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Abstract 

One of the challenges of working with polymer microfluidics is the lack of an established 

prototyping method which allows for easy translation to industrial production. By combining Hot 

Embossing and Computer Numerically Controlled Milling a microfluidic rapid prototyping method 

was established for Polycarbonate and Cyclic Olefin Polymer. This method was then tested and 

optimized through an iterative design process of a microfluidic Polymerase-Chain Reaction 

chamber. The fabrication method proved to be suitable for microfluidic prototyping, allowing for 

rapid design changes and fabrication of good quality copies in a simple and straightforward fashion. 

 

Keywords: Microfluidics, Hot Embossing, Rapid Prototyping, Hard Polymers, Fabrication, PCR 

 

  



4 
 

Resumo 

Uma das dificuldades em trabalhar com microfluídica em polímeros é a falta da existência 

de um método de prototipagem que permita uma passagem simples para um ambiente de produção 

industrial. Neste trabalho foi desenvolvido um método de prototipagem rápida para microfluídica 

em Policarbonato e Cyclic Olefin Polymer utilizando uma Fresadora de Controlo Numérico 

Computorizado e Hot Embossing. Este método foi testado e optimizado através de um processo de 

design iterativo de uma câmara microfluídica de Reacção em Cadeia da Polimerase em 

Policarbonato. O método desenvolvido provou ser adequado para prototipagem microfluídica, 

permitindo alterações rápidas ao desenho e fabricação de várias cópias com boa qualidade de cada 

desenho. 

 

Palavras-chave: Microfluídica, Hot Embossing, Estampagem a Quente, Prototipagem Rápida, 

Polímeros Duros, Fabricação, PCR 
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1. Motivation 

Microfluidics as a research field has seen exponential growth in the last decades. 

Unfortunately, there have been few truly successful products reaching the market. This gap is mostly 

due to the difference in fabrication methods between research and production settings. There is a 

need for a rapid prototyping method that allows for simple translation from a prototyping 

environment to a cost-efficient industrial fabrication one. For many microfluidic applications the 

chips need to be durable, disposable and inexpensive. This has been accomplished by fabricating 

the chips in hard plastic through Injection Molding (IM) as this method is very cost-efficient for large-

scale fabrication. IM however does not allow for rapid prototyping as each design change requires 

extensive optimization. 

With that in mind, a rapid prototyping method for hard plastic microfluidics was developed 

using Hot Embossing (HE). HE allows the fabrication of hard plastic microfluidic structures without 

extensive optimization and is a good candidate for rapid prototyping when combined with a fast 

mold fabrication method. Most of the previous work on HE has been done using labor-intensive 

molds and is not applicable to a rapid prototyping scenario. The choice of mold fabrication method 

will determine the cost and time necessary to fabricate a chip with a new design. In this work 

Computer Numerical Controlled (CNC) milling was chosen because it is an extremely versatile 

technology which has previously been used to mill micro structures in metal substrates.  

This method was tested and optimized in the development of a microfluidic Polymerase-

Chain Reaction (PCR) chip through iterative design. The development of a PCR chip is a non-trivial 

challenge and it was necessary that the fabrication method could produce different designs fast and 

cheaply so as to quickly identify and correct problems along the design process. This allowed testing 

the suitability of the fabrication method in a research setting. 

In the first part of this work a small introduction to microfluidics and microfluidic fabrication 

is presented, with added emphasis on HE and Mold Fabrication. A brief introduction to PCR 

miniaturization is presented to better understand the potential of a microfluidic PCR chip and the 

challenges associated with its development. 
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In the next section a description of the experimental methods is presented followed by the 

results obtained using the fabrication method developed to iterate on a PCR chip design. The 

experimental work began with testing different hot embossing protocols and mold fabrication 

methods. For the following work, CNC milling was chosen as the mold fabrication method due to 

the durability of the molds and the versatility of the technique. The PCR chip development began 

with the adaption of an existing design which was iterated as needed. During the iterative design 

process the fabrication method was continually optimized to obtain a more robust protocol. 
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2. Microfluidic Fabrication 

This section begins with a small introduction to microfluidics and the history of the field to 

help understand the state-of-the-art and the influence of the different fabrication methods in the 

systems developed. The physical characteristics of micro-scale systems are then briefly analyzed to 

better understand the possibilities and limitations of a microfluidic device. 

The most relevant microfluidic fabrication methods are then described in detail and 

compared in terms of their limitations and applicability to rapid prototyping. Mold fabrication 

methods are also highlighted as they are critical in a rapid prototyping scenario. 

Afterwards, a brief introduction to PCR amplification and the miniaturization of the process 

are given so that the design goals are well understood. 

2.1. Brief History of Microfluidics   

Microfluidics as a field began in the 1990’s, based on the knowledge acquired developing 

microelectromechanical systems (MEMS) which themselves were based on knowledge developed 

on the miniaturization of electronic devices. During the 1970’s the miniaturization of electronics 

produced different silicon technologies such as dry and wet etching or photolithography, which also 

allowed the machining of miniaturized mechanical devices. These consisted mostly of physical 

sensors (pressure, acceleration, etc) combined with integrated electronic circuits [1].  

MEMS continued to be developed, with several commercial applications reaching the 

market - inkjet printer cartridges and digital micromirror devices (DMD) for DLP projectors, for 

example. In the late 1980’s several MEMS capable of fluid control were developed – microflow 

sensors, micropumps, microvalves – and this marked the start of the microfluidics field. After the 

reviews by Manz et al, in 1990 [2], presenting the biomedical applications of microfluidic systems, 

the field grew rapidly with intensive research focused in miniaturizing chemical processes. The main 

goal was to take advantage of the effects of the small-scale in fluid behavior.  

With this in mind, through the 1990’s many fabrication technologies were developed which 

eschewed silicon as the substrate for other materials more suitable for prototyping or with other 

more desirable characteristics such as glass, for bio-applications. The development of Soft 

Lithography (SL) by the Whitesides group [3], [4] lowered the barrier of entry into the microfluidics 

world, removing the need for a clean room or wet chemistry and allowing several research groups 

to experiment with microfluidic processes.  
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Among the many developments the most promising continued to be biomedical 

applications, more specifically the lab-on-a-chip or micro total analysis systems (μTAS) devices, 

which promised the capability of producing a diagnosis from a sample without any human input, 

much like a computer produces a numerical answer to a calculation. Although impressive proofs-of-

concept were created, and despite some notable exceptions [5], there was a general lack of 

microfluidic systems reaching the market. This happened mostly due to the high cost of converting 

a proof-of-concept developed in Polydimethylsiloxane (PDMS) using SL to a commercially viable 

product, something which many companies failed to do. In the 2000’s a few successful microfluidic 

products were produced using injection-molded thermoplastics due to its low cost of production 

but the conversion of a design developed in PDMS to one in a thermoplastic is non-trivial [6].  

Lately there has been an effort to create highly integrated Point-of-Care devices (POC) 

capable of rapid diagnosis with minimal effort from the user. Since by definition these devices 

should be disposable, cheap and resistant, thermoplastics are being seen as the ideal substrate for 

these devices. There is a push for better prototyping techniques which are relevant to IM production 

as well as continuing active search for other microfluidic platforms capable of reaching the 

consumer market.  
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2.2. Micro vs Macro 

Although a description of the size and some capabilities of microfluidic systems has been 

given, it is necessary to note that microfluidic systems are not usually identical smaller scale copies 

of macro-scale systems. Some of these differences arise from the differences in fabrication methods 

and materials but most are due to the different effects of physical forces at different scales. These 

allow for some of the unique capabilities of microfluidic systems and have a major influence in 

designing new systems.  

One of the most critical points in microfluidic systems is the increase in surface area to 

volume ratio (S/V). As volume (V) scales with L3 and surface area (S) with L2, S/V scales with L-1. This 

means that for micro-scale systems surface effects are of greater importance than volume effects – 

gravity and inertial momentum become negligible whereas surface tension becomes of utmost 

importance for fluid flow, for example. The magnitude of these effects will change depending on 

exact feature size and design of the system but they are present in most microfluidic systems. 

One example of this is that due to the high surface to volume ratio heat transfer is highly 

efficient at a micro-scale. This allows for rapid heating and cooling of fluids in microfluidic systems, 

something which has been used extensively in PCR miniaturization, for example.  

In order to better understand the characteristics of microfluidic systems, it is useful to go 

into some detail about the most common practical differences between a macro and micro-scale 

systems: 
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Laminar Flow 

Fluids are subject to inertial and viscous forces. Inertial forces are related to changes in the 

fluid momentum whereas viscous forces are related to the shear stress within the fluid, which can 

dampen the effects of inertial forces. A measure of the different contribution of inertial and viscous 

forces to the overall fluid movement is the Reynolds number (eq. 1):  

(1)         𝑅𝑒 = 𝜌𝑉𝐷

𝐿

𝜂
 

Where η is fluid viscosity, ρ is fluid density, VD is drag velocity and L is the characteristic 

length. It is observable that Re scales with the characteristic length (L) of the system. 

 The Reynolds number (Re) acts as a good predictor of the type of flow present – a lower 

number (<1200) indicates a laminar flow, whereas a higher number (>2000) indicates a turbulent 

flow. A laminar flow is characterized by its homogeneous velocity profile with strong interaction 

between the fluid and the container walls. Mixing of different fluids in a laminar flow happens only 

due to diffusion (Figure 1: Example of Laminar Flow in a Microfluidic System. Notice the lack of 

mixing between fluids. Taken from [66].. In a turbulent flow there is little interaction between the 

walls and the fluid and vortices, eddies and other turbulences easily appear on the fluid flow. 

  

Figure 1: Example of Laminar Flow in a Microfluidic System. Notice the lack of mixing between fluids. 
Taken from [66]. 
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For flow characterization purposes, microfluidic systems can usually be approximated to a 

series of continuous channels with different cross-sections. As the distance between channel walls 

is on the micro-scale, it is possible to obtain laminar flow in conditions (low fluid viscosity, high flow 

speed) not possible at a macro scale, allowing for precise control of mixing between fluids and 

overall repeatability of flow patterns. In these conditions when two fluids are present mixing occurs 

only through diffusion. This has the benefit of allowing for much greater control over fluid mixing 

but mixing time is usually much longer than at a conventional macro scale, requiring dedicated 

structures to improve mixing speed. For small sized features (<20 μm) it is also necessary to take 

into account diffusion transport as at this scale diffusion transport will happen in a short time scale.  

Capillary Force 

Another consequence of the importance of surface effects at smaller scales is the 

importance of capillary forces in microfluidic systems. Capillary forces arise from the interaction 

between a liquid superficial layer and a solid surface and can interfere with the motion of the liquid 

– depending on the surface properties of the liquid and the solid it might prevent or ease fluid 

motion. At a micro-scale capillarity is a critical effect that usually has to be explicitly taken into 

account in the design of microfluidic systems. It can be used as the main mechanism of generating 

fluid flow or of creating hydrophobic “valves” in the design, for example.  
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2.3. Fabrication methods 

The most relevant polymeric microfluidic fabrications methods will be reviewed to give 

some context on the characteristics of HE compared to other methods.  The fabrication methods 

reviewed will be Soft Lithography, the de facto standard for microfluidic prototyping in the last 

decade; IM, the method most suited for production-scale fabrication; and HE itself as it is an integral 

part of the work presented here. 

2.3.1. Soft Lithography 

The most commonly used method to fabricate microfluidic systems in a research setting is 

Soft Lithography. Developed and popularized by the Whitesides group [7] it is a polymer-based 

method which relies on using PDMS casting over a lithography-created mold. A standard protocol 

usually begins with designing and printing a UV-Mask. A photoresist, usually SU-8, is spin-coated on 

a silicon wafer to the desired thickness, exposed to the UV light through the mask and developed, 

forming a hard mold. After cleaning the mold, the prepared PDMS is cast onto it and cured for a few 

hours. After the curing step, the PDMS is peeled off from the mold and sealed. The sealing step is 

usually performed by exposing the PDMS chip to oxygen plasma and attaching to a glass slide. This 

forms a tight seal between the glass and the PDMS walls. 

Before moving on to discussing other microfabrication methods it is important to give a 

detailed explanation of the major components in SL - the photoresist, namely SU-8; and the 

substrate, PDMS and comment on the major characteristics of SL.  

Photoresists are materials, usually polymers, which are sensitive to light and solidify 

(negative photoresist) or dissolve (positive photoresist) when exposed to specific light wavelengths. 

SU-8 is a negative photoresist based on EPON SU-8 epoxy resin for the near-UV wavelengths from 

365 nm to 436 nm. At these wavelengths SU-8 has very low optical absorption, which makes 

photolithography of thick films with high aspect ratios possible. This resist was developed by IBM  

and was later adapted for MEMS applications during the 1990’s [8], [9]. Structure height is usually 

up to 100 μm per layer with an aspect ratio up to 10. Creating an SU-8 mold is considered to be 

relatively simple but it does involve some steps (see Figure 2): 

  



17 
 

Spin Coating – The photoresist is spin-coated on a silicon wafer at a specific speed in order 

to create a smooth, even layer. Silicon is used due to the strong SU-8 adhesion. The film thickness 

defines the feature height and is defined by the photoresist viscosity.  

Soft Bake – The solvent is evaporated by heating up to 95ºC for 10-45 minutes. 

Exposure – The photoresist is exposed to near-UV wavelength light through a mask. This is 

usually done with a mercury lamp and the mask should be as close as possible to the SU-8 without 

touching. In order to obtain the best resolution possible it is necessary to use specialized alignment 

equipment. 

Post-Exposure Bake – The exposed sections of the photoresist are cross-linked by heating it 

up to around 95ºC for 5-10mins.  

Developing – A developer is used to remove the non-exposed photoresist. This step usually 

takes 15-20mins.  

ADAPTED FROM [1], [7] 

Although many elastomeric materials can be used for Soft Photolithography, PDMS is by far 

the most common, mostly due to it being affordable, very simple to use and having some desirable 

physical properties. Due to its viscoelastic properties it is also present in different commercial 

products such as shampoos and Silly Putty. Both the prepolymers and the curing agent are easily 

available and the curing process is robust; it has low toxicity; it is optically transparent and 

mechanically durable; and its surface energy can be temporarily modified with a plasma treatment. 

Its main disadvantage in SL is related to its elastic nature, which allows for structure 

deformation and limits the designs possible (aspect ratios between 0.2 and 2). PDMS can also swell 

in the presence of some organic solvents and is relatively permeable to gases although this might 

be useful in some scenarios (e.g. cell culture)[10] . 

Figure 2: Diagram of the SL master fabrication steps. Adapted from [61] 
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 In SL, obtaining a PDMS chip from a mold usually involves a few simple steps: 

 Mixing – the base and the curing agent are mixed with a 10:1 ratio. This ratio can be changed 

depending on the desired properties (higher ratio produces a harder cured polymer). 

 Casting – The mixture is poured onto the mold and desiccated in a vacuum chamber for 30-

45min. 

 Curing – The polymer is cured on the mold at 60ºC to 80ºC for 1-4 hours. 

 Sealing – The PDMS is peeled off and exposed to oxygen plasma. The featured side is 

brought into contact with the sealing material (glass, silica, or oxygen-activated PDMS) and forms a 

watertight seal. 

ADAPTED FROM [1], [7] 

SL was adopted as the microfluidic fabrication technique of choice in many research 

laboratories during the 2000’s because it allows the fabrication of complex microfluidic structures 

and devices in a relatively simple way with a robust method, which make it practical for prototyping 

different microfluidic designs, especially when coupled with the in-house printing of masks. It is also 

possible to exploit some of the elastic properties of PDMS to build complex structures such as valves 

[7] and 3D channels [11]. 

Soft Lithography’s main drawback is the difficulty in adapting both the fabrication process 

and the designs to a mass-fabrication situation in a cost-efficient way. As has been reviewed above, 

fabricating a PDMS chip through SL is a multi-step process and the final chips do not achieve the 

physical stability required for long-term use.  It also quite challenging to adapt a chip prototyped in 

PDMS to other substrates for which industrial production has been developed - mainly injection-

molded thermoplastics. These drawbacks have held back the transition of many microfluidic 

systems from a research setting to real-world applications. 

Figure 3: Diagram of the SL PDMS casting steps. Adapted from [61] 
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2.3.2. Micro Injection molding 

Micro IM is a polymer fabrication process which involves melting a thermoplastic in granule 

form into a plasticization unit, and injecting it into a microstructured mold (Figure 4). The material 

is subjected to a holding pressure and after some time it is cooled below the polymer’s glass 

transition temperature and the part is demolded. A typical cycle lasts between few seconds to few 

minutes [12]–[14]. 

 

Micro IM is well suited for the mass production of polymer microfluidic chips due to its short 

production cycle and associated low production cost per piece. It also allows for the production of 

relatively complex designs without added fabrication costs. Additionally, conventional IM has been 

used for the production of many different plastic parts, with different compositions and quality 

requirements and the knowledge acquired can be used when using Micro IM, automating the 

production process or using different polymers, for example. 

Conventional IM was first developed at the end of the 19th century with major 

developments during the 20th century allowing for the production of progressively higher quality 

pieces. Micro IM was first developed in the 1980’s using adapted conventional IM machines [12].  

The main problems with this approach were the inaccuracy of the hydraulic controls, the waste of 

material, and the degradation of the material during plasticization which limited the quality of the 

Figure 4: Diagram of an Injection Molding cycle [13]. 
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final pieces. These were partially solved by using electrical controls, smaller injection screw and 

barrel and separating the plasticization and the injection (using a hot cylinder and a plunger instead 

of a screw and a barrel). 

Micro IM continued to be developed, with some commercial machines appearing in the last 

decades [13]. These are capable of fabricating pieces from 0.08 to 8 cm3 with feature size ranging 

from sub-micron to tens of microns, depending on the machine. This was achieved through many 

distinct developments, namely the higher control of different process parameters (volume, 

pressures, etc), the improvement in the transition from injection pressure to holding pressure, but 

also through protocol optimization.  

It was discovered that a critical parameter in the Micro IM process is the mold temperature 

during injection. By raising the mold temperature near the Tg of the substrate and cooling it 

afterwards (before ejection) it is possible to obtain micro-features with higher aspect ratio. This 

process is called Variotherm in opposition to conventional IM where mold temperature is kept 

roughly constant. Although necessary for the successful fabrication of small, higher aspect ratio 

features, it does have some drawbacks. The heating and cooling steps greatly extend the cycle time; 

and if the cooling is too fast it will introduce stress onto the piece, creating imperfections. 

Due to the large number of parameters in a Micro IM process, the dependency of these on 

different factors (mold material, feature size, total volume, etc), and their major influence in the 

quality of the fabricated pieces, it is usually necessary and recommended [12], [15] to design and 

run an optimization experiment whenever an element is changed, such as the substrate material or 

the mold design. This is the main reason why prototyping a microfluidic design using IM is not an 

efficient process, as each design change might take one to two weeks of optimization to translate 

into a quality chip. This problem is compounded by the fact that a lot of the research in Micro IM 

was developed for commercial reasons and is proprietary knowledge, making it harder for research 

laboratories acquire the knowledge necessary to efficiently use Micro IM. 

It is interesting to note that after parameter optimization feature quality will depend on the 

mold fabrication method and quality, as in a HE process. As a general rule, mold designs should also 

be limited to 2.5D features with no undercuts, again similarly to HE. 
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2.3.3. Hot embossing 

Micro HE is a cost-effective replication technology, capable of transferring microstructured 

patterns from a master mold onto a polymeric substrate. Although some work was done in micro-

patterning using hot-embossing before (vinyl LP fabrication), it was during the 1990’s that most of 

micro hot embossing technology development was focused on MEMS production. The technique 

used was LIGA (Lithographie, Galvanoformung, Abformung) which was capable of producing 

complex polymeric micro structures with high aspect ratios, something not possible with other 

fabrication processes at the time.  

Thermoplastics consist of unlinked or weakly linked chain-like molecules that at a 

temperature above the glass transition temperature (Tg) and below the melting temperature (Tm) 

become plastic and can be molded into specific shapes, which will cure after cooling to temperatures 

below Tg [16]. Micro HE is a method of exploiting this property to create micro-patterns from a pre-

built mold. As the polymer doesn’t undergo a phase change during hot embossing, the finished piece 

presents little residual stress. The reduced temperature variation (compared to IM) also reduces the 

piece shrinkage during cooling [17]. 

Developed in the 1990’s at Forschungszentrum in Karlsruhe, Germany, LIGA is a stepwise 

microstructuring process followed by a HE step originally developed using X-ray lithography [18] but 

which has since been adapted to use electron beam lithography, UV lithography and other similar 

technologies [1]. It consists of four basic steps: (1) a contact lithography step, traditionally x-ray 

lithography if high aspect ratio is necessary, (2) an electroplating step to create a metal layer (usually 

nickel) on top of the patterned substrate, (3) the subsequent stripping of the substrate, with the 

metal layer (or “shim”) acting as the mold, and (4) the hot embossing step. Nowadays UV-LIGA is 

more common than X-ray LIGA due to its lower cost as it does not require a synchrotron, even 

though it is not capable of producing features with such a high aspect ratio. The main drawback of 

using LIGA to fabricate hot embossed microfluidic chips is the lengthy and sensitive electroplating 

step, which can take up to 2 weeks for each mold, making truly rapid prototyping impractical. The 

embossing step is usually performed with the use of a highly specialized machine which creates 

vacuum conditions and is capable of precisely defining temperature and pressure. The demolding 

process used has the drawback of leaving embossed chips with a relatively rough surface on the 

unfeatured side. Due to its costly and lengthy process, LIGA is now only used in applications where 

high aspect ratio and small dimensional tolerances are necessary. 
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A typical hot embossing process is composed of four major steps (Figure 5 and Figure 6). 

The process starts with (1) heating of a thin polymer substrate and the mold to molding 

temperature, followed by (2) an isothermal molding by embossing (velocity- and force-controlled), 

(3) the cooling of the molded part to demolding temperature, maintaining constant pressure, and 

(4) demolding of the components (mold and substrate) [19], [20].  

 

On the heating step, temperature control is obviously extremely important and should be 

accurate within 1ºC of the target temperature. The exact embossing temperature (Te) will depend 

on the molded features (high aspect ratio-> higher temperature) and the material used but will 

usually be around 10-30ºC above the glass transition temperature (Tg). The mold and the substrate 

should be in contact during heating to make sure they are both at Te during embossing. 

On the embossing step, the pressure increases and the substrate flows radially and into the 

mold features [20]. The mechanisms for increasing the pressure can range from manually controlled 

parallel platens pushing the substrate [21] and the mold together to an automated gas-pressure-

assisted system to guarantee pressure homogeneity [22]. The pressure is increased slowly to 

prevent stress on the piece and maintained constant until demolding. By definition only the featured 

mold area is counted towards the pressure calculation. The residual layer will be thinner for longer 

Figure 5 Diagram of a Hot Embossing cycle. Adapted from Lai et al (2013). 
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embossing times (te) but it will always be present. This step usually takes 10-30mins depending on 

the complexity of the design and the desired residual layer thickness. 

The setup is then cooled actively or passively until the demolding temperature (Td). Td 

depends on the feature design and demolding method and is usually 10-20ºC below Tg. The 

demolding is the most critical step of the hot embossing process [20], [23] as small changes in Td can 

cause a large variation in the force required to demold the piece, influencing the feature quality. If 

Td is too high, there will be reflow of the plastic outside of the mold and the features less well 

defined. If it is too low there will be strong adhesion forces between the feature walls and the mold 

which will deform the piece upon demolding. 

It is now possible to understand that a HE protocol can be nearly completely defined with 

few simple process parameters: embossing temperature, embossing pressure, embossing velocity, 

embossing time and demolding temperature. This makes HE a robust process, capable of producing 

copies with little variability in feature quality [20], [24]. It also allows for easy description of 

protocols, requiring only the description of the setup and the parameters used (Figure 6). 

The main drawbacks of using HE for microfluidic fabrication are related to the difficulty of 

adapting the process to large-scale fabrication in a cost-efficient way without losing the rapid-

prototyping capability. Efficiently fabricating multiple-copies molds, demolding large-area pieces 

and long cycles are some of problems which have yet to be solved [23], [25].  

 

 

Figure 6: Pressure and Temperature diagram of a Hot Embossing cycle. Ideally a hot embossing protocol can be 
fully described by an identical diagram. The temperature is in red and the pressure in blue. 
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Having described the three major polymer microfluidic fabrication methods, it is useful to 

review their main capabilities and constraints (see Table 1).  

IM is a mature technology which has been adapted to successfully produce many different 

microfluidic designs. Its main advantage is the extremely low cost of making large number of copies 

of the same design. Each design requires extensive process parameter optimization, making it 

unsuitable for rapid prototyping. 

SL is an extensively used microfluidic fabrication technique which allows for the rapid 

fabrication of complex designs in elastomeric polymers. Its main disadvantage is the difficulty in 

transferring a design prototyped in PDMS to a mass-produced (Injection Molded) design in 

thermoplastic.  

HE is a simple, robust fabrication technology capable of producing high quality microfluidic 

polymer chips. Its main advantage is the capability of producing thermoplastic microfluidic chips 

with little optimization necessary provided there is a suitable mold. It is straightforward to mass-

produce designs prototyped with HE. Its main disadvantage is being unsuitable for large scale 

production, as it is non-trivial to emboss multiple copies of one design at once and each fabrication 

cycle takes several minutes, a long time when compared to seconds in IM. 

Fabrication Method Advantages Disadvantages 

Soft Lithography 
Cost-effective, able to fabricate 

3D geometries, high resolution 

Pattern deformation, vulnerable 

to defect 

Injection Molding 

Easy to fabricate complex 

geometry, fine features, and 3D 

geometries, low cycle time, mass 

production, highly automated 

Restricted to thermoplastics, high 

cost mold, difficult to form large 

undercut geometries 

Hot Embossing 

Cost-effective, precise, and rapid 

replication of microstructures 

with low structural stress 

Restricted to thermoplastics, 

difficult to fabricate complex 3D 

structures 

 

Table 1: Summary of the various fabrication methods. Adapted from [26]. 
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2.4. Mold Fabrication 

 Provided the HE setup and protocol are adequate, the quality of hot embossed features 

depends mostly on the quality of the mold [27]–[29]. It is then of upmost importance to carefully 

evaluate the mold fabrication process when considering HE for microfluidic fabrication. Different 

methods will produce molds with different materials and physical properties. HE molds should be 

thermally resistant up to the embossing temperatures, thermally conductive, rigid and structurally 

resistant to several embossing cycles. In a rapid-prototyping scenario molds should also be quick 

and simple to fabricate at a low cost, allowing for multiple design changes. 

The most common mold fabrication methods for microfluidic systems are 

photolithography-based methods (e.g.: SU-8 on silicon wafers, secondary polymeric molds and 

electroplated molds) and direct-structuring methods (e.g.: micro-milling, micro electric discharge 

machining, laser structuring). All of these are suitable for different applications outside mold 

fabrication as well, but are widely used to create HE molds because they are capable of creating 

permanent surface patterns on the nanometer and micron scale. It is interesting to note that 

although many microfluidic devices have sub-micron features, most Lab-on-a-chip systems smallest 

features are over 50 μm [4]. 

As was mentioned before, Electroplating has been used as a mold fabrication method for 

hot embossing, usually in a LIGA process [30]. Electroplating is a technique used to coat a metal 

piece with a thin film of other metal by applying a current between the piece and the source metal. 

The piece acts as the cathode and the source as the anode with both being immersed in a plating 

bath whose composition facilitates the electrodeposition reaction. Ideally, the metal coating 

adheres permanently to the piece.  

Although the distinction is sometimes not mentioned in literature, most “electroplated” 

molds are in fact fabricated through electroforming and not electroplating. Both techniques exploit 

the electrodeposition phenomenon but whereas electroplating is directed at creating a metal 

coating on a piece, electroforming is directed at creating a metal piece from a non-metallic master. 

In electroforming a master form is made conductive through the application of a thin coating and 

the electrodeposition process is performed identically to an electroplating protocol but it is ran for 

much longer periods of time so that it forms a thicker layer (up to 1 mm) [31]. The master is then 

removed and the created metal piece is used as the HE mold, for example. HE molds are usually 
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made from Nickel due to its rigidity, good thermal properties and ease of use in electrodeposition 

[32]. 

Both of this techniques are slow processes with electroforming protocols usually lasting for 

1-2 weeks to obtain HE molds with the thickness and quality required [33]. In addition to that, 

electrodeposition usually requires extensive knowledge and parameter optimization (current 

applied over time, bath composition) to obtain good results [34]. Its main advantage is the capability 

of creating metal molds with good surface quality and small feature size (< 1 μm). 

Depending on the goals of the design, using conventional SU-8 photoresist on silicon wafers 

might be possible [35]. These can allow the use of well-established, versatile lithography methods 

while being adequate for rapid-prototyping. These usually produce molds less durable than other 

methods [25]. Common problems with using SU-8 masters are mainly the difficulty in demolding 

combined with the brittleness of the silicon wafers which usually result in the breaking of the mold 

after some HE cycles (see Figure 7 ) [27], [29], [36]. An antistick thin layer might be deposited on the 

mold to prevent friction and ease demolding [37] but this introduces an extra step into the 

fabrication. There have also been reports of deformation due to the thermal stress on the SU-8 

features after several repetitions [29]. If the goal is to prototype a new chip design, then mold 

deformation might not be as important as the number of fabricated units with each design is low. 

Mold breakage might be a problem, depending on the demolding process and the number of copies 

Figure 7: Broken Si wafer with SU-8 features. This is a common occurrence when demolding 
photolithography molds. 
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required. Photoresist molds usually present very smooth walls and surface finish but are limited to 

around 100 μm thick features.  

 

Other fabrication methods used in the literature were the casting of secondary molds from 

SU-8 primary molds in order to overcome the structurally deficiencies of silicon wafers while 

retaining the advantages of photolithography. Epoxy resin, thermoplastics with high Tg  and PDMS 

[36], [38] have all been used. Overall there were improvements over using SU-8 molds but also some 

additional problems with this approach, mainly the poor dimensional stability of PDMS and the low 

embossing temperatures possible with epoxy or thermoplastics. Besides this, all the restrictions of 

using photolithography are still present with the added step of fabricating a secondary mold. 

 

Another interesting approach is performing SU-8 photolithography on a copper substrate 

instead of a silicon wafer [37]. This allows for a much stronger mold with better thermal properties 

while retaining the benefits of using photolithography. Besides the normal photolithography 

restrictions there is also the added issue of properly polishing and cleaning the copper substrate to 

obtain good adhesion between the photoresist and the copper wafer. 
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CNC Milling 

Of all the direct structuring methods Computer Numerical Controlled (CNC) milling one of 

the simplest ones. Milling is the removal of material from a stock piece using rotary cutters (see 

Figure 8) to form a finished piece. The stock piece can be made of any material able to withstand 

the milling process, such as wood, metals or polymers. In CNC Milling the tool is controlled by a 

computer, usually through previously written routines or programs using a numerical control 

language, G-code.  

 

In a normal milling process a rotating cutter moves into the stock piece (this can be achieved 

by moving the piece, the tool or both) removing small amounts of material with each rotation. The 

speed at which the tool moves into the piece is called Feedrate (in inches/min or mm/min) and the 

rotation speed is usually shorthanded to Speed (in RPM) [39]. The depth at which the tool cuts into 

the material is called depth of cut (DOC).These parameters can be changed and need to be 

optimized depending on the size of the mill, the material of the piece, the surface finish required 

and the desired material removal rate. After the definition of these parameters it is necessary to 

specify the toolpaths necessary to obtain the final piece shape. This can be done “manually” by 

programming G-code but it is usually done with the help of a Computer Assisted Machining (CAM) 

program.   

Figure 8: CNC Milling apparatus. a) Conventional Bridgeport CNC Mill; b)High Speed Spindle from NSK. Measures in mm; c) 
Miniature Endmill cutter. This tool has a 3.175mm shank with 1.5875mm cut diameter. Adapted from [62] 

b) 

a) c) 
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Figure 9: Different milling types. Climb milling is usually chosen for micro-milling but Conventional Milling is used 
for micro-milling as it minimizes mill deflections perpendicular to the direction of cut. 

Micro-milling is the application of CNC Milling to small-sized structures, although the 

distinction between macro and micro scale milling isn’t well defined. Micro-milling, also called 

micro-machining, has been used to fabricate microfluidic molds with features under 100 μm. The 

size limiting factors in micro-milling are the size of the tools and the relatively high roughness 

present in small features. It is extremely well suited for mold fabrication as it allows for arbitrary 

design changes (including thick features), has few process parameters, and is capable of quickly 

producing metal molds. 

Although the overall principle is identical, there are some differences between normal 

milling and micro milling. The critical part of milling is maintaining a high angular velocity, to allow 

the tool to cut into the piece. As the tools become smaller (see Figure 10) this requires having faster 

rotational speeds with high speed machining (HSM) starting at 10 000 RPM and ultra-high-speed 

machining (UHSM) at 100 000 RPM. This is a problem in reusing existing CNC mills meant for macro-

scale milling as they are usually only capable of speeds up to 10 000 RPM. There are HS and UHS 

spindles which allow adapting machines for higher speeds but it does represent an additional cost. 

Other common issue is that CNC mills built for macro-milling usually have a minimum step size (the 

minimum distance the tool can be moved in any direction) of 1-3 μm which prevents the definition 

of micron-sized toolpath features. Due to the small size of the tools extra care must be taken to 

account for the lower rigidity of the tools. As tool breakage is more common than in macro-milling 

and smaller tools cost more than larger ones, the running costs of micro-milling will also be higher. 
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Comparing to other mold fabrication techniques, its main disadvantages are the relatively 

high surface roughness and minimum milling size limitations. The surface roughness can be reduced 

by optimizing the process parameters or by polishing the mold [40] although it will always be 

present. Its main advantages are the fast fabrication time, being able to produce metal molds and 

the low cost per mold. 

 

  

Figure 10: Microphotograph of a micro end-mill with 200 μm diameter. Notice the large size ratio between the shank and 
the cutting edge diameters. Adapted from [63] 
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3. PCR 

Introduced into the scientific community during the 1980’s, PCR is a technique that allows 

for exponential amplification of DNA without the need to clone into vectors [41]. PCR has become 

an essential part of biological and biomedical research as well as medical diagnosis. It allows the 

detection and diagnosis of infectious diseases; genetic analysis of various kinds; forensic analysis, 

among other uses. PCR-based diagnosis methods allow the detection of pathogens with high 

sensitivity and sensibility [16], [42]. 

PCR relies on thermal cycling - heating and cooling the DNA sample to specific temperatures 

- in the presence of primers, DNA polymerase and Deoxynucleoside triphosphates (dNTPs). Primers 

are small strands of nucleic acids which are complementary to specific target regions of the DNA 

strands.  

 

The conventional PCR protocol consists of 20-35 thermal cycles with each cycle having 3 

target temperatures (see Figure 11). There is usually an initialization step at 94-96 ºC before the 

thermocycling. During the heating (Denaturation) step (94-98 ºC), DNA melting occurs and DNA 

strands are separated, forming single-stranded DNA molecules. The temperature is then lowered 

(Annealing step) to 50-65 ºC depending on the primers used. During this step primers attach to 

single stranded DNA. Temperature is raised again for the elongation step, with the exact 

Figure 11: Diagram of a 3-step PCR thermocycling protocol. Adapted from [64] 
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temperature depending on the DNA polymerase used. The DNA polymerase (more commonly Taq 

polymerase) then synthesizes a complementary DNA strand, initiating the process on the attached 

primers and using the dNTPs present. This cycle is repeated multiple times, duplicating the target 

DNA sequence with each cycle and allowing for an exponential amplification.   

Over the years, many PCR protocol variants were developed, allowing for multiple primers, 

different polymerases and faster thermocycling protocols. 

 

3.1. Miniaturization of PCR  

“Miniaturization of PCR provides many advantages, such as decreased cost of fabrication 

and operation, decreased reaction time for DNA amplification, reduced cross talk of the PCR 

reaction, and ability to perform large numbers of parallel amplification analyses on a single PCR 

microfluidic chip.” [43] 

The first PCR microdevices developed were focused on improving the reaction/amplification 

speed and were fabricated in silicon. Silicon has a high thermal conductivity and allows for very fast 

temperature ramp times, resulting in very short on-chip protocols [44]. It is also possible to integrate 

heaters and sensors directly into the chip. Despite these advantages, silicon presents some critical 

flaws as a PCR-chamber substrate as bare silicon has an inhibitory effect on the PCR reaction and 

fabricating a functional device required a highly complex protocol and design, and there is a lack of 

available rapid prototyping techniques. As an alternative, glass was used as a substrate for PCR-

chambers in Lab-on-a-chip devices, as it presents well-defined surface chemistry and is optically 

transparent.  

Recently, various polymers have started to become the substrate of choice for PCR-based 

devices [45], as the focus shifted from reaction speed to integration in Point-of-Care devices. In this 

case the goal is not just to obtain a faster reaction time but also to obtain PCR amplification using 

small reagent volumes with little user input in a cheap and disposable chip.  

Point-of-care testing is defined as near-patient testing in a hospital, doctor’s office, clinic, 

or home [46] and can have an important impact in low-resource settings where there is a lack of 

centralized laboratories or when timing is critical, in emergency triage for example [43]. There is 

also an opportunity in providing rapid, low-cost tests for home or clinic use [47].  
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Due to the need for POC to be disposable and low-cost, thermoplastic polymers have 

emerged as the substrate of choice for these devices. As was mentioned above, IM allows for the 

mass-production of microfluidic chips at a low cost per device. 

 There have been some academic [48]–[51] and some commercial solutions [52] but there 

has yet to appear an example of a truly simple to use integrated platform. So far all FDA-cleared PCR 

test kits to-date are still categorized as high or moderate complexity [53], meaning they are still 

required to be used by a trained professional. This has happened due to the difficulty in integrating 

many different functions, namely sample preparation, amplification and detection, necessary for a 

PCR-based diagnostic device while retaining a simple, low-cost design. POC device development 

requires the focus on the final application to be present along the development process, so that 

end-use restrictions are accounted for at every step of the process. 

In terms of PCR miniaturization, it is useful to note that most of the approaches can be 

classified into either single-chamber PCR or Continuous Flow PCR (CF-PCR) (see Figure 12). Single-

chamber designs were the first ones to be developed and are characterized by their smaller 

minimum sample volume and simpler system configuration. A chamber is filled with PCR reagent 

mixture and some form of temperature control heats the contents, identical in function to a 

conventional thermocycler. 

In a CF-PCR design the PCR mixture is transported over different zones of the chip, with each 

zone at different pre-fixed temperatures in order to emulate thermocycling. CF-PCR designs are 

usually characterized by simpler thermal control mechanisms and the need to have precise flow 

control.  

Figure 12: Schematic illustrations of types of microfluidic PCR chip designs. a) stationary chamber system b) 
continuous flow system. Adapted from [65]. 
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4. Methodology 

As was previously mentioned, there is a current need for a viable rapid prototyping method 

for hard plastics microfluidics. Due to its simplicity, robustness and polymer molding capabilities Hot 

Embossing was chosen as the basic fabrication technique for a rapid prototyping method. Although 

much of the existing work in micro-scale Hot Embossing was performed using dedicated machines 

and labor-intensive molds, there are reports of microfluidic chips fabricated using only a minimal 

setup with temperature control provided by a hot plate and pressure control with a pre-defined 

weight [51], for example.  

The goal with this experimental work was to develop and test the capabilities of a 

prototyping system based on a HE minimal setup consisting only of a hot press and a mold. This 

setup should allow us to fabricate chips with good feature quality (dimensional stability, lack of 

imperfections, reasonable surface quality, etc); should be reliable and robust, requiring little 

optimization between different designs and producing identical copies with unchanged parameters; 

should allow the fabrication of different designs in a short amount of time, requiring both the 

embossing and the mold fabrication process to be relatively short.  

Some initial work was necessary to identify whether this minimal setup was capable of 

fabricating chips with the required quality or if additional equipment was necessary (dedicated HE 

machine, automated temperature or pressure control, etc); and to compare mold fabrication 

methods. After the definition of a working embossing protocol and mold fabrication method the 

suitability of this setup for rapid prototyping was tested in the development of a PCR chamber 

microfluidic chip. The goal was to test the developed fabrication setup by iterating on a previous 

chip design towards an integrated and disposable PCR chip. This example was chosen mainly 

because it is a non-trivial challenge, with functionality highly dependent on chip design (chamber 

size, geometry, etc). It was also integrated into other projects in the laboratory so it was possible to 

leverage the existing knowledge of the PCR process. 

The first experiments were focused on testing different hot embossing protocols [20], [23], 

[32], [37], [54], [55] using different mold materials and fabrication methods. After defining a 

protocol and CNC Milling as the standard mold fabrication method, PCR chips were designed and 

fabricated, iterating the design as necessary. CNC Milling was chosen due to its versatility, ease of 

use and the production of metal molds.  
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The main goals of the PCR chamber development were to evaluate how fast the fabrication 

setup could produce a chip with a new design in a reliable way and whether CNC Milling could 

produce molds with the desired features (minimum feature size, reasonable surface quality, etc). A 

secondary goal was obtaining in-chip DNA amplification with a simple microfluidic system. The 

embossing protocol and method continued to be optimized during this process to ease the filling 

and demolding of deep features. All the designs were embossed both in Polycarbonate (PC) and 

Cyclic Olefin Polymer (COP) substrates but due to the lack of a suitable sealing method, results were 

only obtained for PC chips.  

 The PCR experiments were based on the GeneAmp Fast PCR protocol and the amplification 

target was the IS6110 gene from M. tuberculosis genomic DNA. All the sample preparation steps 

were performed off-chip. 

Sample preparation protocol: 

a) The bench area and all the items needed were bleached beforehand 

b) All the reagents were kept on ice 

c) 10µL of  primer mastermix were made with 1µL forward primer, 1µL reverse 

primer and 8µL of Nuclease-Free water 

d) For each sample to be analyzed, 10 µL PCR mastermix 2x (GeneAmp), 1 µL of 

primer mastermix and 8.5 µL of Nuclease-Free water were mixed in a 1.5 mL 

Eppendorf tube to make the PCR mastermix. 

e) For each sample, 19.5 µL of PCR mastermix was mixed with either 0.5 µL of TB 

gDNA (10 µg/mL) or 0.5 µL of Nuclease-Free water, depending on whether it 

was a positive or negative control. 

Gel electrophoresis protocol: 

a) 600 mg of agarose was weighed and mixed with 30mL TAE buffer (1x) in an 

Erlenmeyer flask 

b) The flask was covered with Kimwipes and the mixture was repeatedly heated 

and mixed in a microwave for 30s at a time until the liquid was clear and streak 

free. 

c) The solution was allowed to cool until 60ºC, measured with a thermometer. 

d) 3 µL of SYBR Green were mixed with the solution and it was poured on the gel 

mold, swirling the mold. 
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e) The gel was covered with foil and left to set for 30 min.  

f) After thermocycling the PCR product tubes were put on ice and 10uL of each 

product was mixed with 2 µL Orange dye. 

g) The first well was loaded with 5 µL of DNA ladder and the others with 10 µL of 

dyed PCR product. 

h) The settings used for the electrophoresis were 100V and 50mA and it was ran 

for 45 min. 

i) The gel was placed in a petri dish and covered with foil. 

j) The gel was then analyzed using a UV-light imager. 

 

SU-8 mold fabrication Protocol: 

a) A Si wafer was placed on the spinner, centered on the spinner chuck, and the 

vacuum was activated. 

b) 2mL of SU-8 3050 photoresist were deposited on the Si wafer. 

c) The spinner was ran for 5s at 500 rpm and then for 30 s at 3000 rpm. 

d) After turning off the vacuum the coated Si wafer was baked for 15 minutes at 

95ºC and then left to cool to room temperature. 

e) The wafer was centered underneath a UV lamp and covered with a UV Mask. 

f) The setup was then exposed for 30s to UV light. 

g) The Si-wafer was then covered with foil and transferred onto a hot plate at 95ºC 

for 5 min. 

h) The wafer was transferred into a dish of SU-8 developer and was gently agitated 

for 5 minutes and afterwards was rinsed with IPA. This process was repeated 

until the wafer was cleaned of white residue. 

i) The wafer was finally let to dry in air. 
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PDMS casting protocol: 

a) PDMS curing agent and PDMs base were thoroughly mixed on a 1:10 ratio for a 

total weight of 35g. 

b) This mixture was then poured over mold on a Petri dish and placed in  a 

desiccator for 45min. 

c) The dish with PDMS was cured in an oven at 75ºC for 1 hour. 

d) The PDMS was then peeled off the mold 

e) For mold quality studies a ~1mm cross-section was then cut with a blade. 

4.1. Materials 

The substrate polymers used were PC from McMaster-Carr and COP (ZEONOR 1420R) from 

Zeon Chemicals, in sheets with different thicknesses from 1mm to 2.5mm. These substrate materials 

were chosen for their high glass transition temperature, optical clarity, biocompatibility, rigidity, 

and commercial availability [56], [57]. 

The designs and molds were drawn using the CAD program SolidWorks 2013 (Dassault 

Systèmes) and the milling toolpaths were created and exported through the Mastercam X6 for 

SolidWorks plugin (CNC Software, Inc.). 

The metal molds were fabricated using a 3-axis EZTRAK Bridgeport CNC vertical mill and 

various carbide end mills (Microcut and Harvey Tool) with diameters from 1/4in to 0.002in, 

depending on the desired features. For tools smaller than 1/8in an Ultra-High-Speed Spindle 

(Nakanishi HTS1501S-M2040) was used, with a fixed rotation speed of 150 000 rpm, so as to maintain 

a high cutting speed with a small cutting tool diameter. After milling and the removal of any burrs 

the molds were sonicated with DI water for 10 mins. 

The mold materials tested for CNC milling were MIC 6 Aluminum and C360 Brass (McMaster-

Carr). These were selected for their low-cost and availability, good machinability and good thermal 

properties. MIC 6 Aluminum is cast, presenting very low internal stress and good dimensional 

stability. It is available as extremely flat plates, preventing the need for extra milling and reducing 

the fabrication time. C360 Brass is also called free-cutting or free-machining brass due to its 

extremely good machinability. It has a small percentage of lead which acts as lubricant during 

milling, eschewing the need for lubricant while producing small chips. For other metal pieces 6061 

Aluminum (McMaster-Carr) was used due to its rigidity and low-cost. 
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In the photolithography-based mold fabrication, SU-8 3050 (Microchem) was spun on 

Silicon wafers and exposed to UV light through patterned masks. After development, the patterned 

silicon wafers were then used directly as the HE molds. 

The hot embossing itself was performed using a manual press (Model C 3851 Carver) with 

manually controlled aluminum heated platens (2101 Carver). The pressure and temperature was 

monitored by reading the force and temperature gauges. 

The embossed chips were cleaned with DI water, Isopropanol, DI water, and Ethanol 

(Thermo Fisher Scientific) and dried with compressed Nitrogen.   
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5. Results and Discussion 

5.1 Testing Hot Embossing protocols and mold fabrication methods 

The first Hot Embossing experiments were performed on a PC substrate using a previously 

machined aluminum mold (Figure 13). This was used to test different protocols, changing embossing 

temperature, embossing time, embossing pressure and demolding temperature. The temperature 

was controlled using a thermostat on each platen, the pressure was manually controlled, and 

demolding was performed by hand.  

After some testing it was possible to heat up to the embossing temperature on each platen 

without overshooting the target in under 10 minutes. By turning the heaters on/off as necessary is 

was possible to maintain a constant temperature (+/- 1.5 ºC). The cooling down was passive, with 

the heaters turned off. Depending on the embossing and demolding temperatures the cooling down 

usually took anywhere from 20 min to 30 min.  

 

Figure 13: Hot Embossing Equipment: a) Hot press with temperature (red) and pressure (cyan) controls; b) Aluminum 
mold on the PC substrate before embossing; c) Aluminum mold with embossed pieces. 

b) 

a) c) 
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As expected the minimum embossing temperatures were around 15 ºC above glass 

transition temperature of PC (146ºC). Chips embossed at lower temperatures presented low optical 

clarity and incomplete filling of some features. Embossing pressure used was around 22MPa as the 

minimum force possible was around 500 pounds-force and the mold had an area of 10mm x 10 mm. 

The exact pressure value was found to not be a critical parameter, as long as it remained constant.  

One interesting find was the importance of the rate of pressure increase, from contact 

pressure to embossing pressure, something rarely mentioned in the literature. A slow rate (0->Pe in 

60s) was found to produce substantially better feature filling. Another important fact was the 

difficulty in separating the mold from the piece after embossing (demolding), most likely due to the 

high vertical walls of the mold. Although mentioned in the literature, this problem is usually 

minimized as the features embossed are shallower, with smooth surfaces (LIGA, etc), and therefore 

present lower adhesion forces between the mold and the piece. One common solution to this 

problem is the use of a release agent between the mold and the substrate but this adds to the 

duration and complexity of the embossing process 

SU-8/Silicon molds were also tested using identical protocols but were found to be 

extremely fragile and would often break during embossing and demolding (Figure 14). The features 

(straight channels 100-500 µm wide, 100 µm deep) were embossed with good quality, presenting 

no defects. The good embossing quality makes SU-8/Silicon molds a feasible alternative to CNC 

Milled molds, as it allows for the use of designs, knowledge and equipment developed for SL. In a 

rapid prototyping scenario this setup presents some limitations as it will be hard to obtain a 

reasonable number of copies (>3) from the same mold and design changes become dependent on 

the time it takes to obtain a UV-mask with a new design (usually over 24h).  

Figure 14: Pieces of a broken SU-8/Silicon mold. 
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In order to test the minimum resolution possible with CNC Milling and minimal setup HE, a 

test mold with straight channels (50 µm channels 50 µm apart, 100 µm channels 100 µm apart and 

150 µm wide channels 150 µm apart) was designed and milled in aluminum. As this was the first 

contact with Micro Milling, there were some problems in the fabrication: the milled channels were 

narrower than desired, presented rough walls, the depth of the channels wasn’t consistent between 

thinner and wider channels and the milling tool used was damaged during fabrication. After 

troubleshooting, it was found that there were some errors in the toolpath definition, the DOC and 

feedrate hadn’t been properly adjusted to account for the high rotational speeds and small diameter 

and that precise calibration of the Z-axis between each tool change was critical. The milling quality 

was tested through visual inspection of the molds and of cross-sections obtained through PDMS 

casting (Figure).  

The embossing process was successful, reproducing the milled features as expected (Figure 

16). It was useful to notice that even thin and deep mold features were filled and successfully 

embossed. 

Figure 15: Cross-sections of the milled channels obtained through PDMS casting. Left- wider channels (150 µm 
design). Notice the smooth walls and shallow depth of cut. Right – Thinner channels (50 µm design). Notice the deep, 
milled features and the thin standing ones. 

Figure 16 : Embossed PC chip. Left- wider channels (150 µm design). Right – Thinner channels (50 µm design). Notice 
the accurate embossing of all the features, including the characteristic machining texture. 
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A second test mold was designed with meandering channels 120 μm wide. The goal was to 

test the embossing and fabrication of more complex features. The chip was designed so it would 

only be necessary to use a single milling tool (0.004’ diameter), to avoid having to re-calibrate the 

z-axis. Although the embossing was again largely successful there were some problems with milling 

(Figure 17). The mold channels presented some defects and were not identical in width. This was 

later found to be due to the small distance between toolpaths (<5 μm) which the CNC mill 

approximated to increments of around 3 μm, its minimum resolution. Another source of error was 

the slow feedrate which although usually recommended to obtain a better surface finish can cause 

irregular cuts and damage the cutting tool, as was the case. 

During this process it was also discovered that brass molds were unsuitable for embossing 

PC chips as the final chip had defects (bubbles and rough surfaces) not present when embossing 

with otherwise identical (same surface quality, same features) aluminum molds. It would be 

desirable to use free-cutting brass as a mold material due to its lack of need for lubricant during 

machining. Since this defects were not present when embossing COC chips with the brass molds and 

that a thin residual layer formed on the brass mold when embossing with PC, it was hypothesized 

that there was a reaction happening between the PC substrate and the brass. After careful 

examination it was found that one of the common components of PC, chlorobenzene, is corrosive 

to brass at embossing temperatures. With that in mind the material used for all the molds in this 

work was aluminum. 

  

Figure 17: Meandering channels 120 μm wide. Notice the different widths on the 
right and left channels and the uncut areas on some regions. 
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5.2 Development of a hard polymer PCR chip  

In order to test the practicality of using HE for microfluidic fabrication it was used in the 

development of a PCR microfluidic chip. The work began with using a previously tested design and 

adapting it to create a HE mold. The previous design had been fabricated by CNC milling directly on 

a PC substrate (Figure 18) and the SolidWorks (SW) drawings were adapted to build a HE mold. This 

design was tested, optimized and tested again. The design was changed multiple times using the 

developed prototyping workflow and it was possible to obtain PC chips of each design in under 6h. 

The initial setup consisted of a reaction chamber and a temperature sensing chamber in a 

PC square chip, with an external thermoelectric heater placed under the chip. The reactions 

chamber was filled with the PCR reagents and the sample, with the temperature sensing being 

performed by a thermistor (Custom Electric). The chambers were sealed using acetonitrile and 

120μm thick PC film and the inlets were sealed using adhesive tape. The heater was controlled with 

a simple ON/OFF feedback mechanism controlled by an Arduino UNO microcontroller with input 

from the thermistor. The temperature was monitored on a computer monitor connected to the 

microcontroller as well. The goal was to thermocycle the sample in order to obtain DNA 

amplification and to calibrate the system so that in the future only external sensing would be 

necessary.  

 
Figure 18: PCR chip with features directly milled on the PC substrate 
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It was hypothesized that the poor results (lack of amplification) obtained using the CNC 

milled chips were due to the rough surface finish on the PC chip (see Figure 18), which caused too 

much protein adsorption during the reaction. Milling a HE metal mold instead of milling the plastic 

directly would improve the surface quality of the chamber dramatically. The only change in the 

design was the increase in the distance between the reaction chamber and the temperature sensing 

chamber to accommodate for the size of the smallest endmill available (1/16'') (see Figure 19). Care 

was taken so that both chambers would still be on top of the heater, roughly a 6.3cm x 8.25cm 

rectangle. 

Based on the previously described work the first HE parameters used were an embossing 

temperature (Te) of 160ºC, an embossing pressure (P) of 22 MPa and an embossing time (te) of 10 

min. The demolding was performed at 115ºC (Td) using pliers and a screwdriver. To get a good 

feature filling the substrate piece was cut to size so that the pressure was applied mostly on the chip 

area.  

After several tries to optimize the embossing process the parameters used were Te=176ºC, 

P=11 Mpa, te=15mins and Td=140ºC. The higher embossing temperature and lower pressure were 

used to introduce less stress into the chip. The pressure increase – from 0 to 11 MPa – was not 

immediate and was instead performed over 60 seconds to allow for the plastic to fill the mold cavity. 

The longer embossing time was used to allow for a complete filling of all features and also to reduce 

the thickness of the residual layer. The higher demolding temperature was used to diminish the 

adhesion force during demolding and ease the demolding process. Another change was the use of 

a glass slide between the substrate and the top platen so as to create a smooth surface on the 

unfeatured side of the chip (see Figure 20).  

Figure 19: First mold design with a temperature sensing chamber (A/purple) and a reaction chamber (B/cyan).  
The inlets were drilled after embossing on the sites marked (C). 
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Despite the higher Td, demolding was still a problem due to the long and deep vertical walls 

which created strong adhesion forces. In order to ease the demolding process a perforated metal 

shim (0.5mm thick) was placed between the substrate and the mold during embossing. The 

demolding was then performed by removing the metal shim which pulled the piece out of the mold. 

The inlets (C) were milled directly on the chip with a 1mm mill on a drill press. The chips were 

cleaned with DI water, IPA, ethanol and DI water again and dried with compressed Ni. 

  

Figure 20: Diagram of embossing setup. Both the top and bottom platens were heated and had integrated temperature 
sensors. Notice the glass slide between the substrate and the top platen. 
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5.2.3. PCR experiments 

 After optimizing the embossing parameters, 3 identical copies were embossed as described 

above. A PCR experiment was set up with a negative and a positive control off-chip – the 

thermocycling was conducted in a conventional thermocycler - and 3 different on-chip experiments. 

The sample used was M. tuberculosis genomic DNA and the amplification target was the IS6110 

gene. The on-chip experiments were designed to try to pinpoint possible failure points along the 

process. One sample was placed on-chip for 5 minutes with no thermocycling, a second was 

thermocycled for only 5 minutes, and a third went through the full thermocycling (35 cycles). The 

thermocycling was done according to a Fast PCR Protocol (GeneAmp Fast PCR) with only two 

temperature steps. 

For thermocycling the chips were filled with the PCR reagent mix using a micropipette and 

sealed with adhesive tape for the required duration. The sealed chip was placed on top of the heater 

and fixed in placed with the help of a milled PC piece and two binder clips. All the samples were 

tested at the same time using gel electrophoresis. 

As can be seen in Figure 21, no amplification was detected in any of the on-chip samples. It 

was hypothesized that this might have been due to the surface roughness of the inlets causing 

protein adsorption, as these were machined after embossing the chip  

 

Figure 21: PCR amplification results obtained through gel electrophoresis. A- DNA ladder; B-
Negative Control; C- Conventional thermocycling; D – Conventional thermocycling with 5 min 
incubation on-chip; E- 5 min on-chip thermocycling + conventional thermocycling; F – On-chip 
thermocycling only. Only the existence of amplification was being tested. 
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In order to eliminate any post-embossing machining, a new mold which incorporated the 

inlets was designed and milled. Another minor change was the increase in depth of the thermistor 

wires' cavity. Although the parameters used were the same as the previous mold, it was not possible 

to get a good filling and easy demolding at the same time. After experimenting with different 

parameters and still not obtaining satisfactory results the mold setup was changed. 

 A "two part" mold (Figure 22) was developed so that the strong adhesion forces around the 

chip would help the demolding process instead of hampering it. The top part of the mold was CNC 

milled on 2mm thick stock Aluminum sheet with room for the chip features (20mm x 20mm, in 

orange) and alignment features (green). The bottom part was CNC milled and included both the chip 

features (inlets - red, reaction chamber - cyan, thermal chamber - purple) and the alignment 

features (dark blue). This setup allowed for the use of different bottom chip designs while 

maintaining the same top part. The demolding was done by separating the top and the bottom parts 

by hand using sheepskin gloves and pliers. 

  

Figure 22: Two part mold. a) Top part with a 20 x 20mm square (orange) defining the chip size and alignment features (green). 
b) Bottom part with chambers, inlets and alignment features (dark blue). c) Assembled two part mold with color highlights  

a
) 

b
) 
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By using this setup it was possible to obtain good chips, with no problems in filling or 

demolding. It was also much easier and faster to demold after removing the piece from the hot 

press. This setup also allowed for different chip designs while maintaining the same chip dimensions. 

 Five more chips were produced and sealed and the experiment was ran with an identical 

protocol to the previous one. The results were the same as before with no DNA amplification 

detected in chips where heating occurred.  

Having ruled out surface roughness as the main problem and after reviewing the design, 

temperature control was pinpointed as the most likely point of failure - the thermistor was found 

to be far from an ideal temperature sensor, as it was not in contact with water or other similar liquid; 

it was relatively slow reacting; and it had a large mass which could complicate the calibration 

afterwards. 

 With that in mind a new design was proposed and tested (Figure 23). It consisted of two 

identical chambers side by side with one being the reaction chamber and the other the temperature 

sensing chamber. The temperature sensing would be performed by a small thermocouple (Custom 

Thermoelectric) instead of the thermistor due to its much smaller size and faster response. During 

preliminary testing this design presented some issues, mostly integrating the thermocouple into the 

chamber while maintaining good sealing between the chip and the film. It was also discovered that 

there were large temperature differences inside the chamber. During heating the temperature at 

the bottom of the chamber, in contact with the heater, was considerably hotter than at the top. This 

also produced the secondary effect of some regions of the chamber taking a long time to reach the 

target temperatures. 

Figure 23: Two chamber design. Inlets – red; reaction chamber – cyan; thermal chamber – purple. 
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 To avoid this phenomenon a new design was proposed (Figure 24). The main requirements 

were to maximize the contact area between the chamber and the heater and to minimize the height 

of the chamber, while maintaining a minimum volume (8-10μL). The positioning and shape of the 

inlets and corners was also taken into consideration to try to minimize bubble formation. The chip 

was also made thinner (1 mm vs 2 mm) to decrease the thermal mass of the chip. With the new 

design it became impossible to measure the temperature inside the chamber during the 

thermocycling as any thermal sensor might interfere with the PCR reaction. The solution to this was 

to calibrate the temperature on the outside of the chamber (on top of the heater) with the 

temperature inside and then use only the outside temperature.  

 

 

A thermocouple was integrated into the chip during embossing (see Figure 25). The 

thermocouple tip was placed on top of the reaction chamber mold during hot embossing and 

became embossed into the chip, under the reaction chamber. The material between the 

thermocouple tip and the bottom of the chamber was removed and the tip raised to allow for it to 

come in contact with the chamber contents. Care was taken not to remove too much material and 

to leave the surface as undamaged as possible.  

 

 

Figure 24: Single Chamber Design. Single reaction chamber (cyan) with inlets (red). The chamber dimensions are 4.5 x 4.5 x 0.4 mm. 
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During temperature measurement it was found that the relationship between the 

temperatures measured inside and outside was highly dependent on the relative positions of the 

heater, reaction chamber and outside thermocouple. To solve this problem a piece was designed to 

hold all the elements in a well-defined, fixed position. The first step was defining the position of the 

external thermocouple on the heater surface. It was defined as close as possible to the heater 

border to leave room for the reaction chamber while avoiding the border itself, where the surface 

temperature is more inhomogeneous. The thermocouple was fixated on the heater border with a 

thermally conductive tape. The second step was to fixate the chip position relative to the heater. 

This was done by designing and 3D printing a holder with alignment features and room for the 

thermocouple's and the heater's wires. This allowed for a good contact between the chip and the 

heater and for different chips to be used, always in the same position relative to the heater and 

thermocouple (see Figure 27). 

c
) 

a
) 

b
) 

Figure 25: Integration of a thermocouple in the reaction chamber. a) Diagram of the thermocouple on top of the 
chamber mold before embossing. b) Diagram of the thermocouple integrated on the chip, with the tip inside the 
reaction chamber. c) Photograph of a thermocouple tip integrated in a chip. Notice the roughness around the 
thermocouple tip. 
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With this in mind the chip design was updated (Figure 26) to incorporate the alignment 

features and to create an indentation for the external thermocouple. Another addition were the 

thermal guards around the reaction chamber which function as insulators and help position the 

thermocouple tip. The thermal guards were positioned as close to the reaction chamber as the mills 

available would allow.  

  

c
) 

b
) 

a
) 

Figure 26: Second Single Chamber Design. a) Single chamber design viewed from the top. b) 3D view of a SW model of 
the mold. Reaction chamber – cyan; Inlets – red; thermal guards – green; thermocouple indentation – purple; holder 
alignment features – yellow. c) CNC milled aluminum mold bottom part. Notice the different finish quality depending on 
the mill used for each site. d) Sealed PCR chip. 
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Temperature Calibration 

As was mentioned above, during the first temperature calibration tests there was a large 

variation (>20ºC) between the temperatures measured outside and inside the reaction chamber. 

This was mostly due to variations on the external thermocouple position and the lack of good 

contact between the chip and the heater. After building the heater holder and defining the external 

thermocouple position on the heater it was possible to calibrate the system. This was done by 

changing the target temperature of the controller program (measured on the surface of the heater) 

so that the in-chamber temperature would match the targets of 94ºC/62ºC (see Figure 28).  

a
) 

b
) 

Figure 27: a) Thermocycling setup with the temperature control circuit and the heater holder; b) Chip and holder setup during 
thermal calibration. Notice the binders and the contact between the chip and the holder; c) Heater holder with features 
highlighted. Heater – yellow, Thermocouple – red, Chip alignment features – blue. d) Temperature profile during a calibration 
run. Notice the difference between target temperature and in-chamber temperature on the lower 62 

c
) 

d
) 

T
ime(s) 
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In order to test the reliability of the calibration, the chip was emptied and refilled with water 

and the thermocycling protocol was ran for a few cycles with the calibrated parameters. The in-

chamber temperature was found to be within 1ºC of the target temperature at all temperature 

levels. The calibration was tested again by embossing a completely new chip and repeating the same 

protocol. The results were identical to the previous ones, with the temperature remaining within 

1ºC of the target.  

Although it was not the scope of this work, it is interesting to note that the heating (0.5ºC/s) 

and cooling (1.3ºC/s) rates are comparable to commercial thermocyclers. Based on the literature on 

PCR miniaturization this measure is expected to improve with thermal optimization in the future. 

 

Figure 28: Temperature profile of both thermocouples during thermocycling. The top profile shows the first results obtained 
with the target temperature in the program equal to the desired temperature. The bottom profile shows the results 
obtained after calibration and refilling the chip. Notice the low variation of the in-chamber temperature. 
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Bubble Formation 

After the temperature calibration, the PCR experiment was ran again, with identical results 

to previous experiments. During the thermocycling it was noticed that several air bubbles appeared 

inside the chamber (see Figure 29: Bubble formation during thermocycling. The chip was filled with 

colored water to test bubble formation.Figure 29). These appeared as small bubbles concentrated 

around the chamber walls during the first thermal cycles but grew during the thermocycling protocol 

eventually filling the chamber. This presented a major obstacle as bubbles cause temperature 

inhomogeneity and increase the pressure inside the chamber, removing the sample from the 

chamber into the inlets [42]. Bubble formation is a common problem in microfluidic PCR systems as 

the high temperature causes any micro-bubbles present to expand with each thermal cycle. These 

micro-bubbles can be introduced during sample loading, chip sealing or be already present in the 

sample [58]. Due to the initial location of the bubbles it was hypothesized that air was being trapped 

on the chamber walls during sealing. The sealing method was optimized - applying the solvent using 

a brush instead of pipetting and immediately absorbing excess solvent; and applying pressure 

directly on the chamber walls and around the inlets. This produced some results as the bubbles took 

longer to appear and grow but throughout an entire thermocycle (~35 cycles) they would still fill the 

chamber. 

In the current system, bubble formation is suspected to be the major impediment to a 

successful PCR amplification reaction. Although there are some solutions to this problem in the 

literature, only a few are applicable to a hard plastic POC system – geometry optimization and 

surface modification. It has been reported that different chamber shapes [59], depths [58] and 

hydrophobicity [59], [60] can greatly influence bubble formation. 

Figure 29: Bubble formation during thermocycling. The chip was filled with colored water to test bubble formation. 
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6. Conclusion 

My goal with this work was to develop a way to prototype hard plastic microfluidics in a fast 

and simple way. I began by identifying the methods better suited for this task, with special focus on 

simplicity and similarity with industrial production methods. Hot Embossing was selected as the 

basic fabrication method as it presents good reproduction quality and produces results similar to 

Injection Molding with minimal optimization. 

After performing some preliminary experiments with different mold fabrication methods 

and Hot Embossing protocols, I defined a simple rapid prototyping protocol based on CNC Milling 

and Hot Embossing for Polycarbonate microfluidics. This protocol was then optimized and tested 

through the development of a microfluidic PCR chamber.  

As expected, this presented many challenges and required extensive design changes 

throughout the process. This allowed me to test the prototyping protocol in a demanding situation, 

with specific design goals and requirements. 

Overall, the main conclusion I draw from this work is that Hot Embossing is an excellent 

platform for prototyping microfluidics and that it is possible to prototype microfluidic devices in 

hard plastic in a laboratory setting. The developed protocol allowed for rapid fabrication of new 

designs, easily producing multiple identical copies in under 8h. 

POC devices have tremendous potential in the medical field. If successful, they could allow 

for new paradigms of medical data acquisition, either enabling home-use monitoring or allowing for 

comprehensive medical testing in resource-poor settings, for example. For this possibility to become 

a reality, these devices need to be disposable and durable and at the moment this can only be 

achieved using hard plastics. I expect that by having worked towards a simple and inexpensive 

prototyping method for hard plastics it will be easier to produce functional POC devices with real-

world applications. 
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8. Annex  

a) Arduino code for temperature control and thermocycling protocol 

/***************************************************  

  This is an example for the Adafruit Thermocouple Sensor w/MAX31855K 

 

  Designed specifically to work with the Adafruit Thermocouple Sensor 

  ----> https://www.adafruit.com/products/269 

 

  These displays use SPI to communicate, 3 pins are required to   

  interface 

  Adafruit invests time and resources providing this open source code,  

  please support Adafruit and open-source hardware by purchasing  

  products from Adafruit! 

 

  Written by Limor Fried/Ladyada for Adafruit Industries.   

  BSD license, all text above must be included in any redistribution 

 ****************************************************/ 

 

#include "Adafruit_MAX31855.h" 

 

int thermoDO1 = 8; 

int thermoCS1 = 7; 

int thermoCLK1 = 6; 

int thermoDO2 = 5; 

int thermoCS2 = 4; 

int thermoCLK2 = 3; 

int tec = 9; 

 

Adafruit_MAX31855 thermocouple1(thermoCLK1, thermoCS1, thermoDO1); 

Adafruit_MAX31855 thermocouple2(thermoCLK2, thermoCS2, thermoDO2); 

   

void setup() { 

  Serial.begin(9600); 

  pinMode(tec, OUTPUT); 

  Serial.println("MAX31855 test"); 

  // wait for MAX chip to stabilize 

  delay(500); 

} 

 

void holdTemp(int digTemp, int holdTime, String txtTemp){ 

  int start = floor(millis()/1000); 

  int printTimer = floor(millis()/1000); // printTimer is a counter used to say 

when to print sensor readout 

  int now = floor(millis()/1000); 

  int nowMin = floor(now/60); 

  int nowSec = now-(nowMin*60); 

  double c = thermocouple1.readCelsius(); 

  double c2 = thermocouple2.readCelsius(); 

  while(now - start <= holdTime){ 

    c = thermocouple1.readCelsius(); 

    c2 = thermocouple2.readCelsius(); 

    if(c<digTemp){ //temp control 

      digitalWrite(tec, HIGH);} 

    else if(c>digTemp){ //temp control 

      digitalWrite(tec, LOW);} 

    if(now >= printTimer){ 

      nowMin = floor(now/60); 

      nowSec = now-(nowMin*60); 

      Serial.print("Time: "); Serial.print("\t"); Serial.print(nowMin,DEC); 

      Serial.print("m"); Serial.print(nowSec,DEC); Serial.print("s"); 

Serial.print("\t"); 
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      Serial.print("Thermocouple1: "); Serial.print("\t"); Serial.print(c); 

Serial.print("\t"); 

      Serial.print("Thermocouple2: "); Serial.print("\t"); Serial.print(c2); 

Serial.print("\t"); 

      Serial.print(txtTemp); Serial.print("\n"); 

      printTimer += 2;} 

    now = floor(millis()/1000); 

  } 

} 

   

void holdTemp2(int digTemp, int holdTime, int heatTime, int coolTime, String 

txtTemp){ 

  int start = floor(millis()/1000); 

  int printTimer = floor(millis()/1000); // printTimer is a counter used to say 

when to print sensor readout 

  int now = floor(millis()/1000); 

  int nowMin = floor(now/60); 

  int nowSec = now-(nowMin*60); 

  double c = thermocouple1.readCelsius(); 

  double c2 = thermocouple2.readCelsius(); 

  while(now - start <= holdTime){ 

    now = floor(millis()/1000); 

    c = thermocouple1.readCelsius(); 

    c2 = thermocouple2.readCelsius(); 

    if(now >= printTimer){ 

      nowMin = floor(now/60); 

      nowSec = now-(nowMin*60); 

      Serial.print("Time: "); Serial.print("\t"); Serial.print(nowMin,DEC); 

      Serial.print("m"); Serial.print(nowSec,DEC); Serial.print("s"); 

Serial.print("\t"); 

      Serial.print("Thermocouple1: "); Serial.print("\t"); Serial.print(c); 

Serial.print("\t"); 

      Serial.print("Thermocouple2: "); Serial.print("\t"); Serial.print(c2); 

Serial.print("\t"); 

      Serial.print(txtTemp); Serial.print("\n"); 

      printTimer += 2;} 

    if(c<=digTemp){ // temp control 

      digitalWrite(tec, HIGH); 

      delay(heatTime); 

      digitalWrite(tec, LOW); 

      delay(coolTime); 

//      Serial.print("ON"); Serial.print("\n"); 

    } 

    else if(c>digTemp){ //temp control 

      digitalWrite(tec, LOW);} 

//      Serial.print("OFF"); Serial.print("\n"); 

  } 

} 

 

void heatTemp(int digTemp){ 

  // digTemp = digital sensor readout values corresponding to temperature to hold 

at 

//  Serial.print("Start heatTemp"); Serial.print("\n"); 

  digitalWrite(tec, HIGH); 

  int printTimer = floor(millis()/1000); 

  int now = floor(millis()/1000); 

  int nowMin = floor(now/60); 

  int nowSec = now-(nowMin*60); 

  double c = thermocouple1.readCelsius(); 

  double c2 = thermocouple2.readCelsius(); 

  while(c < digTemp){ //temp control 

    now = floor(millis()/1000); 

    c = thermocouple1.readCelsius(); 

    c2 = thermocouple2.readCelsius(); 

    if(now >= printTimer){ 
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      nowMin = floor(now/60); 

      nowSec = now-(nowMin*60); 

      Serial.print("Time: "); Serial.print("\t"); Serial.print(nowMin,DEC); 

      Serial.print("m"); Serial.print(nowSec,DEC); Serial.print("s"); 

Serial.print("\t");      

      Serial.print("Thermocouple1: "); Serial.print("\t"); Serial.print(c); 

Serial.print("\t"); 

//      Serial.print("TC1 internal: "); Serial.print("\t"); Serial.print(thermoco

uple1.readInternal()); Serial.print("\n"); 

      Serial.print("Thermocouple2: "); Serial.print("\t"); Serial.print(c2); 

Serial.print("\n"); 

//      Serial.print("TC2 internal: "); Serial.print("\t"); Serial.print(thermoco

uple2.readInternal()); Serial.print("\n"); 

      printTimer += 2;} 

  } 

} 

 

void coolTemp(int digTemp){ 

  // digTemp = digital sensor readout values corresponding to temperature to hold 

at 

//  Serial.print("Start coolTemp"); Serial.print("\n"); 

  digitalWrite(tec, LOW); 

  int printTimer = floor(millis()/1000); 

  int now = floor(millis()/1000); 

  int nowMin = floor(now/60); 

  int nowSec = now-(nowMin*60); 

  double c = thermocouple1.readCelsius(); 

  double c2 = thermocouple2.readCelsius(); 

  while(c > digTemp){ //temp control 

    now = floor(millis()/1000); 

    c = thermocouple1.readCelsius(); 

    c2 = thermocouple2.readCelsius(); 

    if(now >= printTimer){ 

      nowMin = floor(now/60); 

      nowSec = now-(nowMin*60); 

      Serial.print("Time: "); Serial.print("\t"); Serial.print(nowMin,DEC); 

      Serial.print("m"); Serial.print(nowSec,DEC); Serial.print("s"); 

Serial.print("\t");       

      Serial.print("Thermocouple1: "); Serial.print("\t"); Serial.print(c); 

Serial.print("\t"); 

      Serial.print("Thermocouple2: "); Serial.print("\t"); Serial.print(c2); 

Serial.print("\t"); Serial.print("\n"); 

      printTimer += 2;} 

  } 

} 

 

void loop(){ 

  heatTemp(92); 

  holdTemp(92, 15, "95"); 

  for (int x = 0; x < 107; x++ ){ 

    heatTemp(92); 

    holdTemp(92, 10, "94"); 

    coolTemp(57.5); 

    heatTemp(61); 

    holdTemp(61, 25, "62"); 

    

  } 

  heatTemp(72); 

  holdTemp(72, 30, "72"); 

  coolTemp(30); 

  Serial.print("END"); 

  while(1); 

} 
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b) Excerpt of G-Code 

N100 G0 G70 G90 
N120 G0 G90 G54 X1.1261 Y-1.1249 
N130 Z.25 
N140 Z.2 
N150 G1 Z-.0197 F6.42 
N160 X-1.1261 
N170 Y-1.0499 
N180 X1.1261 
N190 Y-.9749 
N200 X-1.1261 
N210 Y-.8999 
N220 X.5601 
N230 G2 X.4254 Y-.8249 I.625 J-.625 
N240 G1 X-1.1261 
N250 Y-.7499 
N260 X.3716 
N270 G2 X.347 Y-.6749 I.625 J-.625 
N280 G1 X-1.1261 
N290 Y-.5999 
N300 X.3436 
N310 G2 X.3589 Y-.5301 I.625 J-.625 
N320 G1 X-.3937 
N330 G2 X-.4293 Y-.525 I-.3937 J-.4051 
N340 G1 X-1.1261 
N350 Y-.45 
N360 X-.5104 
N370 G2 X-.5187 Y-.4051 I-.3937 J-.4051 
N380 G1 Y-.375 
N390 X-1.1261 
N400 Y-.3 
N410 X-.5187 
N420 Y-.225 
N430 X-1.1261 
N440 Y-.15 
N450 X-.5187 
N460 Y-.075 
N470 X-1.1261 
N480 Y0. 
N490 X-.5187 

 

 


