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Abstract 

The aim of our research is to identify the sequence of degradation processes that lead 

to the selective enrichment of microorganisms involved in the degradation of carbon 

tetrachloride and chloroform under conditions of natural attenuation and lactic acid 

biostimulation. To this end, a comparative study using microcosm experiments were 

conducted to analyze these two scenarios. Microcosms were carried out with water and 

sediment from a field site located at a petrochemical complex. A significant finding of 

our work was the abiotic degradation of carbon tetrachloride induced by the biogenic 

activity of Dechlorosoma suillum. Although this is an abiotic degradation, the 

metabolism of this microorganism generates green rust precipitates, which in turn favor 

the abiotic reductive dechlorination of carbon tetrachloride. Another result was the 

identification of the biotic reductive dechlorination of chloroform by a bacterium of the 

Clostridiales order. Our study showed that the biostimulation with lactic acid produced 

faster degradation rates of carbon tetrachloride and chloroform. Lactic acid acted as an 

electron donor promoting the decrease in other electron acceptors such as nitrate and 

sulfate competing with chloromethanes. Biostimulation could, for this reason, be an 

efficient remediation strategy at sites contaminated by chloromethanes, especially in 

cases where a complex pollution history results in a rich hydrochemical background 

that potentially reduces natural attenuation. 

 

Key terms: Microcosm, chloromethanes, natural attenuation, biostimulation, lactic 

acid, biotic and abiotic degradation, DGGE, Dechlorosoma suillum sp, Clostridiales 

order. 
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1. Introduction 

Carbon tetrachloride (CT) and chloroform (CF) are chlorinated solvents that have been 

widely used in metal degreasing, dry cleaning, and as refrigerants. These compounds 

are toxic, carcinogenic, and harmful to the ozone layer. Given their high density, 1.59 

and 1.49 g/cm3, respectively (Pankow and Cherry, 1996), these compounds can 

accumulate on the bottom of the aquifers. Their prolonged use on a large scale has 

resulted in many soil and groundwater contamination episodes (Penny et al., 2010). 

Although these contaminants are very recalcitrant and pollute subsurface over long 

periods, they can be biologically degraded (McCarty and Semprini, 1994). For 

example, Criddle et al. (1990) reported degradation of CT under conditions of 

denitrification. Moreover, biostimulation, which promotes the optimal environmental 

conditions for the selective enrichment of indigenous microorganisms, has been used 

to degrade CT and CF. Numerous laboratory and field studies have been designed to 

examine the influence of substrate type, increase in nutrients (Devlin et al., 2000), and 

concentration of electron donors and electron acceptors (USEPA, 2004). The first study 

was conducted by Semprini et al. (1992), who used acetate as a substrate for growth 

and as an electron donor along with the nitrate and sulfate as electron acceptors. The 

experiment led to efficient in situ biodegradation of CT. Other biostimulation studies 

have demonstrated that CT and CF can be dechlorinated under anaerobic conditions in 

methanogenic (Mun et al., 2008), acetogenic (Egli et al., 1988), fermenting (Galli and 

McCarty, 1989), sulfate-reducing (Chung and Rittmann, 2008), and iron-reducing 

cultures (Picardal et al., 1993). In such experiments, CT and CF were sequentially 

reduced, giving rise to CF, dichloromethane (DCM), and even chloromethane (CM), 

CO2, and CS2 ( carbon disulfide) (Hashsham et al., 1995). 

Additionally, abiotic degradation of chloromethanes in the presence of iron-bearing soil 

minerals with high intrinsic reductive capacity has also been studied, as these minerals 
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have been widely used for abiotic reductive degradation of organic contaminants in 

groundwater. Thus, surface associated Fe(II), magnetite (Fe3O4), FeS (mackinawite) 

and FeS2, (pyrite), which can be common electron donors in the aquifer, have shown to 

enhance chloromethane degradation (Kriegman-King and Reinhard, 1994; Butler and 

Hayes, 2000; O’Loughlin et al., 2003; Danielsen and Hayes, 2004; Elsner et al., 

2004a,b; McCormick and Adriaens, 2004; Maithreepala and Doong, 2005; Hanoch et 

al., 2006, Shao and Butler, 2009; Liang and Butler, 2010). Additionally, natural green 

rust minerals (GR) are other iron-bearing soil components with high intrinsic reductive 

ability. GR are layered double hydroxides with positively charged Fe(II)/Fe(III) 

hydroxide sheets interlayered with water molecules and anions (Hansen et al., 1996; 

Abdelmoula et al., 1998). Natural GR is formed by bioreduction of iron oxides (Ona-

Nguema et al., 2002; Berthelin et al., 2006; O’Loughlin et al., 2007) and microbial 

biooxidation of Fe(II), as produced by D. suillum (Lack et al., 2002). 

Compound specific isotope analysis (CSIA) has proved to be a powerful tool for 

characterizing the processes of biotic and abiotic degradation of chlorinated solvents 

(USEPA, 2008). In general, the degradation of these compounds is accompanied by a 

preferential degradation of molecules containing exclusively light carbon isotopes (i.e. 

12C). The result is a relative enrichment in heavy isotopes (i.e. 13C) in the remaining 

contaminant pool. The enrichment factors in the abiotic degradation of CT, in the 

presence of iron complexes, have been well characterized by Zwank et al. (2005) and 

Elsner et al. (2004a). Of the few studies conducted on isotopic fractionation of CF 

owing to biotic dechlorination to form DCM that by Chan et al. (2012) is noteworthy. 

Of the many laboratory studies on biotic and abiotic mechanisms of degradation of CT 

and CF, stand out those addressing the abiotic degradation of CT in the presence of 

GR (Liang and Butler, 2010) and the biogenic formation of GR (Lack et al., 2002). 

However, none of these two works or any other dealing with this subject, addresses the 

coupling of both mechanisms. Our study seeks to fill this gap in the literature by: i) 
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examining whether this coupling can occur under natural attenuation conditions and, ii) 

assessing to what extent biostimulation can accelerate the biogenic formation of GR, 

and consequently the abiotic degradation of CT. On the other hand, to date, only the 

study of Chan et al. (2012) deals with the isotope fractionation during biodegradation or 

abiotic degradation of CF. Furthermore, these authors showed how a particular 

population of Dehalobacter (Clostridiales order) was able to biodegrade CF. 

Nevertheless, that study was focused on the evolution of CF as a single parent 

contaminant and, in addition, water or sediment from a real site were not used in the 

experiments, in contrast to our study. Therefore, results may not be fully representative 

of the natural conditions occurring in real sites. In such cases, the interactions that 

occur between chloromethanes and other electron acceptors could pose a problem 

when interpreting the results. For instance, although the reduction potential of CT and 

CF is higher than that of sulfates (Rijnaarts et al., 1998; de Best, 1999; de Best et al., 

1999), inhibitory effects caused by competition for bioavailable electron donors 

between the dechlorinating and the sulfate-reducing populations can result in a high 

bioavailability of sulfates (Semprini et al.,1992; Picardal et al., 1993). 

The purpose of our study was to identify the sequence of degradation processes 

leading to the selective enrichment of indigenous microbial communities involved in the 

degradation of CT and CF under DO conditions of reductive dechlorination. To this 

end, we have undertaken microcosm experiments with groundwater and sediment from 

a field site located at a petrochemical complex in which conditions throughout the year 

are reducing. Contaminants of diverse origin co-exist in this site (CT and CF as parent 

compounds) along with a rich hydrochemical background in nitrates and sulfates that 

potentially reduces natural attenuation of chloromethanes. The experiments have been 

centered on two scenarios: i) natural attenuation and ii) biostimulation of indigenous 

microbial communities to develop a rapid and selective enrichment of communities able 

to degrade CT and CF. The importance of studying these scenarios lies in the fact that 
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the integrated study of these processes would help to better assess the potential of 

applying lactic acid biostimulation at field scale in contexts characterized by a 

hydrochemical background rich in nitrate and sulfate. 

A significant finding of our work was the coupling between the biogenic formation of GR 

by D. suillum and the abiotic degradation of CT, which is a novelty of our study. 

Another novelty is that D. suillum used CT as electron acceptor at the end of the 

experiment to form CF. An additional finding was the apparent absence of isotopic 

fractionation of CF when was biodegraded in a context in which the concentration of 

this compound increased by the reductive dechlorination of CT. 

 

2. Materials and Methods 

2.1. Site description 

Water and sediment used in the microcosm experiments were taken in an unconfined 

aquifer of Quaternary alluvial fan deposits outcropping in the La Pineda petrochemical 

complex (Tarragona, Spain), 100 km south of Barcelona. This petrochemical complex 

initiated its activities in stages, starting in 1960. A complex hydrogeochemical 

background (Table 1) characterizes the aquifer. 

 

Table 1 

 

From the source zone, the CT and CF free-phase of dense non-aqueous phase liquid 

(DNAPL) descended vertically. In this descent, free-phase left a trail of residual DNAPL 

in the sandy gravels and sands in the vadose zone and the saturated zone. As the 

free-phase descended, pools accumulated on discontinuous interlayered levels of low 

conductivity (reddish silts and clays), and eventually migrated towards the southeast 
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owing to a slight dip in the sediments in this direction. Furthermore, Puigserver et al. 

(2013) showed that the chloromethane contamination affected not only the aquifer but 

also an underlying aquitard at this site. Despite the substantial reduction in 

concentrations in groundwater between 1997 and 2009 (Table S1 in the SD 

[Supplementary Data]), pollution continues to exceed the European groundwater 

quality standards. 

 

2.2. Microcosm experiments 

2.2.1. Design of the experiments 

Two microcosm experiments were conducted. The first simulated natural biotic and 

abiotic degradation of chloromethanes, i.e. the natural attenuation (NA experiment). 

The second simulated biostimulation of the indigenous microorganisms through 

addition of lactic acid (BLA experiment). A total volume of 10 mL of lactic acid was 

added as five additions of 2 mL (Sigma Aldrich, 85 % lactic acid). 

Each of the two experiments consisted of two active tests (i.e. in which microorganisms 

were living) and two control tests (i.e. in which microorganisms were killed).  

An autoclave (Selecta Model Autester 75 E DRY-PV) was used (in periods of 30 

minute for two hours at a temperature of 121 °C, a pressure of 1 atm, and at saturated 

vapor conditions) to sterilize the control microcosm bottles containing sediment and 50 

mL of stock solution 147 mM HgCl2 (Riedel-Deha, Mercury II chloride puriss pa) as a 

bactericide, according to Trevors (1996). An autoclave (Selecta Model Autester 75 E 

DRY-PV) was used to sterilize the control microcosm bottles containing sediment. 

These bottels also contained 50 mL of stock solution 147 mM HgCl2 (Riedel-Deha, 

Mercury II chloride puriss pa) as a bactericide, according to Trevors (1996). 

Autoclaving was performed for periods of 30 minute for two hours at a temperature of 

121 °C, a pressure of 1 atm, and at saturated vapor conditions. 
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Methanol (MeOH, Merck, ISO Pro analysis) was employed to clean and sterilize the 

remaining materials. Experiments were conducted in an anaerobic chamber (Coy 

Laboratory Products Inc.). 

 

2.2.2. Sediment and groundwater used in the experiments 

The sediment used in the experiments was obtained from cores recovered from 

boreholes drilled in the plume at the study site. Sediment cores were homogenized to 

obtain a fine sand with a silty matrix (foc = 0.03 %). Groundwater for the experiments 

was sampled in a piezometer located 2.5 m from the borehole. This groundwater 

initially showed oxidizing conditions, with dissolved oxygen (DO) concentration of 2.08 

mg/L. This DO content was reduced to 0.70 mg/L by purging with N2 gas (as described 

by Chen et al., 2008) for 60 min in series of 15 min to develop the most favorable 

conditions for the reductive dechlorination of chloromethanes. As the experiments were 

performed by adding pure phase of CT and CF (see section 2.3.3.), CT and CF in the 

groundwater sample were drastically decreased to have an only source of these 

compounds. This decrease was conducted during the same process of decline of DO. 

Thus, after purging, the concentrations of CT, CF, and DCM of the groundwater sample 

(14.2, 440.0 and 5.4 µg/L, respectively) were depleted to values below the Limit of 

Quantification. 

 

2.2.3. Set up of the experiments 

Each bottle was filled with 300 g of homogenized sediment and 1100 mL of 

groundwater, which represents 9.4 % and 55.0 % of the total volume of the bottle, 

respectively. As the bottles had a capacity of 2000 mL, the remaining 35.6 % was the 

anaerobic atmosphere of the chamber (95 % N2 and 5 % H2). To better reproduce the 

contamination at the site (i.e. the presence of pools of CT and CF, which slowly 
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dissolve to give rise to the plume), we added pure phase of CT and CF. Thus, 10 µL of 

CT and 10 µL of CF (Sigma-Aldrich, Reagent grade, 99.9 %) were added at the start of 

the experiment. The isotopic compositions of δ13C of CT and CF in groundwater used 

in microcosms before purging with N2 gas were -39.3 ± 0.1 ‰ and -43.6 ± 0.1 ‰ for CT 

and CF, respectively. The isotopic compositions of δ13C of pure phase of CT and CF 

added were -42.4 ‰ and -46.8 ‰, respectively. Bottles were sealed with Minivert® 

valves (SUPELCO analytical) and insulating tape. in addition, in the anaerobic 

chamber, all the bottles were arranged horizontally on shelves and covered by a thick 

black cloth to preserve maximum conditions of darkness. 

 

2.2.4. Water sampling for chemical and isotope analyses 

Water samples from the two microcosm experiments were collected to study the time 

evolution of pH. Measurements were carried out inside the anaerobic chamber using a 

benchtop pH-Meter BASIC 20, Crison Instruments. Concentrations of the main 

inorganic electron acceptors in the experiments (sulfate, nitrate, and nitrite), acetate, 

lactate, CS2, CT, CF, DCM, CM and the δ13C of CT and CF were also determined. The 

low concentrations of DCM and the fact that all concentrations of CM were below the 

Limit of Quantification prevented us to ascertain the δ13C of these compounds. 

Sodium azide (N3Na Fluka) was added to microcosm water samples immediately after 

being collected to inhibit bacterial activity, according to Trevors (1996). Before 

analyses, the vials containing the samples were stored in a cold chamber at 4 ºC in 

total darkness. 

 

2.3. Compound specific isotope analysis 

The determination of δ13C of dissolved chloromethanes was carried out in duplicate by 

using the CSIA technique, which allows us to determine the isotopic signature of 

carbon by measuring the two stable isotopes, 12C and 13C. This relationship is 
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expressed as δ13C (in ‰ units) = (Rsample / Rstandard - 1) × 1000, where Rsample is the 

13C/12C ratio in a given sample, and Rstandard is the 13C/12C ratio in the international 

standard V-PDB. Since molecules with light isotopes tend to react more rapidly, the 

isotopic ratio changes over time, which leads to an isotopic fractionation 

(α): α = Ra / Rb = (1000 + δ13Ca)/(1000 + δ13Cb), where Ra is the isotopic ratio of the 

compound at a particular time (t) or a compound in a well downstream from the source, 

and Rb is the isotopic ratio of the compound at time zero (t0) or a compound in the 

contaminant source. For many organic pollutants, isotopic fractionation during biotic 

and abiotic degradation can be described as a Rayleigh process: Ra = Rb�f
(α-1), where f 

is the relative concentration C/C0 (normalized concentration), where C is the 

concentration of a compound at a given time, and C0 is the concentration at time zero. 

Also, f = exp (δ13Cgw - δ13Csource), where δ13Cgw is the isotopic composition of the 

organic compound in groundwater, and δ13Csource is the isotopic composition of the 

organic compound in the source. Enrichment factor (ε): ε = (α -1)�1000 is, in a first 

approximation, a function of broken bonds during the process of degradation and can 

be used to distinguish reaction mechanisms (VanStone et al., 2007), pathways 

(Hirschorn et al., 2004) and kinetics of reactions (Sherwood Lollar et al., 2010). 

 

2.4. Analytical techniques and protocols for chemical and isotope analyses 

Concentration and isotope determinations were conducted at the laboratories of the 

Scientific and Technical Services of the Barcelona University (accredited by ISO 

9001:2000). Sulfate, nitrate, and nitrite were analyzed following the EPA 9056 protocol; 

acetate according to Furlani et al. (2006); and VOCs by gas chromatography-mass 

spectrometry (GC-MS). To determine the δ13C of chloromethanes the protocol used 

was based on the extraction of VOCs by direct adsorption from the aqueous phase. 

The extraction was made by inserting an adsorbent fiber (Supelco; SPME Fiber 

Assembly 75 um Carboxen PDMS) in the water sample, stored in a 100 mL amber 

glass bottle (SUPELCO analytical) closed with a silicone septum and maintained in 

agitation for 30 min to adsorb the chloromethanes. The determination of δ13C was 
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carried out by Gas Chromatography Combustion Isotope Ratio Mass Spectrometry 

(GC-C-IRMS) in accordance with the protocol described in Palau et al. (2007) and 

using a Delta C Finnigan MAT IRMS spectrometer. 

 

2.5. Bacterial community analysis 

Denaturing gradient gel electrophoresis (DGGE) analyses of water samples were also 

performed. In addition, DGGE analyses of sediment samples were undertaken at the 

start and the end of the experiments (see SD for detailed information). In the case of 

the BLA experiment, identification of microbial populations in the microcosm at the start 

and end of the experiment was carried out. Microbial bacterial population studies were 

performed by DGGE and clone library analyses. DGGE electrophoresis of PCR-

amplified 16S rRNA genes were run in denaturing acrylamide gels and stained prior to 

photography according to standardized methodologies (see SD for further details). 

Clone libraries of PCR-amplified 16S rRNA genes of the whole bacterial populations 

were performed in pGEM-T vector according to standard methodologies. The number 

of analyzed clones was limited for practical reasons to 28 and 27, at the start and the 

end of the experiment, respectively. Rarefaction curves indicated that most of the 

bacterial population was represented by clone library, although saturation was not 

achieved (see section 4.7. in the SD). Inserts in clones were sequenced and assigned 

to microbial taxons by DNA sequence comparisons in genetic databanks (see SD for 

further details). 

Additional information about analytical techniques and instrumentation for 

microbiological analyses of water and sediment samples is found in the SD. 
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3. Results and Discussion 

3.1. Degradation mechanisms of CT and CF in the NA and BLA experiments 

The initial concentration of DO in the experiments (0.70 mg/L) agreed with the reducing 

conditions throughout the year at field scale in the plume (0.77 mg/L in average). In 

addition, the absence of oxygen in the anaerobic chamber where the experiments were 

carried out resulted in a rapid decrease of the initial concentration. Average values of 

0.04 and 0.03 mg/L were attained in the active tests of the NA and BLA experiments, 

respectively, and 0.05 and 0.04 mg/L in the control tests, respectively. Thus, as 

regards the DO, conditions for reductive dechlorination were favorable throughout the 

experiments. 

Considering that the experiments were developed in a reducing environment, the 

degradation mechanisms of CT and CF would have to fit these conditions. In this 

regard, Davis et al. (2003) reported the different mechanisms involved in the 

degradation of CT and CF in reducing environments and classified them into three 

categories. Studies conducted by other investigators thereafter (e.g. Elsner et al., 

2004a; Maithreepala and Doong, 2005; Hanoch et al., 2006) have shown the validity of 

the classification of Davis et al. (2003). In summary form, this classification is  as 

follows: 1) biologically-mediated reductive dechlorination of CT to form CF and DCM 

and reductive dechlorination of CT in abiotic systems to form, at least, CF. This 

mechanism is facilitated by Fe+2 in the presence of goethite and also in the presence of 

iron reduced minerals, including natural GR. 2) abiotic degradation by hydrolysis, which 

may generate CS2 as an intermediate prior to CO2 formation in reducing environments. 

3) Reductive hydrolysis of CT to form CO and/or formic acid, which needs the 

formation of successively dechlorinated radical intermediates. 
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3.1.1. Degradation mechanisms of CT 

The CT pure phase added in the NA and BLA experiments progressively dissolved and 

reached the maximum concentrations, after which a decrease was observed in both 

experiments. Thus, in the NA experiment the decline was from day 33 to day 310 in the 

active tests (after which concentrations were no longer detectable, Figure 1A), and 

from day 62 to day 360 in the control tests (Figure 1B). In the BLA experiment the 

decline was prolonged from day 15 to day 260 in the active tests (after which 

concentrations were no longer detectable, Figure 1C), and from day 124 to day 360 in 

the control tests (Figure 1D). Based on the analysis of the evolution of CT in the active 

and control tests in the NA and BLA experiments, the decrease in CT can be mainly 

attributed to two degradation mechanisms. The first mechanism fitted the first category 

of the above classification and occurred in the active tests of both experiments, where 

increase in pH was registered (Figure S1B in the SD), indicating microbial activity. By 

contrast, pH remained constant in the control tests, with the exception of the initial 

decline due to the addition of lactic acid in the BLA. This mechanism led to the 

formation of CF and DCM (Figure 1A, C), which suggests that it corresponds to a 

process of reductive dechlorination. In this case, it is an abiotic process indirectly 

facilitated by biogenic activity at the start of the experiments and a biotic process at the 

end (see sections 3.5.1. and 3.5.2., respectively, for a discussion on the process and 

the microorganism involved). 

The second mechanism took place mainly in the control tests of both experiments. It 

was not accompanied by an increase in CF (Figure 1B, D), and CS2 was not generated 

(determinations were in all cases below the Limit of Quantification, i.e. 1.22 µg/L). The 

fact that no CF was formed is consistent with the third category, suggesting the 

mechanism involved being the reductive hydrolysis of CT to form CO and/or formic 

acid. 
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Figure 1 

 

3.1.2. Degradation rate constants and percentage of transformation of CT into CF 

Once the corrections of the partition processes and mass-loss inherent in sampling 

were made (see section 2. in the SD for details), the decrease in CT, from the time 

when the added pure phase of CT was dissolved, aligned fairly well with first-order 

degradation kinetics. The degradation rate constants (Kdeg) were lower in the NA 

experiment than in the BLA. Thus, Kdeg were 0.034 (standard error R2 = 0.96) and 

0.032 (R2 = 0.97) in the active and control tests of the NA experiment, respectively; and 

0.041 (R2 = 0.99) and 0.034 (R2 = 0.95) in the active and control tests of the BLA, 

respectively. Furthermore, a higher percentage of the mass of CT added at the start of 

the active tests in the NA than in the BLA remained at the end (0.06 % and 0.01 %, 

respectively; Table 2). Of the rest of the mass, the percentage degraded in the NA was 

lower than in the BLA (39.82 % and 43.22 %, respectively; Table 2). 

 

Table 2 

 

The earlier decrease in CT in the active BLA than in the active NA (initiated at days 15 

and 33, respectively) along with the more rapid decline in the active tests of the BLA 

than in the NA (Kdeg of 0.041 and 0.034, respectively) show that lactic acid 

biostimulation accelerated the degradation of CT. In addition, the degradation process 

was more efficient than in the case of natural attenuation, as the percentage of 

remnant mass of CT was 0.01% at day 260, in the active tests of the BLA, whereas it 

was of 0.06 % at day 310, in the active tests of the NA, Table 2. 

Moreover, the more rapid decrease in CT in the active tests in the BLA than in the NA 

(Figure 1A, C) resulted in a significant consumption of lactate in the BLA. The reduction 
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of this compound was 68.1 % of the total mass injected. However, lactate was also 

used as electron donor in other redox processes (i.e., CF dechlorination, denitrification, 

and sulfate-reduction, see sections 3.1.3. and 3.2.), which justifies the longer lag phase 

in the BLA experiment (62 days) than in the NA (33 days). Additionally, the lag phase 

was shorter in the active tests of both experiments (Figure 1A, C) than the time elapsed 

before the decline of CT in the control tests (Figure 1B, D). 

 

3.1.3. Degradation mechanism of CF 

As in the case of CT, the added CF pure phase progressively dissolved and reached a 

maximum concentration. After this maximum a decrease was only observed in the 

active tests (Figure 1A, C) as CF concentrations remained constant in the control tests 

throughout the experiments. Thus, in the NA experiment the decline was prolonged 

from day 33 to day 360 (Figure 1A), and from day 15 to day 260 (after which 

concentrations were no longer detectable, Figure 1C). CF was transformed into DCM, 

which increased in parallel to the decline of CF until day 166 in the active tests of both 

experiments (Figure 1A, C). After that day, DCM decreased until day 360 

(concentration of degradation products of this compound were below the Limit of 

Quantification). In contrast, concentrations were always below the Limit of 

Quantification in the control tests (Table S2 in the SD). Based on the analysis of the 

evolution of CF in the active and control tests in the NA and BLA experiments (Figure 

1A, B and Figure 1C, D, respectively), the decrease in CF can be attributed to an only 

mechanism. This mechanism fitted the first category of the aforementioned 

classification, and it occurred in only the active tests of both experiments (CF did not 

vary in the controls tests). As CF was transformed into DCM, the degradation 

mechanism corresponds to biologically-mediated reductive dechlorination (see section 

3.5 for a discussion on the microorganism involved). 
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3.1.4. Degradation rate constants and percentage of transformation of CF into 

DCM 

From the time when the added pure phase of CT was dissolved, the decrease in CF, 

aligned fairly well with first-order degradation kinetics (see section 2. in the SD for 

details). The degradation rate constants were lower in the NA experiment than in the 

BLA. Thus, Kdeg were 0.031 (R2 = 0.96) and 0.046 (R2 = 0.97) in the active test of NA 

and BLA, respectively. Moreover, a higher percentage of the mass of CF added at the 

start of the active tests in the NA than in the BLA remained at the end (0.05 % at day 

360 and 0.01 % at day 260, respectively; Table 2). Of the rest of the mass, the 

percentage degraded in the NA was lower than in the BLA (64.14 % and 66.76 %, 

respectively; Table 2). 

As in the case of CT, the earlier decrease of CF in the active BLA than in the active NA 

(initiated at days 15 and 33, respectively), along with the more rapid decrease in the 

active tests of the BLA than in the NA (Kdeg of 0.046 and 0.031, respectively) show that 

biostimulation with lactic acid as an electron donor accelerated the degradation of CF, 

which is consistent with the aforementioned percentage in lactate consumed during the 

experiment. Therefore, biostimulation was more efficient than in the case of natural 

attenuation, as the percentage of remnant-mass of CF was 0.01% at day 260, in the 

active tests of the BLA, whereas it was of 0.05 % at day 360 in the active tests of the 

NA (Table 2). 

 

3.2. Interactions between dechlorination and other redox reactions 

In addition to CT and CF, other electron acceptors were present at the start of the 

experiments, i.e. nitrate and sulfate (0.29 and 2.73 mmol/L, respectively). The 

presence of these compounds suggests competition for available electrons between 

denitrifying, sulfate-reducing and microorganisms that promote dechlorination. A result 
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of this would be a change in redox conditions and a variation in the microbial 

community composition. 

Of these electron acceptors, nitrate played the biggest role in the first days of the 

experiments. Thus, nitrate concentrations decreased over time in the active tests of the 

NA and BLA (Figures S2A and S3A in the SD, respectively) owing to denitrification. 

Consequently, this decline was accompanied by a gradual increase in nitrite 

concentration until day 62 and 15 in the NA and BLA experiments. The subsequent 

decrease in nitrite concentration indicates that lactic acid (as demonstrated by 

Takahashi et al., 2009). Nitrate concentrations remained constant over time in the 

control tests (Figures S2B and S3B in the SD). 

Sulfate evolution in the active tests of the NA was relatively constant until day 133, 

coinciding with the denitrification process (Figure S2A in the SD) and the decrease in 

CT and CF (Figure 1A). After that day, sulfate concentration significantly decreased 

(Figure S2A in the SD). This decline in sulfate shows that sulfate-reduction activates 

when denitrification processes have substantially reduced the nitrate concentration. 

The decline in sulfate is evidence of competition between denitrifying and sulfate-

reducing microorganisms for available electrons (Laverman et al., 2012). As in the case 

of nitrate, the decrease in sulfate occurred much earlier in the active tests of the BLA 

(after day 33; Figure S3A in the SD) than in the active tests of the NA (after day 133; 

Figure S2A in the SD). In addition, in the active tests of the BLA, the substantial 

decrease in CT and CF occurred from day 62 (Figure 1C), coinciding with the sulfate-

reduction process (Figure S3A in the SD). Additionally, the sulfate decrease was 

accompanied by an increase in acetate in the active tests in both experiments (Figure 

S2A and S3A in the SD). Part of this acetate proceeded from the lactate fermentation 

(31.9 % of the added lactate remained at the end of the experiment). The increase in 

acetate reveals that the fermentation processes supply electrons to the medium, 

favoring sulfate-reducing conditions (Liamleam and Annachhatre, 2007). 
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The earlier sulfate decline in the BLA considerably improved the efficiency of CT and 

CF degradation (Figure 1C) given that the competition for electrons with CT and CF 

was minimized (see section 4.3. in the SD). Consequently, the degradation processes 

of CT and CF were initiated before and at faster degradation rates than in the case of 

the NA. 

 

3.3. Isotopic fractionation caused by the degradation mechanisms 

Results showed that reductive dechlorination of CT caused isotopic fractionation of this 

compound in the active and control tests of the NA and BLA (Figure 2). Although the 

degradation rate of CT was higher in the active tests of the BLA (Kdeg of 0.041 and 

0.034 in the BLA and NA, respectively, see section 3.1.2.), the isotope enrichment 

factors were similar in the active tests of the NA and BLA (about -1.8 ± 0.5 ‰ and -1.9 

± 0.2 ‰, respectively). This suggests that, though in the active tests (especially in the 

BLA) part of the degradation is induced by biogenic activity (see section 3.1.1.), the 

isotopic fractionation of CT in the active and control tests is mainly attributable to 

abiotic degradation. 

 

Figure 2 

 

As for CF, albeit our data showed biotic degradation of CF in support of previous 

studies (e.g., Ciavarelli et al., 2012; Chan et al., 2012, Lee et al., 2012, Lima and 

Sleep, 2010), the δ13C of CF did not vary substantially (Figure 2). This led to the lack of 

isotopic fractionation, which differs from the observations of Chan et al. (2012) who, in 

contrast to us, used CF as the only parent compound susceptible to undergo isotopic 

fractionation as it biodegraded. However, as discussed below, this lack of isotopic 

fractionation may be apparent as for metabolites produced by reductive dechlorination 
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a straightforward application of the Rayleigh equation is not strictly possible. This 

inapplicability of the Rayleigh equation is due to the variation of the isotope ratio in 

these compounds owing to: i) the combined effects of isotopic fractionation during its 

production from the degradation of the parent compound, and ii) its own ongoing 

degradation. Moreover, when a compound has different origins, it is not easy to 

interpret its behavior because it is necessary to ascertain whether this compound is 

parent or metabolite (USEPA, 2008). Thus, the degradation of CT led to the formation 

of CF that was lighter than its parent. Simultaneously, this CF was degraded to DCM 

(Figure 1A, C), which is the reason why the Rayleigh equation cannot be applied. In 

addition, the CF that was injected at the start of the experiment was also biodegraded 

to DCM, and the CF remaining in the system was isotopically enriched. The presence 

of these two CF of different origin and different isotopic composition can offset the 

isotopic enrichment of CF that was initially injected. This offset prevented us from 

observing the isotopic fractionation of CF in the experiments, which constitutes a 

significant finding of our work and contrasts with previous observations of other 

authors. 

 

3.4. Selection of microorganisms as a consequence of the evolution of 

chloromethanes, nitrates and sulfates 

DGGE profiles showed that the number of bands was greater at the start than at the 

end of the experiment (Figures 3 and 4), which indicates enrichment. Thus, DGGE in 

the NA (Figure 3) showed that the most significant changes in the population took 

place between day 62 (after the maximum concentration of CT and CF occurred; 

Figure 1A) and day 166. By contrast, in the BLA (Figure 4), there was considerable 

development of microorganisms until day 62, and then selective enrichment of 

microorganisms occurred in parallel to the fall of CT and CF (Figure 1C). The addition 

of lactic acid in the BLA from the start of the experiment led to the enrichment of some 
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groups of microorganisms that competed for bioavailable electron donors with 

microorganisms able to biodegrade chloromethanes. However, after day 62, the high 

concentrations of CT and CF were toxic to the non-halorespiring communities 

(Eastmond, 2008) in both experiments, favoring the selection of other communities. 

Thus, a conspicuous band, which was found throughout the active tests  in water and 

sediment samples showed an increase in the intensity in the NA. This increase was 

markedly appreciable after day 166, which is evidence of selection of microorganisms. 

This band (which is depicted by an arrow in Figures 3 and 4 and an asterisk in Figure 

S6, in the SD) was subsequently found to match the electrophoretic mobility of the 

operational taxonomic unit 6 (OTU 6) (Dechlorosoma suillum) (see section 3.5. and 

Table 3). In addition, the changes in microbial population in the NA coincided with the 

decline in nitrates and sulfates (Figure S2A in the SD), appreciable after day 133. In 

the case of the BLA, at days 166, 260 and 360 a progressive selective enrichment of 

OTU 6 and OTU 15 (Clostridiales bacterium) was observed (Figure 4, section 3.5. and 

Table 3) coinciding with the decline in nitrates and sulfates (Figure S3A in the SD). 

Dechlorination of CT and CF in the active NA and BLA commenced when denitrification 

took place (Figures 1A and S2A in the SD, and Figures 1C and S3A in the SD, 

respectively). However, it increased after sulfate-reduction in the active BLA (Figure 1C 

and Figure S3A in the SD). Consequently, the addition of lactic acid (as electron donor) 

accelerated the exhaustion of other electron acceptors, inducing the earlier selective 

enrichment of the flora that directly or indirectly reduces CT and CF (Figure 4). 

 

Figure 3 

 

Figure 4 

 

Page 20 of 57

URL: http:/mc.manuscriptcentral.com/bbrm  Email: journal@central.uh.edu

Bioremediation Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 21

In summary, selection is a result of: i) the enrichment of halorespiring and sulfate-

reducing communities. The latter disappears or remains as a minority when 

bioavailable sulfate is depleted, which promotes even more the enrichment of OTU 6 

and OTU 15, and ii) the toxicity of CT and CF to the different communities at particular 

concentrations. 

 

3.5. Microbial community structure and dynamics in the biostimulation 

experiment 

A total of 28 clones from the clone library of the initial population at the start of the 

experiment (t=0 days) and 27 of the final population at the end (t=360 days) were 

analyzed in the BLA experiment. The rarefaction curve in Figure S5, in the SD, shows 

that nine of the 28 clones and eight of the 27 clones analyzed at the start and end of 

the experiment, respectively, were different. 

DGGE profiles showed a heterogeneous variety of bands in which duplicates 

presented a striking similarity of bands, which indicates substantial stability of the 

microbial community (Figures 3 and 4). As regards the identified OTU, we describe 

those whose role was noteworthy at the start and end of our experiment. 

 

3.5.1. At the start of the experiment (day 0) 

At the start of the experiment, during which denitrification was observed (see section 

3.2.), the dominant taxonomic group was the Betaproteobacteria class of bacteria (67.9 

% of the clones, Table 3). The presence of Betaproteobacteria in nitrate reduction 

conditions is consistent with previous studies that showed members of the 

Betaproteobacteria to be predominant in enrichment cultures of denitrifying bacteria 

(Heylen et al., 2006). 
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The Methylophilaceae family (OTU 2 and OTU 3, 39.3 %) is noteworthy in the 

Betaproteobacteria class. This family includes some, but not all of the methylotrophic 

bacteria, which are microorganisms that are capable of growing on chloromethanes. 

The presence of this family is consistent with the history of the contamination of the site 

that is highly abundant in chloromethanes. Minor proportions of other 

Betaproteobacteria were also found (OTU 5, OTU 6, OTU 7, and OTU 9, Table 3). 

 

Table 3 

 

OTU 6 (3.6 %), identified as Azospira (synonym: Dechlorosoma, a genus of the family 

Rhodocyclaceae) is noteworthy for two reasons: i) its corresponding DGGE band was 

present in all samples taken at different times, and ii) it became one of the most intense 

bands at the end of the experiment (Figure 4). The genus Azospira contains some 

perchlorate-reducing strains of bacteria isolated from a waste treatment lagoon. These 

strains were initially termed D. suillum (Achenbach et al., 2001; Tan et al., 2003). This 

microorganism has also been detected at field scale in groundwater contaminated by 

chlorinated solvents (Zemb et al., 2010). In addition, this is a respiring heterotrophic 

microorganism that can use different electron acceptors other than oxygen (nitrate, 

chlorate, and perchlorate). Additionally, it is capable of using Fe(II) as electron donor 

(Achenbach et al., 2001, Chaudhuri et al., 2001; Lack et al., 2002). In addition, the 

metabolism of this microorganism generates precipitates of GR (Lack et al., 2002). 

Furthermore, D. suillum has been found to be associated with nitrate-dependent Fe(II) 

oxidizing microorganisms in sediments, which use nitrate as electron acceptor (Lack et 

al., 2002). This association between D. suillum and denitrifying microorganisms is 

consistent with the denitrification process that occurred at the beginning of our 

experiments (see section 3.2.) and highlights the central role played by this 

microorganism in the degradation of CT. Thus, in parallel with denitrification, the 
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metabolic processes of D. suillum would have led to the precipitation of GR (Lack et al., 

2002), which in turn could favor the abiotic dechlorination of CT, according to Liang and 

Butler (2010). This degradation mechanism is an abiotic reductive dechlorination of CT 

induced by the biogenic activity of D. suillum that led to the formation of CF (see 

section 3.1.1.). This abiotic dechlorination was observed particularly in the BLA 

experiment, in which a higher increase in D. suillum than in the NA experiment was 

seen over time. This was a significant finding of our work as the abiotic degradation of 

CT in the presence of GR described by Liang and Butler (2010) couples with the 

biogenic formation of GR by D. suillum, described by Lack et al. (2002). This is the first 

time that this coupling process is described using samples of a real site, which is a 

novelty of our research. 

 

Finally, the presence of the Clostridia class was also identified (OTU 4, 7.1 % of the 

clones, which belongs to the Clostridiales order of gram-positive bacteria). 

 

3.5.2. At the end of the experiment (day 360) 

The increase in the percentage of D. suillum at the end of the experiment (OTU 6, 

11.1 %, Table 3) suggests that the addition of lactic acid favors the selective 

enrichment of this bacterium and promotes the abiotic degradation of CT via the 

formation of GR. As stated above (see section 3.5.1.), D. suillum would be associated 

with nitrate-dependent Fe(II) oxidizing microorganisms, which use nitrate, chlorate, or 

perchlorate as electron acceptors (Achenbach et al., 2001). However, since nitrate 

exhaustion occurred along the experiment, this microorganism has had to use an 

electron acceptor other than nitrate at the end of the experiment, with CT being the 

only available electron acceptor. The use of CT as electron acceptor is another novelty, 
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which to date has not been reported. This biotic degradation of CT would have resulted 

in GR formation and increase of the percentage of D. suillum. 

The most frequently detected group of bacteria at the end of the experiment was 

Clostridiales of the phylum Firmicutes (OTU 12, OTU 13, OTU 14 and OTU 15, Table 

3). Notably, the reductive dechlorination of CT and CF by a respiratory process has 

been described in some members of Clostridiales, i.e., genus Dehalobacter (Grostern 

and Edwards, 2006; Grostern et al., 2010; Justicia-Leon et al., 2012; Lee et al., 2011; 

Chan et al., 2012). Moreover, Clostridium species can co-metabolically degrade CT 

(Galli and McCarty, 1989; Lima and Sleep, 2010). So, it is reasonable to assume that 

one or several of the Clostridiales microorganisms found in our microcosms is 

responsible for the reductive dechlorination of CT, and especially of CF, thus favoring 

its enrichment. 

OTU 15 (7.4 %, the remaining OTU of the Clostridiales order are described in the SD) 

showed a high identity (98 %) with a sequence from an uncultured microorganism of an 

anaerobic microbial community of a tar oil contaminant plume. This OTU is identified in 

DGGE profiles of Figure 4 in which it appears clearly after day 166, when nitrate and 

sulfate concentrations become drastically reduced (Figure S3A in the SD). In parallel, 

CF concentrations, which sharply decreased after day 62, were accompanied by an 

increase in DCM (Figure 1C). This increase suggests that this bacterium of the 

Clostridiales order plays a role in the CF reductive dechlorination process to form DCM 

in the microcosm. CF would have to become isotopically heavier as a result of this 

degradation process, as seen by Chan et al. (2012). However, as discussed above in 

section 3.3., there was an apparent lack of isotopic fractionation. 

 

Finally, OTU 16 (3.7 %) represent the Brevundimonas sp (Alphaproteobacteria). 

Krausova et al. (2006) discovered this species in a consortium consisting of DCM 

degrading Pseudomonas sp. and Brevundimonas sp. 
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4. Conclusions 

DGGE profiles showed that the number of bands was higher at the start of the 

experiment than at the end. This greater number of bands demonstrates the 

occurrence of selection, which was a consequence of the enrichment of halorespiring 

and sulfate-reducing communities. The latter disappeared or were reduced to a 

minority when bioavailable sulfate was depleted. This boosted the growth of D. suillum 

(OTU 6) and a bacterium of the Clostridiales order (OTU 15). Furthermore, given that 

CT and CF can be toxic to the non-halorespiring communities, selection of the 

community of halorespiring bacteria was favored. 

The degradation of CT to form CF was mainly caused by abiotic reductive 

dechlorination of this compound induced by the biogenic activity of D. suillum. This 

implies that the abiotic degradation of CT in the presence of GR coupled with the 

biogenic formation of GR by this microorganism. This coupling occurred particularly in 

the BLA experiment, in which a higher increase in D. suillum than in the NA was 

observed over time. The addition of lactic acid, as electron donor, accelerated the 

exhaustion of other electron acceptors, inducing earlier enrichment of the flora that 

directly or indirectly reduces CT and CF and faster degradation rates. Moreover, the 

central role played by D. suillum was revealed using field samples, which represents 

one novelty of our work along with the fact that D. suillum was capable of using CT as 

electron acceptor when nitrate was exhausted (which to date has not been reported in 

the literature). 

It is worth highlighting that the described processes occurred in combination: i) the 

biogenic formation of GR coupled with the abiotic reductive dechlorination of CT to 

form CF, ii) the combination of this coupling process to, in parallel, transform CF by 

biotic reductive dechlorination to form DCM (which in turn also degrades). 
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The degradation of CF was due to biotic reductive dechlorination, which transformed it 

into DCM because of the respiratory process of a bacterium of the Clostridiales order. 

Biostimulation with lactic acid accelerated this degradation. However, the interactions 

between degradation of CT and CF in a context in which the bioavailability of CF was 

increased by the abiotic reductive dechlorination of CT offset the isotopic enrichment of 

CF. This offset resulted in the apparent lack of isotopic fractionation of this compound, 

which constitutes another novelty of our work and contrasts with previous observations 

of other authors. 

Our findings have significant environmental implications in terms of the assessment of 

the CT and CF contamination and of the biostimulation in anaerobic subsurface 

environments where nitrate and sulfate are present. However, as biostimulation 

increases mobility of the degradation products of CT and CF at laboratory scale, to 

better assess the potential of applying lactic acid biostimulation at field scale, further 

study on the fate and transport of these metabolites in such environments is necessary. 
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TABLE CAPTIONS: 

Table 1: Maximum, minimum and average concentration values of the main inorganic 

and organic compounds constituting the hydrochemical background of the site. 

 

Table 2: Mass fractions (%) in which CT and CF originally dissolved in the NA and BLA 

experiments were distributed after the end day of the experiment (360) or after day in 

which concentrations were no longer detectable. 

 

Table 3: Sequence analysis of clones detected in the biostimulation experiment at the 

start and end times in water (day 0 and day 360, respectively). OTU = Operational 

taxonomic unit. 
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FIGURE CAPTIONS: 

Figure 1: Evolution of chloromethane concentrations measured in water in the 

microcosm experiments (no partition correction included). Concentrations in DCM were 

below the Limit of Quantification. A) active tests in the NA experiment, B) control tests 

in the the NA experiment, C) active tests in the BLA experiment, and D) control tests in 

the BLA experiment. 

 

Figure 2: Evolution of the δ13C of CT and CF in microcosm experiments. A) active tests 

in the NA experiment, B) control tests in the NA experiment, C) active tests in the BLA 

experiment, and D) control tests in the BLA experiment. 

 

Figure 3: DGGE profiles of the amplified 16S rDNA of water samples of the active test 

duplicates of the NA experiment. Values at the top indicate sampling time in days after 

the start of the experiment. OTU = Operational taxonomic unit. OTU 6 is a recombinant 

clone identified as Dechlorosoma suillum (Table 3). 

 

Figure 4: DGGE profiles of the amplified 16S rDNA of water samples of the active test 

duplicates of the BLA experiment. Sampling time in days after the start of the 

experiment. OTU = Operational taxonomic unit. OTU 6 (A) and OTU 15 (B) are 

recombinant clones identified as Dechlorosoma suillum and a bacterium of the 

Clostridiales order, respectively (Table 3). 
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Table 1 
 

 
(*)
 Values below the Limit of Quantification were not considered in this calculation. 

 

(mg/L) NO3
-
 NO2

-
 NH4

+
 SO4

2-
 Cl TOC 

Max 111.48 0.27 13.87 271.22 847.23 303.00 

Min <0.1 <0.1 <0.1 25.69 115.86 1.84 

Average 48.72 0.18 4.58 140.89 368.28 101.23 

(µg/L) 1,1 DCA TCE PCE trans-DCE cis-DCE VC 

Max 2429.07 7.81 5.28 2.54 379.52 20.06 

Min 11.23 3.38 2.20 <0.5 2.04 <0.5 

Average
(*)

 425.18 5.66 3.12 2.16 60.32 9.46 

(µg/L) DCM Benzene Toluene Ethylbenzene o-xylene p-xylene 

Max 5.08 2.70 1337.06 2681.48 4768.51 920.32 

Min 1.96 <0.5 <0.5 <0.5 <0.5 <0.5 

Average
(*)

 3.43 2.45 506.00 642.11 905.36 224.13 

(µg/L) Chlorobenzene Total trichlorobenzene Propylbenzene Total butylbenzene Hexachlorobutadiene Naphthalene 

Max 6.83 9.00 156.51 4.97 2.98 229.02 

Min <0.5 <0.5 <0.5 <0.5 <0.5 2.02 

Average
(*)

 4.41 6.29 79.65 2.98 2.65 79.08 
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Table 2 

 
CT CT CF CF 

 
Active tests Active tests Active tests Active tests 

 
NA at day 310 BLA at day 260 NA at day 360 BLA at day 260 

Loss-mass inherent in 
sampling (%) 

25.90 26.17 30.80 30.05 

Remnant-mass at the end of 
the experiment (%) 

0.06 0.01 0.05 0.01 

Water-gas mass partitioned 
(%) 

32.60 28.70 4.85 3.02 

Water-soil mass partitioned 
(%) 

1.62 1.90 0.16 0.16 

Loss-mass due to degradation 
(%) 

39.82 43.22 64.14 66.76 
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Table 3 

 Frequency (%)     

OTU* 
t= 0 
days 

t= 360 
days 

Nearest relative in GenBank (accession number) % identity Taxonomic group
†
 

1 21.4 n.d.
#
 Uncultured bacterium clone EDW07B001_110 (HM066260.1) 96 P. Chlorobi, C. Ignavibacteria, O. Ignavibacteriales 

2 10.7 n.d. Uncultured bacterium clone MA-63-I98C (HM141874.1) 99 
P. Proteobacteria, C. Betaproteobacteria, O. 
Methylophilales, F. Methylophilaceae 

3 28.6 n.d. Uncultured beta proteobacterium clone MKC1 (EF173332.1) 99 
P. Proteobacteria, C. Betaproteobacteria, O. 
Methylophilales, F. Methylophilaceae 

4 7.1 n.d. 
Iron-reducing bacterium enrichment culture clone HN-HFO91 
(FJ269102.1) 

94 P. Firmicutes, C. Clostridia, O. Clostridiales 

5 7.1 n.d. Variovorax sp. S24561 ( D84645.2) 99 
P. Proteobacteria, C. Betaproteobacteria, O. 
Burkholderiales, F. Comamonadaceae 

6 3.6 11.1 Dechlorosoma suillum PS, complete genome (CP003153.1) 99 
P. Proteobacteria, C. Betaproteobacteria, O. 
Rhodocyclales, F. Rhodocyclaceae, Azospira 

7 14.3 n.d. Rhodocyclus sp. HOD 5 (AY691423.1) 99 
P. Proteobacteria, C. Betaproteobacteria, O. 
Rhodocyclales, F. Rhodocyclaceae 

8 3.6 n.d. Magnetospirillum sp. 16S rRNA gene, strain MSM-4 (Y17390.1) 98 
P. Proteobacteria; C. Alphaproteobacteria; O. 
Rhodospirillales; F. Rhodospirillaceae; Magnetospirillum. 

9 3.6 n.d. 
Hydrogenophaga taeniospiralis gene for 16S rRNA, partial 
sequence, strain:NBRC 102512 (AB681846.1) 

100 
P. Proteobacteria; C. Betaproteobacteria; O. 
Burkholderiales; F. Comamonadaceae 

10 n.d. 7.4 
Uncultured bacterium clone OTU-X4- 10 16S rRNA gene 
(JQ668611.1) 

99 
P. Chloroflexi, C. Anaerolineae, O. Anaerolineales; F. 
Anaerolineaceae 

11 n.d. 7.4 
Uncultured Bacteroidetes bacterium partial 16S rRNA gene, clone 
LiM 11H12 (FN646437.1) 

96 
P. Bacteroidetes, O. Cytophagales, F. Cytophagaceae, 
Meniscus 

12 n.d. 14.8 Uncultured bacterium clone 50 (EF644507.1) 97 
P. Firmicutes, C. Clostridia, O. Clostridiales, F. 
Syntrophomonadaceae, Syntrophomonas 

13 n.d. 37 Bacterium enrichment culture clone T12RRH100B11 (HQ896303.1) 98 
P. Firmicutes, C. Clostridia, O. Clostridiales, F. 
Peptococcaceae 

14 n.d. 11.1 
Uncultured bacterium gene for 16S rRNA, partial sequence, clone: 
12TCLN406 (AB637332.1) 

93 
P. Firmicutes, C. Clostridia, O. Clostridiales, F. 
Clostridiaceae, Oxobacter 

15 n.d. 7.4 
Uncultured Clostridiales bacterium clone D12_34 small subunit 
ribosomal RNA gene, partial sequence (EU266838.1) 

98 
P. Firmicutes, C. Clostridia, O. Clostridiales, 
Ruminococcaceae 

16 n.d. 3.7 
Uncultured bacterium clone NK-M23 16S ribosomal RNA gene, 
partial sequence (JN685485.1) 

99 
P. Proteobacteria, C. Alphaproteobacteria, O. 
Caulobacterales, F. Caulobacteraceae, Brevundimonas 

 

* An OTU is defined by a minimum 2.5 % sequence dissimilarity to any other OTU in this work, and as a proxy of a species 
# 
not detected 

†
 Deduced after SINA online comparisons to the SILVA seed reference alignment (www.arb-silva.de) 
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Figure 1: Evolution of chloromethane concentrations measured in water in the microcosm experiments (no 
partition correction included). Concentrations in DCM were below the Limit of Quantification. A) active tests 
in the NA experiment, B) control tests in the the NA experiment, C) active tests in the BLA experiment, and 

D) control tests in the BLA experiment.  
136x101mm (300 x 300 DPI)  
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Figure 2: Evolution of the δ13C of CT and CF in microcosm experiments. A) active tests in the NA 
experiment, B) control tests in the NA experiment, C) active tests in the BLA experiment, and D) control 

tests in the BLA experiment.  

136x103mm (300 x 300 DPI)  
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Figure 3: DGGE profiles of the amplified 16S rDNA of water samples of the active test duplicates of the NA 
experiment. Values at the top indicate sampling time in days after the start of the experiment. OTU = 
Operational taxonomic unit. OTU 6 is a recombinant clone identified as Dechlorosoma suillum (Table 3).  

202x200mm (300 x 300 DPI)  
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Figure 4: DGGE profiles of the amplified 16S rDNA of water samples of the active test duplicates of the BLA 
experiment. Sampling time in days after the start of the experiment. OTU = Operational taxonomic unit. 
OTU 6 (A) and OTU 15 (B) are recombinant clones identified as Dechlorosoma suillum and a bacterium of 

the Clostridiales order, respectively (Table 3).  
140x96mm (300 x 300 DPI)  
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HYDROCHEMICAL AND MICROBIAL EVOLUTION IN MICROCOSM 

EXPERIMENTS OF SITES CONTAMINATED WITH CHLOROMETHANES UNDER 

BIOSTIMULATION WITH LACTIC ACID 

 

(SUPPLEMENTAL DATA) 

 

Diana Puigservera, José M. Nietob, Magdalena Grifollb, Joaquim Vilab, Amparo Cortésc, 

Manuel Viladevalla, Beth L. Parkerd and José M. Carmonaa* 

 
a
 Dept. de Gequímica, Petrologia i Prospecció Geològica. Facultat de Geologia. Universitat de 
Barcelona. C/ Martí i Franquès, s/n. E-08028 Barcelona (Spain). 

b
 Dept. de Microbiologia. Facultat de Biologia. Universitat de Barcelona. Av. Diagonal, 645. E-
08028 Barcelona (Spain). 

c
 Dept. de Productes Naturals, Biologia Vegetal i Edafologia. Facultat de Farmàcia. Universitat 

de Barcelona. Av. Joan XXIII, s/n. E-08028 Barcelona (Spain). 
d 

School of Engineering, University of Guelph 50, Stone Road East, Guelph, Ontario, Canada 
N1G 2W1 

 

1. Site description: supplementary table 

Table S1: Time evolution of carbon tetrachloride (CT) and chloroform (CF) concentrations in the 

plume. 

 CT (µµµµg/L) CF(µµµµg/L) 

 1997 2006 2008 2009 1997 2006 2008 2009 

Max 771.0 160.0 258.8 308.2 19370.0 960.0 1278.7 552.1 

Min 7.0 ND ND ND 843.0 1.0 2.2 6.9 

Average 196.0 26.0 64.9 66.3 11700.0 79.0 251.6 145.8 

ND = Not detected 

 

2. Materials and methods (evaluation of partition processes) 

Part of the decrease in CT and CF is due to water phase-gas phase partition and water 

phase-soil phase partition as well as to the loss-mass inherent in the water sampling. 

The processes of partition were evaluated on the assumption that they followed models 

governed by Henry’s Law (water-gas partition) and linear isotherm (water-soil partition). 

Thus, in the case of active tests of the NA and BLA experiments, the fractions in which 

the CT and CF dissolved were distributed can be observed in Table 2 of the main text. 

These fractions are are presented on day 310 (in the case of CT) and 360 (end of the 

experiment, for CF) in Table 2, after which concentrations were no longer detectable. 
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3. Materials and methods (microbiological analyses) 

3.1. DNA extraction from microbial populations in microcosms 

Total DNA from the microbial populations was extracted by the Power Soil® DNA 

isolation kit (Mo Bio Laboratories), following the manufacturer’s instructions. For 

sediment samples, a total of 0.25 g was used for DNA extraction. For liquid samples, 3 

mL of the watery supernatant of the microcosms were filtered through 0.2 µm pore size 

membranes (Millipore), which were stored at -20 °C until DNA extraction. The purified 

DNA was finally recovered in 50 µL of sterile milliQ-water and stored at -20°C. 

 

3.2. PCR amplification of 16S rDNA genes from microbial populations 

Eubacterial 16S rRNA gene fragments were amplified by polymerase chain reaction 

(PCR). PCR reactions were prepared in 25 µL volume using the PuRe Taq Ready-To-

GoTM mix (GE Healthcare, Little Chalfont, UK), plus 1 µL of total microbial DNA as 

template and 25 pmols of each primer GC40-63F 

(5’CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGCAGGCCTAAC

ACATGCAAGTC 3’) and 518R (5’ATTACCGCGGCTGCTGG 3’ (El Fantroussi et al., 

1999). 

All the PCR amplifications were performed on an Eppendorf Mastercycler. After 5 min 

of initial denaturation at 95°C, 40 cycles of amplification were carried out. Each of these 

cycles consisted of 1 min of denaturation at 95°C, 1 min of annealing at 55°C, and 2 

min of primer extension at 65°C, followed by a final primer extension of 10 min at 65°C. 

The PCR product was confirmed by standard 1.2 % agarose electrophoresis in TBE 

buffer followed by ethidium bromide staining and photography under UV light 

transillumination. These PCR amplicons were then used for DGGE fingerprinting 

analysis. 

For clone library construction, 16S rRNA genes were PCR amplified by using the 

universal eubacterial primers 27f and 1521r (Weisburg et al., 1991) and the PCR 

methodology previously described. The PCR products were examined on 1.5 % 

agarose gels and purified with a Wizard® SV and PCR Clean-up system (Promega, 

Madison, WI, USA), as described by the manufacturer. The purified DNA was finally 

recovered in 50 µL of sterile milliQ-water and stored at -20°C. 
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3.3. 16S rRNA gene clone libraries 

Amplified 16S rRNA gene fragments from DNA samples of microbial populations were 

cloned into the plasmid vector (pGEM-T Easy Vector system II, Promega) according to 

the manufacturer’s instructions. Initial screening of the Escherichia coli JM109 clones 

was by the blue-white method; positive clones were then analyzed by nested PCR with 

vector-specific pUC/M13 forward and reverse primers as indicated by the 

manufacturer. The PCR products were purified and used for DNA sequencing. 

Additionally, PCR products that gave rise to significant sequence information were 

used as a template for a second (nested) PCR with GC40-63f and 518r primers, as 

described above, for DGGE analysis. DGGE mobility profiles of PCR products obtained 

from members of the clone library were compared with the fingerprints of the whole 

microbial population of the microcosms. Profiles obtained from the total microcosm 

bacterial population at t=0 and t=360 days were used as markers, which enabled us to 

identify the bands of the community fingerprint that matched the known members of the 

clone library. 

 

3.4. DGGE analysis 

The PCR products from the microbial consortia and clone inserts were examined on 

1.5 % agarose gels and then directly used for DGGE analysis (Muyzer et al., 1993) on 

6 % polyacrylamide gels. The denaturing gradients ranged from 40 % to 60 % (100 % 

denaturant contained 7 M urea and 40 % formamide). Electrophoresis was performed 

at a constant voltage of 100 V for 16 h in 1x TAE buffer at 60ºC on an INGENYphorU-2 

DGGE machine (INGENY International BV, Goes, The Netherlands). The gels were 

stained for 30 min with SYBR Gold nucleic acid gel stain (Molecular Probes Europe 

BV, Leiden, The Netherlands). Photographies were made under UV light, using a 

ChemiDoc XRS+ system (Bio-Rad) with Image Lab image capture and analysis 

software. 

 

3.5. Sequencing and phylogenetic analysis 

Sequencing was accomplished using the ABI Prism BigDye 3.1 Terminator cycle 

sequencing reaction kit following the manufacturer’s instructions. Primers M13f or M13r 

were used for sequencing cloned 16S rDNA genes in clone libraries. The sequences 

obtained were analyzed by comparison with the SILVA 16S rRNA database by using 

the SINA web aligner according to the silva tree server (Pruesse et al., 2007; 

http://www.arb-silva.de/aligner). Percent similarities to closest neighbors were obtained 
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by BLAST on-line searches (Altschul et al., 1997). The 16S rDNA sequences were 

deposited in the GenBanK database with accession numbers JX102499 to JX102514, 

respectively. 

DGGE fingerprints throughout the experiments were obtained in duplicate. To identify 

the DGGE bands, 16S rDNA clone libraries were obtained at the start and end of the 

experiments. Clones were sequenced, and the sequences used to group the clones in 

OTUs (Operational Taxonomic Units) and for taxonomic classification of each OTU. 

DGGE profiles obtained from representative clones were compared with the community 

fingerprints at the start and end of the experiment. 

 

4. Results 

4.1. Dissolved oxygen and pH 

Monitoring of pH over time allowed us to observe variations between the active and 

control tests and the NA and BLA experiments. pH remained constant over time in the 

control tests of the NA experiment (Figure S1A), whereas an increase in alkalinity was 

observed in the active tests (as pH varied from the initial value of 7.70 to 8.10). In 

contrast, a slight acidification occurred in the control tests of the BLA experiment 

between days 0 and 62 (Figure S1B; pH varies from 7.70 to 7.35 despite a subsequent 

increase). This acidification occurred as a consequence of the addition of lactic acid, 

whereas in the active tests an increase in pH occurred in this period. These pH values 

are optimal for dechlorination as they are within or slightly above the range 6.80 to 7.80 

reported by Cope and Hughes (2001) and ESTCP (2004). 

Microbial activity in the active test between 0 and 62 days was sufficient to prevent 

acidification of the medium after the first addition of lactic acid. A subsequent decline in 

pH (Figure S1B), coinciding with a new addition of lactic acid and with a decline in 

microbial diversity was observed in the active tests after day 62 (Figure 4 in the main 

text). 

 

4.2. Conditions in which the reductive dechlorination of CT and CF may be 

hindered 

Under nitrate and sulfate-reducing conditions, CT and CF are better electron acceptors 

than nitrates and sulfates as their standard reduction potential is lower than that of CT 

and CF (Rijnaarts et al., 1998; de Best, 1999; de Best et al., 1999). However, 

dechlorinating microorganisms also have to compete with other microorganisms for 

available electron donors. This competition may hinder dechlorination of 
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chloromethanes (Semprini et al.,1992; Picardal et al., 1993) although the reaction is 

thermodynamically favorable and possible, as demonstrated by laboratory and field 

studies (Rijnaarts et al., 1998). For these reasons, the order of use of the different 

electron acceptors does not necessarily correspond to the scale of the standard 

reduction potential. In our case, the availability of nitrate and sulfate, which is higher 

than that of CT and CF at the start of the experiments, must be considered. Likewise, 

also the existing communities (denitrifying, sulfate-reducing and halorespiring) and their 

development stage have to be considered. 

 

4.3. DCM 

An increase in concentration of DCM was observed in the active tests of the NA 

experiment between day 33 and day 196 (Figure 1A in the main text), after which 

concentrations decreased. In contrast, concentrations in DCM were always below the 

Limit of Quantification in the control tests. 

In the BLA experiment, a slow increase until day 196 in the active tests (Figure 1A, C in 

the main text) suggests that DCM is formed by the reductively dechlorinating microbial 

population. This increase in DCM is followed by a decrease, which also suggests that 

this compound is partially consumed by members of the anaerobic community, most 

probably acetogens or methylotrophic (Leisinger and Braus-Stromeyer, 1995). 
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4.4. CT, CF and DCM concentrations in microcosms experiments (supplementary table) 

Table S2: Time evolution of CT, CF and dichloromethane (DCM) concentrations in the microcosms experiments. 

 

Natural Attenuation  Biostimulation (lactic acid) 

    Active (mmol/L)    Control (mmol/L)       Active (mmol/L)    Control (mmol/L)  

Days  CT CF DCM  CT CF DCM  Days  CT CF DCM  CT CF DCM 

0  3.9E-02 7.8E-02 2.7E-05  3.9E-02 7.6E-02 BLOQ  0  3.6E-02 1.1E-01 2.7E-05  4.2E-02 1.1E-01 BLOQ 

8  4.6E-02 8.1E-02 5.1E-05  4.1E-02 8.6E-02 BLOQ  8  4.3E-02 1.3E-01 5.1E-05  4.2E-02 1.2E-01 BLOQ 

15  3.5E-02 8.7E-02 8.3E-05  4.4E-02 9.8E-02 BLOQ  15  4.4E-02 1.4E-01 4.7E-05  4.7E-02 1.5E-01 BLOQ 

33  5.0E-02 4.5E-01 1.0E-04  5.2E-02 7.5E-02 BLOQ  33  3.4E-02 1.2E-01 5.8E-05  4.9E-02 1.2E-01 BLOQ 

62  8.5E-03 1.8E-01 2.1E-04  7.3E-02 1.9E-01 BLOQ  62  3.1E-02 6.8E-02 4.3E-05  5.7E-02 1.5E-01 BLOQ 

124  2.6E-03 1.9E-02 2.1E-04  1.3E-02 1.7E-01 BLOQ  124  2.9E-03 9.0E-03 2.0E-04  7.8E-02 3.5E-01 BLOQ 

166  3.2E-04 9.9E-03 4.5E-04  6.1E-03 1.1E-01 BLOQ  166  2.3E-04 4.3E-04 3.3E-04  2.4E-02 1.7E-01 BLOQ 

196  1.3E-04 7.3E-04 3.8E-04  9.5E-04 9.9E-02 BLOQ  196  5.5E-05 9.4E-05 3.3E-04  2.4E-02 1.2E-01 BLOQ 

216  1.0E-04 8.1E-04 2.0E-04  7.5E-04 9.8E-02 BLOQ  216  1.9E-05 1.3E-05 2.1E-04  4.5E-03 2.1E-01 BLOQ 

260  3.7E-05 1.3E-04 1.5E-04  3.2E-04 1.1E-01 BLOQ  260  5.1E-06 4.5E-06 1.0E-04  1.4E-03 1.4E-01 BLOQ 

310  1.3E-05 2.3E-05 4.8E-05  5.9E-05 6.6E-02 BLOQ  310  BLOQ BLOQ 5.5E-05  5.5E-04 1.4E-01 BLOQ 

360   BLOQ 9.9E-06 3.0E-05   2.2E-05 6.0E-02 BLOQ  360   BLOQ BLOQ 1.3E-05   8.1E-05 1.0E-01 BLOQ 

     

BLOQ: samples below the limit of quantification             
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4.5. Microbial community structure 

4.5.1. At the start of the experiment 

At the start of the experiment (day 0), during which denitrification was observed (see 

section 3.2. in the main text), the dominant taxonomic group was the 

Betaproteobacteria class of bacteria. The presence of Betaproteobacteria in nitrate 

reduction conditions is consistent with earlier studies that showed members of the 

Betaproteobacteria to be predominant in enrichment cultures of denitrifying bacteria 

(Heylen et al., 2006). Denitrifying bacteria are capable of mineralizing DCM under 

denitrifying conditions (Melendez et al. 1993, Kohler et al., 1995), and of giving rise to 

reductive dechlorination of CT, CF and DCM under anoxic conditions as reported by Yu 

and Smith (2000). 

The Methylophilaceae family (OTU 2 and OTU 3, 39.3 %) is noteworthy in the 

Betaproteobacteria class. This family includes some, but not all of the methylotrophic 

bacteria, which are microorganisms that are capable of growing on chloromethanes. 

For instance, Methylophilus sp DM11, a member of the Methylophilaceae, has been 

shown to grow on DCM as the only source of carbon and energy (Bader and Leisinger, 

1994). The presence of this family is consistent with the history of the contamination of 

the site that is highly abundant in chloromethanes. This confirms the potential of 

methylotrophic microorganisms in the detoxification of these compounds (Doronina et 

al., 2000, 2001; Firsova et al., 2009; Leisinger et al., 1994; Trotsenko et al., 2003). 

OTU 5 and OTU 9 belong to the family Comamonadaceae. OTU 9 matches 

Hydrogenophaga, an aerobic, hydrogen-oxidizing bacterium able to denitrify (Willems 

et al., 1989) 

OTU 7, Propionivibrio, has also been found to include some perchlorate reducing 

bacterial strains (Thrash et al., 2010). 

The second most frequent group of clones (21.4 %) at the start time belongs to an 

uncultured genus (OTU 1) affiliated with Ignavibacteria, a small group with few cultured 

members of the phylum Chlorobi. Clone sequences from molecular studies of 

dechlorinating microcosms (Genbank accession number AB186805 and AB186806, 

Yoshida et al., 2005) are amongst the rRNA gene sequences most similar (93 % 

identity) to OTU 1. Further experimental data are needed to determine the physiology 

of these unknown bacteria and to ascertain whether they play a role in the 

dechlorination process of contaminated sites. 

OTU 8 (3.6% of the clones) is an Alphaproteobacteria (Magnetospirillum (Table 3 in the 

main text). This genus contains aerobic magnetotactic bacteria of surficial waters. 
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4.5.2. At the end of the experiment 

OTU 13 (sequence frequency of 37 %) showed a significant identity in the BLAST 

search (98 %) to a sequence obtained from bacterial populations associated with 

dissimilatory arsenate reduction in an industrial soil. 

OTU 14, also a Clostridiales bacterium, showed little identity (93 %) to other sequences 

in the Genebank. In contrast, OTU 12 shows a high identity (98 %) to a 16s rRNA gene 

sequence (EF644507.1) obtained from an uncultured member of a 1,1,2,2-

tetrachloroethane to ethane dechlorinating community (Rossetti et al., 2008). 

OTU 10 is similar (99 %) to a sequence (AJ249113) from an uncultured microorganism 

of a dechlorinating mixed culture described as phylogenetically related to those of other 

anaerobic dechlorinating consortia (Schlotelburg et al., 2000). OTU 10 showed a 97 % 

identity to accession NR_041355 (Longilinea arvoryzae 16S ribosomal RNA, partial 

sequence), a microorganism of the phylum Chloroflexi (Yamada et al., 2007). 

OTU 11 (7.4 %) is closely related to the genus Meniscus, whose type strain (M. 

glaucopis) is an anaerobic aerotolerant bacterium, isolated from an anaerobic digester 

of a wastewater treatment plant (Irgens, 1977). 

 

4.6. DGGE profiles of sediment samples 

The DGGE profiles of sediment samples at the start and the end of the experiments 

showed a higher phylotype diversity with respect to the profiles of the matching water 

samples (Figure S6). This higher diversity was in accordance with earlier observations 

based on water and sediment samples at field scale (Puigserver, 2010; Puigserver et 

al., 2013). Figure S6 also indicates lower diversity and development of bacterial 

communities in sediment than in water at the start of the experiment. Furthermore, and 

in contrast to the water samples at the end of the two experiments (day 360), the 

sediment samples showed greater diversity and a lower degree of microbial speciation. 

The considerable reactive surface of the sediment encourages the growth of 

microorganisms, which could account for the greater diversity in sediment than in 

water. In addition, bacteria with no motility are found at the bottom of the bottle (i.e., in 

the sediment) owing to the absence of water flow in the microcosm experiment. In 

contrast, clone OTU 6 (identified as D. suillum, Figure S6) is the most specialized and 

the most abundant bacteria in water, where hydrogeochemical conditions are 

increasingly restrictive. 
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4.7. Supplementary figures 

 

 

Figure S1: Time evolution of pH in water of microcosm experiments. A) natural attenuation, 1A 

and 3A active duplicate tests, 2C and 4C control duplicate tests. B) Biostimulation with lactic 

acid. 17A and 19A active duplicate tests, 18C and 20C control duplicate tests. 

 

 

Figure S2: Time evolution of major and minor ions and acetate concentrations in the microcosm 

experiment to study natural attenuation (NA). A) active tests, B) control tests. 
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Figure S3: Time evolution of major and minor ions and acetate concentrations in the microcosm 

experiment to study biostimulation with lactic acid as electron donor (BLA). A) active tests, B) 

control tests. 

 

 

 

 

Figure S4: Rayleigh graph for the 

active and control tests of the 

microcosm experiment of natural 

attenuation of CT. 

Figure S5: Rarefaction curve of the 

analyzed clones corresponding to the 

biostimulation with lactic acid 

microcosm experiment at the start time 

(day 0, blue color) and end time (day 

360, red color). OTU: Operational 

Taxonomic Unit (Table 3 in the main 

text). 
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Figure S6: DGGE profiles of water and sediment in active microcosm experiments of natural 

attenuation and lactic acid biostimulation. In each profile, 0 = day 0 (start time), 360 = day 360 

(end time), sed = sediment sample, wat = water sample, NA = natural attenuation, BLA = lactic 

acid biostimulation. OTU = Operational taxonomic unit. Asterisks correspond to OTU 6, which is 

a recombinant clone identified as Dechlorosoma suillum (Table 3 in the main text). 
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