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Abstract

In recent years our understanding of infectious-disease epidemiology
has been greatly increased through mathematical modelling. The ma-
jor goal of any mathematical study in epidemiology is to develop un-
derstanding of the interplay between the variables that determine the
course of infection within an individual, and the variables that control
the pattern of infections within communities of people. The epidemi-
ology of multi-type pathogen systems, such as dengue, malaria and
pneumococcus are notoriously challenging. Direct and indirect inter-
actions between multiple strains shape pathogen population processes,
both at the level of a single host and at the population level. Quanti-
fying these interactions is crucial, and the new technologies that are
now available to detect multiple infections with different pathogen
types are opening new avenues in this endeavour.

In this thesis, motivated by the pneumococcus system, we study the
colonization dynamics by a multi-type pathogen and focus particu-
larly on co-colonization phenomena, which reflects the simultaneous
colonization/infection (terms used in this thesis interchangeably) by
two antigenic types of the same pathogen. We pretend to introduce
strain ratios, first quantified by Brugger et al. (2010), when modelling
the co-colonization phenomena. Therefore, a mathematical epidemi-
ological model is constructed using ordinary differential equations to
examine the prevalence and distribution of the co-colonization in the
population. Interestingly, we find one scenario where the infection can
still persist despite the basic reproduction number R0 being below 1.
The phenomena of backward bifurcation is also observed. Moreover,
the proportion of each double infected class, at equilibrium, is inde-
pendent of the size of susceptible or single infected class.
Based on a static epidemiological point of view, we also develop an



within-host model to study the distribution of co-colonization in an
average host. Both models show a clear equal abundance ratio (1:1)
prevalence and this seems to be robust despite varying the parameters.

Keywords: epidemiology, co-colonization, mathematical modelling,
ordinary differential equations, streptococcus pneumoniae



Resumo Alargado

A Epidemiologia é uma ciência que estuda quantitativamente a dis-
tribuição dos fenómenos de saúde/doença, e seus factores condicio-
nantes e determinantes, nas populações humanas. Esta permite ainda
avaliar a eficácia das intervenções realizadas no âmbito da saúde pública.
O fundador da teoria epidemiológica moderna é Ronald Ross cujo es-
tudo no ciclo de vida da malária concedeu-lhe o Nobel em 1902. Este
utilizou a modelação matemática para investigar a eficácia das inter-
venções na prevenção desta doença. No entanto, foi só no final do
século XX que a modelação matemática se tornou mais popular.

Nos últimos anos o nosso conhecimento relativo à epidemiologia das
doenças infecciosas desenvolveu-se bastante devido à modelação mate-
mática. O principal objectivo de qualquer estudo matemático em
epidemiologia é melhorar o nosso entendimento relativo às relações
das variáveis que determinam o curso de uma infecção quer ao nível
do indivíduo como ao nível das comunidades. No entanto, devemos
ter sempre em conta que os modelos são sempre abstracções/simplifi-
cações dos fenómenos em estudo e os resultados obtidos aproximações
do sistema real. A modelação têm sido aplicada para o estudo de di-
versas doenças infecciosas tal como a sarampo, HIV ou a dengue.
Estes modelos revelam-se ferramentas essenciais para compreender a
dinâmica das doenças infecciosas e auxiliar no planeamento e controlo
das mesmas.

Nesta tese, estou interessada em estudar as dinâmicas das doenças
infecciosas, mas mais precisamente, explorar através da modelação
matemática o fenómeno de co-colonização ou também designado por
múltipla colonização. Esta significa a colonização simultânea do hos-
pedeiro por vários microorganismos (da mesma espécie ou diferente).



É sabido desde há décadas que a co-colonização é um fenómeno co-
mum na natureza e com importantes consequências para o hospedeiro
e parasita. Para o hospedeiro, representa um desafio extra para o
seu sistema imunitário. Para o parasita, conduz a interacções direc-
tas e indirectas entre as diversas estirpes alterando a sua dinâmica e
transmissão. Geralmente este fenómeno agrava o estado de saúde do
individuo em comparação com as infecções simples, ou seja, quando
o individuo é unicamente colonizado por um parasita. Quantificar a
interacção entre as diversas estirpes envolvidas revela-se por isso fun-
damental, e as novas tecnologias que estão hoje em dia disponíveis
para detectar os diferentes patogénios envolvidos, estão a abrir cam-
inho nesta área.

Recentemente, Brugger et al. (2010) revelou com os seus estudos na
bactéria Streptococcus pneumoniae, também conhecida por pneumoc-
cocus, que a co-colonização tem uma prevalência de 7.9%. Aparente-
mente, é também mais comum para o hospedeiro apresentar sensivel-
mente a mesma proporção, usualmente designada por 1:1, entre as
duas estirpes da bactéria. Esta prevalência foi também observada
independentemente por Valente et al. (2012), mas desta vez em indi-
víduos saudáveis. Este padrão parece ser, por isso, independente do
estado de saúde do indivíduo.

O pneumococcus é uma bactéria gram-positiva que normalmente vive
assimptomáticamente na nasofaringe e cuja prevalência está aumen-
tada nos primeiros cinco anos de vida de um indivíduo. Ocasion-
almente, esta pode migrar para outras regiões do corpo e poten-
cialmente causar uma série de doenças, desde infecções respiratórias
ligeiras (otites, etc.) até doenças mais invasivas (pneumonia, sep-
ticémia, meningite, etc.). O fenómeno da co-colonização parece tam-
bém ser um importante factor para a evolução desta espécie, uma vez
que representa uma oportunidade para a transferência horizontal de
genes. Incorporar esta informação sobre os rácios nos modelos é rele-
vante, uma vez que pode auxiliar na compreensão da sua dinâmica de



transmissão e potencialmente prever o impacto de políticas de inter-
venção, tal como a vacinação. Para um organismo tão diverso como
o penumococcus, com mais de 90 estirpes diferentes identificadas, a
compreensão da sua biologia está longe de estar completa, e formular
modelos reais ainda representa um desafio.

Nesta tese foi feito um estudo detalhado acerca do padrão de co-
colonização na nasofaringe por múltiplas estirpes do pneumococcus.
Mais precisamente, pretendo compreender os factores que justificam
a sua prevalência na população e a distribuição dos rácios de co-
colonização no caso do hospedeiro apresentar duas estirpes. O prin-
cipal objectivo deste estudo foi desenhar um modelo matemático que
representasse adequadamente a infecção pelo pneumococcus para que
o seu output fosse suficientemente preciso para explicar as caracterís-
ticas da distribuição das estirpes no hospedeiro.

Nesse sentido, usei duas abordagens diferentes (mas complementares)
para modelar a co-colonização. Em primeiro lugar, usando equações
diferenciais ordinárias, construí ummodelo epidemiológico determinís-
tico com estrutura nos tipos de co-colonização. Esta abordagem parte
da dinâmica de uma população com vista a estudar a distribuição num
único indivíduo. Portanto caracteriza-se como uma abordagem top-
down. Numa segunda abordagem, criei um modelo probabilístico que
a partir da dinâmica da infecção no indivíduo, permite observar a dis-
tribuição das estirpes na população. Esta abordagem caracteriza-se
como bottom-up.

Em ambos os modelos, os resultados que obtive evidenciaram os mecan-
ismos imunitários e estocásticos responsáveis pela distribuição dos rá-
cios de co-colonização. Foi observada uma clara predominância dos
rácios 1:1 e este resultado parece ser robusto quando se variam os
parâmetros dos modelos. Foram identificados os equilibrios do sis-
tema (trivial e endémico) e avaliada a sua estabilidade. Curiosa-
mente, no modelo epidemiológico, encontrei um cenário em que a
infecção pode persistir apesar do número básico de reprodução R0



ser inferior a 1. Este fenómeno tem o nome de backward bifurcation e
consiste numa alteração estrutural da estabilidade dos equilíbrios, que
deve-se essencialmente ao facto do modelo desenvolvido estruturar os
hospedeiros co-colonizados em classes. Estas em média apresentam
um número básico de reprodução superior aos hospedeiros coloniza-
dos por uma única estirpe. Assim, contribuem em média para uma
maior transmissão da infecção na população. Também a proporção
de cada classe de hospedeiros duplamente infectados relativamente
ao total de hospedeiros infectados, no equilíbrio, é independente da
magnitude da classe dos susceptíveis ou dos infectados apenas por
uma estirpe. Isto significa que quando o hospedeiro é infectado por
uma segunda estirpe tem uma probabilidade fixa de apresentar um
determinado rácio. Neste modelo epidemiológico foi também possível
verificar, que o mecanismo responsável por desviar a distribuição em
torno do rácio 1:1 baseia-se no pressuposto que cada classe de co-
colonizados ter taxas de recuperação diferentes, onde umas classes
recuperam mais rapidamente que outras. Este rácio traduz como os
diferentes patogénios, como um "todo", estão expostos ao sistema
imunitário do hospedeiro. Todas as simulações numéricas foram re-
alizadas usando a linguagem de programação Python e o software
cientifico Mathematica.

Construir modelos epidemiológicos que reflictam o fenómeno de co-
colonização é fundamental para melhor compreender determinadas
doenças, mas também apresenta muitos desafios técnicos. Nomeada-
mente, quanto mais factores biológicos forem tidos em conta na mod-
elação, no sentido de os tornar mais realistas, mais parâmetros serão
introduzidos e mais complexa será a sua análise. No entanto, se-
ria interessante no futuro incorporar factores como: a identidade das
estirpes, a heterogeneidade dos hospedeiros e as variações na sua re-
sposta imunitária. Para além disso, poderíamos ter ainda em conta
o fenómeno de co-transmissão, ou seja, a infecção do hospedeiro por
mais de um parasita durante o mesmo evento de transmissão. Com
isto poderíamos, potencialmente, contribuir para o estudo da evolução



da virulência destes patogénios. No entanto, é fundamental que ha-
jam mais resultados experimentais para se fazer uma comparação e
validação dos resultados teóricos com vista à criação de modelos bi-
ológicos mais representativos da realidade.

Palavras Chave: epidemiologia, co-colonização, mode-
lação matemática, equações diferenciais ordinárias, strepto-
coccus pneumoniae
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Chapter 1

Introduction

1.1 Motivation

Epidemiology is the study of the spread of disease, in space and time, with the
objective to trace factors that are responsible or contribute to their occurrence
O. Diekmann (2010). The founding father of the modern epidemic theory is Sir
Ronald Ross. His study on the life cycle of the malaria parasite, using mathemat-
ical modelling to investigate the effectiveness of various intervention strategies,
gave him the Nobel price in 1902 (Krämer A, Kretzschmar M, 2010). However, it
was only towards the end of the twentieth century that mathematical modelling
came into more widespread use.
The first aim of any mathematical modelling is to summarize the available knowl-
edge and construct a formal representation of the system. The second aim is to
assess the relative importance of each of the various mechanisms involved in the
system dynamics. However, one should always remember that models are abstrac-
tions/simplifications of the phenomena under study and the results obtained only
approximations of the real system.

Mathematical models have been applied to study almost all infectious diseases,
from measles to chickenpox, HIV, dengue, etc. They have been instrumental to
understand the dynamics of these diseases and design control.

In this thesis, we are interested in studying the dynamics of infectious diseases,
more precisely we are going to explore through mathematical models the co-
colonization phenomenon, which is the simultaneous colonization or infection

1



1. INTRODUCTION

by several microorganisms (either from the same or different species) (Balmer
& Tanner, 2011). It has been known for decades that multiple colonizations (or
infections) are actually a common phenomena, with a major impact on the efficacy
of anti-infection drugs at the population scale (Balmer & Tanner, 2011). With
the recent advances in technology, is now possible to better detect and quantify
all different serotypes colonizing the host simultaneously (Brugger et al., 2010) .

Recently, Brugger have shown in his studies on Streptococcus pneumoniae
(the pneumococcus) that the carriage of two different serotypes occurs in 7.9%

of colonized hosts (Brugger et al., 2010). Apparently, it is also more likely for
the host to harbour two strains at similar proportions than presenting them at
asymmetric ratios(Brugger et al., 2010). These observations were also reported
by (Valente et al., 2012).

Co-colonization seems to be a particularly important event for pneumococcal
evolution as it represents an opportunity for horizontal gene transfer, the main
mechanism of evolution in this species (Shak et al., 2013). Incorporating this
additional information in the mathematical models seems relevant, as through
such models we can gain a better understanding of the transmission dynamics
of polymorphic infectious organisms, we can investigate the observed pattern of
disease or epidemiology and we can predict the potential impact of alternative
public health interventions, such as vaccination. For extremely diverse organisms,
such as S. pneumoniae with more than 90 serotypes (Andrews et al., 2014), for
which a comprehensive understanding of the biology is far from achieved, real
models are not always easy to formulate and still represent a challenge.

1.2 Objectives

In this thesis we study in detail patterns of nasopharyngeal o-colonization by
multiple serotypes. More precisely, we want to understand what drives the over-
all prevalence in the population and the abundance ratio distribution of 2 co-
colonizing strains/serotypes. We try to incorporate in the models the new bio-
logical element of serotype co-colonization ratios recently described in (Brugger
et al., 2010). Our main goal is to design models that are adequate representation

2



1.3 Contributions

of the pneumococcus infection so that its outputs are sufficiently accurate and
precise to explain the characteristics of the distribution of co-infection.

1.3 Contributions

To pursue our goal, we use two different but complementary approaches to model
co-colonization. First, we construct a deterministic epidemiological model with
structure in the types of co-colonization. It uses fixed values for parameters
and generates a single "average" or expected outcome at the population level.
Secondly, we create a probabilistic within-host model where the population dy-
namics of two co-colonizing strains is explicitly simulated. Here, we incorporate
some natural variability in the infection process and generated a range of possible
outcomes from explicit simulations in different individual hosts. Our results high-
light immunity and stochasticity mechanisms that give rise to the co-colonization
ratio distribution.

1.4 Overview

The thesis structure is as follows. Chapter 2 provides a brief overview of the pro-
cess of mathematical modelling in infectious diseases using the simple Susceptible-
Infected (SI) model. It also introduces a detailed description of all the parameters
involved and important epidemiological concepts such as the basic reproduction
number R0. In Chapter 3 we introduce multiple strain infections, addressing
super-infection and co-infection. We focus essentially in the co-infection process
and briefly mention the two main topics that have concerned the scientific com-
munity so far: the evolution of virulence and the process of cross-immunity. We
provide also a general description of S.pneumoniae bacteria. In Chapter 4 we
present the Susceptible-Infected-Double infected (SID) model for co-infection to-
gether with the new data in serotype ratios distribution first mentioned by (Brug-
ger et al., 2010) and then latter by (Valente et al., 2012). This is then followed by
a brief description of the first proposed model (structured epidemiological model)
designed to incorporate this new information in the process of pneumococcal in-
fection. Latter in this chapter we present some numerical simulations. Chapter

3



1. INTRODUCTION

5 is dedicated to the analysis of the second proposed model for co-infection, the
within-host model, together with a stochastic simulation component. In both
models, several numerical computations were performed using either Python or
Mathematica and the programming code can be found in the Appendix. In the
final chapter we summarize the conclusions and future perspectives.

4



Chapter 2

Modelling the dynamics of
infectious diseases

Infection is the term that defines the entrance and development of an infectious
agent (either micro-organisms or macro-organisms) in a human or animal body,
whether or not it develops into a disease (Barreto et al., 2006).

Epidemiological modelling of infectious diseases is typically based on com-
partmental SI/SIR models, in which the host population is divided into a small
number of compartments, each containing individuals that are identical in terms
of their status with respect to the disease in question. In the SI/SIR models, there
are three compartments: susceptible S, infected I , and recovered-and-immune
R individuals. This approach to epidemiological processes dates back to Ronald
Ross’s modelling of malaria at the beginning of the 20th century (Dieckmann
et al., 2005). This was soon followed by the work of A. G. McKendrick and W. O.
Kermack, whose paper A Contribution to the Mathematical Theory of Epidemics
was published in 1927 with a simple deterministic (compartmental) model. The
basic model is the SI model. This model assumes certain conditions as: homoge-
neous population (S individuals have identical susceptibility and all I individuals
have identical infectiousness), homogeneous contacts between individuals and the
transition from I class to S does not depend on the time since infection. These
SI models are typically applied to HIV or other chronic pathogens. SIR models,
where in addition there is a recovered R class, are typical for influenza or measles
transmission where individuals recover with some immunity against the pathogen.

5



2. MODELLING THE DYNAMICS OF INFECTIOUS DISEASES

When recovery is without immunity we have an SIS model, the third classical epi-
demiological model. The transmission dynamics are formalized through ordinary
differential equations (Brauer & Castillo-Chavez, 2012), which represent rates of
change in the densities (number of individuals per unit area) of susceptible S and
infective hosts I over time. For example, for the SIS setting, we have:

dS

dt
= B + γI − βSI

N
− dS

dI

dt
= β

SI

N
− (α + d+ γ)I

(2.1)

where N = S + I is the total population density. An average member of the
population makes contact to transmit the infection with β other members of the
population per unit time. The parameter β is known as the per capita trans-
mission rate of the infection disease. The probability that a random contact by
an infected member is with a susceptible member is S

N
. So the number of new

infections generated per infective per unit time is β S
N
. Since there are I infective

members, the rate at which new infections are generated is β S
N
I. The force of

infection is β I
N

and is defined as the rate at which susceptible individuals acquire
an infectious disease. Among the infected, γI individuals return to the suscep-
tible class through recovery. The parameter γ is called the clearance rate. New
susceptible hosts arise at a birth rate B, possibly depending on S and I. The
total population may be diminished by natural and disease-induced mortality,
given by the terms dS and (α + d)I. Here d is the natural mortality rate and α
the virulence rate of the infection (Dieckmann et al., 2005).

2.1 The basic reproduction number - R0

In epidemiology, it is essential to quantify the severity of actual (or potential)
outbreaks of infectious diseases. One of the most informative features of epidemi-
ological models is the basic reproduction number denoted by R0 that characterizes
the potential of an outbreak to cause an epidemic (Heffernan et al., 2005). The
established definition of R0, as phrased by Anderson and May, is "the expected
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number of secondary cases that would arise from the introduction of a single pri-
mary case into a fully susceptible population during the entire infectious period"
(Dieckmann et al., 2005) . It is important to note that R0 is a dimensionless
number (Jones, 2007). Formally, R0 is defined as follows. An infective individual
makes β contacts per unit time, all of which are with susceptible individuals and
thus produce new infections. The mean infective period is

1

α + d+ γ
.

. So, the expected number of new infections is

R0 =
β

d+ γ + α
. (2.2)

This dimensionless coefficient is the basic reproduction number (Jones, 2007) for
this model and we can see how it increases with β and decreases with the clearance
rate γ.

In the case when there is more than one class of infectives or in any situation in
which the population is divided into discrete, disjoint classes, the next generation
matrix, introduced by (Diekmann et al., 2010), is a general method of deriving R0

because it accounts for different types of infected. The next generation matrix can
be used for models with underlying age structure or spatial structure (Heffernan
et al., 2005).

R0 defines an important threshold in the dynamics of an infectious disease.
When R0 < 1 each successive "infection generation" is smaller than its predeces-
sor and the infection can not persist. Conversely, when R0 > 1 successive "infec-
tion generations" are larger than their predecessors and the number of cases in the
population will initially increase (Dieckmann et al., 2005). This increase does not
continue indefinitely. The infection process reduces the "pool of susceptibles" and
hence reduces the probability that an infectious individual contacts a susceptible
within its period of infectiveness. This non-linear effect can only be neglected at
the beginning of an epidemic. The basic reproduction number depends on the
rate of contact between individuals, the probability of transmission given contact
and the time an infected remains able to transmit the infection. All these three
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components are subject of disease control methods: isolating those with infection
from the rest of the community, reduces their rate of contact with others, hygiene
measures reduce either the contact rate or the probability of transmission given
contact; and drug treatment reduces the probability of transmission and/or the
length of the infectious period (Roberts & Heesterbeek, 2003). Another way of
controlling the spread of an infection is by reducing the size of the available pool
of susceptible, either through vaccination or prophylactic treatment (Roberts &
Heesterbeek, 2003).

To see how the total population size evolves over time, we can sum the equa-
tions for dS

dt
and dI

dt
to get

dN

dt
= B − dN − αI . (2.3)

A common assumption that simplifies substantially the mathematical analysis
is to suppose that the total population remains constant over time (Dieckmann
et al., 2005), that is birth rate equals death rate:

B = dN + αI. (2.4)

In addition, one may suppose that both birth and death rates are equal to
zero. This hypothesis can be justified by saying that the time scale of the disease
is much faster than the time scale of births and deaths, so that demographic
effects on the population may be ignored. An alternative point of view is that we
are interested only in studying the dynamics of a single epidemic outbreak.

When the population size is assumed constant, we can divide the equations
by the total population size N and obtain a SIS model for the proportions s = S

N

and i = I
N

of susceptible and infected, respectively,

ds

dt
= d+ αi+ γi− βsi− ds

di

dt
= βsi− (α + d+ γ)i

(2.5)

In fact, since s+ i = 1 we can reduce the above system of two equations to a
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single one,

di

dt
= β(1− i)i− (α + d+ γ)i . (2.6)

This equation is simpler to analyse. Solving it, we find two equilibrium points:
the disease-free equilibrium i∗ = 0 and a non-trivial equilibrium

i∗ = 1− α + d+ γ

β
= 1− 1

R0

. (2.7)

When R0 > 1 the non-trivial equilibrium exists between 0 and 1 and so it is
called the endemic equilibrium, because the desiase persists in the population.
When R0 < 1 the endemic equilibrium no longer exists and the disease will go
extinct in time. At R0 = 1, there is a transcritical bifurcation separating the
trivial clearance equilibrium from the endemic persistence equilibrium.

For simplicity, in the rest of this thesis we will maintain the initial notation
for the susceptible S, infected I, although from now on these correspond directly
to scaled variables with respect to total population, hence proportions. We will
also focus on infections that are primarily non-virulent and therefore, will neglect
from our models the death caused by the pathogen virulence, assuming α = 0.

9





Chapter 3

Background on multiple strain
infections

Studying the dynamics of infectious diseases often involves the interaction of
multiple strain pathogens (e.g Neisseria meningitidis, Hepatitis, Plasmodium fal-
ciparum). As a general definition, strains are homogeneous groups within species
(Balmer & Tanner, 2011). Strains are important because they can differ greatly
in many traits, including growth rate, virulence, infectivity, antigenicity or drug
resistance (Balmer & Tanner, 2011). The classification of pathogens into strains
is thus of practical value. Typically the interactions between multiple strains can
alter infection outcomes, such as duration and virulence.

Multi-strain models have been widely used in epidemiology however, devel-
oping and using multi-strain models is a challenging procedure due to numerous
parameters such as death rate, birth rate, force of infection, and transmission
rate, which are commonly assumed to be strain-specific.

According to May and Nowak (1994) we can distinguish two different instances
of multiple infections: superinfection and co-infection (Dieckmann et al., 2005).
In the first case, a competitive hierarchy among the different parasite strains is
assumed, such that a more dominant strain can infect and take over the host
already infected by a less dominant strain. Multiply infected hosts transmit only
the most virulent of their strains. In the opposite scenario (co-infection), which
we will focus on this thesis, we have two pathogen species or strains coexisting
simultaneously within the host (Dieckmann et al., 2005). The occurrence of
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multiple-strain infections is well documented in malaria, where it has been shown
that 85% of the infected population is co-infected by either two strains of the same
pathogen, or two different pathogen species (Balmer et al., 2009). About 11% of
all infections by human pathogens contain multiple strains (Balmer & Tanner,
2011). Multiple-strain infections are not a rare occurrence. The prevalence values
vary because sample sizes are frequently small in many studies and because rates
will vary in space and time and with methods used.

When we have two or more strains simultaneously colonizing the host, there
are often pathogen interactions between them. In the particular case of competi-
tion, it can take three distinct forms. In direct interference competition, strains
excrete substances that harm each other (eg, in case of Escherichia coli produce
colicins). In resource competition, which is an indirect form of competition, one
strain uses limited host resources like nutrients or space that are then no longer
available to the other strain. Competition can also be mediated by the immune
system which is called the apparent competition (Balmer & Tanner, 2011). By ac-
tivating an immune response, strain A affects strain B if the response cross-reacts
with strain B (Balmer & Tanner, 2011). Also, many pathogens have immunosup-
pressive properties and by suppression of the immune system, one strain reduces
the effect of immunity on others (Balmer & Tanner, 2011). The relative amount
of suppression and density of the strains will determine how much different strains
benefit. But to distinguish each different type of competition in not always easy.

Multiple-strain infections can, however, have advantageous effects for the host
compared with single infections as shown in the study of (Balmer & Caccone,
2008) on two Trypanosoma brucei strains, the causal agent of human African
sleeping sickness. Here, hosts infected with both strains survived significantly
longer than did those infected with the more virulent strain alone. Analysis of
the strain dynamics reveals that this is due to the suppression of the density of
the more virulent strain (Balmer et al., 2009).
The primary focus of Evolutionary epidemiology has been to explore the conse-
quences of multi-strain infections for the evolution of pathogen virulence (Alizon
et al., 2013) and the cross-immunity induced by different strains (Gomes et al.,
2002). In the following sections we discuss these two topics in more detail.
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3.1 Evolution of virulence

3.1 Evolution of virulence

As previously mentioned, multiple infections have major consequences for the
spread of parasites in a population as well as the decrease in host fitness due to the
infection (referred to here as virulence). However, even though the importance of
considering the diversity of infections is often acknowledged, our understanding of
how multiple infections affect the evolution of virulence is still limited. Virulence
can be defined as disease-induced host death rate (Alizon et al., 2009) and is a
trait controlled in part by the parasite and can evolve to higher or lower levels.

The first theories on virulence suggested that pathogens would evolve to avir-
ulent commensals since harming the host would be a poor long-term survival
strategy (Alizon et al., 2009). This view has changed in the mid 20th century
as evolutionary biologists considered how competition among multiple different
strains of a given pathogen would influence the evolution of virulence (Alizon
et al., 2009). Here, the superiority of one strain over another would depend on
its ability to replicate within a host, the length of time that the host is infected
(recovery rate), and successful transmission to a new host. These measures of
pathogen fitness are easily integrated into a single term, the basic reproductive
number R0, which was modelled by Anderson and May (Minus van Baalen, 1995).
R0 gives us a measure of fitness, but not of its evolution. If each parameter in the
formula would evolve independently of the others, a virus could increase its fitness
by simply evolving any or all of the following: a lower host mortality rate, a lower
recovery rate (longer infectious period), and a higher transmission rate. Instead,
most models assume that these parameters may be coupled to each other in terms
of trade-offs. A trade-off is a constraint that forces one parameter to change with
another. Pathogens are assumed to evolve to an optimal balance of these factors
subject to the constraints of the trade-off. The trade-off hypothesis states that
virulence is an unavoidable consequence of parasite transmission (Alizon et al.,
2009). The presence of multiple genotypes of the same parasite within the host
and their relatedness can affect the level of virulence of a pathogen (Martin A.
Nowak & Robert M.May, 1994),(Frank, 1996) .

As we mentioned before, there are three main types of interaction between
parasites : resource competition, cooperation for public goods and interference
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3. BACKGROUND ON MULTIPLE STRAIN INFECTIONS

competition (spite).
In the beginning of an epidemic, multiple infections are rare and pathogens

adopt prudent host exploitation strategies that lead to reduced virulence. But
when the pathogen becomes endemic, the frequency of multiple infections rises,
and the pathogens have to share hosts more frequently. Hosts that harbour many
pathogens are more likely to favour increased virulence but also single infected
hosts may also favour increased virulence, because subsequent infections have to
be anticipated (Minus van Baalen, 1995).

A classic result of virulence theory is that intensity of exploitation/damage to
host correlates negatively with kinship among parasites infecting the host. This
is because, lower relatedness leads to greater competition for resources, which
selects for faster growth rates and consequently higher virulence (Gardner et al.,
2004). On the contrary, a positive relationship between relatedness and virulence
is predicted if host exploitation is dependent on parasites cooperating with each
other by producing public goods. In case of spiteful interactions (behaviours that
harm both the actor and the recipient), virulence is predicted to peak at high and
low levels of relatedness. Spiteful behaviours found in nature are surprisingly com-
mon, and one example is the production of bacteriocins. These anti-competitor
toxins produced by bacteria are proteinaceous toxins and their lethal activity are
often limited to members of the same species as the producer (Gardner et al.,
2004). Here, a U-shaped relationship between kinship and virulence was found
(Gardner et al., 2004) contrary to the previous models that predicted a linear
increase or decrease in virulence as kinship (r) is increased. We refer to frequency
of a particular genotype within the interaxting population as Kinship. Because
bacteriocin production is expected to correlate with low bacterial growth rates,
virulence will tend to be minimized at intermediate kinship and maximized when
bacteria compete only with non-kin(r=0) or only with kin(r=1) (Gardner et al.,
2004).

This demonstrates that virulence evolution depends on biological aspects such
as: if parasites are able to improve their success through prudent growth, cooper-
ative contribution to public goods or through anti-competitor toxin production.
How relatedness (which refers to similarity between actor and recipient relative
to the competing population as a whole) affects virulence crucially depends on
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the type of social interaction. A negative relationship is expected if cooperation
is prudent resource use; a positive relationship if cooperation is the production
of public goods; and an inverse unimodal if competition is mediated by spiteful
behaviours. However, these relationships can be altered by other factors.

Unfortunately, experimental data on the relation between transmission and
host mortality (due to virulence) are often hard to obtain. Present results sug-
gest that to understand more the evolution of virulence, it may be worthwhile
to investigate in more detail what happens in case of multiple infections. Al-
though the trade-off model has suffered many criticisms, there is a huge potential
in this model to address new problems because it provides a common framework
to compare experimental and theoretical results. New discoveries in the viru-
lence evolution field will continue to use the trade-off hypothesis but will have
to incorporate further aspects such as pathogen fitness, immunopathology, spa-
tial structure, and potentially, even information on abundance ratio distribution
of multiple strains in mixed infections. This, together with a proper account of
host-intrinsic factors, will consequently lead to more realistic models and a better
understanding of virulence. A recent avenue of research that has emerged is the
consideration of the multiplicity of infection: whether a host harbours one, two or
an arbitrary number of different strains (Lion, 2013). For example, in his models,
Lion investigates whether multiple infections lead to higher or lower virulence by
the distribution of parasite reproductive values across host classes with different
multiplicity of infections.

3.2 Cross-immunity

A key concept that has been extensively studied in multi-strain systems is cross-
immunity, which allows infection by one strain to induce partial/perfect protec-
tion against other strains (Ahn et al., 2014). Cross-immunity is a form of appar-
ent competition between different pathogen strains. Andersen et al.(1997,1999)
developed a model where cross-immunity acts by reducing the susceptibility to
further strains, while Gupta et al.(1994) modelled cross-immunity as acting by
leaving susceptibility unchanged but reducing transmissibility by a factor (Gog &
Swinton, 2002). Cross-immunity is included in different ways in different models,
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but the general idea is the same: infection with one strain of the disease produces
a lasting immune memory in the host which acts to protect against subsequent
infection by other strains. This increases strain-strain competition and can make
coexistence at the population level difficult.

Some of the commonly studied pathogens used to study the cross-reactive
immunological responses include dengue and influenza (flu) viruses. These two
viruses differ significantly in their immunological response induced by strain com-
petition. The cross-reactive antibody response for influenza follows the more
common immunological response in which a previous virus exposure yields partial
protection against prospective strains, as long as virus strains are antigenically
similar. Unlike flu viruses, cross-reactive antibodies following a dengue infection
act to enhance (rather than to restrict) the severity of subsequent infections by
other dengue strains (Reich et al., 2013).

In view of the complexities that arise when multiple pathogens interact and
affect a host’s susceptibility to infection or transmissibility of future infections,
many models have been proposed to study the dynamics of co-circulating pathogens
and the immunological structures by which they interact/compete.

3.3 Co-colonization: a window into strain inter-
actions

Colonization is the term usually used to refer to avirulent/asymptomatic carriage
of an infectious organism. The term co-infection or mixed infection somehow
refers to more serious health scenarios. In this thesis the two terms are used
interchangeably.

Colonization with more than one strain can be fundamentally different from
infections with just one strain, and have important consequences both for the host
and the parasite. For the host, two or more strains represent a broader challenge
that complicates defence and immune response (Balmer et al., 2009). For the
parasite, they lead to direct or indirect interactions between strains that can
alter within-host population dynamics and transmission between hosts. This in
turn can lead to novel selection pressures and thus altered evolution of parasite
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life-history traits. Research on the interactions of pathogen strains has shown
that factors such as contact heterogeneity, age structure, stochastic effect and the
contact network structure in the population can allow for long-term coexistence of
strains, which in the absence of such heterogeneities, would undergo competitive
exclusion (Colijna et al., 2009).

Co-colonization can provide a mechanism by which strain diversity is main-
tained in a population and can affect the evolution of the pathogens themselves.
However, the prevalence of multiple-strain infections obtained by any method is
usually an underestimate because rare strains are hard to detect and false nega-
tives can seldom be excluded completely (Balmer & Tanner, 2011). The interest in
co-infection in particular, has increased in recent years, with publications on hu-
man co-infection involving hundreds of pathogen taxa across all major pathogen
groups. However, co-infection is still poorly understood, both in terms of their
prevalence in nature and of their effects on specific parasites or on host–parasite
interactions (Balmer et al., 2009). The emerging picture is that they are found
in most parasite species for which the necessary genetic tools to detect them
are available and researchers actively look for them (Balmer et al., 2009). They
appear to be the norm rather than the exception.

Recent publications tend to show that a general negative effects of co-infection
on human health are more frequent than no-effect or positive effects (Griffiths
et al., 2011). However, the most commonly reported co-infecting pathogens differ
from those infections causing highest global mortality (Griffiths et al., 2011).
These results raise questions concerning the occurrence and study of co-infection
in humans and their implications for effective infectious disease management.
Also, the overall consequence of reported co-infections was poorer host health
and enhanced pathogen abundance, compared with single infections (Griffiths
et al., 2011). Moreover, the tendency for positive effects on pathogen abundance
corroborates the negative effects on host health because larger infections are a
mechanism by which disease can be exacerbated (Griffiths et al., 2011).

In this work we will focus on co-infection by different serotypes of the Strep-
tococcus pneumoniae, which is usually carried asymptomatically in the human
nasopharynx. We will study direct interactions without invoking cross-immunity
effects. We will also focus on infection clearance patterns rather than on virulence.
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Simultaneous carriage of more than one strain of Streptococcus pneumoniae
(co-infection) has been proposed to occur in 2-20% of colonized hosts (Valente
et al., 2012). It promotes horizontal gene transfer events and may lead to capsule
switch (Brugger et al., 2010). Because multiple-strain infections are a prereq-
uisite for recombination among strains, they facilitate rapid generation of new
variants that can evade drugs, vaccines or the immune response (Balmer & Tan-
ner, 2011). Mixture of different strains increases the probability that infected
hosts harbour strains that are refractory to treatment (Balmer & Tanner, 2011).
In settings with regular drug administration like hospitals, multiple strains infec-
tions favour resistant strains that would otherwise be rare. Without genotyping,
which confirms the presence of distinct strains, clinical interpretation might have
been conversion from susceptibility to resistance of one strain (Balmer & Tanner,
2011).

Important questions to answer when studying co-colonization are: first, which
strains are there and how related they are? Secondly, how they interact together?
How do they impact the host immune-system or host heath?And finally, why are
they more or less abundant?

3.4 A primer on Streptococcus pneumoniae

Among the multi-type pathogens, an especially diverse pathogen are Streptococcus
pneumoniae., also known as pneumococcus. This is a gram-positive bacterium
naturally carried in the nasopharynx and is mostly a commensal (asymptomatic)
(Shak et al., 2013). The prevalence of pneumococcal carriage increases in the first
few years of life, peaking at approximately 50% up to 70% in hosts 2-3 years of age
(Shak et al., 2013). There are more than 92 serotypes identified (Andrews et al.,
2014) and since 2001 there has been vaccination against some of the circulating
serotypes. Serotypes are defined as distinct variations, of the cell surface antigens,
within a species of bacteria or viruses. In pneumococcus each serotype refers to a
distinct polysaccharide capsule. Current formulas of the pneumococcal conjugate
vaccine protect against 7, 10 or 13 capsular vaccine types, but have no direct
effect on the more than 79 non-vaccine types. Almost every child is colonized by
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pneumococcus sometime in life and each serotype can colonize for several weeks
being then replaced by another serotype or reacquired (Valente et al., 2012).

Occasionally, the pneumococcus can migrate from the nasopharynx and po-
tentially cause a range of diseases, from mild respiratory tract infection (e.g.
sinusitis, otitis media) to more serious invasive or non-invasive conditions (e.g.
pneumonia, septicaemia, meningitis)(Shak et al., 2013). The median duration of
carriage is estimated to be 31 days in adults and 60.5 days in children, but this is
dependent on capsular serotype and previous immunologic exposure, host’s age
and immunocompetence (Shak et al., 2013).

Each strain produces one of the 92 capsular polysaccharides, which are dis-
tinguished by using a set of antisera that recognise the chemical differences in
the capsules. The capsule is important for virulence, but is immunogenic, and
the large number of different capsular serotypes is believed to have been selected
as a mechanism to evade the human immune response (Bentley et al., 2006).
Antibodies against capsular polysaccharide can protect against pneumococcal in-
vasive disease (like pneumonia, otitis media, meningitis), and a highly effective
protein-conjugated polysaccharide vaccine has been developed to protected chil-
dren against the serotypes most commonly associated with serious diseases.Since
2009 advanced molecular tools allow the quantification and the characterization
of co-colonization in pneumococcus (Brugger et al., 2009). We will not examine
vaccination effects in this thesis, but natural carriage dynamics of S. pneumoniae
in the absence of interventions.
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Chapter 4

Epidemiological dynamics of
multi-type infections

4.1 A basic model for co-infection

In the basic model for co-infection the total population is distributed in three
classes: S susceptible, I infected by a single strain and D doubly-infected by
two different strains. The equations of the SID model governing the dynamics of
these classes are

dS

dt
= µN − βS(I +D)

N
− µS + γ(I +D),

dI

dt
= β

S(I +D)

N
− µI − γI − σβ I(I +D)

N
,

dD

dt
= σβ

I(I +D)

N
− µD − γD.

(4.1)

From now on, we will use the word strain and serotype interchangeably. To
derive the equations of the basic model we have assumed that:

1. New susceptible hosts enter the population at constant rate µ which is equal
to the per capita departure (natural death) rate, leaving constant the total
population size N ;

2. Susceptible individuals first move to the single infected class and upon fur-
ther exposure may acquire a second strain, thus moving to the double in-
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fected class;

3. Individuals move from the susceptible class into the infected class accord-
ing to the rate at which infectious are generated, β S(I+D)

N
where β is the

transmission rate. I and D contribute equally to transmission.

4. An infected or double infected member of the population makes β I
N

con-
tacts with single infected members to transmit the second infection. Only
a portion σ ∈ (0, 1) of those contacts will produce a second infection. This
parameter can also be interpreted as the vulnerability of an already in-
fected individual to acquire a second infection. This means that there are
competitive interactions between the resident and the new-coming strain.
Therefore, the rate at which new double infected individuals are generated
is σβ I(I+D)

N
. We do not track explicitly the identity of the co-circulating

strains. However, we assume the number of strains is sufficiently large so
that typically double infection is with two different strains.

5. In this first formulation, we assume an underlying form of non-specific im-
munity. Infected and double infected individuals move to the susceptible
class through the same recovery rate γ, also called the clearance rate. This
will also simplify the analysis.

See figure 4.1 for a schematic representation of the basic co-infection model.
Since the total population N = I + S + D remains constant over time we can
divide the equations by N and obtain a system of equations for the proportions
of susceptible, infected and double infected, respectively. We will use the same
letters S, I and D to denote the proportions. Since S = 1− I−D, we can reduce
the system (4.1) by one equation and obtain,

dI

dt
= β(1− I −D)(I +D)− µI − γI − σβI(I +D)

dD

dt
= σβI(I +D)− µD − γD

(4.2)
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S I D
μ

μ μ μ

γ

σββ
γ

Figure 4.1: Schematic representation of the basic co-infection model.

4.1.1 Disease-free equilibrium

It is easy to see that the system has a disease-free equilibrium (I∗, D∗) = (0, 0),

as it is a solution of the equations

dI

dt
= 0 and

dD

dt
= 0.

To determine its stability we calculate the Jacobian matrix of the system,

J =

(
−Iβσ − β(σ + 2) (D + I) + β − γ − µ −Iβσ − 2β (D + I) + β

Iβσ + βσ (D + I) Iβσ − γ − µ

)
.

When evaluated at the disease-free equilibrium we get,

J =

(
β − µ− γ β

0 −γ − µ

)
.

Since the Jacobian matrix is triangular, we can read its eigenvalues from the

diagonal. All eigenvalues are negative except for β − µ − γ that can take both

signs. Therefore, the sign of β − µ − γ determines the stability of the trivial

equilibrium. Let

R0 =
β

µ+ γ
(4.3)

be the basic reproduction number in the basic co-colonizing model. Then, if

R0 < 1 means that the disease-free equilibrium is stable. Otherwise, if R0 > 1,

then it is unstable. This indicates the presence of another equilibrium, the so-

called endemic equilibrium.
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4.1.2 Endemic equilibrium

To determine the non-trivial equilibrium we have to find additional solutions of
the system of equations

dI

dt
= 0 and

dD

dt
= 0.

Besides having a disease-free equilibrium, the system of equations has another
solution,

I∗ = − (µ+ γ)(µ− β + γ)

β(µ+ γ − (µ− β + γ)σ)
=

R0 − 1

R0(1 + (R0 − 1)σ)
,

D∗ =
(µ− β + γ)2σ

β(µ+ γ − (µ− β + γ)σ)
=

(R0 − 1)2σ

R0(1 + (R0 − 1)σ)
.

Since S = 1− I −D we also know the proportions of the susceptible class at
the non-trivial equilibrium,

S∗ =
µ+ γ

β
=

1

R0

. (4.4)

The condition R0 > 1 guarantees that (S∗, I∗, D∗) is an endemic equilibrium
and vice-versa. In fact, 0 < S∗ < 1 if and only if R0 > 1. Moreover, R0 > 1

implies that

0 < I∗ <
R0 − 1

R0

< 1 and 0 < D∗ <
(R0 − 1)2

R0(R0 − 1)
< 1.

Checking the eigenvalues of the Jacobian matrix J evaluated at the non-trivial
equilibrium we can determine its stability. The eigenvalues of the Jacobian are

λ+ = −β + γ + µ and λ− = −βσ + γσ + µσ − µ− γ. (4.5)

We can rewrite both eigenvalues as follows

λ+ =
β

R0

(1−R0) and λ− =
β

R0

(σ(1−R0)− 1) . (4.6)

Now, it is clear that under the condition R0 > 1, both eigenvalues λ± are negative,
resulting in a asymptotically stable endemic equilibrium.
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As we can see in figure 4.2a an endemic equilibrium starts to exist (be positive
and stable) only if β is sufficiently high, in fact β > µ + γ. As β increases, co-
infection becomes dominant in the population. In figure 4.2b, as expected, only
for values of σ above 0 we begin to have a double infected class and furthermore,
for σ > 1

R0−1
the co-infection becomes more prevalent than single infection.

In the figure 4.3 there is a geometric representation of the trajectories of the
system in the phase plane. Each curve or trajectory is obtained using differ-
ent initial conditions which are represented by dots. As the figure shows, there
is numerical evidence that when R0 > 1, the endemic equilibrium is a global
attractor.

4.2 Co-colonizing serotype ratio

As mentioned before, sometimes more than one pneumococcal strain colonizes the
nasopharynx (process known as co-colonization) and this is probably required
for horizontal gene transfer between different pneumococcal strains, leading to
capsular switching and acquisition of multidrug resistance. Such genetic exchange
has been shown to occur for the capsule gene locus and the main mechanism of
evolution in this species. There are few data on rates of multiple colonization,
but existing estimates range from 1.3 up to 20% (Brugger et al., 2010). Not
only geographical variations in pneumococcal epidemiology but also the different
techniques used to detect pneumococcus may explain the differences in reported
prevalence estimates for co-colonization (Brugger et al., 2010).

With the introduction of multivalent vaccines, there has been a renewed in-
terest in the study of co-colonization since it is important to understand serotype
changes among carriers following vaccination and whether this will shift evolution-
ary patterns of S.pneumoniae (Valente et al., 2012). Conventional culture-based
techniques are biased to detect the most-abundant serotype and are prone to
miss co-colonization with a less-abundant type, an effect referred to as unmask-
ing (Brugger et al., 2009) This probable underestimation of multiple colonization
can lead to a false interpretation of strain distribution, especially under selective
pressure due to antibiotics or vaccines. It has been argued that observed changes
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(a) Endemic equilibrium varying the transmission rate β. Parameters:
γ = 0.7, σ = 0.5 and µ = 0.02.
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(b) Endemic equilibrium varying the competition parameter σ. Pa-
rameters: γ = 0.7, β = 3 and µ = 0.02.

Figure 4.2: Endemic equilibrium in the basic SID model with single and co-
colonization. See equations (4.1)
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4.2 Co-colonizing serotype ratio

Figure 4.3: Phase portrait of the system. The x-axis represents the class D and
the y-axis represents the class I. Parameters: γ = 0.7, β = 3, σ = 0.5 and
µ = 0.02 (R0 > 1). See equation (4.1)
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in serotype distribution may reflect unmasking of multiple colonization rather

than true redistribution.

There has been much attention to serotype distribution but less attention to

serotype interactions and co-occurrence. (Brugger et al., 2010) have developed

a novel DNA-based method for the detection of colonization with multiple S.

pneumoniae strains directly in nasopharyngeal swabs. The advantages of this

technique are that it can be applied directly to nasopharyngeal swabs, that it

gives the number and relative amounts of cocolonizing strains in a given sample,

and that it is relatively easy and economical to perform (Brugger et al., 2010).

As a consequence, it has been observed recently with this method of detection,

the abundance ratio of each strains. His work on clinical samples suggests that

is more likely to find a ratio of 1:1 between co-colonizing strains (see figure 4.5).

These ratios refer to the number of PCR cycles needed to amplify the DNA from

each strain.

The study of (Valente et al., 2012), this time performed on healthy individuals,

reveals similar patterns of within-host 2 serotype co-occurrence. See figure 4.4.

The balanced coexistence in a ratio less than 3 is seen in 50% of the subjects.

So the ratio of co-colonizing strains (whether close to 1:1 or when one strain

clearly prevails is abundance) does not seem to vary with disease/health status of

an individual and seems to be also independent of the identity of the serotypes.

Although both studies describe just a snapshot of the within-host dynamics that

may be going on on co-colonized individuals, and report observations in a small

sample, such results hint a potential at intrinsic regulatory mechanisms in strain-

strain interaction, that may persist over time and thus be characteristic of the

pneumococcal infections in general. Also the distribution of such ratios does not

differ much across the two studies. These recent technologies for strain differenti-

ation and typing have made possible to detect genetic diversity of pathogens, and

there is a need for new epidemiological models to take into account and explain

this new level of detail. Therefore, this thesis will explore 2 main models to try

to incorporate these new biological observations.
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Figure 4.4: Strain ratios were obtained by comparative quantification in real-time
PCR, which focuses on fold differences of expression = 2δCt (Valente et al., 2012).
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Figure 4.5: Strain ratios were determined from the peak heights in the chro-
matograms obtained by terminal-restriction fragment length polymorphism anal-
ysis (T-RFLP). Two different strains were present in 38 of the 41 samples and
three samples contained three strains. The relative ratio of strains present in the
same sample ranged from 1:1 to a maximum of 1:45, with a median ratio of 1:3.8
(Brugger et al., 2010).

4.3 Structured epidemiological model

This model is similar to the previous one in the sense that we have again three

different compartments: susceptible S, infected by a single strain I and a dou-

ble infected class D. However, here we structure the double infected class by

assuming that the individuals can harbour two arbitrary strains at different pro-

portions each. We denote by x ∈ [0, 1] the abundance ratio of the two strains in

the co-infected host. We assume that this ratio is immediately determined upon

acquisition of a second serotype and it does not change through the infection/col-

onization period of the host. This means that, the within-host dynamics reach an

equilibrium on a fast time-scale relative to epidemiological dynamics. We denote

by Dx the density of co-infected individuals harbouring two strains whose ratio

between the strain less dominant and the strain more dominant is x,

x =
Abundance of less dominant strain
Abundance of more dominant strain
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The equations for the structure model are

dS

dt
= µN − βS(I +D)

N
− µS + γI +

∑
γxDx,

dI

dt
= β

S(I +D)

N
− µI − σβ I(I +D)

N
− γI,

dDx

dt
= qxσβ

I(I +D)

N
− γxDx − µDx, x ∈ X

(4.7)

In addition to the assumptions 1-4 presented in section 4.1, we have derived
the equations of the structure model assuming that

1. The co-infection abundance ratio x varies in the set

X =

{
1

n
,

2

n
, . . . ,

n− 1

n
, 1

}
;

2. There are n + 1 co-infected classes Dx and D is the sum of all co-infected
densities of hosts,

D =
∑
x∈X

Dx;

3. The rate at which new double infected individuals are generated is

σβ
I(I +D)

N

and only a qx portion of these will enter the co-infected class Dx;

4. Upon co-colonization, hosts are uniformly distributed among the Dx classes
with probability qx = 1

n
. Sub-sequentially depending on x, some double

infections may be cleared faster/slower than others;

5. Singly infected individuals move to the susceptible class through the the
recovery rate γ and double infected individuals of classDx clear the infection
at rate γx;

6. γx ≤ γ for every x ∈ X. This means that it is easier to clear one infection
than two. Also, clearance γx decreases with x. This appears to be a more
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Table 4.1: Model parameters and interpretation.

Parameter Interpretation
γ Clearance rate of a single infection
γx Clearance rate of a double infection where strains display

ratio x
β Per capita transmission rate
σ Competition parameter [0-1]. Factor reducing the relative

acquisition rate of a second strain once colonized with one.
µ Birth (death) rate, related to age group

likely assumption as co-infections seem to generally worsen the host health
in comparison with single infections (Griffiths et al., 2011).

A summary of all the parameters are shown in Table 4.1.

As before, we divide the equations of the model by the total population size
N , and obtain a system of equations for the proportions of susceptible, infected
and double infected Dx of co-infected ratio x, respectively. Again, we will use the
same letters S, I and Dx to denote these proportions. Since S = 1 − I −D we
can reduce the system by one equation and obtain,

dI

dt
= β(1− I −D)(I +D)− µI − σβI(I +D)− γI

dDx

dt
= qxσβI(I +D)− γxDx − µDx, x ∈ X

(4.8)

4.3.1 Disease-free equilibrium

The system has a disease-free equilibrium (I∗, D∗x) = (0, 0) (also known as trivial
equilibrium) which is (locally) asymptotically stable provided R0 < 1 and un-
stable provided R0 > 1. Indeed, it is easy to check that (I∗, D∗x) = (0, 0) is an
equilibrium of the system. To determine its stability we look at the Jacobian
matrix evaluated at the equilibrium,

J =


β − µ− γ β β · · · β

0 −µ− γ0 0 · · · 0
...

...
...

...
...

0 0 0 · · · −µ− γ1

 .
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Since the Jacobian matrix is triangular, we can read its eigenvalues from the
diagonal. All eigenvalues are negative except from β − µ− γ that can take both
signs. Therefore, the sign of β − µ − γ (and hence R0) determines the stability
of the trivial equilibrium.

4.3.2 Endemic equilibrium

In order to find the endemic equilibrium we set the system equations (4.8) equal
to 0. From the equations of Dx we get

Dx = σI(I +D)qxRx (4.9)

where
Rx =

β

µ+ γx
, (4.10)

can be interpreted as the basic reproduction number of the class Dx. We define
the averaged reproduction number of D (all doubly-infected hosts) as,

R̄ =
∑

qxRx. (4.11)

Note that R̄ > R0 since γ ≥ γx and γx is strictly decreasing with x, by assumption.
Then summing equation (4.9) over all x we conclude that the endemic equilibrium
is a solution of the following system of equations{

R0(1− I −D)(I +D)− I − σR0I(I +D) = 0

σR̄I(I +D)−D = 0.
(4.12)

Using the build-in function Solve from Mathematica 10, we have computed
the non-zero solutions of the previous system,

I± =
1

2

σ((R0 − 2)R̄+R0) +R0

R̄σ2(R0 − R̄)
±

√
R0

(
R0(R̄− 1)2σ2 + 2σ((R0 − 2)R̄+R0) +R0

)
R̄2σ4(R0 − R̄)2

 (4.13)

D± =
I±2R̄σ

1− I±R̄σ
(4.14)
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We are interested in the admissible solutions (I∗, D∗), that is when both
I∗ and D∗ belong to the interval [0, 1] and 0 < I∗ + D∗ < 1. Using the build-
in function Reduce we have determined the conditions on the parameters of the
model which yield the endemic equilibrium. When R0 > 1 there is a single
admissible solution which corresponds to (I+, D+), see figure 4.6a. When R0 < 1

both solutions (I±, D±) are admissible if and only if

R̄ >
2
√

1−R0 +R0σ −R2
0σ +R0σ −R0 + 2

R0σ
. (4.15)

This scenario is interesting because although the classical basic reproduction
number R0 is less than one, the infection persists when the average reproduction
number R̄ of the co-infected class is very large, see figure 4.7. The fact that the
infected population is stratified into several co-infection classes, the persistence
of the infection depends on the balance of reproduction numbers as shows for-
mula (4.15). As R̄ increases (or equivalently γx and µ decreases) the equilibrium
(I−, D−) gets closer to (0, 0) whereas the equilibrium (I+, D+) gets closer to (0, 1),
as figure 4.7 suggests.

To compute the endemic equilibrium of each double infected class Dx we can
use equation (4.9).

4.3.3 Distribution of co-infected hosts at equilibrium

The proportion of each double infected class Dx at equilibrium only depends
on qxRx (see equation (4.9)). Moreover D∗ = σR̄I∗(I∗ + D∗). So, dividing
equation (4.9) by the equation for D∗ we conclude that the proportion of co-
infected individuals at equilibrium in the class Dx with respect to D is

D∗x
D∗

= qx
Rx

R̄
. (4.16)

Note that this proportion is independent of the size of the susceptible or
infected class. Moreover, it does not depend on the transmission rate β nor
depends on the competition parameter σ. The number (4.16) can be interpreted
as the probability of an individual displaying a certain abundance ratio
of co-colonizing strains, x, given that it is coinfected. So, it is a conditional
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(a) σ = 0.5, R0 = 1.5 and R̄ = 10.
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(b) σ = 0.5, R0 = 0.5 and R̄ = 12.

Figure 4.6: Plots of the curves defined by the system (4.12). The variable D is
on the horizontal axis and I on the vertical. The dashed curve corresponds to
the first equation of the system and the solid curve corresponds to the second
equation. In figure (a) we can observe the trivial equilibrium (I = 0, D = 0) and
the single endemic equilibrium (I+, D+). When R0 < 1 and R̄ is not big enough
(not satisfy the equation 4.15) figure (b), there exists only the trivial equilibrium.

(a) σ = 0.5, R0 = 0.5 and R̄ = 15. (b) σ = 0.5, R0 = 0.5 and R̄ = 20.

Figure 4.7: Plots of the curves defined by the system (4.12). The variable D is
on the horizontal axis and I on the vertical. The dashed curve corresponds to
the first equation of the system and the solid curve corresponds to the second
equation. The leftmost (resp. rightmost) intersection point of the dashed and
solid curve corresponds to (I−, D−) (resp. (I+, D+)).
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probability of being in a double infected class Dx and is independent of the

distribution of the population at equilibrium (it just depends on the parameters

that define Rx and R̄).

4.4 Numerical simulations

We now report several simulations on the structured co-infected model to under-

stand the effect of each parameter in the distribution of Dx at equilibrium. We

have used Python 3.3 to perform our numerical simulations.

4.4.1 Clearance profiles

We have considered a uniform distribution of x, i.e. qx = 1
n
, which means

the same probability of entering any double infected class Dx upon co-infection.

Also, we have considered the following scenarios: linear clearance and exponential

clearance. An assumption of the model is that the clearance rate γx decreases

with x. This means that it is easier for the individual to clear a co-infection where

the ratios of the two serotypes are more asymmetric (x small) in comparison

with a more balanced ratio (x close to 1). As we will see from the following

simulations, at equilibrium the ratios around 1 : 1 are more frequently observed

in the population.

To perform the simulations we have consider the following clearance profiles:

• Linear clearance: clearance rate is a linear function of the abundance

ratio of two strains. γx = γ − kx, where 0 < k ≤ γ,

• Exponential clearance: clearance rate is a exponential function of the

abundance ratio of two strains. γx = γe−kx
s , where k > 0 and s > 0.

See figure 4.8 for the profile of the negative linear and the negative exponen-

tial clearance.
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(a) Linear clearance rates. (b) Exponential clearance rates(s = 2).

Figure 4.8: Illustration of the clearance function γx varying for each doubly-
infected host. k = 0 corresponds to the model without structure that we consid-
ered initially. Parameters: n = 10 and γ = 0.7.

4.4.2 Dynamics and endemic equilibria

We have computed and proved the existence of two endemic equilibria (I±, D±)

which co-exist for a certain range of the parameters. Determining its stability
analytically is a difficult problem since the structured system (4.8) does not re-
duce to an (I,D) system where the stability is easy to determine analytically as
we did with the system (4.2). Therefore, we have performed several numerical
simulations to study the stability of the endemic equilibria. In the figures below,
we plot several trajectories of the system given certain initial conditions. This is
called the phase portrait of the system. In figure 4.9 we have considered R0 > 1

and 4 different initial conditions (dots). The progression, in time, of the system
is represented by the trajectories of the solid curves. It is easy to observe that,
in all 4 scenarios, the system progresses towards the unique endemic equilibrium
(I+, D+) (since R0 > 1) which is represented here by the point of interception of
the solid and dashed curves. Therefore, we assert that (I+, D+) is asymptotically
stable.

In figure 4.10, we have considered R0 < 1 and R̄ sufficiently large so that
condition (4.15) is fulfilled. In this scenario, we have 2 endemic equilibria and a
trivial equilibrium. As we can observe from figure 4.10, with 4 different initial
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Figure 4.9: The phase portrait of the model when R0 ≈ 4.17 (R0 > 1) and
R̄ ≈ 6.34. The dashed curve corresponds to the first equation of the system (4.12)
and the solid curve corresponds to the second equation. We have considerer the
following initial conditions (dots) around the (I+, D+) equilibrium. Parameters:
n = 10, β = 3, µ = 0.02, σ = 0.5 and γ0 = 0.7. Exponential negative clearance
with k = 1 and s = 2.
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Figure 4.10: The phase portrait of the model when R0 ≈ 0.498 (R0 < 1) and
R̄ ≈ 20. We have considerer 4 initial conditions ( dots) around the (I+, D+)
equilibrium. Parameters: n = 10, β = 3, µ = 0.02, σ = 0.5 and γ0 = 6.
Exponential negative clearance with k = 6.37 and s = 2.

conditions (dots), the system progresses towards the (I+, D+) which is the right-
most intersection point of the dashed and solid curves. The numerics suggest
that this equilibrium is asymptotically stable. This also implies that the trivial
equilibrium, which we know to be asymptotically stable, is not a global attractor.
In other words, the infection persists under certain initial conditions. We also
have numerical evidence that the endemic equilibrium (I−, D−) is unstable.

When R0 < 1 and R̄ is sufficiently high there are 2 positive endemic equilib-
ria and a backward bifurcation at R0 ≈ 0.5. The behaviour at a bifurcation
may be described graphically by the bifurcation curve, which is the graph of
equilibrium total infective population size (I∗+D∗) as a function of the basic re-
productive number R0 (Brauer, 2004). The bifurcation curve has the form shown
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Figure 4.11: Backward bifurcation. The y-axis represents the total proportion
of hosts infected (I∗+D∗) at equilibrium and the x-axis represents the R0. One
can see that even when R0 < 1 two endemic equilibria arise: a stable (solid curve)
and an unstable one(dashed curve). This is due to the high value of R̄

in figure 4.11 with a dashed curve denoting an unstable endemic equilibrium and

a solid curve denoting the stable endemic equilibrium. In figure 4.12 we can see

explicitly above which value for R̄ we begin to have 2 endemic equilibria.

4.4.3 Co-infection class at equilibrium

We will now analyse how the distribution of the co-infection class depends on the

parameters. Recall that

D∗x
D∗

= qx
Rx

R̄
=

qx
µ+γx∑
y

qy
µ+γy

. (4.17)

The variation of D∗
x

D∗ depending on the transmission rate k can be observed from

figure 4.13. In both cases of linear and exponential clearance, as we increase the

parameter k, the distribution becomes more skewed favouring more balanced Dx

ratios (e.g. 1:1). If we vary the parameter µ which is the birth (death) rate, it has

the opposite effect since as µ increases the distribution becomes less skewed (see

figure 4.14). These facts can also be deduced directly using the relation (4.17).
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Figure 4.12: Backward bifurcation. The y-axis represents the total proportion of
hosts infected (I∗+D∗) at equilibrium and the x-axis represents the R̄. Above a
sufficiently high value for R̄ an unstable equilibrium arises (dashed line) together
with a stable one (solid line).
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(b) Exponential clearance rates.

Figure 4.13: Impact of the parameter k on the equilibrium distribution of D∗
x

D
.

Graphs obtained from simulations.

We now compare the total prevalence, at equilibrium, of the D∗ class in both

co-infection models, the basic and the structure model. Firstly, we have to assume

that R0 > 1 since only under this condition we have an endemic equilibrium in
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Figure 4.14: Impact of the birth (death) rate µ on the distribution of D
∗
x

D
. Graphs

obtained from simulations

both models. Let us denote by D∗b and D∗s the proportion of co-infected hosts at
equilibrium in the basic and structure model, respectively. Recalling from section
4 we know that

D∗b =
(R0 − 1)2σ

R0(1 + (R0 − 1)σ)
. (4.18)

On the other hand, we know from section 4.3

D∗s =
I2

+R̄σ

1− I+R̄σ
(4.19)

where I+ is given by formula (4.13) and depends on σ, R0 and R̄. In figure 4.15
we compare the total prevalence of D∗ in both models. As the figure shows the
proportion at equilibrium of the co-infection class of the structure model is always
bigger than the basic model. This is not surprising since in the structured (4.7)
model the clearance rate of double infections is smaller when compared to the
basic model (4.1).

4.4.4 Conclusions

In the following we enumerate the conclusions of our study:

• From the epidemiological model, we can see that a sufficient mechanism
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Figure 4.15: The dotted curve is the plot of D∗b depending on σ when R0 = 2.
The solid curves are plots of D∗s depending on σ when R0 = 2 and from bottom
to top: R̄ = 3, 6, 9, 12.

to obtain the skewed distribution of co-colonizing strain ratios towards 1:1,
observed in pneumococcus carriage (Brugger et al., 2010), (Valente et al.,
2012), is the assumption of some co-colonizations being cleared at faster or
lower rates than others. The ratio of co-colonizing strains, x, can impact
how exposed the "pathogen mixture" is to host immunity. A biologically
plausible hypothesis is that the more asymmetric their within-host abun-
dances, thus the more dominant one strain is, the more immunity might
be stimulated, and this in turn can lead to faster clearance of both strains.
This assumption was explored through the linear clearance rate and expo-
nential clearance rate for doubly-infected hosts, as decreasing functions of
x. We saw that the distributions of host in these co-colonization classes
at equilibrium depend strongly on the assumptions in these clearance func-
tions. For example, the faster γx decreases with x (in exponential case), the
stronger the effect on the equilibrium distribution.

• When R0 > 1 the infection persists and the endemic equilibrium is a global
attractor. Of course, in this case the disease-free equilibrium is unstable.
When R0 < 1 the disease-free equilibrium becomes stable and the endemic
equilibrium no longer exists. However, if R̄ is sufficiently large then two
new endemic equilibria (I±, D±) emerge through a saddle-node bifurcation.
From the numerics we conclude that (I−, D−) is unstable and (I+, D+) is
asymptotically stable. Therefore, through this backward bifurcation phe-
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INFECTIONS

nomena, the pathogen can persist via doubly-infected hosts even when it
could not persist via single infection alone. This is explained by doubly-
infected hosts having higher average reproductive number R̄ , than singly-
infected hosts and thus contributing more to transmission on average.

• Not only have we explored the shape of this distribution, but also the total
magnitude of co-colonization prevalence. The proportions, at equilibrium,
of the co-infection class is always higher in the structured co-infection model
compared to the basic model. If there is structure in D class, with generally
lower clearance rates than single infection, the individuals in this class leave
each double infecting class x at much slower rate. Consequently, the total
prevalence of co-colonization goes up in the system, and as a consequence
also total prevalence of carriage (I + D). Also, the proportion of each
double infected class D∗x relative to D∗ at equilibrium is independent of
the size of the susceptible or infected class. This means that, whenever an
individual acquires a second infection, he will have a fixed probability of
being in a particular class x. Moreover, this probability only depends on
the parameters of the model, namely: the transmission rate β, birth (death)
rate µ and clearance rates γ and γx.
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Chapter 5

Within-host co-infection dynamics
model

5.1 Model description

In this section we will analyse co-infection at the host level and so, from a
static epidemiological perspective, we will now describe a more detailed micro-
perspective of the within-host infection processes. We will simulate h hosts that
will be infected sequentially by two different strains. We will suppose that the
dynamics of the density of the parasites in the host follows a logistic equation

dp

dt
= rp

(
1− p

K

)
where r is the growth rate and K is the carrying capacity. The general solution
of this equation is

p(t) = Kp0
ert

K + p0(ert − 1)
. (5.1)

To incorporate in the model the effect of clearance by immunity we assume
that r decreases monotonically with time since infection, according to

r(t) = r0e
−γt.

where γ is the clearance rate. The clearance rate in this model is different from
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5. WITHIN-HOST CO-INFECTION DYNAMICS MODEL

the clearance rate of the epidemiological model. Here γ is per unit time per unit
parasite contrary to previous model where is per unite time per host. Clearance
of the first strain does not interfere with clearance of the second strain. The
remaining parameters r0 and p0 are the initial growth rate of the infection and
the initial parasite population size, respectively.

The host will acquire the first infection at a determined time point (e.g t0 = 0).
A second strain will infect the host at time T > 0. The identity of the strains is not
followed and there is no fitness difference between strains. The dynamics of the
second strain are completely independent of the dynamics of the first strain. This
model reflects more a strain-specific immunity, in contrast to the epidemiological
model presented in section 4, where the two strains were cleared simultaneously
(γx was applying equally to both strains). We will assume that T is a random
variable following an exponential distribution with parameter λ. This parameter
λ represents the force of infection experienced by infected individual which is
the number of new strain acquisitions per unit of time that an already-infected
individual experiences during an endemic scenario. Mean waiting time to acquire
a second strain when already colonized is given by 1

λ
. We assume λ to be constant

over the population reflecting an epidemiological equilibrium.

To mimic the epidemiological sampling process we will consider an uniform
random variable S taking values in [0, τ ] that will represent time of survey of the
co-colonized host,that will take place at time S. It is reasonable to suppose that
τ is approximately equal to the duration of a single infection. To define precisely
the value of τ we have considered the moment in the future when the density
of parasites attains the value of p0 with a relative error of 1%. More precisely,
τ is the positive solution of the equation p(t) = 1.01p0. See figure 5.1 for the
behaviour of τ as γ varies. Clearly, higher values of γ (clearance of infection)
gives smaller values τ (duration of infection).

To simplify the model even further, we also assume that T and S are inde-
pendent.

Our goal is to determine through simulations the probability distribution of
the co-infection ratio in a double infected host. For this, we will define the random
variable X(T, S) that represents the ratio of the two strains found in the host
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Figure 5.1: Plot of τ (on the vertical axis) depending on γ (horizontal axis).
Parameters: K = 1, r0 = 3 and p0 = 0.1.

(with the most dominant one in the denominator),

X(T, S) = min

{
p(S)

p(S − T )
,
p(S − T )

p(S)

}
.

The question that naturally arises is given the distribution of S and T what
will be the distribution of X? And how the later will depend on the parameters
of the infection dynamics.

5.2 Simulation results

The graphs below show the dynamics of the infection process over time in a single
individual. We have varied the parameter γ:

We are more interested in scenarios where the Streptococcus pneumoniae car-
riage is present for a long period of time, thus γ small. We simulated different
hosts (to replicate different co-colonization episodes). The timing of the new
strain acquisition varied between different individuals, but the sampling times
were the same for all. The following graph illustrates how the sampling process
is performed. We can observe two curves of infection, with same shape but the
second curve (yellow curve) has been shifted by T , the time at which the host
have acquired a second infection. The vertical line, placed at S is a sample of a
point where the proportion of serotypes are calculated.

In figure 5.4 we present the sampling distributions of the random variable
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5. WITHIN-HOST CO-INFECTION DYNAMICS MODEL

Figure 5.2: Within-host dynamics of a single strain infection. The x-axis repre-
sents time and the y-axis represents bacterial load. As γ increases from 0.2 to 0.5
the duration of the period of maximal infection decreases. Parameters: K = 1,
r0 = 3 and p0 = 0.1.

Figure 5.3: Illustration of the sampling process: the sampled co-infected hosts
can display a different ratio of the two strains, depending on the time since co-
infection occurred. x-axis represent the time and y-axis represent bacterial load.
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5.2 Simulation results

X. We have varied the parameter γ and λ to see how the distribution varies its
shape.

Clearly, in all scenarios the distributions are skewed towards equal abundance
ratios.

We can also observe that as λ or γ increase, the distribution favours more equal
abundance ratios. This can be explained as follows. Since λ is the parameter
of the exponential distribution, the expected time for the start of the second
infection is 1/λ. This means that for high values of λ both curves are rather close,
thus increasing the number of ratios closer to 1. On the other hand, for high values
of γ, as figure 5.4 suggests, the plateau of the density of parasites becomes larger,
thus increasing as well the number of ratios close to 1. A similar reasoning explains
that for small values of λ or γ the distribution favours asymmetric abundance
ratios.

Moreover, the shape of the distribution is robust with respect to small changes
of the parameters.

49



5. WITHIN-HOST CO-INFECTION DYNAMICS MODEL

(a)
λ

=
0.5

and
γ

=
2

(b)
λ

=
1

and
γ

=
2

(c)
λ

=
2

and
γ

=
2

(d)
λ

=
0.5

and
γ

=
1

(e)
λ

=
1

and
γ

=
1

(f)
λ

=
2

and
γ

=
1

(g)
λ

=
0.5

and
γ

=
0.5

(h)
λ

=
1

and
γ

=
0.5

(i)
λ

=
2

and
γ

=
0.5

F
igure

5.4:
H
istogram

of
100

sam
ples

ofthe
random

variable
X
.
P
aram

eters:
K

=
1,
r

0
=

3
and

p
0

=
0.1.

50



Chapter 6

Discussion and future perspectives

6.1 The two models of co-colonization

The first model presented in this thesis is a deterministic compartmental model.
The population was subdivided into a number of compartments, and the flows
between these compartments were described by a set of ordinary differential equa-
tions. We have assumed the ratio x between two strains is determined upon ac-
quisition, which is the case of competition happening very quickly initially and it
did not change over the infectious period of the co-colonized host. The recovery
capacity of the host γx is the driving force for the structure emerging among co-
colonized hosts at equilibrium. Those co-infections that are cleared faster will be
less prevalent and those co-infections that are cleared slower will be more preva-
lent. for γx decreasing with x, we find that the distribution of doubly-infected
hosts is skewed towards 1 : 1.

As we have seen, mathematical modelling can provide many significant in-
sights concerning the epidemiology of infectious diseases. The most notable of
these include threshold conditions (like the basic reproductive number R0) that
describe when invasion and persistence of an infection is possible. Interestingly,
we have shown in our first model that even if the basic reproduction number is
below 1, the infection can still persist if the average reproduction number of the
co-infected class is sufficiently big. Also, we have obtained the conditions for the
persistence of the infection (endemic equilibrium) and detected the phenomena
of backward bifurcation. Moreover, we have observed that the distribution of
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the co-infected class, at equilibrium, is independent of the size of the susceptible
or the single infected class. And so, when the host displays a double infection,
he will present a particular strain ratio with fixed probability and this is only
dependent on the transmission rate, birth (death) rate and the clearance rates.
This applies to both stable and unstable endemic equilibria.

Brugger’s work was pioneer in quantifying each strain involved in the co-
colonization process, and understanding this phenomena serves as a motivation
for modelling this work. His strain ratios were obtained by comparative quantifi-
cation in real-time PCR. However, when we analyse more carefully his graphical
representation of the data, we observe that it was used a non-uniform scale (i.e.
with samples included in bins of different sizes) giving the reader the impression
of a clear co-colonizing ratio distribution more skewed towards 1:1 (equal abun-
dance ratios). The interpretation of his graph can be misleading if this fact is not
addressed properly. Notice that even if the actual distribution of the co-colonizing
hosts was uniform in a normal scale [0, 1] with equally spaced bins, like the one we
use to represent our results, displaying this distribution on a "fold" scale would
naturally give us a skewness result towards 1:1. More precisely,

q 1
N

=

∫ 1
N

1
N+1

x dx =
1 + 2N

2N2(N + 1)2
.

Thus, q 1
N

increases with N and gives higher weights to values of the ratio close
to 1 : 1, i.e. skewed towards 1 : 1.

The second model presented in this thesis was a bottom-up approach to the
co-colonization process. This was a semi-probabilistic within host model,which
assumed that the ratio is dynamic over the infection period, and that the distribu-
tion emerges as a transient feature of colonization dynamics. From the different
time-points over the course of co-infection when a host may be sampled. Thus
the ratio was not static throughout infection, as assumed in the previous model.
The infection dynamics and the acquisition of the second strain were explicitly
simulated. The force of infection λ was constant, reflecting an epidemiological
equilibrium. Here the two strains/serotypes were cleared independently and se-
quentially. In the simulations performed we have observed that when the entire
range of values were divided into a series of small intervals (equal size bins) and
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a histogram was obtained, the distribution showed the tendency towards equal
abundance ratios for intermediate and high values of λ and γ parameters. More-
over, the simulations have shown that the shape of the distribution is robust for
small perturbations these two parameters.

6.2 Challenges in co-colonization modelling

Multiple infections are becoming more studied because of their consequences to
the health of the host, and also because they can potentially change the selective
pressures acting on parasites. Selection shapes the evolution of parasite viru-
lence and may have direct clinical implications. The case of influenza, norovirus,
malaria and dengue are just a few of the infectious agents for which the interacting
dynamics of different strains form a crucial part of their biology. The classical
theory predicts that competition between strains in most cases will select the
parasites to evolve towards higher virulence (Minus van Baalen, 1995) (Frank,
1996).

Given the commonness of multiple strain infections,building epidemiological
models that reflect these phenomena is fundamental to help us understand many
important diseases, but may also bring many technical challenges. One of the
challenges is how to translate into the models the immunodynamics of the indi-
vidual host to a population level? In our work, the host clearance rate can be
seen as a very basic immune system action. The rate of pathogen clearance or the
duration of the infectiousness is affected by partial immunity and this will also
shape the pathogen population that is available for transmission. Does the overall
pathogen load matters? If it does, it will probably be important to introduce in
to the models the ratios of each pathogen involved in the colonization/infection
process.

Another factor that could be taken into account in the future is the host het-
erogeneity. When we try to incorporate population structure into the transmis-
sion models, this potentially changes the dynamics of the infection. Our model
assume population without immigration, except via births or deaths, and no-
body enters or leaves the pool of susceptible hosts. It is important to understand
how population structure and movement influences strain dynamics over a long
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time-scale. Another kind of host heterogeneity is the variation in the immune
response driven by host factors. We have not addressed in to these models the
important effect of cross-immunity and considered strains as independent without
explicit reference to their relatedness. Parasite diversity is thus shaped not only
by resource competition between co-infecting parasites but also by host-driven
immune mediated competition. Such interactions with the host immune system
can amplify or reverse inherent differences in competitive ability of co-infecting
parasites.

Most epidemiological models typically assume that only one of the co-infecting
strains can be transmitted at a time. In the future, we could consider co-
transmission, defined as the infection of the host by more than one parasite
strains or species during the same transmission event (Alizon, 2013) . This pro-
cess remains largely absent from epidemiological models and this is expected to
have important consequences for virulence evolution. Recent work predicts that if
co-infections are caused by different strains from the same species, increased prob-
abilities of co-transmission favor less-virulent strains (Alizon, 2013). It would be
useful in the future, to know the identity and relatedness of each strain involved
in co-colonization process to predict virulence evolution.

With work we have tried to highlight the phenomena of co-colonization, par-
ticularly introducing the information on strain ratios into the epidemiological
model, hoping that this provides useful insight into the multiple strain infec-
tions, specially in pneumococcus. However, more integration with biological and
epidemiological data is urgently needed to motivate and support the extension
towards more realistic models in the future.
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Appendix A

Python code

from scipy.integrate import odeint
from math import gamma
from math import factorial

def CM(y,t,param):
""" Function CM that implements an ODE system for
the basic co-infection model."""
beta=param[0]
sigma=param[1]
gamma=param[2]
mu=param[3]
I=[beta*y[0]*sum(y[1:])-mu*y[1]-gamma*y[1]-
sigma*beta*y[1]*sum(y[1:])]
D=[sigma*beta*y[1]*sum(y[1:])-mu*y[2]-gamma*y[2]]
S=[mu-beta*y[0]*sum(y[1:])-mu*y[0]+gamma*sum(y[1:])]
return S+I+D

def cm_pro(y0,t,beta,sigma,gamma,mu):
"""Function cm_pro which returns the solution for an
ODE system given the initial proportions
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of infected and double infected classes (y0), time interval
for analysis (t), beta, sigma,gamma and mu as parameters"""
param=(beta,sigma,gamma,mu)
return odeint(CM,y0,t,args=(param,))

def f(y,t,param):
"""Function f which implements an ODE system for
the structured co-infection model"""
beta=param[0]
sigma=param[1]
g0=param[2]
gamma=param[3]
q=param[4]
d=param[5]
I=[beta*(1-(y[0]+sum(y[1:])))*(y[0]+sum(y[1:]))-d*y[0]-
sigma*beta*y[0]*(y[0]+sum(y[1:]))-g0*y[0]]
doubleI=[q[i]*y[0]*(y[0]+sum(y[1:]))*sigma*beta-
gamma[i]*y[i+1]-d*y[i+1] for i in range(0,len(q))]
return I+doubleI

def sid_pro(y0,t,beta,sigma,g0,gamma,q,d):
"""Function sid_pro which returns the solution of an ODE
system given the initial proportions (y0) of the infected
I and double infected D_x classes, time interval for analysis (t),
beta, sigma,gamma and mu as parameters"""
param=(beta,sigma,g0,gamma,q,d)
return odeint(f,y0,t,args=(param,))

def pdfBetaBinomial(x,n,a,b):
"""Function that returns a beta binomial mass distribution
with n elements. a and b are the shape parameters"""
return (gamma(x+a)*gamma(n-x+b)/gamma(n+a+b))

*factorial(n)/(factorial(n-x)*factorial(x))/(gamma(a)
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*gamma(b)/gamma(a+b))

import sid_proportions
import matplotlib.pyplot as plt
import math
import numpy as np
import random
from pylab import *

============================ PARAMETERS ============================

n=10
# Number of co-infected classes
tmax=50
beta=3
sigma=0.5
deltat=0.01
t=np.arange(0,tmax,deltat)
X=np.linspace(0,1,n+1)
g0=0.7
# Gamma of the Infected class
k=0.5
d=0.02
y0=[0.4]+[0 for x in X]
# Initial condition (proportions)

1) Distribution of q_x
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q=[sid_proportions.pdfBetaBinomial(x,n,0.7,2) for x in range(0,n+1)]
q=q[::-1]
# Non-uniform

q=[1/(n+1) for x in X]
# Uniform

2) Distribution of Gamma_x

gamma=[g0*math.exp(-k*x**2) for x in X]
# Negative exponential
gamma=[g0 for x in X]
# Uniform

sol=sid_proportions.sid_pro(y0,t,beta,sigma,g0,gamma,q,d)
sol_inverse=sol[-1][1:]
sol_inverse=sol_inverse[::-1]

========================== PLOTS ================================

plt.plot(t,1-sol[:,0]-[sum(sol[i,1:]) for i in range(0,len(sol[:,0]))])
# Evolution of the proportion of Susceptible over time
plt.plot(t,sol[:,0])
# Evolution of the proportion of Infected over time
plt.plot(t,sol[:,1:])
# Evolution of the proportion of the co-infected over time
plt.bar(X-1/n*0.4,sol[-1][1:],width=1/n*0.8)

plt.xlim(1.1,-0.1)
plt.legend(loc="lower right")
plt.title(r"Proportions of $D_x$ at equilibrium")
plt.xlabel("Double infected classes $D_x$")
plt.ylabel("Proportions")
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P=5
X_inverse=X[::-1]
Z=list()
for k in np.linspace(0,3,P):

gamma=[g0*math.exp(-k*x**2) for x in X]
sol=sid_proportions.sid_pro(y0,t,beta,sigma,g0,gamma,q,d)
sol_inverse=sol[-1][1:]
sol_inverse=sol_inverse[::-1]
plt.plot(X_inverse,sol_inverse,’-o’,label="k="+str(k))

plt.legend(loc="lower right")
plt.xlim(1.1,-0.1)
plt.title(r"$D_x*$ at equilibrium versus k")
plt.xlabel("Double infected classes $D_x*$")
plt.ylabel("Proportions")
# Proportion of D_x at the Equilibrium varying K

for beta in np.linspace(1.5,3,P):
sol=sid_proportions.sid_pro(y0,t,beta,sigma,g0,gamma,q,d)
sol_D=sol[-1][1:]
plt.plot(X,sol_D/sum(sol[-1][1:]),’-o’,label=r"$\beta$="+str(beta))

plt.legend(loc="lower right")
plt.title(r"$D_x$ at equilibrium versus $\beta$")
plt.xlim(1.1,-0.1)
plt.xlabel(r"Double infected classes $D_x$")
plt.ylabel(r"Proportions")
# Proportion of D_x at Equilibrium varying Beta

plt.show()

59





Appendix B

Mathematica code

(* Parameters *)
r0=3;P0=0.1;K=10;T=2;\[Lambda]=0.1;\[Gamma]=0.5;n=10000;

(* Strain infection curve *)
r[t_]:=r0 Exp[-\[Gamma] t];
P[t_]:=K P0 Exp[r[t]t]/(K+P0(Exp[r[t]t]-1));

(* Coinfection ratio *)
X[t_,s_]:=Min[P[s]/P[s-t],P[s-t]/P[s]]

(* Sampling the Coinfection ratio X *)
L=Table[X[RandomVariate[ExponentialDistribution[\[Lambda]]],
RandomVariate[UniformDistribution[{0,T}]]],{i,0,n}];

(* Plot of histogram *)
Histogram[L,{0.1,1,0.03},"Probability"]
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