernel/user space;

(2) HomePlug messages reach the kernel/user space but are in some way hidden.

Case (1) means that our only options is to put the chip in some sort of debug mode,
hoping that the debugging would be seen in user space. Case (2) implies that we change
some parts of the kernel or drivers, in order to remove the protection that is hiding from
us the HomePlug messages. This protection is most likely at the level of the physical/Eth-
ernet drivers. Either option implies cross-compiling drivers (kernel objects), since (1)
requires direct access to the chip (which is made through drivers).

A third option is to make direct calls to the athrs gmac.ko driver using the syscall
api. Using syscall directly on a kernel module is hard, as it implies knowing offsets
dependent of the system architecture, amongst other features. Due to time constraints we
did not test this option.

4.6 Adding drivers

Following our conclusions, we needed to place a driver on the adaptor. The kernel has
access to the chip through specific drivers. By modifying the drivers in the adaptor or
by adding our own drivers, we could access the chip and then forward the HomePlug
messages to the user level. This section provides the basics on the Linux kernel and it’s
drivers, and how to cross-compile them.

4.6.1 Kernel, kernel objects, drivers, and physical/Ethernet drivers

A kernel is a computer program that manages input/output requests from software, and
translates them into instructions for the CPU or other hardware components. This is an
abstraction layer for software, so that programs do not have to be designed for specific
hardware parts. A kernel is composed of a multitude of small binary objects. These
objects offer functionalities, and software running on the kernel can easily make calls to
them through simple includes.

A kernel object is an external binary compliant with the kernel that can be loaded and
unloaded into it during runtime. They extend the functionality of the kernel without the
need to reboot the system. An example is loading a device driver to the kernel, allowing
it to access new hardware connected to the system.

Drivers “are distinct black boxes that make a particular piece of hardware respond to
a well-defined internal programming interface; they hide completely the details of how the
device works. User activities are performed by means of a set of standardized calls that
are independent of the specific driver; mapping those calls to device-specific operations

Chapter 4. Implementation and evaluation 47

that act on real hardware is then the role of the device driver. This programming interface
is such that drivers can be built separately from the rest of the kernel and plugged in at
runtime when needed.” [78].

The networking system is composed of two parts, a physical driver and an Ethernet
driver. The physical driver handles the connection to the network hardware, while the
Ethernet driver uses the physical drivers’ API to effectively establish communication -
send/receive packets, transmission/reception rates, amongst other components.

4.6.2 Cross-compiling drivers

A driver external to the kernel is contained in a kernel object (.ko file). To compile
a driver, the kernel where the driver will be inserted is necessary (since a kernel object
must be compliant with the kernel where it will be inserted), as well as a correct Make-
file [79, 78]. Since the Linux kernel is open source, Devolo is legally bound to provide
the source code of the kernel they used in the adaptor. So, we downloaded our adaptor’s
code bundle [80], which includes all open source code used in our adaptor.

Simply having the kernel’s source code is not enough. In order to use the kernel to
compile a driver, we must configure and prepare it. To do so, we used the configura-
tion file present in the bundle and our toolchain, and ran the following commands in the
downloaded kernel folder:

$ make ARCH=mips CROSS_COMPILE=mips-linux-uclibc- oldconfig

$ make ARCH=mips CROSS_COMPILE=mips-linux-uclibc- prepare

With this the kernel is prepared, and now we can compile the driver.
In Appendix C, we provide an example of a simple Makefile used to compile a driver

for the native kernel, and its equivalent for cross-compiling to MIPS (Appendices C.1
and C.2). Note that the only difference between a Makefile for native compiling and for
cross-compiling is that the kernel paths differ: for native compiling we point to the kernel
running in our x86 machine, while for cross-compiling we point to kernel of our adaptor,
which we previously prepared. To cross-compile a driver, we run the following command:

$ make ARCH=mips CROSS_COMPILE=mips-linux-uclibc- default

The result is a .ko (kernel object) file, cross-compiled for MIPS, compliant with our
adaptor’s kernel. A kernel object can be loaded using the system’s insmod command,
and removed using rmmod. Loaded kernel objects can be listed using lsmod.

4.6.3 Cross-compiling dvlbutton

To test if we could make a functional driver, we started with a very simple driver that
does nothing but print a message to the kernel when it is loaded and removed. We did this
successfully. The next step was to compile a more complex driver. We decided to modify

Chapter 4. Implementation and evaluation 48

the driver that handles the button pressing of the adaptor. If something went wrong with
the driver, the adaptor would still be functional and we would just have to replace the
damaged driver with the original one.

The code of this driver (called dvlbutton) is open source and is included in our adap-
tor’s code bundle. By analysing the source code we saw that a function is called when
a button is pressed, and one when a button is released. There is the necessity for both
functions, since the button pressing has different actions depending on the duration. Our
modification is simple, but acts as a proof of concept: write to a log a debug message when
a button is pressed, and another when a button is released. Our adaptor has a limited of-
fer of programs, including logging programs. So, we used the kernel logging (function
printk), which is available. The calls were made with the KERN DEBUG parameter,
which is the lowest loglevel available [81] - we used it since we were doing simple debug.

To do this test, we modified the source code of dvlbutton, adding the following code
to dvlbutton.c in the function shortlong stop handler:

printk(KERN_DEBUG "[hack] a button has been released\n");

and the following code to the same file, in function shortlong start handler:

printk(KERN_DEBUG "[hack] a button has been pressed\n");

This completed all the changes we needed.
The next step was to cross-compile the driver using the Makefile in Appendix C.3.

This Makefile is similar to the one in Appendix C.2, but we add the files upon which
dvlbutton.c depends on line 3. Then we compiled the driver using the command of Sec-
tion 4.6.2.

To test our modified driver, we must place it in the adaptor. We replaced the default
driver with our modified driver the extracted file system, and updated our adaptor follow-
ing the steps detailed in Section 4.3. Lastly, we had to confirm that our driver worked. To
do this, we logged in on our adaptor using telnet, and did a short press on the button.
The, we used the logread command, which reads kernel logs among others. With it,
we could see the following lines:

dlanwireless login: root

logread

(...)

Jan 7 04:24:42 dlanwireless user.debug kernel: [hack] a

button has been pressed

Jan 7 04:24:42 dlanwireless user.debug kernel: [hack] a

button has been released

(...)

Jan 7 04:24:42 dlanwireless daemon.info sysmgrd[96]:

SvcMgrLedsAndButtons: dLAN button short press

Chapter 4. Implementation and evaluation 49

(...)

#

As we can see in this log excerpt, our debug messages are printed and the sysmgrd is
called because the short press happened. This proves that our change was successful, and
reinforces that we positively answer Q3.1.

4.6.4 Cross-compiling a network driver

As can be seen in the rcS script of our adaptor, the eth0 and eth1 interfaces are ini-
tialized when the kernel object athrs gmac.ko is loaded. We did a simple experiment to
confirm that this is the driver responsible for networking. We removed the driver using the
rmmod command, and not only the telnet crashed, the internet connection of our com-
puter connected to the adaptor was disrupted. This confirms this is the driver responsible
for networking.

The source code of this driver is unavailable. This, plus the object being external to the
kernel, leads us to believe that the HomePlug messages are filtered in the driver, and that is
why they are not seen in the tcpdump. We analysed this driver using the strings com-
mand, and the functions listed are the functions expected of a physical driver (e.g., setting
physical channels). However, there is also a function called athr gmac recv packets. This
function seems out of place, since it is the Ethernet driver that handles the transmission/re-
ception of packets. In fact, the strings command reveals that this driver seems to be
a mixture of both physical and Ethernet drivers, which strikes us as something complex
and unusual - usually each layer is managed by a separate driver.

We needed to modify the source code of the athrs gmac.ko, or to make a new driver.
Making a physical driver requires knowledge about the underlying chip - register config-
urations, register codes, amongst other data. Writing such driver would require a large
amount of time since we do not have experience in such task. Obtaining the source code
of a physical driver is critical for this step. However, Atheros does not publish the source
code of the drivers for their chips, which is a major setback. We did not find the source
code of a simple driver, but we did find the source code of a driver for our adaptor’s
chip [82] using the Distributed Switch Architecture (DSA) [83]. This is a more complex
driver, and requires further work to compile and run correctly, since it depends on objects
not present in our adaptor’s kernel.

A DSA driver has more dependencies, since it depends on physical drivers specific
for distributed switching. These drivers are not compiled in the kernel included in our
adaptor, but their presence is predicted - the source code of the DSA dependencies is in
our kernel’s source. So, we copied the source code of the physical network drivers and
joined them to the source code of the DSA driver. Since these files are originally kernel
modules, we had to strip the parts of the code associated with registering the drivers.

Chapter 4. Implementation and evaluation 50

After that, we can feed those files as dependencies of the DSA driver. To compile the
DSA driver, we used the Makefile of Appendix C.4. In line 3 we can see the physical
DSA files as the DSA driver’s dependencies. The driver compiled without errors, so now
we can test it.

4.6.5 Testing DSA driver

We updated the adaptor to include the DSA driver, so we could insert it manually. We use
telnet to access the adaptor and use the insmod command to insert the driver into the
kernel. This step executed successfully. Next, we re-ran the tcpdump tests described in
Section 4.4 to see if there were any changes in the received packets - we did not capture
any new packets. So, we removed the athrs gmac.ko from the kernel, using rmmod. We
got the same results as with the first test of removing the athrs gmac.ko - telnet crashed
and no internet connection on our computer. There are two possibilities for this:

(1) The DSA driver does not properly replace the athrs gmac.ko driver;

(2) The network driver always has to be loaded during the adaptor’s boot.

If it is option (1), we reached a dead end, since we have no other driver to replace
the athrs gmac.ko. To validate option (2), we did a simple test: remove and insert the
athrs gmac.ko in one command with the adaptor running, by typing:

rmmod athrs_gmac && \

insmod /lib/modules/2.6.31/net/athrs_gmac.ko

If the network driver can be inserted after the adaptor’s boot, this should maintain the
networking of the adaptor. This test produced the same result as before - no network-
ing - which means that the network driver can only be loaded during boot time. Op-
tion (2) means we can continue this work by modifying the rcS, replacing the loading of
athrs gmac.ko with our DSA driver. This, however, presents a serious risk. Our previous
removals of the athrs gmac.ko were solved by restarting the adaptor. Changing the loaded
driver during boot is not so simple to solve. If the DSA driver is not a correct replacement
for athrs gmac.ko, the most likely scenario is that the networking of the adaptor will not
start, blocking us from accessing it permanently since the only connection we have to it is
through the network. Leaving the adaptor permanently unusable means we would have to
obtain a new one, and this adaptor costs about e70. Each time this test would go wrong,
we would need a new adaptor. For costs reasons, we are very careful with changes that
could leave the adaptor unusable, and this option has not been tested yet.

Nevertheless, we designed a safe solution to test if the DSA driver is a proper replace-
ment for the athrs gmac.ko. By default, the adaptor will boot with the default driver. The

Chapter 4. Implementation and evaluation 51

main point of this solution is to use the rcS to boot the adaptor with the DSA driver once
and only once. We use a “flag” file to indicate what driver to load - if the “flag” file exists,
the adaptor loads the default driver.

When booting with the DSA we always reboot the adaptor for safety, which means
that it will boot twice. In the first boot we load the DSA driver, and in the second one
we load the default driver. We mark the first boot by creating the “flag”. Since errors can
occur during the load of the DSA driver or during the remainder of the rcS, we create the
“flag” and set the adaptor to reboot before loading it. The flag file is created in /var/www
because we are sure we can create files in that directory - recall that a SquashFS is read-
only, but /var is mounted in a read-write partition.

Following the previous description, instead of just loading the athrs gmac.ko with:

insmod /lib/modules/2.6.31/net/athrs_gmac.ko

we replace this line with the following code:

if [! -e /var/www/flag.txt]
then

touch /var/www/flag.txt
./setReboot.sh &
insmod /lib/modules/2.6.31/net/dsaDriver.ko
ping -c 1 <ip>

else
insmod /lib/modules/2.6.31/net/athrs_gmac.ko

fi

where < ip > is the IP address of the computer depicted in our setups (Section 4.1,
Figure 4.1), and setReboot.sh is:

sleep 100
reboot

The sleep has a duration of 100 seconds to ensure the adaptor has enough time to boot.
The ping is used to test if the networking is functioning correctly - if it is, we should
receive it in our computer.

This “flag” is our safeguard - if anything wrong happens, the next boot should be
correct, since the rcS will run the exact same steps it did before our changes. Any is-
sues associated with the driver replacement should be avoided, since unless we manually
remove the “flag” the adaptor will boot with the default driver.

Although this test should be safe, we cannot guarantee that a major crash is impossi-
ble. Any mistakes will likely cause the adaptor to be permanently unusable. Due to this
fact and time constraints, we did not test this solution.

Chapter 4. Implementation and evaluation 52

4.7 Changing kernel/bootloader

We provide insights on possible modifications to kernel/bootloader and how to compile
them in this section. The kernel has drivers that communicate directly with the chip.
Modifying one of these drivers could mean placing the chip on debug mode, or accessing
it directly. We have the source code, so we can modify these drivers. However, modifi-
cations to kernel elements mean compiling it and replacing the kernel of the adaptor with
the new one.

Devolo provides a configuration file together with the source code of the kernel. This
configuration should provide a compiled kernel equal to the one present in the adaptor.
We can modify the objects that are in the kernel by modifying this configuration.

The kernel is built through the KBuild system, composed of KConfig files which define
what kernel modules are built, and are generated after the kernel is configured [84, 85].
These files can be changed manually or through the menuconfig interface, called using
the $ make menuconfig command on the kernel folder. We advise against changing
these files manually due to the intricate kernel dependencies. The menuconfig interface
is simple to use, has an inbuilt help feature and a search. If we want to add a specific
module to the kernel, we can use the search to locate it in the menuconfig. The search also
mentions the module’s dependencies.

After the kernel configuration is done, we can build it. Features can be added to an
already compiled kernel by reconfiguring and then building it. Only the new modules
will be compiled, which are added to the kernel binary. To build the kernel, we run the
following command on the kernel folder:

$ make ARCH=mips CROSS_COMPILE=mips-linux-uclibc-

After being compiled, the new kernel must be placed in the firmware update. Since FMK
does not extract all the image parts for us, we must do it ourselves. We know where the
kernel starts due to the FourCC identifying it, and its length is in the firmware update. So,
using the dd command we can replace the kernel.

A process similar to modifying the kernel can be used to change the bootloader. The
bootloader also has important features, since it manages the chip’s configuration during
the adaptor’s boot process. To compile the bootloader, we must first configure it to the
proper board. In our case, we ran

$ make CROSS_COMPILE=mips-linux-uclibc- ARCH=mips \
ap121-2.6.31-2MB_config

where ap121-2.6.31-2MB config is the correct configuration for the board in our adaptor,
since the hardware board of the adaptor has the codename ap121, the adaptor runs a
kernel with version 2.6.31, and 2MB is the flash size of the board. After the configuration
is done, we can compile it with the same command used to compile the kernel.

Chapter 4. Implementation and evaluation 53

We successfully compiled both, but did not replace any of these on the firmware run-
ning on the adaptor. Our analysis of these drivers did not reveal a clear point where we
could make the changes we need, but it is worth mentioning we could do it. Nevertheless,
replacing the kernel/bootloader can also leave our adaptor unusable, since if any of those
components does not work properly we would permanently lose access to the adaptor.

4.8 Discussion

Given our previous analysis of the HomePlug protocol (see Chapter 3), we discovered
a design flaw in one of the key exchange mechanisms (positively answering research
questions Q1 and Q2). To expose the vulnerability, we need access to the HomePlug
messages. Since an external computer does not have access to such messages, we need
to place ourselves in the position of an adaptor. To this end we updated a HomePlug
adaptor with malicious firmware, to provide us with remote root access to it - thus giving
an affirmative answer to research question Q3.1.

Tracing the execution of the UKE protocol in our adaptor revealed that the HomePlug
messages are in some way hidden from traffic analysers. It can be a mechanism in the
kernel or it could be that the adaptor’s chip handles the protocol by itself. We discard the
last possibility since we discovered that some information about the HomePlug reaches
user level - if the chip alone manages the protocol, why would information about it reach
the kernel? A full separation of responsibilities between chip and kernel is possible, where
the chip would be used as a simple network hardware, and the HomePlug management
would remain in there.

Chasing the possibility of existence of HomePlug management at user level, we went
further into the kernel trying to discover some protection mechanism. The network driver
(called athrs gmac) shows functions of both a physical and Ethernet driver. Such complex
driver could be coincidence or a necessity of these chips, and yet we cannot provide a good
reason for a lack of separation between physical and Ethernet layers. That, and our tests
revealing packets being sent at a kernel level (transmission rate of the interface increasing
on ifconfig) but hidden to traffic analysers leads us to believe that the packets are
being hidden by the driver.

Changing the driver is the next step. However, the source code of athrs gmac is
unavailable, and writing a device driver is no easy task. Besides connecting the driver
to the kernel properly, knowledge of the underlying hardware is required. We did find
the source of a more complex driver for the same chip, which we successfully compiled.
Loading the driver into our adaptor’s kernel showed no errors, but that does not confirm
that it replaces correctly the athrs gmac. Since replacing athrs gmac with an incorrect
driver could lead to an unusable adaptor, we did not perform this test.

We were unable to practically prove the vulnerability. Reverse engineering such com-

Chapter 4. Implementation and evaluation 54

plex device is a time consuming task, and we were unable to perform the attack. To finish
this work it is required to discover how the packets are being hidden (following our as-
sumption that they reach the kernel). Tracing the driver is an option, but requires a kernel
with driver tracing capabilities. Making direct calls to the driver seems to be another pos-
sible solution, but note that syscall is a very complex function. If the packets do not
reach user level and remain in the chip, it is required some mechanism to place the chip
in debug and reveal the HomePlug messages.

If any of these solutions work, we could see the HomePlug messages in our adaptor,
whether if it is sniffing its own network or another one. In both our setups we would see
the packets we require and prove the vulnerability.

Chapter 5

Conclusions

This work studied a powerline protocol in search for security vulnerabilities. We chose the
HomePlug protocol due to ease of obtaining compliant devices. Our analysis revealed a
flaw in one of the key provision mechanisms - the Unicast Key Exchange (UKE) protocol.
This protocol is vulnerable to a sniffing attack, where an attacker who listens to the UKE
packets can steal the critical network keys: the Network Membership Key (NMK) and the
Network Encryption Key (NEK). After a successful attack on the UKE, an attacker has
full access to the network.

To demonstrate the UKE flaw, we needed a powerline Sniffer. Since we do not have
the skills to build such physical device, we hacked a Devolo dLAN 500 WiFi powerline
adaptor. This adaptor runs Linux, and we used it as our attack vector on the network. Our
expectations were that in the adaptor we could sniff all the powerline communications
using a traffic analyser like tcpdump.

Our hacking was successful: by updating the adaptor with malicious firmware we
obtained remote root access to the adaptor and stole its configurations, including some
keys. Although this was not the objective of this work, updating an adaptor with malicious
software opens a series of new possible network attacks. A powerline adaptor is in a
privileged network position, mediating the connection between two points. By controlling
such point an attacker could have full access to traffic generated by the devices connected
to the adaptor.

The HomePlug protocol describes that most management messages are supposed to
be hidden. In fact, a computer connected to a powerline adaptor has no access to the
management messages. Our assumption was that by being in the adaptor’s perspective we
could see all HomePlug messages. We analysed the traffic passing through the adaptor
using tcpdump, but it did not show the critical hidden packets.

We kept our attempt of obtaining the messages by further modifying the adaptor. We
successfully cross-compiled binaries on a x86 machine for MIPS. For example, we placed
in the adaptor the latest version of tcpdump, and a program we devised in an attempt to
trigger the UKE manually. All our experiments were unsuccessful, and we did not obtain

55

Chapter 5. Conclusions 56

the HomePlug messages. Nevertheless, our analysis reveals that at least some information
about the HomePlug messages (if not the whole packets) reach user level on the adaptor.

We continued our work by modifying/adding kernel objects (drivers) to the adaptor.
These were also successfully cross-compiled. We correctly cross-compiled a Distributed
Switching Architecture driver for the adaptor, and it loaded correctly. However, our tests
cannot confirm that the driver is a correct replacement for the existing network driver,
which we believe that may be hiding the HomePlug messages from us. Nevertheless,
these tests also did not provide the HomePlug messages. We also explain how to change
the kernel/bootloader of our adaptor, but we did not execute this step since an improper
kernel/bootloader will likely cause an unusable adaptor.

Summarizing, this work provides some insights on powerline communication. It fo-
cuses on the HomePlug protocol, which we present on more detail, including its compliant
adaptors. Our attempts at modifying an adaptor were successful, but we were unable to
turn it into a full powerline Sniffer - the HomePlug messages are still out of our reach.

5.1 Future work

There are still open possibilities to obtain the HomePlug messages. One is to trace the
athrs gmac using the ftrace functionalities - ftrace is similar to strace but traces
kernel objects. To use ftrace the kernel must be configured to allow such tracing. We
would have to replace the kernel of the adaptor with one including ftrace capabilities.
This could possibly reveal the packets being flowing through the driver.

It is also possible to make calls to athrs gmac using the syscall function. Using
syscall we could call the function athr gmac recv packets directly, and possibly read
the packets directly from the driver. We expected that no filtering is done when calling
the driver directly, thus providing us with the HomePlug messages.

Another test yet to be done is with the DSA driver as a replacement to athrs gmac.
Following the steps mentioned in Section 4.6.5, we could possibly substitute athrs gmac
with our DSA driver, that does no filtering. This would allow us to completely read the
network, and perform the attack.

With the exception of the possibility of using syscall, all options require some step
that may leave the adaptor unusable. If we had direct connection to the adaptor we could
safely perform these tests. Since we do not, we leave these possibilities open for future
work.

One last possibility is to disassemble the athrs gmac.ko. Disassembling is a process
where a binary file is reverse engineered, resulting in the (approximate) source code that
generated the binary [86]. We did this using the Retargetable Decompiler [87], which
provided us with a C file with over 19000 lines of code, some containing direct calls to
memory addresses. Cross-compiling this file without any changes was unsuccessful, and

Chapter 5. Conclusions 57

correcting such code is not trivial. Nevertheless, it is possible to disassemble the driver to
C or assembly and understand how the networking of the driver works. Then, we could
remove any filtering (assuming it exists) and replace the driver.

Chapter 5. Conclusions 58

Appendix A

UKE details

∗ Random number field.
‡ Refer to the protocol for more details.

Field Size (octets) Definition Example Value
ODA 6 Original Destination Address 003132333435
OSA 6 Original Source Address 004647484950

VLAN Tag 0 or 4 IEEE 802.1Q VLAN Tag (optional) None
MTYPE 2 0x88E1 (IEEE-assigned Ethertype) 88e1
MMV 1 Management Message Version 01

MMTYPE 2 Management Message Type 0C60 – CM GET KEY.request
FMI 2 Fragmentation Management Information‡ 0000

Request Type 1 Request Type 00 – direct
Requested Key type 1 Requested Key Type 04 – Hash Key

NID 7 Network ID 3F5B4FDC4D3D05
My Nonce 4 Random number ∗

PID 1 Protocol ID 03
PRN 2 Protocol Run Number AB34
PMN 1 Protocol Message Number 01

HASH KEY variable Random number ∗

Table A.1: UKE message 1.

Field Size (octets) Definition Example Value
ODA 6 Original Destination Address 004647484950
OSA 6 Original Source Address 003132333435

VLAN Tag 0 or 4 IEEE 802.1Q VLAN Tag (optional) None
MTYPE 2 0x88E1 (IEEE-assigned EtherType) 88e1
MMV 1 Management Message Version 01

MMTYPE 2 Management Message Type 0D60 – CM GET KEY.confirm
FMI 2 Fragmentation Management Information 0000

Result 1 Result 00 - key granted
KeyType 1 Key Type 04 - Hash Key

My Nonce 4 Random number. 33221100
Your Nonce 4 Last nonce received. FFEEDDCC

NID 7 Network ID 3F5B4FDC4D3D05
EKS 1 Encryption key select 03 – Tek type from Hash key
PID 1 Protocol ID 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number AB34
PMN 1 Protocol Message Number 02

HASH KEY variable Random number ∗

Table A.2: UKE message 2.

59

Appendix A. UKE details 60

Field Size (octets) Definition Example Value
ODA 6 Original Destination Address 003132333435
OSA 6 Original Source Address 004647484950

VLAN Tag 0 or 4 IEEE 802.1Q VLAN Tag (optional) None
MTYPE 2 0x88E1 (IEEE-assigned Ethertype) 88e1
MMV 1 Management Message Version 01

MMTYPE 2 Management Message Type 0660 – CM ENCRYPTED PAYLOAD.indication
FMI 2 Fragmentation Management Information 0000

PEKS 1 Payload Encryption Key Select 03
BSS Status 1 BSS status of source. (Unencrypted) 08 - BM of a BSS

PID 1 Protocol ID (Unencrypted) 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number (Unencrypted) AB34
PMN 1 Protocol Message Number (Unencrypted) 03

IV 16 AES Initialization Vector (Unencrypted) ∗
LEN 2 Length of MM, in octets (Unencrypted) 3900 - Length of CM SET KEY.request
RF‡ 0-15 Random Filler 123456789A

MM‡ variable
CRC 4 Checksum on MME (Encrypted Payload) 607F75C6
PID 1 Protocol ID (Encrypted Payload) 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number (Encrypted Payload) AB34
PMN 1 Protocol Message Number (Encrypted Payload) 03

Padding variable DBF4C91A3CDA2F169B
RFLen‡ 1 05

Table A.3: UKE message 3.

Field Size (octets) Definition Example Value
ODA 6 Original Destination Address 003132333435
OSA 6 Original Source Address 004647484950

VLAN Tag 0 or 4 IEEE 802.1Q VLAN Tag (optional) None
MTYPE 2 0x88E1 (IEEE-assigned Ethertype) 88e1
MMV 1 Management Message Version 01

MMTYPE 2 Management Message Type 0860 - CM SET KEY.request
FMI 2 Fragmentation Management Information 0000

Key Type 1 Key Type 01 - NMK (AES-128)
My Nonce 4 Random number FFEEDDCC

Your Nonce 4 Last nonce received 33221100
PID 1 Protocol for which Set Key is asserted‡ 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number AB34
PMN 1 Protocol Message Number 03

BM Capability‡ 1 02
NID 7 Network ID of transmitting STA 3F5B4FDC4D3D05

NewEKS‡ 1 New Encryption Key Select or New Payload 01 - NewEKS is ignored when Key Type is NMK
NewKEY 0, 16 or 384 New Key (128-bit AES) ∗ (NMK)

Table A.4: UKE message 3 encrypted payload.

Appendix A. UKE details 61

Field Size (octets) Definition Example Value
ODA 6 Original Destination Address 004647484950
OSA 6 Original Source Address 003132333435

VLAN Tag 0 or 4 IEEE 802.1Q VLAN Tag (optional) None
MTYPE 2 0x88E1 (IEEE-assigned Ethertype) 88e1
MMV 1 Management Message Version 01

MMTYPE 2 Management Message Type 0660 - CM ENCRYPTED PAYLOAD.indication
FMI 2 Fragmentation Management Information 0000

PEKS 1 Payload Encryption Key Select (Unencrypted) 01 - NMK known to STA (AES 128-bit key)
BSS Status‡ 1 05 - Associated with a BSS and PBM Capable

PID 1 Protocol ID (Unencrypted) 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number (Unencrypted) AB34
PMN 1 Protocol Message Number (Unencrypted) FF

IV 16 AES Encryption Initialization Vector (Unencrypted) ∗
LEN 2 Length of MM, in octets (Unencrypted) 2100
RF 0–15 Random Filler 3456789012

MM variable
CRC 4 Checksum on MME (Encrypted Payload) B1FBF73D
PID 1 Protocol ID (Encrypted Payload) 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number (Encrypted Payload) AB34
PMN 1 Protocol Message Number (Encrypted Payload) FF

Padding variable 34
RFLen 1 05

Table A.5: UKE message 4.

Field Size (octets) Definition Example Value
ODA 6 Original Destination Address 004647484950
OSA 6 Original Source Address 003132333435

VLAN Tag 0 or 4 IEEE 802.1Q VLAN Tag (optional) None
MTYPE 2 0x88E1 (IEEE-assigned Ethertype) 88e1
MMV 1 Management Message Version 01

MMTYPE 2 Management Message Type 0960 - CM SET KEY.confirm
FMI 2 Fragmentation Management Information 0000

Result 1 0x00 = success 00
My Nonce 4 Random number 33221100

Your Nonce 4 Last nonce received FFEEDDCC
PID 1 Protocol for which Set Key is confirmed 03 - Provision STA with NMK using UKE
PRN 2 Protocol Run Number AB34
PMN 1 Protocol Message Number FF

BM Capability 1 02

Table A.6: UKE message 4 encrypted payload.

Appendix A. UKE details 62

Appendix B

Devolo dLAN 500 Wifi update sequence

Figure B.1: Web update sequence (1).

63

Appendix B. Devolo dLAN 500 Wifi update sequence 64

Figure B.2: Web update sequence (2).

Appendix B. Devolo dLAN 500 Wifi update sequence 65

Figure B.3: Web update sequence (3).

Appendix B. Devolo dLAN 500 Wifi update sequence 66

Figure B.4: Web update sequence (4).

Appendix C

Makefiles

C.1 Simple native Makefile

1 ifneq ($(KERNELRELEASE),)
2 obj-m := driver.o
3 else
4 KERNELDIR ?= /lib/modules/$(shell uname -r)/build)
5 PWD := $(shell pwd)
6 default:
7 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules
8 endif

C.2 Simple cross-compiling Makefile

1 ifneq ($(KERNELRELEASE),)
2 obj-m := driver.o
3 else
4 KERNELDIR ?= (...)/gpl-source/kernel/2.6.31
5 PWD := $(shell pwd)
6 default:
7 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules
8 endif

67

Appendix C. Makefiles 68

C.3 Makefile for dvlbutton

1 ifneq ($(KERNELRELEASE),)
2 obj-m := dvlbutton.o
3 dvlbutton-objs := dvlbutton.o gpio.o
4 else
5 KERNELDIR ?= (...)/gpl-source/kernel/2.6.31
6 PWD := $(shell pwd)
7 default:
8 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules
9 endif

C.4 Makefile for DSA driver

1 ifneq ($(KERNELRELEASE),)
2 obj-m := dsa.o
3 dsa-objs := ar7240.o dsa.o mdio_bus.o phy_device.o phy.o
4 else
5 KERNELDIR ?= (...)/gpl-source/kernel/2.6.31
6 PWD := $(shell pwd)
7 default:
8 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules
9 endif

Appendix C. Makefiles 70

Glossary

µClibC A minimalist C library for embedded systems. 34, 42, 43

MIPS Microprocessor without Interlocked Pipeline Stages. 32, 37, 42–44, 47, 55

rcS Script ran as root after the file system is mounted. 37–39, 49–51

.pib See PIB. 24, 25, 45

AC Alternate Current. 1, 3

Adaptor A HomePlug compliant electronic device. 1, 2, 5–7, 10, 15, 17–25, 27–56

Bootloader A computer program that loads an operating system. 6, 35, 52, 53, 56

CRC Cyclic Redundancy Check. 33, 37, 38

Cross-compiling A technique for compiling programs across different CPU architec-
tures. 6, 35, 42–44, 46–48, 55, 56

DAK Device Access Key. 15, 22–24, 28, 39

Device An electronic equipment linked to an adaptor. 1, 2, 9, 10, 18–24, 34, 40, 55

Device driver A program that controls a particular type of device that is attached to your
computer. 6, 46–54, 56, 57

Devolo Powerline adaptors manufacturer. 6, 25, 27, 32, 33, 35–37, 39, 42, 47, 52, 55

DSA Distributed Switching Architecture. 49–51, 56

Firmware A program for a hardware device. 16, 25, 32–40, 52, 53, 55

FMK Firmware Mod Kit. 36, 37, 52

FourCC Sequence of four bytes used to uniquely identify data formats. 33, 52

71

Glossary 72

HomePlug A protocol for PLC used in home environments. 5–11, 15, 17–25, 27–32, 35,
40–42, 44–46, 49, 53–56

HomePlug management layer Virtual network layer only accessed by HomePlug adap-
tors used to exchange management messages. 21, 23, 32

HomePlug management message Message used for configuration/control of a Home-
Plug network. 21, 22, 41, 44, 55

ISP Internet Service Provider. 1

Join confirm (CM SC JOIN.confirm) A pre-UKE message indicating that two adap-
tors can execute the UKE. 29, 42, 45

Join request (CM SC JOIN.request) A pre-UKE message indicating an adaptors wants
to execute the UKE. 29, 45

Kernel The central module of an operating system. 6, 25, 32–37, 40–42, 46–50, 52–54,
56

Kernel object An external binary compliant with a kernel that can be loaded and un-
loaded into it during runtime. 6, 35, 46, 47, 49, 56

Key exchange Protocol used for the distribution of cryptographic keys. 4–6, 8, 22, 23,
27, 29–31, 53

NDE Providing NMK by direct entry. 28

Network coordinator Member and manager of a network. 14, 20–22, 24, 25

NID Network Identifier. 19, 22, 31

NMK Network Membership Key. 15, 19, 22, 24, 27–31, 39, 40, 42, 55

NUD Providing NMK using DAK. 28

NVM Firmware for the Atheros’s chips (stored in a .nvm file). 24, 25

Open-plc A software suit used to manage HomePlug adaptors with Atheros’ chips. 24,
25, 45

OSI Open Systems Interconnection. 11, 13, 14

Out-of-band mechanism Secondary channel used for secure information exchange. 4,
22, 27–31

Glossary 73

PIB Parameter Information Block (stored in a .pib file). 24

PLC Powerline Communication. 1, 3–5, 9–12, 14

Qualcomm Atheros A developer of semiconductors for network communications. 24,
25, 27, 34, 41, 45, 49

Signal modulation Technique used to change properties of a wave. 3, 4, 10, 23, 24

Signal noise Variations to the electric wave caused by electronic devices. 4, 24

Sniffer A device capable of sniffing. 6–8, 41, 55, 56

SquashFS An lzma compressed read-only file system used in embedded systems. 33, 51

To sniff To capture network traffic. 17, 21, 23, 29, 45, 54, 55

To spoof To change the source of a message. 21, 40

UKE Unicast Key Exchange. 27–32, 35, 40–42, 44, 45, 53, 55

Bibliography

[1] S. Galli, A. Scaglione, and Z. Wang. For the grid and through the grid: The role
of power line communications in the smart grid. In Proceedings of the IEEE, vol-
ume 99(6):pages 998–1027, 2011.

[2] H. Kopetz. Internet of Things. In Real-Time Systems, Real-Time Systems Series,
pages 307–323. Springer US, 2011. ISBN 978-1-4419-8236-0. doi:10.1007/978-
1-4419-8237-7 13. URL http://dx.doi.org/10.1007/978-1-4419-

8237-7_13.

[3] S. A. Boyer. SCADA: supervisory control and data acquisition. International Society
of Automation, 2009.

[4] R. van Gerwen, S. Jaarsma, and R. Wilhite. Smart metering. In Leonardo-energy.
org, page 9, 2006.

[5] B. K. Bose. Power electronics and AC drives. In Englewood Cliffs, NJ, Prentice-
Hall, 1986, 416 p., volume 1, 1986.

[6] T. Saeki. Orthogonal frequency division multiplexing, 1999. US Patent 5,956,318.

[7] V. C. Ramasami. Orthogonal frequency division multiplexing. In KUID report,
(698659), 2001.

[8] C. D. Motchenbacher and J. A. Connelly. Low-noise electronic system design. Wiley
New York, 1993.

[9] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin. Private Memoirs
of a Smart Meter. In Proceedings of the 2Nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building, BuildSys ’10, pages 61–66. ACM, New
York, NY, USA, 2010. ISBN 978-1-4503-0458-0. doi:10.1145/1878431.1878446.
URL http://doi.acm.org/10.1145/1878431.1878446.

[10] S. Taherian, M. Pias, G. Coulouris, and J. Crowcroft. Profiling Energy Use in House-
holds and Office Spaces. In Proceedings of the 1st International Conference on
Energy-Efficient Computing and Networking, e-Energy ’10, pages 21–30. ACM,

75

http://dx.doi.org/10.1007/978-1-4419-8237-7_13
http://dx.doi.org/10.1007/978-1-4419-8237-7_13
http://doi.acm.org/10.1145/1878431.1878446

Bibliography 76

New York, NY, USA, 2010. ISBN 978-1-4503-0042-1. doi:10.1145/1791314.
1791318. URL http://doi.acm.org/10.1145/1791314.1791318.

[11] H. C. Van Tilborg and S. Jajodia. Encyclopedia of cryptography and security.
Springer Science & Business Media, 2011.

[12] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer net-
works. In Communications Magazine, IEEE, volume 32(9):pages 33–38, 1994.

[13] W. Diffie and M. E. Hellman. New directions in cryptography. In Information
Theory, IEEE Transactions on, volume 22(6):pages 644–654, 1976.

[14] A. Freier, P. Karlton, and P. Kocher. The secure sockets layer (SSL) protocol ver-
sion 3.0. In , 2011. RFC 6101; republication of original SSL 3.0 specification by
Netscape of November 18, 1996.

[15] R. Kainda, I. Flechais, and A. W. Roscoe. Usability and Security of Out-of-band
Channels in Secure Device Pairing Protocols. In Proceedings of the 5th Symposium
on Usable Privacy and Security, SOUPS ’09, pages 11:1–11:12. ACM, New York,
NY, USA, 2009. ISBN 978-1-60558-736-3. doi:10.1145/1572532.1572547. URL
http://doi.acm.org/10.1145/1572532.1572547.

[16] S. East, J. Butts, M. Papa, and S. Shenoi. A Taxonomy of Attacks on the DNP3
Protocol. In Critical Infrastructure Protection III, pages 67–81. Springer, 2009.

[17] R. Newman, L. Yonge, S. Gavette, and R. Anderson. HomePlug AV security mecha-
nisms. In Power Line Communications and Its Applications, 2007. ISPLC’07. IEEE
International Symposium on, pages 366–371. IEEE, 2007.

[18] B. Tasker. Infiltrating a Network Via Powerline Homeplugav Adapters.
https://www.bentasker.co.uk/documentation/security/282-

infiltrating-a-network-via-powerline-homeplugav-

adapters. Online, accessed: 2014-11-13.

[19] C. Brunschwiler. Wireless M-Bus Security Whitepaper. http://www.csnc.ch/
misc/files/2013/wmbus_security_whitepaper.pdf, 2013. Online,
accessed 27/06/2015.

[20] K. Kursawe and C. Peters. Structural Weaknesses in the Open Smart Grid Protocol.
Cryptology ePrint Archive, Report 2015/088, 2015. https://eprint.iacr.
org/2015/088.pdf Online, accessed 27/06/2015.

[21] N. Vidgren, K. Haataja, J. L. Patino-Andres, J. J. Ramirez-Sanchis, and P. Toiva-
nen. Security Threats in ZigBee-Enabled Systems: Vulnerability Evaluation, Prac-
tical Experiments, Countermeasures, and Lessons Learned. In Proceeding of the

http://doi.acm.org/10.1145/1791314.1791318
http://doi.acm.org/10.1145/1572532.1572547
https://www.bentasker.co.uk/documentation/security/282-infiltrating-a-network-via-powerline-homeplugav -adapters
https://www.bentasker.co.uk/documentation/security/282-infiltrating-a-network-via-powerline-homeplugav -adapters
https://www.bentasker.co.uk/documentation/security/282-infiltrating-a-network-via-powerline-homeplugav -adapters
http://www.csnc.ch/misc/files/2013/wmbus_security_whitepaper.pdf
http://www.csnc.ch/misc/files/2013/wmbus_security_whitepaper.pdf
https://eprint.iacr.org/2015/088.pdf
https://eprint.iacr.org/2015/088.pdf

Bibliography 77

Hawaii International Conference on System Sciences (HICSS), pages 5132–5138.
IEEE, 2013.

[22] T. Goodspeed. Extracting Keys from Second Generation Zigbee
Chips. http://www.blackhat.com/presentations/bh-usa-

09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf.
Online, accessed: 2014-11-18.

[23] E. J. Chikofsky, J. H. Cross et al.. Reverse engineering and design recovery: A
taxonomy. In Software, IEEE, volume 7(1):pages 13–17, 1990.

[24] B. Beizer. Black Box Testing: Techniques for Functional Testing of Software and
Systems. In Software, IEEE, volume 13(5):pages 98–, 1996. ISSN 0740-7459. doi:
10.1109/MS.1996.536464.

[25] HomePlug specifications. http://www.cise.ufl.edu/˜nemo/plc/

refs/. Online, accessed: 2014-11-18.

[26] I. L. Taylor. The GNU configure and build system. In Website:
http://www.airs.com/ian/configure, 1998.

[27] F. Yellin, D. R. Long, and R. D. Tuck. Apparatus and method for cross-compiling
source code, 1999. US Patent 5,946,489.

[28] P. Alliance. PRIME 1.3.6 specification. http://www.prime-alliance.

org/wp-content/uploads/2013/04/PRIME-Spec_v1.3.6.pdf. On-
line, accessed: 2014-11-18.

[29] P. Alliance. PRIME 1.4 specification. http://www.prime-alliance.org/
wp-content/uploads/2014/10/PRIME-Spec_v1.4-20141031.pdf.
Online, accessed: 2014-11-18.

[30] BioBankCloud. Plataform as a service for Biobanking. http://www.

biobankcloud.com/. Online, accessed 28/06/2015.

[31] F. Alves, V. Cogo, S. Wandelt, U. Leser, and A. Bessani. On-demand indexing
for referential compression of dna sequences. In PLoS ONE, volume 10(7):page
e0132 460, 2015. doi:10.1371/journal.pone.0132460. URL http://dx.doi.

org/10.1371%2Fjournal.pone.0132460.

[32] IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line
Communications for Smart Grid Applications. In IEEE Std 1901.2-2013, pages 1–
269, 2013. doi:10.1109/IEEESTD.2013.6679210.

http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pdf
http://www.cise.ufl.edu/~nemo/plc/refs/
http://www.cise.ufl.edu/~nemo/plc/refs/
http://www.prime-alliance.org/wp-content/uploads/2013/04/PRIME-Spec_v1.3.6.pdf
http://www.prime-alliance.org/wp-content/uploads/2013/04/PRIME-Spec_v1.3.6.pdf
http://www.prime-alliance.org/wp-content/uploads/2014/10/PRIME-Spec_v1.4-20141031.pdf
http://www.prime-alliance.org/wp-content/uploads/2014/10/PRIME-Spec_v1.4-20141031.pdf
http://www.biobankcloud.com/
http://www.biobankcloud.com/
http://dx.doi.org/10.1371%2Fjournal.pone.0132460
http://dx.doi.org/10.1371%2Fjournal.pone.0132460

Bibliography 78

[33] IEEE Standard for Broadband over Power Line Networks: Medium Access Control
and Physical Layer Specifications. In IEEE Std 1901-2010, pages 1–1586, 2010.
doi:10.1109/IEEESTD.2010.5678772.

[34] H.-P. Alliance. HD-PLC Complete technical over view for full spec design for AV
and PC Equipment. http://www.hd-plc.org/modules/about/hdplc.
html. Online, accessed: 2014-11-18.

[35] IEEE Standard for Electric Power Systems Communications-Distributed Network
Protocol (DNP3). In IEEE Std 1815-2012 (Revision of IEEE Std 1815-2010), pages
1–821, 2012. doi:10.1109/IEEESTD.2012.6327578.

[36] G.-P. Alliance. G3-PLC Guidelines - Low Layers. www.erdf.fr/medias/

Linky/G3_Specifications_%20low_%20layers.pdf. Online, ac-
cessed: 2014-11-18.

[37] G.-P. Alliance. G3-PLC Guidelines - Metering Profile. www.erdf.fr/medias/
Linky/G3_%20Specifications_%20metering-%20profile.pdf.
Online, accessed: 2014-11-18.

[38] M-BUS specifications. http://www.m-bus.com/files/default.php.
Online, accessed: 2014-11-18.

[39] O. Meter. Open Public Extended Network Metering. http://www.openmeter.
com/. Online, accessed 28/06/2015.

[40] O. Alliance. OSGP specifications. http://www.etsi.org/deliver/

etsi_gs/osg/001_099/001/01.01.01_60/gs_osg001v010101p.

pdf. Online, accessed: 2014-11-18.

[41] Z. Alliance. Zigbee specifications. http://zigbee.org/zigbee-for-

developers/applicationstandards/. Online, accessed: 2014-11-18.

[42] R. Richards. Representational State Transfer (REST). In Pro PHP XML and
Web Services, pages 633–672. Apress, 2006. ISBN 978-1-4302-1361-1. doi:10.
1007/978-1-4302-0139-7 17. URL http://dx.doi.org/10.1007/978-

1-4302-0139-7_17.

[43] BlueKrypt. Crypographic Key Length Recommendation. www.keylength.com.
Online, accessed 28/06/2015.

[44] C. Paar and J. Pelzl. Understanding cryptography: a textbook for students and
practitioners. Springer Science & Business Media, 2009.

[45] G. Paul and S. Maitra. RC4 stream cipher and its variants. CRC press, 2011.

http://www.hd-plc.org/modules/about/hdplc.html
http://www.hd-plc.org/modules/about/hdplc.html
www.erdf.fr/medias/Linky/G3_Specifications_%20low_%20layers.pdf
www.erdf.fr/medias/Linky/G3_Specifications_%20low_%20layers.pdf
www.erdf.fr/medias/Linky/G3_%20Specifications_%20metering-%20profile.pdf
www.erdf.fr/medias/Linky/G3_%20Specifications_%20metering-%20profile.pdf
http://www.m-bus.com/files/default.php
http://www.openmeter.com/
http://www.openmeter.com/
http://www.etsi.org/deliver/etsi_gs/osg/001_099/001/01.01.01_60/gs_osg001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/osg/001_099/001/01.01.01_60/gs_osg001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/osg/001_099/001/01.01.01_60/gs_osg001v010101p.pdf
http://zigbee.org/zigbee-for-developers/applicationstandards/
http://zigbee.org/zigbee-for-developers/applicationstandards/
http://dx.doi.org/10.1007/978-1-4302-0139-7_17
http://dx.doi.org/10.1007/978-1-4302-0139-7_17
www.keylength.com

Bibliography 79

[46] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. In S. Vaudenay and A. Youssef, editors, Selected Areas in Cryptography,
volume 2259 of Lecture Notes in Computer Science, pages 1–24. Springer Berlin
Heidelberg, 2001. ISBN 978-3-540-43066-7. doi:10.1007/3-540-45537-X 1. URL
http://dx.doi.org/10.1007/3-540-45537-X_1.

[47] I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In M. Matsui, edi-
tor, Fast Software Encryption, volume 2355 of Lecture Notes in Computer Science,
pages 152–164. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43869-4. doi:
10.1007/3-540-45473-X 13. URL http://dx.doi.org/10.1007/3-540-

45473-X_13.

[48] J. Golić. Linear Statistical Weakness of Alleged RC4 Keystream Generator. In
W. Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of
Lecture Notes in Computer Science, pages 226–238. Springer Berlin Heidelberg,
1997. ISBN 978-3-540-62975-7. doi:10.1007/3-540-69053-0 16. URL http:

//dx.doi.org/10.1007/3-540-69053-0_16.

[49] A. Klein. Attacks on the RC4 stream cipher. In Designs, Codes and Cryptography,
volume 48(3):pages 269–286, 2008. ISSN 0925-1022. doi:10.1007/s10623-008-
9206-6. URL http://dx.doi.org/10.1007/s10623-008-9206-6.

[50] F. P. Miller, A. F. Vandome, and J. McBrewster. Advanced Encryption Standard.
Alpha Press, 2009. ISBN 6130268297, 9786130268299.

[51] D. Kennedy. Hacking over power lines. http://dangerousprototypes.

com/2011/11/04/defcon-19-hacking-over-power-lines/. On-
line, accessed 11/06/2015.

[52] Q. A. Inc. http://www.qca.qualcomm.com/. Online, accessed 26/06/2015.

[53] Q. Atheros. Qualcomm Atheros’ Open Powerline Toolkit. https://github.

com/qca/open-plc-utils/. Online, accessed 08/05/2015.

[54] F. Fainelli. faifa. https://github.com/ffainelli/{faifa}/. Online,
accessed 08/05/2015.

[55] Devolo. Devolo Cockpit - Software for our home network. http:

//www.devolo.com/en/dLAN-software/devolo-Cockpit-

simple-powerline-network-configuration/. Online, accessed
08/05/2015.

[56] A. Orebaugh, G. Ramirez, and J. Beale. Wireshark & Ethereal network protocol
analyzer toolkit. Syngress, 2006.

http://dx.doi.org/10.1007/3-540-45537-X_1
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-69053-0_16
http://dx.doi.org/10.1007/3-540-69053-0_16
http://dx.doi.org/10.1007/s10623-008-9206-6
http://dangerousprototypes.com/2011/11/04/defcon-19-hacking-over-power-lines/
http://dangerousprototypes.com/2011/11/04/defcon-19-hacking-over-power-lines/
http://www.qca.qualcomm.com/
https://github.com/qca/open-plc-utils/
https://github.com/qca/open-plc-utils/
https://github.com/ffainelli/{faifa}/
http://www.devolo.com/en/dLAN-software/devolo-Cockpit-simple-powerline-network-configuration/
http://www.devolo.com/en/dLAN-software/devolo-Cockpit-simple-powerline-network-configuration/
http://www.devolo.com/en/dLAN-software/devolo-Cockpit-simple-powerline-network-configuration/

Bibliography 80

[57] G. Parsons. Ethernet bridging architecture [standards topics]. In Communications
Magazine, IEEE, volume 45(12):pages 112–119, 2007.

[58] J. Postel and J. K. Reynolds. Telnet protocol specification. In , 1983. RFC 854.

[59] D. J. Barrett and R. E. Silverman. SSH, the Secure Shell: the definitive guide. ”
O’Reilly Media, Inc.”, 2001.

[60] Devolo. Devolo dLAN 500 WiFi. http://www.devolo.com/en/

Products/dLAN-500-WiFi/. Online, accessed 02/06/2015.

[61] Devolo. Devolo update ftp. http://update.devolo.com/linux2/apt/

pool/main/d/devolo-firmware-dlan500-wifi/. Online, accessed
08/05/2015.

[62] D. S. Engineering. Das U-Boot – the Universal Boot Loader . http://www.

denx.de/wiki/U-Boot. Online, accessed 09/06/2015.

[63] A. S. Foundation. ApacheTM Subversion R© - “Enterprise-class centralized version
control for the masses”. https://subversion.apache.org/. Online, ac-
cessed 21/05/2015.

[64] E. Andersen. A C library for embedded Linux. http://www.uclibc.org/.
Online, accessed 08/05/2015.

[65] A. Laboratories. Acme laboratories - graphics * unix * networks * fun. http:

//acme.com/software/thttpd/. Online, accessed 22/05/2015.

[66] C. Heffner and J. Collake. Firmware Mod Kit - Modify firmware images without re-
compiling!. https://code.google.com/p/firmware-mod-kit/. On-
line, accessed 08/05/2015.

[67] M. F. Krafft. The Debian system: concepts and techniques. No Starch Press, 2005.

[68] J. S. Sobolewski. Cyclic Redundancy Check. In Encyclopedia of Computer Science,
pages 476–479. John Wiley and Sons Ltd., Chichester, UK. ISBN 0-470-86412-5.
URL http://dl.acm.org/citation.cfm?id=1074100.1074303.

[69] J. Mocnik and C. Celorio. GHex - a hex editor for GNOME. https://wiki.

gnome.org/Apps/Ghex/. Online, accessed 22/05/2015.

[70] H.-R. SA. IDA disassembler and debugger. https://www.hex-rays.com/
products/ida/. Online, accessed 02/06/2015.

[71] G. N. Purdy. Linux iptables pocket reference. “O’Reilly Media, Inc.”, 2004.

http://www.devolo.com/en/Products/dLAN-500-WiFi/
http://www.devolo.com/en/Products/dLAN-500-WiFi/
http://update.devolo.com/linux2/apt/pool/main/d/devolo-firmware-dlan500-wifi/
http://update.devolo.com/linux2/apt/pool/main/d/devolo-firmware-dlan500-wifi/
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
https://subversion.apache.org/
http://www.uclibc.org/
http://acme.com/software/thttpd/
http://acme.com/software/thttpd/
https://code.google.com/p/firmware-mod-kit/
http://dl.acm.org/citation.cfm?id=1074100.1074303
https://wiki.gnome.org/Apps/Ghex/
https://wiki.gnome.org/Apps/Ghex/
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

Bibliography 81

[72] A. K. Sood and R. J. Enbody. Targeted Cyberattacks: A Superset of Advanced
Persistent Threats. In IEEE Security & Privacy, volume 11(1):pages 54–61, 2013.
ISSN 1540-7993. doi:http://doi.ieeecomputersociety.org/10.1109/MSP.2012.90.

[73] E. Brewer. CAP twelve years later: How the ”rules” have changed. In Computer,
volume 45(2):pages 23–29, 2012. ISSN 0018-9162. doi:10.1109/MC.2012.37.

[74] tcpdump. http://www.tcpdump.org/. Online, accessed 02/05/2015.

[75] P. Korsgaard. Buildroot - Making Embedded Linux Easy. http://buildroot.
uclibc.org/. Online, accessed 24/05/2015.

[76] D. W. Barron. Linkers and Loaders. In Encyclopedia of Computer Science, pages
988–991. John Wiley and Sons Ltd., Chichester, UK. ISBN 0-470-86412-5. URL
http://dl.acm.org/citation.cfm?id=1074100.1074541.

[77] F. Bellard. QEMU - open source process emulator. http://wiki.qemu.org/
Main_Page. Online, accessed 13/05/2015.

[78] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux device drivers. “O’Reilly Media,
Inc.”, 2005.

[79] M. Stallman, R. McGrath, and P. D. Smith. GNU Make. Free Software Foundation,
Boston, 1991.

[80] Devolo. Devolo software license information. http://www.devolo.com/

downloads/data/gpl-source-dlan-500-wifi.tar.bz2. Online, ac-
cessed 21/05/2015.

[81] Kernel logging system. http://linux.die.net/man/2/syslog/. Online,
accessed 04/06/2015.

[82] OpenWrt. https://dev.openwrt.org/browser/trunk/target/

linux/ar71xx/files/net/dsa/ar7240.c?rev=19927. Online, ac-
cessed 28/06/2015.

[83] E. Sneed, G. D. Huensch, J. J. Kulzer, and H. Moerkerken. Distributed switching
architecture trends and concepts. In AT T Technical Journal, volume 73(6):pages
19–27, 1994. ISSN 8756-2324. doi:10.1002/j.1538-7305.1994.tb00616.x.

[84] S. She and T. Berger. Formal semantics of the Kconfig language. In Technical note,
University of Waterloo, page 24, 2010.

http://www.tcpdump.org/
http://buildroot.uclibc.org/
http://buildroot.uclibc.org/
http://dl.acm.org/citation.cfm?id=1074100.1074541
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://www.devolo.com/downloads/data/gpl-source-dlan-500-wifi.tar.bz2
http://www.devolo.com/downloads/data/gpl-source-dlan-500-wifi.tar.bz2
http://linux.die.net/man/2/syslog/
https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/net/dsa/ar7240.c?rev=19927
https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/net/dsa/ar7240.c?rev=19927

Bibliography 82

[85] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and D. Lohmann. Understanding
Linux Feature Distribution. In Proceedings of the 2012 Workshop on Modularity
in Systems Software, MISS ’12, pages 15–20. ACM, New York, NY, USA, 2012.
ISBN 978-1-4503-1217-2. doi:10.1145/2162024.2162030. URL http://doi.

acm.org/10.1145/2162024.2162030.

[86] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code revisited.
In Reverse Engineering, 2002. Proceedings. Ninth Working Conference on, pages
45–54. 2002. ISSN 1095-1350. doi:10.1109/WCRE.2002.1173063.

[87] A. Technologies. https://retdec.com/. Online, accessed 28/06/2015.

http://doi.acm.org/10.1145/2162024.2162030
http://doi.acm.org/10.1145/2162024.2162030
https://retdec.com/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Contributions
	Work plan
	Structure of the document

	Related work
	Home environment standards
	HD-PLC
	HomePlug Alliance
	IEEE 1901 standard

	Industrial environment standards
	DNP3
	G3
	Meter-BUS
	Meters and More
	Open Smart Grid Protocol
	Powerline Intelligent Metering Evolution
	Zigbee
	IEEE 1901.2 standard

	Vulnerabilities in PLC
	DNP3
	HomePlug
	M-BUS
	OSGP
	Zigbee

	HomePlug protocol and devices
	HomePlug in practice
	The HomePlug protocol
	HomePlug adaptors

	HomePlug key exchange mechanisms and our attack plan
	NMK exchange mechanisms
	Security analysis
	An alternative more secure to UKE

	Exposing the UKE security flaw
	The Devolo dLAN WiFi 500 powerline adaptor

	Implementation and evaluation
	Experimental setup
	Modifying the Devolo dLAN 500 WiFi
	Extract firmware
	Modifying/adding files
	Rebuilding the firmware
	Bypassing the security
	Updating the target adaptor

	Obtaining access to the adaptor
	Execution flow of the UKE protocol on our adaptor
	Running binaries on the adaptor
	Cross-compiling
	Cross-compiling tcpdump
	Cross-compiled binaries results

	Adding drivers
	Kernel, kernel objects, drivers, and physical/Ethernet drivers
	Cross-compiling drivers
	Cross-compiling dvlbutton
	Cross-compiling a network driver
	Testing DSA driver

	Changing kernel/bootloader
	Discussion

	Conclusions
	Future work

	UKE details
	Devolo dLAN 500 Wifi update sequence
	Makefiles
	Simple native Makefile
	Simple cross-compiling Makefile
	Makefile for dvlbutton
	Makefile for DSA driver

	Glossary
	Bibliography

