
 
 

Universidade de Lisboa 

Faculdade de Ciências 

Departamento de Química e Bioquímica 

 

 

 

 

 

Role of transcription factors in the functional 

development of gamma-delta T lymphocytes  

 

Joana Luísa de Barros Martins 

 

 

Dissertação 

Mestrado em Bioquímica  

Especialização em Bioquímica Médica



 
 

 



 

Universidade de Lisboa 

Faculdade de Ciências 

Departamento de Química e Bioquímica 

 

 

 

Role of transcription factors in the functional 

development of gamma-delta T lymphocytes  

Joana Luísa de Barros Martins 

 

Dissertação  

Mestrado em Bioquímica  

Especialização em Bioquímica Médica 
 

Tese orientada pela Doutora Karine Serre e pelo                                          
Professor Doutor António Ferreira 

2014 





Role of transcription factors in the functional development of gamma-delta T lymphocytes 

 

i 
 

I. RESUMO 

O contacto contínuo com o exterior e a vasta exposição a patogéneos levou a que, durante a 

evolução, organismos superiores desenvolvessem mecanismos de protecção especializados. O 

sistema imunitário, constituído por um vasto número de células e tecidos especializados, pode 

ser subdividido em dois grupos – sistema imune inato ou adaptativo – de acordo com o tipo de 

resposta que é desenvolvido. As células do sistema imune inato, maioritariamente localizadas 

em locais de alto contacto com o exterior (p.e. o epitélio), caracterizam-se pela sua resposta 

não especializada – e portanto, inata – que permite um rápido controlo de infecções. As 

células T γδ, natural killer (NK) e macrófagos são exemplos de células pertencentes a este tipo 

de imunidade. Por outro lado, células do sistema imune adaptativo como as células T  e 

células B, possuem a capacidade de desenvolver uma resposta mais duradora e especializada, 

que lhes permite não só combater mais eficazmente uma infecção mas também desenvolver 

uma memória imunitária.  

Uma característica funcional partilhada entre as células do sistema imune inato e adaptativo é 

a produção de citocinas. A sua produção e consequente secreção permitem uma melhor e 

mais eficaz resolução de uma infecção, através do recrutamento e activação de células do 

sistema imune para o local afectado. Os linfócitos T em conjunto com os linfócitos T  

CD4, produzem citocinas pro-inflamatórias como o IFN- e a IL-17A. Todavia, as células T  

distinguem-se dos últimos pela sua rápida capacidade de resposta a estímulos externos, 

através da produção e secreção de citocinas na periferia. Esta característica advém da 

diferenciação dos seus progenitores em células T  especializadas na produção de IFN-

(CD27+) ou de IL-17A (CD27-) no timo,  ao passo que linfócitos T CD4 abandonam o timo sob a 

forma de linfócitos naïve, necessitando de estímulos prolongados para que se diferenciem em 

linfócitos T efectores. Os mecanismos moleculares que regulam os processos de diferenciação 

e produção de citocinas encontram-se extensamente estudados em linfócitos T . O factor de 

transcrição T-bet, por exemplo, regula a diferenciação dos linfócitos T CD4 em linfócitos Th1 

CD4 bem como a produção de IFN-. Contudo, pouco é conhecido relativamente aos 

reguladores da produção de citocinas nos linfócitos T . Por esta razão propusemo-nos 

estudar o papel de alguns dos factores de transcrição na regulação da transcrição de citocinas 

como o IFN- e IL-17A.  

O paralelismo entre os linfócitos Th1 CD4 produtores de IFN- e os linfócitos T 27+ e entre os 

linfócitos Th17 CD4 produtores de IL-17A e os linfócitos T 27- levou-nos a escolher como 

objecto de estudo vários factores de transcrição associados à produção destas citocinas nos 



linfócitos T CD4. Tendo isto, escolhemos o T-bet e o factor de transcrição Eomes, envolvido na 

produção de IFN-em linfócitos T CD8. Associados à diferenciação dos linfócitos T CD4 em 

Th17, vários factores de transcrição foram ainda associados à regulação da transcrição de IL-

17A nestas mesmas células. De entre estes os factores de eleição para o nosso estudo foram o 

RORt, BATF e o ROR. De modo a estudar o papel de cada factor de transcrição nos linfócitos 

T  usámos ratinhos geneticamente modificados, nos quais cada um destes factores de 

transcrição se encontra deletado. Para o estudo do factor de transcrição Eomes, recorremos 

ao uso de ratinhos nos quais apenas células que expressam o gene RAG1 - células T e B - 

apresentam a deleção específica para o factor de transcrição Eomes, visto a deleção total ser 

letal durante a embriogénese.  

Através de estudos in vitro usando diversas condições de estimulação (citocinas e anticorpos 

monoclonais), foi-nos possível aferir quais destas permitem induzir a produção de IFN- em 

linfócitos T 27+ e de IL-17A em linfócitos T 27-. De forma a determinar o impacto que a 

ausência de cada factor de transcrição teria na produção de IFN- e IL-17A, optámos pelo o uso 

dos anticorpos monoclonais anti-CD3 e anti-CD28 no caso dos linfócitos T 27+ e das citocinas 

IL-1 mais IL-23 no caso dos linfócitos T 27-. É de salientar que na presença de IL-1 e IL-23 

os linfócitos T 27-, como já anteriormente descrito pelo laboratório, demonstraram não só a 

capacidade de produzir outras citocinas em simultâneo – como a IL-17F e a IL-22 – mas 

também a capacidade de co-produzir IFN- e IL-17A.  

Os nossos resultados in vitro demonstraram que, na ausência de T-bet, os linfócitos T 27+ 

possuem a mesma capacidade de produção de IFN- apesar de o número de linfócitos que 

produz esta citocina ser menor. Este resultado sugere que os linfócitos T 27+ possam 

depender parcialmente do T-bet. Por outro lado, a ausência do factor de transcrição Eomes 

não revelou diferenças na produção de IFN-, demonstrando que os linfócitos T 27+ não 

requerem Eomes para a produção de IFN-. Já a produção de IFN-g pelos linfócitos T 27- não 

sofreu quaisquer alterações na ausência tanto do factor de transcrição T-bet assim como na do 

Eomes. Estes resultados sugerem então que estes linfócitos apresentam um diferente 

mecanismo na regulação da transcrição do IFN-. Contudo, as experiências in vitro nem 

sempre replicam a realidade in vivo. Por esta razão e com o intuito de compreender os 

mecanismos de regulação da produção destas citocinas recorremos a dois modelos murinos – 

EAE e Listeria monocytogenes – nos quais foi demonstrada a presença de linfócitos T 27- 

produtores de IFN-. Contudo, o modelo experimental de esclerose múltipla (EAE), não nos 

permitiu observar a produção de IFN- em linfócitos T . No entanto, através do uso do 
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modelo de infecção (Listeria monocytogenes) foi possível observar que a ausência de T-bet 

leva a um desaparecimento completo das células co-produtoras de IFN- e IL-17A. Estes 

resultados sugerem assim, que linfócitos T 27- requererem o factor de transcrição T-bet para 

a produção de IFN-. 

A análise da produção de IL-17A em linfócitos T 27- demonstrou que estes são inteiramente 

dependentes do factor de transcrição RORt. Verificámos ainda que esta dependência não se 

encontra limitada à produção de IL-17A estendendo-se também ao desenvolvimento de uma 

população específica de linfócitos T 27- que apenas produz IL-17A, designada CCR6+
27-. Foi 

também possível observar que os linfócitos T 27- não requerem os factores de transcrição 

BATF e ROR para a produção de IL-17A. Durante esta análise, contrariamente ao esperado, 

foi ainda detectado um aumento no número de linfócitos T 27- que produziam IL-17A na 

ausência do ROR. Estes resultados levaram-nos a prosseguir um estudo mais detalhado sobre 

o papel do ROR em linfócitos T 27-. 

Para estudar o papel do factor de transcrição ROR em células T   foram usados ratinhos que 

expressam uma forma truncada, não funcional, do factor ROR. Ao investigar o papel do ROR 

nos linfócitos T , deparámo-nos que o aumento no número de células produtoras de IL-17A 

não se devia a um impacto na diferenciação dos linfócitos T CCR6+
27-. No entanto, 

observámos um aumento da proporção de linfócitos T  expressando a cadeia V4 

(maioritariamente produtores de IL-17A) e uma diminuição na proporção de linfócitos T  

expressando a cadeia V1 (maioritariamente produtores de IFN-) no seu TCR. Este aumento 

foi não só detectado na periferia como também no timo, em linfócitos T  imaturos (CD24+), 

sugerindo a existência de um papel do ROR no rearranjo das cadeias gamma do TCR dos 

linfócitos T . Mais ainda, podemos observar que o aumento no número de linfócitos 

produtores de IL-17A, após estimulo com IL-1 mais IL-23 durante a noite, não se devia apenas 

a um aumento do número de linfócitos V4, mas também a um aumento do número de células 

produtoras de IL-17A de entre a população V1-V4-, que acreditamos ser constituída por 

linfócitos T V6+
. Estes resultados sugerem assim que o factor de transcrição ROR possui 

dois papéis distintos em linfócitos T , através do controlo do rearranjo das cadeias gamma 

dos linfócitos T  e da regulação da produção de IL-17 em linfócitos T V1-V4-
. 

Em suma, os nossos resultados sugerem a existência de algumas semelhanças nos mecanismos 

de regulação da produção de IL-17A e IFN-γ entre os linfócitos Th1 CD4 e os linfócitos T 27+ e 



27-. Especificamente, estes resultados parecem sugerir um papel do factor de transcrição 

RORa no desenvolvimento e produção de IL-17A em linfócitos T . 

Palavras-Chave: linófictos T gamma-delta, citocinas, factores de transcrição, IL-17A, IFN- 
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II. SUMARY 

 T cells are a major source of the proinflammatory cytokines IFN- and IL-17, together with 

 CD4 T helper cells. However in stark contrast with the latter, one of the main features of  

T cells is their briskness at cytokine production in the periphery. This is mostly attributable to 

their programmed phenotype(s) that distinguishes IFN--producing CD27+ (27+) and IL-17-

producing CD27- (27-) subsets. Importantly, 27+ cells are stably committed to express Ifng 

but not Il17, whereas 27- cells spontaneously make IL-17 but can be induced to produce IFN-

 (as well as IL-17F, IL-22, GM-CSF) under specific inflammatory conditions. Our understanding 

of the transcriptional regulators of the production of these cytokine in both  T cell subsets 

lags behind that of CD4 T cells. Here we show that  T cells do not rely entirely on the same 

transcriptional mechanisms for their functional differentiation. Remarkably, IFN- production 

by both 27+ and IL17+
27- T cells relies on the Th1 transcription factor (TF) T-bet but is 

dispensable of Eomes. This suggests a T-bet-dependent module for IFN- production shared by 

conventional CD4 T cells and innate-like  T cells. By contrast and to our surprise, regarding 

the Th17 TFs and IL-17 production, neither BATF nor ROR showed to be required by 27- T 

cells, which appear to depend solely on RORt. Interestingly, mice lacking ROR showed an 

increased number of IL-17-producing V1-V4- cells upon stimulation as well as a change in the 

proportion of V4+ and V1+  T cells. Together our findings illustrate a simpler mechanism for 

regulation of cytokine production by  T cells which allows a faster response to stimulus. In 

addition, our work revealed a role for ROR in the development of certain  T cell subsets as 

well as in the functional differentiation of IL-17-production. 

Keywords: Transcription factors, cytokine production, IL-17, IFN-,  T cells. 
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Tonegawa, 19861. 
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IV. INTRODUCTION 

 

1. GENERAL ASPECTS  

As part of evolution, organisms acquired an immune system that gave them the ability to 

develop competent immune responses and thereby protection against pathogens. It comprises 

different tissues and cells that regulate two arms of the immune system, innate and adaptive 

immunity. While innate immunity recognizes wide conserved molecular patterns of pathogens 

and develops a quick response, adaptive immunity acts slowly but in a highly specific manner 

by recognition of antigens through generation of a vast range of antigen specific receptors2. 

Originated through a differentiation process called haematopoiesis taking place in primary 

lymphoid organs (PLOs), immune cells then migrate to the secondary lymphoid organs (SLOs). 

SLOs function as coordinating platforms where immune cells are exposed and primed to 

antigens from invading pathogens. Spleen and lymph nodes are some examples of SLOs.3 

T and B lymphocytes are the main players in the adaptive immune system. Both arise from a 

common lymphoid progenitor sharing the ability to produce their antigen-receptors by somatic 

V, D, J gene rearrangements2. B cells develop in the bone marrow and migrate to the SLOs 

where upon the right stimulus they secrete their antigen-receptor in the form of antibodies4. T 

cell development occurs in the thymus starting from a bone marrow common progenitor 

giving rise to two subsets –T cells and  T cells. As the largest population,  T cells 

(conventional T cells) leave the thymus as naïve cells to be activated through their T cell 

receptor (TCR) by antigen presenting cells (APCs) in the SLOs, leading to their functional 

differentiation in the periphery5,6. On the contrary, it has been showed that innate-like  T 

cells leave the thymus already differentiated and functionally competent to populate mucosal 

and epithelial tissues where they will respond rapidly to invasion or stress situations7. 

In order to protect and achieve pathogen clearance T lymphocytes can respond to infection by 

producing and secreting small proteins called cytokines. They play a critical role in the 

interface between innate and adaptive immunity. They trigger recruitment and activation of 

more lymphoid myeloid cells to site of infection8. 



2. CYTOKINES AND IMMUNITY  

 

Innate and adaptive immunity have different weights in immune surveillance and regulation of 

immune responses but act in similar way. Cells from both systems secrete cytokines as a way 

of communication and signaling within near or remote lymphoid and non-lymphoid organs8.  

Cytokines can play different roles in protection by like pro- and anti-inflammatory roles and be 

involved in several others beyond the immune system such as cell growth, tissue repair after 

infection and consequently inflammation and in the control of tissue homeostasis9. 

Interferon- (IFN-) and interleukin-17 (IL-17) are two cytokines critical against invading 

pathogens. However when deregulated they lead to major tissue damage such as chronic 

inflammation and autoimmune disorders.  These cytokines can be produced by several 

lymphoid cells10,11,including IFN- producing T helper 1 (Th1) or IL-17 producing T helper 17 

(Th17)  T cells and  T cells12.   

2.1   INTERFERON-GAMMA 

Originally called macrophage-activating factor, IFN- was discovered as an agent which 

interferes with viral replication together with other IFNs from the type I family (IFN- and IFN-

, although to a lesser extent 11. Produced by CD4+ T cells after specific differentiation, CD8+ T 

cells and Natural Killer (NK) cells, IFN-can be also produced by  T, B cells, NKT and 

professional APCs11,13,14.  

The specific effect of IFN- on macrophages and cytotoxic cells consists in mounting an 

effective response towards intracellular pathogens such as viral infections – West Nile virus, 

Herpes virus and influenza virus11,14,15, bacterial infections - Listeria monocytogenes, Bordetella 

pertussis and Mycobacterium tuberculosis14,15 – and parasitic infections -  Toxoplasma gondii , 

Plasmodium chabaudi and Leishmania major14,15. To achieve these functions, IFN-triggers 

macrophages to produce reactive oxygen species (ROS) targeting extracellular pathogens 

during phagocytosis and reactive nitrogen intermediate (RNI) which targets intracellular 

pathogens11,14.  

Besides, IFN- has also been shown to contribute to tumor development control  in vivo16. This 

is linked to the up-regulation of cell-surface class I and II major histocompatibility complex 

(MHC) that leads to increase cytotoxic T cell recognition of tumor peptides and CD4+ T helper 

cell activation11,13,14. IFN- can also promote the B cell isotype class switching to 

immunoglobulin G2a (IgG2a) and suppress IgG1 and IgE production11,13,14,17. Controlling 
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infected cells apoptosis and suppression of proliferation through cell cycle arrest, at the G1/S 

boundary, are two other main functions of IFN- 11.   

As an anti-inflammatory role, IFN- can inhibit neutrophil recruitment and consequently play a 

role in autoimmune diseases. In the experimental model of collagen induced arthritis (CIA) the 

absence of this cytokine associates with an excessive proportion of neutrophils which leads to 

an aggravation of the joint lesion, compared to the murine wild-type controls were there is no 

manifestation of the disease13,18.  

2.2   INTERLEUKIN-17 

Upon its discovery, IL-17A (here on referred as IL-17) was thought to be only produced by 

conventional  T cells19. In fact other cell types such as  T cells, natural killer T cells (NKT), 

eosinophils and neutrophils can also secrete IL-17 upon stimulation 20–22. IL-17 belongs to a 

family comprising six ligands – IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (IL-25) and IL-17F - and five 

receptors – IL-17RA, IL-17RB/IL-25R, IL-17RC, IL-17RD/SEF and IL-17RE 9,21. IL-17 and IL-17F are 

two potent inflammatory cytokines that protect against extracelular pathogens, but are also 

involved in the development of autoimmune diseases and chronic inflammation.  

In response to extracellular bacterial infections including Klebsiella pneumoniae, 

Mycobacterium tuberculosis, Citrobacter rodentium, Echerichia coli, Candida albicans 8,10,21, IL-

17 and IL-17F recruit and activate other cells such as neutrophils and macrophages by inducing 

the production of chemokines by epithelial cells (CXCL1, CXCL2, CXCL8, CXCL10, CCL7, CCL20) 

other cytokines (IL-1, IL-6, granulocyte-colony-stimulating factor, tumor necrosis factor-a 

(TNF-), RANTES, monocyte chemoattractant protein-1, granulocyte-macrophage colony-

stimulating factor (GM-CSF)), metalloproteinases (MMP18, MMP117-184), inflammatory 

effectors (acute-phase proteins, complement) and antimicrobial proteins (defensins, mucins) 

8,10,21,23. 

When deregulated, IL-17 leads to chronic inflammation or autoimmune diseases.  

Inflammatory bowel disease(IBD)24, psoriasis25, Rheumatoid arthritis (RA)26, systemic lupus 

erythematosus (SLE)27 and experimental autoimmune encephalomyelitis (EAE)28  are some of 

these disorder were IL-17 coordinates tissue inflammation through induction of other pro-

inflammatory cytokines, chemokines and metalloproteases cited before, which mediate tissue 

infiltration and destruction8.  



3. CONVENTIONAL T CELLS 

 

3.1.   DEVELOPMENT 

Cells of the immune system originate mainly from a pluripotent precursor which arises initially 

from the fetal liver and subsequently from the bone marrow (BM) during development29. Most 

of the haematopoietic lineages achieve maturation in the BM while T cells need to migrate 

through blood to a specialized PLO, the thymus, in order to develop29,30. T cell progenitors 

arriving to the thymus lack the expression of the TCR (TCR-) and T cell co-receptors CD4 and 

CD8 thus being referred to as double negative (DN). The first steps of T cell development are 

therefore TCR independent but driven by migration across distinct microenvironments in the 

thymus, which provide critical cues such as Notch ligands and interleukin-7 (IL-7)30.  

TCR-DN cells can be subdivided into four successive maturation stages DN1, DN2, DN3, DN4 

based on their expression of CD44, CD25 and c-kit (CD117) on the surface. DN1 cells 

(CD44+CD25-), also called early T-cell-lineage progenitors (ETPs), are a very heterogeneous 

population which present an extensive proliferative capacity and the ability to generate both 

the  and  lineages together with NK and DC lineages31–33. The ability to produce also cells 

of the B and myeloid lineages, although controversial, has also been suggested34,35. Activation 

of Notch signaling pathway in ETPs through binding of the Notch receptor 1 with delta ligands 

(DL) on thymus epithelial cells, marks the first irreversible step to the T cell lineage 

commitment at the expense of B lineage differentiation36,37. 

CD44+CD117+CD25- DN1 cells expand in the cortico-medullary junction which leads to the up-

regulation of CD25 at the surface and transition to the DN2 stage (CD44+CD117+CD25+)29,30. 

After, DN2 cells migrate into the cortex and start experiencing the first rearrangements of the 

TCR, TCR and TCR loci due to up-regulation of recombination-activating gene 1 (Rag1) and 

Rag2 expression29,38. During migration through the sub-capsular zone, DN3 cells which have 

down-regulated the CD44 and CD117 becoming only CD25+ start the selection and segregation 

into a TCR+ cell ( T cell) or a TCR+ cell ( T cell) lineage6,29,30,39,40. 

T cell development involves a stringent repertoire selection where only 1–3% of the 

progenitors prevails and ultimately exits the thymus to the SLOs41. By continuing 

rearrangement of the TCR loci during DN3 stage these cells, in order to continue into the next 

stage, are subjected to an intrinsic checkpoint to assess and ensure that the TCR is properly 

rearranged and the TCR chain is functional5,42. Also called as -selection43, this checkpoint 
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occurs after DN3 cells express the pre-TCR (TCR paired with an invariant pre-TCR chain and 

CD3 signaling molecules)29,39,42,44,45. Proper assembly of this complex and downstream 

signalling leads to switch off RAG proteins5 and down-regulation of CD25 expression38.  

Progression to the DN4 stage indicates a commitment to the  T cell lineage46. Cells that do 

go through these progression either expressed a pre-TCR or a dysfunctional TCR during the 

DN3 stage47,48. Promotion of cell survival, proliferation and differentiation through joint signals 

of the TCR and cytokines grants DN4 cells progression to immature single positive (ISP) cells 

with acquired small amounts of CD8 (Figure 1). ISP cells then rapidly progress to the double-

positive (DP) stage by the acquisition of CD4 expression5,6,29. At this stage RAG genes are 

expressed once again for the rearrangement of the TCR gene, allowing further progression 

into the SP stage5,6.  

DP cells displaying TCR  heterodimers through different levels of interaction of the TCR with 

peptide-MHCI or MHCII ligands in the thymus, can further differentiate into single-positive (SP) 

cells – CD8+ or CD4+  T cells5,6,49. In the absence of TCR signalling, DP cells are subjected to 

apoptosis due to receptor neglect5. Engagement with low affinity between TCR and MHC class 

I/II allows cells to undergo a process called positive selection50–52. These cells, which present a 

low reactivity toward self-antigens are potentially reactive to foreign antigens, receive signals 

for survival and differentiation. By contrast, DP cells which engage strongly with the antigens 

presented by MHC class I/II molecules experience negative selection, leading to the deletion of 

self-reactive T cells through apoptosis, thereby avoiding triggering autoimmunity53–55.  

Commitment to either CD4 or CD8 lineage is accomplished by DP cells during positive 

selection5,56. Recognition by DP cells of MHC class I molecules drives these cells to commit to 

the CD8 lineage, while recognition of MHC class II molecules drives commitment to the CD4 

lineage5,46,55,57–59.  

Selected TCR+ T cells migrate to the periphery where CD8+  T cells will perform their role 

as cytotoxic cells against infected/transformed cells60, and CD4+  T cells will further 

differentiate in order to act as helpers to other immune cells, thereby orchestrating the 

immune response61.  





Fig. 1- T cell development in the thymus and homing tissues. Derived from the same progenitors,  T 
cells exhibit a longer and more complex developing pathway through the DN4, ISP, DP and then single 

positive stages, than  T cells. Their differences extend also to their homing tissues, since  T cells 

preferentially home in epithelial tissues and  T cells home only in lymphoid organs. (Adapted from 
Hayday, A. & Pennington, D. Nat. Immunol. 2007

6
.) 

 

3.2 CD4+  T CELLS 

3.2.1 DIFFERENTIATION  

As discussed before, CD4 T cells can produce multiple cytokines including IFN- or IL-17. These 

functions are acquired in the periphery upon antigen (Ag) encounter and segregate CD4 T cells 

into distinct T-helper (Th) subsets which include Th1, Th2, Th9, Th17, Th22, Tfh, iTreg61–63. Of 

note, strength in TCR-antigen engagement has also been proposed to be a key factor in the 

differentiation decision64 and shown to regulate cytokine production65,66. 

CD4 T cell differentiation into T-helper cells relies on the specific expression of transcription 

factors (TF). Through binding on specific DNA-binding sequences (promoters, enhancers, 

insulators and silencers), TFs preform repressive or activating transcriptional functions 

specifically on certain gene targets. Consequently TFs play a pivotal role in regulating the 

program of differentiation and expression of selective profile of cytokines. To fulfil this 

regulation, TFs are subdivided according to their function: signal transducers and activators of 

transcription (STATs) proteins and master regulators (MRs)62,67. While STATs are activated by 

cytokine signaling, they induce MR expression, which will in turn regulate cytokine gene 
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expression62. Another important aspect of TF is to repress differentiation towards opposing Th 

subsets. 

TH1 DEVELOPMENT 

One of the first T helper cell subsets to be discovered was Th1, which mainly produce IFN-68. 

The differentiation into these cells is induced by IL-12 produced by innate immune cells69. 

Other cytokines such as IL-2, IL-15 and IL-18 can also sustain the signal towards IFN- 

production by these cells. Reliant on STAT1 and STAT4 to mediate cytokine signaling by IL-12 

and IFN- respectively, Th1 CD4+ T cells also count on Tbox21 TF (T-bet) as their MR for their 

differentiation70–72. T-bet also mediates the induction of the 2 chain of the IL-12 receptor (IL-

12R) expression, through STAT1 and IFN- signaling, thus amplifying IL-12 responsiveness73,74 

and the expression of IL-18R1 in synergy with STAT467,75. IFN- itself produced by NK and T 

cells66 can further trigger his production. Together with others TFs such as Hlx and Runx3, T-bet 

further promotes IFN-production77,78. On the other hand, T-bet is not only important for Th1 

differentiation, but it has been extensively shown to have a suppressive function in 

differentiation towards Th lineages through suppression of their MRs 62,63. By suppressing 

GATA3 expression, alone or in synergy with RUNX3, T-bet is able to inhibit Th2 polarization77,79; 

and through suppression of interferon regulatory factor 4 (IRF4) and retinoic acid receptor-

related orphan receptor -t (RORt)80,81, T-bet inhibits Th17 polarization. 

TH17 DEVELOPMENT 

Activated CD4+ T cells differentiated towards IL-17 production, Th17 cells82–84, are known to 

require IL-23 for differentiation85 and expansion82,86,87. TGF- together with other pro-

inflammatory cytokines such as IL-6 and IL-1have also been shown to be important for Th17 

differentiation88–90. IL-21 has also been pointed to promote Th17 differentiation91–93. Signal 

transducers such as STAT3, with different extents, mediate IL-6, IL-21 and IL-23 activation 

signal of RORt and IL-23R94–96. As the master regulator of Th17 cells, RORt is critical for the 

production of IL-17, IL-17F, IL-21, IL-1R and IL-23R by these cells63,75,91,97–101. However, despite 

the pivotal role of RORt in Th17, other TF such RUNX1, IRF4 , BATF and ROR are also 

important for this differentiation since they may regulate RORt expression and in synergy 

with it regulate cytokine production102–105. On the other hand, signaling through IFN-STAT1, 

IL-4-STAT6 or IL-2-STAT5 pathways inhibits Th17 differentiation106–108.  

 



3.2.2 PLASTICITY AND CROSS-REGULATION 

 

Differentiation towards a given T helper cell fate is a not a terminal irreversible step. Indeed, 

there are  in vitro studies showing some degree of plasticity between T cell fates109. However, 

Th1 and Th2 cells are two fairly stable populations who lose their plasticity upon proliferation 

and further commitment to their fate110.  On the other hand, Th17 cells present some plasticity 

since they can change phenotype when exposed to different cytokines63,98,111–113. While in the 

presence of TGF-, IL-6, IL-1 and IL-23, fully differentiated Th17 sustain IL-17 production, 

when in presence of IL-12 or IL-4 these cells can change and differentiate into Th1 or Th2 cells 

respectively63,81,111. Developing Th17 cells were shown to change into IFN-andIL-17 double-

producing cells  in vitro when in the presence of IL-12 or IL-23 and through RUNX1, RUNX3 and 

T-bet signaling, giving rise to a “Th1-like” Th17 cells (IL17+-IFN-+ cells)81,111,113,114. These are also 

observed in vivo, in models like EAE and experimental colitis, where pathogenic IFN--

producers were shown to be derived from Th17 still producing IL-17. 

 




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4. T CELLS

 

Firstly described in 1984115,  T cells remain an enigmatic lineage only distinguishable by the 

expression of a TCR comprising a  and a  chain6,40. Initially thought to be another T cell subset 

involved in adaptive immunity,  T cells were redefined as  “innate-like” lymphotcytes due to 

their unconventional development, pre-activated phenotype and tropism for epithelial 

tissues116.  As with other unconventional T cells (like NKT cells), T cells were also shown to 

recognize conserved non-proteic antigens that are upregulated by stressed cells7,116. As part of 

the innate system,  T cells play an important non-redundant role in the lymphoid immuno-

surveillance. Namely,  T cells respond in a MHC-independent manner to stress-induced 

metabolites as well as to pathogen-associated patterns7,117.  



4.1 DEVELOPMENT  

 

 T cells arise from ETPs and go through the same early stages of development as T cells. 

Dendritic epidermal  T cells (DETCs) have been shown to require positive selection during 

development118, however the need for this step during  T development is still highly 

controversial. DN2-3 cells which have generated low levels of  TCR are subjected to -

selection. By sustaining the expression of Sox13, newly committed  T cells, contrary to  T 

cells, continue their development, although with little proliferation and remaining DN119,120. 

Committed cells also start to up-regulate  TCR expression, and simultaneously down-

regulate CD25 and CD127(IL-7R)39,40,121. 

The detailed molecular mechanisms through which  T cells commit during development are 

still unclear. The lineage fate determination does not solely correlate with acquisition of 

TCR6,45,46,119,122,123. Pointed by two different studies, not only cells expressing TCR bear the 

ability to differentiate into both  and  T cells but also, TCR expressing cells are 

compatible with both  and  lineage fates47,48. Resorting to TCR transgenic mice, the 

authors suggested a model in which signal strength is the lineage determination factor, 

postulating that strong signaling through the TCR promotes adoption of the  lineage, 

whereas weaker signals lead to the adoption of the  lineage fate47,48. Besides its critical role 

in survival for both  and  T cells, in mice and in human, IL-7 signalling was also shown to 

have a role in controlling accessibility of the TCR- locus for recombination124, through STAT5 

activity during embryogenesis125. 



The final step of  T cell development is maturation which associates with the down-

regulation of CD24 (heat stable antigen–HSA)126. Recently it has been suggested that the up-

regulation of CD73 defines an intermediate developmental stage after commitment and 

before acquisition of effector fate of TCR engaged cells127. During maturation  T cells start to 

up-regulate the expression CD44128 and specific surface markers, such as NK1.1, CD122, CCR6 

and CD5 which segregates them into effector fates129–131.   

Interestingly  T cells are the first T cells to develop during mouse ontogeny. From the day 13 

of embryonic development to adulthood  T cells develop in waves depending on the 

rearrangement of their V chain1. Murine  T cells were postulated to develop through a strict 

order due to genomic location of the - and - gene loci giving rise to the known 

developmental waves132,133.  T cells with V5 chain are the first to develop from embryonic 

day 13 (E13) until around E17 followed by V6+ cells which develop from E14 until birth. Finally, 

V1+ and V4+ cells start to develop on E16-E18 and continue throughout live134.  V7+ T cells 

contrary to the other T cells are thought to develop outside the thymus, in the gut during 

embryonic and perinatal life 135,136(Fig.2). T cell subsets, V5+ and V6+, are essentially 

oligoclonal, showing no junctional diversity between VandJ chains133,137.  

 

 

Fig 2- TCR V usage and waves of  T cell 

development and homing tissues. T cells, like 

V5
+
 and V6

+
 subsets develop solely during 

embryogenesis while V4 and V1 start to arise 

during late embryonic development and continue to 

do so during adulthood.  (adapted from Carding 

2002
134

) 

  

 

 T cells with a defined TCR V usage are preferentially distributed to selective epithelial 

tissues. V5+ T cells migrate to the skin epithelium giving rise to DETCs and V6+ T cells 

commonly colonize the epithelia of lungs, tongue and reproductive tract. As for V1+  T cells, 

liver, spleen, intestines and lymph nodes (to a lesser extent) have been pointed to be their 
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preferential homing tissues. V4+  T cells, on the other hand, recirculate through blood, 

lymph nodes and spleen and even lung (Fig. 2). 

Contrary to  T cells,  T cells acquire partially their effector functions in the thymus and are 

able to quickly produce cytokines in response to stimulus. Recently the V-centered view of 

fetal  T cell development was complemented with a functional definition of  T cell waves. 

Indeed,  T cells producing IL-17 develop after DETCs and are restricted to the embryonic life, 

generating long lived, self-renewing cells in the periphery12. Development of  natural  killer  T  

(NKT), intraepithelial  lymphocyte  (IEL)  precursors  and  uncommitted   T  cells,  are 

generated in the following functional waves from the E16 onwards137. Importantly, emergence 

of each subset in these functional waves does not exactly overlap with the V gene usage 

waves (Fig 2). Although not exclusive, selective effector function preferentially associates with 

different V usages137. For example, IL- 17 producing T cells preferentially express V4 and 

V6 chains138. 

4.2 FUNCTIONAL DIFFERENTIATION   

T cellfunctional development occurs in the thymus, which explains their readiness to 

perform an effector function in the periphery. Differentiation of IFN- and IL-17 producers is  

regulated by selective  expression of TFs and exclusive signaling cues, with an additional layer 

of epigenetic regulation139. Furthermore, the divergence between these two subsets occurs 

early during  T cell development, where IL-17+
 T cells were generated from DN2 

(CD117high) while IFN- producing  T cell were generated from both DN2 (CD117high) and DN3 

(CD117-)140.  

Shown by our laboratory thymocytes develop in successive stages characterised by CD25 

and CD27 as follows: CD25+CD27+ cells give rise to CD27+ cells and CD27- cells130.  T cells 

which maintain CD27 expression through development promptly secrete specifically IFN- 

after leaving the thymus141. It was further shown that CD27 is a decisive determinant that 

actively regulates acquisition of the IFN- fate. However, the specific CD27 signalling, to date, 

remains elusive.  TCR signalling, by specific agonists, was also described to skew  T cells 

towards IFN- production131. In addition, other intrathymic molecular interactions are also 

important to regulate T cell differentiation. TCR-independent interactions between early  

T cell progenitors and DP  T cell progenitors, in part through the LTR (TNF receptor family 

member), have also been shown to be required for the differentiation and proliferation of IFN-

 producing  T cells142–144. However, IFN- production by  T cells was not completely 



abrogated in the absence of CD27 or LTR130. These results suggested a crucial role of CD27 

together with the TCR signalling in leading to the differentiation of  T cells into IFN- 

producers130.   

IFN--producing  T cells share similarities with IFN--producing Th1 cells, such as the ability 

to respond to IL-12 and IL-18 and the high expression of the “master regulator” T-bet145. 

Further, other TFs like ThPOK128 and Erg3118 are also important for IFN- production and 

regulation of 27+ T cells. These, after development, present maturation markers such as 

CD27130, CD122146 and NK1.1129 which allow their distinction from IL-17 producers. 

On the other hand, the development of IL-17 producing (CD27-)  T cells has been linked to 

the specific expression of Hes1, one of the basic helix-loop-helix proteins involved in Notch 

signaling 147. IL-17 differentiation pathway of  T cells requires also the TF RelB for the 

expression of RORt148. RORt in turn acts together with Sox13 and Sox4 to drive 

differentiation towards IL-17 producing  T cells (IL-17+
T cells)149,150. IRF4, a member of the 

interferon regulators family, and STAT3, both important in Th17 cell differentiation, were 

shown to be dispensable for IL-17 production by T cells147,151. IL-23, although important for 

the expansion of T17 cells is, contrary to Th17, dispensable for development and 

maintenance in SLOs152. In synergy with IL-18 and IL-1, IL-23 was shown to promote IL-17 

production by  T cells153. IL-7 was also associated to the expansion IL-17+
T cells154. Surface 

expression of CCR6129, SCART2155, CD25156 and IL-23R152 allows the phenotypic distinction of  

thymic and peripheral IL-17+
 T cell subset. Moreover, besides IL-17 this subset of T cells  

was shown to produce IL-22 (similar to Th17 cells in the periphery157) and also IL-17F and IL-

21152.  

Although their functional differentiation occurs in the thymus, 27- T cells are also gifted with 

some functional plasticity. As the host laboratory showed, while IL-17 locus is only active in  

27- T cells, the IFN- locus is active in both 27+ and 27- T cells139. This suggested that 

27- T cells can also produce IFN-. Through in vitro experiments  it was shown that, in 

synergy with IL-1, IL-23 could induce IFN- expression in 27- T cells139. These IL-17/IFN- 

double producers were also observed in vivo in several different contexts, both in human and 

in mice158–161, although the precise physiological role of these cells is still to be established. 
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5. AIMS OF THIS THESIS 

In this thesis we aimed to study the relevance of some of those TFs previously implicated in 

CD4+ or CD8+ T cell biology in the functional differentiation of  T cells. 

In order to grasp the role of specific TFs in  T cells, we used different mouse models, where 

the chosen transcription factors (T-bet, Eomes, BATF, RORt and ROR) were depleted and 

consequently absent from all the cells of the organism. Using this strategy we assessed the role 

of these TFs in the functional differentiation of  T cells resorting to in vitro cultures, flow 

cytometry, gene expression analysis and experimental disease models. During our experiments 

we have identify a different role of the TF RORin  T cells. With the aim of determining if 

this role was specific to ROR we assessed the relevance of both ROR and RORt in  T cell 

development by flow cytometry, proliferation and cell death assays and gene expression 

analysis using the same mouse models. 

With this work we aimed to contribute to a better understanding of the molecular mechanisms 

underlying the  T cell development, functional differentiation and cytokine production, 

which have major implications in infection, cancer and autoimmune diseases 
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V. MATERIALS AND METHODS 

1. MOUSE STRAINS 

Tbx21-/- 162 and BATF-/- 104 mice homozygous, Eomes fl/fl R26R-RFP homozygous mice and 

heterozygous for Rag1-Cre and Rorsg/+ 163and RORcGFP 164 mice heterozygous were in a 

C57BL/6J genetic background. Tbx21-/-, BATF-/-, Rorsg/+,  RORcGFP  strains were breed and 

maintained at the IMM rodent/animal facility and Eomes fl/fl strain was breed and maintained 

at the Babraham Institute from which organs were sent for analysis. All procedures and 

experiments were performed according to national and institutional guidelines. 

2. GENOTYPING PCR 

All strains kept in the IMM rodent facility where genotyped when arrived. Mice used from 

heterozygous crossings at the facility where always genotyped before used.   

For DNA extraction tissue was harvested from the ears or toes and digested using a NaOH 

0,05mM solution for 60 to 90 minutes in a 95°C dry bath. The process of digestion was then 

stopped with a solution of 1M Tris and 10mM EDTA (pH8). 

DNA amplification was performed using T100™ Thermal Cycler (Bio-Rad). The PCR program 

used was according to the program suggested in the Jackson Laboratory information for each 

strain. Every program consisted of an initial step of polymerase activation at 94°C for 10 

minutes, followed by 35 amplification cycles consisting of 3 steps (DNA denaturation at 94°C 

for 30 seconds, DNA-primer annealing at between 50-54°C for 60 seconds and polymerase 

reaction elongation at 72°C for 60 seconds) and a final step of DNA extension at 72°C for 10 

minutes. Primer sequences and corresponding PCR DNA-primer annealing TC are detailed in 

annex 3. To each reaction well with 18μL of the PCR Buffer (annex 2) 2μL of DNA was added. 

After the PCR reaction amplified products were resolved in a 2% agarose gel in 1X TAE and 

containing 3,5μL of green safe (nzytech). 

3. MOUSE ANALYSIS 

For in vitro experiments with CD4+ T cells and/or  T cells, mice with ages between 10 days 

and 20 weeks were dissected and their lymph nodes (Inguinal, Brachial, Axillary, Mesenteric, 

Popliteal, Caudal Mesenteric, Medial iliac and Accessory Mandibular) and Spleen were 

harvested. Lymphocytes were obtained by tissue homogenization and filtration through a 

70μm cell strainer. The erythrocytes were osmotically lysed using 1X RBC lysis Buffer (annex 2) 

and ressuspended in 1mL after.  

In ex-vivo analysis the same protocol was applied but LN, Spleen and Thymi were homogenized 

separately.   

For Spinal Cords, mice were perfused before harvesting any organ in order to remove 

circulating blood out of the spinal cord. When harvested tissue was cut into small pieces, 

homogenized using glass slides and digested in complete medium with Collagenase IV 

(0,5mg/mL) and DNAse I (0,01mg/mL) (annex2) for 30min to 1h at 37°C. The digestion was 



stopped by adding 10uL of EDTA (1mM). Lymphocytes were then isolated and purified using a 

one-phase solution of 33% Percoll (GE Healthcare, 17-0891-01) in complete medium (annex2) 

and by centrifuging the solution for 30min at 2400rpm at RT without brake. Cell pellets from 

spleen, thymi and spinal cord were then ressuspended in 1mL of complete medium and cell 

pellets from LN were ressuspended in 500uL of complete medium for cell counting. 

4. IN VITRO STIMULATION AND POLARIZATION 

CD27+ and CD27-  T cells (CD3+TCR+) and CD4+ T cells (CD3+CD4+) where sorted by flow 

cytometry. CD27+  T cells were activated using plate-bound monoclonal antibody (mAb) 

anti-CD3ε (2 µg/ml; 145.2C11; eBiosciences) and mAb anti-CD28 (2 µg/ml; 37.51; eBiosciences) 

in the presence or absence of IL-1(50 ng/ml) or IL-2 (10ng/mL)or IL-12 (50ng/mL) or the 

cross-reactive human IL-15 (50ng/mL) or IL-23 (50 ng/ml) or IL-1 plus IL-23 for 14h (OVN) or 

36h. CD27-  T cells were activated using the same conditions mentioned above but without 

the plate-bound mAb and for 14h (OVN) or 36h. 

CD4+ T cells polarization cultures were maintained during 5 days and activated with plate-

bound mAb anti-CD3ε and soluble mAb anti-CD28 for all conditions both at 2μg/mL. For Th1 

culture conditions, cells were culture in the presence of IL-12 (5 ng/ml) and neutralizing mAb 

anti-IL-4 (5 µg/ml; 11B11; eBiosciences). For Th17 culture conditions, cells were culture in 

presence of also TGF-(2 ng/ml), IL-1 (50 ng/ml), IL-6 (50 ng/ml), IL-21 (100 ng/ml), IL-23(50 

ng/ml) and neutralizing anti-IFN- (10 µg/ml; eBioscience) and anti-IL-4 were added to the 

medium. 

5. STAINNING AND FLOW CYTOMETRY ANALYSIS 

For FACS analysis cells were stained in a 96 well plate in a final volume of 50L. For surface 

staining, cells were incubated with 1:200 of FcR Block (2.4G2; BD Pharmingen), 2% Normal 

Mouse Serum (serum extracted from blood of WT mice) and the respective Ab mixes. All 

staining procedures were performed at room temperature (RT) and in the dark. For 

intracellular cytokine staining, cells where stimulated with PMA (0,05ug/mL) and Ionomycin 

(0,7ug/mL) for 4h at 37°C and Brefeldin A (10ug/mL) (annex 2), in order to activate cytokine 

production by the cells and at the same time block their secretion for the last 2 hours. After 

stimulation and extracellular staining cells where fixed using a Fix solution (annex2) for 20min 

at 4°C and permeabilized in 1X Perm Buffer (annex 2) for 15 min at RT. Cells where then 

incubated with the Ab mix in 1X Perm Buffer for the respective cytokines for 30min at RT and 

wash in 1X Perm Buffer and FACS Buffer (annex 1) before analysis. Cells were analyzed on a 

FACSFortessa or FACSCalibur (BD Biosciences) and data were analyzed with FlowJo software.  

For FACS sorting proposes cells were stained in 50mL tube in the dark in final volume between 

200L and 1mL at RT. 

Ab used were: anti- TCR (eBioGL3), anti-CD3 (17A2), anti-CD3ε (145-2C11), anti-CD4 (RM4-

5), anti-CD8a (53-6.7), anti-IL17A (eBio17B7), anti-IL22 (Poly5164), anti-IFN- (XMG1.2) and 

anti-CD27 (LG.6F9) from eBioscience, anti- TCR (GL3), anti-CD24 (M1/69), anti-CD45 

(30F11), anti-IL17A (TC11-18H10.1), anti-GM-SCF (MP1-22E9), anti-CD8a (53-6.7), anti-V1 
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(2.11), anti-V4 (UC3-10A6) and anti-CCR6 (29-2L17) from BioLegend and anti-CD45 (30-F11), 

anti-CD4 (RM4-5) from BD Pharmigen.  

6. INDUCTION OF EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS 

Mice were immunized with 200μg MOG35-35 peptide (MEVGWYRSPFSRVVHLYRNGK) emulsified 

in CFA solution (4mg/mL of mycobacteria (Difco) in incomplete freund adjuvant (Difco)) 

subcutaneously (100μg in each side flank). On the day of the immunization and 48h after, mice 

were injected intravenously with 100ng of pertussis toxin (List Bioolgical Laboratories, via 

Quadratech) in 100μL of 1X PBS. Mice were scored following the score rate in annex 5 daily 

from day 7 to the day when they were analyzed (highest score day).  

7. LISTERIA MONOCYTOGENES INFECTION 

 

Listeria monocytogenes bacteria strain EGDe was inoculated from a 25 μl stock in 50 ml brain 

heart infusion (Sigma; #53286) medium and incubated OVN on a shaker (220 rpm) at 37°C. The 

Listeria monocytogenes bacteria was sub-cultured in a 1:10 dilution into BHI medium and 

incubated on a shaker (220 rpm) at 37°C for approximately 90-120 min until an OD600 of 0.8 

was reached. The culture was spin down at 2000 rpm for 20 min at 4°C. An OD600 of 0.8 in 20 

mL of culture corresponds to approximately 2x1010 colony forming units (CFU). The pellet was 

resuspended in PBS so that the concentration was 1010 CFU/mL. C57BL/6J and Tbx21-/- mice 

were orally infected with Listeria monocytogenes, after OVN deprivation from food and water. 

Infection was done by feeding a mixture of 2x109 CFU (200 μl) Listeria monocytogenes with a 

wet food mash. During feeding, mice were housed separately for approximately 1 h, until most 

of the food was consumed. Cells from spleen and mesenteric LN were collected at day 8 after 

infection. 

 

8. GENE EXPRESSION ANALYSIS 

RNA was isolated from sorted cells using High Pure RNA Isolation Kit (Roche) following the 

manufactures instructions. RNAs were converted in cDNA through reverse transcriptase PCR 

for 1 h at 42 °C using Random oligonucleotides (Invitrogen) and MMLV reverse transcriptase 

(Promega). Quantification of specific cDNA species was then assessed by real time-PCR using 

ViiA 7 Real-Time 384-well thermal cycler with SYBR or TaqMan probe relatively to endogenous 

references (2-microglobulin, -actin or HPRT levels). Target gene CT was subtracted from the 

CT for the endogenous references and the relative amount was calculated as 2-ΔCT. All 

sequences used are detailed in annex 3. 

9. COUNT OF TOTAL LIVE CELL 

Live cells were counted using flow cytometry. For each solution containing the isolated cells a  

mix containing 10μL of the cell solution, 165μL of FACS Buffer and 20μL of beads (annex 2) was 

made to which 5uL of propidium Iodide (PI) solution (eBioscience) was added. PI stains for 

dying cells, allowing the exclusion of the dying cells for each sample and the counting of the 

number of live cells for a fixed number of beads, using a stopping gate for 500 beads in 

solution. 



10. PROLIFERATION AND APOPTOSIS 

To address cell proliferation mice were injected with a fixed concentration of BrdU (BD 

Pharmigen, FITC BrdU Flow Kit, 51-2354AK), stablished by the manufacturer, and mice were 

analyzed 16h after injected, being able to access at least two cell divisions. BrdU is a thymidine 

analog which during replication incorporates the DNA instead of the nucleotide allowing 

through staining to detect cells in proliferation. Also stablished by the manufacturer staining 

procedure was performed as indicated. 

Apoptotic cells express in their surface phosphatidylserine and phosphatidylethanolamine. 

Annexin V detects these two proteins in the membrane allowing to access cells going through 

apoptosis. In order to do so cells were harvested and stained through using the protocol 

established by the manufacturer (eBioscience, Annexin V - FITC, 11-8005-74). 

11. STATISTICS 

Statistical analysis was performed using a two-tailed non-parametric Mann-Whitney test. P 

values of <0.05 were considered significant. Results were scored as * when p<0.05, ** when 

p<0.01, and *** when p<0.001. 
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VI. RESULTS 

1. 27+ AND CCR6+
27- T CELLS ARE PRE-COMMITTED TO PRODUCE DIFFERENT 

PROFILES OF CYTOKINES 
 

We aim to determine the diversity of inflammatory cytokines produced by distinct lymphoid  

T cell subsets. To do so we FACS-sorted  T cells, derived from SLOs, according to their 

expression of CD27 and CCR6 as follows: CD27+; CCR6-CD27- and CCR6+CD27-  T cells (Fig 3A). 

We then assessed cytokine gene expression by RT-PCR. 27+ T cells express high levels of Ifng, 

while very low levels of Il17, Il17f, Il22 and Gmcsf transcripts (Fig 3B). CCR6+
27-T cells, by 

contrast, express high levels of Il17 (10.000 fold higher than 27+ T cells), Il17f, Il22 (1000 fold 

higher than27+ cells) and Csf2 (gene name of GM-CSF) (~50 fold higher than27+ cells) (Fig 

3B). CCR6-
27- T cells, on the other hand, showed the intermediate levels of Il17, Il17f and 

Csf2 (compared to CCR6+
27- T cells) and high levels of Ifng and Il22 mRNA (Fig 3B). This 

suggests that CCR6+
27- cells may represent a more terminal differentiation stage than CCR6-

27- T cells.  Noteworthy, the profile of cytokine transcription of 27+ and CCR6+
27- T cell 

subsets respectively mirrors the one presented by in vitro differentiated CD4 Th1 and Th17 

cells, respectively (Fig 3B). These data suggest that 27- cells (but not 27+ cells) are 

programmed to produce all five pro-inflammatory cytokines.  

 

Figure 3 – Cytokine expression profile of CD27
+
, CCR6

-
CD27

-
 and CCR6

+
CD27

-
  T cell subsets.  

 T cells were FACS sorted from pooled spleen and LNs from 8 weeks old C57BL/6J mice. A Representative FACS 
sorting gate strategy for sorted cell subsets. B RT-PCR data for Ifng, Il17, Il17f , Il22 and GM-CSF expression (relative 

to b2m or Actb) on  T subsets: CD27
+
 (CD27

+
), CD27

-
 (CCR6

-
CD27

-
) and CCR6

+
 (CCR6

+
CD27

-
); and in vitro-generated 

CD4 Th1 and Th17 cells.  
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2- DIFFERENT SIGNALS CONTROL IFN- PRODUCTION BY 27+ AND 27- CELLS. 

 

To further understand the mechanisms of cytokine production by  T cells, we then 

questioned the extracellular regulators which lead to IFN- production as well as IL-17, IL-17F, 

IL-22 and GM-CSF production. To do so,  T cells were FACS-sorted based on the expression of 

CD27 (Fig 4A) and stimulated in vitro for 16hours (OVN) or 36hours with a broad selection of 

settings (Fig 4 and Fig 5). The in vivo paucity of the CCR6+
27- cells prevented us from 

studying the functional properties of this subset in vitro. 

Similarities between 27+ T cells and the Th1 cell counterparts led us to question if they 

respond to identical stimuli. When stimulated with PMA plus Ionomycin (Iono) for 4h, about 

20% of 27+ cells expressed IFN- (Fig 4B-C). This proportion increased upon addition of anti-

CD3/28 mAb, which mimics TCR engagement, overnight. 27+ T cells respond similarly to IL-12 

leading to 50% of 27+ T cells to produce IFN-. Moreover IL-12 synergized with anti-

CD3/CD28 mAb led to induce IFN- production by 60-80% of 27+ T cells (Fig 4C). Although to 

a lesser extent, other cytokines, such as IL-2 and IL-15, synergized with anti-CD3/CD28 

signalling to induce a two-fold increase in IFN- secreting 27+ T cells (Fig 4C). The stimulation 

with IL-2, IL-15 alone led to a minor increase in the frequency of IFN- producing 27+ T cells. 

Finally these cells do not respond to stimulation by IL-1 plus IL-23 (Fig 4B-C). 

 



Figure 4 - IFN- production by 27
+
 T cells can be activated via TCR and cytokine stimuli. 

 T cells were FACS sorted from spleen and LNs from 8 weeks old WT mice. A Representative FACS sorting gate 
strategy. B Representative FACS plots of intracellular cytokine staining for IFN-γ and IL-17A from γδ27

+
 T cells 

isolated and stimulated over night as indicated in the presence of the following conditions; coated anti-CD3 plus 

anti-CD28, IL-2, IL-15 and IL-12. C On top, statistical data of the frequency of IFN- producing 27
+
 T cells after 

various  stimulating conditions (n>9). On the bottom, the representative FACS plots of analyzed cells after 

stimulation with the following conditions: coated anti-CD3 plus anti-CD28, IL-2, IL-15, IL-12 and IL-1+IL-23 (alone or 

in combination); and stained for IFN- and IL-17A.  

 

27- T cells produce IL-17 after PMA plus Iono stimulation. The host laboratory and others  

have shown that 27- T cells respond to combination of IL-1 and IL-23 cytokines139,152,165. We 

show here that OVN stimulation with IL-1 and IL-23 almost double the proportion of IL-17-

producing 27- T cells and increased the mean of IL-17-secretion per cell (Fig 5). Moreover, 

gene expression suggested that 27- T cells are predisposed to produce IL-17F, IL-22, IFN- 

and GM-CSF, and we hypothesized that IL-1 plus IL-23 could induce their production. . Indeed 

IL-1 and IL-23 induced strong secretion of IL-17F, IL-22 and GM-CSF from the IL-17-producing 
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27- T cell population (Fig 5A and E). Within this effector subset about 10% are also induced 

to produce IFN-. The production of these cytokines, especially of IFN- was further increased 

after 36h of stimulation (data not shown). Interestingly, IL-1 potentiated the effect of IL-23, 

since IL-23 alone induced IL-17 and a modest production of IL-17F and IL-22 but no IFN-

production (Fig 5A). Although, it is known that in CD4 T cells IL-17A and IL-17F are often 

coexpressed166, our results suggest that in  T cells these cytokines are differentially regulated 

by signaling through PMA plus Iono and IL-1 plus IL-23. In contrast to 27+ T cells, 27- T 

cells  were unresponsive to anti-CD3/CD28 mAb and IL-15 stimulation, as there was no 

increase in the proportion of  27- T cells producing IFN- (nor IL-17) (Fig 5B-C). Yet, IL-2 and 

IL-12 induced around 10% and 18%, respectively, of 27- T cells to produce IFN-, but not IL-

17 (Fig 5B and D). Therefore, we show here that IL-1 plus IL-23 trigger 27- T cells 

polyfunctionality, through the production of IL-17, IL-17F, IL-22, GM-CSF and IFN-.  

Taken together, our results show that cytokines such as IL-2, IL-12 and IL-15 are important co-

factors in TCR-mediated stimulation of 27+ T cells. Additionally, 27- (but not 27+) T cells 

are endowed with a marked polyfunctional capacity which is induced by IL-1 and IL-23. 

 



 
Figure 5 - 27

-
 T cells depend on IL-1 and IL-23 for IL-17 and IFN- production. 

 T cells were FACS sorted from pooled spleen and LNs from 8 weeks old C57BL/6J mice. Sorting strategy was the 

same as in Figure 4A. Representative FACS plots of intracellular cytokine staining for IFN- and IL-17A after 

stimulation OVN in the presence of the following conditions A IL-1 and IL-23 (alone or in combination), B coated 

anti-CD3 plus anti-CD28, IL-2, IL-15, IL-12. C and D Statistical data of IL-17A producing 27- T cells after submitted 
to several stimulating conditions used in A and B. E Representative FACS plots of intracellular staining for IL-17A and 

GM-CSF after stimulation OVN with IL-1 and IL-23. 
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3- 27+ and 27- SUBSETS PRESENT DIFFERENT PROFILE OF EXPRESSION OF 

TH1-AND TH17-RELATED TRANSCRIPTION FACTORS 

 

To get additional insight into the differentiation programs that regulate the selective 

production of cytokines by 27+ versus 27- cells, we assessed the levels of expression of 

several TFs known to control the IFN- and IL-17A in their (Th1 an Th17) counterparts. To 

do so we performed real-time PCR on 27+, CCR6-
27- and CCR6+

27- T cell subsets to assess 

mRNA levels of type 1 TFs (which control IFN-) Tbx21, Eomes, Hlx and Erg3 and type 17 TFs 

(which control IL-17) Rorc, Ror, Batf and Irf4. In agreement to what was already published by 

the hosting laboratory139, both 27+ and CCR6-
27- T cell subsets had similar and high levels 

of transcripts of the IFN--related TFs (Fig 6,-upper panels). Together, as already suggested by 

our previous results, CCR6+
27- T cells present a  more pronounced phenotype and 10-fold 

decrease of Tbx21 transcripts and absence of Eomes mRNA when compared to 27+ and 

CCR6-
27- T cell subpopulations (Fig 6-upper panels). 

By contrast, both IL-17 related transcription factors, Rorc and Ror were highly enriched in 

both 27- subpopulations, particularly in the CCR6+
27- T cell subset (Fig 6-lower panels).  By 

contrast, Batf and Irf4 levels of expression were very similar between the three  T cell 

subsets.  

Notably, the profile of expression of Tbx21, Eomes, Erg3, Hlx, Rorc, Rora, Batf and Irf4 in 27+ 

and CCR6+
27- T cell subset mirrors that of Th1 and Th17 respectively (Fig 6). Although Erg3 

and Hlx are preferentially expressed in Th1 compared to Th17, 27+ and CCR6-
27- T cells 

express similar levels of these TF (Fig 6-upper panels). These results led us to assess the 

functional role of T-bet and Eomes in IFN--producing 27+ T cells and IFN-/IL-17-

coproducing 27- T cells. Furthermore we choose to assess the function of RORc, RORand 

BATF in IL-17-producing 27- T cells in vivo. As for IRF4, it was already shown that it does not 

play a role in the production of IL-17 in  T cells151. 

 



                   
Figure 6 – Transcription factor expression profile of CD27

+
, CCR6

-
CD27

-
 and CCR6

+
CD27

-
  T cell subsets.  

 T cells were FACS sorted from pooled spleen and LNs from 8 weeks old C57BL/6J mice as shown in Fig 3A. RT-PCR 

data for Tbx21, Eomes, Erg3, Hlx, Rorc, Rora, Batf and Irf4 expression (relative to b2m or Actb) on  T subsets  and 
in vitro-generated CD4 Th1 and Th17 cells. 
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4- IN VITRO PRODUCTION OF IFN- BY 27+ T CELLS PARTIALLY DEPPENDS ON 

T-BET, BUT NOT EOMES 

 

To address the functional significance of each transcription factor in cytokine production by  

T cells we employed murine models for single gene deficiency for Tbx21, Eomes, Rorc, Rora 

and Batf. As 27+ cells present a restricted functional potential (Fig 3B, Fig 4) we focused on 

their ability to produce IFN-. 27+ T cells were left untreated or stimulated with anti-

CD3/CD28 mAb OVN or for 36h. Within all the conditions tested, to assess IFN- production we 

choose the treatment with anti-CD3/CD28 mAb since it induced about 50% of 27+ T cells to 

produce IFN-, in a short-term in vitro stimulation. Moreover T-bet expression is known to be 

triggered upon TCR engagement in  T cells167. In agreement with some publish data145,167, we 

found that in the absence of T-bet (Tbx21) there was a significant reduction, but not a total 

abolishment, of IFN- producing  27+ T cells (Fig 7A-B). Notably, dependence on T-bet 

seemed to be diminished with longer time of stimulation (Fig 7B-D). Of note, the IFN- MFI 

between the WT and the Tbx21-/- mice, when stimulated with -CD3 plus-CD28 (OVN or 

36h), was not changed (Fig 7A and C).  These results suggest that there are different layers on 

the regulation of IFN- production by 27+ cells and some seem to be through T-bet-

independent pathways. Nevertheless, this firmly contrasts with the profound necessity of T-

bet by CD4 T cells to produce IFN-(Fig 8A-B left panel). 

 

We hypothesized that Eomes could account for T-bet-independent IFN- production, because 

of its high level of expression in 27+ T cells. Moreover, Eomes plays a major role in IFN- 

production in CD8 T cells168. Since Eomes deficiency is embryonic lethal, we used a conditional 

knock-out mice (kindly provided by our collaborator, Marc Veldhoen - Cambridge) in which 

mice having two floxed regions surrounding  the Eomes gene were crossed to mice expressing 

Cre recombinase under control of the Rag1 regulatory elements. This induces the deletion of 

Eomes selectively in T and B cells. There was no impairment in the production of IFN- by 

Eomes-deficient 27+ cells, neither after 16h of stimulation (Fig 7A-B) or after 36h (Fig 7C-D). 

IFN- production by 27+ cells was not altered in the absence of Rorc, Ror, or Batf (Fig 6A-B) 

suggesting that none of the Th17-related TF have selective properties to repress IFN-. 

                               



          
Figure 7 - 27

+
 T cells depend partially on T-bet for IFN- production. 

27
+
 T cells were FACS sorted from pooled spleen and LNs from 8 weeks old Tbx21

-/-
, Eomes

-/-
, Rorc

-/-
, and Batf

-/-
 

mice and 2 to 3 weeks old Ror
sg/sg

. Wilde type littermates of Ror
sg/sg 

and
 
Rorc

-/-
 were used as controls and as for 

the rest of the mice, C57BL/6J were used as controls. Sorting strategy was the same as in Figure 4A. A 
Representative FACS plots of intracellular cytokine staining for IFN-γ and IL-17A on γδ27

+
 T cells isolated and 

stimulated OVN with coated -CD3 plus -CD28. B Percentage of γδ27
+
 T cells producing IFN-γ plated OVN 

unstimulated (on top) and stimulated (in the bottom). C Representative FACS plots of intracellular cytokine staining 
for IFN-γ and IL-17A after stimulation over 36h with coated anti-CD3 plus anti-CD28 in cells sorted from Tbx21

-/-
, 

Eomes
-/-

 and C57BL/6J mice. D  Percentage of γδ27
+
 T cells producting IFN-γ after 36h of stimulation. 
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Figure 8- CD4 T cells require T-bet for IFN- production and RORc and BATF for IL-17 production 
CD4 T cells were FACS sorted from spleen from 8 weeks old Tbx21

-/-
, Rorc

-/-
, and Batf

-/-
 mice and 2 to 3 weeks old 

Ror
sg/sg

 mice. Wild type littermates of Rorc
-/-

 were used as controls and as for the rest of the mice, C57BL/6J were 
used as controls. A Representative FACS plots of intracellular cytokine staining for IFN-γ and IL-17A of CD4 T cells 
isolated and stimulated over 5 days in polarizing conditions towards Th1 and Th17 CD4 T cell differentiation. B  

Percentage of CD4 T cells polarized towards Th1 producing IFN- from WT and Tbx21 deficient mice on the left (WT 

n=4, T-bet n=4) and on the right percentage of CD4 T cells polarized towards Th17 producing IL-17 from Rorc, Ror 
and Batf deficient mice (WT n=7, Rorc n=3, Rora n=3, Batf n=2). 
 
 

In vitro experiments do not always recapitulate the complex in vivo signalling pathways. Thus, 

in order to assess T-bet requirement in vivo we choose to use the murine model of multiple 

sclerosis, experimental autoimmune encephalomyelitis (EAE), which has been well 

characterize to induce Th1, Th17 and Th1-like Th17 cell responses. Moreover   T cells play an 

important role at the first stage of development of the disease152 and they are important 

sources of IL-17 at the inflamed SC114. Some studies have also reported the emergence of IFN-


+IL-17+  T cell in this model158.  



 

The site of inflammation in this model is in the central nervous system (CNS) – spinal cord (SC) 

and brain – where most of the effector CD4 T cells and  T cells are found (Fig 9A-B). In the 

cutaneous inguinal LN, near the site of injection (see the section materials and method), it is 

also possible to visualize some effector CD4 T cells and  T cells that produce IFN- and/or IL-

17. Knowing that lymphocytes start to invade the CNS from the SC114, we choose to analyze 

only the SC. Due to their crucial role in the development of the disease we first analyzed the 

presence Th1 and Th17 CD4 T cells. In WT mice, CD4 T cells producing IFN- or IL-17 where 

found in both cut LN and SC sites (Fig 9A-B right panels). By contrast, CD4 T cells that co-

produce IFN- by IL-17 were only detected in the SC. In the absence of T-bet there was a 

complete disappearance of IFN-+ CD4 T cells and a large inhibition in the IFN-+IL-17+ CD4 T 

cells (Fig 9A-B right panels and C).  

 

The frequency of IL-17-effectors was higher within the  than the CD4 T cell populations both 

in the inguinal LN and SC (Fig 9A-B left panels). There were consistently more cytokine-

producing effectors in the SC than in the inguinal LN. Notably, over 60% of  T cells express IL-

17 in the SC and this associated with more 27- than 27+ T cells (Fig 9D). Moreover in the 

absence of T-bet there was a complete disappearance of IFN- producing T cells (Fig 9A-B 

left panels). 

 

Taken together our in vitro results suggest that T-bet signalling pathway is partially required 

for IFN- production by 27+ T cells upon strong TCR signalling. The in vivo EAE model was not 

adequate to look at IFN- production by  T cells since against our expectation it induces very 

few of these effectors. Therefore, to specifically question the contribution the role of TF it will 

be required to use a mouse model inducing largest amount of in IFN--producing 27+ T cells. 

This could be in response to Malaria infection as shown that it induces great frequency of IFN-

-effectors 27+ T cells (~45% of IFN-+ 27+). 
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Figure 9- T-bet is partially required for IFN- production by IL-17 producing Th17 cells. 
Cut LN cells and SC infiltrating cells were isolated from injected 8 weeks old Tbx21

-/-
 and C57BL/6J (WT), used as 

controls. Mice were analyzed at the highest score (between 15 to 19 days after immunization). Representative FACS 

plots for total  and CD4 T cells (identified by CD45
+
 and CD11b

-
) and intracellular cytokine staining for IFN-γ and IL-

17A A from the Cut LN and B SC. C Percentages of IFN- producing cells out of IL-17 producing CD4 T cells from SC 

(WT n=6, Tbx21
-/-

 n=5). D Representative FACS plots for CD27
+/-

  T cell proportions in cut LN and SC for both WT 
controls and Tbx21

-/-
. 
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5- IL-17 PRODUCTION BY 27- T CELLS DOES NOT RELY ON THE Th17 

TRANSCRIPTIONAL NETWORK 

 
 
We next went on to determine the transcriptional requirement for IL-17 production by 27- T 

cells, using similar approach to determine if they share the same transcriptional regulators 

than CD4 Th17 cells. Along with previous studies99,147,169, Rort showed to be crucial for the 

production of IL-17 by 27- T cells, since in his absence there was no production of IL-17 (Fig 

9A-B). Additionally, accordingly to what was already published by the hosting laboratory139, our 

data further support a key role of Rort in the development of CCR6+
27- T cells (Fig 13C). On 

the other hand, and unexpectedly, our results pointed to a dispensable role of both Ror and 

Batf for IL-17 production by 27- T cells (Fig 10A-B). Noteworthy, in the absence of Ror we 

noticed an increase in the percentage of IL-17 producing cells. This particular point will be 

further analyzed in the next sections of this report. Consistent with a dispensable role of IRF4 

in IL-17 production in  T cells151, our results further support that, although dependent on 

RORt, IL-17 production by 27- T cells does not depend on the same transcriptional partners 

shown to be crucial for Th17 cells. 

 
                                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



      

                       
Figure 10- 27

-
 T cells do not depend on Batf nor in Ror for IL-17 production. 

27
- 
T cells were FACS sorted from pooled spleen and LNs from 8 weeks old Tbx21

-/-
, Eomes

-/-
, Rorc

-/-
, and Batf

-/- 

mice and 2 to 3 weeks old Ror
sg/sg

 . Wilde type littermates of Ror
sg/sg 

and
 
Rorc

-/-
 were used as controls and as for 

the rest of the mice, C57BL/6J were used as controls. Sorting stategy was the same as in Figure 4A. A Representative 
FACS plots of intracellular cytokine staining for IFN-γ and IL-17A from γδ27

-
 T cells isolated and stimulated OVN with 

soluble IL-1+IL-23. B Percentage of γδ27
-
 T cells producing IL-17 plated OVN unstimulated (on the left) and 

stimulated (on the right) (WTTbx21 n=5 and Tbx21
-/-

 n=7; WTEomes n=1 and Eomes
-/-

  n=3; RORc
+/+

 n=6 and RORc
-/-

 n=7; 

Ror
+/+

 n=4 and Ror
sg/sg 

n=4; WTBATF n= 5 and Batf
-/-

 n=4). C Representative FACS plots of intracellular cytokine 

staining after stimulation over 36h with with soluble IL-1 plus IL-23 and stained for IFN- and IL-17A in cells sorted 

from Tbx21
-/-

, Eomes
-/-

 and C57BL/6J mice. D Percentage of 27
-
 T cells co-producing IFN- and IL-17 within total IL-

17
+
27

-
 T cells after 36h of stimulation (WTTbx21 n=9 and Tbx21

-/-
 n=10; WTEomes n=3 and Eomes

-/-
  n=3). 
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6- IFN- PRODUCTION BY 27- T CELLS IS EOMES INDEPENDENT AND T-BET 

DEPENDENT. 

 

In response to IL-1 plus IL-23 27- T cells were induced to coproduce IL-17 and IFN- (Fig 5A). 

CD4 Th17 cells were shown to co-produce IFN-and IL-17 upon stimulation with IL-23 or IL-12, 

giving rise to “Th1-like” Th17 cells111,114. However, the transcriptional regulation for IFN- 

production by the IL-17 producing cells is under active debate. To better understand the 

regulation of IFN- production by IL-17+ 27- T cells we assessed possible roles for T-bet and 

Eomes.  Thus, 27- T cells derived from T-bet or Eomes-deficient mice were stimulated with 

IL-1 plus IL-23 for 36h. Strikingly, in this condition both T-bet and Eomes were dispensable for 

the production of IFN- (Fig 10C-D).  

During EAE, IFN-+IL-17+ coproducing  T cells have been observed in the LN draining the site 

of injection or the SC114,158. However in our hand T cells coproducing IFN- and IL-17 were 

present neither in the LN nor in the SC (Fig 9A-B left panels). Therefore we looked for another 

mouse model system to study IFN-+IL-17+  T cells. These particular cells, have been shown 

to develop during Listeria monocytogenes infection159. So, to assess the possible role of T-bet 

in IFN- production by IL-17+
27- T cells, we applied this infection model in C57BL/6J and 

Tbx21-/- mice and analyzed IFN- as well as IL-17 production by both  and CD4 T cells (Fig 11). 

To better address cytokine production we stimulated the isolated cells using two different 

conditions, PMA plus Ionomycin and IL-1 plus IL-23, for 4h. Using PMA plus Ionomycin we 

could detect IFN- production alone by  T cells, however with no increase between the naïve 

and infected WT mice (Fig 11A-middle panels). Moreover, under this stimulating condition 

there was none IFN-+IL-17+  T cells (Fig 11A-middle panels). Nonetheless, by stimulating the 

cells with IL-1 plus IL-23 it was possible, within WT infected mice, to detect double-producers 

(IFN-+IL-17+) and IFN- single producers T cell subsets (Fig 11A-lower panels-B). 

Interestingly both populations originated from the 27- T cell subset (data not shown). 

Surprisingly, contrary to our in vitro data, in the absence of T-bet there was a disappearance of 

the IFN-+IL-17+ coproducing  T cell population in proportion and cell numbers (Fig 11A-B and 

Sup Fig 1A).  Moreover, 27- T cells solely producing IFN- were also decreased (Fig 11A-B and 

Sup Fig 1A). In the case of CD4 T cells, stimulated with PMA plus Iono, we could notice an 

increase in the production of IFN-between the naïve and infected WT mice (Fig 11C-D). As 

expected, in the absence of T-bet, IFN- production by CD4 T cells was abrogated (Fig 11C-D 

and Sup Fig 1B). Furthermore, in line with the results from the EAE model, in the absence of T-



bet there was an increase in the proportion of IL-17 producing  T cells, although not in 

numbers (Fig 11A-B and Sup Fig X). 

             
Figure 11- T-bet is absolutely required for IFN- production by IL-17 producing  T cells. 
On day 8 after the

 
Listeria monocytogenes infection, spleenocytes were isolated from infected and non-infected 8 

weeks old Tbx21
-/- 

and C57BL/6J (WT) mice, used as controls. A Representative FACS plots for total T cells (on 
top) and intracellular cytokine staining for IFN-γ and IL-17A stimulated for 4h with PMA plus Iono (in the middle) 

and with IL-1 plus IL-23 (in the bottom). B Proportion of IFN- producing  T cells (top left), IL-17 producing  T 

cells (top right) and IFN-
+
IL-17

+
 out of IL-17 producing  T cells (bottom) stimulated with IL-1 plus IL-23 (WTnon-

infected=5,WTinfected=5 and Tbx21
-/-

=6). C Representative FACS plots for total CD4 T cells and intracellular cytokine 

staining for IFN-γ and IL-17A stimulated for 4h with PMA plus Ionomycin (Iono). D Proportion of IFN- producing 
CD4 T cells (WTnon-infected=5,WTinfected=5 and Tbx21

-/-
=6).  

 

Taken together, our results suggest a similar transcriptional regulatory pathway between Th17 

and 27- T cells for IFN- production by IL-17 producing cells. 
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7- ROR CONTROLS V CHAIN IL-17 BIASED  T CELLS 

 

The two-fold increase in the proportion of IL-17-producing 27- T cells in the absence of Ror 

was unexpected and led us to further investigation (Fig 10A-B), since we were assuming a 

possible impairment of IL-17 expression. Ror is, like Rorc, a member of the Retinoic acid-

related Orphan Receptor, which has been linked to many biological processes or conditions as 

varied as the development of the cerebellar cortex, the control of the circadian clock, autism 

spectrum disorder and immune cell responses105,170. In the introduction we have focused on 

ROR cooperation with RORt to induce Th17 differentiation105,170. As yet nothing is known 

about ROR regulating functions in  T cells. Thus in the second part of the project, we went 

on to pursue the analysis of its potential roles in  T cell biology. 

To do our studies, we used the homozygous mutant mouse staggerer (RORsg/sg), that suffers a 

spontaneous deletion which removes an exon encoding part of the ligand binding domain of 

the putative receptor, leading to a generation of a non-functional RORα truncated protein171. 

Furthermore, mice engineered for the deletion of this transcription factor displayed a similar 

cerebellar phenotype as the staggerer mouse, demonstrating that the phenotype observed by 

the mutation on the staggerer mice is caused by the absence of functional RORα172,173. 

Moreover, in our hands and according to published data174 the stagger mice displayed a 

decreased splenic cellularity compared to their WT litter mate controls (Sup. Fig 2). However, 

we noticed no difference in the total number of cells within the thymus (Sup. Fig 2). 

 

            
Figure 12– ROR absence has no impact in the levels of 27

-
 T cell population.  

 T cells were obtained from cutaneous lymph nodes (cut LN) of 2 to 3 weeks old Ror
+/+

, Ror
+/sg

, and Ror
sg/sg

 

mice. Representative FACS plots for levels of CD27 expression levels between the three mice (Ror
+/+

, Ror
+/sg

, and 

Ror
sg/sg

) and 27+ and 27- cell numbers in WT litter mate control (Ror
+/+

), Ror
+/sg

 and Ror
sg/sg

. Ror
sg/sg

 
n=10, control n=5. 



First, we questioned if ROR govern the development of the 27- T cells which preferentially 

express IL-17. However, the proportion of 27+ and 27- T cells was similar between ROR+/+, 

ROR+/sg and RORsg/sg mice (Fig 12). Nevertheless, within the 27- cells the subset which 

produces specifically IL-17 also expresses CCR6. Thus we next assessed if the proportion of 

CCR6+
27- T cells, within total 27- T cells, were specifically increased. As shown by Figure 

13A and 13B normal proportions of CCR6+
27- T cells develop from  T cell compartment 

which lacks the functional RORprotein (in all lymphoid organs analysed thymus, cutaneous 

LN and spleen) (Fig 13A-B, Sup Fig 3). These results strongly contrast with the strict 

requirement of RORt for the generation of the CCR6+
27- T cell subset (Fig 13C, 139). 

Altogether, these results suggest that the increased frequency of IL-17 effectors in the absence 

of ROR is not due to an increased development of CCR6+
27- cells. 
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Figure 13 – Contrary to ROR, ROR does not control the levels of CCR6

+
27

-
 T cells. 

 T cells were obtained from thymus, spleen and cutaneous lymph nodes (cut LN) of 8 weeks old Rorc
-/-

 and WT 

litter mate control mice and 2 to 3 weeks old Ror
+/+

, Ror
+/sg

, and Ror
sg/sg

 mice. A Representative FACS plots for 

totalT cells and CD27 plus CCR6  cell subsets from Ror
sg/sg

 and WT litter mate control and levels of CCR6 

expression between the three mice. B CCR6
+
27

-
 cell percentages in WT litter mate control (Ror

+/+
), Ror

+/sg
 and 

Ror
sg/sg

. (Ror
sg/sg

 n=7, control n=4). C Representative FACS plots for total  T cells and CD27/CCR6cell subsets 
from Rorc

-/-
 and WT litter mate control (Rorc

-/-
 n=3, control n=4). 

 

 

Besides CD27 and CCR6 markers, IL-17- versus IFN--producing  T cells,  T cells can also be 

segregated according to the exclusive V chain usage. Thus, V1 T cells preferentially secrete 

IFN- whereas V4 T cells favour IL-17 production149,150,175. However, contrary to CD27 and 

CCR6 segregation, this dichotomy is not absolute, as mouse V4 T cells can also produce IFN-



γ130,176,177. Given that V1+ and V4+ are the two dominant  T cell subsets in peripheral 

lymphoid organs, we next questioned if Ror could influence the V chain usage in  T cell 

subsets. 

 

The fraction of V4 subset was reproducibly increased, at the expense of the V subset that 

was decreased, in the lymphoid organs of Rorsg/sg mice compared to the ROR+/+ littermate 

controls (Fig 14A). Consequently, in the absence of ROR there is around a two-fold 

augmentation in the ratio between V4/V1 subsets in thymus, LN and spleen (Fig 14B). Of 

note, although to a lesser extent than V4+ cells, the frequency of V1-V4- subset was also 

increased (Fig 14A). Moreover, looking at the cell number although not observed in the cut LN 

(Fig 14C), there was a decreased number of cells expressing the V1 chain between Ror+/+ and 

Rorsg/sg mice in both thymus and spleen (Sup Fig 4). Noteworthy, the effect of ROR is gene 

dose-dependent since the Ror+/sg showed an intermediary phenotype (Fig 14B, Sup Fig 4).  

 

Given that Rort is crucial for the development of a specific subset of  cells (CCR6+27-) and 

that in Th17 cells it acts cooperatively with Ror to control IL-17 production, we next aimed to 

determine if alteration of the frequency of V4+ and V1+ cells would also be influenced by 

Rort absence. Interestingly, we found that the ratio between V4/V1 subsets was not 

affected in the absence of Rort demonstrating the exclusive role of Ror (Fig 14D-E). 
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Figure 14 - Absence of Ror leads to an increase in  T cells expressing the V4 chain and a decrease in the V1  
T cells. 

 T cells were obtained from thymus, spleen and cutaneous lymph nodes (cut LN) of 8 weeks old Rorc
+/+

, Rorc
+/GFP

, 

and Rorc
GFP/GFP

 mice and 2 to 3 weeks old Ror
+/+

, Ror
+/sg

, and Ror
sg/sg

 mice. A Representative FACS plots for V4, 

V1 and V1-V4- subsets gated on totalT cells from Ror
sg/sg

 and litter mate controsl. B Ratio numbers between 

V4
+
  T cells and V1

+
  T cells percentages out of totalT cells in thymus, cut LN and spleen of Ror

+/+
, 

Ror
+/sg

, and Ror
sg/sg

 mice (Ror
+/+

 n=10, Ror
+/sg

 n=8 and Ror
sg/sg

 n=13).  C V4
+
, V1

+
 and V1

-
V4

-
 subsets cell 

number from cut LN in Ror
+/+

, Ror
+/sg

, and Ror
sg/sg

. D Representative FACS plots for V4
+
, V1

+
 and V1-V4- 

subsets gated on totalT cells from from Rorc
-/-

 and  litter mate controls. E Ratio numbers between V4
+
  T cells 

and V1
+
  T cells percentages out of totalT cells in thymus, spleen and cut LN of Rorc

+/+
, Rorc

+/GFP
, and 

Rorc
GFP/GFP

 mice (Rorc
GFP/GFP

 n=5, Rorc
+/GFP

 n=5, Rorc
+/+

 n=5). 
 
 



ROR has been associated with cell death178 and proliferation179–181. For instance, ROR is 

downregulated at the transcriptional levels in many different types of human cancers (ovarian, 

breast and prostate). Conversely, ROR overexpression leasds to inhibition of cell growth179. 

With this in mind, we questioned whether  subset-specific alterations of the cell-death or 

cell-cycle rates could account for the higher ratio of V4 / V1 subsets in RORsg/sg mice. We 

analysed the proportion of apoptotic cells by ex vivo annexin V staining, and measured the 

proliferative activity after in vivo incorporation of 5-bromodeoxyuridine (BrdU) in V4, V1 and 

V1-V4- subsets from ROR+/+, ROR+/sg and RORsg/sg mice (Fig 15A-B). 

 

                   

Figure 15– ROR does not control cell-cycle or cell-death in thymic V1
+
, V1

-
V4

-
 and V4

+
 T cell subsets. 

ROR
+/+

 and ROR
sg/sg 

mice were injected i.p. with BrdU 18h before analysis. Thymocytes were then obtained and 

stained for BrdU for Annexin V. A Representative FACS plots for Annexin V stainning analysis for  T cell susbets 

(V1
-
V4

-
, V1

+
 and V4

+
). B Percentage of Annexin V positive  T cell subsets. C Representative FACS plots for BrdU 

analysis for  T cell susbets (V1
-
V4

-
, V1

+
 and V4

+
). D Percentage of BrdU positive  T cell subsets. 

 

Neither the percentage of apoptotic cells (Fig 15A-B) nor the rate of proliferation (Fig 15C-D) 

were modified in between V4+ or V1+  T cell subsets derived from mice either expressing a 

WT or a natural mutant form of ROR. These results were similar between thymus, cutaneous 



Role of transcription factors in the functional development of gamma-delta T lymphocytes 

 

43 
 

LN and spleen (Fig 15, Sup Fig 5-6). Therefore, our results ruled out a possible role for RORin 

controlling either cell-death or proliferation of the V4+ or V1+ subsets. 

 

Taken together these results further suggest a dual role of ROR On one hand, RORseems 

to regulate the proportion of IL-17-producing 27- T cells, and on the other the development 

of V4+ and V1+ cells. At this stage of the study, it was not yet explicit if the alterations 

observed would represent two distinct effects of ROR or if the increased frequency of V4+ 

cells would solely account for the increase in IL-17-producing 27- T cells. Therefore, we 

pursue our experiments in order to discriminate between these two hypotheses. 

 

First we FACS sorted V1+, V4+ and V1-V4- cell subsets from ROR+/+, ROR+/sg, and RORsg/sg 

mice and stimulated them OVN with IL-1plus IL-23 to measure IL-17 production (Fig 16). As 

expected the main source of IL-17 was the V4+ cell subset which contained over 40% of IL-17-

producing effector cells, while 15% and less than 5% were from V1-V4- cell subset and V1+ 

cell subset, respectively. However, to our surprise, the absence of ROR led to a two-fold 

increase in frequency of IL-17-producers only from the V1-V4- T cell subset. This suggests 

that the increase in IL-17-producing effector  T cells results from two cumulative events. One 

the accumulation of V4+ cells and second the augmentation of the proportion of IL-17-

producers within the V1-V4-
 T cell subset. Taken together, these data led us to 

hypothesize that ROR has a direct role in regulating IL-17 production by V1-V4- cells. 

 



                                                                    
Figure 16- ROR controls IL-17 expression in V1-V4-  T cell subset. 

 T cells were FACS sorted from pooled spleen and LNs from 2 to 3 weeks old Ror
+/+

, Ror
+/sg

 and Ror
sg/sg 

mice. A 

Representative FACS sorting gate strategy for sorted cell subsets (V1
+
 V4

+
 and V1

-
V4

-
) B Representative FACS 

plots of intracellular staining for IFN- and IL-17 in sorted cells after OVN incubation with IL-1 plus IL-23. C 

Percentages of IL-17 producing V1
+
, V1

-
V4

-
 and V4

+
  T cells within the Ror

+/+
, Ror

+/sg
 and Ror

sg/sg 
mice 

 

 

ROR is known to control gene expression through both transcriptional activation and 

repressive activities. For instance, ROR is a transcriptional activator of Bmal1, which works as 

a key regulator of circadian clock function182. By contrast, once phosphorylated ROR binds to 

the -catenin promoter sites and not only suppress the recruitment of transcriptional 

coactivators and but also the RNA Pol II, inducing the transcriptional repression of -catenin 

and its targets180. Intriguingly, it was reported that the homozygous staggerer (sg/sg) mice 

have an increased of Sox13 mRNA expression183. This is of particular interest since it was 

shown by Gray and colleagues that the absence of the TF Sox13 can cause an intrinsic and 

selective defect in development of IL-17-producing V4+ cells150. This is consistent with a 

specific role of a network consisting of a quartet of high-mobility group (HMG) box TF - SOX13, 

SOX4, LEF1, and TCF1 - in the development of IL-17+V4+ cells149,175. Noteworthy, SOX4 and 
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SOX13 have been shown to regulate directly the two cell-specific genes required for IL-17-

production by  T, RORc and B lymphocyte kinase (BLK)184. On the other hand, LEF1 and TCF1 

counteract the SOX proteins and induce genes involved in the IFN-+
27+ effector subset149. 

 

First, we assessed the expression of Sox13, Sox4, Lef1, and Tcf7 (which encode TCF1) 

transcripts in peripheral 27+, CCR6-
27- and CCR6+

27- T cell subsets. Surprisingly, Sox13 

presented 100 times higher levels of mRNA, while Sox4 was 10 times less expressed in 

CCR6+
27- T cells when compared to 27+ T cells, respectively (Fig 17A). This reveals that 

there are still gaps in our understanding of the role of SOX4 in CCR6+
27- cells. Moreover, the 

expression of Lef1 mRNA is 100-fold lower in CCR6+
27- T cells than in 27+ T cells. This is 

consistent with its role into inhibiting IL-17+
27- T cell development, and mirrors its exclusion 

from  thymocytes fated to produce IL-17. 

 

Sox13, Sox4 and Lef1 regulation is specific to  T cells since Th1 and Th17 cells didn’t 

differentially expressed these genes or in the case of Sox13 with minor differences. Tcf7, 

however, was the only one expressed about 10-times higher in Th17 compared to Th1 cells. 

 

        
 



      
Figure 17- Expression profile of IL-17 related transcription factors in different  T cells subsets. 

 T cells were FACS sorted from pooled spleen and LNs from 8 weeks old C57BL/6J mice and thymus from 2 to 3 

weeks old  Ror
+/+

 and Ror
sg/sg 

mice. A RT-PCR data for Sox13, Sox4, Lef1 and Tcf1 expression (relative to b2m or 

Actb) on peripheral  T cell subsets : CD27
+
 (CD27

+
), CD27

-
 (CCR6

-
CD27

-
) and CCR6

+
 (CCR6

+
CD27

-
); and in vitro-

generated CD4 Th1 and Th17 cells. B RT-PCR data for Rorc, Rora, IL17, Sox13, Sox4 and Lef1  expression (relative to 

b2m or Actb) on thymic  T  cell subsets: V1
+
, V1

-
V4

-
 and V4

+
 cells from Ror

+/+
 and Ror

sg/sg 
mice. 

 
 

Secondly, we assessed whether RORwould impact in the expressions of these genes known 

to regulate IL-17 production in the  T cell subsets already in the thymus (Fig 17B). To do so, 

we FACS-sorted V1+, V1-V4- and V4+ thymocytes from Ror+/+ and Rorsg/sg mice and 

assessed gene expression by real-time PCR. The primers we used for Ror mRNA detection 

recognise part of the ligand binding domain, in  thymocytes from the mutant mouse we 

could no longer amplify a Ror mRNA product which confirms the absence of a functional 

messenger for Ror in the staggerer mouse. The lack of variation in transcripts for Il17, Rorc, 

Blk or Sox13 showed that RORis dispensable for the regulation of IL-17+ cell-specific genes 

Moreover, many other targets including, but not restricted to, genes associated with Th17 

cytokine production (Il17f, Il22, Csf2), Th17-governing TF (cmaf, Ahr), inhibitors of Il17 

transcription (Tbox21), receptors for cytokines regulating IL-17 production (Il1r1, Il23r) were 

similarly expressed by Ror+/+ and Rorsg/sg cells (data not shown). However, Sox4 and Lef1 

which are expressed at low levels in CCR6+
27- T cells, are two-fold down-regulated 
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specifically in the in V1-V4- cell subset that express a non-functional ROR. These results 

further suggest a possible role of ROR in controlling IL-17 production exclusively in V1-V4-

 T cell subset. Consistent with this, we observed that peripheral V1-V4-  T cells express 3 

and 7 times more Ror mRNA than V4+ and V1+ cells, respectively (Sup Fig 7). In a similar 

way, V1-V4-  T cells express 10 times more Il17 mRNA (Sup Fig 7). 

 

Next, we aimed to assess whether ROR would play a role at early development stage of V4+ 

and V1+ thymocytes. Given that TCR-dependent transitional maturation in early subsets of  

thymocytes coincide with the downregulation of expression of CD24 126 we went on to see if 

the V4/V1 cell ratio was altered in immature CD24+  thymocytes from RORsg/sg mice (Fig 

18). First of all, there was no change in the proportion between total CD24+ immature and 

CD24- mature  thymocytes in the absence of a functional ROR (Sup Fig 8). In the same way, 

the frequency of CD24+ and CD24-  T cells was unmodified within the V1+, V4+ or V1-V4- 

thymocytes subsets (data not shown). Nevertheless, and most importantly, the alteration in 

the V4/V1 cell ratio was already present in the CD24+ immature  thymocytes (Fig 18). This 

suggests that ROR role in favouring the development of V4+ instead of V1+ acts already at a 

post-DN3 stage however before the TCR-engagement step which leads to CD24 

downregulation. Variations in the V1+, V4+ or V1-V4-  T thymocyte subsets are then 

maintained after the  T cells exit the thymus and colonize the periphery. 

 



                      
Figure 18 – Higher V4/ V1 is present in immature  T cells from ROR

sg/sg
 

 T cells were obtained from thymus of 2 to 3 weeks old Ror
+/+

 and Ror
sg/sg 

mice. A Representative FACS plots for 

segregation between CD24
+/-

 T cells within the V4
+
, V1

+
 and V1

-
V4

-
 subsets gated on CD24

+/-
  T cells. B Ratio 

numbers between V4
+
  T cells and V1

+
  T cells percentages out of totalCD24

-
 and CD24

+
thymocytes. 

 
 

Altogether, these data led us to believe that ROR presents a dual, non-overlapping, role in 

regulating IL-17 production strictly in V1-V4- cells on one side and in controlling the balance 

between V4+ and V1+ cell development on the other. Future research will determine 

whether ROR is involved in a cell-intrinsic manner and during the V chain rearrangement 

process. 

    



Role of transcription factors in the functional development of gamma-delta T lymphocytes 

 

49 
 

VII. DISCUSSION 
In the present work, we show that  T cells and  T cells present different mechanisms of 

cytokine regulation. It was previously shown in our laboratory139 that 27+ T cells only 

produce IFN- upon stimulation, resembling Th1 CD4 T cells. In line with this, a large 

proportion (50%) of IFN-  producing 27+ T cells depend on T-bet, but not on Eomes (as do 

CD8+  T cells)72,168. IL-17+
27- T cells produce IFN- upon in vitro stimulation with IL-1 plus 

IL-23, and during tumour and EAE responses, or during Listeria infection114,139,158,159. 

Surprisingly, we found that cytokine-induced production of IFN- (IL-1 plus IL-23) was 

independent of T-bet whereas the emergence of IFN-+IL-17+
27- T cells during Listeria 

infection relied on T-bet. Therefore,  T cells have distinct requirements of T-bet for the 

production IFN-. The reasons behind these differences will be further discussed below. In 

addition, 27- T cells exhibit a similar phenotype to Th17 with the ability to produce a broader 

set of cytokines such as IL-17, IL-17F, IL-22 and GM-CSF. Consistent with previous 

studies99,147,169, 27- T cells have different regulatory mechanisms of IL-17 production  than 

Th17 cells. IL-17 production by 27- T cells although absolutely dependent on RORt, is not 

affected neither by the absence of IRF4151 nor of BATF or ROR. This supports the idea that 

two pathways for IL-17 production exist, which discriminates cells of the innate ( T cells) and 

adaptive ( T cells) arms of the immune system. 

Polarisation of naïve conventional T cells relies on three types of signalling delivered by antigen 

presenting cells: TCR recognition, costimulation and cytokine engagement. Subsequently, 

memory T cells acquire the ability to respond more promptly to TCR- or cytokine-signalling to 

produce IFN- or IL-17. This property is shared within innate-like T cells and may explain the 

discrepancies we observed between in vitro and in vivo responses towards IFN- production 

and its dependence on T-bet. Indeed, individual stimulation analysed in vitro may not 

recapitulate the diversity of signals a cell can encounter during in vivo responses. Much of 

what is known today about T-cell signalling is based in studies carried out with conventional T 

cells. However these mechanisms are not always recapitulated by the innate-like T cells ( T 

and NKT cells). Below we will explain in greater detail the signalling pathways involved in IFN- 

or IL-17 production already observed in  T cells.  

IFN- is a cytokine produced by a great variety of cells from the innate and adaptive immune 

system. It is well established that alongside with TCR stimulation, the presence of particular 

cytokines such as IL-12 lead naive CD4 T cells to differentiate into Th1 cells in secondary 



lymphoid organs63. The ability of  T cells to spontaneously release IFN- strongly contrasts 

with the need of a long differentiation program by CD4 T cells. Stimulation of  T cells remains 

elusive in vivo, but in vitro TCR engagement has been shown to induce strong IFN- 

production by 27+ T cells139,145. Besides TCR engagement, multiple other mechanisms can 

drive the differentiation of lymphoid cells, such as cytokine signalling. IL-2, IL-12 and IL-15 are 

able to induce IFN- production by 27+ T cells, in different extents. Moreover IL-12 in synergy 

with IL-18 was shown to induce IFN- production by NK1.1+ 27+ T cells129. This goes along 

with the requirements of other innate cells (like NK cells) on IL-15 and IL-12 plus IL-18 for 

proper development and IFN-production, respectively185,186. Moreover, human   

thymocytes were recently shown in our lab to acquire the capacity to produce IFN- upon 

stimulation with IL-2 or IL-15187. 

Cytokine signalling and transcriptional regulation towards cytokine production is well 

documented in the adaptive immune compartment. IL-12 signalling through STAT4 is essential 

for induction of optimal levels of T-bet which leads to IFN- production and commitment of 

CD4 T cells into a Th1 fate73. An amplification loop is then established controlling the 

expansion of IFN- response via STAT1 signalling and further T-bet expression74,76. Together 

with CD4 T cells, NK cells show a great dependence on STAT4 for the proper development of 

their responses after IL-12 stimulation70. The requirement of any member of the STAT family of 

transcription factors in  T cells for IFN-+ differentiation is still a subject of debate, thus 

requiring further investigation. T-bet, which directly binds to the IFN- promoter79, is crucial to 

induce the expression of this cytokine and support Th1 polarisation by diverting T cells from 

differentiating into other Th fates79,188. Eomes is, together with T-bet, another T-box 

transcription factor and the “master regulator” of IFN- production in CD8 T cells168. Plenty still 

needs to be unveiled in regard to the innate immune compartment. T-bet, along with Eomes, 

is known to be important for NK cell development and terminal maturation189,190. Moreover, in 

the absence of T-bet, DCs are unable to efficiently prime Th1 cell responses and NKp46+ ILC3s 

disappear from the small intestine191,192. Notably, in vitro 27+ T cells only partially require T-

bet for their IFN- production and show no dependence on Eomes145,167. Interestingly, the 

signals which regulate T-bet expression in ILC3s are IL-23 dependent but IL-12 independent193. 

In Th17 cells both IL-23 and IL-12 have been reported to induce IFN- production, although the 

requirement of T-bet remains elusive to date111,114,194–196. As demonstrated in our work, IL-

17+
27- T cells produce IFN- after IL-1 plus IL-23 stimulation in vitro in a T-bet independent 

manner, suggesting that different signalling pathways may be operating between 27+ and 

27- T cells. Moreover, a subset of 27- T cells, which does not produce IL-17, was able to 
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respond to IL-12 stimulation and produce IFN-. Furthermore, we and others have shown that 

27- T cells preferentially produce IL-17 in response to cytokines rather than TCR 

stimulation139,152. However, Sheridan and colleges have shown that 27- T cells respond to 

plate-bound -CD3 plus -CD28 stimulation after in vivo immunization with Listeria 

monocytogenes159. Altogether, these results suggest the existence of different signalling 

pathways for the production of IFN- by  T cell subsets, and underline the diversity and 

combination of stimulatory signals that  T cells integrate to produce a given cytokine in vivo. 

The importance of TCR engagement in the periphery remains unclear to date due to major 

gaps in our knowledge about the TCR ligands recognized by  T cell subsets (V4 or V6). In 

vitro experiments will allow us to explore the transcriptional requirement for a unique 

signalling cascade. To better understand the distinct inducers for IFN- production in  T cell 

subsets, we propose the assessment of T-bet role in cytokine signalling pathways known to 

induce IFN- expression, such as IL-12, IL-15 and IL-18 as well as IL-1 plus IL-23 in 

combination, or not, with TCR stimulation. 

As costimulation, signalling through CD70-CD27 molecules has been shown to increase the 

survival and proliferation of activated T and B cells, thereby enhancing their effector function. 

CD70 is not only expressed by activated DCs and lymphocytes but is also constitutively 

expressed by APCs in the thymic medulla and by the intestinal epithelium197. Although not 

important for  T cell development198, CD27-CD70 interactions were shown to drive 

differentiation of CD4 T cells towards a Th1  fate199–201. Together,  T cells which leave the 

thymus expressing CD27 (27+) are essentially IFN-130. However, 27- T cells  were shown to 

also have the ability to produce IFN-139. Other unconventional T cells like NKT cells , have been 

shown to expressed CD27130. A direct connection between CD27 signalling and T-bet 

expression is yet to be made.The developmente of  T cells  and the molecular mechanisms 

underlying the differentiation between a 27- and 27+ subsetare still under debate118. 

Downregulation of CD27 by  T cells that did not engage their TCR nor received signals 

through CD27 is one of the hypotheses. Recent work developed in our laboratory 

demonstrated that while 27+ T cells are stably committed to the expression of Ifng but not 

Il17, 27− T cells display permissive chromatin configurations at loci encoding both of these 

cytokines139. This likely explains their plasticity and diversified phenotype of cytokine 

production, particularly IFN-. One unresolved issue is whether the opened chromatin 

configuration at the Ifng locus, which is imprinted in 27+ T cells, is transmitted to a 

permissive state in the 27- T cells during their development. Further studies should 



determine if changes occur at the Ifng locus in the more terminally differentiated 27− T cells 

that up-regulate CCR6. 

A myriad of studies have shown that  T cells are crucial providers of IFN- in a diversity of 

physiological settings202–204. In the case of the EAE model, it was reported that IFN- producing 

cells are important at the site of inflammation during the development of the disease 205. In 

later stages of the disease the most pathogenic cells in the inflamed tissue are IL-17 producing 

cells152. Double-producing (IFN-+IL-17+) Th17 cells were also reported by several groups to be 

present at this stage in the CNS107,114,158. The majority of cells producing IFN-, IL-17, or both, 

are CD4 T cells. Nevertheless,  T cells are also involved in the development of this disease. In 

TCR-/- mice EAE was less severe, the onset of disease was delayed and the clinical scores were 

reduced152.  In the case of Listeria monocytogenes infection, IL-17 was shown to be a critical 

component of early anti-listerial immunity206–208. Moreover, Sheridan and colleagues have 

shown that T cells which produce IL-17 could also produce IFN-upon infection159
 The 

molecular mechanisms which regulate the development of the double-producing cells are still 

poorly defined. We aimed to assess the role of T-bet in IFN-+IL-17+ 27- T cells in both in vivo 

mouse model systems just mentioned. However in our hands, EAE was readily induced without 

the presence of double-producers 27- T cells. Yet, in the Listeria monocytogenes infection 

model we could induce the co-production of both cytokines (IFN- and IL-17) in WT infected 

mice, in contrast to T-bet knockouts, where there was no IFN- production. These results 

suggest the existence of two possible and distinct ways of inducing IFN- production by 27- T 

cells, as suggested previously for the IL-17+Th17 T population111,194–196,209. 

Besides the in vitro data acknowledging the ability of 27+ T cell subset to produce high levels 

of IFN- upon TCR stimulation, little is known about their in vivo behaviour. The lack of 

knowledge about the cognate ligands of the TCR is partially accounted for this gap in 

information. However, the same applies to the 27- T cell subset, which besides the ability to 

co-produce IFN- and IL-17 upon IL-1 plus IL-23 stimulation, not much more is known. In 

order to clarify the requirement of T-bet in the production of IFN- by T cell subsets, we 

intend to use, in further studies, other in vivo models where IFN- production is predominant, 

such as malaria (plasmodium bergei) or viral infection.  

The capacity of  T cells to produce IL-17 is believed to be instructed during thymocyte 

development, particularly during embryogenesis12. Although this notion still remains 

controversial, some of the molecular cues needed for  T cell development into IL-17 
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producers are already known. Both TGF- and IL-7 are crucial for IL-17+
 thymocyte 

development and expansion. Moreover, IL-1 and IL-23, two cytokines secreted by 

macrophages and DCs, are crucial for the upregulation and maintenance of IL-17 production by 

 T cells139,152,165. Importantly, invariant NKT (iNKT – NK1.1-CD4- NKT), another innate-like T 

cell subset, have been shown to produce IL-1722 upon stimulation with both TGF- and IL-

1. Additionally, Group 3 innate lymphoid cells (ILC3s) depend on IL-7 for their 

development and on IL-1 plus IL-23 to produce IL-17212. CD4 Th17 cells, however, require 

TGF-, IL-6 and IL-1 signalling for their differentiation towards the Th17 subset while IL-23 

and IL-21 are required for their maintenance82,107. Thus, the cytokine combinations promoting 

IL-17 may vary among lymphoid subsets. 

Together with the external cues, downstream TFs direct  T cell development towards IL-17 

producers. These TFs are Hes1147, RelB148, ETV5213, Sox13 and Sox4149,150 along with the kinase 

Blk184. Moreover, LTR signalling seems to also be important for the development IL-17+
 T 

cells through regulation of RelB148. TCF1 and LEF1, on the other hand, have been pointed as 

negative regulators of IL-17 expression by  T cells149. In contrast, the TF that regulates type 

17 differentiation in naïve CD4 T cells is RORt214. 

During development, as a final step in their differentiation process towards a IL-17 producer, 

27- T cells acquire the expression of CCR6. As shown previously in our laboratory139 and by 

our results, CCR6+
27- T cells are fully committed IL-17 producers. RORt is a key TF, not 

onlyin the regulation of CCR6 expression in 27- T cells, but also for IL-17 production139. As we 

show here, there is an impairment in the development of IL-17 producing CCR6+
27- T cells in 

the absence of RORt. The same is also true for CD4 T cells: in the absence of RORt naïve CD4 

T cells cannot differentiate into a Th17 subset99. However, the similarities between the IL-17 

expression programs of 27- T cells and CD4 Th17 cells are limited to RORt involvement. As 

described for STAT3147 and IRF4151, our results showed that 27- T cells do not rely on either 

ROR or BATF for IL-17 production. In fact, in the absence of ROR we noticed an increase in 

the percentage of 27- T cells producing IL-17, which will be discussed ahead. Furthermore, 

both NK1.1- NKT cells and ILC3s were reported to express and depend on RORt for IL-17 

production22,212. The need for more players to differentiate and produce IL-17 by CD4 T cells 

implies an additional level of coordination that can account in part for the delayed production 

of IL-17 by Th17 cells.  



Two distinct ways of producing IL-17 thus seem to regulate the innate and adaptive immune 

compartments. By relying solely on RORt for the production of IL-17, innate-like T cells 

disclose their pre-disposition to produce the cytokines in the fastest way available. 

Noteworthy, as shown by the laboratory, 27- T cells display a constitutively open locus 

configuration in IL-17 region139 which allows fast transcription upon binding of the 

transcriptional machinery.  

We obtained particularly unexpected results with ROR. This TF has been linked to many 

immune-related and non-immune related functions. Involved in lymphocyte 

development215,216, RORis also expressed in a great variety of tissues173,217,218
 In the immune 

system, ROR not only plays a role in inducing Th17 differentiation in a redundant and 

cooperative manner with RORt105,170 and in the development of ILC2s219 but was also shown 

to be involved in survival and development of IgA+ memory B cells220. Yet nothing is known 

about the role of ROR in  T cells. As we present in this work, the absence of a functional 

ROR leads to a specific increase in the number of IL-17 producing  T cells, after stimulation 

with IL-1 plus IL-23, particularly within V1-V4-  T cells, which we believe to be V6+  T 

cells. This suggests a specific regulatory role of ROR in IL-17 production at the periphery. 

Moreover, in ROR mutants there was also an increased ratio between the V4+ and V1+  T 

cell subsets in the thymus, spleen and LN. These variations, however, were not due to changes 

in proliferation or in cell death. Interestingly, it is already possible to detect the increased ratio 

V4/V1 within the immature  T cells (CD24+ 
 T cells) in the thymus. Thus, we hypothesize 

that ROR may control the development of  T cell subsets in accordance to their V chain 

usage. These results suggest that ROR may have two distinct roles in  T cells, resembling 

those played by GATA3 in CD4 development and Th2 cell differentiation221,222, at different 

stages of  T cell development.  

ROR negatively impacts IL-17 production in V1-V4-  T cells. This is utterly surprising in light 

of its role in positively controlling IL-17 production in Th17 cells. Inhibitors of IL-17 production 

in Th17 cells include T-bet, TCF1, GATA-3188,223. Various mechanisms of action have been 

described. For example, T-bet directly prevents RUNX1 transactivation of the gene encoding 

RORt188. To date the mechanism by which ROR operates in the V1-V4-  T cells remains to 

be elucidated. The increased responsiveness of the V1-V4-  T cells to the IL-1 plus IL-23 

stimulation could be linked to IL-1R1 since ROR regulates the expression ofIL-1R1 that is 

crucial for the induction of IL-17 production in Th17 cells224,225. However, mRNA levels of IL-1R1 

were similar between controls and RORsg/sg mice within IL-17 biased V subsets: V4+ and V1-
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V4-  T cells (data not shown). Since differences in the proportion of IL-17-producing V1-V4- 

 T cells were more apparent in response to external cues we lean to propose that ROR 

contributes to peripheral signalling pathways that induce IL-17production. It remains to be 

shown if the molecular signalling pathway(s) downstream of IL1R (or other IL-17 inducers) are 

under the control of ROR. Another hypothetic mechanism is the direct binding of ROR to 

RORt in order to prevent its binding to the IL-17 promoter. 

The increase in the V4 cell proportion and the decrease in the V1 cell proportion in RORsg/sg 

mice suggests that ROR may be involved in the development of these two  T cell subsets. 

Since the absence of RORt and IL-1R1 did not impact the ratio V4/V1 (data not shown), our 

results propose a specific role for RORin this process. At this stage, we cannot yet distinguish 

whether ROR controls V1, inhibits V4 development, or both. It will be of great importance 

to assess if the development of other  T cell subsets (V5 and V6) are also affected by the 

absence of ROR. V5 and V6 subsets, populate mostly non-lymphoid organs (epithelium), 

and emerge during embryonic stages (E13 to birth)134. In addition, IL-17-biased populations are 

proposed to essentially arise from embryonic precursors12. To address this we plan to look at 

 T cells developing in embryonic thymi from E15 onwards. 

ROR broad expression throughout the organism makes it important to distinguish if its role(s) 

is(are) intrinsic to the  T cell compartment. To do so we will co-culture WT or ROR sg/sg  T 

cell progenitors DN2 and DN3 with a cell line, OP9-DL1, which mimics the thymic cells by 

expressing a Notch-ligand - DL1. In addition, we will take advantage of ROR conditional 

knock-out mice in order to assess the cell-autonomous impact of ROR deplection. Selective 

deletion of ROR in T cells will be achieved by crossing ROR floxed mice (kindly provided by 

Andrew McKenzie – Cambridge) with hCD2- Cre mice.  

The changes in the proportion of T cell subsets RORsg/sg mice were already present in the 

immature compartment of  thymocytes (CD24+  T cells). E2A226, Sox4 and Sox13149,150 have 

been reported to be involved in V4+  TCR expression regulation. As for Sox13, a 

spontaneous depletion of this TF specifically reduced the maturation of IL-17 producing V4+
 

T cells150. Similarly deletion of SOX4 results in the absence of IL-17 producing V4+
 T cells149. 

We found that the expression profiles of Sox13 and Sox4 are different between 27+ and 

CCR6+
27- cells. Sox4 mRNA levels 10-fold lower in CCR6+

27- than 27+ cells. It is plausible 

to suggest that SOX13 and SOX4 may have different role(s) at successive stages of  T cell 

development. This is of interest as RORsg/sg mice present an increased expression of Sox13183. 



The absence of ROR did not affect in the expression of Sox13 but led to a reduction of Sox4 

transcripts in  thymocytes. Taken this, we cannot exclude a role of ROR through 

modulation of expression or action of these two TF. Further work will determine the possibility 

that ROR directly binds on Sox13 and/or Sox4 promoters and/or interacts with these 

proteins. For instance, E2A increased the accessibility of the V4 chromatin leading to an 

enhancement of its expression226. In line with these studies, we are planning to determine if 

ROR directly regulates V chain rearrangement in  T cell precursors. 

In conclusion, T cells TF requirements for IL-17 or IFN-production here described provide a 

better understanding of the molecular mechanisms which direct the function of 27+ and 

27- T cells in the periphery. In particular, we found that 27- T cells which have the ability to 

co-produce IL-17 and IFN-, depend neither on ROR nor BATF for their IL-17 production. On 

the other hand, our results show that ROR plays a more complex and dual role in T cells. 

ROR not only plays a developmental role by setting the V4V1 balance, but also enhances 

the production of IL-17 in V1-V4-  T cells. Further studies will disclose ROR functions and 

will clarify whether they are restricted to embryogenesis or occur throughout life. 
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VIII. ANNEXES 

ANNEX 1 - SUPLEMENTARY FIGURES 

 

         

Sup. Fig 1 – , IL-17
+
 and CD4 T cells depend on T-bet for production of IFN 

On day 8 after the
 
Listeria monocytogenes infection, spleenocytes were isolated from infected and non-infected 8 

weeks old Tbx21
-/- 

and C57BL/6J (WT) mice, used as controls. A IFN- IFN-
+
IL-17

+
 and IL-17 producing  T cell 

numbers (10
3
) after stimuation with IL-1 plus IL-23  for 4h (WTnon-infected=5,WTinfected=5 and Tbx21

-/-
=6). B Cell 

numbers (10
3
) of IFN- producing CD4 T cells (WTnon-infected=5,WTinfected=5 and Tbx21

-/-
=6).  

 
 
 
 

 

 

Sup. Fig 2 - ROR does not control the cellularity in other organs besides Spleen . 

Cells were obtained from thymus, spleen and cutaneous lymph nodes from 2 to 3 weeks old Ror
+/+

, Ror
+/sg

, and 

Ror
sg/sg

 mice and counted using counting beads through FACS. 
 
 
 
 
 
 



 
 

   
Sup Fig 3 – ROR has no impact in the thymic development or in the peripheral maintenance of 27-T cell 
population. 

Cells were obtained from thymus and spleen of 2 to 3weeks old Ror
+/+

, Ror
+/sg

, and Ror
sg/sg

 mice and stained for 
CD27.  
 
 
 
 

 
Sup Fig 4 - V1

+
 decreased cell number in the absence of ROR 

Cells were obtained from thymus and spleen of 2 to 3weeks old Ror
+/+

, Ror
+/sg

, and Ror
sg/sg

 mice and counted by 
using FACS counting beads. 
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Sup Fig 5– ROR does not control cell-cycle or cell-death in cut LN V1

+
, V1

-
V4

-
 and V4

+
 T cell subsets. 

ROR
+/+

 and ROR
sg/sg 

mice were injected i.p. with BrdU 18h before analysis. Thymocytes were then obtained and 

stained for BrdU for Annexin V. A Representative FACS plots for Annexin V stainning analysis for  T cell susbets 

(V1
+
, V1

-
V4

-
 and V4

+
). B Percentage of Annexin V positive  T cell subsets. C Representative FACS plots for BrdU 

analysis for  T cell susbets (V1
+
, V1

-
V4 and V4

+
). D Percentage of BrdU positive  T cell subsets. 

 
 
 



 
Sup Fig 6 - ROR does not control cell-cycle or cell-death in spleenic V1

+
, V1

-
V4

-
 and V4

+
 T cell subsets. 

ROR
+/+

 and ROR
sg/sg 

mice were injected i.p. with BrdU 18h before analysis. Thymocytes were then obtained and 

stained for BrdU for Annexin V. A Representative FACS plots for Annexin V stainning analysis for  T cell susbets 

(V1
+
, V1

-
V4

-
 and V4

+
). B Percentage of Annexin V positive  T cell subsets. C Representative FACS plots for BrdU 

analysis for  T cell susbets (V1
+
, V1

-
V4 and V4

+
). D Percentage of BrdU positive  T cell subsets. 
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Sup Fig 7 – Expression profile of T cells subsets V1
-
V4

-
, V1

+
 and V4

+
. 

 T cells were FACS sorted from the spleen and LN of 2 to 3weeks old Ror
+/+

. RT-PCR data for Rorc, Rora and Il17 

expression (relative to b2m or Actb) on  T cell subsets V1
-
V4

-
, V1

+
 and V4

+
. 

 
 
 

  
Sup Fig 8 - CD24

+
 and CD24

-
  thymocytes cell number is not affected by the absence of ROR

 T cells were obtained from thymus of 2 to 3 weeks old Ror
+/+

, Ror
+/sg

 and Ror
sg/sg 

mice. Total cell number of 

V1
+
,
 
V1

--
V4

-
 and V4

+
 within the Ror

+/+
, Ror

+/sg
 and Ror

sg/sg 
mice out of totalCD24

+
 (left panel) and CD24

- 

right panelsthymocytes.

 

 

 

 



ANNEX 2(A) – USED SOLUTIONS 

 

Complete Medium: RPMI medium with 10% of Fetal Bovine Serum (FBS), 1% of HEPES Buffer, 

1% Non-Essential Amino Acids, 1% Peni -strep, 1% Sodium Pyruvate, 500uL of  β-

mercaptoethanol and 500uL of Gentamycin all from GIBCO 

Cell Culture Medium: DMEM medium with 10% of FBS and 1% of Peni-strep. 

Activation medium: complete medium with PMA (SIGMA, P-8138), Ionomycin (SIGMA, I-0634) 

and Brefeldin A (SIGMA, B-7651) 

Digestion medium: complete medium with DNAse I(Roche) and Collagenase IV(Worthington) 

PBS 1X: 10% phosphate buffer saline (PBS) 10X (GIBCO) in MilliQ water. 

FACS Buffer: PBS 1X with 2% FBS. 

RBC Lysis Buffer: 10% Red blood cells Lysis Buffer in MilliQ water 

Fix solution: Fixation buffer (eBioscience) from Kit 

1X Perm Buffer: 10% Permeabilization Buffer 10X (eBioscience) from Kit in MilliQ water 

Counting Beads: Nominal 10m Latex Beads, Coulter CC size Standard L10 ( Beckman Coulter, 

6602796) 

Genotyping Buffer: 2x My Taq Red Mix with 



Role of transcription factors in the functional development of gamma-delta T lymphocytes 

 

63 
 

ANNEX 2(B) – USED CYTOKINES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reagent Used Concentration Brand 

mIL-12* 5ng/mL eBioscience 

Anti-IL-4 5ug/mL eBioscience 

hTGF-** 2ng/mL PeproTech 

mIL-1 50ng/mL PeproTech 

mIL-6** 50ng/mL PeproTech 

IL-21 100ng/mL PeproTech 

rmIL-23*** 50ng/mL R&D systems 

Anti-IFN- 10ug/mL eBioscience 

IL-15 50ng/mL PeproTech 

mIL-2** 50ng/mL PeproTech 

Anti-CD3 2ug/mL Biolegend 

Anti-CD28 2ug/mL eBioscience 



ANNEX 3 – USED PRIMERs SEQUENCES 

 

Genotyping primers: 

- ROR-a  

oIMR1233-WT-F: 5’-TCT CCC TTC TCA GTC CTG ACA-3’ 

oIMR1234-WT-R: 5’-TAT ATT CCA CCA CAC GGC AA -3’ 

oIMR1235-mutant-F: 5’-GAT TGA AAG CTG ACT CGT TCC -3’ 

oIMR1236-mutant-R: 5’-CGT TTG GCA AAC TCC ACC -3’ 

 

- ROR-c 

oIMR7213-common-F: 5’- CCC CCT GCC CAG AAA CAC T -3’ 

oIMR7214-WT-R: 5’- GGA TGC CCC CAT TCA CTT ACT TCT -3’ 

oIMR7215-mutant-R: 5’-CGG ACA CGC TGA ACT TGT GG -3’ 

 

qPCR primers: 

 

- IL-17A: Reverse – TCCCTCCGCATTGACACA 
  Forward – CCAGAAGGCCCTCAGACTACCT 
 
- IL-22: Reverse – CAGACGCAAGCATTTCTCAG 
  Forward – TGACGACCAGAACATCCAGA 
 
- IL-17F: Reverse – ACTGGGCCTCAGCGATCTCT 
  Forward – CAACCAAAACCAGGGCATTT 
 
- Irf4: Reverse – TCTGGCTTGTCGATCCCTTCT 
           Forward – GGAGGACGCTGCCCTCTT 
 
- Csf2 (GM-CSF): Reverse – CCGTAGACCCTGCTCGAATATC 
          Forward – TGAAGAGGTAGAAGTCGTCTCTAACG 
 
- Erg3: Reverse – TGTCCTGGCACCAGTTGGA 
            Forward – GACTCGGTAGCCCATTACAATCA 

(probe: CGAGCTCTTTCCAGCCAGCCCC) 
 
- Ifng: Reverse – GAGATAATCTGGCTCTGCAGGATT 
  Forward – TCTTCTTGGATATCTGGAGGAACTG 
 
- Tcf-1: Reverse – ACTGGCTTCTTAGCCTCCTTCTCT 
  Forward – CTTGATGCTGGGATCTGGTGTAC 
 
- Lef-1: Reverse – CGACATTCGCTCTCATTTCTTTC 

  Forward – CAGCTATTGTAACACCTCAGGTCAAA 

 
- Sox13: Reverse – TCCCAGAAACCTCTCCTTCCA 
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  Forward – GAGCAGTGGGTCCCCAGAA 
 
- Sox4: Reverse – TGCCAATGCTCCCCTAAGC 

  Forward – TCCAGCGTGCCCCATCT 
 
- Rorc: Reverse – TGCGCTGCCGTAGAAGGT 
  Forward – GTCCAGACAGCCACTGCATTC 
 
- Rora: Reverse – GGAAGGTCTGCCACGTTATCTG 
  Forward – TCCCCTACTGTTCCTTCACCAA 
 
-Hlx: Reverse – GCTTGTATGTCTGTGGCATGGT 
         Forward – AGCTCCAACCCAAGAAATTCTGT 

             (probe: ACACATTTCCAGGTCCCTATGCTGTGCTC) 
 
- Tbx21: Reverse – AACTTCCTGGCGCATCCA 
  Forward – ATGCCAGGGAACCGCTTATA 
 
- Eomes: Reverse – TCAGGGTTTTTCCTTAAGTGTG 
   Forward – TGGAGATATTCTGTCCACTTCG 
 
- Batf: Reverse – GCGGAGAGCTGCGTTCTG 
 Forward – CTGGCAAACAGGACTCATCTGAT 
 
- Actin: Reverse – TGGTACGACCAGAGGCATACAG 

 Forward – CGTGAAAAGATGACCCAGATCA 
 
- beta2-microglobulin: Reverse – ATCACATGTCTCGATCCCAGTAGA 
              Forward – CATACGCCTGCAGAGTTAAGCA 
 

 



ANNEX 4 – SCORE RATE OF DISEASE SEVERTY IN EAE 

 

5 point scale: 

1- Tail atony; Loose end of tail tonus, but when hold by the tail the mouse legs are open in a V 

shape and mobile 

2- Hind limb weakness; Loose end of tail tonus, and when hold by the tail one of the mouse 

legs is parallel to the body and mostly immobile (l\). 

3- Hind limb paralysis; Loose end of tail tonus, and when hold by the tail the mouse legs are 

parallel (ll) and mostly immobile, the when in the cage although the mouse keeps one (or two) 

of the paralyzed leg behind. The mouse scrawls by pulling its body with front mobility. 

4-Quadrapligea; Loose end of the tonus, and when hold by the tail the mouse legs are parallel 

(ll) and mostly immobile, then when in the cage although keep 2 paralyzed leg behind. Loose 

the ability to pull its body forward with paralysis coming up to the front and creating 

weakness. 

5- The mice is moribund 
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