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Resumo 

 

Os recentes avanços na tecnologia e poder computacional e o cada vez mais 

frequente uso de registos de saúde eletrónicos abriram as portas a novas pesquisas que 

exploram a informação destes registos para melhorar os cuidados médicos, 

nomeadamente nos diagnósticos e nas prescrições terapêuticas. 

Uma das maiores preocupações em termos de saúdes pública é a resistência a 

antibióticos. Este fenómeno ocorre quando algumas das subpopulações de um 

microrganismo sobrevivem após serem expostas a antibióticos, tornando-se mais 

difíceis de controlar. É, portanto, essencial utilizar antibióticos de uma forma mais 

eficaz. A Organização Mundial de Saúde já declarou publicamente que, a não ser que se 

consiga reduzir o rápido crescimento da resistência a antibióticos a que tem assistido, 

estamos a caminhar para uma era pós-antibióticos, onde a taxa de mortalidade por 

infeções comuns vai disparar devido à falha expectável de tratamentos médicos 

habituais. 

Hoje em dia, o antibiótico mais adequado apenas pode ser descoberto após os 

resultados dos testes dos laboratórios de análise serem conhecidos, então a maioria dos 

médicos fazem prescrições com base na sua experiência. No entanto, ao analisar um 

grande volume de dados clínicos, é possível que o pessoal clínico descubra informações 

mais relevantes que podem ajudá-los nas suas decisões. A equipe médica deve ter mais 

informações aquando da tomada de decisões. 

A análise computacional dos registos de saúde electrónicos representa uma 

oportunidade para combater a tendência crescente de resistência aos antibióticos, pois a 

nova informação descoberta pode auxiliar os médicos na tomada de melhores 

diagnósticos e prescrições. Isso poderia aumentar a qualidade da assistência médica, 

reduzindo não só a mortalidade e morbidade, mas também os custos. 

O objetivo deste projeto foi investigar se era possível desenvolver modelos de 

aprendizagem supervisionadas que fossem capazes de classificar os pacientes consoante 
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o risco de resistência a antibióticos utilizando as informações que são geralmente 

recolhidas a nível clínico e laboratorial em termos de resistência aos antibióticos. O 

conjunto de dados que apoiaram este projecto foi gentilmente partilhado através de uma 

colaboração com o Laboratório de BIOFIG na FCUL, e representa dados reportados por 

vários hospitais portugueses em matéria de resistência aos antibióticos durante um 

período de 11 anos. 

Duas tarefas foram realizadas para cumprir os objectivos: pré-processamento dos 

dados e aprendizagem supervisionada. No pré-processamento dos dados foram usadas 

técnicas de limpeza, de estandardização e de transformação de dados, de modo a tornar 

os dados o mais consistente possível para que pudessem depois seguir para a 

aprendizagem supervisionada. Aqui foram aplicados métodos de aprendizagem 

automática sobre os dados para treinar um modelo capaz de prever a resistência aos 

antibióticos ao nível do paciente, com base em parâmetros demográficos, clínicos e 

laboratoriais. 

Numa primeira fase, a classificação de cada paciente como resistente ou não 

resistente a cada antibiótico foi realizada individualmente. Nela foram testados diversos 

algoritmos, como Decision Tables (DT), Random Forests (RF), Multilayer Perceptron 

(MP) e Support Vector Machines (SVM), sempre com validação cruzada com 10 

subconjuntos. Foram ainda feitos testes com os filtros SMOTE a 200% e 500% e Spread 

Subsample com um rácio 1:1. 

Os resultados não foram satisfatórios, portanto os testes foram repetidos após se 

fazer uma avaliação sobre ganho de informação dos atributos, de modo se testar apenas 

sobre os atributos mais relevantes. No entanto, os resultados pouco melhoraram. 

Foi então compreendido que a formulação inicial do problema (uma classe para 

cada antibiótico) era provavelmente inadequada. Assim sendo, problema de 

classificação foi reformulado, desta feita seguindo para uma abordagem de classificação 

por perfil de resistência dos pacientes. Técnicas de agrupamento foram aplicadas sobre 

os dados para identificar perfis de resistência, ou seja, pacientes que apresentaram 

resistência ao mesmo conjunto de antibióticos. 

Após isso, uma estratégia de classificação de dois níveis foi concebida de forma a 

classificar os pacientes de acordo com o seu perfil de resistência.  

Para o primeira nível, a classificação filtrada, uma estratégia de classificação duas 

classes foi utilizada, em que todas as instâncias pertencentes a grupos de perfis 
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resistentes foram agrupados numa única classe, enquanto que os restantes doentes sem 

qualquer resistência foram agrupados noutra classe distinta. A classificação filtrada foi 

sempre realizada com um filtro SMOTE com a percentagem a 500% e os algoritmos de 

classificação foram testados Decision Tables e Random Forests, com uma validação 

cruzada com 10 subconjuntos. 

Seguidamente, no segundo nível, as instâncias que foram classificadas como 

resistentes foram novamente separadas consoante os resultados da técnica de 

agrupamento anteriormente utilizada, classificadas via classificação multi-classe, para 

que o conjunto de dados multi-classe pudesse ser tratado por classificadores de 2 

classes. Os algoritmos de classificação utilizados foram os mesmos que para o primeiro 

nível, apenas sem filtro, e os métodos utilizados para transformar o problema multi-

classe em vários de 2 classes foram 1-contra-todos e 1-contra-1. 

Notou-se uma melhoria geral nos resultados, mas ainda com um desempenho 

bastante reduzido na maioria dos perfis. Outras duas abordagens foram feitas usando 

esta estratégia de classificação de dois níveis. Uma baseada numa classificação direta de 

instâncias em perfis de resistência, corrigindo algumas das atribuições erradas dos 

agrupamentos feitas pelo algoritmo de agrupamento, tendo as instâncias que foram 

erradamente colocadas num agrupamento sido realocadas. A outra, para além do 

reajustamento que acabou de ser explicado, continha ainda o número de instâncias 

pertencentes a cada agrupamento por mês. Novamente, apesar de terem sido notadas 

melhoras gerais, não eram suficientemente satisfatórias. Foram ainda realizadas 

previsões futuras sobre a evolução futura do número de pacientes resistentes por perfil 

de resistência recorrendo a séries temporais. 

Apesar dos resultados da classificação por perfil de resistência terem um baixo 

desempenho no geral, tiveram algum sucesso com o perfil onde os pacientes eram 

resistentes a Tetramicina e Cloranfenicol. Dadas as várias falhas detectadas a nível da 

qualidade dos dados (dados em falta, heterogeneidade de nomeações e categorias, 

número reduzido de pacientes resistentes para alguns antibióticos) é expectável que o 

desempenho para outros perfis possa aumentar, utilizando um conjunto de dados com 

maior qualidade e representatividade.  

Este projecto realçou dois aspectos importantes: a qualidade e representatividade 

dos dados recolhidos, pois após terem sido testadas várias abordagens diferentes e os 

resultados correspondentes analisados, foi determinado que a informação reportada não 
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tinha a capacidade preditiva apropriada, pelo que não foi possível desenvolver o modelo 

anteriormente descrito; e a compreensão dos dados e do seu domínio, verificado quando 

se demonstrou que a classificação por perfil de resistência obteve melhores resultados 

que a classificação por antibiótico.  

Uma vez que os dados recolhidos cobrem um período de até há 10 anos, é 

expectável que com as recentes evoluções nos sistemas de informação de saúde 

empregues por hospitais portugueses, uma recolha de dados mais recentes iria fornecer 

dados de melhor qualidade. Seria assim interessante aplicar a estratégia proposta sobre 

dados mais recentes, e testar estes iriam de facto melhorar o desempenho da 

classificação. 

 

Palavras-chave: Aprendizagem supervisionada, aprendizagem automática sobre dados 

clínicos, previsão de resistência a antibióticos, prospeção de dados, registos de saúde 

eletrónicos 
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Abstract 

 

The recent advances in technology and computation power and the expanding use 

of electronic health records have opened new avenues of research that explore the 

information in these records to improve healthcare, namely in diagnosis and therapeutic 

prescriptions. One increasingly relevant public health concern is antibiotic resistance. 

The World Health Organization has already stated that unless the antibiotic resistance's 

growing trend is reduced, we are heading towards a post-antibiotic era, where the death 

rate of common infection will rise due to the expected failure of standard medical 

treatments. 

The ability to successfully predict antibiotic resistance risk can have a significant 

impact worldwide, because it can help clinicians in selecting appropriate antibiotics. 

This can help reduce antibiotic resistance levels, improve patient treatment, and 

ultimately decrease healthcare costs. 

This project's goal is to investigate if it is possible to develop supervised learning 

models that are able to classify patients regarding their antibiotic resistance risk using 

the information that has been usually collected at a clinical and laboratorial level and 

reported by Portuguese hospitals. This was accomplished by taking electronic health 

records data, pre-processing it using data cleaning, standardization and transformation 

techniques, and then applying machine learning methods to it to train a model capable 

of predicting antibiotic resistance at the patient level. 

The most successful classification strategy was based on a two-stage multi-class 

approach, where patients were classified into resistance profiles previously obtained 

using clustering techniques. Nevertheless, performance was still very low for most 

resistance profiles, no doubt influenced by the several issues in data quality detected. 

An improved collection of data, with fewer errors and other variables reported would 

likely have a great impact in performance.  
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Chapter 1 

Introduction 

This dissertation is focused on predicting antibiotic resistance risk for patients 

using supervised learning approaches over demographic, clinical and laboratory data. 

The first chapter will present my motivation, objectives and contributions, as well as the 

document structure. 

 

1.1  Motivation 

Antibiotic resistance is one of the public healthcare’s main concerns, mainly for 

driving up healthcare costs, increasing the severity of disease, and increasing the death 

rates of some infections [1-3]. The WHO’s (World Health Organization) 2014 report on 

global surveillance of antimicrobial resistance [4] shows that antibiotic resistance is an 

actual problem at a global scale, putting at risk the ability to treat common infections in 

the community and hospitals. 

Nowadays, the most appropriate antibiotic can only be found after the lab analysis 

test results are known, so most of the doctors make prescriptions based on their 

experience alone. It is vital to use antibiotics in a more effective way and to reduce the 

antibiotics resistance growing trend, or else we are headed towards a post-antibiotic era, 

in which common infections and minor injuries can once again kill. 

The recent advances in technology and computation power, combined with the 

expanding use of electronic health records, represent an opportunity to fight the rising 

antibiotic resistance trend by aiding clinicians in making better diagnostics and 

therapeutic prescriptions [5]. By analyzing a large volume of clinical data, it is possible 

to give clinical staff more relevant information that can help them on their decisions. 
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This could potentially increase the quality of healthcare, reducing mortality and 

morbidity, while also reducing costs. 

 

1.2  Objectives 

This dissertation's goal was to investigate if it was possible to develop supervised 

learning models that were able to classify patients regarding their antibiotic resistance 

risk using the information that is usually collected at a clinical and laboratorial level in 

terms of antibiotic resistance by Portuguese hospitals. The dataset that supported this 

project has been kindly shared through a collaboration with the BIOFIG Lab at FCUL, 

and represents data reported by several Portuguese hospitals concerning antibiotic 

resistance over an 11 year period. 

Two tasks were planned to accomplish the goal: 

 

1. Data pre-processing: (1) Data cleaning for handling missing and 

corrupted values; (2) Data transformation for improved grouping of some data, such as 

age and antibiotic type; (3) Data standardization for solving the heterogeneities in 

names and scales. 

 

2. Supervised learning: Application of machine learning methods to the data 

to train a model capable of predicting antibiotic resistance at the patient level, based on 

demographical, clinical and laboratory parameters. 

 

 

1.3  Contributions 

The contributions of this project include: 

 

 The identification and solution of the data quality issues: Several problems 

were detected including a large portion of missing values, lack of 

standardized nomenclature and the usage of different scales or categories. 

The magnitude of these issues demonstrates that there is a need to revise 
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the EHR data collection procedure that was employed to generate the 

dataset.  

 

 The creation of patient resistance profiles by clustering of individual 

antibiotic resistance status for each patient: These profiles allow for a 

better understanding of the domain, and highlight the complexity of the 

antibiotic resistance phenomenon. 

 

 The development of a two-stage multi-class classification strategy to 

classify patients according to their antibiotic resistance profile: Although 

performance was very low for most of the profiles, the promising values 

achieved in predicting one of the profiles support further investment in this 

strategy using datasets with improved quality and representativity. 

 

 This project was featured on the 4th Bioinformatics Open Days 2015 held 

in the Faculty of Sciences of the University of Lisbon on April 2015 in the 

form of a poster presentation [6]. 

 

1.4  Document structure 

The document is organized in the following way: 

 

 Chapter 2 - State of the Art: Describes some basic concepts useful for a 

good understanding of the project and presents some of the most of the 

most relevant work in the area. 

 Chapter 3 - Methods: Presents the dataset and describes the methods and 

strategies employed along the project. 

 Chapter 4 - Results: Presents a statistical analysis of the dataset, as well as 

the results of the classification tests described in the previous section. 

 Chapter 5 - Discussion: Presents a critical discussion of the developed 

work, debating the fulfilment of the objective and the additional 

contributions. 
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 Chapter 6 - Conclusions: This section summarizes the main conclusions of 

this work and discusses possible avenues for future work. 
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Chapter 2 

State of the Art 

In this chapter some basic concepts that are crucial for a good understanding of 

this dissertation will be presented, including electronic health records, data mining, 

machine learning and time series analysis. This section is followed by relevant related 

work. Although supervised learning over electronic health records has been used in 

several clinical domains, such as oncology diagnosis [7], this review will only focus on 

antibiotic resistance prediction. 

 

2.1  Basic concepts 

Electronic health records (EHR) store and integrate important data, including 

demographic patient information, drug prescription data or medical notes describing 

medical reasoning behind the prescription, over time. Thanks to its administrative data, 

EHR is widely used in population-based health research [8]. When dealing with a 

certain case, doctors can study what were their peers' opinions at the time and how they 

affected their patients' health just by looking at data stored from previous similar cases. 

Furthermore, it gives doctors the ability to predict how the patient's condition will 

evolve, allowing them to intervene earlier [5, 9]. 

Data cleaning (also called data cleansing) consists of exploring the data for 

possible problems and making an effort to correct errors, by detecting and 

deleting/correcting erroneous or irrelevant records from a dataset. The quality of data 

used for data mining or machine learning can have a considerable impact on the 

performance of these strategies. There are several problems that can be found in 

electronic health records data, from missing, ambiguous or incorrect values to 
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misspelling errors. Therefore, data cleaning frequently involves human judgment to 

decide which points are valid and which are not [10]. 

The term dataset usually refers to data selected and arranged in rows and columns, 

all related but separate elements, ready to be processed and manipulated as a whole by a 

computer. The values in a dataset may be of any of the kinds described as a level of 

measurement, usually numbers or nominal data. 

Data Mining techniques can be applied to EHR to discover novel insights about 

diseases, such as co-morbidities, patient susceptibilities, etc. Data Mining deals with 

large amounts of data in order to discover useful patterns or relationships unknown until 

the time, and is more successful if there is much data available. By making use of these 

large clinical data collections, it is possible to make a retrospective analysis, which 

brings forth an opportunity to deepen our knowledge regarding clinical processes [11, 

12]. One data mining technique employed to support future predictions is time series 

analysis. Time series are a set of repeated observations of the same variable for 

statistical analysis, pattern recognition or forecasting, among other areas [13]. 

Machine learning algorithms provide computers with the ability to learn from data 

automatically without human intervention. It plays a vital role in bioinformatics and 

medical diagnosis nowadays [14, 15]. It is a class of algorithms that are data-driven, i.e. 

it is the data that dictates the best answer. Machine learning focuses on the development 

of computer programs that can teach themselves to grow and change when exposed to 

new data and deals with the construction and study of algorithms that can learn from 

that same data. The machine learning task inferring a function from labelled data is 

called supervised learning. 

Machine learning is often confused with data mining, due to their significant 

overlap. But while machine learning acts based on the known properties from the 

training data, data mining is more focused on knowledge discovery (the discovery of 

previously unknown properties in the data). By applying machine learning techniques to 

the data stored in electronic medical records and electronic health records it is possible 

to aid diagnosis and improve therapeutic choice [5]. 

One kind of machine learning algorithms called supervised learning, rely on using 

example inputs and their desired outputs, so that the algorithm can generate a model that 

maps inputs to outputs. This usually means that a set of instances is classified into one 

of two classes according to a model learned from a number of labelled examples.  
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When datasets have more than two classes, multiclass classification is applied, 

which is the problem of constructing a function which, knowing that each training point 

belongs to one of several different classes, given a new data point, will correctly predict 

the class to which the new point belongs [16]. 

When examples are not labelled, we have unsupervised learning instead. A 

commonly used unsupervised learning technique is clustering. Jain et al. [17] define 

clustering as the unsupervised classification of patterns into groups of similar objects. 

Those groups are named clusters. Clustering is useful in several situations, such as 

pattern classification, like classifying pathologies by their features. 

To improve the quality of machine learning strategies it is common to employ 

feature selection, the process of selecting a subset of relevant features from the data for 

application of a learning algorithm. When using a feature selection technique, it is 

assumed that the data contains irrelevant facts. The best subset contains the least 

number of dimensions that most contribute to accuracy, discarding those that are 

irrelevant. There are several feature selection techniques. One of them, related to the so-

called filter approach, assumes evaluation of individual features or feature subsets 

independently from the learning algorithm. The wrapper approach is another technique, 

which assumes evaluation of feature subsets according to the accuracy of predictive 

model built on these feature subsets [2]. 

 

2.2  Related work 

The key to controlling the spread of antibiotic resistance is using antibiotics in a 

smart, thoughtful way. And to do so, being able to predict a bacteria’s resistance to a 

given antibiotic is fundamental. Hence the extreme importance of applying data mining 

techniques and machine learning methods to clinical data. Several approaches have been 

used so far to tackle this issue. One is to take clinical data with record of ill patients and 

their medication, analyze their evolution, and, by crossing data to find similar cases, 

define what would be the best course of treatment and predict what should happen. 

Pechenizkiy et al. [2] followed this approach when in 2005 they applied various 

data mining techniques to hospital data from patients who had meningitis for the sake of 

predicting antibiotic resistance for nosocomial infections. Naive Bayes, Bayesian 

Network, C4.5 decision trees, k-nearest (1, 3 and 15) neighbours and JRip were applied 
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as basic classifiers. The nearest neighbour-based (especially 1NN and 15NN) and the 

decision tree classifiers achieved the best accuracy results, all of them over 78%. On the 

other hand, the Bayesian features performed poorly. This may be due to the redundancy 

and high correlation of the features, seeing as they were all used. 

However, when feature selection was applied the results differed and more 

relevant conclusions could be made. The filter approach usage taught them that most 

information was concentrated in the features related to antibiotics themselves, while the 

wrapper approach showed that the multidimensionality of the original space had a 

negative effect. Furthermore, by applying a regular manual feature selection they 

discovered that groupings of antibiotics and pathogens into categories were appropriate 

and the grouping features contained relevant information and that their data contained 

some interesting patterns independent from antibiotics and pathogens related to the 

demographics and hospital stay information only. It was safe to make these assumptions 

because, although the accuracy results were lower than when they had tested without 

feature selection, they were still much higher than 50%. 

When natural clustering (strategy of grouping objects into groups of similar 

objects) was applied and the base classifiers were applied on the antibiotic group, who 

had three subgroups, it was not only observed that for two of them the cluster classifiers 

outperformed the global classifiers for every type of base classifiers, but also that their 

average accuracy is higher when they are applied locally within each cluster comparing 

to the global classifiers' accuracy. 

Also in 2005, Tsymbal et al. [18] proposed the use of an ensemble integration 

technique that would help to better handle concept drift at an instance level. Three data 

sets were used, two of which were synthetically generated, the other being a real-world 

data set from the domain of antibiotic resistance in nosocomial infections. This real-

world data set had already been used in paper [2]. In machine learning, concept drift is 

the name given to the problem caused by the unforeseen changes over time of the data 

distributions. This complicates the task of learning a model from data because the 

predictions become less accurate as time passes. These changes may cause a change in 

the data distribution as well, which may lead to the necessity of revising the current 

model, as the model’s error may no longer be acceptable with the new data distribution 

[1]. Several learning algorithms were tried, such as Naive Bayes, decision trees (C4.5) 

or k-nearest neighbours, and five integration techniques were considered: voting (V), 
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weighted voting (WV), dynamic selection (DS), dynamic voting (DV) and dynamic 

voting with selection (DVS). While DS simply selects a classifier with the best local 

predictive performance, in DV, each base classifier receives a weight that is 

proportional to its estimated local performance, and the final classification is produced 

using weighted voting. In DVS, the base classifiers with the worst local performances 

are discarded and locally weighted voting (DV) is applied to the remaining classifiers. 

Their experiments showed that, in k-NN, dynamic integration was not very 

sensitive to the size of the neighbourhood. Besides, they proved that dynamic selection 

(DS) often had the best performance in the present context, although only when the 

validation set was representative enough in order to reliably predict local performance. 

It was concluded that dynamic integration often results in better accuracy with the 

considered datasets that the more commonly used weighted voting, which proves that it 

can be an appropriated integration technique for handling concept drift. 

Another possible approach is to work with clinical data that doesn't contemplate 

patient data at all. Instead of analyzing similar past cases to know what to expect and 

how to act, it focus solely on applying antibiotics to pathogens and study their resistance 

over time. 

Teodoro et al. [3] chose to follow this approach on their recent work where a 

machine learning method that can forecast antibiotic resistance trends based on the k-

nearest embedding vectors was developed. Their dataset contained several time series of 

four pathogens tested against a set of antibiotics over a decade and their approach 

combined robust trend extraction and prediction methods that did not make any a priori 

assumptions of the underlying bacterial and antibiotic resistance dynamics. 

They concluded that the models that employed decomposition of the time series 

and filtered out noisy components improved significantly the forecasting accuracy over 

the other models, and that as the time horizon increases, the power of the models that 

use decomposition becomes more evident. 

Both Pechenizkiy et al. [2] and Tsymbal et al. [18] use WEKA, a workbench for 

machine learning that aids in the application of machine learning techniques to a variety 

of real-world problems [19]. It contains tools for data pre-processing, classification, 

regression, clustering, association rules and visualization. WEKA is widely used in 

many diverse areas of bioinformatics, such as predicting breast cancer survivability or 

forecasting antibiotic resistance trends. It is mainly used for data classification, event 
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prediction and developing new machine learning skills. WEKA is developed by the 

University of Waikato [20].  
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Chapter 3 

Methods 

This chapter presents the dataset used in this work, and all the methods and 

strategies employed. 

 

3.1  Data Characterization 

The dataset used in this project was collected from electronic health records for 

the purpose of reporting antibiotic resistance. It does not represent the full EHR for each 

patient, but the data thought necessary to report. It was collected from 33 different 

Portuguese hospitals between 1993 and 2005, yielding a total of 5118 entries. The data 

was made available in spreadsheet files. These are its main features, including a 

description and examples of values in Table 3.1.1: 

 

 Whether the patient was an in-patient or if he was only attending a doctor's 

appointment 

 Name of the laboratory where the analysis was made 

 Date of the analysis 

 Origin of the test fluid 

 Category of the type of infection 

 Serotype 

 Patient age 

 Patient gender 

 Patient's first diagnosis 

 Antibiotics test results 
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Feature name Description Example of Values 

Hos/Comu 

Whether the patient was an in-

patient or if he was only attending a 

doctor's appointment 

"Hospital" or 

"Community" 

Lab 
Name of the laboratory where the 

analysis was made 

"HCascais", "HSM", 

"HPV" 

Date Date of the analysis 

"31/05/1995", 

"16/06/1995", 

"26/06/1995" 

Product Origin of the test fluid "Nasal", "Liq." 

Product Category Category of the type of infection 

Lower respiratory tract 

("Respiratória Inferior"), 

Upper respiratory tract 

("Respiratória Superior") 

Serotype Serotype "23F", "14", "9V" 

Age Patient age "1", "68" 

Gender Patient gender "M" or "F" 

Diagnosis Patient's first diagnosis "Pneumonia", "HIV+" 

Resistance results 

Antibiotics test results where the 

resistance level (sensitive, 

intermediate or resistant) was 

indicated by the colour of the value 

"0.0125" (blue), "0.5" 

(orange), "3.2" (red) 

 

Table 3.1.1: Main features of the dataset 

 

 

Each patient was tested for 10 different antibiotics: Penicillin, Tetramycin, 

Erythromycin, Clindamycin, Chloramphenicol, Ofloxacin, Cefotaxime, Ceftriaxone, 

SXT and OXA. 
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3.2  Data Cleaning and Normalization 

Several entries did not have resistance values for any of the antibiotics, and were 

therefore removed. From the original 5118 entries, 3813 remained after this step. 

Although several of the remaining entries had missing values, such as the patient's age 

or gender, or the origin of the test fluid, they were kept because the loss of vital 

information was minimal. 

Some data features were also normalized. It was noticed that the data contained 

heterogeneous labels due to lack of coherence since it was collected by different staff 

(i.e., different ways to write the patient's age or the hospital name). Consequently, there 

was a need to check every different notation that referred to the same thing and change 

these entries so that they matched. 

Furthermore, since the frontier values for the antibiotic resistance categories 

(resistant, intermediate or sensitive) vary from each antibiotic and the only way to know 

in which category a patient fit in was by checking the color that was given to its 

antibiotic resistance value, there was a need to create a new feature for each antibiotic  

that indicated if a patient showed resistance. 

 

3.3  Data Transformation 

All hospitals were labelled according to their NUTS II region (see Figure 3.3.1). 

Test fluids were grouped into probable infection types, according to expert validation. 

The patient's age were transformed into different age categories, e.g. 5 year slots, 

children vs. adults. 

These transformed entries were added to the dataset as new features due to their 

probable relevance for the classification. 

Besides these transformations, the antibiotics were also grouped by similarity in 

antibiotic families. These were the aggregations made: 

 

 OXA and Penicillin 

 Erythromycin and Clindamycin 

 Cefotaxime and Ceftriaxone 
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Figure 3.3.1: NUTS II Regions of Portugal 

 

 

It was established that if a patient showed resistance to any of the antibiotics of 

the family then the patient would be resistant to the family. By having the antibiotics 

grouped by families, new possibilities of finding interesting patterns may arouse. 

 

3.4  Classification by Antibiotic 

In a first step, classification of each patient as resistant or susceptible to each 

antibiotic individually was performed. Each patient was taken as an instance, described 

with the following attributes: 

 

 Whether the patient was an in-patient or if he was only attending a doctor's 

appointment 

 Region of the laboratory where the analysis was made 

 Date of the analysis 

 Origin of the test fluid 

 Category of the type of infection 

 Serotype 
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 Patient age 

 Patient gender 

 Antibiotics test results 

 

WEKA 3.7.12 [20] was employed, due to its widespread use and its simplicity. 

In a first approach, it was decided to apply the Decision Tables (DT), Random 

Forests (RF), Multilayer Perceptron (MP) and Support Vector Machines (SVM) [21] 

algorithms, in a 10-fold cross validation. These algorithms represent a selection based 

on simplicity and readability of results (DT, RF) and performance reported in other 

biomedical informatics tasks (SVM, MP). 

A Decision Table is a tabular form for displaying decision logic [22]. Random 

Forest is an ensemble of unpruned classification or regression trees created by using 

bootstrap samples of the training data and random feature selection in tree induction 

where prediction is made by aggregating the predictions of the ensemble [23]. The 

Multilayer Perceptron consists of a system of simple interconnected neurons, or nodes, 

which is a model representing a nonlinear mapping between an input vector and an 

output vector [24]. A Support Vector Machine is an algorithm that learns by example to 

assign labels to objects [25]. The parameters used in each algorithm can be consulted in 

Appendix I. 

Since class imbalance was detected, the SMOTE [26] and Spread Subsample [27] 

filters were also tested. The SMOTE filter consists on over-sampling the minority class 

by creating similar (not equal) instances. Using a SMOTE filter with a percentage of 

200% means that the amount of new SMOTE instances to be created is twice the 

number of instances of the minority class. On the other hand, the Spread Subsample 

filter produces a random subsample of the dataset, where the ratio between the 

frequency of classes can be defined. 

Afterwards, an Information Gain Attribute Evaluation was performed, in order to 

test classification using only the most relevant features. The algorithms and filters used 

for this test were the same as before. 

Finally, similar tests were made for the antibiotic families mentioned in section 

3.3, using all relevant features and Decision Tables without any filter applied and with 

the same filters previously used (SMOTE and Spread Subsample, both with the same 

settings as before). 
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3.5  Antibiotic Resistance Profiling 

The next approach was to test classification by resistance profile. Clustering 

techniques were applied to identify resistance profiles, i.e. patients that showed 

resistance to the same set of antibiotics. 

By making use of WEKA once again, an expectation-maximization algorithm was 

used over the patient instances whose features consisted only on antibiotic resistance 

values in order to assign a probability distribution to each instance which indicates the 

probability of it belonging to each of the clusters. The number of clusters was selected 

automatically by cross-validation. Each resulting cluster represented a different 

resistance profile. 

 

3.6  Classification by Resistance Profile 

The classes for each instance were then altered to one of the identified resistance 

profiles. An ID was also added for instance identification purposes, but it was 

disregarded in every classification test. 

After that, a two-stage classification strategy was devised in order to classify 

patients according to their resistance profile. Figure 3.6.1 is an illustration of how it 

works. 

For the first step, the filtered classification, a two class classification strategy was 

employed, where all the instances belonging to clusters of resistant profiles were 

grouped into a single class (R), whereas patients without any resistance were grouped 

into another class (NR). The filtered classification was always done with a SMOTE 

filter with a percentage of SMOTE instances to create of 500% and the classification 

algorithms tested were Decision Tables and Random Forests with a 10-fold cross-

validation. 
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Figure 3.6.1: Two-stage classification strategy architecture 

 

Next, the instances that were classified as Resistant, had their "original" profile 

classifications reassigned, meaning, the ones that were predicted by the expectation-

maximization algorithm. Hence the importance of having an ID, so that the predicted 

instances can be traced back to the original input file so that their cluster can be 

retrieved. Instances classified as Non-resistant, were removed from the dataset. 

Afterwards, those same instances were classified via Multiclass Classification, so 

that the multi-class dataset could be handled with 2-class classifiers. The classification 

algorithms used were again Decision Tables and Random Forests, always with 10-fold 

cross-validation, and the methods used for transforming the multi-class problem into 

several 2-class ones were 1-against-all and 1-against-1. 

The difference between these two methods is that, while 1-against-all takes one 

class and tests it against all the remaining ones, 1-against-1 does the same, but only 

against one at a time, repeating the procedure until all the possibilities have been 

covered. 
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Finally, the precision, recall and F-measure were compiled so that the different 

algorithm tests could be compared. The following formulas illustrate how each of these 

metrics is calculated: 

 

      

 

 

The tp refers to true positives, whereas the fp refers to false positives and fn to 

false negatives. Establishing a connection between these terms and our problem we 

would have: 

 

 True positive - number of correct classifications from positive examples 

 True negative - number of correct classifications from negative examples 

 False positive - number of incorrect classifications from positive examples 

 False negative - number of incorrect classifications from negative 

examples 

 

Another approach tested was based on a direct classification of instances into 

resistance profiles, correcting some of the erroneous cluster assignments made by the 

clustering algorithm. Instances wrongly assigned to a cluster were reassigned. A new 

cluster named "cluster 9" was created for the cases in which an instance did not fit in 

any of the already existing clusters (for instance, if the patient only showed resistance to 

SXT). Then, the entire process described in Figure 3.2 was repeated using this new data 

set. 

Finally, yet another approach was tested, one that, besides the information used in 

the previous ones, included a newly created compound feature: the number of instances 

belonging to each cluster in the current month. The same tests as before were performed 

using this dataset with the month values information. 
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3.7  Time Series 

After all the classification tests were done, both by antibiotic and resistance 

profile, a new dataset was devised, where each instance represented a month and whose 

features relate to the number of patients that belonged to cluster on the corresponding 

month, so that time series analysis and forecasting could be performed over it. This 

would allow to make predictions of the evolution of the number of patients belonging to 

a certain antibiotic resistance profile. 

The algorithms used for the base learner were Decision Tables and Random 

Forests, due to their previous usage in the project and time constraints. The tests were 

evaluated on training, the periodicity was left unknown, and the predictions were made 

one-step-ahead. 
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Chapter 4 

Results 

In this section, the results of the cleaning and normalization tasks, as well as the 

classification tests will be presented. 

 

4.1  Data Normalization and Transformation 

As it was previously mentioned in sections 3.2 and 3.3, after receiving the data set 

that would support the work, I proceeded to analyze it and perform data cleaning and 

normalization. After the deletion of the entries that had vital information missing, some 

data features were normalized to cope with their heterogeneous labels. 

Table 4.1.1 shows a few examples of entries that were normalized, and the 

changes that resulted from it. 

 

Feature Original entries Normalized entries 

Hospital name 

"HVFXira" 
"HVFXira" 

"HFXira" 

"HCUF" 
"CUF" 

"CUF" 

Origin of the test fluid 

"LIQ. ?" 

"Liq." "Liq?" 

"Liq." 

"NAS" 
"Nasal" 

"Nasal" 
 

Table 4.1.1: Data normalization examples 
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Afterwards, some features were transformed in order to group them by expert 

categories. Some examples that illustrate the changes that derived from the data 

transformation can be seen in Table 4.1.2. 

 

Feature Description Original entries Transformed entries 

Location 
The hospitals were grouped by 

their NUTS II region 

INSA 
Lisbon ("Lisboa") 

HSM 

INSP 
North ("Norte") 

HVNG 

Date 
The entries' season was derived 

from their date 

31/05/1995 
Spring ("Primavera") 

16/06/1995 

26/06/1995 
Summer ("Verão") 

28/06/1995 

Origin of the 

test fluid 

Grouped into categories by 

probable infection type 

Bronchial 

secretion 

("Secreção 

Brônquica") 

Lower respiratory 

tract ("Respiratória 

Inferior") Bronchial lavage 

("Lavado 

Brônquico") 

Nasal ("Nasal") Upper respiratory 

tract ("Respiratória 

Superior") 

Nasopharyngeal 

("Nasofaringeal") 

Patient age 

Grouped into several age 

categories (children vs. adults 

and year slots) 

1 
"C" and "1-2A" 

2 

18 
"A" and "18-50A" 

33 

Antibiotic test 

results 

The entries were split into 

Resistant or Non-Resistant 

according to the colours their 

numeric values showed 

Blue values Resistant 

("Resistente") Yellow values 

Red values 
Non-Resistant ("Não 

Resistente") 
 

Table 4.1.2: Data transformation examples 
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4.2  Statistical Analysis 

To have a better perception of the dataset that supported this project, a thorough 

statistical analysis was made. 

First of all, it was important to know how many blank entries were found in each 

of the relevant features of the dataset (see Table 4.2.1). 

 

 

Number of blank entries in each relevant feature 

Feature Number of blank entries 

Inpatient or ambulatory patient 1997 (52.57%) 

Laboratory name 0 (0%) 

Analysis date 28 (0.73%) 

Origin of the test fluid 110 (2.88%) 

Category of the type of infection 110 (2.88%) 

Serotype 2025 (53.11%) 

Patient age 582 (15.26%) 

Patient gender 1282 (33.62%) 

Patient's first diagnosis 3582 (93.94%) 

Antibiotics test results 0 (0%) 
 

Table 4.2.1: Number of blank entries in each relevant feature 

 

 

A first analysis clearly showed that the patient's first diagnosis, having over 90% 

of its entries blank, is not a suitable feature to work with and was consequently 

discarded. Other features, such as whether the patient was an in-patient or if he was only 

attending a doctor's appointment or the serotype showed about half blank entries. 

Although a significant number, they could still be proven useful and were therefore kept 

for the classification. 

Although the dataset has patients from 6 different regions, over 90% of these are 

from either Lisbon or the North. This means that it will be hard to draw any conclusions 

regarding any of the remaining 4 regions (Alentejo, Algarve, Madeira and Center). 
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The entries are evenly distributed throughout all the years from 1994 to 2004. 

There are less entries from 1993 and 2005, since these are the border years of the 

dataset. The same goes for months and seasons, which is very good, as it shows that the 

dataset is continuous and may allow to examine if there are interesting patterns by 

season, or if there were any antibiotic resistance peaks and try to infer why, for 

example. 

Around two thirds of the patients were adults and around the same percentage 

were male. Figure 4.2.1 illustrates how many patients showed resistance to each 

antibiotic, out of all the 3813 entries: 

 

 

 

Figure 4.2.1: Resistant patients by antibiotic 

 

 

At a first glance, there data seems to have a class imbalance problem for all 

antibiotics, since the number of patients that show resistance to any of them is a lot 

smaller that the number of patients that do not. 

 

4.3  Classification by Antibiotic 

In the individual antibiotic classification task, Decision Tables, Random Forests, 

Support Vector Machines and Multilayer Perceptron were applied without any filters. 
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Table 4.3.1 shows the precision, recall and F-measure results for the tests using 

Decision Tables with a 10-fold cross-validation for every antibiotic. 

 

 

Antibiotic Filter 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

SXT None 0 0 0 0.987 1 0.994 

OXA None 0 0 0 0.984 1 0.992 

MIC Penic None 0.571 0.066 0.118 0.97 0.998 0.984 

Tetra None 0.605 0.364 0.455 0.895 0.958 0.926 

Eritr None 0.609 0.198 0.299 0.892 0.981 0.934 

Clinda None 0.598 0.188 0.286 0.922 0.987 0.953 

Cloranf None 0.476 0.522 0.498 0.969 0.963 0.966 

Oflox None 0 0 0 0.996 1 0.998 

Cefotx None 0 0 0 0.983 1 0.991 

Ceftriax None 0 0 0 0.994 1 0.997 
 

Table 4.3.1: Classification by antibiotic results using Decision Tables 

 

The results using Random Forests, Support Vector Machines and Multilayer 

Perceptron with a 10-fold cross-validation for Tetramycin, seeing as it was one 

antibiotics with best results in the table above, can be seen on Table 4.3.2. 

 

 

Antibiotic Algorithm 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

Tetra 
Random 

Forests 
0.800 0.056 0.105 0.857 0.998 0.992 

Tetra SVM 0 0 0 0.850 1 0.919 

Tetra 
Multilayer 

Perceptron 
0.492 0.382 0.430 0.895 0.931 0.913 

 

Table 4.3.2: Classification results for Tetramycin using other algorithms 

 

From these results it was obvious the there was a class imbalance problem, due to 

the number of non-resistant patients being much higher than the number of resistant 

ones. This lead to most of the already few resistant patients being classified as non-
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resistant. Hence the very high accuracy regarding the non-resistant patients, and the 

opposite regarding those that showed resistance. 

In order to counter this class imbalance problem, two different filters were used 

with filtered classifying: SMOTE at 200% (see Tables 4.3.3 and 4.3.4) and Spread 

Subsample with a uniform distribution (see Tables 4.3.5 and 4.3.6). 

 

 

SMOTE (with a percentage of 200) 

 

Antibiotic Filter 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

SXT SMOTE 0.286 0.042 0.073 0.988 0.999 0.993 

OXA SMOTE 0.007 0.016 0.01 0.983 0.965 0.974 

MIC Penic SMOTE 0.364 0.066 0.111 0.97 0.996 0.983 

Tetra SMOTE 0.582 0.431 0.495 0.904 0.945 0.924 

Eritr SMOTE 0.457 0.304 0.365 0.901 0.946 0.923 

Clinda SMOTE 0.424 0.21 0.281 0.922 0.97 0.946 

Cloranf SMOTE 0.333 0.543 0.413 0.969 0.93 0.949 

Oflox SMOTE 0 0 0 0.996 0.999 0.998 

Cefotx SMOTE 0.467 0.108 0.175 0.985 0.998 0.991 

Ceftriax SMOTE 0.071 0.043 0.054 0.994 0.997 0.995 
 

Table 4.3.3: Classification by antibiotic results using Decision Tables with a SMOTE filter 

(200%) 

 

 

 

Antibiotic Algorithm 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

Tetra Random Forests 0.650 0.068 0.124 0.858 0.994 0.921 

Tetra SVM 0.366 0.112 0.172 0.861 0.966 0.919 

Tetra 
Multilayer 

Perceptron 
0.504 0.419 0.457 0.901 0.928 0.914 

 

Table 4.3.4: Classification results for Tetramycin using other algorithms with a SMOTE 

filter (200%) 
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Spread Subsample (with a distribution spread of 1) 

 

Antibiotic Filter 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

SXT Spread Subsample 0.027 0.958 0.053 0.999 0.564 0.721 

OXA Spread Subsample 0.035 0.871 0.067 0.996 0.6 0.749 

MIC Penic Spread Subsample 0.154 0.828 0.26 0.993 0.85 0.916 

Tetra Spread Subsample 0.466 0.536 0.499 0.916 0.892 0.904 

Eritr Spread Subsample 0.289 0.516 0.371 0.918 0.811 0.861 

Clinda Spread Subsample 0.152 0.641 0.246 0.945 0.631 0.757 

Cloranf Spread Subsample 0.214 0.737 0.332 0.98 0.825 0.896 

Oflox Spread Subsample 0.005 0.714 0.01 0.998 0.491 0.658 

Cefotx Spread Subsample 0.081 0.892 0.149 0.998 0.826 0.903 

Ceftriax Spread Subsample 0.014 0.696 0.027 0.997 0.701 0.823 
 

Table 4.3.5: Classification by antibiotic results using Decision Tables with a Spread 

Subsample filter 

 

 

Antibiotic Algorithm 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

Tetra Random Forests 0.235 0.445 0.307 0.884 0.744 0.808 

Tetra SVM 0.223 0.518 0.312 0.889 0.682 0.772 

Tetra 
Multilayer 

Perceptron 
0.265 0.660 0.378 0.919 0.677 0.780 

 

Table 4.3.6: Classification results for Tetramycin using other algorithms with a Spread 

Subsample filter 

 

The results show that the SMOTE filter brought some improvements, but not 

enough to be considered a valid option. As for the Spread Subsample filter, the recall 

raised significantly, but at the expense of a great reduction on the precision in most 

cases. 

Since some improvements were verified when testing with a SMOTE filter with a 

percentage of SMOTE instances of 200, another test was made with a higher percentage 

(500%). On average this improved the F-measure but overall performance was still very 

low (see Tables 4.3.7 and 4.3.8). 
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SMOTE (with a percentage of 500) 

 

Antibiotic Filter 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

SXT SMOTE 0 0 0 0.987 0.999 0.993 

OXA SMOTE 0 0 0 0.984 0.992 0.988 

MIC Penic SMOTE 0.417 0.041 0.075 0.969 0.998 0.983 

Tetra SMOTE 0.541 0.506 0.523 0.914 0.924 0.919 

Eritr SMOTE 0.432 0.109 0.174 0.881 0.979 0.927 

Clinda SMOTE 0.156 0.014 0.026 0.907 0.992 0.948 

Cloranf SMOTE 0.247 0.522 0.335 0.967 0.897 0.930 

Oflox SMOTE 0 0 0 0.996 1 0.998 

Cefotx SMOTE 0.462 0.092 0.154 0.984 0.998 0.991 

Ceftriax SMOTE 0 0 0 0.994 0.998 0.996 
 

Table 4.3.7: Classification by antibiotic results using Decision Tables with a SMOTE filter 

(500%) 

 

 

Antibiotic Algorithm 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

Tetra Random Forests 0.505 0.082 0.142 0.859 0.986 0.918 

Tetra SVM 0.262 0.356 0.302 0.879 0.824 0.851 

Tetra 
Multilayer 

Perceptron 
0.484 0.420 0.450 0.900 0.921 0.911 

 

Table 4.3.8: Classification results for Tetramycin using other algorithms with a SMOTE 

filter (500%) 

 

Due to the low performance of the tests made until then, an Information Gain 

Attribute Evaluation was performed to find the most relevant features. These were the 6 

most relevant ones: 

 

 Region where the analysis was made 

 Month 

 Category of the type of infection 

 Serotype 

 Patient age 

 Whether the patient was a child or an adult 
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The same four algorithms and filters as before were tested over this new dataset 

with less features. The SMOTE filter was performed with a percentage of 500%, due to 

the slightly better results compared with the ones with a percentage of 200% on the 

previous tests. The results obtained for Tetramycin are shown in Table 4.3.9. 

 

Algorithm Filter 
Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

Decision 

Tables 

None 0.611 0.361 0.454 0.895 0.960 0.926 

SMOTE 0.512 0.506 0.509 0.913 0.915 0.914 

Spread Subsample 0.466 0.536 0.499 0.916 0.892 0.904 

Random 

Forests 

None 0.694 0.075 0.136 0.859 0.994 0.922 

SMOTE 0.305 0.159 0.209 0.863 0.936 0.898 

Spread Subsample 0.228 0.455 0.304 0.884 0.728 0.798 

SVM 

None 0 0 0 0.850 1 0.919 

SMOTE 0.330 0.306 0.318 0.879 0.890 0.885 

Spread Subsample 0.226 0.494 0.310 0.887 0.702 0.784 

Multilayer 

Perceptron 

None 0.501 0.320 0.391 0.887 0.944 0.915 

SMOTE 0.471 0.401 0.433 0.897 0.921 0.909 

Spread Subsample 0.233 0.646 0.342 0.909 0.625 0.741 
 

Table 4.3.9: Classification results for Tetramycin using feature selection 

 

As it was mentioned in the previous section, some antibiotics were also grouped 

by similarity in antibiotic families. These families were also tested the same way the 

antibiotics were. Table 4.3.10 shows the results for each antibiotic tested with Decision 

Tables without any filter applied and with the same filters as before. 

 

Antibiotic 

Family 
Filter 

Resistant Non-resistant 

Precision Recall F-Measure Precision Recall F-Measure 

OXA + MIC 

Penic 

None 0 0 0 0.952 1 0.975 

SMOTE 0.069 0.23 0.106 0.956 0.845 0.897 

Spread Subsample 0.129 0.82 0.222 0.988 0.72 0.833 

Eritr + 

Clinda 

None 0.618 0.19 0.29 0.89 0.983 0.934 

SMOTE 0.461 0.3 0.364 0.901 0.948 0.923 

Spread Subsample 0.225 0.69 0.332 0.924 0.677 0.781 

Cefotx + 

Ceftriax 

None 0 0 0 0.983 1 0.991 

SMOTE 0.267 0.061 0.099 0.984 0.997 0.99 

Spread Subsample 0.095 0.894 0.172 0.998 0.85 0.918 
 

Table 4.3.10: Classification results for antibiotic families using Decision Tables 
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The results were very similar to the ones when the antibiotics were tested 

separately. 

4.4  Antibiotic Resistance Profiling 

In an attempt to overcome the low performance observed in classification by 

individual antibiotic resistance or family, a new strategy was devised based on a three 

step approach:  

 

1. Instances were clustered into resistance profiles; 

2. Instances were classified as resistant (resistant to at least one antibiotic) 

and non-resistant (to all); 

3. Resistant classified instances were re-classified in a multiclass approach to 

the resistance profiles. 

 

The instances were divided in 9 different clusters. Their profiles and how many 

instances were clustered into each one of them can be consulted in Table 4.4.1 and 

Figure 4.4.1, respectively. 

 

Cluster Resistant to 

Cluster 0 None 

Cluster 1 
Tetramycin, Erythromycin, Clindamycin and 

Chloramphenicol 

Cluster 2 Erythromycin 

Cluster 3 Erythromycin and Clindamycin 

Cluster 4 
Penicillin, Tetramycin, Clindamycin and 

Cefotaxime 

Cluster 5 OXA 

Cluster 6 Tetramycin, Erythromycin and Clindamycin 

Cluster 7 Tetramycin and Chloramphenicol 

Cluster 8 Penicillin and Cefotaxime 
 

Table 4.4.1: Relation between clusters and resistance profiles 
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Figure 4.4.1: Clustered instances by cluster 

 

4.5  Classification by Profile Resistance 

After these clusters were made, the two-stage classification strategy previously 

described in section 3.6 was tested. Given the algorithm performances for the 

classification by antibiotic (section 4.3), Support Vector Machines and Multilayer 

Perceptron were discarded. The first due to its unsatisfying results, and the second 

because of computational power and time constraints. For the filtered classification step, 

a SMOTE filter with a percentage of 500% was used. 

Table 4.5.1 shows the results for the filtered classification step of the two-stage 

classification strategy. 

 

Algorithm 
Cluster 0 Cluster 1 

Precision Recall F-Measure Precision Recall F-Measure 

Decision Table 0.897 0.888 0.892 0.503 0.526 0.514 

Random Forest 0.835 0.977 0.901 0.5 0.106 0.175 
 

Table 4.5.1: Classification results for the first step of the two-stage classification strategy 

without cluster adjustment 
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Then, after the instances predicted into Cluster 1 were give their original clusters 

back, they were classified with multiclass classification (1-against-all and 1-against-1), 

using the same algorithms that were used in the filtered classification. The results for 

the multiclass classification with Random Forests after the filtered classification with 

Decision Tables, seeing as it was the algorithm with the best results, can be consulted in 

Table 4.5.2. 

 

 

Cluster 
1-against-all 1-against-1 

Precision Recall F-Measure Precision Recall F-Measure 

Cluster 0 0.595 0.786 0.677 0.588 0.839 0.691 

Cluster 1 0.1 0.024 0.038 0 0 0 

Cluster 2 0.25 0.136 0.176 0.381 0.136 0.2 

Cluster 3 0.333 0.148 0.205 0.429 0.111 0.176 

Cluster 4 0.5 0.25 0.333 0.571 0.25 0.348 

Cluster 5 0 0 0 0 0 0 

Cluster 6 0.408 0.333 0.367 0.507 0.376 0.432 

Cluster 7 0.605 0.69 0.645 0.609 0.67 0.638 

Cluster 8 0 0 0 0 0 0 
 

Table 4.5.2: Classification results for the second step of the two-stage classification strategy 

without cluster adjustment 

 

The outcomes of the tests with each of the other algorithms were similar. 

 

Next, classification by resistance profile was tested again, only this time 

discarding the prediction errors when grouping the instances into clusters, as it was 

explained in the previous section. Figure 4.5.1 shows the number of clustered instances 

in each cluster after this cluster adjustment. The results for the filtered classification step 

using the new dataset are shown in Table 4.5.3. 
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Figure 4.5.1: Clustered instances by cluster after cluster adjustment 

 

 

 

Algorithm 
Cluster 0 Cluster 1 

Precision Recall F-Measure Precision Recall F-Measure 

Decision Table 0.864 0.854 0.859 0.538 0.56 0.549 

Random Forest 0.784 0.958 0.862 0.485 0.131 0.207 
 

Table 4.5.3: Classification results for the first step of the two-stage classification strategy 

with cluster adjustment 

 

 

The results for the patients resistant to any antibiotic (Cluster 1) improved slightly 

when compared to the previous approach, where the clustering prediction errors were 

not corrected. 

As for the multiclass classification, the Random Forest showed better results than 

those from the Decision Tables (see Table 4.5.4). 
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Cluster 
1-against-all 1-against-1 

Precision Recall F-Measure Precision Recall F-Measure 

Cluster 0 0.577 0.769 0.659 0.572 0.809 0.67 

Cluster 1 0.25 0.061 0.098 0.25 0.03 0.054 

Cluster 2 0.333 0.167 0.222 0.583 0.167 0.259 

Cluster 3 0.375 0.125 0.188 0.75 0.125 0.214 

Cluster 4 0 0 0 0 0 0 

Cluster 5 0.2 0.095 0.129 0.25 0.095 0.138 

Cluster 6 0.344 0.239 0.282 0.4 0.196 0.263 

Cluster 7 0.481 0.5 0.491 0.481 0.474 0.477 

Cluster 8 0.3 0.176 0.222 0.375 0.176 0.24 

Cluster 9 0.333 0.279 0.304 0.348 0.313 0.329 
 

Table 4.5.4: Classification results for the second step of the two-stage classification strategy 

with cluster adjustment 

 

 

As it was mentioned at the end of section 3.6, more classification tests were made 

using the two-stage classification strategy over a dataset with the number of patients 

belonging to each cluster per month. The results for the filtered classification step using 

the new dataset with Decision Tables and Random Forests with a SMOTE filter with a 

percentage of 500%, as usual, are shown in Table 4.5.5. 

 

 

Algorithm 
Cluster 0 Cluster 1 

Precision Recall F-Measure Precision Recall F-Measure 

Decision Table 0.864 0.854 0.859 0.538 0.56 0.549 

Random Forest 0.784 0.958 0.862 0.485 0.131 0.207 
 

Table 4.5.5: Classification results for the first step of the two-stage classification strategy 

with month values 

 

 

Once again, Decision Tables obtained better results on the filtered classification 

step, and Random Forests on the multiclass classification one (see Table 4.5.6) 
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Cluster 
1-against-all 1-against-1 

Precision Recall F-Measure Precision Recall F-Measure 

Cluster 0 0.576 0.781 0.663 0.576 0.809 0.673 

Cluster 1 0 0 0 0 0 0 

Cluster 2 0.5 0.167 0.25 0.636 0.167 0.264 

Cluster 3 0.3 0.125 0.176 0.6 0.125 0.264 

Cluster 4 0.143 0.111 0.125 0 0 0 

Cluster 5 0.25 0.095 0.138 0.222 0.095 0.133 

Cluster 6 0.469 0.326 0.385 0.453 0.261 0.331 

Cluster 7 0.605 0.59 0.597 0.62 0.564 0.591 

Cluster 8 0.571 0.471 0.516 0.571 0.471 0.516 

Cluster 9 0.379 0.317 0.346 0.374 0.327 0.349 
 

Table 4.5.6: Classification results for the second step of the two-stage classification strategy 

with month values 

 

The results show a clear improvement overall when compared to the previous two 

approaches, albeit not achieving the maximum 0.645 F-measure result for any cluster, 

as it was verified on the first test made for classification by profile resistance. 

 

4.6  Time Series 

Based on the results obtained from the classification from profile resistance, the 

first forecasting tests were made over cluster 7, since it was the one that obtained the 

best prediction results. 

Figure 4.6.1 shows a comparison between the one-step-ahead predictions (in blue) 

and the actual values of cluster 7 (in red) using a Random Forest algorithm as the base 

learner. The mean absolute error calculated for the prediction was 0.2733, whereas 

using Decision Tables it would be 0.3516. It is clear that the Random Forest algorithm 

was able to predict every resistance peak. 
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Figure 4.6.1: One-step-ahead predictions for cluster 7 

 

 

The prediction results were satisfying. Figure 4.6.2 shows the future forecast for 

the evolution of the number of patients fitting in cluster 7 (resistant to Tetramycin and 

Chloramphenicol) over the next 24 months. 

 

 

Figure 4.6.2: Future forecast for cluster 7 
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However, as it was seen in Figure 4.5.1, only 2.44% of the total instances in the 

dataset were clustered to cluster 7. Therefore, I felt there was a need to make a 

prediction for a cluster that had more representation on the dataset. As a result, the same 

tests were made for cluster 9, the one that had the most instances (9.13%), disregarding 

cluster 0, since it represents patients that are not resistant to any antibiotic. 

In this test, the Decision Table algorithm showed a very low mean absolute error 

of 0.0376, while the Random Forest one had 0.591. As it can be seen in Figure 4.6.3, 

the predictions for cluster 9 using Decision Tables as base learner overlap the actual 

values in almost every month (and are thus obscured in the graph). 

 

 

 

Figure 4.6.3: One-step-ahead predictions for cluster 9 

 

 

The future forecast, on the other hand, assumes a bizarre constancy tendency, as 

Figure 4.6.4 demonstrates. This constancy tendency was present in every future forecast 

made with Decision Tables, regardless of the cluster. 
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Figure 4.6.4: Future forecast for cluster 9 

 

Finally, Table 4.6.1 shows the mean absolute error values for one-step-ahead 

prediction for each cluster using Decision Tables and Random Forests as base learners 

for the forecast. 

 

Cluster Decision Tables Random Forests 

Cluster 0 6.4954 2.8791 

Cluster 1 0.3546 0.1811 

Cluster 2 0.2612 0.27 

Cluster 3 0.1075 0.2037 

Cluster 4 0.0345 0.0371 

Cluster 5 0.1387 0.095 

Cluster 6 1.0694 0.4688 

Cluster 7 0.3516 0.2733 

Cluster 8 0.1071 0.0776 

Cluster 9 0.0376 0.591 
 

Table 4.6.1: mean absolute error values for one-step-ahead predictions 
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Chapter 5 

Discussion 

Although several different approaches to the problem were made, the results show 

that with the data set that was provided it was not possible to develop a high-performing 

classification model for patient-based antibiotic resistance. However, the results show 

that there is a clear relationship between the number of instances in each class and their 

classification performance. For every test that was made, whether it was testing 

classification by antibiotic or by profile resistance, the precision, recall and F-measure 

results were always much better in classes that represented non-resistant patients. In 

section 4.1, the statistical analysis demonstrated how for every antibiotic the number of 

non-resistant patients greatly exceeded the number of resistant ones. Class imbalance 

strategies such as SMOTE and Spread Subsample were ineffective in mitigating this 

issue. However, for the profile ‘Tetramycin and Chloramphenicol’ the two-stage 

classification strategy was able to produce a 0.645 F-measure, a significantly higher 

value than that obtained for the other resistance profiles. 

Understanding that the initial problem formulation (one class for each antibiotic) 

was not the best way to tackle the problem was very important. By using clustering, the 

classification problem was reformulated, which lead to some performance 

improvements. 

 Besides the issues with class imbalance, there were several other difficulties that 

may have contributed to the failure of the classification approaches. One very relevant 

aspect was the missing data. The first diagnosis feature from the original data set had 

over 93% of blank entries. The first diagnosis could give valuable information regarding 

the patient's condition upon arrival to the hospital, or some pathology that was 

diagnosed. It is not possible to know to which extent this could possibly alter the results, 

but this could have been an extremely important source of information. The high 
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number of blank entries (over 50%) on the serotype feature was also a negative point 

from the data set. Determining the serotype takes much less time than resistance 

experiments. If the reported data had more information regarding the serotype, it could 

have potentially improved the predictions. The same goes for the feature that indicated 

whether the patient was an in-patient or if he was only attending an appointment, where 

over 50% of the instances were blank. Since the type of bacteria in nosocomial 

infections is different from community acquired ones, it could have been important to 

have this information. 

 The heterogeneity in labels and in filling in data may have also played a role. 

Even though this is understandable, since the data was collected by different staff in 

different points of the country, it lead to the loss of some potentially valuable 

information. For instance, many entries did not stated the patient's age, only whether 

he/she was a child or an adult. 

Finally, the geographical normalization of data may also be at fault. The NUTS II 

regions, although commonly used in public health statistics, do not capture geographic 

proximity in border regions. Moreover, patient's address may differ substantially from 

the hospital where they were admitted, especially in larger regions. The classification of 

sample sources according to expert categories may also introduce noise. 

In 2005, Pechenizkiy et al. [2] achieved good results on antibiotic resistance 

prediction for nosocomial infections (84.5%). However, their dataset had more data 

related to the hospitalization, like the number of days of stay in the ICU, if the bacteria 

was isolated while the patient was in the ICU or the department of stay, and it only 

contained data collected from one hospital, meaning they had no problems with 

heterogeneous labels. 

Their analysis was based upon 4430 instances of sensitivity tests related to 

meningitis cases. Our dataset was much more heterogeneous in that it covered different 

hospitals, all types of bacterial infections, both nosocomial and community acquired 

infections and all kinds of biological samples, and had virtually no diagnosis data. The 

most similar instances in the dataset used for this project were the ones where the test 

fluid was cerebrospinal fluid. The two-stage classification strategy described in section 

3.6 was tested using only these instances, but without the same success as theirs (see 

Appendix II).  
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These lower results can be explained by the high discrepancy in the number of 

instances used for the tests (4430 vs 307) and by the fact that they were working with a 

single bacteria and a single diagnostic, a much less complex problem that the one 

developed here. 

In spite of not being able to develop the aforementioned supervised learning 

models with the data set that was provided, there was some success in finding the 

resistance profiles for the patients and in applying this strategy to one of the resistance 

profiles.  

Time series forecasting was also performed over these successfully found 

resistance profiles, to predict the future evolution of the number of patients belonging to 

each profile. Although one-step-ahead prediction performed well, the 24 month 

forecasting results were not as satisfying, especially when using Decision Tables. 

Further studies would need to be conducted in order to elucidate the reasons behind this. 

I believe that with more instances, with better quality and a few more informative 

attributes (such as those used in Pechenizky et al.), the profile resistance classification 

approach can be applied with more success to such a complex problem as predicting 

antibiotic resistance risk.  
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Chapter 6 

Conclusions 

This project's goal was to investigate if it was possible to develop supervised 

learning models that could classify patients regarding their antibiotic resistance risk 

using the information that is usually reported at a clinical and laboratorial level in what 

regards antibiotic resistance.  

Antibiotic resistance is a real problem, and one of WHO's main concerns 

nowadays [4]. Developing a model that could successfully predict antibiotic resistance 

risk could have a significant impact worldwide, since it could help clinicians in 

selecting appropriate antibiotics, resulting in a reduction of the antibiotic resistance 

levels, an improvement of patient treatment, and ultimately decreasing healthcare costs. 

The data cleaning and normalization process was successful. Instances with 

important missing data were removed and some features that contained heterogeneous 

labels were normalized, making the dataset more consistent. 

However, the first approach, where classification by antibiotic was tested, proved 

unsuccessful. This led to a different problem formulation, where classification would be 

performed by profile resistance instead. The first step was to group the instances 

according to the patients antibiotic resistance profiles via clustering. This antibiotic 

resistance profiling was successfully accomplished. Then, a two-stage classification 

approach was employed, where in the first step instances were classified into Resistant 

and Non-resistant, regardless of antibiotic, and then Resistant classified instances were 

re-classified into resistance profiles. Even though the profile classification results had a 

low performance in general, it proved to be somewhat successful for the profile 

‘Tetramycin and Chloramphenicol’ at 0.645 F-measure, which may indicate that with 

better data this strategy may be successfully applied to antibiotic resistance risk 

prediction.  
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This work highlighted two important issues: ensuring the quality and 

representativeness of the collected data is crucial, as the reported information did not 

provide enough predictive power to learn a classification model to predict antibiotic 

resistance risk; and also, that a good understanding of the domain is necessary, since a 

reformulation of the problem from predicting individual resistance to profile resistance 

was shown to improve some of the results. 

Considering that the data collected spanned a period until 10 years ago, it is 

expectable that with the recent evolutions in the Health Information Systems employed 

by Portuguese hospitals, a collection of more recent data would provide better quality 

data. It would be interesting to apply the proposed strategy to more recent data, and test 

if it would indeed improve the classification performance. 
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Appendices 

Appendix I: Parameters used for each classification algorithm  

 

 

Algorithm Parameters 

Decision Tables 
weka.classifiers.rules.DecisionTable -X 1 -S 

"weka.attributeSelection.BestFirst -D 1 -N 5" 

Random Forests 
weka.classifiers.trees.RandomForest -I 100 -K 0 -S 

1 -num-slots 1 

Support Vector Machines 

weka.classifiers.functions.LibSVM -S 0 -K 2 -D 3 -

G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 

-model C:\Stuff\Weka-3-7 -seed 1 

Multilayer Perceptron 
weka.classifiers.functions.MultilayerPerceptron -L 

0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 

 

Table A.I.1: Parameters used for each algorithm 
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Appendix II: Classification by profile resistance results for 

patients whose test fluid was cerebrospinal fluid  

 

 

 

Algorithm 
Cluster 0 Cluster 1 

Precision Recall F-Measure Precision Recall F-Measure 

Decision Table 0.93 0.802 0.861 0.473 0.746 0.579 

Random Forest 0.882 0.935 0.908 0.636 0.475 0.544 
 

Table A.II.1: Filtered Classification results using a 500% SMOTE filter for patients whose test 

fluid was cerebrospinal fluid 

 

 

 

Cluster 
1-against-all 1-against-1 

Precision Recall F-Measure Precision Recall F-Measure 

Cluster 0 0.508 0.825 0.629 0.47 0.775 0.585 

Cluster 1 0 0 0 0 0 0 

Cluster 2 0 0 0 0 0 0 

Cluster 3 0.75 0.429 0.545 0.4 0.286 0.333 

Cluster 4 0 0 0 0 0 0 

Cluster 5 0.25 0.25 0.25 0 0 0 

Cluster 6 0 0 0 0 0 0 

Cluster 7 0 0 0 0 0 0 

Cluster 8 0 0 0 0 0 0 

Cluster 9 0.333 0.188 0.24 0.25 0.125 0.167 
 

Table A.II.2: Multiclass Classification results for patients whose test fluid was cerebrospinal fluid 

using Decision Tables after using Decision Tables for the Filtered Classification 
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Cluster 
1-against-all 1-against-1 

Precision Recall F-Measure Precision Recall F-Measure 

Cluster 0 0 0 0 0 0 0 

Cluster 1 0 0 0 0 0 0 

Cluster 2 1 0.333 0.5 0 0 0 

Cluster 3 0.714 0.714 0.714 0.714 0.714 0.714 

Cluster 4 0 0 0 0 0 0 

Cluster 5 0.833 1 0.909 1 0.4 0.571 

Cluster 6 0.846 0.733 0.786 0.813 0.867 0.839 

Cluster 7 0 0 0 0 0 0 

Cluster 8 0 0 0 0 0 0 

Cluster 9 0.759 1 0.863 0.656 0.955 0.778 
 

Table A.II.3: Multiclass Classification results for patients whose test fluid was cerebrospinal fluid 

using Random Forests after using Random Forests for the Filtered Classification 

 

 

Cluster 
1-against-all 1-against-1 

Precision Recall F-Measure Precision Recall F-Measure 

Cluster 0 0.561 0.8 0.66 0.508 0.825 0.629 

Cluster 1 0 0 0 0 0 0 

Cluster 2 0 0 0 0 0 0 

Cluster 3 0.75 0.429 0.545 0.75 0.429 0.545 

Cluster 4 0 0 0 0 0 0 

Cluster 5 0.4 0.5 0.444 0 0 0 

Cluster 6 0 0 0 0 0 0 

Cluster 7 0 0 0 0 0 0 

Cluster 8 0 0 0 0 0 0 

Cluster 9 0.533 0.5 0.516 0.444 0.25 0.32 
 

Table A.II.3: Multiclass Classification results for patients whose test fluid was cerebrospinal fluid 

using Random Forests after using Decision Tables for the Filtered Classification 

 

 

 

 

 


