
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

SECURE GPS CLOCK SYNCHRONIZATION IN
SMART GRIDS

Radu Petruţ Onica

Dissertação orientada pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves
e co-orientado pelo Prof. Doutor António Casimiro Ferreira da Costa

DISSERTATION

MESTRADO EM SEGURANÇA INFORMÁTICA

2015

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Nuno Neves
as well as my co-advisor Prof. António Casimiro for the continuous support of my Mas-
ters thesis, for their patience and motivation.

I am sincerely grateful to Rodrigo, Soraia and Ricardo for all their support during
the writing of this dissertation as well as the motivation they gave me, to help me over-
come the hardest obstacles I faced. A huge thanks to all my colleagues, Bernardo, Pedro,
Miguel, Tiago, Maneca and André for the all the memorable moments and all the fun we
had this past year.

Lastly I would like to thank my family and especially my sister for always encoura-
ging me and giving me motivation to move forward both throughout this thesis and my
life in general.

iii

In memory of my Grandmother.

Resumo

As smart grids resultaram da integração da rede elétrica atual no mundo digital. Isso
traz várias vantagens às redes elétricas, como uma instalação, configuração e manutenção
mais simples e eficiente, mas também a fácil integração na rede de novas tecnologias. En-
quanto as redes elétricas continuam a crescer em dimensão e complexidade, elas tornam-
se mais importantes para a sociedade e subsequentemente mais sujeitas a ataques distin-
tos. Alguns dos objetivos mais importantes da smart grid são: acomodar uma grande
variedade de tecnologias de produção de eletricidade como a eólica, solar e geotérmica;
ser resiliente a ataques fı́sicos e ciber-ataques; ter mecanismos de deteção, análise e res-
posta automática a incidentes; dar mais poder ao consumidor final sobre como e quando
a energia pode ser comprada ou consumida.

Para implementar actividades relacionadas com a monitorização do estado da smart
grid, vários componentes especializados são geograficamente distribuı́dos pela rede. Um
dos dispositivos crı́ticos é o Phase Measurement Unit (Unidade de Medição de Fase)
(PMU). Este dispositivo é usado para estimar o estado da smart grid num determinado
momento, recolhendo várias métricas sobre a qualidade do sinal elétrico. Para se con-
seguir criar uma imagem geral da rede inteira, todos estes dispositivos necessitam de ser
sincronizados no tempo, assegurando assim que as medições são efetuadas aproximada-
mente no mesmo instante.

A sincronização do tempo desempenha um papel crucial na estabilidade e no fun-
cionamento correto de todos os componentes da smart grid. Dada a importância da
sincronização de tempo, e a falta de qualquer tipo de proteção nas soluções atuais, este
sistema torna-se num alvo potencial para atacantes.

Em conformidade com os standards, a precisão dos relógios dos PMU’s devem ter um
erro máximo na ordem dos 30 µs. Isso garante que a informação recolhida sobre o estado
da smart grid é válida. Hoje em dia este requisito é satisfeito usando equipamentos GPS
em cada sı́tio onde se encontra um PMU. Quando o GPS foi concebido, não se pensou que
podia vir a ter o sucesso e o impacto atual e, portanto, assegurar a sua segurança não foi
um ponto importante. Ao longo do tempo passou a ser usado em infraestruturas crı́ticas,
o que introduz eventuais problemas graves de segurança. As smart grids são uma destas
estruturas crı́ticas onde o GPS está a ser usado sem qualquer tipo de proteção. Atualmente
existe também uma versão segura do GPS que é empregue pelas forças militares. Os

vii

dispositivos que conseguem decifrar este sinal só estão disponı́veis ao exército. Por além
disso, todos os detalhes sobre o funcionamento do algoritmo de cifra são mantidos em
segredo.

Ao longo dos anos foram desenvolvidos vários tipos de ataques ao GPS. O mais
básico é o Blocking que consiste simplesmente em impedir a comunicação entre a antena
do recetor e o sinal GPS. Isso pode ser conseguido de uma maneira tão simples como
tapar a antena com um bocado de metal. Um ataque que tenta também quebrar a ligação
com o satélite é o Jamming. A ideia deste ataque é introduzir ruı́do suficiente para que o
recetor não consiga distinguir o sinal original. Estes dois tipos de ataques só conseguem
perturbar o funcionamento do recetor GPS. Um tipo de ataque mais potente é o Spoofing.
Este ataque consegue modificar o sinal original vindo do satélite de forma a enganar o
recetor. Assim é possı́vel fazer com que o recetor GPS mostre uma posição ou tempo
incorretos. Nesta dissertação também foi analisada uma evolução deste ataque que tem
como alvo a alteração ilegı́tima dos dados contidos no sinal. Isso pode fazer como que o
recetor falhe ou deixe de poder ser usado.

Os algoritmos de sincronização de relógios existentes hoje em dia, nomeadamente o
Network Time Protocol (NTP) e o Precision Time Protocol (PTP), não são suficientemente
robustos, em termos de segurança ou precisão, para serem utilizados na smart grid. O
NTP foi concebido para a sincronização de relógios em redes de grande escala mas não
consegue fornecer a precisão necessária para os requisitos da smart grid. Por outro lado
temos o PTP que consegue atingir uma precisão na ordem dos nanosegundos em certas
condições, mas é muito sensı́vel a atrasos e oscilações na rede. Isso faz com que o PTP só
consiga garantir uma precisão de tempo na ordem dos nanosegundos em redes de pequena
escala. A smart grid usa uma rede de alta velocidade com relativamente pouco tráfego,
o que torna o PTP uma possı́vel solução para algumas partes dessa rede. Em termos de
segurança, o PTP não está preparado para ser utilizado num ambiente tão crı́tico como a
smart grid, sendo suscetı́vel a ataques.

O foco desta investigação é encontrar um algoritmo resiliente a faltas, capaz de satis-
fazer os requisitos de sincronização de tempo necessários para o correto funcionamento
da smart grid. Foi desenvolvida uma solução baseada no PTP, que consegue cumprir os
requisitos de precisão temporal na smart grid e também consegue mitigar todos os tipos
de ataques ao GPS que foram identificados. Para além disso, a solução também permite
reduzir o número de recetores de GPS necessários para o funcionamento correto da smart
grid.

Palavras-chave: Smart Grid, GPS, Sincronização de relogios, Segurança

viii

Abstract

Smart grids resulted from the integration of computer technologies into the current
power grid. This brings several advantages, allowing for a faster and more efficient
deployment, configuration and maintenance, as well as easy integration of new energy
sources (e.g., wind and solar). As smart grids continue to grow in size and complexity,
they become subject to failures and attacks from different sources. Time synchroniza-
tion plays a crucial role in the stability and correct functioning of many grid components.
Considering how sensitive time synchronization is, the tight restrictions imposed for cor-
rect operation and the lack of any kind of protection, makes this service a potential prime
target for attackers. Today most of the time synchronization requirements are met using
relatively expensive GPS hardware placed in some locations of the smart grid. When GPS
was first devised, nobody could have predicted the success and the impact that it would
have and therefore, security was never an important concern. Through the years, it slowly
gained entrance into more critical systems, where it was never intended to be used, which
can lead to serious security problems. The smart grid is just one of these critical systems
where GPS is being employed without any kind of protection. The focus of this research
is trying to solve this problem, by proposing a more secure and robust clock synchroniza-
tion algorithm. A solution based on the Precision Time Protocol (PTP) was developed
that manages to fulfill the time synchronization requirements of the smart grid and is also
capable of mitigating all types of identified GPS attacks. As an added benefit, the solution
may also reduce the number of GPS receivers necessary for the correct operation of the
smart grid, contributing to decrease costs.

Keywords: Smart Grid, GPS, Time synchronization, Security

x

xii

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Requirements . 4

1.2 Contributions . 4

1.3 Timeline . 5

1.4 Thesis outline . 8

2 Context 9

2.1 The Smart Grid . 9

2.2 Global Positioning System . 11

2.2.1 GPS Attacks . 13

2.3 Precision Time Protocol . 15

2.3.1 PTP Devices . 16

2.3.2 Message Exchange . 16

2.3.3 Network Delay and Clock Offset 18

2.3.4 Best Master Clock Algorithm 20

2.3.5 PTP security . 21

3 Fault Tolerant PTP 23

3.1 Overview . 23

3.2 Attack Model . 24

xiii

3.3 System Architecture . 26

3.4 Solution . 27

3.4.1 Crash failure detection . 29

3.4.2 Byzantine failure detection . 29

3.4.3 Modified Best Master Clock Algorithm 31

4 Implementation and Experimental Evaluation 33

4.1 Implementation . 33

4.2 Testing Platform . 39

4.3 Results . 39

5 Conclusion 43

Bibliography 48

xiv

xvi

List of Figures

1.1 SDR based GPS receiver. 2

1.2 Simple NTP Network. 3

1.3 Gantt chart representing the initial thesis work plan. 5

1.4 Gantt chart representing the final thesis work plan. 7

2.1 Smart grid topography [1]. 10

2.2 Trilateration process used to calculate current position using GPS. 13

2.3 Simple PTP Network (M/S means that the communication port acts as
master/slave). 15

2.4 PTP Message Exchange. 17

3.1 Boundary Clock as originally defined by PTP. 23

3.2 Boundary Clock with the proposed modification. 24

3.3 System Architecture. 26

3.4 Boundary Clock state during normal operation. 27

3.5 Boundary Clock state after an attack was detected. 28

4.1 Ptpd2 class diagram. 34

4.2 Ptpd2 clock servo diagram. 36

4.3 Modified ptpd2 class diagram. 37

4.4 Crash fault detection. 39

4.5 Gradual Clock Skew. 40

4.6 Clock offset during Delay Attack. 41

4.7 Packet Delay Attack. 41

xvii

List of Tables

2.1 PTP Message types. 18

xix

Chapter 1

Introduction

The smart grid represents the evolution and integration into the digital world of the current

electrical grid. Information technologies are used to improve the way the electric genera-

tion and distribution is currently done, making it more efficient, reliable and sustainable.

The smart grid will support better automation, management and coordination between the

end-user and the producer. Advantages include advanced monitoring that can accurately

identify and take measures to mitigate failures and attacks. Self-healing technologies can

be implemented that will allow the grid to solve problems without the need for on-site

verifications or any kind of human intervention.

This increase in interaction between production and consumption, as well as the

sheer complexity demanded by such a network, leads to a set of new challenges and

security problems. User privacy becomes a real concern because of the increase in the

data collection and processing. Reliable communication among the various parts of the

electrical infrastructure turns into a critical necessity.

Smart grids are composed of different types of components each with its own re-

quirements. One such component is the Phase Measurement Unit (PMU), which is an

advanced measurement device used to obtain status information about the electrical lines.

It is one of the building blocks of a monitoring system that can analyze the state of the

grid in real-time. In particular, a PMU keeps track of various parameters (e.g., electrical

current amplitude and phase) of the part of the smart grid where it is installed. This can

be thought of as a ”snapshot” of the state in which that portion of the smart grid is in.

The deployment of multiple PMU’s at different locations across the network allows for

a complete state estimation. This information can then be used to support decisions on

the need to modify the power generation or the distribution of loads, which in turn gives

1

Chapter 1. Introduction 2

the ability to predict and avoid failures like blackouts. Time synchronization among all

PMU’s is critical to create a coherent picture of the smart grid. If PMU’s take ”snapshots”

at different times, the complete state cannot be correctly estimated.

The Global Positioning System (GPS) is used to synchronize the clocks of the PMU’s

around the network [2]. GPS is a type of satellite based clock synchronization solution.

It is able to provide time reference with sufficient accuracy and availability to be used

in infrastructures and systems where time synchronization is critical. When it was first

designed, security was not a concern. However, as it grew in popularity, this lack of

security became a more troubling concern.

One way to try to address the lack of security of GPS is to use a Software Defined

Radio (SDR) [3] capable receiver and modify it in such a way to make it more resilient to

attacks. SDR as a concept has been around for some years now, but recently has experi-

enced a rapid evolution, taking advantage of the newer capabilities of digital electronics.

SDR allows for a software implementation of several components that traditionally were

only possible in hardware, like radio filters, modulators/demodulators and detectors. This

not only reduces costs and increases ease of use, but can also create better open source

alternatives to current offerings. Even a full GPS receiver can be implemented in soft-

ware [4] [Figure 1.1]. This would allow for the addition of features to the standard GPS

protocol to make it more secure and suitable for use in smart grids.

PC running GNSS SDR SDR Dongle GPS Antenna

Figure 1.1: SDR based GPS receiver.

Another approach to improve security takes advantage of alternative network time

synchronization mechanisms. These solutions are advancing at a fast pace and they are

currently being studied as a means to synchronize clocks in critical infrastructures, like

the electrical grid [5]. Several synchronization systems exist, differing from each other

in terms of features, complexity and performance. Today, the most common time syn-

chronization algorithms are the Network Time Protocol (NTP) [6] and the Precision Time

Chapter 1. Introduction 3

Protocol (PTP) [7].

NTP is a network protocol employed to synchronize system clocks among a set of

distributed time servers and clients. Since its first appearance in 1985, four versions were

released, with the last one being NTPv4 in 2010 [8]. NTPv4 addresses many of NTPv3’s

shortcomings, and it can achieve an accuracy of a few milliseconds over the internet,

while coping relatively well with variable message delays and dropped packets. It uses a

client-server model [see Figure 1.2] with participants organized into different levels called

Stratum. Each stratum has a number (starting from 0 at the highest level) representing its

distance from the reference clock. The largest stratum level is 15. After this level all

nodes are considered desynchronized. Note that even though it seems logical that higher-

level clocks have better accuracy, this is not always true because the stratum level can be

user-defined and as such it does not always reflect the clock quality.

Stratum 2

Stratum 1

Stratum 0

Figure 1.2: Simple NTP Network.

PTP is currently the most accurate network time synchronization protocol available,

with an accuracy that can reach nanosecond precision. It makes use of a hierarchical

master-slave architecture to synchronize clocks in a network. Different roles are defined

for every clock/node but also to each communication link between them. Special mes-

sages that carry very accurate timestamps are exchanged between nodes. In order to reach

such high levels of synchronization special care needs to be taken with these timestamps.

Even the delays introduced by the packet traversing the Operating System (OS) proto-

col stack can have a big impact on the outcome. To address these difficulties, PTP de-

fines three modes of operation: software-only, hardware-assisted and hardware only. The

software-only is the least precise approach because all timestamps are taken at the applica-

tion level of the protocol stack. On the other hand, hardware-assisted and hardware-only

Chapter 1. Introduction 4

modes use special hardware to timestamp the messages as close to the physical layer as

possible. The difference between these two modes is related to the place where the PTP

implementation actually runs - in software for the hardware-assisted mode and in hard-

ware for the hardware-only mode.

1.1 Requirements

The requirements of a time synchronization protocol suitable for use in smart grids are

explained in detail in the standard C37.118-2011 [9]. The standard is split into two parts:

the first one presents the measurement (called phasor in this context) estimation require-

ments while the second one explains the network communication protocol. The time

synchronization requirements are described as the maximum allowed error for PMU’s.

Called the Total Vector Error (TVE), it represents the vectorial difference between the

estimated and the theoretical phasors in percentages. The requirement imposed by the

standard is a maximum of 1% TVE, which equates to approximately 30µs. Even though

the standard does not talk about security requirements, the protocol needs to be relatively

secure and maintain timing errors below the thresholds. Ideally, this should occur even in

extreme situations, such as in the case of an attack or when fault tolerance mechanisms

need to do recovery. The fact that each PMU is equipped with a GPS receiver means that

it also inherits all the insecurity and problems related to GPS, which in turn makes the

implementation of a secure time synchronization algorithm even more challenging.

1.2 Contributions

In this thesis we propose an alternative way of keeping the PMU’s synchronized by resort-

ing to a modified version of the PTP protocol. In failure/attack free intervals, the PMU’s

continue to employ GPS based clock synchronization. When a problem is detected they

switch to our protocol.

The changes to PTP were designed with the following two goals:

• the first aim was to create a protocol that manages to satisfy the time synchroniza-

tion requirements of the smart grid, while also being able to cope with the attacks

and failures that might happen around the network;

Chapter 1. Introduction 5

• as a second objective, we wanted to minimize the changes to the PTP standard, as

this facilitates the updates to the existing implementations and the security evalua-

tion.

Most security problems related to PTP are analyzed in some detail in the thesis.

There is however a focus on a critical attack vector, namely the GPS receiver, because it

functions as the time source for the network devices. As a result of this work, a publication

was accepted in the security track of the INFORUM conference.

R. Onica, N. Neves, and A. Casimiro, “Fault-Tolerant Precision Time Protocol for

Smart Grids,” in Proceedings of 7o Simpósio Nacional de Informática INFORUM, Septem-

ber 2015

1.3 Timeline

The initial work plan for the thesis is presented as a Gantt chart in [Figure 1.3]. All work

tasks are described by their respective ID’s (first column of the chart).

ID Start Finish Duration
Q4 14 Q2 15Q1 15

Dec JunMarOct Jan Apr MayNov Feb

1 39d11/28/201407‐10‐2014

2 25d11/28/201427‐10‐2014

3 40d12/26/201403‐11‐2014

4 40d1/30/201508‐12‐2014

5 75d5/1/201519‐01‐2015

6 104d7/7/201512‐02‐2015

Figure 1.3: Gantt chart representing the initial thesis work plan.

Chapter 1. Introduction 6

• Task 1 consists of the study of current GPS and network time synchronization algo-

rithms, with a focus being put on their security, or lack thereof. The NTP and PTP

protocol were studied and possible solutions to their respective security problems

were researched. The environment in which these protocols would need to work,

namely the smart grids, was analyzed to better understand the exact requirements;

• Task 2 is the design of an approach that could eliminate (or at least diminish) the

impact of possible attacks on the time synchronization. The first approach we came

up with was based on using SDR to add security features to the current GPS proto-

col;

• Task 3 is the analysis of all available hardware and software solutions to select the

ones that would allow for the creation of a framework and workbench to be used

for implementing, testing and assessing our proposed approach;

• Task 4 consists of building the framework and workbench with the selected hard-

ware and software;

• Task 5 is the implementation of the approach and the assessment of its effective-

ness. The implementation should be tested against attacks that could happen in

the context of a smart grid. The results should be analyzed and compared with the

initial requirements;

• Task 6 is to further analyze how the solution performs and to document the results.

The initial approach was based on using SDR along with specific hardware to try to

add protection mechanisms to the standard GPS protocol. SDR is responsible for creating

the navigation and time solutions from the RAW GPS data that the hardware provides.

However, once we reached Task 4, we encountered several compatibility issues with the

hardware that lead to unexpected delays in the work plan. When all compatibility issues

were resolved, we already had a working prototype of the software that could be tested.

At that time, we ran into a second difficulty - the hardware was unable to capture any kind

of GPS data.

The problem appeared to be with the SDR dongle or with the antenna - either our

SDR dongle was faulty and could not read any kind of GPS data or the antenna was not

sufficiently powerful to capture the satellite signal. The dongle managed to collect radio

waves in the normal frequency spectrum (like radio stations), which we could decode,

but could not receive any kind of signal in the 1575 MHz range that the GPS uses. This

Chapter 1. Introduction 7

led us to think that the problem was with the antenna. To try to find a solution, we

experimented with another antenna of a higher quality and additional hardware, namely

a bias-T network to power the new antenna. Even so, we had no success at receiving any

kind of GPS signal.

This led us to try a different approach. This was the solution that we ended up

implementing and testing. It is based on the PTP, and due to time constraints, we decided

to employ a software-only version based on the open-source project ptpd2 [10]. Setting

up this solution only required a few Linux PC’s and an additional Ethernet card. The first

stage was to design the solution to the smallest detail. The next step was to set up the

workbench and install the ptpd2 software. After this, the modifications to the standard

protocol were implemented and tested.

ID Start Finish Duration
Q4 14 Q2 15Q1 15

Dec JunMarOct Jan Apr MayNov Feb

1 39d11/28/201410/7/2014

2 25d11/28/201410/27/2014

3 40d12/26/201411/3/2014

4 40d1/30/201512/8/2014

5 30d2/27/20151/19/2015

24d4/2/20153/2/20156

68d7/7/20154/3/20157

68d7/7/20154/3/20158

Figure 1.4: Gantt chart representing the final thesis work plan.

The new Gantt chart representing the final work plan for the thesis is shown in [Fig-

ure 1.4]. Up to Task 4 the plan stayed the same but, the final stages of the work had to be

revised:

• Task 5 represents a new research stage in which a different approach was studied

to try to adapt the PTP standard in such a way to be used in smart grids;

Chapter 1. Introduction 8

• Task 6 corresponds to the design of a new solution that is suited for use in smart

grids and can satisfy all the requirements. This task also includes building the

workbench for implementing and testing the protocol;

• Task 7 represents the implementation of the newly designed solution. The imple-

mentation is an extension to the PTP standard programmed in the ptpd2 software;

• Task 8 is the testing phase and also contains the documentation of all the work up

until this point.

1.4 Thesis outline

In chapter 2, the concept of smart grid is introduced alongside the best time synchro-

nization protocols, GPS and PTP. In particular, it explains why the PMU’s deployed in

smart grids need to be time synchronized. After explaining the basics about how GPS

and PTP work, the chapter discusses several issues that these protocols have, mainly con-

cerning their security. For PTP, the major problems in terms of time synchronization are

described, namely clock offset and delay asymmetry.

Chapter 3 of the thesis is dedicated to give an in depth explanation of the proposed

solution the implementation. After presenting the reasoning behind some of the security

related decisions, the attack model explains the capabilities of the adversary. All the

changes made to the PTP standard are explained next. The last part of this chapter is

dedicated to explaining the details of implementing the attack detection mechanisms using

the software of ptpd2.

Chapter 4 presents the tests and experimental results of the work. A detailed explana-

tion is given about the testing platform. The implications and effects of using the existing

hardware as the test bed are analyzed and various types of attacks are conducted. The

result shows the effectiveness of the proposed solution, making it a suitable candidate for

the smart grid time synchronization.

Chapter 2

Context

A thorough study of all the current time synchronization algorithms is essential to lay the

foundation for our proposed solution. Understanding the challenges imposed by the smart

grid provide motivation and give a clear explanation of what the solution is supposed to

do. In this chapter the foundation for this thesis is explained. Some related work on the

security of currently available solutions is also discussed.

2.1 The Smart Grid

The smart grid [Figure 2.1] is the next generation of the electrical power system. The

smart grid has two primary features: it allows flexible and real-time decision making

based on real time data collection and analysis; and it is capable of monitoring its own

health and alert operators immediately when problems arise. In some cases, the smart

grid may also act automatically, taking corrective actions that will minimize the impact of

a failure.

Some of the most important objectives of the smart grid are:

• Accommodate a large variety of energy production technologies including wind,

solar and geothermal heat;

• Engage the consumer not only in the consumption cycle but also in the energy

production cycle;

• Resilience to attacks, as it needs to mitigate both physical and cyber-attacks;

• Self-healing, since it needs to rapidly detect, analyze and respond to incidents;

9

Chapter 2. Context 10

Figure 2.1: Smart grid topography [1].

• Empowering the consumer to a certain extent by allowing him to choose when/how

energy is bought;

• Accommodate for both the household consumer and industry needs.

In order to implement activities related to the smart grid monitoring, specific devices

are being placed at different geographical locations. The PMU is one such device. It is

used as a type of advanced measurement device. A PMU can collect electric metrics,

such as the voltage and current phasors at precise instants, through a timing reference

given by the Global Positioning System (GPS) [see Chapter 2.2]. This can be tough of

as a ”snapshot” of the state in which that portion of the smart grid is in. Using multiple

PMUs at different points across the smart grid allows for a complete state estimation. This

information can then be used to support decisions on the distribution of current load across

the network, which in turn gives us the ability to predict and avoid failures like blackouts.

Time synchronization among all PMUs is critical because it allows for the creation of a

coherent picture of the smart grid. If ”snapshots” are taken at different times, the complete

state cannot be correctly estimated.

Current PMUs use GPS receivers for time synchronization. This is a very costly

solution because it requires dedicated hardware to be present in each and every PMU.

From a security standpoint, it also leaves the PMUs, and in turn the whole smart grid,

Chapter 2. Context 11

vulnerable to even the most basic GPS attacks like blocking or jamming.

2.2 Global Positioning System

GPS was developed in 1973 by the U.S. Department of Defense, as a result of combining

previous navigation systems, some of which were classified. It provides specially coded

satellite signals that can be processed in a GPS receiver, enabling it to computer its own

position, velocity and the time. Four GPS satellite signals are used to compute positions

in three dimensions and the time offset between the receiver clock and the satellite clock.

The satellites carry very stable atomic clocks that are synchronized with each other and

to ground clocks. Any drift from the true time maintained on the ground is corrected on a

daily basis.

The current GPS is composed of three major parts or segments:

• Space Segment is composed of all the GPS satellites (also called Space Vehicles).

Originally 24 satellites were used, which orbit the earth every 12 hours. They were

arranged in such a way that at least six satellites pass over the same location every

day. As of December 2012, there are a total of 32 satellites in the GPS constellation.

These additional satellites provide redundant information for the receivers, which

in turn improve the precision of the GPS receiver calculations;

• Control Segment consists of a system of tracking stations located around the world.

This system is composed of:

– a master control station (MCS);

– an alternate master control station;

– four dedicated ground antennas;

– six dedicated monitor stations.

The MCS is located in Colorado at the Schriever Air Force Base. It measures

signals from the satellites and then computer precise orbital data (called ephemeris)

and the satellite clock correction for each one. It then uploads the ephemeris and

clock data to the satellites;

• User Segment consists of all the GPS receivers both civil and military. The naviga-

tion in three dimensions is the primary function of GPS. It also allows for extremely

accurate time dissemination.

Chapter 2. Context 12

Every GPS satellite continually broadcasts a signal that has two important compo-

nents:

• A sequence of ones and zeroes called the pseudorandom code that is known by

all GPS receivers. The receiver also has the ability of generating the exact same

pseudorandom code locally. By comparing the two codes on the time scale (local

and received codes) it can calculate the time of arrival of the original code.

• A message that includes the time of transmission of the code epoch (a defined part

of the pseudorandom code) and the satellite position at that time.

The GPS satellites transmit data on three different carrier frequencies L1, L2 and L5,

the latter only being supported on the newer satellites (at least 5 satellites where launched

from 2011, which support the L5 carrier). The data encoding is done using unique code

division multiple access (CDMA) [11], so receivers can distinguish between each satellite.

This system uses two distinct CDMA encoding types:

• a method based on a code called the course/acquisition (C/A), which is accessible

to the general public;

• a method based on a precise (P(Y)) code that is only known and used by the U.S.

military and other NATO nations. This code basically encrypts the transmitted data.

Devices capable of decrypting this signal are only available to the military and the

specifics of the security protocol are kept secret.

The GPS receiver needs to lock on to at least four satellites in order to calculate its

position (X, Y, Z) and the time (T). Each message that it receives from the satellite is time

stamped (time of transmission). It also gets the time of arrival as previously explained, so

it can calculate an estimate of the interval taken for the message to travel from the satellite

to itself. Multiplying this value by the speed of light, the GPS receiver, can determine the

distance from itself to the satellite.

Distance = ∆T ∗ speedOfLight

The time interval calculation (∆ T) is not completely precise due to the clocks of

the receiver and satellite not being perfectly synchronized (which is actually impossible

considering the atomic clocks that the satellites use). This introduces errors in the process

of calculating the exact position (trilateration). This process is shown in [Figure 2.2]. The

protocol and all messages that are used are explained in more detail in [12] and [13].

Chapter 2. Context 13

The time calculation (ΔT) is not absolute due to the clocks of the receiver and

satellite not being perfectly synchronized (which is actually impossible considering the

atomic clocks that the satellites use). This introduces errors in the process of calculating

the exact position (process called trilateration). This process is shown in Fig. 2.0. The

protocol and all message types are explained in more detail in [2] and [3].

 Another factor that can contribute to the error is the atmospheric conditions, which

can delay the messages. This leads to errors in the position calculation. Fig. 2.0 shows the

errors introduced by these factors.

Fig. 2.0 Trilateration process used to calculate current position using GPS

The lack of any kind of protection for the civil band means that many types of

attacks exist to try to fool or block the GPS signal. The problem is made even worse by the

fact the all the hardware needed for the more advanced types of attacks is readily available

to everybody and is relatively cheap considering the circumstances. Some of the known

attacks are described next:

- Blocking consists in physically blocking the signal by shielding or removing the

antenna of the GPS receiver;

- Jamming overrides the original signal with a more powerful one. This is not that

hard to do considering the fact that the parts needed for the construction of a DIY

GPS jammer can be readily found. Another important role here is the very weak

Figure 2.2: Trilateration process used to calculate current position using GPS.

2.2.1 GPS Attacks

The lack of any kind of protection for the civil band (the C/A code) means that many

types of attacks exist to try to fool or block the GPS signal. The problem is made even

worse by the fact that all the hardware needed for the more advanced types of attacks is

readily available to everybody and is relatively cheap considering the circumstances.

The way that the GPS signal source is transmitted also turns it into an easy target

for attacks. Because of the huge distance that the signal has to travel, its strength is very

low when it reaches the earth’s surface. It has often been compared to viewing a normal

20-Watt light bulb from about 19 000 Km away.

The next subsections discuss the most common types of GPS attacks.

GPS Blocking

GPS blocking is the most basic form of attack. This type of attack tries to isolate the

receiver from the satellite signal, which in turn leads to a signal loss. It can be performed

just by simply covering the GPS antenna of the receiver. It does however require physical

access to the GPS receiver in order to be executed which, depending on the adversary, can

create some difficulties.

Chapter 2. Context 14

GPS Jamming

GPS jamming attacks [14] [15] are similar to blocking in the sense that they try to make

the receiver lose the signal lock. While blocking achieves this by means of isolation, the

idea behind a jamming attack is to introduce so much extra radio-frequency noise that the

receiver can no longer find the satellite signal out of it. This causes the receiver to be

unable to get a lock on the signal.

Considering how weak the satellite signal is, it is not too hard to introduce sufficient

radio-frequency noise from a few meters away from the receiver that can completely

suppress the original GPS signal. Adding to this, jamming devices are very easy to find

on the web and are relatively cheap. Some countries have gone as far as to ban the sale

of such devices. It is speculated that the GPS system for an entire city could be prevented

from working properly in a flash if the jamming device was sufficiently powerful. To put

this into perspective, a device the size of a suitcase could be used from as much as 1000

meters away [16].

GPS Spoofing

GPS spoofing it a more complex type of attack compared to blocking and jamming. It

does not block the normal satellite signal but modifies it in such a way to fool the receiver

into computing a different erroneous navigation/time solution. The receiver will not be

aware of the problem, and therefore it will operate thinking the genuine signal is still

being used. This attack can be much harder to detect than jamming.

Some work has already been done in designing spoofing attacks in general [17] [18].

GPS spoofers are also more and more accessible both in terms of cost and of the know-

how needed to build them. The manner in which this attack works gives the adversary

an extended list of possibilities when it comes to the damage that can be caused. Due to

the ”ease of use” and the disastrous results that GPS spoofing can have, some effort is

being put into researching, developing and deploying GPS receivers and countermeasures

in general, which can cope with these attacks [19] [20].

GPS Software

GPS Software attacks have been recently described [21]. They give the possibility of

altering any part of the satellite signal. This can lead to not only the receiver to give

an incorrect navigation/time solution, but can even make the receiver crash or downright

Chapter 2. Context 15

become unusable (by exploiting a vulnerability in the executing programs). The fact that

manufacturers continue to add features like more connectivity options or even the ability

to manage the receiver through the internet, just adds to the problem. GPS as a protocol

has limitations from a security standpoint and adding more attack vectors waiting to be

exploited does not help to solve the problem.

The attacks demonstrated in [21] show that even high-end GPS receivers can be

damaged beyond repair just by modifying a simple parameter in the GPS signal. Again

these kinds of attacks are borderline impossible to detect considering the capabilities of

the adversary.

2.3 Precision Time Protocol

The precision time protocol appeared as a result of the growing need for high precision

time keeping. It was first described in the IEEE 1588-2002 standard, officially entitled

“IEEE Standard for a Precision Clock Synchronization Protocol for Network Measure-

ment and Control Systems”. A revised version appeared in 2008 as the IEEE 1588-2008

standard [22]. It was designed to fill in the gap left open by the Network Time Protocol

(NTP) and GPS. It offers far better accuracy than NTP, but without the need for a dedi-

cated GPS receiver at each network node. GPS receivers can be used in combination with

a PTP network by acting as a Grandmaster Clock, i.e., the time source for that network.

A simple PTP network can be seen in [Figure 2.3]. It is composed of a Grandmaster

Clock that is the time source for the network; a Boundary Clock that synchronizes itself

to this Grandmaster Clock and then further synchronizes other parts of the network; and

lastly an Ordinary Clock. Since a PMU uses a GPS receiver to synchronize its local

clock, it can be thought of as being made up of a Grandmaster Clock (GPS receiver)

directly connected to a Boundary Clock.

Grandmaster
Clock

Network 1
Boundary

Clock
Network 2

Ordinary
Clock

Typically a GPS
receiver

M S M S

PMU

Figure 2.3: Simple PTP Network (M/S means that the communication port acts as
master/slave).

Chapter 2. Context 16

2.3.1 PTP Devices

PTP uses the master-slave architecture for time distribution in which one or more com-

munication media are used and one or more clocks. It defines different roles for every

clock in the network and various states for every communication port in use:

• Grandmaster Clock : is a clock that synchronizes directly to a GPS receiver. It

always runs in PTP master mode, meaning it will distribute its time throughout the

network;

• Ordinary Clock : is a normal clock that synchronizes itself to another source. It

always runs in the PTP slave mode;

• Boundary Clock : is a clock that both synchronizes itself to a PTP master (acting

as a PTP slave) and further distributes the time to another part of the network (acting

as a PTP master). Only the PTP slave port of the Boundary Clock has the ability
to change the internal clock. The other ports can only read the local clock;

• Transparent Clock : is a special type of clock that modifies all PTP messages that

pass through this device, correcting the message timestamps for time spent travers-

ing the network equipment. This scheme improves the time distribution accuracy

by compensating for the time messages spend in each communication device (e.g.,

a switch).

2.3.2 Message Exchange

The synchronization is achieved by exchanging PTP messages between the master port

of a clock and the slave port of another clock. The messages are divided into event mes-

sages and general messages. Event messages are timestamped with both transmission and

reception times. A message is accurately timestamped in two ways: either on-the-fly as

it is about to leave the device (called one-step mechanism), or by transmitting another

message afterwards containing the timestamp for the first one (called two-step mecha-

nism). Only the Sync message and the Pdelay Resp message are affected by the used of

the two-step mechanism. For the Sync message, a Follow Up message is transmitted con-

taining it’s egress time. For the Pdelay Resp message, a Pdelay Resp Follow Up message

is transmitted containing it’s egress time. General messages do not require accurate times-

tamps and are used for both synchronization and configuration purposes. All messages

are shown in [Table 2.1].

Chapter 2. Context 17

Based on timestamps, the slave calculates the time offset from the master clock and

eventually adjusts its local time to be similar to the master. The basic synchronization

message exchange is showed in [Figure 2.4] and the logic behind it is explained below:

information@tekroninternational.com | www.tekroninternational.com

PTP Overview

PTP Operation

IEEE 1588 standardises the Precision Time Protocol (PTP). It defines the descriptors that characterise a

clock, the states of a clock and the allowed state transitions. It defines network messages, fields and

semantics, the datasets maintained by each clock and the actions and timing for all IEEE 1588 network and

internal events. It also describes a suite of messages used for monitoring the system, specifications for an

Ethernet-based implementation and conformance requirements and gives some implementation

suggestions.

Message-Based Synchronisation

PTP is based upon the transfer of network datagrams to determine system properties and to convey time

information. A delay measurement principle is used to determine path delay, which is then accounted for in

the adjustment of local clocks. At start up, a master/slave hierarchy is created using what is called the Best

Master Clock (BMC) algorithm to determine which clock has the best source of time. The BMC algorithm is

then run continuously to quickly adjust for changes in network configuration. Synchronisation is achieved

using a series of message transactions between master and slaves. There are five message types - Sync,

Delay Request, Follow Up, Delay Response and Management - which are used for all aspects of the

protocol. A sequence of message transactions takes place to synchronise a pair of clocks as shown in

Figure 2.1.

Figure 2.1: Master-Slave offset measurement

MS

SM

Figure 2.4: PTP Message Exchange.

1. The master sends a Sync Message to the slave and saves the time t1 at which it was

transmitted;

2. The slave receives the Sync Message and notes the time of reception t2;

3. The master conveys to the slave the timestamp t1 by embedding it in a Follow Up

Message. Alternatively this timestamp can be embedded into the Sync Message

using some kind of hardware processing (this is called the one-step mechanism);

4. The slave sends a Delay Req Message to the master and saves the time t3 at which

it was transmitted;

5. The master receives the Delay Req Message and notes the time of reception t4;

6. The master conveys to the slave the timestamp t4 by embedding it in a Delay Resp

Message.

Chapter 2. Context 18

Type Message Description

Event

Sync
Sent by the master. Contains the egress time

of the master node

Delay Req
Sent by the slave as a response to the Sync message.

Contains the egress time of the slave node

Pdelay Req
Used to measure the link delay between two clock

ports implementing the peer delay mechanism

Pdelay Resp
Used to measure the link delay between two clock

ports implementing the peer delay mechanism

General

Announce Contains the clock characteristics like clock quality

Follow Up
Delivers the master egress time of the Sync message.

Only used in the two-step mechanism

Delay Resp
Sent by the master node. It contains ingress time

of the Delay Req message

Pdelay Resp Follow Up
Used to measure the link delay between two clock

ports implementing the peer delay mechanism

Management Used for configuration purposes

Signaling Used for configuration purposes

Table 2.1: PTP Message types.

2.3.3 Network Delay and Clock Offset

Considering that the clock offset of the slave relative to the master is ∆ and that the

network delay between the master and slave is d(MS) and between the slave and master is

d(SM) we have:

t2 = t1 + ∆ + d(MS) (2.1)

t4 = t3−∆ + d(SM) (2.2)

Notice that we have two equations and three unknowns, which prevents us from

solving this system of equations. Packets transmitted throughout the network generally

suffer different delays in the two directions, and typically there is no way of accurately

Chapter 2. Context 19

measuring the one way delay, i.e., d(MS) or d(SM). However, in order to solve these

equations an important assumption needs to be made: the network packet delay is the
same in both directions i.e., d(MS)=d(SM)=d. This is an approximation that introduces

an error in the calculations, as it is unlikely to hold in a real network. PTP tries to minimize

its effect in different ways, such as by taking very accurate timestamps, and by correcting

the timestamps when messages go through Transparent Clocks (see Section 2.3.1). Now

we can simplify (2.1) and (2.2):

d =
t2− t1 + t4− t3

2

∆ = t2− t1− d

It is now possible to calculate both the one way delay as well as the clock offset

∆. However, because of the aforementioned assumption, the calculated clock offset will

have an error that is equal to the difference between the mean delay and the master to

slave delay.

There are three main reasons that can lead to asymmetric path delays:

• Operating system latency. This is represented by time the PTP packet spends in

the protocol stack. Between the generation of the packet and its transmission on

the wire, the packet is manipulated and buffered by the protocol stack. When it

reaches the other side, it is delayed by another interrupt. To avoid this problem,

PTP packets should be timestamped as close to the physical layer as possible, e.g.,

at the MAC layer. This approach can reduce the latency introduced by the operating

system from milliseconds to nanoseconds.

• Asymmetric link speed. More often than not different links are used for bidirec-

tional communication. Two different links almost never have the same exact speed.

This can cause some packets to be received sooner than others, which in turn leads

to an error in the final calculation of the clock offset. In order to avoid this, the

same link has to be used for both directions.

• Network devices. All network devices (e.g., switches and routers) need to do some

kind of processing on the packets they receive. No matter what technique is used,

buffering and queuing packets takes time, which increases the delay. To try to

Chapter 2. Context 20

minimize the impact that network devices have on network delay, various methods

were devised. The simplest method is to give more priority to the PTP packets.

The majority of switches and routers nowadays support packet prioritization. This

will alleviate the delay introduced by packet processing. In order to completely

eliminate this processing delay, a Transparent Clock can be used. The Transparent

Clock compensates for the processing time of the packet by changing the included

timestamp.

Another method to try to reduce the impact of asymmetric path delays is PTP delay

equalization [23] [24]. It appoints a fixed delay to all PTP packets. All network devices

would process the PTP packet as to make sure that all of them experience the same known

delay.

2.3.4 Best Master Clock Algorithm

In a distributed environment, an algorithm called Best Master Clock algorithm is used

to select the best candidate node to serve as the time source. This node will provide

the reference time for the network. Selecting the best master takes into account various

parameters of each node:

• Clock quality - is the expected deviation from real time. In version 2 of PTP, the

clock quality is defined with two data fields, the clockAccuracy and clockClass. The

clockClass is used for transitioning a port from one state into another in our imple-

mentation. By default the values 13, 255 and 248 are used to designate a master

only port, a slave only port or a master/slave port respectively. The master/slave

port can run in either of these states. In a network of such clocks only one will be

master and the rest will be slaves. The BMC algorithm is used to decide which one

should be the master. If all clocks are run in master only mode, after the best one is

selected, all others will go into a passive state;

• Priority - is represented by two 8-bit fields known as Priority1 and Priority2;

• Variance - is an estimation of the stability of the clock based on performance ob-

servations;

• Identifier - is a universally unique numeric identifier of the clock and is used as a

tie breaker if all the other parameters are the same.

Chapter 2. Context 21

Each clock uses an internal data set to save its own parameters and Announce mes-

sages are used to send this information from the current best clock (current master) to all

other connected clocks. Whenever a Announce message arrives at a node, a comparison

is made between the internal parameters of the receiving clock and the data set included

in the Announce message. After this, a decision is made best on the data set comparison.

As such the Best Master Clock algorithm can be divided into two phases:

• Data set comparison phase. In this phase the proprieties of two different clocks are

compared, as indicated by their respective data sets. The input is represented by

data set contained in the received Announce message and the internal data set of

the clock that received that Announce message. The output is which one of the two

clocks is the most suited to take the role of master.

• State decision phase. After the data set comparison ends, a decision needs to be

made as to what is the most recommended state of the internal clock. If the other

clock from the comparison is better, the internal clock becomes a slave (or goes into

a passive state). Otherwise it becomes the master.

2.3.5 PTP security

Annex K of the Precision Time Protocol standard IEEE 1588-2008 [22] presents several

security guidelines that can help the protocol withstand different types of attacks. The

guidelines are however completely optional and in an experimental state. They focus on

adding two main security mechanisms:

• An integrity protection mechanism, which uses a Message Authentication Code

(MAC) to verify that messages have not suffered any unauthorized modification in

transit. A message counter is also implemented to help prevent replay attacks;

• An authentication method based on a challenge-response mechanism.

A flag in the PTP message is used to indicate that it is carrying security related infor-

mation. Each message following this one is required to also present the same flag or else

it is silently discarded without wasting any more resources. In order to ease this process

for hardware implementations, the flag field should be the last field in the message. By

doing this, an indirect protection against Denial of Service attacks on system resources is

created. In [25] a comprehensive threat analysis of the PTP protocol is done and solutions

using IPsec and MACsec are explored.

Chapter 2. Context 22

Chapter 3

Fault Tolerant PTP

At the time of this writing, PTP has already been researched as a solution for time syn-

chronization in the smart grid environment. However, the main concern of these studies

is the clock synchronization accuracy that can be achieved. The security problems of this

protocol have yet to be addressed. In this chapter we present a new approach to employ

PTP in a smart grid environment. We also discuss the changes to the PTP standard that

address the lack of security, when the primary attack vectors are the GPS receivers.

3.1 Overview

Some of the challenges of deploying PTP in a smart grid network are similar to those

presented in [26]. Our solution is based on a PTP Boundary Clock [Figure 3.1]. It syn-

chronizes directly to a Grandmaster Clock and then distributes this time information to a

part of the network.

PTP
Slave

PTP
Master

Internal Clock

Grandmaster
Clock Slave Clock

Figure 3.1: Boundary Clock as originally defined by PTP.

Our modified Boundary Clock [Figure 3.2] acts like a normal Boundary Clock but

has an additional port that functions as a backup in the case the Grandmaster Clock fails.

23

Chapter 3. Fault Tolerant PTP 24

PTP
Slave

PTP
Master

Backup
Port

Internal Clock

Backup
Port

Grandmaster
Clock Slave Clock

Under Attack

Figure 3.2: Boundary Clock with the proposed modification.

The backup port takes the role of the PTP master once the node identifies misbehavior of

the Grandmaster Clock, ensuring that the internal clock remains synchronized with real

time. This backup port will be connected with other such ports from various Boundary

Clocks around the network. To ensure full time synchronization among all nodes, we need

to have several GPS based Grandmaster Clocks and Boundary Clocks spread throughout

the network to ensure some geographical distribution. However, if the network delays and

jitter allow it, we can use the same GPS receiver for more than one node. Not only does

our solution potentially manage to reduce the number of GPS receivers needed but it also

supports the detection and mitigation of GPS attacks. This enables the node to always

synchronize itself to a time source even if it is not as good (or precise) as the original.

3.2 Attack Model

Our focus is on detecting and mitigating attacks on the GPS receiver (i.e., Grandmaster

Clock) that offers time information to the boundary clock as well as on the communi-

cation link between them. There is an initial prerequisite that all boundary clocks are
synchronized to a correct time source before any attacks occur.

Fault tolerance represents one of the most important concepts in distributed systems

design. It enables a computer system to continue operating normally even when one

or more of its components fails. This does not imply that the failures do not have any

consequence on the system. The computational cost of maintaining the system running

Chapter 3. Fault Tolerant PTP 25

correctly in this case is directly proportional to the number of failures the system is suf-

fering. However, in systems with a high degree of fault-tolerance the impact of failures

on performance can be eliminated entirely.

We are interested in two main types of failures: crash and arbitrary. Crash failures

are self-explanatory. When a system crashes it is unable to continue providing the ser-

vice it was initially intended to offer. Arbitrary failures encompass all sort of erroneous

behaviors that the component might experience, including delays in producing responses

or the transmission of invalid results. Arbitrary failures are also called Byzantine failures

referencing the Byzantine Generals Problem [27].

We abstracted the ways in which the Grandmaster Clock can fail into two classes, as

perceived by the Boundary Clock:

• Crash failures are observed when the Grandmaster Clock is incapable of sending

any type of information to the Boundary Clock. This can happen when the GPS

receiver of the Grandmaster Clock is:

– under a Blocking or Jamming attack and loses its satellite signal lock;

– under a Software Attack that crashes the GPS receiver;

• Byzantine failures are assumed when the information received from the Grand-

master Clock is incorrect in any way, or when it reaches the Boundary Clock late or

in an arbitrary order. This can happen when the GPS receiver of the Grandmaster

Clock is:

– under a Spoofing Attack that causes the Grandmaster Clock to give usable but

incorrect data;

– under a Software Attack that renders the Grandmaster Clock unable to provide

any kind of usable information.

A Byzantine fault is also assumed when the Communication Link interconnecting

the Grandmaster Clock to the Boundary Clock is under attack, which in turn causes

the time information to be delayed or to reach the Boundary Clock in an incorrect

order.

Chapter 3. Fault Tolerant PTP 26

3.3 System Architecture

We define three new port states based on the existing three states of PTP Master, PTP

Passive and a PTP Slave. The new port states are called Fault-Tolerant (FT) PTP Master,

FT PTP Passive and FT PTP Slave respectively [see Figure 3.3]. As previously mentioned,

our modified Boundary Clock distinguishes itself from a normal one by the presence of

one extra port that will interconnect various such Boundary Clocks.

• FT PTP Slave has the purpose to detect abnormal activity coming from the Master

port it is connected to (in our case this will be the Grandmaster Clock port) and to

alert the backup port. It does this by analyzing the time information coming from

the Grandmaster Clock, as well as the network delay between them;

• FT PTP Master and FT PTP Passive are port states in which the newly added

backup port of the Boundary Clock will run. Their primary purpose is to distribute

time information (if the Grandmaster Clock where it synchronizes itself is still con-

sidered correct) to other Boundary Clocks.

Grandmaster
Clock

FT PTP
Slave

PTP
Master

FT PTP
Master

Internal Clock
PTP Slave

PTP Slave

PTP Slave

PTP Slave

PTP Slave

Grandmaster
Clock

FT PTP
Slave

PTP
Master

FT PTP
Passive

Internal Clock

PTP Slave

PTP Slave

PTP Slave

PTP Slave

PTP Slave

M
od

ifi
ed

 B
M
C
Al
go
rit
hm

FT PTP
Passive

FT PTP
Passive

FT PTP
Passive

FT PTP
Passive

FT PTP
Passive

FT PTP
Passive

GPS Receiver

GPS Receiver

Figure 3.3: System Architecture.

Chapter 3. Fault Tolerant PTP 27

The normal PTP Slave port of the Boundary Clock is replaced with a FT PTP Slave.

As mentioned before, the backup port of the Boundary Clock will either run in FT PTP

Master or FT PTP Passive modes. A modified version of the Best Master Clock algorithm

runs between the backup ports with the responsibility of deciding which one is the FT

PTP Master. After the best FT PTP Master is selected, all the other ports will go into

FT PTP Passive mode. The modified version of the BMC algorithm takes into account

another parameter used for disqualifying one such port from the algorithm (see below).

3.4 Solution

In this section we describe how the detection and recovery mechanism works. The state

of the Boundary Clock during normal operation and when under attack are displayed in

[Figure 3.4] and [Figure 3.5].

FT PTP
Slave

PTP
Master

FT PTP
Master

Internal Clock

FT PTP
Passive

Grandmaster
Clock Slave Clock

Under Attack

Figure 3.4: Boundary Clock state during normal operation.

When an attack is detected by the FT PTP Slave, it first does a clock jump1 of 2 *

DEFAULT SYNC INTERVAL (1 second in our implementation) ahead, then proceeds to

disable itself. The backup port (running in either FT PTP Master or FT PTP Passive)

observes the clock jump by reading the clock at each full run of the protocol. Next, it

goes into a normal PTP Slave mode. Any out of the ordinary modifications to the internal

clock of the Boundary Clock are detected and handled in this way.

The backup port can be in two different states when an attack is discovered: FT PTP

Master or FT PTP Passive. As mentioned, in both cases the backup port will go into PTP

1A sudden change in the order of milliseconds or larger of the internal clock time.

Chapter 3. Fault Tolerant PTP 28

Disabled PTP
Master

PTP Slave

Internal Clock

FT PTP
Master

Grandmaster
Clock Slave Clock

Clock Jump

Detect Clock
Jump

Under Attack

Figure 3.5: Boundary Clock state after an attack was detected.

Slave mode. The difference consists in the fact that if the current state is FT PTP Master,

another backup port will need to be elected to go into FT PTP Master state. A modified

BMC algorithm is used to perform this change, by comparing data from all the backup

ports of the Boundary Clocks.

Notice that we use the local clock of the Boundary Clock as a means to communicate

failure detection between the two ports. This is done in order to minimize changes to the

standard. In alternative, a low level, high speed communication scheme as presented

in [28] could help with the recovery time.

The clock jump performed by the FT PTP Slave will always have to be greater than

the DEFAULT SYNC INTERVAL. This is done to make sure that the backup port (now in

PTP Slave state) will receive at least one Sync Message from the new time source (in this

case the backup port who was elected as the new FT PTP Master from another boundary

clock) to compare the origin timestamp from this Sync Message to the current local clock

time.

The state change from FT PTP Master to PTP Slave is carried out by modifying

the clock class value of this port from 13 (associated with a Master only port) to 255

(Slave only port). Once into PTP Slave mode this port will start synchronizing to the

FT PTP Master and the previously set local clock jump will be immediately detected and

corrected. In the worst case scenario the recovery time is DEFAULT SYNC INTERVAL +

PTP Slave Initialization Time.

Next we describe in more detail how the detection mechanism implemented in the

FT PTP Slave works for crash and Byzantine faults.

Chapter 3. Fault Tolerant PTP 29

3.4.1 Crash failure detection

The crash failure detection mechanism is based on the periodic transmission of Announce

Messages. The normal behavior of the Grandmaster Clock is to send an Announce Mes-

sage every DEFAULT ANNOUNCE INTERVAL (1 second in our implementation). The

FT PTP Slave keeps track of the received announce messages and waits a maximum of

announceTimeoutGracePeriod (with a value of 3 seconds) before declaring a packet as

lost. We consider the Grandmaster clock failed if two Announce Messages are lost. This

translates to a maximum wait time of 6 seconds, which is a lot but serves as a means of

testing and verifying the algorithm. Of course, the bounds could be made tighter but with

the cost of an increased performance overhead.

3.4.2 Byzantine failure detection

As a first detection layer, all information reaching the Boundary Clock from the Grand-

master Clock is filtered to eliminate any bogus data. This will prevent most arbitrary

behaviors that cause the transmission of unexpected data. From the previously mentioned

attacks, the only one that can do this is the GPS Software attack. This scenario encom-

passes most of the attack vectors but two cases need to be treated separately because of

their volatile nature:

• Attacks on time. In this type of attack the goal is to try to provide inaccurate

time information to the Boundary Clock to desynchronize it. The primary informa-

tion used to detect these attacks comes from Sync Messages. An attack can occur

in two different ways: either the provided time value jumps forward by a signif-

icant amount in one step (clock jump), or the clock is skewed2 gradually step by

step. In order to detect both types, we save the values of the clock offset between

the Grandmaster Clock and the Boundary Clock after the clocks are synchronized

(Original offset), and the offset calculated in the last execution cycle of the al-

gorithm, which is based on the latest received Sync Message. We know that the

values will vary very little considering that clocks are already synchronized (pre-

requisite). So, if an attacker tries to jump the clock this will be discovered by

comparing the original offset with every new calculated offset. The values used to

define the maximum allowed offsets are: MAX SECONDS ALLOWED OFFSET,

and MAX ALLOWED DRIFT (in ns). The first one is used to detect offset jumps

2A change in the order of µs or slower relative to the internal clock time.

Chapter 3. Fault Tolerant PTP 30

in the order of seconds. The second one is employed to either find clock jumps

by comparing the last known offset with the newly calculated one, or to discover

skews by comparing the original offset with the newly calculated one. Special

care needs to be given to the MAX ALLOWED DRIFT parameter because it rep-

resents the maximum value that the Boundary Clock time is allowed to change

at each execution cycle. If an attack increases the clock offset at a rate slower

than the MAX ALLOWED DRIFT parameter, time data from other backup ports

can be used to detect it. Two maximum offset values were used because time is

represented by two fields (seconds and subseconds field) in our implementation.

The MAX SECONDS ALLOWED OFFSET and MAX ALLOWED DRIFT param-

eters need to be adjusted by measuring and averaging the clock offset and network

delays between the Grandmaster Clock and Boundary Clock.

In order to detect clock skews smaller than the MAX ALLOWED DRIFT value we

could make use of the communication link between the different backup ports to

exchange time information. In this scenario the backup port would need to be in

either FT PTP Master or a newly defined state. The objective of this new state would

be to measure the clock offset of the internal clock compared to other Boundary

Clocks. It could even make use of a secondary internal clock of the Boundary

Clock that would be inaccessible by any other means. Only this new state of the

backup port would have the ability to modify this secondary clock. This is a Master-

Slave scheme similar to the normal PTP where the new state would be responsible

for disciplining (modifying the clock in such a way as to synchronize it’s time

with another clock) the second clock. This new clock would give us the ability to

detect even the smallest of skews (even the drift values) to the first internal clock.

The problem is that there is no way of detecting if the Master (in this case, the

backup port running in FT PTP Master from another Boundary Clock) is under

attack. This means that time attacks consisting of skewing the clock slower than the

defined MAX ALLOWED DRIFT would only work on the Boundary Clock whose

backup port runs in FT PTP Master. This is still a huge improvement over having

no protection at all. Further work can be done to test and evaluate the validity of this

approach because it depends highly on the network conditions of communication

link between the Boundary Clocks.

• Attacks on the communication link. As previously mentioned the attacker has

total control over the communication link between the Grandmaster Clock and the

Boundary Clock. This allows him to delay or drop PTP packets. Dropped packets

Chapter 3. Fault Tolerant PTP 31

will make the Boundary Clock think the Grandmaster Clock has crashed, causing

the usual recovery actions to be performed.

Delay detection is done in a similar way to the detection of attacks on time but using

the network delay as primary information. The delay is calculated by means of the

standard delay request-response mechanism [Section 2.3]. Once again we save the

first calculated delay value after the clocks are synchronized and the one computed

in the last cycle of the algorithm. The main difference consists in the fact that net-

work delays can vary more than the clock offset. Therefore, instead of immediately

considering the Grandmaster Clock failed, we consider deviations from the normal

delay to be outliers. For a delay value to be considered an outlier it has to be greater

than MAX OUTLIER DEVIATION (in ns). When a sufficient number of outliers

(MAX DELAY OUTLIERS) are detected over a period of time, the Boundary Clock

will consider the Grandmaster Clock failed and act accordingly.

3.4.3 Modified Best Master Clock Algorithm

As previously mentioned the Best Master Clock algorithm is used to select the clock that

is most suited to distribute time information throughout the network. Announce messages

carry information that describes a clock state and quality. As such all clocks use an

internal data set to save their own attributes and compare it to the received data set from

the Announce message.

Our modification consists in the addition another parameter called isCandidate that

is verified at each run of the algorithm. This parameters is used to indicate that a clock

is no longer suitable for being a master. This happens when a backup port of a Boundary

Clock has detected an attack and goes into slave mode. In addition to the internal data

set of the clock, the isCandidate parameters of all the participating clocks also need to be

saved internally.

Announce messages only matter when they carry information about the current best

clock. The isCandidate parameter however has to be verified independently of the state

in which a clock is. This happens because even a clock in FT PTP Passive state can fail

and needs to be disqualified. Under normal circumstances this would not happen.

Chapter 3. Fault Tolerant PTP 32

Chapter 4

Implementation and Experimental
Evaluation

To evaluate the feasibility of our solution, a prototype was implemented based on a

software-only open-source implementation of PTP. The main goal was to evaluate and

measure the performance impact of the changes we have made to the PTP standard. The

results of our experimental tests are presented in last part of this chapter, where they

demonstrate an added capability for the detection of failures.

4.1 Implementation

The open source ptpd2 [10] was used as a base for our implementation. It was chosen

because it is specifically tailored to be used as a software only implementation [29] with-

out any hardware assistance. In [Figure 4.1] we present a UML diagram explaining the

structure of the software. Note that the diagram does not represent all the components of

ptpd2 (e.g., it excludes the NTP failover component of ptpd2 that kicks in when no time

sources are available for synchronization) but rather those that have been of interest to us.

The first thing that happens when the ptpd2 software starts up is the creation of the

two main data structures of the protocol: a RunTimeOpts structure and a PtpClock struc-

ture. The first one is used to save the immutable initialization parameters of the protocol.

This data structure is passed as argument to the classes whenever something needs to be

initialized or verified. The second data structure, the PtpClock, is a representation of a

PTP port. It is used to save information about the current running instance of ptpd2.

33

Chapter 4. Implementation and Experimental Evaluation 34

Ptpd.c

RunTimeOpts rtOpts

main
PtpClock G_ptpClock

Startup.c

ptpdStartup

checkSignals
catchSignals

ptpdShutdown
writeLockFile
dump_cmd_line_parameters

daemonconfig.c

loadCommandLineOptions

loadDefaultSettings
loadConfigurationFile

parseConfig
printHelp

protocol.c

doInit

toState
doState

addForeign

protocol

updateDatasets
issue* (All message types)
handle* (All message types)
processMessage

Servo.c

initClock

updateDelay
updateClock

updateOffset
updatePtpEngineStats

sys.c

adjFreq

getTime
adjTime

displayStatus
nanoSleep
setKernelUtcOffset

bmc.c

initData

bmcDataSetComparison
bmc

bmcStateDecision
m1
p1
s1

Configuration
File

START

Command Line
Arguments

OS Signals

timer.c

constants.h

Display.c

msg.c

arith.c

net.c

netInit

netSendGeneral
netInitTimestamp

netRecvGeneral
netSendEvent
netRecvEvent
netShutdown

Network
Interface

System Clock

datatypes.h

Figure 4.1: Ptpd2 class diagram.

After this step, the configuration file and command line arguments are read by the

daemonconfig class. It is at this point that alot of verifications are made about the validity

of the input parameters. If everything is fine the daemonconfig class passes this informa-

tion to the Startup class which will initialize the RunTimeOpts data structure and allocate

Chapter 4. Implementation and Experimental Evaluation 35

the necessary memory for the PtpClock data structure (ptpdStartup method). Some pa-

rameters regarding the operating system kernel and platform are also initialized in the

PtpClock data structure at this point.

Before the protocol starts, a lock is put on the currently running instance of the soft-

ware, by creating a lock file, as to block concurrency issues that may arise with having

multiple instances of ptpd2 changing the internal clock at the same time. Ptpd2 does not

yet support Boundary Clocks per se, because of the way that the PtpClock data structure

was constructed. However, we managed to workaround this by running two instances of

the software with different locks for each instance. This allowed for the creation of a

Boundary Clock. Great care needs to be taken with this approach to avoid concurrency

problems. In our case, only one of the ports will be allowed to change the value of the

internal clock at a given time, but both can read it simultaneously.

Next, the main loop of the protocol is started (the protocol method of the protocol.c

class). The first thing that happens is the data initialization of the main PtpClock structure

with parameters from the constants.h file as well as the runtime parameters from the

RunTimeOpts data structure. This is done only once, when the protocol starts, by the

doInit method.

Next we describe the roles of each of the classes included in the class diagram:

• datatypes.h: contains the definition of all the data structures used by the protocol;

• timer.c: defines the concept of timer for the protocol. Timers are used when wait-

ing for network PTP messages to arrive. This allows for the detection of dropped

packets;

• constants.h: defines the default initialization values for various data structures used

by the protocol;

• Display.c: implements the general rules of representing data both to the standard

output console and to log files;

• arith.c: consists of time format conversion routines and additional math functions

needed by the protocol;

• msg.c: is used for message packing and unpacking for network transmission. It

contains individual packing and unpacking methods for each defined message type;

Chapter 4. Implementation and Experimental Evaluation 36

• net.c: is the class used for network communication. It is responsible for network

discovery, packet timestamping and netowrk packet transfer. When packets reach

this phase they are ready/packed for network transmission. This class represents

the lowest level of message timestamping available in software implementations of

the PTP standard. In order to improve accuracy, packets can be timestamp at the

physical layer by the Network Interface itself in hardware assisted or hardware only

implementation of the PTP standard;

• bmc.c: implements the BMC algorithm. It divides the implementation into two

parts as explained in Section 2.3.4: the data set comparison phase (implemented in

the bmcDataSetComparison method) and the state decision phase (implemented in

the bmcStateDecision method). The initData method runs only when the protocol

starts for the first time and is responsible for initializing all the PtpClock run-time

parameters that are used in the BMC comparison (see Section 2.3.4). The last three

methods m1, p1 and s1 are used to copy the data sets (received in an Announce

message) into the local PtpClock when a state change occurs. m1, p1 and s1 are

used when the local PtpClock goes into master, passive or slave port respectively.

• Servo.c: is the class responsible for disciplining the internal clock and calculating

the delay and offset. The whole process can be seen in 4.2 and is explained in more

detail in [29];

• sys.c: contains all the code to call the kernel time routines;

2

engineering students at Case Western Reserve University over
a period of approximately six months as part of an
undergraduate senior project.

B. Test and Measurement
PTPd is currently developed for Test and Measurement

(T&M) systems. For T&M devices (e.g., volt meters and
thermocouple instruments), PTP provides time and frequency
coordination for the time-stamping of acquired data, and PTP
provides a common time-base for time-triggered data
acquisition.
 The needs of T&M systems significantly influence the
current design of PTPd’s clock servo. Most notably, the servo
is optimized for the stable network topology typical of test and
measurement set-ups.

C. Hardware Constraints
PTPd is a software-only system. It lacks two notable

systems found in hardware-supported implementations. First,
PTPd uses software time stamps. It records message send and
receive times in the software layers of the network stack rather
than in the physical layer of the networking hardware (e.g.,
snooping the MII bus of an Ethernet PHY [2]). Second, PTPd
uses a software clock. It adjusts the magnitude of the periodic
increment of a time quantity stored in memory. However,
PTPd was outfitted with a hardware clock for the tests
included in this paper. This was done to allow the clock to be
read with minimal jitter by isolating jitter in clock reads from
jitter in clock coordination.
 PTPd is intended for embedded computer platforms that
have minimal computing resources. This includes platforms
with sub-100MHz CPUs. The program’s CPU utilization is
below 1% on a 66 MHz m68k processor, as observed by
standard resource utilization monitors like the UNIX top
utility. Also, PTPd does not require a Floating Point Unit
(FPU), or FPU emulation, because it uses only fixed point
arithmetic. Efficiency and limitation to fixed-point arithmetic
are significant considerations in the design of the clock servo.

D. Software Constraints
PTPd is currently ported to Linux. Most of the PTPd

system, including the protocol stack and the clock servo, runs
as a background user-space process. This allows PTPd to
“play nicely” in typical multi-task computing environments.
PTPd relies on simple kernel-space routines for its timely
components: the frequency adjustable clock and the message
time stamps.

PTPd interfaces with the kernel through standard Linux
system calls. Receive time stamps are recorded in the Network
Interface Card (NIC) driver, in or close to the receive interrupt
handler. The receive time stamps are passed to user-space
though an ioctl(). The receive time stamp mechanism is
included in vanilla (unmodified) Linux version 2.4 and 2.6
kernels. A similar send time stamp mechanism is not included
in vanilla Linux kernels, but kernel send time stamps can be
added to Linux with only small modifications. The entire
modification typically amounts to less than ten lines of code.
PTPd can operate acceptably without kernel send time stamps,
but it performs better with the lower jitter afforded by kernel
send time stamps, especially under heavy CPU loads.
 PTPd uses the Linux kernel’s software clock along with
the adjtimex() interface for clock tick-rate adjustment.
Linux’s clock is an implementation of the hybrid kernel
Phase-Locked Loop/Frequency-Locked Loop (PLL/FLL)
designed by David Mills for the Network Time Protocol
(NTP) project [3]. The interface provides many types of clock
adjustments, including a self-tuning PLL servo; however,

PTPd uses its own servo loop and relies on only
adjtimex() frequency adjustment. This combination is
effective because the user-space servo is efficient and is not
sensitive to execution latency, and adjtimex() is accurate
and responsive to rate adjustments.
 Vanilla Linux is not a real time operating system (RTOS);
therefore, it guarantees no bounds on interrupt servicing
latencies. Both message receipts and clock ticks are interrupt
driven events. Variations in interrupt latencies create jitter in
the delay estimates that PTPd uses to coordinate clocks. Jitter
presents the greatest challenge to precise time coordination,
and it is the most significant consideration in the design of the
clock servo.

IV. CLOCK SERVO

A. Overview
Figure 1 is a diagram of PTPd’s clock servo. The diagram

from left to right shows the data path from the protocol to the
clock. The protocol regularly samples the master-to-slave
delay (cf. Equation (2.2)), and it intermittently samples the
slave-to-master delay (cf. Equation (2.4)). Correspondingly,
the offset from master is updated regularly, and the one-way
delay is updated intermittently. The figure shows the delay
and Sync interval inputs, the offset and one-way delay
calculations, the offset and one-way delay filters, and the PI
controller that mediates the servo output. The output is a
fractional tick-rate adjustment that disciplines the clock.

Fig. 1. Clock Servo Diagram

B. Design Parameters
Three characteristics were considered during the design

PTPd’s clock servo. First is the closed-loop response,
including convergence and stability. The acceptable period of
initial convergence is on the order of minutes, and the quantity
tracked by the servo changes slowly. This allows convergence
to be attained and maintained with conservative controller
tuning, and conservative tuning largely eliminates stability
concerns.
 The second characteristic is time error. This represents the
time-dependent applications that require two clocks to read the
same time at any given point in time. An example of this
requirement would be two systems that must take a
measurement at precisely the same time. Another example
would be two systems that must precisely measure the
coincidence in time of two events. A useful metric of time
coordination is the root-mean-square (RMS) time difference
between clocks.
 The third characteristic is rate error. This represents the
time-dependent applications that require two clocks to
progress at the same rate over a given period of time. An
example of this requirement would be a system that measures
the frequency content of a signal. It might seem that low rate
error must follow implicitly from low time error, but this is
not so. A servo design that minimizes time error may sacrifice
rate error, and vice versa. This could occur with an
aggressively tuned servo that tracks closely but with a lot of
ringing, and the converse case could occur in a sluggishly

Figure 4.2: Ptpd2 clock servo diagram.

Chapter 4. Implementation and Experimental Evaluation 37

All the classes that we ended up modifying can be seen in 4.3 in red.

Ptpd.c

RunTimeOpts rtOpts

main
PtpClock G_ptpClock

Startup.c

ptpdStartup

checkSignals
catchSignals

ptpdShutdown
writeLockFile
dump_cmd_line_parameters

daemonconfig.c

loadCommandLineOptions

loadDefaultSettings
loadConfigurationFile

parseConfig
printHelp

protocol.c

doInit

toState
doState

addForeign

protocol

updateDatasets
issue* (All message types)
handle* (All message types)
processMessage

Servo.c

initClock

updateDelay
updateClock

updateOffset
updatePtpEngineStats

sys.c

adjFreq

getTime
adjTime

displayStatus
nanoSleep
setKernelUtcOffset

bmc.c

initData

bmcDataSetComparison
bmc

bmcStateDecision
m1
p1
s1

Configuration
File

START

Command Line
Arguments

OS Signals

timer.c

constants.h

Display.c

msg.c

arith.c

net.c

netInit

netSendGeneral
netInitTimestamp

netRecvGeneral
netSendEvent
netRecvEvent
netShutdown

Network
Interface

System Clock

datatypes.h

Figure 4.3: Modified ptpd2 class diagram.

Chapter 4. Implementation and Experimental Evaluation 38

Next we explain the most significant modifications that we made to every class:

• datatypes.h: three data structures were modified here:

– AnnounceMsg. We added a new parameter isCandidate. This parameter is

used to disqualify the backup port of a Boundary Clock from the modified

BMC algorithm.

– ForeignMasterRecord. This data structure is used to save information about

all other known PTP nodes. The isCandidate parameter was added as well as

a parameter to save the timestamp of the last received Sync message called

lastSyncTimestamp;

– PtpClock. Was modified to save parameters that are used for evaluation pur-

poses: isCandidate (representing the isCandidate value of the local clock);

previousDelay and previousTime that represent the internal clock time and de-

lay calculated in the last execution cycle of the protocol; originalTimeOffset

utilized for verification purposes, to disallow the clock to drift too far from its

master; delayOutliers is the number of detected delay outliers up until a cer-

tain point (see Section 3.4.2) and lastly lastSyncTimestamp is the timestamp

from the last received Sync message from the current master;

• constants.h: the default values for the attack detection tolerances are defined here.

The two variables that are used to activate/deactivate the attack detection mecha-

nism are also defined here: one for attacks that target time information (FT TIME)

and one for attacks on the network communication link (FT DELAY);

• protocol.c: contains most of our modifications. All the attack detection mechanisms

are verified here, at each run of the main loop;

• bmc.c: contains modifications that consist mostly of the verification of the new

isCandidate value. This is where this new parameter is copied to and from the

Announce message;

• Servo.c: allows for a master or passive port (originally they were never allowed to

go into slave mode by the configuration) to modify the internal clock. Normally

this can only be done by a slave port. However, we only allow a master or passive

port to do this if it has transitioned into a slave port. This is what happens to the

backup port of the Boundary Clock when an attack is detected.

Chapter 4. Implementation and Experimental Evaluation 39

4.2 Testing Platform

For the testbed three off-the-shelf PC’s running Ubuntu 14.10 were used. One of the

machines was equipped with two network cards (one for the FT PTP Slave port and one

for the FT PTP Master/FT PTP Passive port) and played the role of the Boundary Clock.

The other two machines simulated a Grandmaster Clock (running a normal PTP Master)

and a second Boundary Clock with a backup FT PTP Master/FT PTP Passive port, to act

as a new time source when the first one fails. We did not simulate the other normal PTP

Master port of the second Boundary Clock and the network it synchronizes because it is

just a normal PTP network.

Since we used off-the-shelf PC machines, the internal oscillators of the clocks are

of low quality. If left unsynchronized, they drift apart by a large amount in a relatively

short span of time. This would not happen in a real smart grid network because the PMUs

oscillators are of a better quality. The test network was a normal 100 Mbps Ethernet LAN

with a lot of nodes, traffic and jitter. It is safe to assume that the network conditions in a

smart grid environment will be considerably better. However all nodes are relatively close

geographically, closer than in some deployment scenarios of a smart grid network.

4.3 Results

We experimented our algorithm in three test cases. Our first test case consisted in injecting

a Crash fault [Figure 4.4].

source

0

2

4

6

8

10

12

14

16

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 17 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
lo

ck
 O

ff
se

t
(μ
s
)

Crash fault

Synchronized to Grandmaster Clock Synchronized to another Boundary Clock

Boundary Clock Time

Real Time

Detection TimeAttack Time

Figure 4.4: Crash fault detection.

Chapter 4. Implementation and Experimental Evaluation 40

This was simulated by simply killing the PTP process running on the Grandmaster

Clock machine. This was done at time ”08”. After exactly 6 seconds (as previously de-

scribed 2 * DEFAULT ANNOUNCE INTERVAL) the Grandmaster Clock was considered

failed. At that moment the FT PTP Slave port of the Boundary Clock increased the in-

ternal clock by 2 seconds and proceeded to disable itself. The FT PTP Master/FT PTP

Passive port now detects the clock skew and goes into PTP Slave mode. After receiv-

ing the first Sync message from a FT PTP Master port of another Boundary Clock the

synchronization process starts.

The second test case is an attack on time. This can happen in two ways: either by

skewing the clock or by jumping it a large amount at once. We present results for the

first case, which is harder to detect. The second case detection scheme is similar except

we compare the current local time to MAX SECONDS ALLOWED OFFSET instead of

MAX ALLOWED DRIFT. The results would also be similar because nothing else changes.

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Cl
oc

k
of

fs
et

 (μ
s)

Clock Offset - Clock Step

MAX_ALLOWED_DRIFT

Detection TimeAttack Time

Figure 4.5: Gradual Clock Skew.

A bash script was created and ran on the Grandmaster Clock machine. It will skew

the clock by a small amount by performing a small set of simple operations. The script

reads the value of the clock, saves this value into a variable then proceeds to set the clock

to the value of that variable. This works because it takes ' 1 ms to set a variable in

memory in our machines. [Figure 4.5] shows the perceived increase in the clock offset of

the Master (appearing on a logarithmic scale in the graph) that is suffering the attack (left

side of the graph) . The value for the MAX ALLOWED DRIFT parameter used for this

test was 700 µs.

Chapter 4. Implementation and Experimental Evaluation 41

The last case we tested was when the attacker delays PTP packets sent by the Grand-

master Clock. The parameter MAX OUTLIER DEVIATION had the value of 300 µs and

the MAX DELAY OUTLIERS was set to 3. To simulate the delays, we employed the tc

command [30]. The tc command is used to show or manipulate traffic control settings.

This allowed us to introduce a 450 µs delay in the network.

0

5

10

15

20

25

30

35

40
50 51 52 53 54 55 56 57 58 59 0 1 2 3 4 5 6 7 10 9 10 11 12 13 14 15 16 17 18 19 20

M
as
te
r‐
Sl
av
e
C
lo
ck
 O
ff
se
t
(μ
s)

Delay Attack ‐ Clock Offset

Synchronized to GM Synchronized to FT Master

Ordinary Clock Time

Real Time

Detection Time

Figure 4.6: Clock offset during Delay Attack.

The clock offset perceived by the Boundary Clock is shown in [Figure 4.6]. We can

see that after recovery the clock offset start normalizing with even better accuracy than

while synchronizing with our simulated Grandmaster Clock. This happened because all

of our machine are experiencing almost the same network conditions. In a real smart

grid environment the perceived clock offset after recovery will always be greater than the

initial offset.

0

100

200

300

400

500

600

M
as

te
r-

Sl
av

e
De

la
y

(μ
s
)

Synchronized to Grandmaster Clock Synchronized to another Boundary Clock

Ordinary Clock Time
50 51 52 53 54 55 56 57 58 59 0 1 2 3 4 5 6 7 10 9 10 11 12 13 14 15 16 17 18 19 20

Real Time

Detection Time

Network Attack - Packet Delay

Attack Time

Figure 4.7: Packet Delay Attack.

After recovery, we can see from the graph [Figure 4.7] that the delays of the new

Chapter 4. Implementation and Experimental Evaluation 42

communication link between the FT PTP Master/FT PTP Passive (now in PTP Slave state)

port of the Boundary Clock and a FT PTP Master port from another Boundary Clock are

not as stable as before the attack (where the Grandmaster Clock corresponding to the GPS

receiver was synchronizing the FT PTP Slave port (now disabled)). This is due to the fact

that the delays are calculated based on the clock offset and the first Boundary Clock is not

yet fully synchronized to the new time source. After some time they will normalize and

again become stable.

Chapter 5

Conclusion

The evolving needs of the smart grid bring a new set of problems that has to be addressed.

Time synchronization in such an environment is a critical necessity. This requirements is

currently realized by the use of various GPS receivers, which creates a large attack surface

for attackers to exploit.

In this work, PTP was used as the primary building block for a novel solution. An

approach based on PTP was developed, taking the necessities of the power grid environ-

ment into consideration, while trying to keep the modifications to the standard protocol to

a minimum. This approach adds fault tolerant capabilities to a normal Boundary Clock as

well as the ability to detect attacks on the time source (GPS receiver) directly connected

to this Boundary Clock.

The solution managed to satisfy the time synchronization requirements and as an

added benefit it also mitigates all types of tested attacks on the primary network time

source (GPS receivers). In the case in which an attack is detected, another boundary

clock starts acting as the new time source for the current one while the synchronization to

the current GPS receiver time source is disabled.

The implementation of the solution was made on open-source code, namely the ptpd2

project, which is a software for version 2 of the PTP standard. Various Linux PCs were

used to test and evaluate the solution. In terms of network conditions we tried to emulate

a smart grid the best we could, however there are areas where our testbed differs from a

real world test case scenario. Some aspects of the testbed network are better than in a real

world smart grid (e.g., the geographical distance between nodes) while others are worse

(e.g., number of nodes producing traffic and amount of general network traffic).

The results show that this solution is successful at mitigating all types of attacks as

43

Chapter 5. Conclusion 44

long as our requirements are met.

In the case in which the Grandmaster Clock crashes, a recovery time of 6 seconds was

observed. After this, a new time source started being used. The second test case was an

attack on the time information provided by the Grandmaster Clock. Our solution managed

to detect and recover from this attack in≈ 2 seconds. We managed to observe an increase

in the clock offset after synchronizing to the new time source. This is representative of

a real world scenario. Lastly, we verified that delaying network packets coming from

the Grandmaster Clock is also detected. Each delayed packet is detected individually

and a threshold is put on the maximum number of packets that can be delayed before

the Grandmaster Clock is considered failed. The recovery time in this case is equal to

the aforementioned threshold. In our case, this parameter was set to 3, translating into a

recovery time of 3 seconds.

Further research can be performed to see how the protocol behaves in a real-world

smart grid environment, as well as the impact it has on specific parts of the network while

under attack.

Bibliography

[1] United State Government Accountability Office, “Electricity grid modernization”,

May 2008. http://www.gao.gov/new.items/d11117.pdf.

[2] A. Meliopoulos, G. Cokkinides, F. Galvan, and B. Fardanesh, “GPS-Synchronized

Data Acquisition: Technology Assessment and Research Issues,” in Proceedings

of the 39th Annual Hawaii International Conference on System Sciences, vol. 10,

pp. 244c–244c, January 2006.

[3] A. Reis, A. Barros, K. Lenzi, L. Meloni, and S. Barbin, “Introduction to the

Software-defined Radio Approach,” IEEE Latin America Transactions, vol. 10,

pp. 1156–1161, January 2012.

[4] C. Fernández–Prades, J. Arribas, P. Closas, C. Avilés, and L. Esteve, “GNSS-SDR:

An open source tool for researchers and developers,” in Proceedings of the Inter-

national Technical Meeting of the Satellite Division of The Institute of Navigation

Conference, September 2011.

[5] J. Aweya and N. Al Sindi, “Role of Time Synchronization in Power System Au-

tomation and Smart Grids,” in Proceedings of the IEEE International Conference on

Industrial Technology, pp. 1392–1397, February 2013.

[6] D. L. Mills, “Network Time Protocol Version (NTP)”, September 1985.

[7] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control System,” IEEE Std 1588-2002, 2002.

[8] D. L. Mills, “Network Time Protocol Version 4: Protocol and Algorithm Specifica-

tions”, June 2010.

[9] “IEEE Standard for Synchrophasor Measurements for Power Systems,” IEEE Std.

C37.118.2011, December 2011.

45

http://www.gao.gov/new.items/d11117.pdf

Bibliography 46

[10] “Precision Time Protocol Daemon - ptpd2”, 2011. http://ptpd2.

sourceforge.net.

[11] “Code division multiple access”. https://en.wikipedia.org/wiki/

Code_division_multiple_access.

[12] “Global Positioning System standard positioning service performance standard 4th

Edition”, September 2008.

[13] “Interface Specification IS-GPS-200”, September 2013.

[14] H. Hu and N. Wei, “A study of GPS jamming and anti-jamming,” in Proceedings of

the 2nd International Conference on Power Electronics and Intelligent Transporta-

tion System, vol. 1, pp. 388–391, December 2009.

[15] D. Borio, C. O’Driscoll, and J. Fortuny, “Jammer impact on Galileo and GPS re-

ceivers,” in Proceedings of the International Conference on Localization and GNSS,

pp. 1–6, June 2013.

[16] The Economist, “GPS jamming, Out of sight”, July 2013. http://www.

economist.com/news/international/21582288-satellite-

positioning-data-are-vitalbut-signal-surprisingly-easy-

disrupt-out.

[17] J. Larcom and H. Liu, “Modeling and characterization of GPS spoofing,” in Proceed-

ings of the IEEE International Conference on Technologies for Homeland Security,

pp. 729–734, November 2013.

[18] T. Humphreys, B. Ledvina, M. Psiaki, B. O’Hanlon, Kintner, and M. Paul Jr., “As-

sessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer,” in

Proceedings of the 21st International Technical Meeting of the Satellite Division of

The Institute of Navigation, pp. 2314–2325, September 2008.

[19] Y. Fan, Z. Zhang, M. Trinkle, A. Dimitrovski, J. Song, and H. Li, “A Cross-Layer

Defense Mechanism Against GPS Spoofing Attacks on PMUs in Smart Grids,” IEEE

Transactions on Smart Grid, vol. PP, no. 99, pp. 1–1, 2014.

[20] Z. Zhang, M. Trinkle, L. Qian, and H. Li, “Quickest detection of GPS spoofing at-

tack,” in Proceedings of the Military Communications Conference, pp. 1–6, October

2012.

http://ptpd2.sourceforge.net
http://ptpd2.sourceforge.net
https://en.wikipedia.org/wiki/Code_division_multiple_access
https://en.wikipedia.org/wiki/Code_division_multiple_access
http://www.economist.com/news/international/21582288-satellite-positioning-data-are-vitalbut-signal-surprisingly-easy-disrupt-out
http://www.economist.com/news/international/21582288-satellite-positioning-data-are-vitalbut-signal-surprisingly-easy-disrupt-out
http://www.economist.com/news/international/21582288-satellite-positioning-data-are-vitalbut-signal-surprisingly-easy-disrupt-out
http://www.economist.com/news/international/21582288-satellite-positioning-data-are-vitalbut-signal-surprisingly-easy-disrupt-out

Bibliography 47

[21] T. Nighswander, B. Ledvina, J. Diamond, R. Brumley, and D. Brumley, “GPS Soft-

ware Attacks,” in Proceedings of the ACM Conference on Computer and Communi-

cations Security, pp. 450–461, 2012.

[22] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems,” IEEE Std 1588-2008 (Revision of IEEE Std

1588-2002), pp. c1–269, July 2008.

[23] Calix Inc., “Asymmetric Networks – Timing Solutions,” 2010. http:

//www.chronos.co.uk/files/pdfs/itsf/2010/Day3/02-

Asymmetric_Network_Timing_Solutions.pdf.

[24] J. Jasperneite, K. Shehab, and K. Weber, “Enhancements to the time synchroniza-

tion standard IEEE 1588 for a system of cascaded bridges,” in Proceedings of the

IEEE International Workshop on Factory Communication Systems, pp. 239–244,

September 2004.

[25] T. Mizrahi, “Time synchronization security using IPsec and MACsec,” in Proceed-

ings of the International IEEE Symposium on Precision Clock Synchronization for

Measurement Control and Communication, pp. 38–43, September 2011.

[26] P. Estrela and L. Bonebakker, “Challenges deploying PTPv2 in a global financial

company,” in Proceedings of the International IEEE Symposium on Precision Clock

Synchronization for Measurement Control and Communication, pp. 1–6, September

2012.

[27] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” in Pro-

ceedings of the ACM Transactions Programming Languages and Systems, vol. 4,

no. 3, pp. 382–401, 1982.

[28] X. Cheng and L. Zhang, “A research of inter-process communication based on

shared memory and address-mapping,” in Proceedings of the International Confer-

ence on Computer Science and Network Technology, vol. 1, pp. 111–114, December

2011.

[29] K. Correll, N. Barendt, and M. Branicky, “Design Considerations for Software Only

Implementations of the IEEE 1588 Precision Time Protocol,” 2005.

[30] “TC Linux User’s Manual”, December 2001. http://lartc.org/

manpages/tc.txt.

http://www.chronos.co.uk/files/pdfs/itsf/2010/Day3/02-Asymmetric_Network_Timing_Solutions.pdf
http://www.chronos.co.uk/files/pdfs/itsf/2010/Day3/02-Asymmetric_Network_Timing_Solutions.pdf
http://www.chronos.co.uk/files/pdfs/itsf/2010/Day3/02-Asymmetric_Network_Timing_Solutions.pdf
http://lartc.org/manpages/tc.txt
http://lartc.org/manpages/tc.txt

Bibliography 48

[31] J. Tournier and O. Goerlitz, “Strategies to secure the IEEE 1588 protocol in digi-

tal substation automation,” in Proceedings of the 4th International Conference on

Critical Infrastructures, pp. 1–8, March 2009.

[32] R. Onica, N. Neves, and A. Casimiro, “Fault-Tolerant Precision Time Protocol for

Smart Grids,” in Proceedings of the 7th National INForum Informatics Symposium,

July 2015.

	List of Figures
	List of Tables
	Introduction
	Requirements
	Contributions
	Timeline
	Thesis outline

	Context
	The Smart Grid
	Global Positioning System
	GPS Attacks

	Precision Time Protocol
	PTP Devices
	Message Exchange
	Network Delay and Clock Offset
	Best Master Clock Algorithm
	PTP security

	Fault Tolerant PTP
	Overview
	Attack Model
	System Architecture
	Solution
	Crash failure detection
	Byzantine failure detection
	Modified Best Master Clock Algorithm

	Implementation and Experimental Evaluation
	Implementation
	Testing Platform
	Results

	Conclusion
	Bibliography

