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ABSTRACT: 50 

 51 

Cisplatin is an efficient anticancer drug, but its effects  are often lost after several chemotherapy cycles, 52 

showing important secondary effects. For these reasons, new anticancer agents, with different 53 

coordination properties and mechanisms of action, are needed. Here we describe the reaction of 2-54 

phenylaniline with cis-[PtCl2(dmso)2] and sodium acetate to afford a cycloplatinated compound 2 and 55 

the synthesis and some biological studies of 3−6 (two neutral and two ionic compounds): 56 

[PtCl(C−N)(L)], C−N cycloplatinated 2-phenylaniline with L = PPh3 (3) or P(4-FC6H4)3 (4) and 57 

[Pt(C−N)-(L-L)]Cl with L-L = Ph2PCH2CH2Ph2 (5) or (C6F5)2PCH2-CH2(C6F5)2 (6). Ionic 58 

platinacycles 5 and 6 show a greater antiproliferative activity than that of cisplatin in human lung, 59 

breast, and colon cancer cell lines (A-549, MDA-MB-231 and MCF-7, and HCT-116), a remarkable 60 

result given the fact that they do not show covalent interaction with DNA. 5 and 6 have also been found 61 

able to oxidize NADH by a catalytic process prododucing H2O2 as ROS. The activity of these 62 

complexes to generate ROS seems to be the key factor to explain their potent anticancer activity; it 63 

should be noted that platinum(II) complexes showing biocatalytic activity for hydride transfer from 64 

NADH have not been described so far. Ionic complex 6 shows low affinity to some target proteins; the 65 

presence of perfluoroaromatic rings seems to hinder its interaction with some biomolecules. 66 
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INTRODUCTION 79 

 80 

Cisplatin is an efficient anticancer drug; in fact, it is the leading compound used against different types 81 

of cancer, such as ovarian, testicular, bladder, head, and neck cancers and small cell lung cancer. 82 

Nevertheless, this compound has a series of clinical disadvantages, with systemic toxicity being one of 83 

the main issues.1 The primary cisplatin target is DNA2 in both sick and healthy cells, without 84 

distinction. Furthermore, due to the affinity of platinum for some of the coordinating groups present in 85 

some biomolecules, cisplatin can interact and disrupt the functions of different proteins and enzymes, 86 

thus producing a variety of important side effects (only 1% of the intravenously administered drug 87 

actually reaches DNA). Furthermore, the efficiency of cisplatin is often lost after several chemotherapy 88 

cycles, since tumor cells become resistant.3 For these reasons, it is important to develop new anticancer 89 

agents with different coordination properties and mechanisms of action. Some of these mechanisms, 90 

among others, are DNA-binding with metallointercalators (π stacking interactions), mitochondria 91 

targeting (where mitochondrial DNA (mtDNA) damage can induce apoptosis without damaging nuclear 92 

DNA), and inhibition of some proteolytic enzymes such as cathepsin B (which is highly upregulated in a 93 

wide variety of cancers).4 Some coordination compounds offer the possibility of an alternative redox 94 

mechanism such as the generation of reactive oxygen species (ROS), an effective method of killing 95 

cancer cells.5 Furthermore, the induction of immunogenic cell death by chemotherapeutic platinum 96 

complexes6 and the use of a platinum(IV) prodrug targeting DNA damage repair7 have also been 97 

reported. 98 

Cycloplatinated compounds have an increasing interest as anticancer agents,8 and compounds 99 

containing N-donor ligands9,10 have also been tested with very promising results. The high stability of 100 

these compounds may allow them to reach the cell unaltered. Furthermore, the presence of 101 

substitutionally active ligands favors covalent coordination to DNA, as for cisplatin, while the aromatic 102 

groups in the cyclometalated ligand might favor intercalative binding to DNA through π−π stacking.11 103 

For these reasons, it seems interesting to study the use of compounds derived from the cycloplatination 104 

of 2-phenylaniline. This primary amine could afford an unusual six-membered platinacycle, which can 105 

modify the reactivity of the ligands in the coordination sphere and can be involved in hydrogen bonds 106 

through the NH2 group. 107 

In spite of the continuous progress in the field of cyclometalation, the cycloplatination of primary 108 

amines remains relatively unexplored.12 The cycloplatination of substituted benzylamines has been 109 

reported by using a precursor obtained from K2[PtCl4] andHI13 or by reaction between the cis-110 

[PtCl2(dmso)2], sodium acetate and the corresponding ligand.12b,14 It should be noted that in some of 111 

these cases there is an organic fragment in the α position of the coordinating atom which makes the 112 

cyclometalation reaction easier by decreasing the entropic requirements.15 113 

To the best of our knowledge, there is a single report on the synthesis of six-membered metallacycles by 114 

cycloplatination of a primary amine. In an early work on the aqueous chemistry of mixed amines, cis- 115 



and trans-platin analogues, Bednarsky et al. reported the cycloplatination of 1,2-bis(4-methoxyphenyl)-116 

ethylamine and 2-(4-methoxyphenyl)-1-phenylethylamine and described that the metalation took place 117 

only on the methoxysubstituted ring.16 118 

With these background in mind and following our studies on the synthesis and the applications of 119 

palladium and platinum metallacycles,10a,d,f,17 we describe here the cycloplatination of 2-120 

phenylaniline and some preliminary biological studies to establish a structure−activity relationship of 121 

the cyclometalated platinum(II) complexes obtained to gain insight into its mechanisms of action. The 122 

cytotoxicity assessment of the new complexes was carried out on the moderate/highly resistant 123 

adenocarcinoma cells lines: A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon. 124 

Interactions with plasmid DNA (in presence or absence of topoisomerase I), inhibition of cathepsin B, 125 

cell cycle arrest, and induction of apoptosis were also studied. Moreover, herein, we address the 126 

question if the generation of reactive oxygen species (ROS) plays a role in the mechanisms of action of 127 

some of the synthesized compounds. 128 

129 



RESULTS AND DISCUSSION 130 

 131 

Synthesis of the Cycloplatinated Compounds. The reaction of 2-phenylaniline with cis-132 

[PtCl2(dmso)2] and sodium acetate in a 1/1/1 molar ratio in refluxing methanol for 24 h afforded 133 

cycloplatinated compound 2 in good yield. Methanol was selected as solvent because polar solvents 134 

favor the cyclometalation of primary amines.18 Shorter reaction times result in a rather low yield, and 135 

some metallic platinum is formed when longer times are used. If the reaction was carried out in the 136 

presence of proton sponge as an external base instead of sodium acetate, then no cycloplatinated 137 

compound was obtained, thus indicating that acetate acts as an internal base. All these results have been 138 

corroborated by a kinetico-mechanistic study of the cyclometalation reaction (see below). 139 

As the presence of phosphines can increase the cytotoxic activity of platinum metallacycles19 the 140 

synthesis of 3−6 (two neutral and two ionic, more polar compounds) was also conducted, Scheme 1. 141 

Interestingly, compounds 3 and 4 have a relatively labile chlorido ligand in the coordination sphere, 142 

while in 5 or 6, vacant coordination positions are less facile, which should hinder their covalent 143 

interaction with DNA favouring other interaction mechanisms. We have selected two fluorinated 144 

derivatives 4 and 6 in order to explore the effects that fluorine atoms can induce on their bioactivity (the 145 

fluorous effect).20 146 

New compounds 2−6 were characterized by elemental analyses and 1H, 31P-{1H}, 195Pt, and 19F 147 

NMR spectra. 1H NMR data are in agreement with the proposed structures. The aromatic proton in 148 

ortho position to the metal is coupled to platinum (3JH−Pt in the range 50−58 Hz). Coupling of the NH2 149 

protons to platinum was only observed for compound 2 (2JH−Pt = 52 Hz); the signal width in 150 

compounds 3−6 preventing the determination of their 3JH−Pt. JP−Pt values obtained from 31P NMR 151 

spectra for 3 and 4 indicate that the phosphine ligand is trans to the amino group. For compounds 5 and 152 

6, two resonances are observed in the 31P NMR spectrum with 1JP−Pt values of 1794 and 3828 Hz for 153 

5 and 1712 and 4038 Hz for 6. The higher J value is assigned to the phosphorus atom trans to the amino, 154 

and the lower value is assigned to that trans to the metalated carbon in agreement with the higher trans 155 

influence of carbon atom.21 The 195Pt chemical shift values are in the expected range for 156 

cyclometalated platinum(II) compounds containing a phosphine and a chlorido ligand (compounds 3 and 157 

4), as are those corresponding to cycloplatinated derivatives 5 and 6, containing two phosphorus donor 158 

atoms. 159 

All the data agree with the structures proposed for neutral complexes 3 and 4 (in which the phosphine is 160 

in trans to the nitrogen atom) and the ionic structures of 5 and 6, in which there is one phosphorus atom 161 

trans to nitrogen and another phosphorus atom trans to the metalated carbon atom.19a 162 

The 19F NMR spectrum of compound 4 displays one multiplet corresponding to the three equivalent 163 

para-fluoro substituents on the phosphine; in contrast, a much higher complexity is obtained for the 164 

spectrum of compound 6 in which three sets of four signals in the regions −122 to −128 ppm assigned to 165 



8Fortho, −140 to −146 ppm assigned to 4Fpara, and −160 to −158 ppm assigned to 8Fmeta, are  166 

observed. This fact shows the nonequivalence of the four pentafluorophenyl groups in the compound.22 167 

Suitable crystals of 3 were obtained from a dichloromethanemethanol solution at room temperature and 168 

were analyzed by X-ray diffraction (see Figure 1). This is the first known X-ray to 95.917(14)° for the 169 

P(1)−Pt(1)−Cl(1) angle. The distances between platinum and the coordinated atoms are similar to those 170 

reported for analogous compounds.23 The six-membered metallacycle presents a screw-boat 171 

conformation with deviations from the mean plane of −0.394 Å for Pt(1), 0.538 Å for N(1), −0.184 Å 172 

for C(1), −0.304 Å for C(2), 0.215 Å for C(3), and 0.129 Å for C(8). There are no π-stacking 173 

interactions in the crystal, and an intermolecular interaction NH···Cl of 3.319 Å was observed. 174 

Kinetico-Mechanistic Study of the Metalation Reaction. The kinetics of the reaction of cis-175 

[PtCl2(dmso)2] and 2-phenylaniline in the presence of NaAcO was studied in methanol solution at 176 

different temperatures. Different [Pt]/[amine]/[NaAcO] concentration ratios were used to clarify the role 177 

of the different species in the full process. The preliminary observation that the cyclometalation process 178 

does not take place in the presence of proton sponge indicates that sodium acetate effectively acts as an 179 

internal base, and that formation of acetate derivatives is a key step for the C−H bond activation 180 

reaction.24,25 The fact that acetato derivative cis-[Pt(AcO)2(dmso)2] reacts in an equivalent manner as 181 

checked by NMR confirms this assumption. Thus, the reaction seems to occur via an electrophilic 182 

substitution mechanism in lieu of the standard oxidative addition processes occurring on Pt(II) 183 

complexes,24,26 as already observed on similar acetato complexes of the same family.25 184 

Careful time-resolved 1H NMR batch monitoring of the sequential set of processes occurring on mixing 185 

methanol solutions of cis-[PtCl2(dmso)2] and 2-phenylaniline in the presence of NaAcO allowed to 186 

discriminate the C−H bond activation reactions from the faster set of initial substitution processes. The 187 

reaction rate constants of the metalation process at different temperatures, as determined by UV−vis 188 

spectroscopy, produced the Eyring plot shown in Figure 2, from which the values structure of a six-189 

membered metallacycle containing a platinated primary amine. The platinum atom is in a square-planar 190 

environment coordinated to carbon, chlorine, phosphorus and nitrogen. The phosphorus and nitrogen 191 

atoms are in a trans arrangement. The angles between neighbor atoms in the coordination sphere lies in 192 

the range of 84.09(4)° for N(1)−Pt(1)−Cl(1) the angle of ΔH# = 92 ± 5 kJ mol−1 and ΔS#=−45±15JK−1 193 

mol−1 for the thermal activation parameters were derived. Interestingly the reaction rate constant is 194 

found independent of the amount of NaAcO in the solution within the [Pt]/[NaAcO] = 0.5−3.0 margin, 195 

neatly indicating that only the acetato derivatives, formed stoichiometrically at shorter times lead to the 196 

C−H bond activation. On the contrary, the reaction rate constant slightly increases on increasing the 197 

amount of free amine in solution (within the same [Pt]/[amine] = 0.5−3.0 margin). This fact indicates 198 

that stoichiometric coordination of the primary amine does not take place readily, as observed in other 199 

cases24,27 and that the initial substitution equilibrium reaction is also involved in the C−H activation 200 

process.28,29 As a result the data collected in Figure 2 are specific for the [Pt] = [amine] = 5 × 10−4 M. 201 

Even so, given the fact that the substitutional reactivity of the metal center is not expected to be rate-202 



limiting,26,30 the activation parameters derived should correspond to the proper C−H activation 203 

process. 204 

In this respect, the values derived for the thermal activation parameters indicate a process that is more 205 

entropy driven than the only Pt(II) equivalent electrophilic substitution C−H bond activation reaction 206 

studied from a kinetico-mechanistic perspective (ΔH# = 76 ± 5 kJ mol−1 and ΔS# = −101 ± 16 J K−1 207 

mol−1).25 The formation of a relatively rigid six-membered metallacycle can be held responsible for the 208 

difference, as observed for other systems with some flexibility constrains.31,32 209 

Biological Studies. Platinum complexes are usually dissolved in dmso to conduct biologic experiments, 210 

but it has been reported that on dissolving cisplatin in dmso a ligand displacement changes its structure 211 

inhibiting its cytotoxicity and its ability to initiate cell death. For this reason it has been suggested that 212 

new platinum drugs must demonstrate a lack of interaction with dmso.33 213 

We carried out some experiments to evaluate the stability of the new platinum complexes in dmso and 214 

dmso−water mixtures. We found that neutral compounds 3 and 4 containing a monodentate phosphine 215 

are quite stable in dmso (3 days at room temperature), but when water is added to the dmso solution (a 216 

30% solution, water−dmso), a little decomposition was observed by 31P NMR spectra. For instance, in 217 

compound 3, new signals at 15.23 and 17.92 were observed. In contrast, ionic compounds 5 and 6 are 218 

highly stable in dmso or dmso−water (1/1) solutions. After standing 3 days in deuterated dmso solution 219 

plus 3 additional days in water−dmso (1/1), the 31P NMR spectra only show the expected two signals 220 

plus the corresponding and typical platinum satellites (Figures S1 and S2). Furthermore, 1H and 31P 221 

NMR spectrum also shows that 5 is stable in an aqueous biological media (phosphato buffer, pH 7.40), 222 

showing that the cell culture medium does not change their chemical composition (Figures S3 and S4) 223 

Antiproliferative Assay. The cytotoxicity of compounds 2−6 was evaluated in vitro against human 224 

lung, breast, and colon cancer cell lines (A-549, MDA-MB-231 and MCF-7, and HCT-116, 225 

respectively), using cisplatin as a positive control. Also, a normal human foreskin fibrobrast cell line 226 

(BJ) was tested in the frame of the in vitro studies. The effects of the assayed platinacycles on the 227 

growth of the selected cell lines were evaluated after 72 h, and the IC50 values (concentration at which 228 

50% of cell growth is inhibited) are listed in Table 1. It can be seen that compounds 2−6 exhibit a high 229 

antiproliferative activity in the four selected cell lines; however, very large differences in their cytotoxic 230 

effectiveness are evident. Platinacycles 5 and 6 exhibited the lowest IC50 values within the series of the 231 

moderate and highly resistant cancer cells lines tested (280−730 nM). For instance, 5 is approximately 232 

33-fold more potent than cisplatin in A-549 lung cancer cells, 19- and 33-fold more potent in MDA-233 

MB-231 and MCF-7 breast cancer cells, respectively, and 70-fold more potent in the cisplatin-resistant 234 

HCT-116 colon cancer cells. Interestingly, compounds 3−6 showed a lower antiproliferative activity in 235 

normal BJ cells than that in the adenocarcinoma cell lines tested. 236 

DNA Interaction. The interaction of 2−6 with DNA was assessed by their ability to modify the 237 

electrophoretic mobility of the supercoiled closed circular (sc) form of pBluescript SK+ plasmid DNA. 238 

Platinacycles 2, 3, and especially 4 alter the mobility of plasmid DNA (Figure 3). The coalescence point 239 



for 4 is observed at 25 μM, while 2 and 3 show coalescence points at 50 μM. For the three compounds a 240 

positive supercoiling was observed above the coalescence point concentrations. The electrophoretogram 241 

of cisplatin shows a coalescence point at 10 μM and positive supercoiling above this concentration. On 242 

the basis of the gel mobility shift assay, it is hypothesized that 2−4 alter the DNA tertiary structure by 243 

the same mechanism as the standard reference, cisplatin but at higher concentrations. In contrast with 244 

these findings, 5 and 6 were not effective at all for removing the supercoils of plasmid DNA. This 245 

experiment shows the low reactivity related to substitution reactions of 5 and 6 when compared to 246 

similar metallacycles19a pointing to a different mechanism of action or to an alternative biomolecular 247 

target. It should be noted that some platinum-phosphato complexes have been shown to be cytotoxic in 248 

ovarian cell lines yet they do not show any evidence of covalent binding to DNA.34 249 

Topoisomerase Inhibition. In higher eukaryotes, DNA topoisomerases I are essential enzymes whose 250 

main role is to relieve DNA supercoiling (torsional tension) ahead of replication and transcription 251 

complexes. Nowadays, topoisomerase I is considered an important molecular target for anticancer drug 252 

development. The efficient anticancer drug camptothecin, is a well-known topoisomerase I inhibitor.35 253 

The anticancer activity of trinuclear (TriplatinNC, TriplatinNC-A),36 naphthoquinone Pt(II) 254 

complexes,37 and luminescent cyclometalated Pt(II) compounds38 have been associated with their 255 

ability to inhibit topoisomerase I. 256 

A topoisomerase-based gel assay was performed to evaluate the ability of 5 and 6 to inhibit 257 

topoisomerase I or to intercalate into DNA. The results given in Figure 4 show that 5 prevents 258 

unwinding of DNA by the action of topoisomerase I, indicating that this compound is either intercalator 259 

or topoisomerase I inhibitor. In contrast 6 did not prevent unwinding of DNA at concentrations below 260 

100 μM. 261 

To elucidate whether 5 is a DNA intercalator or a topoisomerase I inhibitor, relaxed pBluescript plasmid 262 

DNA was incubated in the presence of topoisomerase I at increasing concentrations of compound 5. The 263 

results are given in Figure 5 and show that 5 prevents winding of DNA by the action of topoisomerase I, 264 

indicating that this compound is an inhibitor of topoisomerase I. This result agrees with the fact that the 265 

nonplanarity of the six-membered metallacycle seems to exclude the possibility of DNA intercalation 266 

(see X-ray structure of 3). 267 

Cathepsin B Inhibition. Cathepsin B is a metalloprotease that in solid tumors has been proposed to 268 

participate in metastasis, angiogenesis, and tumor progression. Recently, compounds based on 269 

palladium, platinum, ruthenium, rhenium, gold, and tellurium were shown to be effective inhibitors of 270 

cathepsin B.39 In addition, an excellent correlation between cathepsin B inhibition and cytotoxicity for 271 

some dinuclear diphosphine palladacycles40 and mononuclear platinacycles containing a fluorinated 272 

phosphine20 has been reported. Inhibition of cathepsin B has been also described for a 273 

noncyclometalated trans-Pt(II) compound in our research group.19a We have determined the cathepsin 274 

B inhibition activity for compounds 5 and 6. It should be noted that 5 inhibits cathepsin B (IC50 = 35 ± 275 



4 μM), but 6, which presents a very similar chemical structure, did not show a significant cathepsin B 276 

inhibition activity. 277 

Cell Cycle Dysregulation and Apoptosis Induction. 278 

Cell cycle dysregulation is considered to be one of the main hallmarks of cancer cells and proteins that 279 

control the critical events of cell cycle have been proposed as useful antitumor targets.41 The effect of 280 

compounds 3, 5, and 6 was evaluated on A-549 lung cancer cells. 3 and 6 play an important role in cell 281 

cycle, while 5 does not affect it in a determinant manner. However, it is important to note that 3 and 6 282 

have different modes of action since the former causes arrest mostly in S phase and the latter results in 283 

an arrest in G1 phase (Figure 6).  284 

As cancer is characterized by uncontrolled cellular proliferation, there is a considerable interest in 285 

chemotherapeutic-induced apoptosis. The apoptosis-inducing properties of 3, 5, and 6 in A-549 cells 286 

were examined by flow cytometry. Treating A-549 cells with 3 at its IC50 concentration (7 μM) for 72 h 287 

resulted in ca. 10% decrease in the percentage of the cells alive, while the amount of early apoptotic 288 

cells increased four times with respect to the control cells. The apoptosis induction potency of 289 

compounds 5 and 6 showed great similarity to that of compound 3 (Figure 7). However, 3 and 5 290 

increased the early apoptotic cell population, while 6 caused an increase in the population of late 291 

apoptotic/necrotic cells. Hence the pathway that 3 and 5 follow for apoptosis induction seems to be 292 

different from the apoptotic pathway of 6. 293 

Generation of Reactive Oxygen Species (ROS). ROS are highly reactive oxygen metabolites that 294 

include superoxide radicals (O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•) among 295 

others. ROS molecules participate in stress signaling and they are generated by several cellular 296 

structures including mitochondria in all cells. Due to their increased proliferation rates, cancer cells need 297 

to produce a large amount of ATP, which results in accumulation of ROS.42 Elevated ROS levels not 298 

only activate intracellular signal transduction pathways that regulate multiple events in cancer but also 299 

cause cancer cells to be more vulnerable to increased oxidative stress induced by exogenous ROS-300 

generating compounds. It has been shown that ROS may play an important role in cisplatin-induced 301 

cytotoxicity and that glutathione (GSH) depletors increase this cytotoxicity by enhancing ROS 302 

generation in bladder cancer cells.43 303 

It has been recently described that the iridium(III) complex [Ir(5η-Cpxbiph)(Phpy)(py)]PF6 is a highly 304 

cytotoxic compound and its mechanism of action is different from that is usual in platinum drugs. This 305 

complex induces a significant increase in ROS levels in cancer cells. Chemical studies reveal that this 306 

process involves catalytic hydride transfer from the coenzyme NADH to oxygen to produce H2O2 as a 307 

ROS product.5a The amount of ROS produced by 3−6 was determined using  DFCH-DA (2′,7′-308 

dichlorofluorescein diacetate) through FACS at their IC50 concentrations, after 24, 48, and 72 h of drug 309 

exposure to the A-549 lung cancer cells. 310 

Compounds 4−6 caused an enhancement in ROS levels after 24 h and a significant increase was 311 

observed after 48 h of treatment for the tested A-549 tumor cell line (Figure 8). The increase in ROS 312 



level was around 60% for 4, 40% for 5, and around 70% for 6 after treatment. Our results clearly 313 

confirm that platinacycles 4−6 are able to increase ROS levels as part of their biological activities in 314 

cancer cells and suggest that apoptosis induction observed in A-549 lung cancer cells treated with 315 

compounds 5 and 6 might also be due to the increased ROS production since it is reported that increased 316 

ROS can mediate the intrinsic mitochondrial apoptotic pathway.44 Interestingly, compound 3 317 

significantly decreased the ROS levels at 24 h (around 50%) and 48 h (around 15%), while at 72 h, ROS 318 

levels were naturalized. This result shows that 3 has antioxidant effect in short-term at A-549 cells and 319 

that its cytotoxicity is not ROS dependent. There is a similar situation at Tarrado et al.45 320 

Western blot analyses of proteins involved in cell cycle control and apoptosis were performed in order 321 

to elucidate the mechanisms involved in the induction of apoptosis in A-549 cells due to the action of 322 

compounds 3, 5, and 6. Incubation of A-549 cells with either their IC50 values or double their IC50 for 323 

72 h resulted in activation of p53 tumor suppressor gene for 5 324 

Activation of tumor suppressor p53 induces cell cycle arrest and apoptosis46 and considering that A-549 325 

cells have wild type p53, this finding is concordant with the fact that the tested compounds are active in 326 

apoptosis induction. In contrast, the increase in the active caspases 3 and 9 (24 h after the treatment) 327 

indicates that 5 and 6 induce caspase dependent apoptosis in A-549 cells. Besides this, the inclusion of 328 

caspase 9 shows that an intrinsic apoptotic stimuli is triggered by 5 and 6. Similarly, we observed an 329 

increasing rate of Bax and a decreasing rate of Bcl-2 after 24 h of treating cells with test compounds. 330 

Taking into account that Bax is a pro-apoptotic protein and Bcl-2 is an antiapoptotic protein, we can 331 

deduce that all three compounds lead cells to apoptosis induction. It has been reported that ROS down-332 

regulates Bcl-2 protein, in agreement with the idea that the induced apoptosis is mediated by increased 333 

ROS level owing to the action of 5 and 6. 334 

The increase in ROS levels in A-549 lung cancer cells induced by complexes 5 and 6 prompted us to 335 

study the reaction of these compounds with potential cellular reducing agents, following the 336 

experimental procedure previously described.5a It is well-known that coenzyme NADH plays an 337 

important role in several biocatalyzed processes and NADH/NAD+ is an important redox couple which 338 

maintains the redox balance in cells. To show whether reaction of platinacycles 5 and 6 with NADH 339 

could produce ROS, experiments of 1H NMR and UV/vis spectroscopy were carried out. The addition 340 

of NADH (3.5 mol equiv) to a 0.8 mM solution of complex 6 leads to new signals in proton NMR at 341 

aprox. 9.25, 9.50, and 9.75 ppm, corresponding to the hydrogen atoms at the C-4, C-6, and C-2 positions 342 

respectively of the nicotinamide ring of the newly formed NAD+ (Figure S5). Oxidation of NADH to 343 

NAD+ was also observed with 1/5 and even 1/10 dilution of compound 6. UV/vis spectroscopy studies 344 

were carried out to quantify the magnitude of this catalytic mechanism. Interestingly the data from the 345 

UV/vis spectroscopy assay showed that platinacycles 5 and 6 may act as catalysts for hydride transfer 346 

from NADH with a turnover number (TON) of ca. 5 and 17, respectively. The formation of NAD+ was 347 

confirmed by a decrease in intensity of the characteristic NADH band at 341 nm and the simultaneous 348 

increase in intensity at 260 nm. The results for 6 are depicted in Figure S6, and the concentration of  349 



reacted NADH was calculated by measuring the absorption difference at 341 nm, taking into account the 350 

extinction coefficient of NADH (ε = 6220 M−1cm−1). These results are in agreement with the lower 351 

ROS generation increase observed for compound 5 by FACS in comparison with compound 6 in A-549 352 

lung cancer cells. However, the formation of H2O2 was observed when NADH (3 mol equiv) was added 353 

to a solution of complex 6 (1 mM) in a mixture of MeOH/H2O (3:7) using H2O2 test stick (Figure S7). 354 

The observed blue color matches with a concentration of approximately 0.2 mM of H2O2. The results 355 

obtained by 1H NMR and UV/vis spectroscopies and the H2O2 test stick clearly demonstrate the 356 

production of ROS and indicate that the oxidant anticancer activity previously reported for 357 

hexacoordinated iridium(III) compounds5a can also be extrapolated to some platinum(II) square-planar 358 

complexes. 359 

DFT Calculations. We have carried out some DFT theoretical calculations in order to assess the distinct 360 

behaviour observed between complexes with monodentate and bidentate phosphines. The ability of 361 

iridium complexes to act as ROS generators has been proved to depend on the ability of the metal atom 362 

to accept a hydride ion from NADH.47 Thus, we have explored the reaction of the platinum(II) 363 

complexes to form hydrides. We have used MNH (N-methyl-1,4-dihydronicotinamide) as a model for 364 

NADH, and the results obtained are summarized in Scheme S1. 365 

Our results suggest that the most energetically favorable path to form an hydrido complex begins with 366 

the substitution of the ligand trans to the metalated carbon by water, in agreement with the higher trans 367 

influence of the carbon atom.21 The substitution of a chloride ligand by water in the complexes with 368 

monodentate phosphines is exoergic. In contrast, this first step is strongly disfavored for 5 and 6 in 369 

which one of the phosphorus atoms of the diphosphine ligand should be substituted by water. This fact 370 

explains the great stability of 5 and 6 in cell culture medium and the fact that they do not show covalent 371 

interaction with DNA. 372 

The second step that we have considered is the reaction of the aqua complexes with MNH to form the 373 

hydride complex and MN+. This reaction is endoergic, with ΔE following the sequence 6 < 4 < 3 < 5. 374 

However, our results indicate that the complexes with chelating diphosphine lignads result in a more 375 

favorable path: substitution of the diphosphine for a second water ligand followed by the proper reaction 376 

with MNH, resulting in the formation of an hydrido ligand trans to the nitrogen atom, in agreement with 377 

the transphobia effect.48 This path is strongly disfavored for the complexes with monodentate 378 

phosphines. 379 

When this second path is considered for 5 and 6, the energy variations corresponding to the global 380 

reaction are −62.3, 42.7, and 49.4 kJ/mol for 6, 4, and 5 respectively, in agreement with their respective 381 

ROS abilities. Scheme 2 shows a plausible mechanism for the platinum(II) catalytic generation of 382 

hydrogen peroxide, which is similar to the proposal for Ir(III) complexes.5a 383 

384 



CONCLUSIONS 385 

 386 

Six-membered nonplanar platinacycles, containing bidentate phosphines, show high cytotoxicity despite 387 

not exhibiting covalent interaction with DNA. Despite 5 and 6 having very similar chemical structures, 388 

distinct bioactivity has been found. The presence of perfluoroaromatic rings in 6 hinders its interaction 389 

with some proteins. This is an interesting issue given that the side effects of cisplatin have been related 390 

with the high affinity of the platinum for the coordinating atoms present in some biomolecules. It has 391 

been shown that 6 induces an increase of the ROS levels in the nonmicrocytic A-549 lung cancer cells, 392 

and interestingly, this compound is also able to oxidize NADH by a catalytic process to produce ROS 393 

H2O2. The Western blot analyses of proteins involved in cell cycle control and apoptosis in A-549 cells 394 

revealed intrinsic apoptotic stimuli, and that the induced apoptosis is mediated by an increased ROS 395 

level. It seems that the use of platinum(II) compounds containing chelated polyfluorated ligands might 396 

be an interesting strategy in order to get highly effective anticancer drugs, able to modulate redox 397 

pathways in cisplatin resistant cancer cells, minimizing secondary side effects. 398 

399 



EXPERIMENTAL SECTION 400 

 401 

All chemicals were obtained from commercial sources and used as received. Solvents were distilled and 402 

dried before use,49 cis-[PtCl2(dmso)2] and cis-[Pt(AcO)2(dmso)2] were prepared using reported 403 

procedures.50,51 404 

NMR Labeling. 405 

Preparation of the Compounds. [PtCl{κ2-N2′,C1-2-(2′-NH2C6H4)-C6H4}(dmso)] (2). A mixture of 300 406 

mg (0.71 mmol) of cis-[PtCl2dmso)2], 120 mg (0.71 mmol) of 2-aminobiphenyl, and 58 mg (0.71 407 

mmol) of sodium acetate in 20 mL of methanol was refluxed for 24 h. The resulting solution was 408 

filtered, the solvent evaporated, and the residue recrystallized from CH2Cl2−diethyleter to obtain 2 as a 409 

white solid. Yield: 210 mg (60%). 1H NMR (400 MHz, CDCl3), δ = 7.68 (d, JPtH = 52, 3JH−H = 6.0, 410 

1H, Ha), 7.51 (d, 3JH−H = 7.60, 1H), 7.34 (d, 3JH−H = 8.0, 1H), 7.27 (t, 3JH−H = 7.60, 1H), 7.21−7.06 411 

(m, 4H), 5.50 (s, JPt−H = 52, 2H, NH2), 3.30 (s, 6H, dmso). 195Pt NMR (85.68 MHz, CDCl3), δ = 412 

−3817.1 (s). EA (calc. for C14H16ClNOPtS): C: 34.8% (35.26%); H: 3.6% (3.38%); N: 2.8% (2.94%); 413 

S: 6.8 (6.72%). MS-ESI+: m/z = 441.0 (calcd: 441.06) [M − Cl + CH3CN]+. 414 

[PtCl{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}{P(C6H5)3}] (3). Compound 3 was obtained after stirring at 415 

room temperature for 4 h a solution containing 300 mg (0.63 mmol) of compound 2 and 200 mg (0.63 416 

mmol) of PPh3 in 20 mL of acetone. The resulting solution was filtered, the solvent evaporated, and the 417 

residue treated with diethyleter. The pale yellow solid obtained was filtered and dried in vacuum. Yield: 418 

410 mg (90%). 1H NMR (400 MHz, dmso-d6), δ = 7.70 (br, 2H, NH2). 7.60−7.20 (m, 20H), 6.82 (t, 419 

3JH−H = 7.4, 1H, Hc), 6.55 (d 3JH−H = 7.4, 1H, Ha), 6.26 (t, 3JH−H = 7.5, 1H, Hb). 31P NMR (161.98 420 

MHz, dmso-d6), δ = 16.49 (s, 1JP−Pt = 4541.9). 195Pt NMR (85.68 MHz, dmso-d6), δ = −4098,1 (d, 421 

1JP−Pt = 4541.9). EA (calcd for C30H25ClNPPt): C: 54.7% (54.51%); H: 3.9% (3.81%) and N: 1.9% 422 

(2.12%). MS-ESI+: m/z = 625.1, (calcd: 625.13) [M − Cl]+. 423 

[PtCl{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}{P(4-FC6H4)3}] (4). Compound 4 was obtained after stirring 424 

at room temperature for 2 h a solution containing 200 mg (0.420 mmol) of compound 2 and 132.8 mg 425 

(0.420 mmol) of P(4-FC6H4)3 in 20 mL of acetone. The white solid formed was filtered off and 426 

discarded. The solvent was evaporated, the residue treated with CH2Cl2 (5 mL) and methanol (5 mL), 427 

and the obtained mixture kept at low temperature overnight. The whitish solid obtained was filtered and 428 

dried in vacuum. Yield: 81 mg (27%). 1HNMR (400 MHz, CDCl3), δ = 7.50 (dd, JH−H = 7.6; 1.2, 1H), 429 

7.44 (ddd, JH−H/F = 11.2, 8.8, 5.2, 6H, PR3), 7.24 (td, JH−H = 7.6, 1.6, 1H), 7.21 (dd, JH−H = 8.0, 1.6, 430 

1H), 7.18−7.13 (m, 2H), 6.92 (td, JH−H/F = 8.8, 2.0, 6H, PR3), 6.85 (td, JH−H = 7.6, 1.2, 1H, Hc), 6.45 431 

(ddd, JH−H = 7.6, 2.4, 1.2, 3JH−Pt = 56.0, 1H, Ha), 6.36 (td, JH−H = 7.6, 1.2, 1H, Hb), 5.38 (s, br, 2H, 432 

NH2).19F NMR (376.45 MHz, CDCl3), δ = −108.6 (m). 31P NMR (161.98 MHz, CDCl3), δ = 14.36 (s, 433 

1JP−Pt = 4568.0). 195Pt NMR (85.68 MHz, CDCl3), δ = −4099,6 (d, 1JP−Pt = 4594.3). EA (calcd for 434 

C30H22ClF3NPPt): C: 51.3% (50.39%); H: 3.4% (3.10%); N: 1.8% (1.96%). MS-ESI+: m/z = 679.1, 435 

(calcd: 679.11) [M − Cl]+.  436 



[Pt{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(C6H5)2PCH2CH2P(C6H5)2}]Cl (5). Compound 5 was 437 

obtained after stirring at room temperature for 2 h a solution containing 275 mg (0.54 mmol) of 438 

compound 2 and 214 mg (0.54 mmol) of (C6H5)2PCH2CH2P(C6H5)2 in 20 mL of acetone. The white 439 

solid formed was filtered off and discarded, the solvent evaporated, and the residue recrystallized from 440 

CH2Cl2−diethyleter to obtain 5. Yield: 150 mg (35%). 1H NMR (500 MHz, CDCl3, 220 K), δ = 8.15 441 

(br, 2H,NH2), 7.70−7.25 (br m, 22H), 7.15 (t, 3JH−H = 7.5, 1H), 7.03 (t, 3JH−H = 7.5, 1H), 6.77 (t, 442 

3JH−H = 7.5, 1H), 6.64 (t, 3JH−H = 7.5, 1H), 6.25 (d, 3JH−H = 7.5, 1H), 6.18 (t, 3JH−H = 7.5, 1H), 443 

2.90−2.50 (br, 2H, CH2P); 2.25−2.05 (br, 2H, CH2P). 31P NMR (161.98 MHz, CDCl3), δ = 45.4 (s, 444 

1JP−Pt = 1794.1 PA), 39.8 (s, 1JP−Pt = 3827.9, PB). EA (calcd for C38H34ClNP2Pt): C: 57.0% 445 

(57.25%); H: 4.6% (4.30%); N: 1.6% (1.76%). MS-ESI+: m/z = 761.2, (calcd: 761.18) [M − Cl]+. 446 

[Pt{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(C6F5)2PCH2CH2P(C6F5)2}]Cl (6). Compound 6 was obtained 447 

after stirring at room temperature for 2 h a solution containing 133 mg (0.279 mmol) of compound 2 and 448 

212 mg (0.279 mmol) of (C6F5)2PCH2CH2P(C6F5)2 in 20 mL of acetone. The white solid formed was 449 

filtered off and discarded, the solvent evaporated, and the residue treated with diethyl ether. The white 450 

solid obtained was filtered and dried in vacuum. Yield: 204 mg (63%). 1H NMR (400 MHz, dmso-d6), 451 

δ = 8.60 (s, br, 2H, NH2), 7.42 (m, 2H), 7.25 (m, 2H), 7.08 (t, JH−H = 7.6, 1H), 7.03 (t, JH−H = 7.5, 452 

1H), 6.89 (t, JH−H = 7.7, 1H), 6.47 (d, JH−H = 7.7, 1H), 3.50 (br, 1H); 3.15 (br, 1H); 2.85 (br, 2H). 19F 453 

NMR (376.45 MHz, dmso-d6), δ = −122.16 (s, br, 2F, Fo), −125.66 (s, br, 2F, Fo), −127.12 (s, br, 2F, 454 

Fo), −127.30 (s, br, 2F, Fo), −140.59 (s, br, 1F, Fp), −142.44 (s, br, 1F, Fp), −143.47 (s, br, 1F, Fp), 455 

−145.18 (s, br, 1F, Fp), −156.03 (s, br, 2F, Fm), −157.63 (s, br, 2F, Fm), −157.67 (s, br, 2F, Fm), 456 

−158.02 (t, 2JF−F = 18.8, 2F, Fm). 31P NMR (161.98 MHz, dmso-d6), δ = 8.10 (d, 1JP−Pt = 1712.1, 457 

2JP A –P B = 24.3, PA), 1.98 (d, 1JP−Pt = 4073.8, 2JP A –P B = 24.3, PB). 195Pt NMR (85.68 MHz, 458 

dmso-d6), δ = −4399.5(dd, 1JP A −Pt = 4054.5, 1JP B −Pt = 1691.0). EA (calcd for 459 

C38H14ClF20NP2Pt): C: 39.2% (39.45%); H: 1.4% (1.22%); N: 1.2% (1.21%). MS-ESI+: m/z = 460 

1121.0, (calcd: 1120.99) [M − Cl]+. 461 

462 



METHODS AND INSTRUMENTATION 463 

 464 

Elemental Analysis. C, H, and N analyses were performed with an Eager 1108 microanalyzer. 465 

NMR Spectroscppy. NMR spectra were recorded in CDCl3 at 298 K with Mercury 400 (1H, 19F) and 466 

Bruker 400 Avance III HD (31P, 195Pt) spectrometers. Chemical shifts are given in δ values (ppm) 467 

relative to SiMe4 (1H), 85% H3PO4 (31P{1H}), CF3Cl (19F), and H2PtCl6 in D2O (195Pt), and 468 

coupling constants are given in Hz. Multiplicity is expressed as s (singlet), d (doublet), t (triplet), and m 469 

(multiplet). 470 

Electrospray Ionization Mass Spectrometry. Low-resolution ESI (+) spectra were acquired either on 471 

an LC/MSD-TOF instrument or on a ZQ mass spectrometer, utilizing a mixture of H2O/CH3CN (1:1, 472 

v/v) as the eluent. 473 

Crystal Data and Structure Refinement for 3. A yellow prismlike specimen of C30H25ClNPPt, 474 

approximate dimensions 0.124 mm × 0.148 mm × 0.595 mm was used for the X-ray crystallographic 475 

analysis. The X-ray intensity data were measured on a D8 Venture system equipped with a multilayer 476 

monochromator and a Mo microfocus (λ = 0.71073 Å). 477 

The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. 478 

The integration of the data using a triclinic unit cell yielded a total of 62233 reflections to a maximum θ 479 

angle of 30.55° (0.70 Å resolution), of which 7525 were independent (average redundancy 8.270, 480 

completeness = 99.9%, Rint = 2.76%, Rsig = 1.37%) and 7380 (98.07%) were greater than 2σ(F2). The 481 

final cell constants of a = 9.7646(4) Å, b = 10.0995(4) Å, c = 12.4955(6) Å, α = 92.0540(10)°, β = 482 

92.224(2)°, γ = 93.7040(10)°, volume = 1227.87(9) Å3, are based upon the refinement of the 483 

XYZcentroids of reflections above 2θ σ(I). Data were corrected for absorption effects using the 484 

multiscan method (SADABS). The calculated minimum and maximum transmission coefficients (based 485 

on crystal size) are 0.5526 and 0.7461. The structure was solved using the Bruker SHELXTL Software 486 

Package, and refined using SHELXL,52 using the space group P1̅, with Z = 2 for the formula unit, 487 

C30H25ClNPPt. The final anisotropic full-matrix least-squares refinement on F2 with 313 variables 488 

converged at R1 = 1.54%, for the observed data and wR2 = 4.10% for all data. The goodness-of-fit was 489 

1.281. The largest peak in the final difference electron density synthesis was 0.808 e− Å−3 and the 490 

largest hole was −1.986 e− Å−3 with an RMS deviation of 0.173 e− Å−3. On the basis of the final 491 

model, the calculated density was 1.788 g cm−3 and F(000) 644 e−. Further details concerning the 492 

resolution and refinement of these crystal structures are given in Table S1. 493 

Kinetics. The reactions were followed by UV−vis spectroscopy in the 600−300 nm range on an HP8453 494 

or Cary−50 instruments equipped with a thermostated multicell transport. Rate constants were derived 495 

from absorbance versus time traces at the wavelengths where a maximum increase and/or decrease of 496 

absorbance was observed. The values of k were derived by the standard SPECFIT o REACTLAB 497 

software;53,54 no dependence of the observed rate constant values on the selected wavelengths was 498 

detected. The general kinetic technique is that previously described55 and involved mixing stock 499 



methanol solutions of the reactants to achieve the final desired concentrations in the UV−vis cell being 500 

monitored. Rate constants calculation was conducted on the initial 3t1/2 of the reaction with a platinum 501 

complex concentration of 5 × 10−4 M and varying the concentrations of amine and acetate as indicated 502 

in the text. 503 

Cell Culture. Human lung adenocarcinoma cells, A-549, and human breast adenocarcinoma cells, 504 

MDA-MB-231, were grown as a monolayer culture in Dubecco’s modified Eagle’s medium (DMEM) 505 

with L-glutamine, without glucose and without sodium pyruvate) in the presence of 10% heat-506 

inactivated fetal bovine serum (FBS), 10 mM D-glucose, 2 mM L-glutamine, and 0.1% 507 

streptomycin/penicillin. The other human breast adenocarcinoma cell line, MCF-7, was cultured in 508 

minimum essential medium (MEM without phenol red), containing 10% fetal bovine serum (FBS), 10 509 

mM D-glucose, 1 mM sodium pyruvate, 2 mM L-glutamine, 0.1% streptomycin/penicillin, 0.01 mg/mL 510 

insulin, and 1% nonessential amino acids. Human colorectal carcinoma cells, HCT-116, were cultured in 511 

DMEM/HAM F12 (1:1 volume) mixture containing 10% FBS, 4 mM L-glutamine, 12.5 mM D-glucose, 512 

and 0.1% streptomycin/penicillin. Human skin fibroblast cell line, BJ, was cultured in DMEM in the 513 

presence of 10% FBS, 12.5 mM D-glucose, 4 mM L-glutamine, 5 mM pyruvate, and 0.5% 514 

streptomycin/ penicillin. All the cells were incubated in standard culture conditions (humidified air with 515 

5% CO2 at 37 °C). 516 

Cell Viability Assay. To assess the viability assays of all the cell lines, the platinum compounds were 517 

suspended in high purity DMSO at a final concentration of 20 mM as stock solution. To obtain final 518 

assay concentrations, they were diluted in the corresponding culture medium (final concentration of 519 

DMSO was the same for all conditions, and was always lower than 1%). In the case of cisplatin, a stock 520 

solution in water of cisplatin (1 mg/mL) was diluted with water until final assay concentrations. The 521 

assay was performed by a variation of the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 522 

bromide) assay,56,57 which is based on the ability of alive cells to cleave the tetrazolium ring of the 523 

MTT thus producing formazan, which absorbs the light at 550 nm. In brief, the corresponding number of 524 

cells per well (2.5 × 103 A-549 cells/well, 1 × 104 MDA-MB-231 cells/well, 1 × 104 MCF-7 cells/well, 525 

1.5 × 103 HCT-116 cells/well, and 1 × 104 BJ cells/well) were cultured in 96-well plates for 24 h prior 526 

to the addition of different compounds at different concentrations, in triplicates. After incubation for 72 527 

h with compounds, the media was aspirated and 100 μL of filtered MTT (0.5 mg/mL) were added to 528 

each well. Following 1 h of incubation with the MTT, the supernatant was removed, and the precipitated 529 

formazan was dissolved in 100 μL of DMSO. Relative cell viability, compared to the viability of 530 

untreated cells, was measured by absorbance at 550 nm on an ELISA plate reader (Tecan Sunrise 531 

MR20−301, TECAN, Salzburg, Austria). Concentrations that inhibited cell growth by 50% (IC50) after 532 

72 h of treatment were subsequently calculated. 533 

DNA Migration Studies. A stock solution (10 mM) of each compound was prepared in high-purity 534 

DMSO. Then, serial dilutions were made in Milli-Q water (1:1). Plasmid pBluescript SK+ (Stratagene) 535 

was obtained using QIAGEN plasmid midi kit as described by the manufacturer. Interaction of drugs 536 



with pBluescript SK+ plasmid DNA was analyzed by agarose gel electrophoresis.58 Plasmid DNA 537 

aliquots (40 μg/mL) were incubated in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) with 538 

different concentrations of compounds 2−6 ranging from 0 to 200 μM at 37 °C for 24 h. Final DMSO 539 

concentration in the reactions was always lower than 1%. For comparison, cisplatin, and EB were used 540 

as reference controls. Aliquots of 20 μL of the incubated solutions containing 0.8 μg of DNA were 541 

subjected to 1% agarose gel electrophoresis in TAE buffer (40 mM tris-acetate, 2 mM EDTA, pH 8.0). 542 

The gel was stained in TAE buffer containing EB (0.5 mg/mL) and visualized and photographed under 543 

UV light. 544 

Topoisomerase I Inhibition. Topoisomerase I-based experiments were performed as described 545 

previously.59 Supercoiled pBluescript DNA, obtained as described above, was treated with 546 

topoisomerase I in the absence or presence of increasing concentrations of compounds 5 and 6. Assay 547 

mixtures contained supercoiled pBluescript DNA (0.8 μg), calf thymus topoisomerase I (3 units) and 548 

complexes 5 and 6 (0−100 μM) in 20 μL of relaxation buffer Tris-HCl buffer (pH 7.5) containing 175 549 

mM KCl, 5 mM MgCl2, and 0.1 mM EDTA. EB (10 μM) was used as a control of intercalating agents, 550 

and etoposide (E, 100 μM) was a control of nonintercalating agent. Reactions were incubated for 30 min 551 

at 37 °C and stopped by the addition of 2 μL of agarose gel loading buffer. Samples were then subjected 552 

to electrophoresis and DNA bands stained with ethidium bromide as described above. 553 

To distinguish whether compounds act as topoisomerase inhibitors or DNA intercalators, the conversion 554 

of relaxed DNA to a supercoiled state caused by the compounds was analyzed in the presence of 555 

topoisomerase I. Relaxed DNA was obtained by incubation of supercoiled DNA with topoisomerase I as 556 

described above. Assay mixtures (20 μL) contained: relaxed DNA, topisomerase I (3 units), and 557 

compound (50 μM or 100 μM). Reactions were incubated 20 min at 37 °C and stopped as described 558 

above. EB (10 μM) was used as a control of intercalative drug. 559 

Cathepsin B Inhibition Assay. The colorimetric cathepsin B assay was performed as described by 560 

Casini et al.60 with few modifications. Briefly, the reaction mixture contained 100 mM sodium 561 

phosphate (pH 6.0), 1 mM EDTA, and 200 μM sodium N-carbobenzoxy-Llysine p-nitrophenyl ester as 562 

substrate. To have the enzyme catalytically active before each experiment, the cysteine in the active site 563 

was reduced by treatment with dithiothreitol (DTT). For this purpose, 5 mM DTT was added to 564 

cathepsin B sample before dilution and incubated 1 h at 30 °C. To test the inhibitory effect of the 565 

platinum compounds on cathepsin B, activity measurements were performed in triplicate using fixed 566 

concentrations of enzyme (1 μM) and substrate (200 μM). The platinum compounds were used at 567 

concentrations ranging from 5 to 100 μM. Previous to the addition of substrate, cathepsin B was 568 

incubated with the different compounds at 25 °C for 2 h. The cysteine proteinase inhibitor E-64 was 569 

used as a positive control of cathepsin B inhibition. Complete inhibition was achieved at 10 μM 570 

concentration of E-64. Activity was measured over 90 s at 326 nm on a UV spectrophotometer. 571 

Cell Cycle Analysis. Cell cycle was assessed by flow cytometry using a fluorescence activated cell 572 

sorter (FACS). For this assay, 5×104 A-549 cells were seeded in 6 well plates with 2 mL of medium. 573 



After 24 h of incubation, 3, 5, and 6 were added at their IC50 values (7.0, 0.28, and 0.73 μM, 574 

respectively). Following 72 h of incubation, cells were harvested by mild tripsinization, collected by 575 

centrifugation and resuspended in Tris-buffered saline (TBS) containing 50 mg/mL PI, 10 mg/mL 576 

DNase-free RNase, and 0.1% Igepal CA-630. The cell suspension was incubated for 1 h at room 577 

temperature to allow for the staining of the cells with the PI, and afterward, FACS analysis was carried 578 

out at 488 nm in an Epics XL flow cytometer (Coulter Corporation, Hialeah, FL). Data from 1 × 104 579 

cells were collected and analyzed using the Multicycle program (Phoenix Flow Systems, San Diego, 580 

CA). 581 

Apoptosis Assay. Apoptosis was assessed evaluating the annexin-V binding to phosphatidylserine (PS), 582 

which is externalized early in the apoptotic process. First, 5 ×104 A-549 cells per well were seeded in 6-583 

well plates with 2 mL of medium and treated as described above for the cell cycle analysis assay. After 584 

cell collection and centrifugation, cells were resuspended in 95 μL binding buffer (10 mM 585 

HEPES/NaOH, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2). Then, 3 μL of Annexin-V FITC conjugate (1 586 

mg/mL) was then added, and the suspension was incubated in darkness for 30 min, at room temperature. 587 

Just before FACS analysis, the cell suspension was added to a vial containing 500 μL of binding buffer, 588 

and then stained with 20 μL of 1 mg/mL PI solution. Data from 1 × 104 cells were collected and 589 

analyzed. 590 

Data Analysis. For each compound, a minimum of three independent experiments with triplicate values 591 

to measure antiproliferative activity and a minimum of two independent experiments for cell cycle 592 

analysis and assessment of apoptosis were conducted. Data are given as the mean ± standard deviation 593 

(SD). 594 

Determination of Intracellular Reactive Oxygen Species (ROS) Levels. A-549 lung cancer cells were 595 

grown on 6-well plates to 70% confluence, washed once with warm PBS, and incubated with 5 μM 2′-596 

7′-dichlorofluorescein diacetate (DCFH-DA, Invitrogen) in PBS supplemented with 5.5 mM glucose and 597 

2 mM glutamine. After incubation at 37 °C for 30 min, PBS was replaced with complete culture 598 

medium, and the cells were incubated for another 50 min at 37 °C. Finally, cells were trypsinized and 599 

resuspended thoroughly with 0.4 mL of PBS, DCFH-DA (50 μM), and PI(20 μg/mL). Intracellular 600 

internalized probe reacts with ROS and emits fluorescence when excited at 492 nm. Emitted 601 

fluorescence was recorded by flow cytometry at 520 nm using an Epics XL flow cytometer (Coulter 602 

Corporation, Hialeah, FL, USA). Data of DCF fluorescence concentrations from 1 × 104 PI negative 603 

cells were collected and analyzed using multicycle program (Phoenix FlowSystems, San Diego, CA, 604 

USA)·45 605 

Western Blot Analysis. For this assay, 5 × 104 A-549 cells were seeded in 6-well plates with 2 mL of 606 

medium. After 24 h of incubation, 3, 5, and 6 were added at their IC50 values or double of IC50 values 607 

(7.0, 0.28, and 0.73 μM, or 14, 0.56, and 1.46 μM respectively). Following 24, 48, or 72 h of incubation, 608 

whole cell lysate containing total protein extract was isolated by using RIPA buffer containing 50 mM 609 

Tris (pH 8.0), 150 mM sodium chloride, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium 610 



dodecyl sulfate (SDS), 1% protease inhibitor cocktail (Thermo Fisher Scientific Inc.), and 1% 611 

phosphatase cocktail (Thermo Fisher Scientific Inc.). Cells were scraped, sonicated and centrifuged at 612 

15 000 g for 20 min at 4 °C. Supernatants were recovered, and protein content was quantified by the 613 

BCA kit (Pierce Biotechnology). Then, 20 mg of protein was loaded on a 10% SDS-polyacrylamide gel 614 

and transferred to a polyvinyl nitrocellulose transfer membrane (Bio-Rad Laboratories). The membranes 615 

were blocked by incubation at room temperature in PBS buffer containing 0.1% of Tween and 5% dry 616 

milk for 1 h and washed three times with PBS−0.1% Tween. Then, membranes were blotted with the 617 

primary antibodies overnight at 4 °C. After primary antibody incubation, the blots were washed three 618 

times with PBS−0.1% Tween and incubated with the appropriate secondary antibody for 1 h at room 619 

temperature. After secondary antibody incubation, membranes were washed again three times with 620 

TBS−0.1% Tween before protein detection. All blots were treated with the Immobilon ECL Western 621 

Blotting Detection Kit Reagent (Millipore) and developed after exposure to an autoradiography film in a 622 

film cassette. The primary antibodies used were Bax (Santa Cruz Biotechnology), Bcl-2 (Santa Cruz 623 

Biotechnology), caspase 3 and 9 (Cell Signaling Technology), cleaved caspase 3 (Cell Signaling 624 

Technology), p53 (Calbiochem), PARP (Pharmingen), and β-actin (MP Biomedicals). 625 

Interactions of 6 with NADH. NADH (3.5 mol equiv) was added to an NMR tube containing a 0.8 mM 626 

solution of complex 6 in 50% methanol-d4 50% D2O at ambient temperature. 1H NMR spectra of the 627 

resulting solution was recorded at 310 K at 0 and 72 h and 1 week. 628 

UV/Vis Detected Catalytic Reaction of Compound 6 with NADH. Reaction between 6 (0.8 μM) with 629 

NADH (87 μM) in H2O was monitored by UV−vis at 310 K for 22 h. In order to dissolve compound 6, 630 

a few drops of MeOH were used. Turnover number (TON) is defined as the number of moles of NADH 631 

that a mole of catalyst (compound 6) can convert within 22 h. TON was calculated from the difference 632 

in NADH concentration after 22 h divided by the concentration of compound 6 (catalyst). The 633 

concentration of NADH was obtained using the extinction coefficient ε339 = 6220 M−1cm−1. 634 

Detection of H2O2. For the reaction of compound 6 (1 mM) with 3 mol equiv NADH in 30% 635 

MeOH/70% H2O (v/v) at 310 K, H2O2 was detected by quantofix peroxide test sticks (Peroxid 25 from 636 

Sigma-Aldrich). 637 

Theoretical Calculations. Each system has been studied using the following procedure: First, the most 638 

stable conformation has been determined using molecular mechanics, with the Spartan ’14 software;61 639 

the MMFF force field62 has been chosen. Geometries and energies have been calculated at the DFT 640 

level, using the B3LYP functional63 as implemented in Gaussian 03.64 The basis set has been chosen as 641 

follows: LANL2DZ65 for Pt and 6-31G*,66 including polarization functions for non-hydrogen atoms, 642 

for H, C, N, O, P, and F. Solvation effects have been calculated using the CPCM method.67 643 
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Legends to figures 845 

 846 

Scheme 1. Synthesis of Platinum(II) Compoundsa 847 

 848 

Figure. 1. Molecular structure of 3. Selected bond lengths (Å) and angles (deg) with estimated standard 849 

deviations: Pt(1)−C(8): 2.0255(15); Pt(1)−N(1): 2.1051(14); Pt(1)−P(1): 2.2358(4); Pt(1)−Cl(1): 850 

2.4051(4); C(8)−Pt(1)−N(1): 84.90(6); C(8)−Pt(1)−P(1): 95.45(5); N(1)−Pt(1)−Cl(1): 84.09(4); 851 

P(1)−Pt(1)−Cl(1): 95.917(14). 852 

 853 

Figure. 2. Eyring plot of the temperature dependence of the rate constants obtained for the C−H bond 854 

activation process measured. 855 

 856 

Figure. 3. Interaction of pBluescript SK+ plasmid DNA (0.8 μg) with increasing concentrations of 857 

compounds under study 2−6, cisplatin, and ethidium bromide (EB). Lane 1: DNA only. Lane 2: 2.5 μM. 858 

Lane 3: 5 μM. Lane 4: 10 μM. Lane 5: 25 μM. Lane 6: 50 μM. Lane 7: 75 μM. Lane 8: 100 μM. Lane 9: 859 

200 μM; sc = supercoiled closed circular DNA; oc = open circular DNA. 860 

 861 

Figure. 4 Effect of compounds 5 and 6 on topoisomerase I mediated relaxation at different 862 

concentrations. Conversion of supercoiled pBluescript plasmid DNA (0.8 μg) to relaxed DNA by the 863 

action of topoisomerase I (3 units) in the absence or in the presence of increasing amounts of 864 

compounds 5 and 6 was analyzed by agarose gel electrophoresis. Ethidium bromide (EB) was used as a 865 

control of intercalating agent and etoposide (E) as a control of nonintercalating agent. Lane 1: (−) 866 

scDNA only. Lane 2: 0 μM drug. Lane 3: 10 μM drug. Lane 4: 25 μM drug. Lane 5: 50 μM drug. Lane 867 

6: 100 μM drug. Except for lane 1, all lanes included topoisomerase I; sc = supercoiled closed circular 868 

DNA; oc = open circular DNA. 869 

 870 

Figure. 5. Effect of compound 5 on the activity of topoisomerase I. Lane 1: (−) scDNA as a control. 871 

Lane 2: relaxed DNA as a control. Relaxed pBluescript plasmid DNA was incubated with topoisomerase 872 

I (3 units) in the presence of 25 μM (lane 4), 50 μM (lane 5), or100 μM (lane 6) of compound 5, and 10 873 

μM (lane 3) of EB. The conversion of relaxed DNA to supercoiled DNA was analyzed after a 20 min 874 

incubation. Reaction containing EB is included as an example of an intercalative drug. sc = supercoiled 875 

closed circular DNA; oc = open circular DNA. 876 

 877 

Figure. 6. Percentage of cell cycle distribution in A-549 cells. The conditions include untreated cells 878 

(control) and cells treated with compounds 3, 5, or 6 at concentrations equal to their IC50 values (7.0, 879 



0.28, and 0.73 μM, respectively) for 72 h. The harvested cells were stained with PI (propidium iodide) 880 

and their DNA content analyzed by flow cytometry. 881 

 882 

Figure 7. Percentage variations of A-549 which are in alive (Q4), early apoptotic (Q3), or late 883 

apoptotic/necrotic (Q2/Q1) phases. The conditions include untreated cells (control) and the cells treated 884 

with compounds 3, 5 or 6 at a concentration equal to their IC50 value (7.0, 0.28, and 0.73 μM, 885 

respectively) for 72 h. The harvested cells were stained with Annexin-PI and analyzed by flow 886 

cytometry. 887 

 888 

Figure 8. ROS levels after 24, 48, and 72 h of incubation with compounds 3−6 at their IC50 889 

concentrations (7.0, 8.13, 0.28, and 0.73 μM, respectively) in A-549 lung adenocarcinoma cell line. 890 

 891 

Figure 9. Western Blot analysis of certain proteins after 24 h of incubation with compounds 3, 5, or 6 at 892 

their IC50 concentrations or double of IC50 concentrations in A-549 lung adenocarcinoma cell line. 893 

 894 

Scheme 2. Plausible Mechanism for the Platinum(II) Catalytic Oxidation Process 895 

896 
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Table 1.. IC50 (μM) Values for Compounds under Studya 953 
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