
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

AN AUTOMATED SYSTEM TO SEARCH, TRACK,
CLASSIFY AND REPORT SENSITIVE

INFORMATION EXPOSED ON AN INTRANET

Tiago Filipe Eleutério Duarte

Dissertação orientada pela Prof. Doutora Maria Dulce Pedroso Domingos
e co-orientado por José António dos Santos Alegria

DISSERTAÇÃO

MESTRADO EM SEGURANÇA INFORMÁTICA

2015





Acknowledgments

First, I want to thank my family for all the support given during all my (academic)
life, specially to my parents Paula and Rui. Their effort was huge, but thankfully, it was
all worthed and I hope they are proud of where I am and were I hope to be, so thank you
for all the love and support. A special thank goes also to my godparents Zé and Ivone,
to my cousin Joana (my "little sister"), and to my grandparents Chico and Graça, for all
the support and love they gave and for being such a great pillar in my life. Now to my
beautiful girlfriend Margarida, who have always supported me, giving me strength for
the most difficult moments and always walking this path by my side, thank you so much
for everything, it is because of you that all of this was possible. To my "parents-in-law"
Margarida and João, thank you for all your support and advices, as well as for accepting
me so well in your family. To my "sisters-in-law" Joana, Pipa and Francisca, as well as my
"nephew" Duarte, whom I love, and my "brothers-in-law" Sérgio and Hugo, thank you for
all the happy family moments and for all the support, you have been so important for me,
as I know you will continue to be. To my great friends Rúben, Bernardo, Andreia, Mica,
Claúdio, Inês, Micael and Sam, thank you all for the fantastic moments in high school and
even after, and for all the friendship you shared with me, I know that I can always count
on you, as much as you can count on me. To my closest friends from FCUL João, Sasha,
Sérgio, Ricardo, Pedro, Rita, Mafalda, Marta, Diogo, Juliana, JC and Faneca, thank you
for these great years and for the next that will come. To Miguel, Pedro, Bernardo and
Pedro, Radu and Rodrigo, mostly for this two late years, thank you for the friendship,
the share of knowledge and advising. To all the pilgrims from São Gonçalo, thank you
all for allowing me to walk beside you. To all the teachers that had contributed for my
learning and knowledge. To my thesis counselors Dulce Domingos, thank you for all
the support and help to write this thesis and José Alegria for the support in PT. To my
coworkers and mentors Pedro Inácio, Luís Costa (which left PT in the beginning but gave
a huge contribution to begin this project) and Paulo Serrão, thank you all for the support
and learning. To my thesis colleague Rúben for this last nine months in PT developing
our projects, thank you for the co-working.

It is hard to express all the gratitude that I feel towards you, but it is genuine and I
am so happy for having this great family and so good friends around me. Life is shown

i



increasingly difficult, but I know I will get to take the best she has to offer, with happiness
and strength that each of you give me. Thank you all for everything, this thesis is for you.

ii



À Margarida, família e amigos





Abstract

Through time, enterprises have been focusing their main attentions towards cyber at-
tacks against their infrastructures derived from the outside and so they end, somehow,
underrating the existing dangers on their internal network. This leads to a low importance
given to the information available to every employee connected to the internal network,
may it be of a sensitive nature and most likely should not be available to everyone’s access.

Currently, the detection of documents with sensitive or confidential information un-
duly exposed on PTP’s (Portugal Telecom Portugal) internal network is a rather time
consuming manual process.

This project’s contribution is Hound, an automated system that searches for docu-
ments, exposed to all employees, with possible sensitive content and classifies them ac-
cording to its degree of sensitivity, generating reports with that gathered information.
This system was integrated in a PT project of larger dimensions, in order to provide DCY
(Cybersecurity Department) with mechanisms to improve its effectiveness on the vulnera-
bility detection area, in terms of exposure of files/documents with sensitive or confidential
information in its internal network.

Keywords: Information Security, Intranet Crawling, Sensitive Information, Information
Retrieval, Data Classification

v





Resumo

Ao longo do tempo, as empresas têm vindo a focar as suas principais atenções para
os ataques contra as suas infraestruturas provenientes do exterior acabando por, de certa
forma, menosprezar os perigos existentes no interior da sua rede. Isto leva a que não dêem
a devida importância à informação que está disponível para todos os funcionários na rede
interna, podendo a mesma ser de caráter sensível e que muito provavelmente não deveria
estar disponível para o acesso de todos.

Atualmente, a deteção de ficheiros com informação sensível ou confidencial indevi-
damente expostos na rede interna da PTP (Portugal Telecom Portugal) é um processo
manual bastante moroso.

A contribuição deste projeto é o Hound, um sistema automatizado que procura docu-
mentos, expostos aos colaboradores, com conteúdo potencialmente sensível. Estes docu-
mentos são classificados de acordo com o seu grau de sensibilidade, gerando relatórios
com a informação obtida. Este sistema foi integrado num projeto de maiores dimensões
da PT de forma a dotar o Departamento de Cibersegurança dos mecanismos necessários a
melhorar a sua eficácia nas áreas de deteção de vulnerabilidades, em termos de exposição
de ficheiros/documentos com informação sensível ou confidencial na sua rede interna.

Palavras-chave: Segurança de Informação, Prospeção na Intranet, Informação Sensível,
Recuperação de Informação, Classificação de Dados

vii





Resumo Alargado

Nas últimas décadas, a tecnologia tem sofrido uma evolução cada vez maior, surgindo
sucessivamente novas soluções que são adotadas nas nossas tarefas diárias, sejam elas
pessoais ou profissionais. Com esta rápida evolução, surgem também problemas de segu-
rança inerentes e portanto a preocupação com esta vertente tem aumentado. As grandes
empresas não são exceção e, dadas as suas dimensões, torna-se difícil o controlo da in-
formação existente na infraestrutura. Este problema deve-se maioritariamente à dimensão
das empresas, mas também às questões legais que envolvem o acesso à informação. A
Cibersegurança torna-se cada vez mais uma preocupação nas empresas, não só devido a
obrigações legais, controlos exigidos, responsabilidade criminal e multas inerentes, mas
também pelo impacto que um ataque com intrusão possa ter sobre a imagem da empresa,
podendo ter repercussões severas no seu negócio. Apesar de geralmente se atribuir uma
grande importância à segurança das infraestruturas, protegendo-as ao máximo de ataques
externos, a verdade é que a rede interna de uma empresa é tanto ou mais suscetível a ata-
ques provocados por funcionários, sejam eles deliberados ou acidentais. A dispersão de
informação nas empresas é de tal forma elevada, que muita informação considerada sen-
sível ou confidencial, por exemplo dados de clientes ou de acesso a plataformas, poderá
estar facilmente acessível a qualquer utilizador com acesso à rede interna da empresa, o
que levanta graves problemas.

Posto este problema, surge a importância deste projeto. Dada o difícil controlo sobre a
dispersão de informação, torna-se essencial ter um sistema para a pesquisa, classificação
e alerta automatizadas, focada na informação sensível exposta de forma desprotegida na
Intranet, que percorre a rede sistematicamente à procura de documentos partilhados que,
potencialmente ou diretamente, contenham informação da empresa considerada sensível
ou confidencial.

O principal objetivo deste projeto é investigar e desenvolver um sistema que automa-
tize ao máximo este processo, que seria demasiado moroso quando efetuado de forma
manual. Para tal são procurados documentos de vários tipos (.txt, .doc, .xls, .pdf, etc.)
expostos a todos os funcionários em geral em pastas partilhadas e páginas de plataformas
web internas, que consiga identificar ficheiros, específicos ou não, que contenham infor-
mação potencialmente sensível, gerando alertas e classificando os que são encontrados.

ix



O enquadramento teórico para a realização deste projeto baseia-se em motores de
busca, que por sua vez são compostos por crawlers (cuja informação foi baseada prin-
ciplamente em Olston e Najork, 2010 [20] e Batsakis et al, 2009 [2]) e um sistema de
Informatieion Retrieval (baseado principalmente nas definições de Baeza-Yates e Ribeiro-
Neto, 1999 [1], Ceri et al, 2013 [5] e Salton et al, 1975 [23] para o Modelo de Espaço
Vetorial). Foram também observadas outras soluções de extração de informação existen-
tes no mercado, sendo elas Datafari, Searchblox e Google Search Appliance, de forma a
providenciar uma melhor perceção daquilo que teria de ser feito neste projeto.

A contribuição deste projeto é o sistema Hound, automatizado para a procura de do-
cumentos através de pesquisas sucessivas, localizando-os em pastas partilhadas e que os
classifica de acordo com o seu grau de sensibilidade, gerando relatórios com um resumo
da informação encontrada, caso esta seja de facto sensível. Para tal, foram usadas fer-
ramentas auxiliares para a fase de extração de informação dos repositórios da PT (Win-
dows shares e Sharepoint). A extração é feita pelo engine do Hound, com o auxílio da
ferramenta Apache ManifoldCF e a indexação da informação obtida é feita através do
Elasticsearch. É feito um reconhecimento da rede através do Nmap, de forma a encon-
trar as máquinas com os portos 139 e/ou 445 abertos. De seguida é feita a configuração
automática do Apache ManifoldCF para extrair o conteúdo dos documentos que se en-
contram nos repositórios encontrados anteriormente e indexar a informação extraida no
Elasticsearch, em formato JSON. O módulo do Hound responsável pela procura de infor-
mação sensível nos documentos extraídos é o QuerySearchRank, que através de plugins
modulares desenvolvidos analiza, com a utilização de expressões regulares ou listas de
palavras, as linhas de cada ficheiro à procura de informação sensível (números de tele-
fone, NIF, IPs, emails, passwords, datas, nomes), guardando-a, caso seja encontrada, num
novo índice do Elasticsearch. Para a classificação dos documentos, foi criado um mo-
delo, baseado no método sugerido por Mike Chapple [6], de forma a classificar de forma
simples e eficiente, os documentos encontrados que contêm informação sensível.

Com a integração do projeto na plataforma da DCY, são fornecidos os mecanismos
necessários para melhorar a eficiência da mesma na área de deteção de vulnerabilidades
em termos de ficheiros expostos com informação sensível ou confidencial na rede interna
e permitindo, graças à sua modularidade e escalabilidade, aumentar o número de plugins
de forma a encontrar novos tipos de informação que sejam necessários no futuro.

Palavras-chave: Segurança de Informação, Prospeção na Intranet, Informação Sensível,
Recuperação de Informação, Classificação de Dados

x



Contents

List of Figures xvi

List of Tables xvii

Listings xix

Abbreviations xxii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Search Engine - Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Design of a Crawler . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Focused Crawlers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Incremental Crawlers . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Distributed Crawlers . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Information vs Data Retrieval . . . . . . . . . . . . . . . . . . . 9
2.3.3 Information Retrieval Models . . . . . . . . . . . . . . . . . . . 10

2.3.3.1 Boolean Model . . . . . . . . . . . . . . . . . . . . . 10
2.3.3.2 Vector Space Model . . . . . . . . . . . . . . . . . . . 11
2.3.3.3 Probabilistic Model . . . . . . . . . . . . . . . . . . . 13
2.3.3.4 Comparing Models . . . . . . . . . . . . . . . . . . . 14

2.4 Data indexation and Searching . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Apache Solr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

xi



2.4.2 Elasticsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Apache ManifoldCF . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Other Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Datafari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2 SearchBlox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.3 Google Search Appliance . . . . . . . . . . . . . . . . . . . . . 23

2.7 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The Hound System 25
3.1 Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Architecture of the Hound* System . . . . . . . . . . . . . . . . . . . . 26
3.3 Implementation of the Hound System . . . . . . . . . . . . . . . . . . . 27

3.3.1 Hound Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Hound QuerySearchRank - Query and Search . . . . . . . . . . . 30

3.3.2.1 Phone Query Plugin . . . . . . . . . . . . . . . . . . . 31
3.3.2.2 NIF Query Plugin . . . . . . . . . . . . . . . . . . . . 31
3.3.2.3 Password Query Plugin . . . . . . . . . . . . . . . . . 32
3.3.2.4 Name Query Plugin . . . . . . . . . . . . . . . . . . . 33
3.3.2.5 Email Query Plugin . . . . . . . . . . . . . . . . . . . 34
3.3.2.6 IP Query Plugin . . . . . . . . . . . . . . . . . . . . . 34
3.3.2.7 Date Query Plugin . . . . . . . . . . . . . . . . . . . . 34
3.3.2.8 Marketing Query Plugin . . . . . . . . . . . . . . . . . 35

3.3.3 Hound QuerySearchRank - Ranking . . . . . . . . . . . . . . . . 35
3.4 Hound Integration to PT’s platform . . . . . . . . . . . . . . . . . . . . . 37
3.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Evaluation 41
4.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Changes during the Implementation . . . . . . . . . . . . . . . . . . . . 42
4.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Performance of Hound . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1.1 Bash Script . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1.2 ManifoldCF . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1.3 Hound Engine . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Quality of information obtained . . . . . . . . . . . . . . . . . . 47
4.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion and Future Work 53

xii



Bibliography 58

A Appendix 59
A.1 Implemented Ruby Code . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xiii





List of Figures

2.1 Search Engine Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Web Crawler Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Information Retrieval Process . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Information Retrieval Models . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Representing Document Space - Documents . . . . . . . . . . . . . . . . 12
2.6 Representing Document Space - Table . . . . . . . . . . . . . . . . . . . 13
2.7 Bayesian Network Retrieval Model . . . . . . . . . . . . . . . . . . . . . 13
2.8 A three-node cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 Manual id vs Auto Generated id . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Interest in Solr and Elasticsearch since 2004, retrieved from [12]. . . . . . 18
2.11 ManifoldCF Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.12 Top 10 Types of Information Exposed in 2014 . . . . . . . . . . . . . . . 20
2.13 OWASP 6 levels of impact - 1 to 4 . . . . . . . . . . . . . . . . . . . . . 21
2.14 OWASP 6 levels of impact - 5 and 6 . . . . . . . . . . . . . . . . . . . . 22
2.15 Datafari screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.16 SearchBlox Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.17 Google Search Appliance screen . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Hound System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Document indexed by ManifoldCF in Elasticsearch . . . . . . . . . . . . 29
3.3 Date format by country . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 RabbitMQ queue example . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Hound integrated in Hidra platform . . . . . . . . . . . . . . . . . . . . 38

4.1 ManifoldCF properties.xml . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 ManifoldCF time taken . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Hound Engine execution time - range 1 . . . . . . . . . . . . . . . . . . 45
4.4 Hound Engine execution time - range 2 . . . . . . . . . . . . . . . . . . 45
4.5 Hound Engine execution time - range 3 . . . . . . . . . . . . . . . . . . 46
4.6 Lines processed by seconds . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 False positives vs false negatives, retrieved from [22] . . . . . . . . . . . 47
4.8 Occurrences of scan 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xv



4.9 Occurrences of scan 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.10 Occurrences of scan 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.11 Percentage of False Positives . . . . . . . . . . . . . . . . . . . . . . . . 49
4.12 Terms found vs true terms in file . . . . . . . . . . . . . . . . . . . . . . 50
4.13 False Positives vs False Negatives . . . . . . . . . . . . . . . . . . . . . 51

xvi



List of Tables

1.1 Table of project planning . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Nmap command parameters . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Hound Plugins Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Postgres configuration file - postgresql.conf . . . . . . . . . . . . . . . . 41
4.2 ManifoldCF Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xvii





Listings

2.1 Boolean Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Mapping example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Document indexing example . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Simple GET Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Document get result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 GET Request with query . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 nmap command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 grep command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 smbclient command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Base64 decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 UTF-8 encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 hound_terms document example . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Phone Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 NIF Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 NIF Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 PTP normal users password . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 Excel Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.12 Excel Passwords 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.13 General Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.14 UserPass Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.15 Two Collumn Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.16 Complex Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.17 Name Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.18 Email Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.19 IP Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.20 Date Regular Expression . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.21 hound_files document example . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 MimeMagic gem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Yomu and Nokogiri gems . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.1 QuerySearchRank.rb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 PhoneQuery.rb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xix





Abbreviations

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

DCY Department of CyberSecurity.

DSL Domain-Specific Language.

DSL Secure Hash Algorithm.

ES Elasticsearch.

HTML HyperText Markup Language.

idf Inverse Document Frequency.

IP Internet Protocol.

IR Information Retrieval.

ISO International Organization for Standardization.

JSON JavaScript Object Notation.

MCF ManifoldCF.

MIME Multi-Purpose Internet Mail Extensions.

NIF Número de Identificação Fiscal.

NISS Número de Identificação de Segurança Social.

PDF Portable Document Format.

PT Portugal Telecom.

PTP Portugal Telecom Portugal.

xxi



xxii

RTF Rich Text Format.

TCP Transmission Control Protocol.

tf Term Frequency.

TSDB Time Series Database.

URL Uniform Resource Locator.

UTF-8 Universal Character Set + Transformation Format 8-bit.

VAT Value Added Tax.

VSM Vector Space Model.

WI-FI Wireless Fidelity.

WWW World Wide Web.

XML Extensible Markup Language.



Chapter 1

Introduction

"It used to be expensive to make things public and cheap to make them private. Now it’s
expensive to make things private and cheap to make them public." - Clay Shirky, Internet
scholar and professor at N.Y.U.

1.1 Motivation

Nowadays, more than ever, the concern with Cybersecurity on big companies have be-
come a reality. Not only the fact that there are legal obligations, demanded controls,
criminal responsibility and inherent fines, but also by the impact that an attack, intrusion
and successful illicit access may have on the image and business of a company.

There are some studies which shows that about 80% of the attacks are performed
by company employees and only 20% originated by third parties on the Internet [10].
This fact mainly concerns with the dimension of the attack surface, namely, the services,
platforms and sensitive information on an intranet that are considerably more exposed and
less controlled, increasing the risk of an intrusion or illicit access despite its exposure to
an audience far below that of the Internet.

A recent study realizes that, in general, 90% of a security budget is usually spent
on protecting network components exposed to Internet and application front ends, and
only 10% in other components of distinct areas [19]. However, when there is a security
incident in a company, 75% of the time this falls directly on the back-end components
that are repositories of information, whatever their nature (DBs, files, shared repositories,
etc.), and only 25% of the time is directed to network components [11].

It is precisely in this context that this project gains its significance. Given the scale
of the internal network of a large company, the number and variety of devices is huge, so
it is normal that the dispersion of information is a difficult reality to control. It becomes
essential to have an automated search, crawling, classification and alert system focused
on the exposed sensitive information on the Intranet that systematically go through the
internal network searching for documents that potentially or directly contain information

1



Chapter 1. Introduction 2

of the company considered sensitive.

1.2 Objectives

The objective of this project is to investigate and develop a system that goes through the
internal network of PT, seeking documents (e.g. .txt, .doc, .xls, .pdf, .html, etc.) exposed
to all employees in shared folders and pages on web-based platforms which, according
to its configuration, can identify files, specific or not, that potentially contain sensitive
information, generating alerts and ranking the files that are being found.

Taking into account that PT’s users can share documents and folders with each other, it
is intended with this project to create a system that, automatically, searches for documents
that should not be shared with other users, at least unprotected.

1.3 Contributions

The contribution of this project is an automated system that satisfies the proposed ob-
jective, which is to search the documents through successive scans, track them in shared
folders, classify them according to its sensitivity level and lastly report the information
found if it contain, indeed, sensitive information. A classification model was created,
adapted from the method defined by Mike Chapple [6], in order to better satisfy this
project needs. With its integration in the project cluster of DCY "IntelSources" (Cy-
bersecurity Information Discovery and Intelligence Sources), it provides the necessary
mechanisms to improve their effectiveness in the areas of detection of vulnerabilities in
terms of file/documents exposure with sensitive or confidential information on the internal
network.

1.4 Planning

This project was conducted at PT Comunicações installations at Picoas, Lisboa, starting
on October, 1st 2014, with a duration of 9 months. Table 1.1 describes the planning of the
project.

Activity Duration
Study of the crawling technology architecture that will be used 2 weeks
Configuration of tools and crawling mechanisms 1 week
Design and implementation of a simple model 1 week
Definition of the ranking configurations 1 week
Definition of the alert states 1 week
Investigation of information ranking techniques 2 weeks
Elaboration of the preliminary report 1 week
Investigation of machine learning algorithms 2 weeks



Chapter 1. Introduction 3

Implementation of the machine learning algorithms 2 weeks
Design, architecture and implementation of a learning model in a
restricted subnet

4 weeks

Evaluate the scalability and effectiveness of that method on a real
and controlled environment

4 weeks

Actualization of the preliminary report 1 week
Application of the model to PT’s real internal network 4 weeks
Integration / automation of the developed model implementation 5 weeks
Development of the final report 6 weeks

Table 1.1: Table of project planning

The proposed plan was fulfilled, although there were slight changes over the nine
months, which was already expected. The last two points of the plan were mixed accord-
ing to the stage of labor and due to third-party dependencies to move forward.

1.5 Structure of the document

This document is organized as follows:

• Chapter 2 - Related Work: gives an overview of the information necessary to imple-
ment this system, describing a Search Engine, its components (Crawler and Infor-
mation Retrieval System), Data Searching and Indexation, Data Classification and
lastly, similar systems available in the market.

• Chapter 3 - The Hound System: describes the project conducted in the company
during the 9 months, explaining in detail each step of the engine developed and
how the auxiliary tools were used.

• Chapter 4 - Evaluation: Results of the project’s performance and quality of the
indexed data.

• Chapter 5 - Conclusion and Future Work: describes the work performed and what
could be done in the future to improve the system.





Chapter 2

Related Work

“You can have data without information, but you cannot have information without data.”
– Daniel Keys Moran

2.1 Search Engine - Introduction

Search Engines (Figure 2.1) were created to access information around the world and the
first one was called Archie, created in 1990 by Alan Emtage. The first crawler-based
search engine was WebCrawler, created in 1994. The basis for obtaining information on
this project is similar to that used by search engines available on the Internet, like Google,
Yahoo, Bing, etc. The main difference remains in the data repository, which is on an
Intranet*. Search engines allow users to input keywords that describe the information
they need and offer advanced search capabilities.

Crawler

IR System

Document 
Corpus

Ranked 
Documents

Input: Query 
String

Output:

1. Page 1
2. Page 2
3. Page 3

.

.

Figure 2.1: Search Engine Architecture

* Intranet is the generic term for a collection of private computer networks within an organization
that uses network technologies as a tool to facilitate communication between people or work groups. The
Intranet of an organization typically includes Internet access but it is protected by firewalls and many other
security measures, so that its computers cannot be reached directly from the outside.

5



Chapter 2. Related Work 6

The figure shows the architecture of a search engine, where the IR System receives
a query and requests the Document Corpus (large and structured set of texts) from the
Crawler, that has the task of collecting web-pages. This information is then processed by
the IR System, ranking the documents and displaying it to the user.

2.2 Crawler

A Web Crawler (also known as robot or spider) is a system for the bulk downloading
of web pages to build the text collection for the IR system. Web crawlers are used for
a variety of purposes. Most prominently, they are one of the main components of web
search engines, systems that assemble a corpus of web pages, index them, and allow
users to issue queries against the index and find the web pages that match the queries.
A related use is web archiving, where large sets of web pages are periodically collected
and archived for posterity. A third use is web data mining, where web pages are analyzed
for statistical properties, or where data analytics is performed on them. Finally, web
monitoring services allow their clients to submit standing queries, or triggers, and they
continuously crawl the web and notify clients of pages that match those queries [20].

2.2.1 Design of a Crawler

The design of a crawler (figure 2.2) is basically composed of three main components: a
frontier, which stores the list of URLs to visit, a Page Downloader that download pages
from WWW, and a Web Repository that receives web pages from a crawler and stores it.
In the following, these components are briefly outlined [29].

Figure 2.2: Web Crawler Design

1. Crawler Frontier: contains the list of unvisited URLs. The working of the crawler
starts with the seed URL, where the Crawler retrieves a URL from the frontier. The
page corresponding to the URL is fetched from the Web and the unvisited URLs
from the page are added to the frontier. The cycle of fetching and extracting the



Chapter 2. Related Work 7

URL continues until the frontier is empty or some other condition causes it to stop.
The extraction of URLs from the frontier is based on some prioritization scheme.

2. Page Downloader: downloads the page from the Internet corresponding to the
URLs retrieved from the crawler frontier. In order to do that, the Page Downloader
requires a HTTP client for sending the HTTP request and to read the response.
There should be timeout period defined by the client in order to ensure that it will
not take unnecessary time to read large files or wait for response from slow server.

3. Web Repository: It is used to store and manage a large pool of web pages. The
repository only stores standard HTML pages, ignoring all other media and doc-
ument types. It is theoretically not that different from other systems that store
data objects, such as file systems, database management systems, or information
retrieval systems (which is the case for this project). However, a web repository
only needs to provide some of the functionalities common to other systems, such
as transactions, or a general directory naming structure. It stores the crawled pages
as distinct files and the storage manager stores the up-to-date version of every page
that the crawler retrieves.

2.2.2 Focused Crawlers

There are many crawler types like the ones used by general purpose search engines, which
retrieve massive numbers of web pages regardless their topic, and there are Focused
Crawlers that work by combining both the content of the retrieved pages and the link
structure of the Web for assigning higher visiting priority to pages with higher probability
of being relevant to a given topic. These focused crawlers can be [2]:

• Classic Focused Crawlers: take as input a user query that describes the topic, a
set of starting page URLs and guide the search towards pages of interest. Their
criteria is assigning priorities to links according to their likelihood to lead to desired
pages, being the download order based on the priority defined. These priorities are
computed based on the similarity between topic and anchor text of a page or text of
page containing the link. This similarity is computed with Boolean or Vector Space
Model.

• Semantic Crawlers: variation of Classic Focused Crawlers, but the priorities are
assigned by applying semantic criteria for computing page-to-topic relevance: a
page and the topic can be relevant if they share conceptually (but not necessarily
lexically) similar terms. Conceptual similarity is defined using ontologies.

• Learning Crawlers: apply a training process for assigning visit priorities to web
pages and for guiding the crawling process. Higher visit priority is assigned to



Chapter 2. Related Work 8

links extracted from web pages classified as relevant to the topic and use methods
based on Context Graphs and Hidden Markov Models (HMM).

2.2.3 Incremental Crawlers

A traditional crawler, in order to refresh its collection, periodically replaces the old doc-
uments with the newly downloaded documents. On the contrary, an incremental crawler
visits them frequently to incrementally refresh the existing collection of pages; based
upon the estimate as to how often pages change. It also exchanges less important pages
by new and more important pages. It resolves the problem of the freshness of the pages.
The benefit of incremental crawler is that only the valuable data is provided to the user,
thus network bandwidth is saved and data enrichment is achieved.[29]

2.2.4 Distributed Crawlers

Distributed web crawling is a distributed computing technique. Many crawlers are work-
ing to have it in order to get the most coverage of the web. A central server manages the
communication and synchronization of the nodes, as it is geographically distributed. It
basically uses Page Rank Algorithm for its increased efficiency and quality search. The
benefit of distributed web crawler is that it is robust against system crashes and other
events, and can be adapted to various crawling applications[29]. An example of a com-
pany that uses a distributed crawler architecture is Google [4].

2.3 Information Retrieval

2.3.1 Introduction

Information retrieval (IR) deals with the representation, storage, organization of, and ac-
cess to information items. The representation and organization of the information items
should provide the user with easy access to the information in which he is interested. Un-
fortunately, characterization of the user information need is not a simple problem. For
instance, with this problem "Find all the pages (documents) containing information on
college tennis teams which: (1) are maintained by a university in the USA and (2) partic-
ipates in the NCAA tennis tournament. To be relevant, the page must include information
of the national ranking of the team in the last three years and the email or phone number
of the team coach". In order to obtain information from this problem, the user must first
translate it into a query, which can be processed by the search engine (or IR system). In
its most common form, this translation yields a set of keywords (or index terms) which
summarizes the description of the user information needs. Given the user query, the key
goal of an IR system is to retrieve information which might be useful or relevant to the
user. The emphasis is on the retrieval of information as opposed to the retrieval of data [1].



Chapter 2. Related Work 9

2.3.2 Information vs Data Retrieval

According to Baeza-Yates and Ribeiro-Neto (1999) [1], data retrieval, in the context of
an IR system, consists mainly in determining which documents of a collection contain
the keywords in the user query which, most frequently, is not enough to satisfy the user
information need. In fact, the user of an IR system is more concerned with retrieving
information about a subject than with retrieving data which satisfies a given query. A
data retrieval language aims at retrieving all objects that clearly satisfy defined conditions
such as those in a regular expression or in a relational algebra expression. Thus, for a
data retrieval system, a single erroneous object among a thousand retrieved objects means
total failure. For an information retrieval system, however, the retrieved objects might be
inaccurate and small errors are likely to go unnoticed. The main reason for this difference
is that information retrieval usually deals with natural language text, which is not always
well structured and could be semantically ambiguous, whereas a data retrieval system
deals with data that has a well defined structure and semantics. To be effective in its
attempt to satisfy the user information need, the IR system must, somehow, interpret
the content of the documents in a collection and rank them according to a degree of
relevance to the user query. This interpretation of a document content involves extracting
syntactic and semantic information from its text and using it to match the user information
need. The difficulty is not only figure how to extract this information, but also knowing
how to use it to decide relevance. The primary goal of an IR system is to retrieve all
the documents, that are relevant to a user query, while retrieving as few non-relevant
documents as possible. Figure 2.3 shows an architecture of the IR Process [5].

Figure 2.3: Information Retrieval Process

In the figure, it is possible to identify the following subprocesses:

• Database: the source of data of the IR system.



Chapter 2. Related Work 10

• Indexing: Process that organizes the document retrieval, where Text Operations are
applied to transform the documents, generating a logical view of them.

• Query Operations: change the representation of the user need to a logical query.
• Searching: Step of document retrieval according to the interest of the user, obtaining

the previously indexed data
• Ranking: Classification of the retrieved documents based on the relevance of the

information to the user need.

2.3.3 Information Retrieval Models

There are several IR Models (fig. 2.4), but only the Classic IR Models (Unstructured Text)
will be discussed because these are the relevant ones for this project [1].

Figure 2.4: Information Retrieval Models

2.3.3.1 Boolean Model

In the Boolean model, a document is represented as a set of keywords, where queries are
Boolean expressions of keywords connected by AND, OR, and NOT, including the use of



Chapter 2. Related Work 11

brackets to indicate the scope of these operators. For example, the query ”all the hotels in
Rio Brazil or Hilo Hawaii, but not Hilton” have the following configuration (listing 2.1):

Listing 2.1: Boolean Query
[ [ [ Rio & Brazil ] | [ Hilo & Hawai] ] & hotel & ! Hilton ]

The output of the system is a list of documents that are relevant, but there will be
no partial matches or ranking. The Boolean model is very rigid, where AND means ”all”
and OR means ”any”. All matched documents will be returned, which makes it difficult to
control the number of retrieved documents. All the matched documents satisfy the query
to the same degree and that makes it difficult to rank the output. Another disadvantage of
this model is that it is difficult for the users to express complex queries[14].

Having these disadvantages into account, it became clear that it was not the most
adequate model for this project.

2.3.3.2 Vector Space Model

The vector space model procedure, proposed by Salton (1975)[23], can be divided into
three stages: Document Indexing, Term Weighting and Similarity Coefficients [27].

I Document Indexing

Many of the words in a document (the, a, is, etc.) do not describe its content, so they are
removed from the document vector using an automated indexing, leaving only content
bearing words as the representation of the document. This indexing can be based on term
frequency, where terms that have both high and low frequency within a document are
considered to be function words. In practice, term frequency was difficult to implement
in automatic indexing so instead, it is used a stop list which holds common words to
remove high frequency words (stop words), which makes the indexing method language
dependent. In general, 40-50% of the total number of words in a document are removed
with the help of a stop list [27].

II Term Weighting

The term weighting, i.e. its weight/importance, is calculated by multiplying the following
three factors together[27]:

• Term frequency: stated by Luhn [?], which is the basis of a weighted document
vector and corresponds to the number of occurrences of the terms in a document.

• Collection frequency: the general weighting scheme used to discriminate one doc-
ument from another. The inverse document frequency scheme, assume that the im-
portance of a term is proportional with the number of documents the term appears
in.



Chapter 2. Related Work 12

• Document length normalization: long documents have usually a much larger term
set than short documents, which make them more likely to be retrieved.

Different weight schemes have been investigated and the best results, w.r.t. recall
and precision, are obtained by using Term Frequency with Inverse Document Frequency
and length normalization (TF-IDF)[21]. Basically, this scheme evaluates how important a
term is to a specific document in the context of a set of documents (corpus). It is calculated
by combining these two metrics (TF and IDF) in a collection of N documents, being TF
the measuring of the relevance of a specific document d to a term t (TFtd) by calculating
the number of occurrences of t in d. Intuitively, the more frequently a term occurs in the
document, the more relevant the document is. The term frequency TFtd is computed as
follows:

TFtd = ftd
maxkfkd

(2.1)

The IDF for a term is defined as follows: suppose term t appears in nt of the N documents
in the collection. Then:

IDFt = log2
N

nt

(2.2)

The total TF.IDF score for a term t and a document d is calculated as:

TF.IDFtd = TFtd × IDFt (2.3)

A simplified approach of applying the weighting to the index list is the construction
of a table with the documents listed across the top and the identified content terms listed
down the side (figures 2.5 and 2.6), with the weighting being equal to the number of
occurrences within the document.

Figure 2.5: Representing Document Space - Documents



Chapter 2. Related Work 13

Figure 2.6: Representing Document Space - Table

2.3.3.3 Probabilistic Model

The probabilistic retrieval model [24] is based on the Probability Ranking Principle,
which states that an information retrieval system should rank the documents based on
their probability of relevance to the query, given all the evidence available [3]. The prin-
ciple takes into account that there is uncertainty in the representation of the information
need and text. There is a variety of sources of evidence used by the probabilistic retrieval
methods, being statistical distribution of the terms, in both the relevant and non-relevant
texts, the most typical one. Turtle and Croft (1991) [28] developed a system that uses
Bayesian inference networks to rank documents, which says that an inference network
consists of a directed acyclic dependency graph, where edges represent causal relations
or conditional dependency between propositions represented by the nodes (figure 2.7).

Figure 2.7: Bayesian Network Retrieval Model

The inference network consists of a document network, a concept representation net-
work that represents indexing vocabulary, and a query network representing the informa-



Chapter 2. Related Work 14

tion need. The concept representation network is the interface between documents and
queries. To compute the rank of a document, the inference network is instantiated and the
resulting probabilities are propagated through the network to derive a probability associ-
ated with the node representing the information need. These probabilities are used to rank
documents.

2.3.3.4 Comparing Models

Of all the three models, the Boolean Model is considered to be the weakest, because
it does not provide partial matches. Croft [28] suggested that the probabilistic model
provides a better retrieval performance, however Salton [23] et al showed that the vector
space model outperforms it with general collections.

The statistical approaches, Vector Space (1 & 2) and Probability Models (3), have
the following strengths: 1) they provide users with a relevance ranking of the retrieved
documents, enabling users to control the output by setting a relevance threshold or by
specifying a certain number of documents to display; 2) queries can be easier to formulate
because users do not have to learn a query language and can use natural language; 3) the
possibility to represent the uncertainty inherent in the choice of query concepts.

However, statistical approaches have some shortcomings: 1) limited expressive power,
e.g. problem expressing NOT, because only positive weights are used; 2) statistical ap-
proach lacks the structure to express important linguistic features such as phrases; 3)
computation of the relevance scores can be computationally intensive; 4) limited view of
the information space and it does not directly suggest how to modify a query if the need
arises; 5) queries need a large number of words to improve the retrieval performance. As
is the case for the Boolean approach, users are faced with the problem of having to choose
the appropriate words that are also used in the relevant documents.

This project will follow the Vector Space Model combined with the Boolean Model
(not exactly like Extended Boolean Model - even though this is a mix of the two models) to
determine the relevance of a given document to a user’s query, which is used by Apache
Lucene as will be later described. The reason of joining this two models is due to the
Vector Space Model difficulty in representing NOT expressions.

2.4 Data indexation and Searching

For data indexation and searching, we focused on Apache Lucene library, because of its
high-performance, full-featured text search engine. "Lucene scoring uses a combination
of the Vector Space Model (VSM) of Information Retrieval and the Boolean model to
determine how relevant a given Document is to a User’s query. In general, the idea behind
the VSM is the more times a query term appears in a document relative to the number
of times the term appears in all the documents in the collection, the more relevant that



Chapter 2. Related Work 15

document is to the query. It uses the Boolean model to first narrow down the documents
that need to be scored based on the use of boolean logic in the Query specification." [17]

Lucene itself is just an indexing and search library and does not contain crawling and
HTML parsing functionality. However, several projects extend Lucene’s capability like
Apache Solr and Elasticserch.

2.4.1 Apache Solr

Apache Solr makes it easy for programmers to develop sophisticated, high-performance
search applications with advanced features such as faceting (arranging search results in
columns with numerical counts of key terms). Solr is built on top of Lucene, so it inherits
its functions and both Solr and Lucene are managed by the Apache Software Foundation.

Solr is featured with Near Real-Time Indexing, Schemaless, Full Text Search with
powerful matching capabilities, Restful API - XML, CSV, JSON format, its optimized for
High Volume Traffic, Comprehensive Administration Interfaces, Easy Monitoring with
metric data via JMX, Highly Scalable and Fault Tolerant because it is built on Apache
Zookeeper, Flexible and Adaptable with easy configuration and it has an Extensible Plu-
gin Architecture which makes it easy to connect to other components.

It comes with a front-end platform that allows a much easier interaction and visual-
ization of the data obtained.

2.4.2 Elasticsearch

Elasticsearch is built on top of Lucene, so it inherits its functions. Designed from the
ground up for use in distributed environments where reliability and scalability are must
haves, Elasticsearch gives the ability to move easily beyond simple full-text search.

Elasticsearch [8] is featured with a Real Time Data and Analytics, it is Distributed
with horizontal scaling, Automatic cluster reorganization, High availability with resilient
clusters, detection and removal of failed nodes, Multi-Tenancy because one cluster can
host multiple indexes queried independently or as a group, Full Text Search with Lucene,
Document-Oriented storing data as JSON documents, Conflict Management with op-
timistic version control to ensure data is never lost due to conflicting changes, nearly
Schemaless detecting data structure, indexing data and making it searchable, Restful API
with JSON format over HTTP and Per-Operation Persistence where document changes
are recorded in transaction logs to minimize data loss.

Elasticsearch data are stored in a cluster with as many nodes as we want [9]. In order
to add new nodes, you just need to launch another instance of Elasticsearch with the name
of the node in the configuration file and it will be added to the cluster automatically (it has
a functionality similar to Zookeeper to manage its nodes). Figure 2.8 shows an example
of a cluster with 3 nodes (the node 1 is the master), where each node has 2 shards. With a



Chapter 2. Related Work 16

total of six shards (three primaries (green) and three replicas (grey)), the index is capable
of scaling out to a maximum of six nodes, with one shard on each node and each shard
having access to 100% of its node’s resources.

Figure 2.8: A three-node cluster

Elasticsearch data location is defined by an index (similar to a database), a type and an
id (identifier of the document) [7]. The UUID (universally unique identifiers) are unique
ids for documents and are composed of the type and the id fields, so it’s possible to have
the same id with different types. This UUIDs can be defined manually (setting a custom
id) or automatically (id automatically generated - Auto-generated IDs are 22 characters
long, URL-safe, Base64-encoded string) as can be seen in figure 2.9.

Figure 2.9: Manual id vs Auto Generated id

The good thing in Elasticsearch is that if you only have string type data, you don’t
need to define a mapping, it will be created automatically. A mapping looks like the one
in listing 2.2, where in this example twitter is the index and the mapping refers to the type
tweet. It states that the tweet has got a parameter called message of type string and is
stored, which means that it will be parsed from the content field when accessed (if false,
it would be necessary to parse on the client side).

Listing 2.2: Mapping example
$ curl −XPUT ’ http : / / localhost :9200/ twi t te r /_mapping/ tweet ’ −d ’
{

"tweet" : {
" properties " : {

"message" : { "type" : " s t r ing " , " store " : true }
}

}
}



Chapter 2. Related Work 17

Having the mapping, the data is indexed as illustrated in listing 2.3. The index is
twitter, the type is tweet and the id is 1, with the parameters being user, post_date and
message.

Listing 2.3: Document indexing example
$ curl −XPUT ’ http : / / localhost :9200/ twi t te r / tweet /1 ’ −d ’{

"user" : "kimchy" ,
"post_date" : "2009−11−15T14:12:12" ,
"message" : " trying out Elasticsearch "

}’

To access the information stored in the indices, we must make a GET command like
the one in listing 2.4 - simple GET without query.

Listing 2.4: Simple GET Request
$ curl −XGET ’ http : / / localhost :9200/ twi t te r / tweet /1 ’

The result of this query is:

Listing 2.5: Document get result
{

"_index" : " twi t te r " ,
"_type" : " tweet " ,
"_id" : "1" ,
"version" : 1 ,
"found" : true ,
"_source" : {

"user" : "kimchy" ,
"post_date" : "2009−11−15T14:12:12" ,
"message" : " trying out Elasticsearch "

}
}

However if we want more specific information from a document, then it’s necessary to
build a query with the GET command (Boolean, Match, Query String, Filtered, etc.), so
that we can get more approximately data to what we wanted to obtain. Listing 2.6 shows
an example of a GET request with a query.

Listing 2.6: GET Request with query
$ curl −XGET http : / / localhost :9200/_search −d ’{

"query" : {
" f i l t e r ed ": {

"query" : {
"match : { "tweet " : " fu l l text search" }

}.
" f i l t e r " : {

"range : { "created ": { "gte " : "now − 1d / d" }}
}

}



Chapter 2. Related Work 18

Elasticsearch provides a front-end called Kibana, which allows to see the data in statis-
tic graphics like histograms and geomaps. It contains a payed security module called
Shield, that protect data with encrypted communications and authentication.

The best solutions that I have found to achieve the objective of indexing the docu-
ments content were Apache Solr and Elasticsearch. I found both solutions quite similar
and very efficient, based on [26], so the decision was difficult to make. Elasticsearch has
the advantage of being built from the ground to be distributed while Apache Solr needs
Zookeeper to do it. Furthermore, Solr has been used for a longer time than Elasticsearch.
Even if Elasticsearch is a new player in this game of data, I chose it because of its po-
tential and, as statistics shows, Elasticsearch is gaining interest over time [2.10]. The
turning point in interest in these two tools occurred in May 2014 and since then has been
constantly growing for Elasticsearch, unlike Solr, which has stagnated.

Figure 2.10: Interest in Solr and Elasticsearch since 2004, retrieved from [12].

2.4.3 Apache ManifoldCF

Apache ManifoldCF is an effort to provide an open source framework for connecting
source content repositories like Microsoft Sharepoint with indexers like Apache Solr or
ElasticSearch. Apache ManifoldCF also defines a security model for target repositories
that allows them to enforce source-repository security policies (figure 2.11).

This framework eases the work of extracting the contents of the files, being necessary
to configure the connectors in order to define the data repository and the format in which
these will be stored after the extraction. This way, I avoid having to retrieve the files, open
them, extract its content and store it to be analyzed later, since it do everything by itself.



Chapter 2. Related Work 19

Figure 2.11: ManifoldCF Architecture

Regarding the connectors configuration on ManifoldCF, we have:

• Output Connection: Connector to represent data (Elasticsearch, Solr, HDFS, etc.)

• Transformation Connection: Connector to change the file information (Apache
Tika, Metadata Adjuster, etc.)

• Authority Group: Group of the authorities defined on Authority Connections

• Authority Connection: Connector that give access information (Sharepoint/Native
ou Active Directory, LDAP, CMIS, etc.)

• Repository Connection: Connector to the repositories where the files are (Share-
point, Windows Share, HDFS, File System, Google Drive, etc.)

• Job Connection: Connector to run jobs, using a combination of the connections
mentioned above.

In order to understand how ManifoldCF works, I resorted to Manifold in action (Wright,
Karl D., 2012) [32] in which is explained the operation of connectors supported by the
framework. This book is a great assistance for the starters in using Apache ManifoldCF,
since there isn’t much information on the web and it is the best documentation available.



Chapter 2. Related Work 20

2.5 Data Classification

The classification of data follows two different visions. Regarding the terms found in
each document I used Symantec’s top 10 breach type of information [25] to choose the
information that I am searching. As for the document classification itself, I adapted Mike
Chapel’s definition [6]. These approaches will now be detailed.

According to Symantec in its 2015 Internet Security Threat Report [25], "Real names,
government ID numbers, and home addresses were the top three types of information
breached in 2014. The exposure of financial information grew from 17.8 percent to 35.5
percent in 2014, the largest increase within the top 10 list of information types exposed"
(figure 2.12).

2015 Internet Security Threat Report  83MOBILE & IOT     WEB THREATS     SOCIAL MEDIA & SCAMS     TARGETED ATTACKS     

DATA BREACHES & PRIVACY     E-CRIME & MALWARE     APPENDIX

BACK TO TABLE OF CONTENTS

Retailers Under Attack
Attackers clearly have retailers in their cross hairs, if the increase in data breaches containing 
financial information is any indication. The retail industry again has the dubious distinction of 
being the industry liable for the largest number of identities exposed, accounting for almost 60 
percent of all identities reported exposed, up from 30 percent in 2013. Financial information has 
moved to the fourth most common type of information exposed in a breach. In 2013, 17.8 percent 
of breaches contained financial information, but in 2014 this number jumped to 35.5 percent.

This financial information can range from bank account details to tax-related documents, but, in 
most cases, this information is credit or debit card details. Online retailers play a significant part, 
but so do attacks on point-of-sale systems: the credit card swipe machines that have become so 
ubiquitous in our retail lives.

Although the first attacks on retail point-of-sale systems date back to 2005, Symantec saw an 
upsurge in attacks in 2014. It is now one of the biggest sources of stolen payment card data94   
and is at the root of 2013’s and 2014’s biggest data breaches. 

�� Real names, government ID 
numbers, and home addresses 
were the top three types of 
information breached in 2014. 
The exposure of financial 
information grew from 17.8 
percent to 35.5 percent in 2014, 
the largest increase within the 
top 10 list of information types 
exposed.

Top-Ten Types of Information Exposed

Type of Information Percentage    2014    2013 100%

Real Names
69% 
72%

Gov. ID Numbers  
(e.g, SSN)

45% 
40%

Home Addresses
43% 
38%

Financial Information
36% 
18%

Birth Dates 35% 
43%

Medical Records 34% 
34%

Phone Numbers 21% 
19%

Email Addresses 20% 
15%

User Names & Passwords 13% 
12%

Insurance 11% 
6%

Top 10 Types of Information Exposed
Source: Symantec

94  http://securityresponse.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/
attacks_on_point_of_sale_systems.pdf

2

SHARE 
THIS

Figure 2.12: Top 10 Types of Information Exposed in 2014

This top 10 list of information exposed was important to define the types of informa-
tion that would be found in this project. However, it will not be strictly followed, because
not all those types of information are important to find and some others are not there
referred, so the types of information used are names, phones, email and username/pass-
words. Also I added marketing plans, IP addresses, VAT numbers and dates (not only
birth dates). This changes were made because of its relevance on the company’s context.

Regarding the document classification, Mike Chapple [6] says "In my experience, the
most critical factor to the success of an information classification program is simplicity.
If your program is difficult to understand or the categories are ill-defined, people simply
won’t use it. The bookshelves of security professionals around the world are littered with
binders containing information classification plans that never saw practical implementa-



Chapter 2. Related Work 21

tion". He defines a four-tier classification model that limits the highest category to a small
number of easily recognizable data elements as follows:

• Highly sensitive data - information requiring an extremely high level of oversight
and control due to potential reputational, financial or operational impact if improp-
erly disclosed. This should be limited to a clear list of carefully enumerated ele-
ments, such as Social Security numbers, credit card numbers and drivers license
numbers.

• Sensitive data - information intended for limited use that, if improperly disclosed,
could have a serious adverse effect on the organization. This is the "you know
it when you see it" category that contains information the organization considers
confidential but does not meet the "highly sensitive" bar. For example, this might
include plans for the development of new products that have not yet been publicly
released.

• Public data - information that may be freely released to the public without concern
for confidentiality. This category includes information that you would publish on
your website or hand out at a trade show, such as product brochures, public price
lists and basic contact information from your firm.

• Internal data - everything else. It is information that you would not freely publish
on the Internet, but would not really damage the company if it were accidentally re-
leased, such as your internal telephone directory or the ordering list for your supply
room. Once you define your data-classification scheme, you need to appropriately
classify all of your organization’s data, and then develop and implement the security
standards that specify appropriate handling practices for each category.

According to OWASP 6 levels of impact (figures 2.13 and 2.14), this project stands in
Technical Impacts because the our target is the sensitive data, and in Business Impacts,
due to the damage that an exposure of sensitive data can do to the company’s reputation.

Threat Agents Attack Vectors Security Weakness 

Application Specific 
Exploitability 

DIFFICULT 

Prevalence 

UNCOMMON 

Detectability 

AVERAGE 

Consider who can gain access to 

your sensitive data and any backups 

of that data. This includes the data at 

rest, in transit, and even in your 

customers’ browsers. Include both 

external and internal threats. 

Attackers typically don’t break crypto 

directly. They break something else, 

such as steal keys, do man-in-the-

middle attacks, or steal clear text 

data off the server, while in transit, or 

from the user’s browser. 

The most common flaw is simply not encrypting sensitive data. When crypto 

is employed, weak key generation and management, and weak algorithm 

usage is common, particularly weak password hashing techniques. Browser 

weaknesses are very common and easy to detect, but hard to exploit on a 

large scale. External attackers have difficulty detecting server side flaws due 

to limited access and they are also usually hard to exploit. 

 

 

Technical Impacts Business Impacts 

Impact 

SEVERE 
Application / Business Specific 

Failure frequently compromises all data that should have been 

protected. Typically, this information includes sensitive data such as 

health records, credentials, personal data, credit cards, etc. 

Consider the business value of the lost data and impact to 

your reputation. What is your legal liability if this data is 

exposed? Also consider the damage to your reputation. 

 

Figure 2.13: OWASP 6 levels of impact - 1 to 4



Chapter 2. Related Work 22

Threat Agents Attack Vectors Security Weakness 

Application Specific 
Exploitability 

DIFFICULT 

Prevalence 

UNCOMMON 

Detectability 

AVERAGE 

Consider who can gain access to 

your sensitive data and any backups 

of that data. This includes the data at 

rest, in transit, and even in your 

customers’ browsers. Include both 

external and internal threats. 

Attackers typically don’t break crypto 

directly. They break something else, 

such as steal keys, do man-in-the-

middle attacks, or steal clear text 

data off the server, while in transit, or 

from the user’s browser. 

The most common flaw is simply not encrypting sensitive data. When crypto 

is employed, weak key generation and management, and weak algorithm 

usage is common, particularly weak password hashing techniques. Browser 

weaknesses are very common and easy to detect, but hard to exploit on a 

large scale. External attackers have difficulty detecting server side flaws due 

to limited access and they are also usually hard to exploit. 

 

 

Technical Impacts Business Impacts 

Impact 

SEVERE 
Application / Business Specific 

Failure frequently compromises all data that should have been 

protected. Typically, this information includes sensitive data such as 

health records, credentials, personal data, credit cards, etc. 

Consider the business value of the lost data and impact to 

your reputation. What is your legal liability if this data is 

exposed? Also consider the damage to your reputation. 

 

Figure 2.14: OWASP 6 levels of impact - 5 and 6

2.6 Other Tools

Some tools were consulted in order to understand how they operate, giving a clearer idea
of the actions required for implementing this project. If any of these tools were complete
enough to satisfy the objectives of this project, they could have been used or even adapted,
but that was not the case as we can see next.

2.6.1 Datafari

Datafari is an advanced open source enterprise search solution, modular and reliable (fig-
ure 2.15). It can be used as a product for a third party solution.

Figure 2.15: Datafari screen

This solution is similar to the Crawling technology implemented in this project, and it
uses Apache Solr 4, Apache ManifoldCF and AjaxFranceLabs (a graphical framework in
HTML5/Javascript). It is modular and allows its users to add the connectors they wish to



Chapter 2. Related Work 23

ManifoldCF and any plugin to Solr, as well as a custom user interface. It is free, since it
uses Apache v2 licence and free tools.

However, this solution is not enough to satisfy the proposed objective, since it indexes
everything in the target repositories and it uses Solr instead of Elasticsearch (which was
the one that I had already decided to use), so it is necessary to look for another solution.

2.6.2 SearchBlox

SearchBlox is an Enterprise Search & Analytics solution built on Apache Lucene & Elas-
ticsearch, that uses Apache ManifoldCF to connect to different repositories and provide
authentication (figure 2.16). It gives solutions for Enterprise Search, Text Analytics and
Data Sciences.

Figure 2.16: SearchBlox Screen

Of the three solutions, I am interested in the first - Enterprise Search - because of its
similarity with this project. It uses Apache ManifoldCF and Elasticsearch for data storage
and searching. The graphical framework is a restructure of ManifoldCF web framework.
Even though the solution has a free version, in order to use its full features, it is necessary
to have a paid version. Also, this solution does not classify the information the way it is
necessary for this project.

2.6.3 Google Search Appliance

Google Search Appliance enhances searches with extensive synonyms and intelligent
spell-check, just like Google.com, works in more than 20 different languages and auto-
completes queries to offer the type of helpful suggestions (figure 2.17).

This solution, unlike the previous ones, is hardware based and is directly applied to
a rack. This basically indexes everything that exists in the internal network where it is
connected, having several connectors for content extraction from different repositories



Chapter 2. Related Work 24

Figure 2.17: Google Search Appliance screen

(Oracle, MySQL, Microsoft Sharepoint, etc.). Since it indexes every data, it poses some
privacy problems to the company that uses it for obvious reasons, so it is not the best
solution, given the sensitivity of the project. Of the three solutions presented, this one is
obviously the most complete and efficient, even though it does not do what is intended for
this project.

So, taking into account that I had some time for this project and the needs are very spe-
cific, I decided to build the whole engine from the ground, using the original ManifoldCF
and Elasticsearch as auxiliary tools.

2.7 Chapter Conclusion

This chapter described the information that was gathered in order to give the necessary
background to implement the project. Information Retrieval is in the basis of the operation
of the whole project and the chosen IR model was Vector Space with Boolean Model (used
by Lucene). Also, some similar solutions that already exist in the web have been referred
because during the project, they have been consulted to check if there was an already good
and implemented solution that could be adapted for the project. As we have seen in this
chapter, these solutions weren’t used because they weren’t enough to fulfill the purpose
of the project, so the whole solution, that uses some of the technologies detailed above, is
described in the next chapter thoroughly.



Chapter 3

The Hound System

The aim of this project is to find documents with potentially sensitive information avail-
able in open/unprotected repositories to PT’s employees. To do so, it is critical that we
make a good definition of what is sensitive information in this company’s context. This
chapter will start by having a Requirements Analysis, followed by the description of the
Hound’s Architecture and lastly the implementation of the Hound system.

3.1 Requirements Analysis

• Sensitive Information - The types of information that are considered sensitive on the
company’s context are phone numbers, VATs, emails, IP addresses, dates, names,
marketing plans and username/password pairs.

• Scalable - it must grow with the needs of each scan, according to the range of
repositories that are indexed, having a good performance for any number of targets.

• Modular - the system should be plugin-based, having a priori defined plugins, and
allowing the possibility of easily adding new functionalities, like indexing new
types of information.

• Ruby designed - the system’s engine should be designed in Ruby, using as many
Ruby Gems as necessary, to maximize the compatibility with PT’s infrastructure.

• Documents Ranking - have a classification with two possible values: Sensitive and
High Sensitive, adapted from Mike Chapple’s 2.5 definition. Only these were con-
sidered relevant because the others are not relevant, hence they are discarded.

• Level of severity - based on a color system (green, yellow, orange and red), which
are calculated according to the ratio of occurrence of the sensitive terms found in
the documents and the total number of their lines.

• Centralized - it is important that it can be executed simultaneously in different
places at the same time and send the results to the same PT’s platform (which is
centralized and fault-tolerant), but it is not that relevant to have multiple instances
running on the same machine.

25



Chapter 3. The Hound System 26

• Automatic - The system should be automatic, as the title of this thesis implies, so
the user just needs to define the initial parameters.

3.2 Architecture of the Hound* System

After all the analysis and investigation made, I designed a search engine that employs
other technologies together to achieve the purposed objective defined above.

Taking into account the search engine in figure 2.1 and the IR model shown in fig-
ure 2.3, the Hound System consists of two components visible in figure 3.1:

• ManifoldCF - The Crawler, that obtains the documents from the shares and send
the corpus to the IR System, i.e. Hound Engine.

• Hound Engine - The IR System, composed of the Hound Master and the Hound
QuerySearchRank, designed in Ruby, doing the text operations, the queries, the
search through Elasticsearch and the Ranking using the classification model defined
above.

1) Nmap Scan

Hound Engine

Index

Elasticsearch

3) Text

Text Operations

4)  Logical View

ManifoldCFShares
Document 

Corpus

2) Configure & Start MCF

DB

Hound Master

Query Ops

Searching

Ranking

7) Retrieved  Docs

QuerySearchRank

6) Query

8) Ranked
Documents

5) Logical View

2) Start ES

DB Manager 
Module

Indexing

7)

Figure 3.1: Hound System

As we can see in figure 3.1, Hound Engine corresponds to the IR process (figure 2.3),
with slight changes made to better represent the Hound Search Engine. There is no User
Interface, since the system is automatic. This Engine is composed by the Hound Master,
which is the one responsible for scanning the network (step 1) and triggering the action of

* A hound is a dog of a breed used for hunting, especially one able to track by scent. This project has
the same function, which is to "sniff" for documents and report if it matches what it was searching.



Chapter 3. The Hound System 27

the auxiliary tools (ManifoldCF and Elasticsearch), configuring MCF automatically (step
2). We also have the Text Operations, that changes the raw text to prepare the search (steps
4 & 5). Besides the Hound Master, we have the following steps in QuerySearchRank:
1) Query Operations, that perform the query defined a priori in the system (step 6); 2)
Searching, which is made over the text obtained from the Index (it is different in this
case comparing to the original IR Process because here, the data from the index goes
to the Hound Master and only then to the Searching module) (step 7); and 3) Ranking,
that applies a classification algorithm over the retrieved documents, storing the ranked
documents back into Elasticsearch in a new Index (step 8).

In the Elasticsearch section, we have 2 components: 1) the DB Manager Module
(DBMM), that manages the connections to the database and the data that comes from it
(step 3) and 2) Indexing, which stores the data into an Index of Elasticsearch.

3.3 Implementation of the Hound System

In order to retrieve the information from the repositories, it is necessary to know where to
look. So the first step is for Hound Master to run a bash script that uses Nmap to scan the
network and perceive which hosts contain open ports according to each type of network
share. Then SMBclient is used with the purpose of finding out which of the IPs with open
ports actually contain open shares with files.

The next step, which is the extraction of the files content, was made in two different
ways during the project. The first uses a SMBclient to extract every file on each open
share. The second uses ManifoldCF in order to automatically do it. This latest option
is the best and it was the chosen way of retrieving the files content from each share,
because it does everything by itself and has got many implemented connectors to extract
the files from the repositories. For the use of this tool, the Hound Master configures
ManifoldCF and triggers its action, alongside with Elasticsearch. ManifoldCF then stores
the information of each file (metadata and content) in Elasticsearch for further searching
(the content is stored with Base64 encoding).

The Hound Engine is what differentiates this solution from the others available in the
market. Hound Master gets the raw text that was previously indexed and pre-process it for
the searching. This pre-processing is composed of the following steps: 1) decode the text
from base64, because the content is encoded; 2) iterate through each line of the content
and then send it to the other module for Searching.

In the Searching step, the queries are applied (these queries are the type of information
that we are looking for - phones, VAT, passwords, etc.) and the searching is made to check
if each line contains the sensitive data that we want to find.

Having the information found, the Ranking of documents is then performed, according
to the ratio of sensitive information that was found (or not).



Chapter 3. The Hound System 28

Hound generates the following indexes:
• hound_mcf is a temporary index created by ManifoldCF, where the content of the

extracted files is stored.
• hound_terms is where the sensitive words found in files is stored. The way this

terms are classified and stored will be explained in detail in the next subsection.
• hound_files is where a summary of the files with sensitive information is stored.

The way this files summary is made and stored will be explained in detail in the
next subsection.

3.3.1 Hound Master

This component of the Hound Engine is the crawling mechanism responsible for scanning
the network, triggering the auxiliary tools (ManifoldCF and Elasticsearch) to start running
and pre-process the text for the Hound QueryScanRank module.

The network scan is performed by a bash script that uses Nmap and SMBclient con-
nections. Nmap was used to find IPs with ports 139 and 445 open (Windows Share), with
the command in listing 3.1 and the parameters in table 3.1.

Listing 3.1: nmap command
sudo nmap −−open −n −T4 −Pn −p139,445 −sS −oA <output_path><ip_range>

Command Description
--open lists only the open port
-n No DNS resolution. Tells Nmap to never do reverse DNS resolution

on the active IP addresses it finds. This option slashes scanning times.
-T4 set timing template from 0 to 5 (higher is faster)
-Pn no ping, treat all hosts as online. This option skips the Nmap discov-

ery stage altogether. Scan hosts even if protected by firewall.
-p139,445 scan only specific ports (139 & 445)
-sS TCP SYN scan. It can be performed quickly, scanning thousands of

ports per second on a fast network not hampered by restrictive fire-
walls. It is also relatively unobtrusive and stealthy since it never com-
pletes TCP connections.

-oA output scan - Nmap + XML + GNMAP
<output_path> where the path to output results is specified.
<ip_range> the range of ips to scan. Ex: 1.1.1.0/23 . . .

Table 3.1: Nmap command parameters

Having the Nmap result, the following grep command was used to just keep the list of
IPs:

Listing 3.2: grep command
grep −B3 open ${CURRENT}/< f i le >.nmap | grep report | awk ’{ pr int $5 }’



Chapter 3. The Hound System 29

where CURRENT is the path of the folder where the script is running and ip_ range
is the range of IPs, same as in the Nmap command. With this list, I make smbclient
connections are made to list the indexable folders existent in the IPs, using the following
command:

Listing 3.3: smbclient command
s m b c l i e n t −L / / ${ IPS [ ${ i } ] } −A ${CURRENT} / a u t h f i l e
−U < use r > 2>&1 | e g r e p −v "ADMIN \ \ $ | . \ \ $ | p r i n t \ \ $ |
−−−−−−−|̂ $ | Sharename Type Comment " |
e g r e p " Disk " | awk ’{ p r i n t $1 } ’

At this point, there is a clean list of IPs that I want to connect with ManifoldCF,
therefore it needs to be configured. For that, I use ManifoldCF’s Control by Servlet API
( https://goo.gl/PTazkq), using every command needed for each connection.

The configuration of ManifoldCF is done automatically with the list if IPs obtained in
the previous scan. Then, the jobs are started in order to extract the contents of the files in
the database, indexing the text in Elasticsearch through the Output Connection.

Afterward, Hound Master gets the text from the Index (represented in figure 3.2), in
order to preprocess it.

Figure 3.2: Document indexed by ManifoldCF in Elasticsearch

The preprocessing of the information is composed of three steps:

1) the decoding from Base64 (listing 3.4):

Listing 3.4: Base64 decoding
@content = Base64 . decode64( info [ ’_content ’ ] )

2) encoding some files that are not in UTF-8 format, forcing the encoding to ISO-
8859-1 and then to UTF-8 (listing 3.5):

https://goo.gl/PTazkq


Chapter 3. The Hound System 30

Listing 3.5: UTF-8 encoding
i f ! l ine . valid_encoding? | | l ine . encoding .name. eql ?( "ASCII−8BIT" )

l ine = l ine . force_encoding ( "ISO−8859−1" ) . encode( "UTF−8" )
end

3) splitting the content into lines for further searching, iterating for each line of the
content.

Once the preprocessing is complete, the lines are used in the next module - Hound
QuerySearchRank - where the queries are made to find the sensitive information.

3.3.2 Hound QuerySearchRank - Query and Search

The Querying, Searching and Ranking of the information are the most important and
complex steps of this project, because it is a challenge to find information by patterns. In
this subsection the Query and Searching processes are described and the next subsection
will detail the Ranking.

The Queries are made in the Hound QuerySearchRank module over each line at a
time, using the plugins to Search for sensitive information, i.e. potential passwords, phone
numbers, VAT numbers, dates, marketing plans, name, email or IP, through regular ex-
pressions. An example of a plugin is shown in appendix (listing A.2). All the potentially
sensitive data is returned to the Hound Master, which in turn stores the information in
index hound_terms (listing 3.6).

Listing 3.6: hound_terms document example
"_source ": {

"term ": {
"value ": "96XXXXXXX" ,
" info ": [ {

"type ": "phone" ,
"subtype ": "meo"

} ]
} ,
" f i l e " : {

" url " : " f i l e : / / / / /XX.XXX.XX.XXX/____/_________ . docx" ,
"filename ": "_________ . docx" ,
" ip " : "XX.XXX.XX.XXX" ,
" l ines " : [ "102" => \t_________96XXXXXXX_______\n"] ,
" digest " : "56d5ff58dd075b167c14cb0b1656ceb4ee3ccbb6" ,
" index_date " : "2015/04/20 14:40:58"

}
}

All the Query Plugins have two options of checking the data (table 3.2). The default
mode uses regular expressions or algorithms and the other way, uses lists of predetermined
words that the user specifically wants to find (this lists are stored in a database folder).
The Name and Marketing plugin are the exceptions. The first because it uses a regular
expression with a list of all the Portuguese names but also works with a specific list of



Chapter 3. The Hound System 31

names. The second because it only use lists of words. In the following subchapters, all
the plugins are described in detail.

Regular Expressions List of words
Phone X X
NIF/VAT X + Algorithm X
Password X X
Marketing X
Name X + List X
Date X X
Email X X
IP X X

Table 3.2: Hound Plugins Operation

3.3.2.1 Phone Query Plugin

In this plugin, there are 2 main functions: validate and getSubtype. The first receives the
string from Hound QuerySearchRank - Query and Search as input and applies a Regular
Expression (listing 3.7) to check if it contains phone numbers.

Listing 3.7: Phone Regular Expression
/ ( ? : | \ t | [ a−zA−Z ] | \W\D| ^ ) ( ? : \ + ? 0 ? 0 ? 3 5 1 ) ?

( ( ? : ( ? : 2 [ 1 −9 ] [ 0 −9 ] { 7 } ) | ( ? : 9 [ 1 −4 , 6 ] [ 0 −9 ] { 7 } ) ) )
( ? : \ \ | | \ t | [ a−zA−Z ] | \W\D | $ ) /

The regular expression can be divided in three parts, as shown in the figure: the first
is the content before the number, which can be a space, a tab, a letter a symbol or the
beginning of the string, followed by a possible indicative +351, 00351 or 351. Then the
second part is the number itself, that can be a telephone (beginning with 2, followed by
a number between 1 and 9, and then any 7 numbers) or mobile phone (beginning with
a 9, followed by a number between 1 and 4 or 6 and then any seven numbers from 0 to
9. The last part is what shows after the number, which can be a backslash, a whitespace,
a tab, a letter, a symbol or the end of the string. The second function is used in Hound
QuerySearchRank - Query and Search to get the types of phone, which are the different
Portuguese mobile operators (meo, vodafone, nos, and phone-ix) or landline telephones.

3.3.2.2 NIF Query Plugin

This plugin also has the same two main methods, validate and getSubtype. In the first,
it gets a string and if the validator finds any VAT values through the regular expression
(listing 3.8) and the algorithm (listing 3.9), then returns an array with all the VAT values
found.

Listing 3.8: NIF Regular Expression
/ ( ? : \ s | \ t | [ a−zA−Z ] | \W\D | ^ ) ( [ 1 2 5 ] [ 0 − 9 ] { 8 } ) ( ? = \ \ | \ t | [ a−zA−Z ] | \ s | \W\D | $ ) /



Chapter 3. The Hound System 32

Listing 3.9: NIF Algorithm
NIF has g o t 9 d i g i t s , b e i n g t h e l a s t t h e c o n t r o l d i g i t .
To c a l c u l a t e t h e c o n t r o l d i g i t :
− M u l t i p l y t h e 8 t h d i g i t by 2 , t h e 7 t h d i g i t by 3 ,

t h e 6 t h d i g i t by 4 , t h e 5 t h d i g i t by 5 ,
t h e 4 t h d i g i t by 6 , t h e 3 rd d i g i t by 7 ,
t h e 2nd d i g i t by 8 and t h e 1 s t d i g i t by 9

− Add t h e r e s u l t s
− C a l c u l a t e t h e Modulus 11 of t h e r e s u l t , i . e . , t h e

r e s t o f t h e d i v i s i o n o f t h e number by 1 1 .
− I f t h e r e s t i s 0 o r 1 , t h e c o n t r o l d i g i t w i l l be 0 .

I f i t i s a n o t h e r number x , t h e c o n t r o l d i g i t w i l l
be t h e r e s u l t o f 11 minus x .

The second method is used in Hound QuerySearchRank - Query and Search to get the
type of VAT found (singular person, collective person, etc.), using a list of prefixes.

3.3.2.3 Password Query Plugin

"Passwords are like underwear; you don’t let people see it, you should change it very
often, and you shouldn’t share it with strangers" – Chris Pirillo

This plugin was without a doubt the most challenging of all, and the reason is obvious
- How to find a password in the middle of a text? Even now, I believe it is not possible to
find 100% of the passwords in a file, however I tried to get as close as possible. Taking into
account that lots of false positives would come up, I have made six regular expressions,
one for each type of password, to have as less false negatives as possible:

1) passwords that appear with usernames from PT’s domain, which looks like this:
domain\\username:Pa55word.123 (listing 3.10);

Listing 3.10: PTP normal users password
/ ( ? : ^ | | \ \ t | \ t | ) ( ( ? : ( ? : # { domain } ) ( ? : \ \ { 1 , 4 } ) ) ( ? : [ a−zA−Z0−9 ] { 5 , 1 5 } ) )

( ? : ( ? : \ s ∗ ( ? : \ = | \ : ) \ s ∗ ) | ( ? : \ \ t ) | ( ? : \ \ = ) | ( ? : \ \ \ \ = ) )
( ( ? = [ \ S ] ∗ [ a−z ] ) ( ? = [ \ S ] ∗ [A−Z ] ) ( ? = [ \ S ] ∗ [ ^ \w\ d \ s ] ) ( ? = [ \ S ]∗ [ 0 −9 ] ) [ \ S ] ∗ )

( ? : | \ \ t | \ t | \ \ n | \ n | $ ) /

2) passwords appearing in excel files as lists of passwords, separated by tabs (list-
ing 3.11 and listing 3.12);

Listing 3.11: Excel Passwords
/ ^ | ( ? : \ t | \ \ t | \ \ \ \ t ? ) ( [ a−zA−Z0− 9 ] { 5 , 2 0 } ) ( ? : \ s ? ( ? : \ \ t | \ \ \ \ t | \ t | , | : ) \ s ? )

( [ a−zA−Z ’ " ? ! . $ # % 0 −9 ] { 5 , 1 6 } ) ( ? : \ \ n | \ \ \ \ n ) ? $ /

Listing 3.12: Excel Passwords 2
/ ^ ( [ a−zA−Z0−9 ] { 4 , 2 0 } ) \ s ( [ a−zA−Z0−9?! . $#%@] { 4 , 1 6 } ) ( ? : \ s [ a−zA−Z0−9]+)?$ /

3) General passwords, with the format username:password (listing 3.13). The symbol
that separates the username from the password can be anything, so I defined as possible
the ’:’, ’=’, ’\\=’ or ’->’ with 0, 1 or more whitespaces in between.



Chapter 3. The Hound System 33

Listing 3.13: General Passwords
/ ( ? : \ \ t | \ s | \ t | ^ | [ \W] ) ( [ a−zA−Z0−9]{4 ,20})

( ? : ( ? : \ \ = ) | ( ? : \ \ \ \ = ) | ( ? : \ s ? [ \ = \ : ] \ s ? ) | ( ? : − > ) )
( [ a−zA−Z0−9 \ \ \ ’ \ " \ ? \ ! \ . \ $ \ # \ % \@] { 4 , 2 0 } ) ( ? : \ s | \ \ t | \ t | \ \ n | \ n | $ ) /

4) UserPass passwords, with the format ’username: "user" password "pass"’, or just
pass(word) "pass" (listing 3.14).

Listing 3.14: UserPass Passwords
/ ( ? : ( ? : u | U) s e r ( ? : name ) ? [ ^ \ w\ d ] + ( \ S + ) \W) ?

( ? : p | P ) a s s ( ? : word ) ? [ ^ \ w\ d ] + ( \ S + ) /

5) TwoColPass passwords, when showing in files with only two columns, with the
format username password (listing 3.15).

Listing 3.15: Two Collumn Passwords
/ ^ ( [ a−zA−Z0−9 ] { 4 , 2 0 } ) \ s

( [ a−zA−Z0−9 \ \ \ ’ \ " \ ? \ ! \ . \ $ \ # \ % \@\ − \ = ] { 4 , 2 0 } ) ( ? : $ | \ n | \ \ n ) /

6) Lastly, Complex passwords, which contains at least one lowercase character, one
uppercase character, one digit and one symbol (listing 3.16).

Listing 3.16: Complex Passwords
/ ( ? ! . + [ \ / ] . + ) ( ? : ^ | | \ \ t | \ t )

( ( ? = [ \ S ] ∗ [ a−z ] ) ( ? = [ \ S ] ∗ [A−Z ] ) ( ? = [ \ S ] ∗ [ ^ \ d \w\ s ] ) ( ? = [ \ S ]∗ [ 0 −9 ] ) [ \ S ] { 4 , 1 5 } )
( ? : | \ \ t | \ t | \ \ n | \ n | $ ) /

These regular expressions may not all be used, because first it checks if there are any
PT user password. Then, if there is none, it passes through the excel regexps, should the
file be of .xls(x) or ods extension. If it is not of excel extension, it goes through the other
password regexps. Lastly, the string passes by the complex password regexp. The results
are returned in a hash to be used in Hound QuerySearchRank - Query and Search.

3.3.2.4 Name Query Plugin

Although this is a simple plugin, it is the slowest to run. The reason is that it loads a text
file containing the list of all the Portuguese names (2734 in this list, except for surnames)
[15], which is a considerable amount of data. However, near the end of the project, we
came with a new way of searching for names, which is to use a regular expression (listing
3.17) that have a parameter ’names’, which is a string with all of the names of the file,
separated by a pipe (|), meaning OR in regular expressions. The main function is validate
and it gets a string, matching the regular expression to find the names. If any names are
found, they are stored in an array and returned to be used in Hound QuerySearchRank -
Query and Search. The function getSubtype is similar to the ones in the other plugins.

Listing 3.17: Name Regular Expression
/ \W+(#{names})(?=\W) / i



Chapter 3. The Hound System 34

3.3.2.5 Email Query Plugin

For the Email plugin, the process is similar to the other validators, with a regular expres-
sion (listing 3.18) that matches each line, storing the results found (there can be more than
one in each line) in an array and then return it to be used in Hound QuerySearchRank -
Query and Search. An example of a match with this expression is e.g. john@snow.com.

Listing 3.18: Email Regular Expression
/ ( ( ? : [ a−zA−Z0−9\.\−\_ \+]+)(? : \@) ( ? : [ a−zA−Z\−\_ ] + \ . ) ( ? : [ a−zA−Z]{2 ,3}))/

An email is composed of 3 parts: the first, before the @ that can have letters, numbers,
dots, hyphen, underscore, and plus; the second which is the @ symbol; and the last which
is the domain of the email, that contains letters, hyphens or underscore, followed with a
dot and lastly the top-level domains that are 2 or 3 letters.

3.3.2.6 IP Query Plugin

In the IP plugin, the process is the same as the one described above, only with a different
regular expression (listing 3.19) to match each line. The regular expression is composed
of 4 groups of numbers that can have from 1 to 3 digits and are all separated by dots. The
format is e.g. 127.0.0.1.

Listing 3.19: IP Regular Expression
/ ( ? : \ s | [ \D]|\=|\:)([0−9]{1 ,3}\.[0−9]{1 ,3}\.[0−9]{1 ,3}\.[0−9]{1 ,3})(?:\ s | \ \ | \D| \ t | \ n ) /

3.3.2.7 Date Query Plugin

Finding dates is not easy and the reason is because there is no standard date format for
all countries. Some files have DD/MM/YYYY but others have MM/DD/YYYY, which
makes the parsing harder because there is no way of knowing for sure if one or another
are correct. Figure 3.3 shows the formats used in different countries and as we can see,
there is a wide variety of date formats [13].

Figure 3.3: Date format by country



Chapter 3. The Hound System 35

In order to find a solution for this problem, W3C defined a standard - The ISO date
format. The international format, defined by ISO (ISO 8601) [16], tries to address all
these problems by having a numerical date that looks like YYYY-MM-DD, where:

• YYYY is the year [all the digits, i.e. 2012]
• MM is the month [01 (January) to 12 (December)]
• DD is the day [01 to 31]
For example, "3rd of April 2002", in this international format is written as: 2002-

04-03 [31]. Although this standard is out since 1998, the truth is that there are still too
many date formats in the world. Embracing this format would, in my opinion, solve the
problem. The validation of dates is made with a regular expression (listing 3.20) that
receives a string and returns an array with the matches if they exist.

Listing 3.20: Date Regular Expression
/([0−9]{1 ,2}[.:\/−][0−9]{1 ,2}[.:\/−][2]{1}[0−9]{3})|
([2]{1}[0−9]{3}[.:\/−][0−9]{1 ,2}[.:\/−][0−9]{1 ,2})/

3.3.2.8 Marketing Query Plugin

The Marketing plugin is simple, but there is no easy way of defining it, at least in long-
term. The problem here is that Marketing plans contain information of new products,
which are its name, features and release date. Regarding the name and features, there is
nothing we can do a priori, so the only way possible, in my opinion, is through a list of
words stored in a file that needs to be changed over time, with specific information that
we want to find. As for the release date, we can do something about it, which is to search
for a date in the future. For that, we use the Date Query Plugin to verify if a line contains
a date. If so, then it uses the function compareDates to compare the date and today’s date.

3.3.3 Hound QuerySearchRank - Ranking

At the same time that the terms’ information is stored in a hash, there is another hash
created that contains information of each file and is updated when the terms are found.
During the project, this last hash used to be inserted in Elasticsearch at the end of the
program execution, in index hound_files, but later on, it came to be indexed at the end of
each file’s analysis. The reason for this change is that previously, if there was a failure
on the program execution, the information of all the processed files would be lost. Now,
the only thing that can be lost is the result of one file’s processing. This improvement,
allows not only to save time, but also to ensure that it does not lose information. The
index is basically a resume of all the information found in each file. It is composed with
the occurrences of each data type, the number of words and lines of the file, as well as
the final classification of the file according to its sensitivity degree and its corresponding
level, ending with a digest (made with SHA-1) and the date of the indexation.



Chapter 3. The Hound System 36

An example of a document in hound_files index is shown in figure 3.21.

Listing 3.21: hound_files document example
"_source ": {

" ip " : "XX.XXX.XX.XXX" ,
"filename ": "_________ . docx" ,
" url " : " f i l e : / / / / /XX.XXX.XX.XXX/____/_________ . docx" ,
"phone": [ {

"subtype ": "meo" ,
" l i s t " : [ "96XXXXXXX" ] ,
"count " : 1 ,
"percentage ": 0.6451612903225806

} ] ,
" nif " : { } ,
"date " : { } ,
"name": { } ,
"password ": { } ,
"email " : { } ,
" ip " : { } ,
"words_count " : 5899,
" lines_count " : 155,
"ranking ": {

" c lass i f i ca t ion ": "High Sensitive " ,
" level " : "Green"

} ,
" digest " : "56d5ff58dd075b167c14cb0b1656ceb4ee3ccbb6" ,
" index_date " : "2015/04/20 16:21:22"

}

The Ranking of the file, as already mentioned before, is made by two metrics: 1) the
Classification according to its sensitivity (High Sensitive or Sensitive) and 2) the Level
of the classification (Green, Yellow, Orange, or Red), according to an average of two
parameters: 1) the ratio of the occurrences of the sensitive data and the total number of
lines (not counting the white lines) of the file and 2) the number of lines of the files. With
this ratio, a number from 1 to 4 is assigned according to the ratio obtained (1 - 0..19,9%;
2 - 20..39,9%; 3 - 40..69,9%; and 4 - 70..100%). As for the number of lines, a value from
1 to 4 is also assigned if the quantity of lines is less than 60, from 60 to 200, from 200 to
400 or more than 400, respectively. Then, the average is calculated with these two values,
giving the final number, which corresponds to the color referred above. The first value
has a higher weight than the second, in case the average is a half value like 1,5.

In the example above, we have a file that contains one occurrence of a cellphone of
the brand MEO. The information was manipulated to show less data because of the infor-
mation’s sensitivity and in order to fit, otherwise it would be too extent. The classification
of the file is High Sensitive because it contains phone numbers and the level of severity
is Green because the percentage of phone numbers in this file is lower than 1%, so it gets
the value 1 and as the number of lines is 155, the second value is 2. Given that the average
gave 1.5 and since the first value has a higher weight than the second, the final average
value is 1, which means Green.



Chapter 3. The Hound System 37

3.4 Hound Integration to PT’s platform

There is a large number of technologies used by PT’s DCY in order to support their plat-
form. Since the objective of this project was to create a solution that would become a
component to be integrated in this platform, it is important to identify the existing tech-
nologies in it. The relevant ones for this project, are the already mentioned Elasticsearch
and Kibana, as well as RabbitMQ. Many other technologies are used for data analysis and
statistic generation like AllegroGraph and OpenTSDB, however they are not relevant for
the integration of this solution and for that reason, they will not be described.

RabbitMQ is a messaging broker (fig. 3.4) - an intermediary for messaging, giving
applications a common platform to send and receive messages, which enables software
applications to connect to each other, as components of a larger application. Its messaging
is asynchronous, decoupling applications by separating sending and receiving data.

Figure 3.4: RabbitMQ queue example

Having Hound completely implemented, it was necessary to adapt it in order to in-
tegrate with PT’s platform (recently called Hidra - High Performance Infrastructure for
Data Research and Analysis). Figure 3.5 shows the final architecture of Hound, integrated
with Hidra infrastructure, having 3 instances running in different machines.

Hidra receives data through an AMQP Broker (RabbitMQ), in a format defined in a
custom Ruby Gem designed by PT, pushing the data to a queue. The consumption of this
data is made through a Publish/Subscribe scheme, where subscribe gathers the data from
the queue and publishes in the correct format to the desired database (in Hound’s case,
it is Elasticsearch, but there’s an OpenTSDB database in Hidra for other projects). The
front-end of the Elasticsearch database is Kibana, which provides customized graphics
for each use-case, in order to have a better visualization of the stored data.

Hidra contains many components, and Hound is expected to be another one, with its
full integration to the platform. The mission of Hound is to search PT’s network and find
sensitive data, which is sent to the Elasticsearch used in Hidra. This data will further be



Chapter 3. The Hound System 38

Elastic
Search

KibanaAMQP2
ES

AMQP Broker 
(RabbitMQ)

AMQP User
Daemons

Post/
Publish

Consume/
Subscribe

HIDRA
1) Nmap Scan

Hound Engine

Index

Elasticsearch

3) 
Text

Text Operations

4)  Logical View

ManifoldCFShares
Document 

Corpus
2) Configure & Start MCF

DB

Hound Master

Query Ops

Searching

Ranking

7) Retrieved  Docs

QuerySearchRank

6) Query

8) Ranked
Documents

5) Logical View

2) Start ES
DB Manager 

Module
Indexing

1) Nmap Scan

Hound Engine

Index

Elasticsearch

3) 
Text

Text Operations

4)  Logical View

ManifoldCFShares
Document 

Corpus
2) Configure & Start MCF

DB

Hound Master

Query Ops

Searching

Ranking

7) Retrieved  Docs

QuerySearchRank

6) Query

8) Ranked
Documents

5) Logical View

2) Start ES
DB Manager 

Module
Indexing

1) Nmap Scan

Hound Engine

Index

Elasticsearch

3) 
Text

Text Operations

4)  Logical View

ManifoldCFShares
Document 

Corpus

DB

Hound Master

Query Ops

Searching

Ranking

7) Retrieved  Docs

QuerySearchRank

6) Query

8) Ranked
Documents

5) Logical View

2) Start ES
DB Manager 

Module
Indexing

2) Configure & Start MCF

Figure 3.5: Hound integrated in Hidra platform

analyzed and soon, there should be implemented a machine learning algorithm to increas-
ingly have more refined data. There can be as many instances running as needed, because
the data is sent to Hidra’s queue and there will be no problem regarding information con-
currency, thanks to the RabbitMQ functionalities.

As we can see, some changes were made regarding the data storage. Instead of stor-
ing everything to the local Elasticsearch as before, with this integration, only the infor-
mation gathered by ManifoldCF is stored there, whereas the processed information is
directly sent, through the ruby gem, to the Elasticsearch in Hidra. The local ES has
now only one index (hound_mcf), working just as a temporary instance, while the ES in
Hidra have two indices (hound_terms and hound_files). The designation of the indices
is built with my environment in PT and the associated domain, along with the original
name of the indices, respectively for each index. For hound_files, it would be environ-
ment.domain_hound_files.

3.5 Chapter conclusion

This chapter presents all the work carried during the internship in PT Comunicações, with
a detailed presentation of the tools and the way in which they have been used (Nmap,
Smbclient, Elasticsearch and Apache ManifoldCF), as well as an in-depth description of
the engine created in Ruby. As we have seen, Hound Engine is composed of Hound
Master and QuerySearchRank. Hound Master is responsible for the scan in the network,
start the execution of ManifoldCF (and configure its connections) and Elasticsearch, as
well as preprocessing the indexed data. The queries, searching and ranking are assigned to
Hound QuerySearchRank, where it receives the preprocessed information from the Master



Chapter 3. The Hound System 39

and searches for the presence of sensitive terms with the help of the developed plugins,
one for each query (the type of information that we are searching for). It also ranks the
analyzed files, creating "reports" in JSON format, that are stored in a new Elasticsearch
index. We achieved the purpose of creating an incremental and scalable system (as shown
in appendix lst. A.1), being easy to add new kinds of data that we intend to find.

After the final implementation, Hound was then integrated into Hidra (the platform
of DCY), being modified in order to operate as one of its component. The modifications
were few, so there were no serious issues. In the next chapter, there will be an evaluation
made to the system, in order to understand its overall performance and the quality of the
data gathered.





Chapter 4

Evaluation

4.1 Prototype

For the prototype, it was used an ASUS Laptop with a Core i7 2.40GHz processor and 8
GB of RAM, in a Xubuntu 14.02.2 LTS distribution (Ubuntu + XFCE).

Nmap (v6.40) and ManifoldCF (v2.1) were used, and the last required some changes
to work as needed. For that, it was necessary to make some modification on the connectors
file (connectors.xml) to use the windows share connector (disabled by default), download
the jcifs plugin (jcifs-1.3.18.jar) that was placed at ”connector-lib-proprietary” folder; and
change the configuration file (figure 4.1) to use PostgreSQL instead of HSQLDB.

Figure 4.1: ManifoldCF properties.xml

After that, in order to obtain a better performance, I made some changes to the con-
figuration file of Postgres Database (table 4.1).

shared_buffers 1024 MB
checkpoint_segments 300
maintenanceworkmem 2 MB
tcpip_socket true
max_connections 200
checkpoint_timeout 900
datestyle ISO, European
autovacuum off

Table 4.1: Postgres configuration file - postgresql.conf

The used connectors were Elasticsearch Output Connector, Active Directory Author-
ity Connector, Tika Transformation Connector, Windows Share and Sharepoint Reposi-

41



Chapter 4. Evaluation 42

tory Connectors (where the list of IPs was used).
Elasticsearch (v1.6.0) was also modified so that it uses more RAM memory and reduce

the time taken for each action.
Hound Engine was designed with Ruby (v2.2.2) and we used some Ruby gems such

as chronic, curb, elasticsearch, json, mimemagic, etc.

4.2 Changes during the Implementation

Early in the project, I used some Ruby gems to parse the content when it was not imme-
diately readable, like Yomu that uses Apache Tika content analysis toolkit for the files
in Office, RTF, PDF, OpenOffice or other format and Nokogiri for the HTML and XML
files. However I later discovered that it was possible to make this parsing in Manifold as it
extracted the files content (using Apache Tika, which is the same as what Yomu uses), so
I came to use this connector in ManifoldCF instead of the gems. To check the MIME type
of the files, I resorted to a ruby gem MimeMagic, because it allows to know the file type
not only by the extension of the file, but also by the content, which it is a very useful tool.
However, there are some problems with this tool regarding some formats. For example,
some office files are considered as application/zip mime and so it is necessary to classify
the mime by extension.

Listing 4.1: MimeMagic gem
extension = fileName . s p l i t ( ’ . ’ )[−1]
mime = MimeMagic. by_magic(@content )
i f ( (mime. to_s . s ize==0) | | (mime. to_s . eql? " applicat ion / zip " ) )

mime = MimeMagic. by_extension ( extension )
end

Even though I ended up using the Tika Extractor Connector of ManifoldCF, I believe
it is important to refer how the parsing is made with the ruby gems, because it works well
and it was used during more than half the time of this project. The used gems were Yomu
and Nokogiri as was referred before.

Listing 4.2: Yomu and Nokogiri gems
@content = Yomu. read : text , @content

data = Nokogiri : :HTML(@content)
data = Nokogiri : :XML(@content)
@content = data . content

With Yomu, I was able to parse the content of Office formats, OpenOffice OpenDoc-
uments, RTFs and PDFs. This was helpful, because the content of these files is encoded,
thus unreadable when you look at the content, instead of opening the file manually. Yomu
allows reading the metadata and the content, but for the project’s purpose, only the con-
tent was necessary. With Nokogiri, I was able to parse the content of XML and HTML
pages a lot easier than if I had to build a parser by myself and it is a really great tool.

https://github.com/Erol/yomu
https://tika.apache.org/
https://github.com/sparklemotion/nokogiri
https://github.com/minad/mimemagic


Chapter 4. Evaluation 43

4.3 Evaluation Results

Evaluating a retrieval system is assessing how well it meets the information needs to its
users. This section intends to evaluate the performance and quality of the data obtained
by the Hound System in a real environment.

4.3.1 Performance of Hound

The evaluation of the performance lies on understanding if it has a good time of execution,
if the resources used are not too many, and if the runtime grows proportionally to the
increase of data. The performance of the main components/steps of the Hound System
execution will be described in detail.

4.3.1.1 Bash Script

Using the Nmap tool to scan ports 139 and 445 in 512 IPs with SMBclient connection,
took an average time of 37.5 seconds (9.5 seconds for Nmap and 28 for SMBclient) and
found 334 hosts up. This time is an average of successive scans one after the other, where
the time taken by the first execution was superior to the following because, in the first,
the TCP connection needs to make the 3-Way-Handshake, so it takes a little longer. For
the next executions, since the connection is still up, there is no need for the handshake,
making it faster. However, since the Nmap scans will not be executed one after the other,
but in the beginning of each Hound execution, the Handshake will always be made, so the
considered average time of the first scans is 52 seconds for a range of 512 IPs.

The extra time that the SMBclient connections take, is compensated in the next step
as we decrease the number of ManifoldCF connections to the minimum really needed (17
instead of 334, in average). Considering the open ports found during 8 weeks of tests, its
maximum number was 21 and its average was 17. Nmap scans are considerably fast and
they take half the time (4,7 seconds) if we do not output the content to a file.

4.3.1.2 ManifoldCF

For ManifoldCF, for the three ranges, we get the following indicators:

Range of IPs 1 Range of IPs 2 Range of IPs 3
ManifoldCF Max RAM usage 1,4 GiB 2,1 GiB 1,7 GiB
Elasticsearch Max RAM usage 1 GiB 1,8 GiB 1,3 GiB
Postgres Max RAM usage 0,7 GiB 1 GiB 0,8 GiB
Max network speed 10 MiB/s 12 MiB/s 10 MiB/s
Average number of files found 3060 19045 4352
Average Time taken (with ArticleExtractor) 26 min 125 min 37 min
Average Time taken (with DefaultExtractor) 12 min 63 min 20 min

Table 4.2: ManifoldCF Performance



Chapter 4. Evaluation 44

The performance of this tool suffered greatly because of one of its components - Tika
Extractor. With this transformation connector, it is necessary to specify the Boilerpipe.
By choosing the KeepEverythingExtractor, although the time taken is the highest of all
the extractors used, the amount of information kept is also the larger. Later on, Mani-
foldCF found a file that led the CPU to use the most of its capacity, leading to a crash
in MCF’s engine. Having this problem, and after finding where it happened, since there
was nothing that could be done to correct the problem, I have chosen the DefaultExtrac-
tor, which solved it. Besides, the time taken by ManifoldCF decreased by half with this
boilerpipe, so it was a positive change. Even if the amount of data was higher with the
previous boilerplate extractor, it was not relevant for the purpose of this project, so the
DefaultExtractor became the best choice after all. The average times of executing this
step differ according to the Extractor we use and the size of files that we are extracting.
Even though ArticleExtractor takes more time, it achieves higher accuracy than Default-
Extractor. However, it also led to a crash, so I kept using the DefaultExtractor (figure 4.2).
As for the files obtained, ManifoldCF retrieved the exact types that were specified, which
were the .pdf, .docx, .xlsx, .pptx, .txt, .rtf, .log and a few other documents.

980

3055
3490

17307

19365

0

5000

10000

15000

20000

25000

0 8 : 0 0 1 2 : 3 0 1 8 : 3 5 5 0 : 4 5 5 9 : 4 5

IP
S

TIME (MINUTES)

Figure 4.2: ManifoldCF time taken

4.3.1.3 Hound Engine

The Hound Engine used an average of 37,5 MiB in the beginning, which grew until the
end of its execution. This happens because, during the execution of Hound, it stores
information in cache that increases as each file is processed. This information are two
hashes. One with the path and the SHA1 of the files and another that contains temporary
information concerning the original files that are being processed. The execution time of
the Hound Engine variates depending on the number and size of lines. Figure 4.3 shows
the number of files processed by time, executed in the first range of IPs tested.



Chapter 4. Evaluation 45

400

1048

2688

3055

0

500

1000

1500

2000

2500

3000

3500

0 1 : 1 5 : 0 0 0 1 : 3 2 : 0 0 0 3 : 1 1 : 0 0 0 4 : 1 2 : 0 0

FI
LE

S

TIME (HOURS)

Figure 4.3: Hound Engine execution time - range 1

This first range contained an average of 3055 files, which took an average of 4 hours
to process everything. Figure 4.4 shows the time taken to analyze and classify the files
found on the second range of IPs.

7 144
913

1723

2965

4424

6503
7107

8508

9567 9823
10379

10655

12693 12705
13075

13523
14452

16628

19012

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8 4 0

FI
LE

S

TIME (HOURS)

Figure 4.4: Hound Engine execution time - range 2

The second range contained many more files (an average of 19012), so the time taken
was also higher than the previous. Moreover, the size of the files were bigger, some of
which with around 900000 or more lines, which explains the increase of time taken. For
example, between the 28 and 30 hours, only 12 files were processed, due to a file with
897452 lines, whereas between hour 36 and 38, it processed 2176 files. Figure 4.5 shows
the time taken for the third range of IPs.



Chapter 4. Evaluation 46

142

662

1137

1772

2300

3249

3488

4048

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 : 3 5 0 3 : 2 5 0 6 : 0 4 1 2 : 0 4 1 5 : 0 4 1 8 : 1 5 2 0 : 1 0 2 0 : 3 5

FI
LE

S

TIME (HOURS)

Figure 4.5: Hound Engine execution time - range 3

The third range contained practically the same amount of files as the first, although the
size of the files were much bigger (some files had more than a million lines), so the time
taken was also greater. Since there is no exact way to calculate the time required to process
the information, figure 4.6 provides a more accurate way, by showing the variations of
time taken, according to the number of lines in the files processed by second.

27746 44379 64834 98213

227690

394727 401778
351322

548498

876952

1004694

1120334

1246626

0

200000

400000

600000

800000

1000000

1200000

1400000

2 4 0 3 6 0 4 8 0 6 6 0 7 2 0 1 1 4 0 1 9 8 0 2 6 4 0 2 7 6 0 4 9 2 0 5 4 6 0 5 9 4 0 6 3 0 0

LI
N

ES

TIME (SECONDS)

Figure 4.6: Lines processed by seconds

This chart shows the number of lines processed by second, which provides a more
precise analysis than comparing file by file, as shown in the graphics above, allowing
to make closer predictions of the time that a given file may take to be processed and
classified. The data represented is a merge of the times gathered from the three IP ranges
scanned. The maximum number of lines found were 1246626, which took approximately



Chapter 4. Evaluation 47

1h45. With this information, I could reach a value that is not too far from reality, which
is approximately 197 lines per second. Taking into account that for each file, every line
passes through the regular expressions of each plugin (there are 8 plugins and a total of
12 regular expressions), 197 lines per second shows to be a good result.

The time taken and the RAM usage of Hound escalates linearly (in average), which
is good because it shows that there are no scalability issues. This happens because after
indexing the data, the local hash is deleted, so the only hash that increases is the one
with the pair (file processed) ⇒ (SHA1 of the file), which has no great impact to the
overall performance of Hound. Also, an important factor is that Hound treats most of the
exceptions that may occur during its executions, only breaking when it can loose the data
that it has processed until that moment. Should a break happen during a file processing,
it stores, in cache (temporary file), the information processed until that moment relative
to that file, as well as the line where it stopped. When launching Hound again, it simply
continues in the line where it stopped before, and keeps processing the content of the file
as if there had been any stop, and more importantly, without any loss of information.

4.3.2 Quality of information obtained

Even though the components runtime is an important factor, the quality of the data found
is even more, with the main objective to find a balance between false positives and false
negatives (figure 4.7).

7

In the early days of the IDS market, one vendor was invited to a “shoot-out” of IDS products at a trade show. The
organizers of the event supplied the IDS vendor with a partial list of the attacks that were going to be launched within
the test network. One of the tests was a particular attack launched against Sun’s NFS remote filesystem protocol; no
known IDS product at the time was capable of performing the necessary protocol decoding to analyze the contents of
NFS packets.

Prior to the start of the contest, one of the vendors configured their IDS to generate an alert if it saw any NFS traffic on
the target network. In the case of the limited test, this was a valid signature but it obviously would generate too many
false positives on a production network with real (non-hostile) NFS traffic. This simple deceit allowed the vendor in
question to claim top honors.

Fundamentally, all IDS embody a trade-off between being
too sensitive and annoying their users and being too
narrow-focused and missing an important event. Figure 1Figure 1Figure 1Figure 1Figure 1
illustrates the estimated trade-off based on the author’s
practical experience.1 Note that the rate at which false
positives are generated drops off fairly sharply as the
signature set adds state or error checking and becomes
more precise. The rate of false negatives is not believed to
be symmetrical but is actually unknown since the number of
unknown attacks is an unknown. However, a signature that
does protocol correctness checking to any significant
degree dramatically increases the likelihood of catching a
large number of unknown attacks – while a single correction
to a signature may only remove a single false positive.

When an IDS designer produces a signature set and
detection logic in a product, it embodies their assessment of
how their end-users adjudge the relative value of false positives, noise, and false negatives. In today’s IDS product
market, the designers’ ability to judge these values has been somewhat hampered by the way in which customers and
trade journal reviewers have been performing IDS tests.

The typical IDS test consists of running a baseline traffic mix and injecting attacks into it. The IDS is then scored based
on how many attacks it saw; attacks missed are psychologically weighted more heavily in readers minds because, after
all, if the IDS can’t detect a known attack, it can’t be very accurate, can it?

So goes the logic, anyhow. The end result is that most vendors will prefer to produce a few more false positives than
risk a poor showing in a product review. The noise level an IDS produces has less to do with the quality of its signature
set and more to do with the environment in which it is deployed and its ability to capture site-specific knowledge.

Conservative-ness of signatures
Less state
Less specific

More state
More specific

False
Positives

False
Negatives

Alert  Level

Figure 1:
Relationship of signature quality to IDS responsiveness

?

1 In other words, the chart is not based an measurable assessment; it is intended as illustration not science.

Figure 4.7: False positives vs false negatives, retrieved from [22]

This chart contains information related to IDS (Intrusion Detection Systems), where
the relation between false positives and negatives is most important in order to realize
which disturbances in the network actually correspond to intrusions. In the context of this
project, false positives correspond to data classified as sensitive, but in fact are not. On
the other hand, false negatives are the data that are not classified as sensitive, remaining



Chapter 4. Evaluation 48

undetected. So the main concern lies in having the minimum percentage of false negatives
possible, while having an acceptable number of false positives.

The number of occurrences of the types of information we intended to find, proved to
be different in each scan. In figure 4.8 we can see the results of the first scan.

589 364

3839

212 365 420

11876

1929

0

2000

4000

6000

8000

10000

12000

14000

Phone VAT Name Email IP Date Passwords Marketing

Figure 4.8: Occurrences of scan 1

The scanned files were around 3000, most of them being reports and software doc-
umentation. Some of them contained relevant information and the type of data that was
mostly found was password related and the least was email. The password and marketing
data were the least precise, having too many false positives. In figure 4.9 we have the
results of the second scan.

36618
4947

501965

2924 20302 1765

210026

39994

0

100000

200000

300000

400000

500000

600000

Phone VAT Name Email IP Date Passwords Marketing

Figure 4.9: Occurrences of scan 2

This second scan was the richest with respect to the quantity and quality of the infor-
mation collected. This scan found around 19000 files. Many names were found, where
some of them (mostly names like job, gui, etc.) were false positives. Many passwords
were found, where some from documentation were actual passwords, but no explicit list
of passwords was found. The remaining information found was of great quantity and



Chapter 4. Evaluation 49

quality, except for marketing terms, which was mostly composed with false positives. In
figure 4.10 we have the results of the third scan.

185 199

8376

152 187 264

21084

2938

0

5000

10000

15000

20000

25000

Phone VAT Name Email IP Date Passwords Marketing

Figure 4.10: Occurrences of scan 3

In this third scan, we found around 4378 files, with a few more results than in the first
scan. The occurrence of false positives also showed up similar to that observed in the
first scan. The percentages of false positives obtained in Hound’s executions, which were
calculated taking into account the number of occurrences described above, are shown in
figure 4.11.

5%

15%

3%

90%

74%

82%

0%

65%

83%

4%

0%

12%

95%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

phone

VAT

name

general password

excel password

complex password

PT password

userPass password

twoCol password

date

email

IP

marketing

Figure 4.11: Percentage of False Positives

As we can see, we have obtained good results for nearly every query plugins, exclud-
ing the marketing and password plugins (except the case of PT passwords). The plugins
that worked better were the email and the PT users password, due to its more specific



Chapter 4. Evaluation 50

format, which eased the search for information. Phone, Date and Names got from 1%
to 5% of false positives, which are good results. The IP plugin had around 12% of false
positives, because when it found chapters or sections with 4 levels (e.g. 2.3.4.5) on docu-
mentation files, it considered it as an IP. As for VAT plugin, it had around 15% because,
even though the number passed correctly through the algorithm of validation, the values
were actually just a number with the same format as a VAT or a phone number (In Portu-
gal, VAT and phone numbers have the same format, unless the phone is represented with
the area code 351). However, the algorithm is well implemented so every VAT number
existent in the files were found, which gave no false negatives.

The biggest problem was the marketing query plugin, where I could not find an ef-
fective way of finding marketing plans, unless it contains a future date. But even if this
date is not relative to a marketing plan, instead it could just be a scheduled call to be
made to a customer or the resolution of a technical problem of a costumer. As for general
passwords, many false positives arose, because the format of the data matched with the
regular expression is too common in files that have no specific format, especially in soft-
ware documentation files. However, having these many false positives, allows to have a
minimal value of false negatives.

After these tests to the three floors of PT, we made a scan to a test folder with files
that mostly contained passwords, VATs, IPs, names and emails. The objective of this scan
was to have a small and controlled test group, allowing an inventory of false positives and
false negatives. The occurrences of terms found, and those which actually appear on the
files are shown in figure 4.12.

59

210

489

0 6

201

88
5

93
33

179

4428

209

733

0 6

578

26

509

36 33

180

0
0

100

200

300

400

500

600

700

800

total found total in file

Figure 4.12: Terms found vs true terms in file

The percentage of false positives and negatives based on the occurrences represented
above are shown in 4.13.



Chapter 4. Evaluation 51

66%

0%

4%

0%

0%

74%

70%

20%

63%

0%

0%

100%

28.57%

0.00%

33.29%

0.00%

0.00%

5.19%

0.00%

2.36%

5.56%

0.00%

0.56%

0.00%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

phone

VAT

name

PT password

excel password

general password

userpass password

twocolpass password

complex password

email

IP

marketing

false negatives false positives

Figure 4.13: False Positives vs False Negatives

As we can see, we have found all the emails (33), all the excel passwords (6), and every
VAT (210) with no false positives or negatives. The userPass passwords were all found
(26), having 70% of false positives and the IPs were mostly found (179), with 4,76% of
false negatives and no false positive. The generalPass (201), twocolpass (5) and complex
(93) passwords were mostly found, with less than 6% of false negatives, however they
had many false positives (74%, 20% and 63% respectively). The twoColPass got many
false negatives due to a file that contained the 2014 most common passwords, where the
first column corresponded to the count of the passwords, which were numbers with two or
three digits (the size of the user that I am searching is at least 4, so it missed these data).
More than half of the names were found (489), with 4% of false positives and 33% of false
negatives. These false negatives represent surnames, which I do not have in my names
list. The phones found (59) were correct for the normal format (914356789), finding
all the phones in a list of 20. The exception were 8 phones (28,57% of false negatives)
that were separated by spaces in groups of three digits (e.g. 211 345 567). These were
not considered as phones, because the format was ignored on the regular expression and
the reason is that, by catching this format of phone, it would highly increase the number
of false positives. Besides, as there were many VATs found, some of them were also
considered as phones, and that is the reason why 66% of false positives were found. The
worst case proved to be the marketing data (44), which gave 100% of false positives,
because there was no marketing plan in the test folder.



Chapter 4. Evaluation 52

4.4 Chapter Conclusion

These scans provided a great quantity of information, which would be impossible if this
thesis was not conducted in a so large company as PT is. Regarding the performance of
the solution, we achieved a scalable system as it performs accordingly for any number of
files (should they have a similar amount of lines). It does not require too many computer
resources, except for when it is using ManifoldCF to extract the content of the files. As for
the quality of the information, the system captures most of the data types proposed in the
requirements, except for the marketing and passwords, where many false positives were
found. However, there were not so many false negatives, which was the main objective of
this system. In order to achieve this, we had to sacrifice the false positives, to grant that it
should leave as less as possible of sensitive information uncaught.

The last test made with the local folder as a target, proved to be important to un-
derstand some flaws that the system had and still have. Some improvements were made
during this test, and it was possible to make an analysis to the false positives and nega-
tives, which would be impossible towards the more than 20000 files found in the three
scans made to PT.



Chapter 5

Conclusion and Future Work

This report describes all that was done during the internship in PT, which was the research
needed to provide the necessary background to carry out this project, its implementation
thoroughly detailed, and the results with the performance and quality of the data gathered.

Regarding the research conducted, Information Retrieval was mostly followed by
Baeza-Yates and Ribeiro-Neto’s Modern Information Retrieval (1999) [1], not only be-
cause it was the most complete information that I have found about this subject, but also
because almost every papers that I have read refer to this book. Regarding the Crawler, I
have mainly relied on Batsakis et al.(2009) [2] for the starting understanding of a crawler’s
operation, and in Google’s search engine to complete the learning and to observe the real
case of one of the most used search engines in the world. Then, it was necessary to in-
vestigate and choose the required tools, like Elasticsearch and ManifoldCF. To pick the
Elasticsearch, I have made some comparisons with Solr in order to understand which one
would be the best solution for this project. As for Data Classification, the definition of
Mike Chapple (2013) [6] was undoubtedly the most concise, simple and efficient, there-
fore it was chosen to be used and eventually adapted.

With respect to the work itself, an Information Retrieval system was designed, called
Hound, where its Engine use Nmap to scan the netowrk, then it configures and use Mani-
foldCF to crawl the files in the internal network, indexing the information found in Elas-
ticsearch. After that, it decodes the content from Base64, checks if the encoding is valid
(utf-8) and iterates for each line of the files. These lines are then used in Hound Query-
SearchRank module to search for sensitive information, using some implemented query
plugins. After analyzing the files, a report is made with the ranking of each file, containing
the sensitive data found and some other important information.

In order to improve Hound, it is possible to add as many plugins as needed, due to its
extensibility. A possible way to refine the validation of data, would be to use some Su-
pervised Machine Learning algorithms (since the data is already labeled after the content
extraction and processing - which is basically a preprocessing).

Machine learning was not applied to this project for two reasons: the first is that

53



Chapter 5. Conclusion and Future Work 54

there was not enough time to fully understand it, due to its complexity; the second is that
some Machine Learning algorithms will already be used in a future phase on the Hidra’s
platform. Data Mining and Machine Learning are fields that are emerging and growing
really fast due to the increasing use of data verified these days, which imposes an urgent
need of dealing with such massive amount of information available.

Even though it got some false positives in two query plugins, I believe Hound stands
as a good solution and fulfilled its proposed objectives. It provides a new way of automat-
ically finding and classifying files in an internal network and should provide DCY with
the necessary mechanisms in finding sensitive and confidential information, which was
not possible until now.



Bibliography

[1] BAEZA-YATES, R. A., AND RIBEIRO-NETO, B. Modern Information Re-
trieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. http://people.ischool.berkeley.edu/~hearst/irbook/

1/node1.html.

[2] BATSAKIS, S., PETRAKIS, E. G. M., AND MILIOS, E. Improving
the performance of focused web crawlers. Data Knowl. Eng. 68, 10
(Oct. 2009), 1001–1013. https://web.cs.dal.ca/~eem/cvWeb/pubs/

Batsakis-Petrakis-Milios-DKE-2009.pdf.

[3] BELKIN, N. J., AND CROFT, W. B. Information filtering and informa-
tion retrieval: Two sides of the same coin? Commun. ACM 35, 12
(Dec. 1992), 29–38. https://www.ischool.utexas.edu/~i385d/

readings/Belkin_Information_92.pdf.

[4] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertextual web search
engine. Comput. Netw. ISDN Syst. 30, 1-7 (Apr. 1998), 107–117.

[5] CERI, S., BOZZON, A., BRAMBILLA, M., VALLE, E. D., FRATERNALI, P.,
AND QUARTERONI, S. Web Information Retrieval. Springer-Verlag Berlin Hei-
delberg, 2013, ch. The Information Retrieval Process, pp. 13–26. http://www.
springer.com/cda/content/document/cda_downloaddocument/

9783642393136-c2.pdf?SGWID=0-0-45-1414724-p175333229.

[6] CHAPPLE, M. Data-classification levels for compliance: Why simple is
best, Sep 2013. http://searchsecurity.techtarget.com/answer/

Data-classification-levels-for-compliance-Why-simple-is-best.

[7] ELASTICSEARCH. Indexing a document. http://www.elastic.co/

guide/en/elasticsearch/guide/master/index-doc.html. Ac-
cessed: 2015-04-21.

[8] ELASTICSEARCH. Open source distributed real time search and analytics | elas-
ticsearch. Retrieved: April 21, 2015, from https://www.elastic.co/

products/elasticsearch.

55

http://people.ischool.berkeley.edu/~hearst/irbook/1/node1.html
http://people.ischool.berkeley.edu/~hearst/irbook/1/node1.html
https://web.cs.dal.ca/~eem/cvWeb/pubs/Batsakis-Petrakis-Milios-DKE-2009.pdf
https://web.cs.dal.ca/~eem/cvWeb/pubs/Batsakis-Petrakis-Milios-DKE-2009.pdf
https://www.ischool.utexas.edu/~i385d/readings/Belkin_Information_92.pdf
https://www.ischool.utexas.edu/~i385d/readings/Belkin_Information_92.pdf
http://www.springer.com/cda/content/document/cda_downloaddocument/9783642393136-c2.pdf?SGWID=0-0-45-1414724-p175333229
http://www.springer.com/cda/content/document/cda_downloaddocument/9783642393136-c2.pdf?SGWID=0-0-45-1414724-p175333229
http://www.springer.com/cda/content/document/cda_downloaddocument/9783642393136-c2.pdf?SGWID=0-0-45-1414724-p175333229
http://searchsecurity.techtarget.com/answer/Data-classification-levels-for-compliance-Why-simple-is-best
http://searchsecurity.techtarget.com/answer/Data-classification-levels-for-compliance-Why-simple-is-best
http://www.elastic.co/guide/en/elasticsearch/guide/master/index-doc.html
http://www.elastic.co/guide/en/elasticsearch/guide/master/index-doc.html
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch


Bibliography 56

[9] ELASTICSEARCH. Scale horizontally. Retrieved: April 21, 2015,
from http://www.elastic.co/guide/en/elasticsearch/guide/

master/_scale_horizontally.html.

[10] GARFINKEL, S., AND SPAFFORD, G. Chapter 27.3: Can you trust people? In Prac-
tical Unix & Internet Security, 2nd Edition. O’Reilly Media, Inc., 1996. http://
www.diablotin.com/librairie/networking/puis/ch27_03.htm.

[11] GARTNER. Now is the time for security at the application level,
December 2005. Retrieved: November 17, 2014, from http:

//www.sigist.org.il/_Uploads/dbsAttachedFiles/

GartnerNowIsTheTimeForSecurity.pdf.

[12] GOOGLE. Interest in solr and elasticsearch over time. Retrieved: November
20, 2014, from https://www.google.com/trends/explore#q=solr,

elasticsearch.

[13] GUARDIAN, T. Why do americans write the month before
the day?, 2013. Retrieved: April 24, 2015, from http://

www.theguardian.com/news/datablog/2013/dec/16/

why-do-americans-write-the-month-before-the-day.

[14] INKPEN, D. Information retrieval on the internet, 2014. http://www.site.

uottawa.ca/~diana/csi4107/IR_draft.pdf.

[15] IRN. Lista de nomes admitidos. Retrieved: June 23, 2015, from http://www.

irn.mj.pt/sections/irn/a_registral/registos-centrais/

docs-da-nacionalidade/vocabulos-admitidos-e/

downloadFile/file/Lista_de_nomes18-06-2015.pdf?nocache=

1434623650.94.

[16] ISO. Iso 8601, 1988. Retrieved: April 24, 2015, from http://metric1.org/

8601.pdf.

[17] LUCENE, A. Apache lucene - scoring, 2013. Retrieved: May 02, 2015, from
https://lucene.apache.org/core/3_2_0/scoring.html.

[18] MIRANDA, H. D. S., BARREIRA, R. G., AND SILVA, E. M. D. De-
senvolvimento de um web crawler para indexação de documentos cien-
tíficos. In Encontro de Computação e Informática do Tocantins (2011).
http://www.bandalerda.com.br/wp-content/uploads/2011/

11/Desenvolvimento_de_um_Web_Crawler_para_indexacao_de_

documentos_cientificos.pdf.

http://www.elastic.co/guide/en/elasticsearch/guide/master/_scale_horizontally.html
http://www.elastic.co/guide/en/elasticsearch/guide/master/_scale_horizontally.html
http://www.diablotin.com/librairie/networking/puis/ch27_03.htm
http://www.diablotin.com/librairie/networking/puis/ch27_03.htm
http://www.sigist.org.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf
http://www.sigist.org.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf
http://www.sigist.org.il/_Uploads/dbsAttachedFiles/GartnerNowIsTheTimeForSecurity.pdf
https://www.google.com/trends/explore#q=solr, elasticsearch
https://www.google.com/trends/explore#q=solr, elasticsearch
http://www.theguardian.com/news/datablog/2013/dec/16/why-do-americans-write-the-month-before-the-day
http://www.theguardian.com/news/datablog/2013/dec/16/why-do-americans-write-the-month-before-the-day
http://www.theguardian.com/news/datablog/2013/dec/16/why-do-americans-write-the-month-before-the-day
http://www.site.uottawa.ca/~diana/csi4107/IR_draft.pdf
http://www.site.uottawa.ca/~diana/csi4107/IR_draft.pdf
http://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/Lista_de_nomes18-06-2015.pdf?nocache=1434623650.94
http://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/Lista_de_nomes18-06-2015.pdf?nocache=1434623650.94
http://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/Lista_de_nomes18-06-2015.pdf?nocache=1434623650.94
http://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/Lista_de_nomes18-06-2015.pdf?nocache=1434623650.94
http://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-nacionalidade/vocabulos-admitidos-e/downloadFile/file/Lista_de_nomes18-06-2015.pdf?nocache=1434623650.94
http://metric1.org/8601.pdf
http://metric1.org/8601.pdf
https://lucene.apache.org/core/3_2_0/scoring.html
http://www.bandalerda.com.br/wp-content/uploads/2011/11/Desenvolvimento_de_um_Web_Crawler_para_indexacao_de_documentos_cientificos.pdf
http://www.bandalerda.com.br/wp-content/uploads/2011/11/Desenvolvimento_de_um_Web_Crawler_para_indexacao_de_documentos_cientificos.pdf
http://www.bandalerda.com.br/wp-content/uploads/2011/11/Desenvolvimento_de_um_Web_Crawler_para_indexacao_de_documentos_cientificos.pdf


Bibliography 57

[19] MUSTHALER, L. A holistic approach to combating advanced per-
sistent threats. Network World (November 2013). http://

www.networkworld.com/article/2172114/compliance/

a-holistic-approach-to-combating-advanced-persistent-threats.

html.

[20] OLSTON, C., AND NAJORK, M. Web crawling. Found. Trends Inf. Retr. 4,
3 (Mar. 2010), 175–246. http://infolab.stanford.edu/~olston/

publications/crawling_survey.pdf.

[21] RAJARAMAN, A., AND ULLMAN, J. D. Mining of Massive Datasets. Cambridge
University Press, New York, NY, USA, 2011. http://infolab.stanford.
edu/~ullman/mmds/book.pdf.

[22] RANUM, M. J. False positives: A user’s guide to making sense of ids
alarms. ICSA Labs IDSC (February 2003). http://bandwidthco.com/

whitepapers/compforensics/ids/False%20Positives%20A%

20Users%20Guide%20To%20IDS%20Alarms.pdf.

[23] SALTON, G., WONG, A., AND YANG, C. S. A vector space model for automatic
indexing. Commun. ACM 18, 11 (Nov. 1975), 613–620.

[24] SPOERRI, A. Infocrystal: A visual tool for information retrieval &amp;
management. In Proceedings of the Second International Conference on In-
formation and Knowledge Management (New York, NY, USA, 1993), CIKM
’93, ACM, pp. 11–20. http://comminfo.rutgers.edu/~aspoerri/

InfoCrystal/InfoCrystal.htm.

[25] SYMANTEC. Istr 20 - internet security threat report. https:

//www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_

GA-internet-security-threat-report-volume-20-2015-social_

v2.pdf.

[26] TAN, K. Apache solr vs elasticsearch - the feature smackdown!, 2014. Retrieved:
November 20, 2014, from http://solr-vs-elasticsearch.com/.

[27] THOR. Introduction: Vector space model, 1999. http://cogsys.imm.dtu.
dk/thor/projects/multimedia/textmining/node5.html.

[28] TURTLE, H., AND CROFT, W. B. Evaluation of an inference network-based re-
trieval model. ACM Trans. Inf. Syst. 9, 3 (July 1991), 187–222. http://doi.

acm.org/10.1145/125187.125188.

http://www.networkworld.com/article/2172114/compliance/a-holistic-approach-to-combating-advanced-persistent-threats.html
http://www.networkworld.com/article/2172114/compliance/a-holistic-approach-to-combating-advanced-persistent-threats.html
http://www.networkworld.com/article/2172114/compliance/a-holistic-approach-to-combating-advanced-persistent-threats.html
http://www.networkworld.com/article/2172114/compliance/a-holistic-approach-to-combating-advanced-persistent-threats.html
http://infolab.stanford.edu/~olston/publications/crawling_survey.pdf
http://infolab.stanford.edu/~olston/publications/crawling_survey.pdf
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://bandwidthco.com/whitepapers/compforensics/ids/False%20Positives%20A%20Users%20Guide%20To%20IDS%20Alarms.pdf
http://bandwidthco.com/whitepapers/compforensics/ids/False%20Positives%20A%20Users%20Guide%20To%20IDS%20Alarms.pdf
http://bandwidthco.com/whitepapers/compforensics/ids/False%20Positives%20A%20Users%20Guide%20To%20IDS%20Alarms.pdf
http://comminfo.rutgers.edu/~aspoerri/InfoCrystal/InfoCrystal.htm
http://comminfo.rutgers.edu/~aspoerri/InfoCrystal/InfoCrystal.htm
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_GA-internet-security-threat-report-volume-20-2015-social_v2.pdf
http://solr-vs-elasticsearch.com/
http://cogsys.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://cogsys.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html
http://doi.acm.org/10.1145/125187.125188
http://doi.acm.org/10.1145/125187.125188


Bibliography 58

[29] UDAPURE, T. V., KALE, R. D., AND DHARMIK, R. C. Study of web crawler and
its different types. IOSR Journal of Computer Engineering (IOSR-JCE) 16 (Feb.
2014), 01–05. http://www.iosrjournals.org/iosr-jce/papers/

Vol16-issue1/Version-6/A016160105.pdf.

[30] VERÍSSIMO, P., AND RODRIGUES, L. Distributed Systems for System Architects.
Springer Publishing Company, Incorporated, 2012.

[31] W3C. Use international date format (iso). Retrieved: April 24, 2015 from http:

//www.w3.org/QA/Tips/iso-date.

[32] WRIGHT, K. D. Manifoldcf in action, September 2012. http://www.

manning.com/wright/ManifoldCFinAction_manuscript.pdf.

http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue1/Version-6/A016160105.pdf
http://www.iosrjournals.org/iosr-jce/papers/Vol16-issue1/Version-6/A016160105.pdf
http://www.w3.org/QA/Tips/iso-date
http://www.w3.org/QA/Tips/iso-date
http://www.manning.com/wright/ManifoldCFinAction_manuscript.pdf
http://www.manning.com/wright/ManifoldCFinAction_manuscript.pdf


Appendix A

Appendix

A.1 Implemented Ruby Code

Listing A.1: QuerySearchRank.rb

def init ial ize
@nif = NIFQuery.new
@niss = NISSQuery.new
@phone = PhoneQuery.new
@dates = DateQuery.new
@name = NameQuery.new
@ip = IPQuery.new
@email = EmailQuery.new
@marketing = MarketingQuery.new
@password = PasswordQuery.new
@classifier = Classifier .new
@hidraES = HidraElasticsearch .new
@hidra = HidraConnection.new
@special = #latin characters
@dataHash = Hash.new
@results = Hash.new
@passwordList = Hash.new
indicesData = File . readlines(" . / database/parameters/commonParams. txt")
@lastIndex = indicesData[2]. split ( ’ = ’ )[1].chomp
@ES_Fields = ["name" ,"date" ,"phone" ,"marketing" ,"ip" ,"nif" ,"niss" ,"password" ,"email"]
@toIndex = nil

end

# validates and classifies the type of the data
def validate(fileID , line , option , words, lines , digest , toIndex)
@toIndex = toIndex

i f fileID .match(/ f i le : \ / \ / \ / \ / \ / / )
filename = fileID .dup. split (" f i le : / / / / / " )[1]. split ( ’ / ’)[−1]

elsif fileID .match(/ http[s ] ? : \ / \ / / )
filename = fileID .dup. split ( / http[s ]? : \ / \ / / ) [1 ] . split ( ’ / ’)[−1]

end

if toIndex . include? "password"
@results [ :password] = Hash.new

59



Appendix A. Appendix 60

passHash = @password. validate( line .dup, filename)
unless passHash.empty?
passHash.each { |key, array |
subtype = key. to_s
array .each { | pair |
username = pair[0]
password = pair[−1]
@passwordList.key?(:"#{fileID}") ? @passwordList[ : "#{fileID}"] << password

: @passwordList[ : "#{fileID}"] = [password]
createHash("password" ,subtype ,password, fileID ,words, lines , digest )
i f @results [ :password] .key?(:"#{password}")
@results [ :password][ : "#{password}"] << subtype

else
@results [ :password][ : "#{password}"] = [subtype]

end
}

}
end

end

subvalidate("phone" , line , fileID ,words, lines , digest )
subvalidate("nif" , line , fileID ,words, lines , digest )
subvalidate("name" , line , fileID ,words, lines , digest )
subvalidate("email" , line , fileID ,words, lines , digest )
subvalidate("ip" , line , fileID ,words, lines , digest )
subvalidate("marketing" , line , fileID ,words, lines , digest )
subvalidate("date" , line , fileID ,words, lines , digest )

return "" i f option . eql?("all")
return @results

end

def subvalidate(type , line , fileID ,words, lines , digest )
@results [ : "#{type}"] = Hash.new

i f @toIndex. include? type
typeClass = instance_variable_get("@#{type}")
item = typeClass . validate( line )
i f item
item.each { | i |
subtype = typeClass .getSubtype( i )
createHash(type ,subtype , i . to_s , fileID ,words, lines , digest )
@results [ : "#{type}" ][ : "#{i}"] = [subtype]

}
end

end
end

Listing A.2: PhoneQuery.rb
#!/usr /bin/ruby

class PhoneQuery

def validate( string )



Appendix A. Appendix 61

Dir[ ’ . / database/ l i s t /phone/∗ ’ ] .empty?
? content = nil
: content=$aux. folderReader(" . / database/ l i s t /phone")

array = []

i f content == nil
# REGULAR EXPRESSIONS VALIDATION

s = string .scan ( / ( ? : | \ t | [ a−zA−Z]|^)(?:\+?0?0?351)?
((?:(?:2[0−9]{8})|(?:9[1−4,6][0−9]{7})))
( ? : \ \ | \ s | \ t | [ a−zA−Z] |$) / )

s .each { |m,n |
array << m. to_s i f m. to_s!=""

}
else
# LIST OFPHONE VALIDATION

content . lines .each { | line |
l = / \b#{line .chomp}\b/ i .match(s)
array << l . to_s . strip i f l

}
end

return array unless array .empty?
end

def getSubtype(param)
param = param. to_s i f param. class != String

i f param[0].eql?("9")
cells = $aux. fileReader(" . / database/phones/ cell−phones. txt")
hash = phonesToHash( cells )

hash.each { |key,value |
i f key. size == 2
return value i f param[0..1]. eql?(key)

elsif key. size == 3
return value i f param[0..2]. eql?(key)

end
}

end
return "phone"

end

def phonesToHash(raw)
phoneHash = Hash.new { |hash, key | }
raw.each_line do | line |

phoneHash[ line . split ( ’=’ )[0].chomp] = line . to_s . split ( ’=’ )[1].chomp
end
return phoneHash

end

end


	List of Figures
	List of Tables
	Listings
	Abbreviations
	Introduction
	Motivation
	Objectives
	Contributions
	Planning
	Structure of the document

	Related Work
	Search Engine - Introduction
	Crawler
	Design of a Crawler
	Focused Crawlers
	Incremental Crawlers
	Distributed Crawlers

	Information Retrieval
	Introduction
	Information vs Data Retrieval
	Information Retrieval Models
	Boolean Model
	Vector Space Model
	Probabilistic Model
	Comparing Models


	Data indexation and Searching
	Apache Solr
	Elasticsearch
	Apache ManifoldCF

	Data Classification
	Other Tools
	Datafari
	SearchBlox
	Google Search Appliance

	Chapter Conclusion

	The Hound System
	Requirements Analysis
	Architecture of the Hound* System
	Implementation of the Hound System
	Hound Master
	Hound QuerySearchRank - Query and Search
	Phone Query Plugin
	NIF Query Plugin
	Password Query Plugin
	Name Query Plugin
	Email Query Plugin
	IP Query Plugin
	Date Query Plugin
	Marketing Query Plugin

	Hound QuerySearchRank - Ranking

	Hound Integration to PT's platform
	Chapter conclusion

	Evaluation
	Prototype
	Changes during the Implementation
	Evaluation Results
	Performance of Hound
	Bash Script
	ManifoldCF
	Hound Engine

	Quality of information obtained

	Chapter Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix
	Implemented Ruby Code


