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ABSTRACT 

Estuaries face different anthropogenic pressures as a consequence of their 

privileged location and high productivity, and thus a diverse array of pollutants 

enter the ecosystem. Metals are of particular concern, due to their persistent 

and non-degradable character and pernicious effects exerted on the biota. 

Metals are found in several compartments of the estuarine ecosystem. They 

may be in dissolved or particulate forms in the water column, sorbeb on the 

sediments or accumulated in the biota. This thesis aimed to determine the effect 

of the sediment-organism interactions in metals’ cycling in salt marsh and 

intertidal sediments. Special attention was given to metal speciation, to assess 

the mobility and bioavailability of such elements. Total metal concentration was 

determined in tissues of two fish species occupying different levels in the 

estuarine trophic web, as well as in bottom sediments, to assess metal 

exposure and accumulation in fish tissues. Sequential extractions were made 

in rhizosediments of three halophytes and adjacent bare mud flat sediments 

from two different salt marshes. Operationally defined fractions were obtained 

using solution of increasing strength and acidity, to evaluate the effect of 

halophytes on metal availability. Two laboratory trials were conducted in which 

metal fractionation was assessed in on sediments before and after passing 

through the gut of the two species. The results of these works indicate that 

metal accumulation in estuarine sediments can affect the accumulation in fish 

tissues. Sediment-organism interactions alter metal mobility in the sediments. 

Salt marsh plants tend to immobilize metals in their rhizosediments, while the 

ingestion of sediment by and detritivorous species, and subsequent excretion 

of fecal pellets, makes some metals more bioavailable to the estuarine trophic 

web.  
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RESUMO 

INFLUÊNCIA DAS PLANTAS, DOS INVERTEBRADOS E DOS PEIXES NA MOBILIZAÇÃO DE 

METAIS EM SEDIMENTOS DE SAPAL E ZONA ESTUARINA ADJACENTE 

Os estuários enfrentam diferentes pressões antropogénicas inerentes à sua 

localização privilegiada e elevada produtividade, e têm como consequência a 

presença mais ou menos acentuada de diversos tipos de poluentes. A 

persistência e o carácter não degradável dos metais no ambiente é 

particularmente preocupante, tendo em conta os efeitos nocivos que podem 

exercer no biota. Os metais podem ocupar vários compartimentos num 

estuário, e.g., na coluna de água (dissolvidos ou particulados), adsorvidos ao 

sedimento ou acumulados nos organismos. A presente tese teve como objetivo 

avaliar o efeito das interações organismo-sedimento na dinâmica de metais em 

sedimentos de sapal e áreas intertidais adjacentes, incidindo em particular na 

especiação dos metais e na sua disponibilização para a teia trófica estuarina. 

Para avaliar a exposição de duas espécies de peixes de diferentes níveis da 

teia trófica estuarina à contaminação por metais no sedimento, determinaram-

se as concentrações totais em tecidos e em sedimentos superficiais. Analisou-

se também a especiação dos metais nos sedimentos entre raízes de três 

halófitas e nos sedimentos sem coberto vegetal, em dois sapais. Extraíram-se 

sequencialmente frações operacionais com soluções de força e/ou acidez 

crescente, para avaliar o impacto dos organismos na mobilidade dos metais. 

Realizaram-se ainda duas experiências em que se determinou a especiação 

dos metais no sedimento antes e depois da ingestão por duas espécies de 

diferentes grupos taxonómicos. Concluiu-se que a acumulação de metais no 

sedimento estuarino pode afetar a acumulação nos tecidos das espécies 

selecionadas. A interação sedimento-organismo conduz a alterações da 

dinâmica dos metais; a ação das plantas de sapal potencia a imobilização de 

alguns elementos, sendo o efeito da ingestão de sedimento por organismos 

detritívoros aparentemente contrário, disponibilizando os metais sob formas 

mais acessíveis à teia trófica estuarina.  

Palavras-Chave: Metais; Especiação; Influência dos organismos; 
Sedimentos; Estuário 
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RESUMO ALARGADO 

Os estuários têm uma localização privilegiada, situando-se em zonas de 

interface entre a terra e o mar, em ambientes de elevada produtividade de 

elevada produtividade, tanto a nível terrestre, como aquático. Estão, 

reconhecidamente, entre os ecossistemas de maior valor ecológico e 

económico, conduzindo a uma elevada atratividade para a ocupação por 

populações humanas e atividades associadas. A multitude de usos levou a que 

intensas pressões se fizessem sentir nos estuários a nível mundial. A 

contaminação por metais é uma entre a miríade de consequências dessas 

pressões antropogénicas, e uma das mais preocupantes pelos efeitos 

perniciosos para o biota e, em última análise, para as populações humanas. 

Os sedimentos, pela sua facilidade de obtenção e análise, são 

tradicionalmente recomendados em programas de monitorização de 

contaminação por metais como a primeira abordagem a ser tomada. Têm 

contudo a desvantagem da concentração metálica total não corresponder na 

sua generalidade ao teor disponível para o biota, e, consequentemente, a 

avaliação da toxicidade inerente ao material analisado ser bastante limitada. 

Não obstante, a comparação da concentração total dos metais presentes no 

sedimento com, por exemplo, os respetivos níveis pré-industriais permite obter 

um valor designado por “fator de enriquecimento”. A comparação entre fatores 

de enriquecimento calculados para diferentes áreas e ao longo de intervalos 

de tempo definidos pode revelar assim o grau de impacto sofrido pelo 

ecossistema. Apesar de nem sempre ser observada uma relação entre o teor 

de metais no sedimento e a acumulação nos organismos, há todavia estudos 

em que tal relação foi verificada. 

A presente tese teve como objetivo avaliar o efeito das interações organismo-

sedimento na dinâmica de metais em sedimentos de sapal e áreas intertidais 

adjacentes, incidindo em particular na especiação dos metais nos sedimentos. 

Nos trabalhos que compõem esta tese, o termo ‘especiação’ refere-se à 

partição ou fracionamento geoquímico dos metais, ou seja, à sua distribuição 

por diferentes fases sólidas sedimentares, como sejam por exemplo os 
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carbonatos ou óxidos de ferro. Na Introdução Geral, capítulo 1, foi realizado 

um enquadramento do tema da presente tese, com foco sobre a dinâmica de 

metais nos sedimentos estuarinos, e nas implicações da mobilidade e 

disponibilização desses elementos para os organismos aquáticos. Destacou-

se igualmente a importância da avaliação da especiação dos metais, e como 

diferentes formas químicas representam diferentes consequências na 

disponibilidade e toxicidade dos metais para o biota.  

No capítulo 2 avaliou-se a exposição potencial da tainha Liza ramada à 

contaminação do sedimento por metais. Esta espécie ocupa um nível trófico 

baixo na teia trófica estuarina podendo ser considerada como 

predominantemente detritívora. Analisou-se a acumulação de um conjunto de 

elementos essenciais (Co, Cr, Cu, Ni e Zn) e não-essenciais (Cd, Pb e Hg) no 

sedimento superficial proveniente de áreas utilizadas por esta espécie para a 

sua alimentação. A preferência alimentar de L. ramada foi estudada com base 

na dimensão das partículas ingeridas, tendo sido constatada a maior 

preferência dos exemplares de menor dimensão por partículas de sedimento 

mais finas. Considerando a correlação significativa normalmente encontrada 

entre os sedimentos mais finos e uma maior concentração de metais 

associados aos mesmos, concluiu-se que os juvenis de L. ramada, estando 

potencialmente mais expostos a teores mais elevados de metais no sedimento, 

por via alimentar, teriam a tendência para acumularem os mesmos elementos 

numa maior extensão que os adultos da mesma espécie. Esta hipótese foi 

testada na segunda parte do capítulo 2, em que se determinou a acumulação 

de metais nos tecidos de exemplares de diferentes classes 

etárias/dimensionais. Os exemplares de menor dimensão apresentaram de 

facto maior concentração de metais nos tecidos, excetuando a concentração 

de Hg, para o qual é reconhecida a bioacumulação crescente com a idade nos 

teleósteos marinhos/estuarinos. A maior exposição dos juvenis ao sedimento 

mais contaminado, aliada ao seu metabolismo mais elevado, contribuirá 

certamente para esse resultado. A análise da concentração de metais nos 

conteúdos estomacais de L. ramada revelou não ser essa uma abordagem 

eficaz para determinar a exposição diferenciada a que juvenis e adultos 

estarão sujeitos. A este respeito, os conteúdos estomacais parecem mostrar 
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apenas um “instantâneo”, tendo sido considerados como maus indicadores da 

exposição destes organismos à contaminação por metais do ecossistema 

estuarino. Dada a heterogeneidade dos sedimentos superficiais, e 

considerando os amplos movimentos que as tainhas efetuam no estuário para 

se alimentarem, a concentração de metais determinada nos conteúdos 

estomacais não será refletida na bioacumulação nos tecidos, nomeadamente 

no músculo. 

A forma como os organismos podem influenciar a dinâmica de metais no 

sedimento foi estudada no capítulo 3. As plantas de sapal aprisionam os metais 

nos sedimentos entre raízes, e através da modificação de características 

físico-químicas destes últimos afetam a mobilidade dos metais que aí ocorrem. 

Por outro lado, é também reconhecida a interferência que os organismos 

bentónicos exercem sobre a dinâmica sedimentar, nomeadamente através da 

bioturbação que o seu comportamento gera, e que pode atingir profundidades 

de até 20 cm. Desta forma, no capítulo 3 descreveu-se a influência de três 

espécies de plantas de sapal (Halimione portulacoides, Sarcocornia fruticosa 

e Spartina maritima), provenientes de dois sapais do estuário do Tejo com 

morfologia distinta (Hortas e Rosário), na especiação de metais nos 

sedimentos. Adicionalmente selecionaram-se duas espécies animais cuja 

ecologia e nível trófico teriam potencialmente a capacidade de afetar 

igualmente a especiação de metais nos sedimentos estuarinos: um bivalve, 

Scrobicularia plana, e um peixe, L. ramada. Os resultados obtidos 

evidenciaram a capacidade das plantas imobilizarem os metais em formas 

menos biodisponíveis, tendo contudo sido constatado que o comportamento 

químico dos metais se sobrepõe a condicionantes relativas à espécie 

colonizadora ou ao sapal selecionado. Dois dos elementos, Cd e Zn, 

apresentaram maior mobilidade no sedimento, enquanto o Cu e o Zn se 

revelaram elementos bastante mais estáveis (em particular o Cu), 

predominando a associação a frações mais refartarias do sedimento. Não 

obstante o peso do comportamento químico dos metais na sua partição 

geoquímica, observaram-se, ainda assim, diferenças na influência da 

morfologia do sapal sobre o ciclo de metais. No sapal do Rosário, mais 

desenvolvido/maduro, com maior teor de matéria orgânica e sedimentos finos, 
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foi evidente uma maior capacidade de retenção e imobilização dos metais no 

sedimento. Ao comparar os sedimentos, de entre raízes com os das áreas 

intertidais adjacentes (sem coberto vegetal), verificou-se que a presença de 

S. fruticosa promoveu maiores diferenças no fracionamento dos metais que as 

outras duas espécies. Por outro lado, no sapal das Hortas, um sapal menos 

desenvolvido/mais jovem, a presença das três halófitas promoveu diferenças 

significativas em relação à partição dos metais. Em qualquer dos casos, a 

disponibilidade dos metais era inferior nos sedimentos entre raízes do que nos 

que provinham das zonas sem vegetação. Ao contrário do efeito exercido pelas 

plantas, a ação das duas espécies de animais parece ter promovido maior 

biodisponibilidade de alguns metais no sedimento estuarino, nomeadamente 

do Cd, Cu e Zn. A partição destes três elementos nas frações mais lábeis 

evidenciou um aumento após a passagem pelo trato digestivo das duas 

espécies, o que não parece acontecer no caso do Ni.  

No capítulo 4 estudou-se o potencial de um predador de topo da teia trófica 

estuarina como indicador da contaminação de metais no sedimento. À 

semelhança do estudo realizado na primeira parte desta tese, determinaram-

se as concentrações de vários elementos essenciais e não-essenciais no 

músculo e fígado de uma espécie piscívora, neste caso o xarroco, 

Halobatrachus didactylus. Observaram-se variações na acumulação de metais 

no fígado facilmente atribuíveis às alterações metabólicas durante a época de 

reprodução desta espécie, tendo também sido verificadas diferenças entre 

machos e fêmeas. Por conseguinte, decidiu-se não ser o fígado um órgão 

aconselhável para estudos de monitorização de metais, apesar de poder 

refletir potencialmente o aporte recente de metais no ambiente. Para obviar a 

influência do género e da fase reprodutora no metabolismo dos metais, 

comparou-se a acumulação no músculo de machos adultos com idade 

estimada superior a 5 anos. Por serem mais sedentários que as fêmeas, 

nomeadamente porque são os machos que guardam os ninhos durante o 

desenvolvimento dos ovos, foi admitida a hipótese de que estes indivíduos 

poderiam refletir de uma forma mais precisa a contaminação de metais no 

sedimento. Foram comparados exemplares e amostras de sedimento 

superficial de duas áreas com níveis muito distintos de contaminação por 
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metais. A frente estuarina do Portinho da Costa (Almada), perto da 

embocadura do Tejo, é uma área com hidrodinamismo e profundidade 

elevados e onde a contaminação por metais é relativamente baixa. Na Baía do 

Seixal, localizada numa área mais interior do estuário, a pressão urbana e 

industrial sente-se de uma forma particularmente acentuada, o que aliado a 

um baixo hidrodinamismo e profundidade reduzida conduz a que neste local 

seja possível encontrar níveis consideravelmente elevados de metais. Os 

resultados obtidos mostraram que os elementos essenciais, como o Zn e o Cu, 

por serem regulados metabolicamente, não exibem diferenças que possam 

refletir a concentração desses elementos patente no sedimento. Contudo, para 

elementos não-essenciais ao metabolismo destes animais, como o Cd, o Pb, 

e o Ni1 concluiu-se que o xarroco tem potencial como indicador da sua 

biodisponibilidade no ecossistema. 

Por último, no capítulo 5 teceram-se algumas considerações finais sobre os 

trabalhos suprarreferidos, integrando-se os principais resultados e conclusões 

dos capítulos anteriores. Concluiu-se que a acumulação de metais no 

sedimento estuarino afeta potencialmente a acumulação em determinados 

organismos, havendo uma interação sedimento-organismo que resulta na 

alteração da dinâmica dos metais neste ecossistema. A ação das plantas de 

sapal potencia a diminuição da biodisponibilidade de alguns elementos, ao 

passo que a ação de espécies predominantemente detritívoras parece ter o 

efeito contrário, disponibilizando os metais sob formas mais móveis e 

acessíveis à teia trófica estuarina. Cenários como o da subida do nível médio 

da água do mar podem potenciar a exportação e disponibilização de metais 

nos estuários.  

 

                                                 
1 Apesar de ser essencial para o metabolismo de diversas espécies, nomeadamente de microrganismos, 
plantas, aves e mamíferos, o Ni não parece desempenhar nenhuma função metabólica no metabolismo 
dos peixes.  
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GENERAL INTRODUCTION 

Estuaries and saltmarshes: systems under human pressure 

Estuaries are among the most productive and valuable, not only regarding their 

ecological importance, but also when considering the average (per hectare) of 

the estimated values of the services they provide (Costanza et al., 1997; McLusky 

and Elliott, 2004). 

The definition of estuaries given by Pritchard (1967) is probably one of the most 

cited: “an estuary is a semi-enclosed coastal body of water which has a free 

connection with the open sea and within which sea water is measurably diluted 

with fresh water derived from land drainage”. This definition was modified 

throughout the time, adding more features than the connection with the sea and 

the salinity gradient. A more comprehensive definition, where geomorphological, 

physical, chemical and biological criteria are comprised, is the one given by 

Perillo (1995), in which “an estuary is a semi-enclosed coastal body of water that 

extends to the effective limit of tidal influence, within which sea water entering 

from one or more free connections with the open sea, or any other saline coastal 

body of water, is significantly diluted with fresh water derived from land drainage, 

and can sustain euryhaline biological species from either part or the whole of their 

life cycle”. Defining what is an estuary raises debate (Day, 1980; Reddering, 

1980) because of the divergent proprieties found within and among estuaries 

from different regions of the world (Bianchi, 2013), but in a broader perspective, 

estuaries may be defined as a “portion of the earth’s coastal zone where there is 

interaction of ocean water, fresh water, land, and atmosphere” (Day et al., 2013), 

including areas of land and sea affected by coastal activities (French, 1997). 

What stands common to all the definitions is that an estuary has an interface 

dimension, which challenges species’ physiology to adapt to severe 

environmental gradients, such as temperature, turbidity, dissolved oxygen or 

salinity fluctuations (Chapman and Wang, 2001). 

The presence of human populations around coastal areas in general has been 

occurring during the course of history, with the first human civilizations settling 

around estuaries about 5000 years ago (Day et al., 2013). While the first reasons 
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for population settlement around the estuarine areas were related with their high 

productivity, given the richness of the soils in these areas and the abundant 

natural biota, rivers provided important routes for navigation and the logistic 

advantages made these regions appealing for establishing ports and industries. 

This development, of course, did not arise without a price: the increasing growth 

of human populations settlements, and the increase of uses made on estuaries, 

led to intense pressures and demands over the natural resources (French, 1997), 

rendering coastal waters, and especially estuarine waters, widely polluted  and 

subjected to severe environmental degradation (McLusky and Elliott, 2004). 

Chemical pollution, in particular, occurs when a chemical substance promotes 

changes in the natural system as a result of man’s activities, and as a 

consequence the fitness of individuals, populations, species or communities to 

survive is reduced (McLusky and Elliott, 2004). Within chemical pollutants, metals 

(commonly referred to as heavy metals2) have received particular interest in the 

last decades. In a review study published in 2012, the term “heavy metals” was 

among the five most used keywords in estuarine pollution research, “metals” was 

in the top three words in titles and abstract, and “sediments” was the most 

important issue in estuarine pollution related papers (Sun et al., 2012). 

Environmental awareness on estuarine pollution by metals and its impending 

pernicious effects on the biota has consequently become an issue of increasing 

concern, especially in the last two to three decades. This concern comes from 

the fact that metals may become adsorbed onto sediment particles, that way 

becoming stored with deposited sediment, transforming mudflats and salt 

marshes into metal sinks (Caçador et al., 1996a,b).  

Salt marshes are complex ecosystems distributed in mid and high latitudes, and 

are among the most productive environments in the world. They are natural or 

semi-natural ecosystems that develop on alluvial sediments and border saline 

water bodies, depending on favorable conditions of wave energy, tidal regime, 

and substrate to grow (Beeftink, 1977; Dijkema et al., 1990; Kennish, 2001). 

                                                 
2 Although commonly used in biological and environmental studies, given its connotation with toxicity and 
deleterious effects on biota, it is currently agreed that the term “heavy metal(s)” should be avoided, as 
there is no chemical basis in the choice of metals included in this classification (Duffus, 2002), not to 
mention the cases of metalloids and nonmetals commonly addressed as “heavy metals”. 
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Halophytic vegetation (mainly grasses and small shrubs), along with algae, are 

responsible for the extraordinary primary production associated with these 

ecosystems (Ibáñez et al., 2013; Teixeira et al., 2014), and the zonation and 

distribution of vegetation are affected by factors like frequency and duration of 

flood, sulfide concentration, and substrate composition (Ibáñez et al., 2013). Salt 

marshes provide many other services beyond the aforementioned high 

productivity. For example, they absorb wave energy, mitigating shoreline erosion 

and attenuating flood events, functioning like a buffer (Dijkema et al., 1990; 

Kennish, 2001). Other vital functions are undertaken by salt marshes, like 

providing nursery areas in tidal creeks for fish species, and resting, breeding and 

feeding areas to many resident and migratory bird species. The importance of 

these wetlands was officially recognized by their inclusion in the European 

Habitats Directive and in the Water Framework Directive (WFD). Notwithstanding 

the ecological importance of salt marshes, human pressures and impacts over 

them have long been observed. Physical alterations have led to the direct and 

indirect destruction of wetlands, with drainage, filling and land reclamation being 

common processes. Another significant impact is the one caused by the 

construction of dams, weirs or other water retention structures upstream, 

compromising the supply of sediment to salt marshes and estuaries in general. 

Sediment starvation, together with sea level rise may condemn wetlands 

subsistence (Ibáñez et al., 2013). Salt marsh vegetation plays an important role 

in sediment retention (whose inputs come not only from rivers, but also from tidal 

flooding), acting as a trap for sediment ant thus increasing accretion rates 

(Pethick, 1981). As pointed out earlier, these sediments will act as sinks of 

pollutants, namely metals. As a consequence of salt marsh locations - usually 

surrounded by urban and industrial areas, they consequently receive important 

discharges of these contaminants.  

Metal cycling in estuaries 

Salt marsh sediments are not only a sink for metals: they may also become a 

source, given the appropriate conditions. For example, metals stored in sediment 

may be remobilized during erosion events, or when the sediment is somehow 

disturbed. This may be a significant path for metals to re-enter the aquatic 
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ecosystem (French, 1997). Depending on the form of the metals, and if these are 

in more or less bioavailable states, sediments become a source of metals to the 

biota, including to salt marsh plants. Vegetation has a direct involvement in the 

retention and transformation of metals (Caçador et al., 1996b; Caçador et al., 

2009), in addition to the role in the entrapment of sediments. Salt marsh plants 

accumulate metals to a great extent in their roots (Caçador et al., 2000), and 

metal concentrations in the sediments around the root system (rhizosediments) 

are greatly influenced by the presence of halophytic vegetation (Caçador et al., 

1996a; Doyle and Otte, 1997; Reboreda and Caçador, 2007b). When comparing 

metal levels in bare mudflats with adjacent colonized sediment, higher 

concentrations are usually found in the latter, surrounding the root systems of 

halophytes (Reboreda et al., 2008). The complexity of the interaction between 

plants and sediments goes further, as the vegetation presence modifies metal 

partition in the sediment where it stands (Caçador et al., 1996b; Reboreda and 

Caçador, 2007a; Reboreda et al., 2008). 

Metal contamination of estuarine bed sediments can have a significant impact on 

concentrations along the estuary (Wu et al., 2005). In the middle reaches of an 

estuary, tidal sediment disturbance and surface sediment resuspension may be 

the main generators of dissolved estuarine trace metals (Morris et al., 1986). The 

salt marsh surface microlayer (a very thin layer, typically less than 100 µm that 

exists on top of most natural water bodies, and is usually enriched in organic and 

metal bearing materials) was proven to be responsible for the concentration of a 

significant proportion of the trace metal burden for the salt marsh (Pellenbarg and 

Church, 1979). Additionally, vegetation litter can sorb the surface microlayer trace 

metals, and the organic acids released by the decaying vegetation can chelate 

dissolved trace metals, making them available for scavenging by the litter of the 

marsh. The uptake, distribution and removal of metals from the sediment by 

marsh plants are part of the determining processes that may turn salt marshes 

into sources or sinks of metals to the estuarine ecosystem (Weis and Weis, 

2004). The uptake by the plants’ roots usually increases during growth season, 

and part of the metals is translocated to the aboveground tissues (Caçador et al., 

2009); by the end of the growing season, the senescent plants tissues decay into 

organic detritus. Therefore, plant tissues may be sources of metals, through 
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leaching and mineralization of plant litter, or sinks, through litter adsorption or 

microbial immobilization (Weis and Weis, 2004). Metals establish strong bounds 

with organic compounds, and organic matter is known to be a stable sink for 

metals. Hence, when metals are bound to living organisms, detritus, etc., they 

become stabilized and less available to the ecosystem (Duarte et al., 2008). The 

hydrolysis and breaking down of the organic matter under oxidizing conditions 

can lead to the release of soluble metals into the environment (Tessier et al., 

1979), unless they form a stable complex with other sediment components.  

Lacking the vegetation cover, mudflats are more than meet the eye. These areas 

are also responsible for intense primary productivity, due to the activity of benthic 

communities (Underwood and Kromkamp, 1999). Important inputs of organic 

particles and detritus (and the inherently associated metals) are exported from 

nearby salt marshes and disseminated by tidal action into intertidal mudflats, 

creating an exceptionally rich habitat for benthic communities. Benthic 

invertebrates play an important role in cycling nutrients and inorganic compounds 

between sediments and the water column. Taking the example of suspension- 

and deposit-feeders, exposure to metals occurs via dietary intake, from pore 

water derived fluxes and from burrow and overlying waters. These organisms 

play a particularly significant part in the transformation of the physical and 

chemical properties of suspended particles and their subsequent transport to the 

sediment surface (Turner and Millward, 2002). Particle ingestion is a primary 

pathway of exposure to trace metals whereby metals can enter estuarine trophic 

webs. In the case of some bivalves, for example, a strategy to reduce the 

exposure to bioavailable contaminants involves a flexible digestion, balancing the 

ingestion rate and the intra- and extracellular digestive (digestive gland and 

intestine, respectively) processing of particles (Decho and Luoma, 1996). 

Suspended matter is ingested, and after sorting and rejection, part of those 

particles (coated with nutrients and, e.g., trace metals) enter the 

digestion/absorption phase, after which the resulting wastes are eliminated. 

Chemical speciation, bioavailability, gut passage time and assimilation efficiency 

are some of the physiological and chemical characteristics that will determine 

what is assimilated and what is egested (Turner and Millward, 2002). In the end 

of the suspended particle process, faeces and pseudofaeces form modified 
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biodeposits in the surface sediment, change cohesiveness and distribution of 

particles, and attract and hold material that would otherwise remain in suspension 

(Graf and Rosenberg, 1997). Large populations, such as those of the deposit-

feeder Scrobicularia plana (da Costa, 1778) (Hughes, 1970), may thus 

significantly modify the chemical and ecological characteristics of the local 

substratum and suspended particle load (Turner and Millward, 2002), and 

subsequently modify the distribution and availability of metals therein. But 

bivalves like the peppery furrow shell (S. plana) are not the only deposit feeders 

that build up large populations with the ability to modify the estuarine sediment 

surface and suspended matter: such properties are also verified among nekton 

species. Grey mullets, like Liza ramada (Risso, 1827), access tidal creeks during 

flood periods, where they can feed on the extensive biofilm of diatoms that 

surfaced during the ebb tide. These fishes have an extraordinary feeding 

plasticity. Their feeding ecology and the travelling distances within the estuary in 

each tidal cycle (Almeida, 1996) lead to a massive resuspension of the bottom 

sediments. Bioturbation is an important process in the control of the interactions 

between the dissolved metal ions and the particulate matter in estuaries (Bianchi, 

2007). As part of the estuarine trophic web, this fish species plays an important 

role in the trophic transfer of metals, either by predation or death and decay in 

the ecosystem. The numerous levels and organisms taking part in the estuarine 

trophic web make it rather complex to analyse. Dietary uptake of metals, and 

inherent trophic transfer, is an important pathway for the entry of metals into 

estuarine and marine animals (Wang, 2002). Another process important for the 

estuarine trophic web is biomagnification of metals, i.e., the progressive increase 

of those elements as we go up in the trophic level. Even though the extent to 

which it occurs remains uncertain, there is a great proximity between the 

estuarine trophic web and humans, raises interest on this subject (Mathews and 

Fisher, 2008).  

Metal mobility, availability and toxicity to aquatic organisms 

When comparing metal levels in the sediments with those of the overlying water, 

differences can be remarkably high, reaching values between three and five 

orders of magnitude (Bryan and Langston, 1992). Decision makers and general 



 
CHAPTER 1 

16 
 

public have been traditionally more familiarized with total concentrations and with 

the necessity of remediation (or “clean-up”) that consequently arises when 

concentrations of metals exceed certain levels, due to the usual connotation with 

pernicious effects on the biota (Long et al., 1995). Nevertheless, total 

concentrations of metals and other contaminants in general, are not necessarily 

correlated with the eventually observed biological toxicity - such relationship is 

actually connected to the bioavailable fraction (Harmsen, 2007). In this context, 

bioavailability refers to the amount of metal available to be assimilated by the 

organisms (Griscom and Fisher, 2004). Many different processes influence both 

the concentration and the bioavailability of metals in estuarine sediments, among 

which are the mobilization of metals to pore waters and chemical speciation, the 

influence of bioturbation, salinity, redox potential or pH, the transformation of 

metals (e.g. by methylation), or sediment phases to which metals are 

preferentially bound, such as Fe oxides and organic matter (Bryan and Langston, 

1992). The various binding phases and processes that influence metal exposure 

in sediments are, in fact, one of the factors that make predicting the bioavailability 

of metals in sediments more problematic.  

In terms of the biota, one of the various problems that metals pose is that they 

may act as, or mimic, nutrients. The latter poses a problem due to competition 

with the uptake of the actual nutrient by the organism, e.g. Cd2+ competing with 

Ca2+ site in Photosystem II during photoactivation (Faller et al., 2005); 

competition between sediment metals for uptake sites in organisms (like Cu and 

Ag; Zn and Cd) (Bryan and Langston, 1992). When a metal acts as a nutrient, it 

becomes a matter of concern because an essential metal can quickly become 

toxic above certain levels (Strom et al., 2011). This toxicity is variable among 

organisms, and several factors control the accumulation of metals in tissues, e.g. 

temperature, trophic behaviour or metabolism (Bianchi, 2013).  

As a response to metal exposure, organisms have developed mechanisms to 

avoid metal toxicity in order to prevent the impairment of vital functions. Among 

plants, it is possible to find different strategies to deal with excess metals: most 

plant species are basically metal-excluders, and avoid the transport of metals to 

the shoot photosynthetic tissues by sequestering them in the vacuoles and cell 

walls in the roots; others have adapted to live in metal enriched environments, 
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and have the capacity to accumulate large amounts of metals in the aboveground 

tissues (Weis and Weis, 2004; Hanikenne and Nouet, 2011). Adaptations like 

increased rates of root-to-shoot transfer and metal detoxification and 

sequestration in the leaves, comprising high vacuolar storage capacity, are 

involved in the latter strategy (Krämer, 2010). Animals also display adaptation 

strategies to address environmental exposure to metals, and elevated 

concentrations may induce resistance mechanisms. These mechanisms may 

encompass enhanced ability to detoxify the metal internally, release compounds 

that chelate metals, reducing their bioavailability, or increasing the excretion rates 

of metals (Brown and Depledge, 1998). The presence of metal binding proteins 

is a common metal tolerance and detoxification strategy, and it is found in both 

plants and animals (Amiard et al., 2006). 

Metal speciation  

As referred above, total concentration of metals is not as important in determining 

their toxicity for the environment as their available forms (Ankley et al., 1994). 

The notion of availability has started for some time to be a part of risk assessment 

approaches, even though it is challenging to integrate the methods implied 

therein to regulation, particularly because of the difficulty to reach a consensus 

capable to be integrated in decision making (Harmsen, 2007). Scientific 

community has been working towards the understanding of biological availability 

of metals, and a large array of chemical and biological methods to assess 

bioavailability have been developed (Harmsen, 2007). Chemical speciation is 

determinant in the toxicity of a metal to organisms. For example, organic forms 

of metals are generally more toxic than inorganic forms, as it can be observed for 

elements like Hg (Kamps et al., 1972; Canário et al., 2005; Mergler et al., 2007; 

Mason et al., 2012); but the contrary may also be witnessed – e.g. inorganic 

arsenic forms present more toxicity to the biota than organic forms (De 

Bettencourt, 1988; Jain and Ali, 2000; Hughes, 2002; Sharma and Sohn, 2009). 

The oxidation state is another factor influencing the toxicity of metals – a good 

example is the case of the two stable oxidation states of Cr: while the Cr (III) has 

low solubility, reactivity, mobility, and low toxicity to organisms, the hexavalent 

oxidation state of Cr is considerably more soluble and toxic to the biota, and 
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presents high risks to humans (Rai et al., 1989; Barnhart, 1997; Barceloux, 1999; 

Becker et al., 2006; Duarte et al., 2012).  

Sediment geochemistry is of the utmost importance for the differential speciation 

and availability of metals, inducing considerable differences in the 

bioaccumulation by plants and animals, irrespective of the environmental total 

concentration of an element (Luoma, 1989). Sorption/desorption, 

dissolution/precipitation, complexation, acidification and redox reactions are 

determinant for the capacity of sediments to retain a certain element, which will 

in turn influence its bioaccumulation (Kersten, 2007). Chemical extraction 

sequences have been developed in order to estimate the potential remobilization 

of metals under changing environmental conditions (Förstner and Kersten, 1988), 

but these sequential extraction schemes do not allow the determination of the 

‘true’ species of the metal at the molecular level (Kersten, 2007). For that reason, 

the term ‘form’ is usually more adequate when referring to the results of those 

procedures. Of the multitude of methods developed in the past decades to assess 

metal speciation and fractionation in sediments and soils (e.g. Tessier et al., 

1979; Rauret et al., 1989; Rauret et al., 1999; Maiz et al., 2000; van Hullebusch 

et al., 2005), one of the most established and adapted is the one described by 

Tessier et al. (1979). In common, all these methods have that sequential reagents 

of increasing strength are to be used to accomplish the partition of the trace 

element into different forms. The successive fractions should correspond to metal 

association forms of progressively less mobility. In the case of the Tessier 

method, specifically, five fractions are obtained in the end of the sequential 

extraction: 1) the exchangeable fraction, where changes in the water ionic 

composition are likely to affect sorption-desorption processes; 2) the carbonates 

fraction, a fraction susceptible to changes in the pH; 3) the reducible fraction 

(Fe/Mn oxides), which is unstable under anoxic conditions (low Eh); 4) the fraction 

bound to organic matter (e.g. living organisms, detritus, coatings on mineral 

particles, etc.), that by the complexation processes can affect the mobility of 

released metals; and 5) the residual fraction, which is expected to contain 

strongly bound metals, and the release of such metals is not expected to occur 

under normal environmental conditions (Tessier et al., 1979). The carbonates 

and exchangeable fractions together, the labile phase (Griscom et al., 2000), can 
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be considered a proxy of alterations that are susceptible to be observed in the 

environment The results of sequential extraction schemes will ultimately 

contribute to better understand the mobility, transport and partitioning of trace 

metals and assess the potential metal toxicity of sediments to the biota. 

The study area  

The Tagus is the longest Portuguese river, draining an area of 86 000 km2. It has 

its origin in Albarracin (Spain) and outflows into the Atlantic Ocean, near Lisbon. 

The Tagus estuary (38º44’N; 9º08’W) is a partially stratified estuary in the Atlantic 

coast of Europe. It has a deep, straight inlet channel (the deepest area of the 

estuary, reaching a depth of 40 m), and a broad, shallow, inner bay (with 25 km 

long and 15 km wide) (Vale and Sundby, 1987). Its topography presents a 

complex system of channels, intertidal mudflats and small islands (Vale, 1990). 

The estuary occupies an area of about 320 km2, which extends landward to about 

50 km north of Lisbon (De Bettencourt, 1988), and includes approximately 97 km2 

of tidal flats (Catarino et al., 1985) and 17 km2 of salt marshes (Caçador et al., 

2013). The predominant halophyte species of the Tagus estuary salt marshes are 

Spartina maritima Fernald (Poales, Poaceae), Halimione portulacoides (L.) 

Aellen (Caryophyllalles, Chenopodiaceae) and Sarcocornia fruticosa (L.) A.J. 

Scott (Caryophyllalles, Chenopodiaceae) (Caçador et al., 1996a; Caçador et al., 

2013). The tidal regime is semi-diurnal, ranging from 0.4 m from the lowest neap 

tide to 4.1 m at the highest spring tide, and the tidal influence reaches 80 km 

upstream from Lisbon (Vale and Sundby, 1987).  

The main sources of pollution in the Tagus estuary come from agricultural runoff, 

domestic effluents from the metropolitan area of Lisbon and two main industrial 

areas located in both margins of the estuary: in the right margin, between Vila 

Franca de Xira and Alverca, and in the left margin the Seixal-Barreiro industrial 

axis. The Barreiro Quimigal complex (which included a pyrite roasting plant) and 

Siderurgia Nacional (a smelter) were identified as being among the most likely 

sources of trace metals contamination in the estuary (Cotté-Krief et al., 2000). 
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AIMS AND STRUCTURE OF THE THESIS 

Metals entering the estuarine system end up dissolved in the water column or 

sorbed to particulate matter and sediments. The form of those metals, i.e., their 

chemical (or geochemical) species, is determinant in characterizing the 

bioavailability and/or toxicity of those elements to the biota. 

Previous works established that salt marsh plants modify metal speciation in the 

sediments by promoting changes in their characteristics, such as oxygenation of 

otherwise anoxic layers, changes in pH, Eh or organic matter content. 

Additionally, bioturbation promoted by benthic organisms alters the sediments’ 

dynamics, causing their resuspension and redistribution. Based on this 

information, the present study was focused on assessing the effect of sediment-

organism interaction on metals’ dynamic in salt marsh and intertidal mudflats 

sediments, aiming particularly to evaluate changes promoted by the organisms 

on metal speciation, and also how metal contamination in estuarine sediments 

could be reflected on important populations of estuarine fishes from different 

trophic levels.  

This thesis is organized in five chapters. Chapter 1 comprises the current general 

introduction, where a framework of the topic of the thesis is made. The 

importance of metal speciation and metal cycling in the estuarine ecosystem is 

highlighted. Chapter 2 is entitled “Sediment metal availability to the estuarine 

biota” and includes two papers, one of them already published in an international 

journal and the other submitted for publication. This chapter describes the 

potential effect of sediment metal contamination on the teleost Liza ramada, 

assessed indirectly based on the feeding preferences of this mugilid and on metal 

accumulation on its tissues and organs. Chapter 3 is entitled “Metal speciation in 

salt marsh sediments and intertidal mudflats”, and comprises two papers 

submitted for publication in an international journal. The first one focuses on the 

effect of different halophytes on the sediments of two salt marshes with different 

morphology. Three halophytes species (Halimione portulacoides, Sarcocornia 

fruticosa and Spartina maritima) were chosen, based on their abundance in the 

Tagus salt marshes. In the second paper, an assessment on the effect that 

deposit feeders have on metal speciation in estuarine sediments was made with 
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two separate laboratory trials, by determining the geochemical partition of metals 

in the sediment before and after passing through the gut of Scrobicularia plana 

and L. ramada. Chapter 4 is entitled “Estuarine biota as sentinel organisms for 

sediment metal contamination: A case study”, and contains one paper already 

published in an international journal. In this work, a top predator from the 

estuarine trophic web, Halobatrachus didactylus, was chosen to assess the 

species potential as an indicator of metal availability from the sediment. For that, 

metal concentrations were determined in the liver of male and female specimens 

captured during reproductive and non-reproductive periods, and metal 

accumulation in the muscle of adult males captured in areas with distinct 

sediment metal loads was also studied. Finally, Chapter 5 concludes with some 

final considerations and integration of the results obtained in the previous 

chapters.  
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GRANULOMETRIC SELECTIVITY IN LIZA RAMADO3 AND POTENTIAL 

CONTAMINATION RESULTING FROM HEAVY METAL LOAD IN FEEDING AREAS 

ABSTRACT 

The stomach contents of thin-lipped grey mullets Liza ramado were analyzed 

in terms of granulometric composition and compared to the sediment of 

potential feeding areas in the Tagus estuary. Total organic matter (TOM) 

content and heavy metal content were determined in the surface sediment of 

three areas and eight trace elements were quantified: Cd, Co, Cr, Cu, Hg, Ni, 

Pb and Zn. The three sampled areas did not differ in TOM; and the heavy metal 

content was below Effects Range-Low level for most elements. The mean 

observed concentrations were present in the following sequence: Zn > Pb > Cr 

> Cu > Ni> Co > Cd > Hg. Stomach contents granulometric composition 

provided information about the feeding selectivity of the mullets. Sediment 

fractions with particle size between 20 and 50 mm are preferred, independently 

of the fishes’ length. Smaller standard length (SL) fishes have a higher positive 

selection of fine grained sediments than those with a larger SL. Finer fractions 

usually have higher concentration of heavy metals, which makes younger 

specimens of the thin-lipped grey mullet potentially more exposed to heavy 

metal load in the estuary. Metal concentration was not independent from the 

sampling point, presenting higher values near the margins and the estuary tidal 

drainage system. This means that during the first period of each tidal cycle, the 

mullets will feed first on the most contaminated areas, as a consequence of 

their movement following the rising tide to feed on previously exposed areas. 

 

Keywords: Heavy metals; Mugilidae; Feeding behavior; Grain size; Sediment 

pollution; Tagus estuary 

 

                                                 
3 At the time this paper was published, databases presented the species name as Liza ramado, which 
was afterwards considered a misspelling (www.fishbase.org). Although presently, this it is not a valid 
synonym, and the valid species name is Liza ramada, a choice was made to maintain the name used in 
the published paper.  
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INTRODUCTION 

The effect of contaminants depends on their biogeochemical transformations 

and the mobility of soluble forms induced by chemical gradients, bioturbation, 

and resuspension by the tide’s activity (Caetano et al., 2003). In muddy 

cohesive sediments biotic activity is a very important factor in sediment 

transport, deposition, resuspension and mixing of previously redox-stratified 

layers (Tolhurst et al., 2003; Atkinson et al., 2007). Biological activity in 

contaminated sediments thus becomes an important factor in the release of 

contaminants into the water column.  

The Tagus estuary is one of the largest of Western Europe and one of the most 

important brackish water ecosystems of the Portuguese coast. For decades 

this estuary has been widely used for industrial development, agriculture and 

urbanization (Cabral et al., 2001). Urban and industrial effluents are regularly 

discharged into the estuary (Caçador et al., 1996a; Costa 1999) along with 

agricultural runoff, yielding substantial quantities of anthropogenic pollutants, 

with heavy metals playing an important role in the contamination status of the 

estuary (Caçador et al., 1996a, 2000). 

The thin-lipped grey mullet (Liza ramado) feeds on the extensive intertidal 

mudflats of the estuary, filtering the superficial layer of the sediment and 

particles in the water column (Almeida, 1996). The biological activity favors the 

availability of smaller particles into the water column (Atkinson et al., 2007), 

along with metals and other contaminants bond to these particles (Buol et al., 

1997). These animals move in the estuary following the tidal currents (Almeida 

et al., 1993) and with these movements are responsible for the re-distribution 

of particles from one point of the estuary to another, acting as a transportation 

vehicle for sediment. Mullets play an important part in the estuarine trophic web. 

They are essentially primary consumers (Almeida, 2003), presenting a great 

feeding plasticity (Bruslé, 1981), which allows them to exploit energy resources 

easily accessible (Almeida et al., 1993). This species is one of the most 

abundant mugilids in the Tagus estuary, being commercially fished mainly by 

local fishermen. An increase in the abundance of the thin-lipped grey mullet has 

been reported for several decades (Oliveira and Ferreira, 1997).In spite of its 

abundance, it is not an important economic resource in the Tagus, but it is 
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widely exploited in many Mediterranean countries, where it represents an 

important halieutic resource for local populations (Oliveira and Ferreira, 1997). 

They are also used in intensive and semi-intensive policultures with other 

species all over the world (Drake et al., 1984). 

The evaluation of sediment contamination and possible transference of 

contaminants to biologic communities is a major concern on the assessment of 

anthropogenic impact in aquatic ecosystems and is essential to an integrate 

management of estuaries. Mugilids are known to be selective in what concerns 

the particle size of the sediment that they ingest. This means that they prefer 

some parts of the estuary as preferential feeding areas and will be expose to 

the contaminants that are present in the sediment fraction collected during their 

feeding activity. This work’s objective was to assess the contamination level to 

which these mugilids are exposed by feeding in potentially contaminated areas. 

 

MATERIALS AND METHODS 

Site description  

The Tagus estuary is located in the West coast of Portugal (38°44’N, 9°08’W) 

and covers an area of about 320 km2, which makes it one of the largest 

estuaries on the Atlantic coast of Europe. Within the estuary, salt marshes 

occupy approximately 20 km2 (ca. 6%) and intertidal mudflats extend over 

80 km2 (ca. 20%), mostly located on the left bank of the upper part of the 

estuary. The study was carried out in the southern part of the middle zone of 

the estuary (Fig. 1), characterized by a complex branched system and high tidal 

range (max. 4 m). Due to these characteristics, sampling was performed from 

a boat to minimize sediment disturbance and reduce sampling time. 

Sediment sampling 

Sediment samples were collected in three different sites (A, B, C, Fig. 1) of ca. 4 

km2 each, located on a zone known to be used as a feeding area by the thin-

lipped grey mullet, Liza ramado (P.R. Almeida, personal communication). 

Samples were collected from 25 points in each site (Fig. 1). Sediment cores 

were collected directly with PVC containers placed inside the corers; the 
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containers were kept in an upright position inside a cooler box until arrival at 

laboratory and then preserved at -20°C until further analysis. Only the top 5 mm 

of the sediment surface layer were analyzed in order to allow the comparison 

with the stomach contents, considering the mullets grazing behavior (Romer 

and Mclachlan, 1986; Almeida et al., 1993). 

 

Figure 1 – Tagus estuary. Sampling sites identified (A, B, C), with detail of site A. 

Particle size and organic matter quantification 

For particle size evaluation, samples were dried to constant weight at 60°C for 

about five days and then homogenized. Particle size was determined using two 

distinct methods: for fractions larger than 50 mm a column of five sieves with 

calibrated mesh size (AFNOR type) was used, while for particle size fractions 

less than 50 µm the pipette method was applied (Gee and Bauder, 1986). All 

samples were primarily sieved through a 500 µm mesh size and no particles 

were retained. A total of six grain size classes were considered: 100–500 µm 

(medium sand), 50–100 µm (fine sand), 20–50 µm, 5–20 µm, 2–5 µm (silt) and 

0–2 µm (clay) (USDA Soil Texture Classification System, Buol et al., 1997).  

The total organic matter (TOM) content was determined as loss on ignition (LOI) 

by ashing 1.5 -5.5 g of sediment (dry weight) for 2 h at 600 °C. 
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Stomach contents analysis 

The contents of the cardiac portion of the stomach of 225 thin-lipped grey 

mullets were used to determine particle size composition. Stomachs were 

frozen after the specimens’ dissection for later removal of contents. For particle 

size determination, the same methodology that was applied to sediment 

samples was used. 

Trace metals analysis 

Heavy metal analyses were performed on freeze-dried sediment. Total Cd, Co, 

Cr, Cu, Ni, Pb and Zn concentrations were determined by flame atomic 

absorption spectrometry (AAS), using a Perkin Elmer A Analyst 100. Sediment 

samples were digested using 2 mL of an HNO3/HCl mixture (3:1) in Teflon® 

reactors, heated at 110°C for 3 h. Extracts were filtered through Whatman 42 

filters after cooling (room temperature) and diluted to 10 mL with deionized 

water. The accuracy of this analytical method was assessed by the analysis of 

international certificate standards. Standard additions and sludge reference 

materials were used for sediment (EC standards CRM 145 and 146). Blanks 

and the concurrent analysis of the standard reference material were used to 

detect possible contamination/losses during analysis.  

Sediment samples were also analyzed for total mercury by AAS with thermal 

decomposition and gold amalgamation, using an Advanced Mercury Analyzer 

(AMA) LECO 254 (Costley et al., 2000). The accuracy and precision of the 

analytical methodology for total mercury determinations were assessed by 

replicate analysis of certified reference materials (CRMs), namely MESS-2 and 

IAEA-356 for sediments. 

Statistical treatment of the data 

The Kruskal–Wallis test (KW) (Zar, 1999) was performed to evaluate the null 

hypotheses that the samples from the three sites did not have differences (1) 

between any of the granulometric classes and (2) in heavy metal content. We 

also assessed the relationship between sediment samples granulometry and 

metal contamination with Spearman’s correlation coefficient (Zar, 1999). 

Simultaneous test procedure (STP) (Siegel and Castellan, 1988) was used 

when significant differences were found (p < 0.05).  
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A G-test of independence with Williams’ correction (GW) was used to test the 

null hypothesis that the proportion of the most contaminated points (i.e. points 

that were in the 90th percentile – P90 – of the observed contamination level) 

was independent of the area (i.e. A, B or C) from where they were sampled. A 

spatial analysis using ArcGis 8.3 was performed to evaluate the distribution 

pattern of the points in the P90. A G-test of independence with Williams’ 

correction was used to test the null hypothesis that the proportion of the points 

in the P90 of the observed contamination level was independent of some physic 

characteristic of the study area (e.g. the tidal drainage system). To perform the 

independence tests mentioned above, contingency tables were built with a 

number of columns and b number of rows. In these tables, a represented the 

spatial variable (i.e. the sampling area or the estuary channel drainage system), 

and b the sum of counts belonging or not to the P90 group (see example used 

for the channel system in Table 1). All points that were no more than 50 m apart 

from the channels were considered to be under the direct influence of the 

channel system, for classification purposes.  

Table 1 – Contingency table used to test the independency of the proportion of P90 

counts regarding the intertidal channel system 

 Channel (C) Not Channel (NC) 

P90  CP90  NCP90 

Not P90  CNotP90  NCNotP90 

To investigate possible particle size selection by Liza ramado, feeding 

selectivity was assessed for each granulometric fraction using Strauss’ Linear 

Index of Selectivity, Li=ri-pi, where ri and pi are the relative frequency of the 

fraction i (in this case, the granulometric classes) in the stomach content and 

in the environment, respectively. The linearity of this index makes it less 

sensitive to sampling error associated with rare dietary items (Strauss, 1979). 

The index varies from -1.0 (strong negative selection) to 0 (random selection) 

and to +1.0 (strong positive selection). Li was compared to the specimens’ 

standard length (SL) in order to evaluate the possible variation of particle size 

selection with the fishes’ length. Regression analysis (Sokal and Rohlf, 1995) 

used in this evaluation in each granulometric class and the three areas were 



CHAPTER 2 

34 

 

tested for differences in the regression coefficients by means of an analysis of 

covariance (ANCOVA) (Sokal and Rohlf, 1995). All statistical analyses were 

performed using SPSS 15.0 (SPSS, 2006), STATISTICA 6.0 (StatSoft, 2001) 

and BIOMstat 3.01 (BIOMstat, 1996). 

 

RESULTS 

Sediment 

Comparison of the granulometric composition of the three selected areas 

revealed significant (p < 0.05) and very significant (p < 0.01) differences in four 

of the six granulometric classes: 100–500 µm, 50–100 µm, 20–50 µm and 5–

20 µm (Table 2). Areas B and C showed a higher percentage of smaller 

particles in their composition, mainly silts and clays (<50 µm), possibly due to 

favorable hydraulic conditions for fine grain sediments to settle in those areas. 

Table 2 – Results of the Kruskal-Wallis test (KW) and a posteriori comparisons 

between the three areas (A, B, C) for the six granulometric classes under study (N=75, 

d.f.=2) 

 ]100-500 µm] ]50-100 µm] ]20-50 µm] ]5-20 µm] ]2-5 µm] [0-2 µm] 

Areas KW=13,91** KW=7,91* KW=10,73** KW=11,85** KW=6,12ns KW=1,57ns 

A vs B ns ** ** ** - - 

A vs C ** ns ** ns - - 

B vs C ** ns ns ** - - 

ns – non significant; * - p < 0.05; ** - p < 0.01  

The three sampling sites did not show significant differences regarding the total 

organic matter (TOM) content. This probably resulted from the fact that the layer 

of sediment analyzed (top 5 mm) is mainly constituted by organic matter. Mean 

TOM content for areas A, B and C was, respectively, 10.3±1.3%, 10.9±1.4% 

and 10.8±1.2% (mean±sd).  

Mean concentration of metals in the sediment samples varied substantially and 

presented the following sequence: Zn> Pb >Cr> C ≈ Ni> Co> Cd >Hg (Fig. 2). 

Significant and very significant differences were found for Pb and Cd (KW=6.86, 

d.f.=2, p < 0.05 and KW=18.00, d.f.=2, p <  0.01, respectively). Cd had higher 

accumulation on sampling site C, further from the margin, while Pb had higher 
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values in sampling site B. The other metals did not differ statistically among 

areas. 

 

Figure 2 – Concentrations of Zn, Pb, Cr, Cu, Ni, Co, Cd and Hg (mean±se)  

(µg.g-1 dry weight). Effects Range-Low (ERL) and Effects Range-Median (ERM) (Long 

et al., 1995) are given for each metal, except Co. Dashed lines indicate the value of 

ERL. 

The comparison of granulometric content with heavy metal accumulation 

showed significant (p < 0.05) and very significant (p < 0.01) positive correlation 

for sediment particles between 100 and 500 µm and with less than 20 µm for 

the following elements: Co, Cr, Cu, Ni and Pb. Zinc had significant positive 
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correlation only with sediment particles with less than 20 µm. The most 

representative granulometric fraction in all samples (20–50 µm) did not show 

significant correlation with any of the analyzed metals (Table 3). 

Table 3 – Spearman’s correlation coefficient between granulometric composition and 

heavy metal accumulation in sediment samples  

 Spearman’s R 

Particle size 
(μm) 

Cd 
(df=68) 

Co 
(df=64) 

Cr 
(df=70) 

Cu 
(df=70) 

Hg 
(df=73) 

Ni 
(df=69) 

Pb 
(df=70) 

Zn 
(df=70) 

]100 - 500] -0.074 0.415** 0.275** 0.360** 0.144 0.249** 0.326** 0.210** 

]50 - 100] -0.206 -0.184** -0.161** -0.250** 0.077 -0.275** -0.219** -0.244** 

]20 - 50] 0.204 -0.051** -0.004** 0.018** -0.158 0.097** 0.015** 0.105** 

]5 - 20] 0.127 0.416** 0.275** 0.439** -0.133 0.343** 0.412** 0.392** 

]2 - 5] 0.228 0.504** 0.451** 0.613** 0.094 0.511** 0.577** 0.505** 

[0 - 2] 0.221 0.437** 0.335** 0.567** -0.083 0.417** 0.536** 0.484** 

* p ≤ 0.05; ** p ≤ 0.01  

The G-test of independence for the three areas (A, B and C) was not statistically 

significant (GW=4.93, p=0.08, d.f.=2), denoting that the proportion of points 

belonging to the P90 of the observed contamination level was independent of 

the areas from where they were sampled. The spatial analysis of the distribution 

of the P90 (Fig. 3) revealed a preferential path of accumulation next to the 

branched channels of the estuary. The G-test of independence results showed 

that the distribution of the P90 of the observed contamination level was 

influenced by the channels localisation (GW=13.24, p=0.003, d.f.=1).  

Stomach contents 

Stomach content dry weight (dw) varied between 0.872 and 15.857 g and their 

contents consisted mostly on particles between 50 and 20 µm. The same 

fraction was found to be the most abundant in the sediments, although its 

proportion was higher in the stomach contents (Table 4). 

Feeding selectivity (Li) was calculated only for particle size larger than 5 µm 

due to the low percentage of smaller particles in the stomach contents (less 

than 0.1%) (Table 4). Grain size particles with 100–500 µm were ingested 

approximately in the same proportion to their abundance in the environment in 

the three areas (L100–500 ≈ 0).  
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Figure 3 – Distribution pattern of the P90 of the observed metal contamination level. 

Different areas of the black circles represent the number of counts within the P90; 

dashed circles indicate areas A, B and C limits. 

Regression between SL and Li was not significant and no specific pattern was 

found between these two variables (Fig. 4). Medium sand particles are 

therefore ingested in similar proportions by Liza ramado specimens regardless 

of their size. Results for particles between 50–100 µm and 

5–20 µm also pointed to near random selection in the environment by the fishes 
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(L50–100 and L5–20≈0), but in this case, a significant relationship between the Li 

and the fish’s SL was found (Fig. 4). For fine sand particles  

(50–100 µm), a negative selection was observed, with rejection diminishing as 

SL increased. Silt particles (5–20 µm) were positively selected by fishes with 

sizes between 275-305 mm and rejected by larger specimens. Finally, the most 

common fraction in both sediment samples and stomach contents  

(20–50 µm) was positively selected by the entire SL range, with L20–50 

decreasing with the fish’s size. 

Table 4 – Comparison of the stomach contents’ granulometric composition with the 

sediment samples from the three study areas (mean ± se; percentages) 

Particle Size 

(μm) 

Liza ramado    Sediment   

stomach 
contents 

 
A  B  C 

]100-500] 2.73 ± 0.14  7.03 ± 0.45  6.37 ± 0.50  4.37 ± 0.47 

]50-100] 9.28 ± 0.34  15.14 ± 1.12  11.81 ± 0.44  13.60 ± 0.70 

]20-50] 87.62 ± 0.38  77.23 ± 1.22  81.17 ± 0.67  81.44 ± 0.84 

]5-20] 0.27 ± 0.02  0.30 ± 0.01  0.33 ± 0.01  0.30 ± 0.01 

]2-5] 0.06 ± 0.02  0.12 ± 0.01  0.15 ± 0.01  0.13 ± 0.01 

[0-2] 0.05 ± 0.002  0.17 ± 0.01  0.18 ± 0.01  0.17 ± 0.01 

This analysis showed that smaller specimens of L. ramado have the tendency 

to reject more particles of larger size or have a higher positive selection of 

smaller particles. On the other hand, larger animals may have a negative 

selection of larger particles but reject them less than smaller fishes. As the grain 

size decreases, larger fishes will show either a weaker positive selection or a 

negative selection towards smaller granulometric classes. It was possible to 

identify a preference of the fishes analyzed towards sediments with 

characteristics of areas B and C, i.e. higher quantity of particles belonging to 

the class 20–50 mm.  
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Higher value of L20–50 in area A (mean L20–50 for each area: A=0.104, B=0.059, 

C=0.062, Fig. 4) indicates that animals would have to invest more energy on 

finding the preferred sediment grain size, since this granulometric class was 

less abundant there than in the other two areas (Table 5). 

Table 5 – ANCOVA results for the linear regression of the feeding selectivity index 

according to the fishes’ standard length 

** - p ≤ 0.01 

 

DISCUSSION 

The top layer sediment in the study area displayed a low heavy metal load. 

Metals concentrations, in general, were below the Effects Range-Low (ERL) 

values defined by Long et al. (1995). Exceptions to this were the accumulation 

of Cd (sites B and C) and Zn (site C), where the ERL values were slightly 

passed. ERL represents a minimal effects range on biological communities and 

it is calculated using the 10th percentile of the effects data for each chemical. It 

is a range intended to estimate conditions below which effects would rarely be 

observed.  

The study area includes a part of the Nature Reserve of the Tagus estuary, 

near Hortas salt marsh, one of the least polluted salt marshes of the Tagus 

estuary (França et al., 2005). Metal input of anthropogenic source has been 

reduced on the last two decades after several industries ceased their activity 

but urban and some industrial pressure are still present throughout the estuary. 

França et al. (2005) reported values of metal accumulation on Hortas salt marsh 

sediments (20 cm depth cores) slightly higher than those found in this work 

(0.5 cm top layer). Increasing metal loads with depth are usually an indicator 

that present concentrations are a consequence of background contamination 

levels and not recent anthropogenic sources. In recently polluted areas, surface 

sediments usually present higher concentration of contaminants than deeper 

 ]100-500 µm] ]50-100 µm] ]20-50 µm] ]5-20 µm] 

A vs B vs C Slope Y-inter. Slope Y-inter. Slope Y-inter. Slope Y-inter. 

F-statistics 0,414 26,281** 0,211 6,659** 0,933 18,915** 0,343 0,029 

p-value 0,665 0,000** 0,811 0,004** 0,405 0,000** 0,712 0,971 
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layers (Ujevic et al., 2000). Mercury levels were up to 10 times lower than the 

ones observed in a recent study for the same area in surface sediments 

(0-5 cm) (Canário et al., 2005). The present work has shown that sampling 

points’ location along the estuary influence metal concentration. Sampling near 

the estuary margins or in the branched channel system will yield higher values 

of metals accumulation than in the intertidal mudflats, so the differences found 

may not indicate a significant decrease of mercury in this particular area of the 

Tagus estuary, but only a different sampling approach. Our comparison of 

metal concentration in tidal channels and in the intertidal mudflats showed that, 

in general, heavy metals have a tendency to accumulate more in the deeper 

areas. Channels are less exposed to sediment resuspension processes, 

specifically to surface wave action, than the shallower mudflats (van Leussen, 

1991), and this creates good conditions for contaminants deposition (van 

Leussen, 1991; Ujevic et al., 2000). Almeida (1996) showed that the thin-lipped 

grey mullet follows the tidal movement when feeding demonstrating an increase 

in feeding intensity during the flood; other mullets display the same behavior, 

as described by Odum (1970), where a marked increase in the amount of food 

ingested as the tide rises for the striped mullet Mugil cephalus was reported. 

The main reason for this should be the fact that optimal feeding areas become 

accessible to the mullets with the flooding tide. Considering what was 

mentioned above, the first areas available for the mullets to feed upon are those 

where contaminants display a preferred accumulation path, i.e. the tidal 

channels system.  

Several studies have described a direct correlation of fine grained sediments 

(<63 µm) with metal content, where the total amount of metals increases with 

decreasing grain size (e.g. Biksham et al., 1991; Baptista Neto et al., 2000; 

Ujevic et al., 2000; Ikem et al., 2003). The association of heavy metals with fine 

particles is generally attributed to the characteristics of finer grain sediments, 

namely: 1) the increasing surface area/volume ratio with decreasing size; 2) the 

negatively charged clay particles, which attract the positively charged metal 

ions; and 3) the organic matter content (Buol et al., 1997). We found a positive 

correlation of most metals with silts and clays but also with the medium sand 

fraction. Ducaroir and Lamy (1995) have related the accumulation of metals in 
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the coarser fractions as an indicator of natural accumulation processes, since 

it could not be attributed to the reasons that explain the association of metals 

with fine grain fractions. Zou et al. (2007) have recently described Cu as being 

mainly associated with coarser grain size particles (163-280 µm) in the 

contaminated surface sediment on a lake, but no causal explanation was 

advanced. Hg levels and Cd were not correlated with granulometric properties 

of the sediment. A study on Blanca Bay, Argentina, reported the same lack of 

correlation between Cd and sediment texture (Sericano and Pucci, 1982). The 

reduced variability of the TOM in the three locations may explain the lack of a 

positive correlation of this parameter with the smaller fractions of the sediment 

and heavy metals content, unlike what was described in other works (e.g. Ujevic 

et al., 2000). When analyzing the feeding selectivity of Liza ramado for different 

grain size fractions available, we found a general trend of random selection or 

even rejection of sand and most silt and clay fractions, except for coarse silt 

(50-20 mm), where a distinct positive selection was observed. In addition, 

smaller animals seemed to reject larger particles in a greater extent than larger 

animals did, and the opposite selectivity was verified for smaller particles. 

Growth differences may be on the basis for the trends found in our work. Guinea 

and Fernandez (1992) found significant differences when comparing gill rakers 

of juveniles and adults of L. ramado; according to the same authors, gaps 

between structures on the gill rakers correspond to the size limit of particles 

which might be retained by them. Hence, differences between juveniles and 

adults could be translated into a possibility of selecting different size particles, 

which would corroborate the different selectivity found in the present study. 

Selectivity differences found for particles with 5–20 µm between different 

lengths of L. ramado specimens, where smaller animals showed a positive 

selection while larger ones rejected it, may be reflected in a higher exposure of 

younger fishes to contaminants, since this granulometric class presented a 

positive correlation with heavy metal accumulation. If smaller fishes will actively 

ingest particles of this size range, they will potentially retain more contaminated 

sediment. The present study shows that Hortas salt marsh should be of lesser 

concern, given the low contamination levels. Other salt marshes of the Tagus 

estuary, on the other hand, have been reported with accumulation of Cu and Ni 

above the ERL and Zn and Pb above the Effects range-median (ERM) level 
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(Caçador et al., 1996b). Concentrations between the ERL and the ERM level 

represent a range within which effects on the biological communities would 

occasionally occur, and above the ERM represent a range within which effects 

on the biological communities would frequently occur (Long et al., 1995). 

 

CONCLUSION 

Contamination levels in the superficial sediments are greatly dependent of the 

estuary physiography and circulation patterns, and contaminants distribution 

will depend not only of the proximity of a possible source, but also of these 

factors, among others. The thin-lipped grey mullet, along with known habits of 

filtering in the water–air interface, grazes on the topmost layer of the sediment. 

This is where we will most likely find recent origin metal contamination, not 

related with background/natural levels. Anthropogenic sources of trace metals 

are still available in the Tagus estuary. Although the Nature Reserve area 

manifests lower levels of metal contamination, the thin-lipped grey mullet feeds 

along the estuary, moving in shoals and following the tide; this means that it will 

probably graze on more contaminated areas than the present study location in 

some point of the tidal cycle. Direct consequences of the mullets feeding 

behaviour on bioaccumulation are not completely known.  
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BIOACCUMULATION OF TRACE METALS IN THIN-LIPPED GREY MULLET (LIZA 

RAMADA): RELATIONSHIP WITH SIZE AND ECOLOGICAL REPERCUSSIONS 

ABSTRACT 

Trace metals (Cd, Cu, Hg, Ni, Pb and Zn) accumulation in Liza ramada’s gills, 

liver, muscle tissue and stomach contents, was investigated in different size 

specimens from the Tagus estuary (Portugal). The metabolic elements Zn and 

Cu stood out from the other elements, being among the most abundant metals 

in both tissues and stomach content samples. The liver registered the highest 

concentrations for Cd, Cu, Hg and Zn, while Pb was higher in the gills and Ni 

had identical accumulation levels in both organs. Sediment quality guidelines 

were exceeded in some cases in stomach contents, with potentially hazard 

situations being found in some samples for Hg, Ni and Zn. This reflects the fact 

that trace metals hotspots are still present in the Tagus estuary and grey mullets 

may feed on those locations. Our results were also indicative of common 

environmental sources for most of the investigated metals. Bioaccumulation 

evidence was found for Hg in the muscle and the liver, while Pb and Zn in 

muscle, Cu, Ni and Zn in gills and Cu and Zn in liver decreased significantly 

with the specimens’ size. The negative correlations between size and metal 

accumulation point towards: 1) a more efficient regulation of metals by the 

larger specimens; 2) a growth dilution-effect; and/or 3) a positive selection of 

less contaminated particles by larger specimens. The ecology of this species 

together with the accumulation pattern for metals indicates that L. ramada could 

be a potential vector of contaminants dispersal within and between estuarine 

systems. 

 

Keywords: Trace elements; accumulation; regulation; tissues; stomach 

contents; Mugilidae 
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INTRODUCTION 

The thin-lipped grey mullet, Liza ramada (Risso, 1827) (Mugilidae), is a pelagic, 

catadromous species that spends a great part of its life cycle in estuaries. In 

the Tagus estuary, the largest Portuguese estuarine system and among the 

largest estuaries of Western Europe, this species occurs in great abundance. 

Estuaries, due to their privileged location, are under enormous urban and 

industrial pressure, and that tends to be reflected in the pollutants load, as it is 

observable in the multitude of anthropogenic wastes that ended in the shallow 

estuarine and coastal marine waters during the last century (McLusky and 

Elliott, 2004). Of these pollutants, trace metals are of major concern due to their 

potential toxicity to the biota. Trace elements accumulation by fish tissues 

depends on several aspects, such as fish species (Türkmen et al., 2005), 

feeding habits (Pourang, 1995), ontogenic development (Farkas et al., 2002, 

2003), or the physical and chemical characteristics of the surrounding 

environment (Dallinger et al., 1987). The pathways by which metal uptake may 

occur are diverse, the most common being the gills, the food ingested, the skin 

and the water intake, the latter being common in marine and estuarine fishes 

(Heath, 1995).  

Benthic fish species will generally present higher concentration of pollutants 

than pelagic species (Roméo et al., 1999) because of their proximity to the 

bottom sediments. The reason for this is that metals tend to adsorb more readily 

to the bottom sediments than to remain in the water column. L. ramada feeds 

on suspended particulate matter (SPM) and grazes on the bottom sediments of 

estuaries, going additionally through intertidal mudflats and salt marsh creeks, 

while feeding on diatoms, detritus, decaying organic matter or even small 

macrofaunal organisms (Almeida, 1996; Laffaille et al., 2002). The close 

proximity with the sediment, implied in the feeding behavior of this species, 

makes it of particularly interesting for the study of metal contamination in 

estuarine systems and how that could be reflected in biological accumulation. 

Regarding metals accumulation in fish tissue, a decrease is expected with 

size/age because feeding is considered to be the primary pathway for metal 

uptake by marine/estuarine fishes, and the feeding rate of fish diminishes with 
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growth (Dang and Wang, 2012). All this implies that younger fish will potentially 

show higher accumulation of metals in their tissues (Farkas et al., 2003). In this 

work, the levels of trace metals found in tissues of L. ramada and in their 

stomach contents were evaluated, and a size dependence relationship was 

investigated. 

 

MATERIAL AND METHODS 

Sampling  

The Tagus estuary (38°44’N, 9°08’W) is a semi-diurnal mesotidal estuary with 

ca. 4 m of tidal range located in the West coast of Portugal (Fig.1). The estuary 

is composed of a deep and narrow inlet channel and a shallow bay 

differentiated in salt marsh areas, sand islands, and mudflat areas.  

 

Figure 1 – Tagus estuary and Hortas salt marsh location. 

Sampling was conducted in the southern part of the estuary in the extensive 

mudflats near Hortas salt marsh. Samples of L. ramada were obtained using a 

trammel net (30 to 40 mm knot-to-knot mesh size) in surveys made in 2006 and 

2007. Fishes (N=58) were measured to the nearest 1 mm, weighed to the 

nearest 0.1 g and samples of muscle, liver and gills were frozen at -20°C for 

metal analysis. Liver and gills were completely removed and a portion of the 
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skeletal muscle was cut from the flank below the first dorsal fin. Stomach 

contents of the cardiac portion of 76 specimens captured between 2007 and 

2009 were also collected for trace metals analysis. Standard length (SL) of the 

specimens varied between 117 and 326 mm (age class from 1+ to over 8+). All 

samples were freeze-dried and ground with an agate mortar and pestle to 

homogenize.  

Trace element analysis 

All laboratory material used was decontaminated of any adsorbed ions by 

soaking in 0.25 M nitric acid (HNO3) for 24 h and 0.25 M hydrochloric acid (HCl) 

for 48 h, and rinsing three times with deionized water (Reverse Osmose, Elga 

Purelab Prima) to avoid cross-contaminations. Samples (stomach contents and 

tissues) were freeze dried (Cryodos-50, Telstar Life Science solutions, Spain) 

prior to processing for metal extraction, and ground with an agate mortar and 

pestle prior to chemical treatment. 

Stomach contents samples were acid digested (approximately 0.1 g) using 2 ml 

of a mixture of 65% HNO3 (Panreac, p.a.) and 37% HCl (Carlo Ebra, p.a.) (3:1, 

v/v) at 110°C during 3 h. Fish tissue samples (muscle, liver and gills) were 

digested using 2 ml of a mixture of 65 % HNO3 and 60% perchloric acid (HClO4) 

(Panreac, p.a.) (9:1, v/v), in Teflon® vessels, at 110°C for 2 h (Julshamn et al., 

1982). The digestion solutions were cooled at room temperature, filtered 

through Whatman 42 filters (90 mm diameter; <2.5μm pore size) and made to 

10 ml with ultrapure water (Type I, 18MΩ/cm, Elga Purelab Classic). Metal 

determinations (Cd, Cu, Ni, Pb and Zn) were done with inductively coupled 

plasma mass spectrometry (ICP-MS) using a Termo X Series with detection 

limits of 0.1 ppm (Cd, Ni), 0.5 ppm (Pb), 1.0 ppm (Cu) and 5.0 ppm (Zn). Total 

mercury was analyzed on freeze-dried samples by atomic absorption 

spectrometry (AAS) with thermal decomposition and gold amalgamation, using 

an Advanced Mercury Analyzer (AMA) LECO 254 (Costley et al., 2000). The 

accuracy and precision of the analytical methodology for elemental 

determinations were assessed by replicate analysis of certified reference 

materials, BCR-277R (IRMM) for sediments and TORT-2 (NRCC) for fish 

tissues. Blanks and the concurrent analysis of the standard reference material 



CHAPTER 2 

50 
 

were used to detect possible contamination/losses during analysis and to 

ensure the accuracy and precision of the analytical method. Measured values 

for total elements analysis were in agreement with certified reference values. 

Statistical treatment of the data  

The relationship between SL and metal concentration of fish tissues and 

stomach contents was assessed with Spearman’s correlation coefficient. The 

same analysis was used to determine correlations between trace elements 

within tissues and within stomach contents. Kruskal-Wallis test (H) was used to 

compare trace elements concentrations found in muscle, liver and gills (Zar, 

1999). Multiple comparison tests were applied to the analyses that evidenced 

statistical significant differences (p < 0.05) among groups. All analyses were 

carried on STATISTICA 9.0 analysis pack (StatSoft, 2008). 

Median concentrations of metals in stomach contents were compared with 

established sediment quality guidelines from Long et al. (1995), namely to the 

Effects-Range Low (ERL) and Effects-Range Median (ERM) levels. These 

guidelines correspond to the lower 10th percentile (ERL) or to the 50th percentile 

(ERM) of the effects data for each element. 

 

RESULTS 

Trace elements content on gills, liver and muscle of Liza ramada presented 

different magnitudes, with Zn and Cu being among the most abundant elements 

in all tissues (Table 1).  

Table 1 – Metal concentrations (mean ±sd) in gills, liver, muscle tissue and stomach 

contents (S.C.) of Liza ramada from the Tagus estuary (µg.g-1, dry weight); n.d. – below 

detection limit  

Tissue Cd Cu Hg Ni Pb Zn 

Gills 0.04 ± 0.18 14.67 ± 9.18 0.05 ± 0.01 1.80 ± 0.86 28.25 ± 11.86 170.17 ± 69.43 

Liver 2.18 ± 1.65 1060.07 ± 804.37 2.75 ± 1.02 1.75 ± 1.22 10.38 ± 8.96 239.73 ± 146.39 

Muscle n.d. 2.82 ± 1.42 0.16 ± 0.04 0.14 ± 0.11 0.14 ± 0.36 31.88 ± 25.01 

S.C. 0.18 ± 0.13 24.51 ± 9.40 0.49 ± 0.19 17.78 ± 5.82 35.73 ± 11.66 153.89 ± 52.80 
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Liver displayed the highest values of accumulation for most elements. 

Exceptions occurred for Pb, with gills showing the highest concentration 

(28.25 ± 11.86 µg.g-1), and Ni, which had similar concentrations in liver and gills 

(1.75 ± 1.22 µg.g-1 and 1.80 ± 0.86, µg.g-1 respectively). Muscle tissue had the 

lowest values for all elements except for Hg (0.16 ± 0.04 µg.g-1). Gills, muscle 

and liver showed statistically significant differences with each other regarding 

Cu, Hg and Pb concentrations (Fig. 2).  

 
H(2;119) = 108.2 

 
H(2;118) = 91.0 

 
H (2;116) = 97.0 

 
H(2;119) = 71.7 

 
H(2;119) = 94.2 

 
H(2;119) = 79.3 

Figure 2 – Box-Whisker plots of trace elements concentration (µg.g-1, dry weight) on 

gills (G), liver (L) and muscle (M) of Liza ramada.  Median,  25-75%,  Non-outlier 

range,  Outliers,  Extremes. Dashed line: average stomach contents concentration. 

Kruskal-Wallis (H) test results are given below each plot. Different lower case letters: 

significant differences between the tissues (p < 0.05). 

Of these elements, all except Pb, as mentioned, were higher in the liver. Liver 

and gills presented significantly higher concentrations of Ni and Zn than those 

verified in the muscle (p < 0.05), but did not differ from each other (p > 0.05); 
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Cd concentration in the liver (2.18 ± 1.65 µg.g-1) was significantly higher than 

both gills and muscle, with concentration in the latter two tissues being nearly 

zero for all samples (Fig. 2).  

The average metal concentrations found in the stomach content samples 

appeared in the following decreasing order of magnitude: Zn > Pb > Cu > Ni > 

Hg > Cd (Table 1). The comparison of the metal concentrations in stomach 

contents with sediment quality guidelines showed several metals above the 

Effects-Range Low concentration (Long et al., 1995) (Fig. 3).  

ERL=1.2; ERM=9.6 ERL=34; ERM=270 ERL=0.15; ERM=0.71 

ERL=20.9; ERM=51.6 ERL=46.7; ERM=218 ERL=150; ERM=410 

Figure 3 - Concentrations of trace elements (µg.g-1 dry weight) in stomach contents of 

L. ramada.  Median,  25-75%,  Non-outlier range,  Outliers,  Extremes. - - - 

Effects Range-Low (ERL), –– - –– Effects Range-Median (ERM) (Long et al., 1995). 
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The Effect-Range Median concentration was exceeded in some samples in the 

case of Cu, Hg, Ni, Pb and Zn concentrations. Zinc showed significant negative 

correlation with standard length (SL) for all tissues (Table 2). The same 

significant negative correlation with SL was found regarding Ni accumulation in 

the liver and gills, and regarding Cu accumulation in the gills. The accumulation 

of Pb only showed significant correlation with the fishes’ size in the muscle and, 

as it was observed in the previous cases, that correlation was negative. Finally, 

Hg concentration showed an inverse trend compared with the remaining 

metals: the accumulation of this metal in the muscle and liver showed a 

significant increasing trend with the fishes’ length. 

The analysis of the metal burden present in stomach contents according to the 

size of the fishes (Table 2) has evidenced significant positive correlations for 

Cd, Cu, and Hg (p < 0.01), i.e., for these metals the concentration in the 

stomach contents tended to increase in larger animals. The correlation between 

the remaining elements and the fishes’ standard length was not statistically 

significant. 

Table 2 – Spearman’s correlation coefficient (R) between standard length of L. ramada 

and metal concentrations in gills, liver, muscle and stomach contents (S.C.); n.d. – 

below detection limit  

R Cd Cu Hg Ni Pb Zn 

Gills -0.03** -0.40** -0.24** -0.44* 0.18* -0.55** 

Liver -0.08** -0.32** 0.55** -0.43* 0.05* -0.49** 

Muscle n.d. -0.17** 0.30** -0.09* -0.28* -0.45** 

S.C. 0.62** 0.31** 0.55** 0.09* 0.18* 0.22** 

* p < 0.05; ** p < 0.01  

Significant positive correlations (p < 0.05) were found between several trace 

elements within the gills, the liver and the muscle tissue (Table 3). In the gills 

(Table 3a), almost every element presented significant correlation with one or 

more elements, with Cd being the only exception. The highest significant 

correlation in the gills was found between Ni and Zn (R > 0.8), and all other 

significant correlations were positive, with coefficients varying between 0.46 

(between Cu and Zn) and 0.62 (between Ni and Pb).  
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Liver concentrations of Cd, Cu, Ni, Pb and Zn showed significant positive 

correlations with each other (except for Cu and Pb, which were not correlated) 

(Table 3b). Correlation coefficients varied between 0.42 (Pb and Cd) and 0.69 

(Cd and Cu). Mercury did not show significant correlation with any metals in 

liver. The concentration of Hg in the muscle was not correlated with the 

concentration of the other metals in that tissue either. Copper, Pb and Zn 

concentrations were positively correlated in the muscle, while Ni only showed 

significant positive correlation with Zn (Table 3c). 

Regarding stomach contents (Table 3c), the correlation analysis revealed very 

close relationships between Cu, Ni, Pb and Zn (R≈1). Cadmium correlation with 

other elements was moderate to strong, and significant, with correlation 

coefficients between 0.32 and 0.53, and R=0.70 in the case of the correlation 

with Hg. This was in fact the only significant correlation found regarding Hg in 

stomach contents. 

Table 3 – Spearman’s correlation coefficient between trace metals within gills, liver, 

muscle and stomach contents (S.C.) of Liza ramada; Each diagonal matrix represents 

the results within a tissue or stomach contents; n.d. – below detection limit 

Gills (a) 

Liver (b) 
Cd Cu Hg Ni Pb Zn 

Cd  0.01** 0.22* 0.11** 0.26** 0.17** 

Cu 0.69**  0.47* 0.32** -0.07** 0.46** 

Hg 0.26** 0.09**  0.14** -0.08** 0.29** 

Ni 0.54** 0.61** -0.03*  0.62** 0.88** 

Pb 0.42** 0.31** -0.01* 0.56**  0.44** 

Zn 0.48** 0.55** -0.19* 0.57** 0.56**  
       

Muscle (c) 

S.C. (d) 
      

Cd  n.d. n.d. n.d. n.d. n.d. 

Cu 0.51**  -0.15** 0.22** 0.56** 0.55** 

Hg 0.69** 0.13**  -0.05** -0.11** -0.26** 

Ni 0.29** 0.90** -0.1**  0.25** 0.31** 

Pb 0.40** 0.97** 0.01** 0.95**  0.47** 

Zn 0.41** 0.97** 0** 0.94** 0.98**  

* p < 0.05; ** p < 0.01  
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DISCUSSION 

Fish tissues 

Metal concentrations found in the muscle, liver and gills of Liza ramada were 

found to be within the range described for this species by other authors (Table 

4), and in some cases concentrations were similar to those reported in 

considerably polluted estuaries (e.g. Blasco et al., 1999; Durrieu et al., 2005). 

The accumulation levels found in the liver, gill and muscle tissue are in 

agreement to what is usually found in mugilids and other teleost fishes (Durrieu 

et al., 2005; Fernandes et al., 2007; Vicente-Martorell et al., 2009).  

Contrary to the high levels generally expected for liver and gills, trace metals 

concentration described for muscle tissue is usually low (Kalay et al., 1999; 

Karadede and Unlu, 2000; Karadede et al., 2004; Yilmaz, 2005; Chouba et al., 

2007) strengthening the idea that muscle is not an active accumulation tissue. 

The liver, however, is undoubtedly the major accumulation organ analyzed in 

this work. This is one of the most important organs in detoxification mechanisms 

and its metabolic importance makes it a primary organ for accumulation of 

xenobiotics (Heath, 1995; Olsson et al., 1998). The accumulation of metals in 

the liver may have an important role in the regulation of these contaminants, 

other than excreting them (Buckley et al., 1982). High levels of Cu, and also Zn, 

in the liver are also justifiable by the presence of the hepatic metallothioneins 

(Bunton and Frazier, 1989), low molecular weight proteins that have the 

capacity to bind both physiological and xenobiotic metals. 

Gill anatomy and function makes it exposed to pollutants dissolved in the water, 

this way becoming a target organ for metal accumulation as well (Olsson et al., 

1998). The gill membrane is a complexing ligand on itself, negatively charged, 

and metals are expected to bind them (Playle, 1998). This organ is the primary 

uptake point for waterborne metals, and the elements addressed in this study 

are no exception (Grosell, 2011; Hogstrand, 2011; Kidd and Batchelar, 2011; 

Mager, 2011; McGeer et al., 2011; Pyle and Couture, 2011).   
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In addition to the potential waterborne metals exposure, the thin-lipped grey 

mullets have their gills exposed to another source of contaminants, the 

sediment, since they filter the suspended and bottom sediment particles for 

feeding purposes, as they move through the estuary during each tidal cycle 

(Almeida et al., 1993). Higher levels of metals are thus expected in the gill of 

L. ramada, especially since the Tagus estuary has received important inputs of 

contaminants of anthropogenic origin (i.e. urban, industrial and from 

agriculture) for several decades, with high levels of trace metals among those 

contaminants. Although emissions from industries have diminished and effluent 

treatment has been improved, the sediment still shows elevated concentrations 

of those elements (Canário et al., 2005; Vale et al., 2008). Not only elevated 

concentrations of several elements were found in the gills, namely Ni, Zn and 

Pb, as the significant positive correlation between those elements reinforces 

the idea of a common anthropogenic source for them. The amount of 

anthropogenic origin Pb and Zn, and also Cd, was estimated as being over 80% 

of the total amount found in surface sediments for Tagus estuary, while Ni and 

Cu were between 57 to 68% (Vale et al., 2008). 

The high concentrations of metals in gills must be interpreted with cautious, 

though. The metals determined there may not only be associated with the gill 

tissue itself, since gill filaments and lamellae are lined with protective mucus 

(Arillo and Melodia, 1990; Shephard, 1994). When analyzing the metal burden 

in this organ it is very difficult to dissociate metals associated with the mucus 

from the aforementioned gill tissue contamination. High metal accumulation in 

the gills can, thus, also be explained by the complexation of the metallic cations 

with the negatively charged mucus (Shephard, 1994) present in the outer 

surface of gills. Mucus will simultaneously enhance the bioaccumulation of 

trace elements in the gills and also act as a barrier to their uptake into the fish 

(Heath, 1995). Nevertheless, the gill is undoubtedly an uptake route for metals, 

as already referred, specifically for those that are waterborne (Mager, 2011), 

as opposed to dietary intake. The uptake of Pb, for example, is likely to follow 
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the Ca2+ route across the gill, which is among the tissues that are known to 

bioconcentrate4 Pb, along with the kidney and the intestine (Mager, 2011). 

Metals like Cd and Pb did not increase with age or size. Taking again the 

previous example of Pb, this metal mimics essential elements, like Ca2+, and 

that makes it to be sequestered in the calcifications of the organisms, such as 

the skeleton. As fishes size/age increases, the contribution of the calcified 

structures will have less importance when compared to that of the muscle mass, 

and this will translate into a growth dilution effect (Mager, 2011). On the 

contrary, Hg concentration increased with the fishes’ size. It is possible to find 

several examples of this increasing size-dependence for Hg accumulation in 

the literature (e.g. Storelli et al., 2002; Adams and Onorato, 2005; Branco et al., 

2007; Staudinger, 2011). An elegant laboratory study conducted on biokinetic 

parameters’ effects on positive allometric concentrations of Hg in juvenile 

blackhead sea bream (Acanthopagrus schlegeli) showed that the growth and 

Hg efflux rates were probably the key drivers for increasing Hg burdens with 

increasing body size, and that assimilation efficiency inorganic mercury also 

increased with size (Dang and Wang, 2012). Additionally to the described 

bioaccumulation of Hg with age/size, this element has also been described as 

being the only metal for which studies on marine trophic webs actually show 

biomagnification (Gray, 2002), i.e., a greater body burden  is acquired from 

being at a higher trophic level (Heath, 1995; Gobas and Morrison, 2000). 

Biomagnification of Hg has been described for several fish species, particularly 

for deep-water fishes (Afonso et al., 2007) or top predators (Escobar-Sanchez 

et al., 2011). This is not the case of Liza ramada. This species is a primary 

consumer, displaying a considerable feeding plasticity; the main food items 

found in stomach contents are detritus, different microalgae groups (particularly 

diatoms), copepods, and nematodes (Laffaille et al., 2002; Almeida, 2003). 

Being at a very low trophic level, it is not expected to find biomagnification of 

Hg, but the results obtained with the present work support the bioaccumulation 

referred to Hg, since significant positive correlation with standard length was 

                                                 
4 Unlike bioaccumulation, in which the chemical’ concentration in the organism results from all possible 
routes of exposure (dietary absorption, transport across the respiratory surface, dermal absorption…), 
bioconcentration results of exposure to the waterborne chemical only (Gobas and Morrison, 2000; 
Gray, 2002). 
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found in both liver and muscle; as in the present results, other species of 

mugilids have evidenced bioaccumulation of Hg (e.g. Marcovecchio, 2004).  

The correlation coefficient in liver was higher than in muscle, probably reflecting 

the protective role of the liver when the capacity to excrete the metal is 

somehow exceeded. One of the possible strategies to this is the increase in the 

metallothioneins (MT) concentration. Metallothioneins often sequester non-

essential metals, such as Hg, in order to reduce their toxicity to the surrounding 

cellular environment (Heath, 1995). 

Contrary to Hg, otherwise significant negative relations were found for Pb and 

Zn in muscle, Cu, Ni and Zn in gills and Cu and Zn in liver. These results could 

be explained by a more efficient regulation of metals in question by the larger 

specimens, a growth dilution-effect, in which the gain in body mass surpasses 

the incorporation rate of the metals (Cronin et al., 1998; Lin et al., 2001), and/or 

by a positive selection of less contaminated particles by larger specimens. 

Metabolic rates are usually higher in smaller individuals of the same species 

(Sims, 1996; Dang and Wang, 2012) which reflects in smaller fishes 

accumulating substances like metals more rapidly than larger ones (Newman 

and Mitz, 1988; Farkas et al., 2003), but the same applies to depuration rates 

(Newman and Mitz, 1988; Dang and Wang, 2012). If positive selection of less 

contaminated particles occurs in larger individuals (Pedro et al., 2008), the 

negative correlation between metals and the fishes’ standard length is also 

expected.  

Stomach contents 

The analysis of the stomach contents regarding the size of the fish yielded 

partially contradictory results to those previously found by the authors (Pedro 

et al., 2008). Three of the six metals under study in the stomach contents (Cd, 

Cu and Hg) showed significant positive correlations with standard length, 

meaning that the larger animals have probably fed onto more contaminated 

areas. The surface sediment contamination in the Tagus estuary is not uniform 

(Canário et al., 2005; Pedro et al., 2008; Vale et al., 2008); in fact, highly 

contaminated pools only represent about 15% of the estuary total area (Vale et 

al., 2008), with the remaining presenting substantially lower levels of 
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contamination. This patched distribution of metal contamination is the probable 

cause for two of the observed results: (i) the fact that the correlation analysis 

between elements evidenced two distinct groups of metals with a likely 

common origin (Cu, Ni, Pb and Zn, R ≥ 0.9; Hg and Cd, R = 0.69; p < 0.05); 

and (ii) the difference found in stomach contents regarding the results obtained 

by Pedro et al. (2008). According to that work, negative correlations between 

standard length of fishes and metal concentration in stomach contents were to 

be expected, but that was not verified; it is possible that different size fishes 

may have fed in distinct areas while moving through the estuary during the tidal 

cycles, thus explaining divergences from the previous work’s results in what 

concerns the metals concentration in the stomach contents.  

The strong correlation found among Cu, Ni, Pb and Zn in stomach contents 

(Spearman’s R ≥ 0.9, p < 0.05) corroborates the fact that a large percentage of 

the sediment has common anthropogenic sources (Vale et al., 2008). The 

common source hypothesis gains strength if we consider that stomach contents 

of L. ramada are essentially constituted by particles which are either from the 

sediment surface or from suspended particulate matter in the water column, 

thus of relative recent origin. Five of the studied elements (i.e. Cu, Hg, Ni, Pb 

and Zn) were above the ERL and three of these (Hg, Ni and Zn) were even 

above the ERM levels (Long et al., 1995). Concentration ranges below the ERL 

level are rarely associated with adverse effects on the biological communities 

in marine and estuarine sediments; between the ERL and ERM levels, 

concentrations are occasionally associated with those adverse effects; and 

above the ERM concentrations will be frequently associated with adverse 

effects in the biological communities. Our results indicate that the stomach 

contents levels of most elements are in accord with concentrations capable of 

inducing adverse effects on biological communities, particularly if a significant 

fraction of those metals is available for biological uptake. The ingestion of 

contaminated sediments by deposit feeders may be an important pathway of 

metal bioaccumulation (Luoma, 1989), and metal available from the sediment 

may in fact be reflected in fish tissues (Vicente-Martorell et al., 2009).  
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CONCLUSION 

The thin-lipped grey mullet, a cosmopolite and catadromous species, is a key 

element in establishing an ecological connection between different areas of the 

estuary. This species has a long residence time in the estuarine ecosystem, 

throughout the year and also its lifespan, given that it only leaves the estuaries 

to spawn. This aspect of the grey mullets’ life cycle, combined with the direct 

contact with the surface sediment and particulate matter (SPM) that their 

feeding habits promote, enables a persistent exposure to the pollutants 

associated with these estuarine ‘compartments’. This is a species that can 

easily thrive in ecologically stressed environments. The long distances travelled 

by thin-lipped grey mullets allow for the specimens to transport metals 

associated to sediment particles and SPM over a wide area. The relevance and 

extent of the consequences of this transport will depend, for example, on 

sediment egestion rates or metal efflux rate from the organism.  
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METAL SPECIATION IN SALT MARSH SEDIMENTS: INFLUENCE OF HALOPHYTE 

VEGETATION IN SALT MARSHES WITH DIFFERENT MORPHOLOGY 

ABSTRACT  

Salt marshes provide environmental conditions that are known to affect metal 

speciation in sediments. The elevational gradient along the marsh and 

consequent differential flooding are some of the major factors influencing 

halophytic species distribution and coverage due to their differential tolerance 

to salinity and submersion. Different species, in turn, also have distinct 

influences on the sediment’s metal speciation, and its metal accumulation 

abilities. The present work aimed to evaluate how different halophyte species 

in two different salt marshes could influence metal partitioning in the sediment 

at root depth and how that could differ from bare sediments. Metal speciation 

in sediments around the roots (rhizosediments) of Halimione portulacoides, 

Sarcocornia fruticosa and Spartina maritima was determined by sequentially 

extracting operationally defined fractions with solutions of increasing strength 

and acidity. Rosário salt marsh generally showed higher concentrations of all 

metals in the rhizosediments. Metal partitioning was primarily related to the type 

of metal, with the elements’ chemistry overriding the environment’s influence 

on fractionation schemes. The most mobile elements were Cd and Zn, with 

greater availability being found in non-vegetated sediments. Immobilization in 

rhizosediments was predominantly influenced by the presence of Fe and Mn 

oxides, as well as organic complexes. In the more mature of both salt marshes, 

the differences between vegetated and non-vegetated sediments were more 

evident regarding S. fruticosa, while in the younger system all halophytes 

presented significantly different metal partitioning when compared to that of 

mudflats. 

 

Keywords: Halophytes; Halimione portulacoides; Sarcocornia fruticosa; 

Spartina maritima; metal partitioning; salt marshes; mudflats 
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INTRODUCTION 

Salt marshes play important roles in the estuarine ecosystem, like nutrient 

cycling or shoreline stabilizers. They are considered natural sinks for pollutants 

transported in the ecosystem (Caçador et al., 1993; Doyle and Otte, 1997; 

Caçador et al., 2000), functioning as buffers. The usual proximity to densely 

populated and/or heavily industrialized areas leaves salt marshes facing 

important discharges of such pollutants. The idea that estuaries had the ability 

to dilute and disperse pollutants led to urban and industrial discharges into 

estuarine waters without pretreatment of wastes. Together with agricultural and 

road runoff, urban and industrial discharges added up to increase the pollutant 

load in these environments, namely metals (Williams et al., 1994). Metals are 

not naturally removed or broken down, and end up accumulating in the 

estuarine environment, of which salt marshes are a part (Doyle and Otte, 1997). 

Halophytes influence the concentration of metals in salt marsh sediments, with 

increasing concentrations in the sediment between roots when compared to 

bulk sediments (Caçador et al., 1996a; Doyle and Otte, 1997; Reboreda and 

Caçador, 2007a). Species distribution in salt marshes is influenced by the 

typical elevational gradient along the marsh and consequent differential 

inundation periods (Sanchez et al., 1996). The differential plant zonation will in 

turn influence a variety of physical, chemical and biological processes (Williams 

et al., 1994) and ultimately affect the sediment’s metal accumulation capacity 

(Reboreda and Caçador, 2007a). Plants promote these changes by several 

ways. The pumping of atmospheric oxygen by the root system (Koop-Jakobsen 

and Wenzhöfer, 2014), for example, is responsible for oxidizing the sediment, 

causing shifts in the sediment redox potential, thus potentially affecting mobility 

and availability of metals (Williams et al., 1994). Another example involves plant 

detritus: plant litter actively draw metals from the water, which can immobilize 

metals in the salt marsh sediments, making them less available to surface 

waters (Lyngby and Brix, 1989). Metal uptake by plants does not usually reflect 

total metal concentrations in sediments (Caçador et al., 2009). Instead, it is the 

form of metals, i.e., the geochemical fraction to which they are bound, that will 

influence their bioavailability for plant uptake (Reboreda and Caçador, 2007a). 

Exchangeable and water-soluble forms are more bioavailable, while metals 
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associated to the crystalline lattice of minerals are potentially unavailable to 

biota (Weis and Weis, 2004). Parameters such as soil texture or organic matter 

content combine to increase availability or immobilize metals (Greger, 2004). 

Plants themselves not only change the sediment’s ability to accumulate metals, 

as mentioned above, but also exert influence on metal speciation, and 

consequently in metal mobility (Caçador et al., 1996b; Reboreda and Caçador, 

2007b; Reboreda et al., 2008). 

Three of the most abundant halophytes in Mediterranean salt marshes were 

chosen to investigate the influence of vegetation on metal mobility and 

availability in salt marsh sediments. A detailed fractionation scheme was used 

in two different salt marshes and adjacent areas of intertidal mudflats. 

 

MATERIAL AND METHODS 

Study area and sampling 

Sampling occurred in two salt marshes in the left margin of the Tagus estuary 

(Fig. 1), in the spring of 2010. Hortas salt marsh (38° 45.571’ N; 8° 54.451’ W) 

is located in the vicinity of Alcochete, in the middle estuary, next to an area that 

comprises the Tagus Estuary Natural Reserve. Rosário saltmarsh (38° 40.161’ 

N, 9° 00.198’ W) is located in the lower estuary, next to an area with higher 

urban and industrial pressures, in the surroundings of densely populated cities 

(e.g. Montijo). Rosário is a mature marsh with dense and well established 

vegetation, while Hortas is a young marsh still accreting and presenting the 

typical sparse vegetation stands of a young marsh (Duarte et al., 2013a)  

Both salt marshes are dominated by three halophyte species: Spartina maritima 

Fernald (Poales, Poaceae) in the lower marsh, followed by Halimione 

portulacoides (L.) Aellen (Caryophyllalles, Chenopodiaceae) in the mid-upper 

marsh, and Sarcocornia fruticosa (L.) A.J. Scott (Caryophyllalles, 

Chenopodiaceae) in the upper marsh (Caçador et al., 1996a; Caçador et al., 

2013). Sediment cores were sampled beneath pure stands of each species, 

and in the adjacent non-vegetated area. Samples from 5-8 cm deep (higher 

root density) were sliced for further analysis.  All samples were quickly 
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transported to the laboratory in plastic bags within refrigerated boxes. 

Rhizosediments were cleared from plant material and debris with the aid of 

tweezers.  

 

Figure 1 – Tagus estuary, with indication of Hortas and Rosário salt marshes position. 

Organic matter content and particle size distribution 

Samples were used to determine total organic matter (TOM) content as loss on 

ignition (LOI), by ashing 1.0 to 5.0 g of sediment (dry weight), at 550 °C for 4h. 

For particle size distribution, samples were dried to constant weight in an oven 

at 60 °C for 72 to 120 h and then different fractions were determined by sieving 

sediment samples with 5.0 to 100.0 g (dry weight) through an AFNOR type 

column of sieves, with calibrated mesh size. A total of three particle size classes 

were considered: gravel >2000 µm, sand [63 – 2000 µm[ and silt/clay particles 

[0 – 63 µm[.    

Trace metals determination 

All samples were stored at -80°C and freeze dried (Laboratory Freeze Dryer 

Cryodos-50, TELSTAR) for 48 h at -50 °C prior to processing for metal 

extraction. All laboratory material used was decontaminated of any adsorbed 

ion by soaking in 0.25 M nitric acid (HNO3) for 24 h and 0.25 M hydrochloric 

acid (HCl) for 48 h, and rinsing three times with deionized water to avoid cross-
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contaminations. (Reverse Osmose, Elga Purelab Prima) to avoid cross-

contaminations. 

Metal speciation was determined according to the method described in Forster 

(1995), using 1.0 g of dry sediment. Samples were extracted with sequential 

solutions of increasing strength and acidity. In Fraction 1 (exchangeable 

metals, that are unspecifically adsorbed - F1), 25 ml of 1 M ammonium nitrate 

(NH4NO3) were added to the sample, and shaking was performed at 180 min-1 

for 24h. Samples were centrifuged at 2500 rpm and then decanted. The 

supernatant was filtered through Whatman 42 filters (90 mm diameter; <2.5μm 

pore size). In Fraction 2 (metals bound in carbonates, and that are specifically 

sorbed, occluded near oxide surfaces - F2), 25 ml of 1 M ammonium acetate 

(NH4OAc) pH 6.0 were added to the residue from F1. Shaking, centrifugation 

and decanting were performed as in step 1. The residue was redissolved in 

12.5 ml of 1 M NH4NO3, shaken for 10 min, centrifuged and decanted, and 

combined with the preceding extract. In Fraction 3 (metals bound in Mn oxides 

- F3), 25 ml of hydroxylamine hydrochloride (NH2OH·HCl) + 1 M NH4OAc pH 

6.0 shaken for 30 min, centrifuged and decanted. The residue was redissolved 

twice in 12.5 ml 1 M NH4OAc pH 6, shaken for 10 min, centrifuged and 

combined with the preceding extract. In Fraction 4 (organic complexes of 

increased strength - F4), 25 ml of 0.025 M NH4-EDTA pH 4.6 were added to 

the residue from F3. Shaking was performed for 90 min, the supernatant was 

decanted and the residue was redissolved in 12.5 ml 1 M NH4OAc pH 6, 

acidified with concentrated acetic acid (CH3COOH) pH 4.6, shaken for 10 min 

and combined with the preceding extract. In Fraction 5 (metals bound to 

amorphous Fe oxides - F5) the residue was redissolved in 25 ml 0.2 M 

ammonium oxalate ((NH4)2C2O4) pH 3.25. Shaking was performed in the dark 

for 60 min, followed by centrifugation and decantation; the residue was 

redissolved in 12.5 ml 0.2 M ((NH4)2C2O4 pH 3.25, shaken for 10 min, 

centrifuged and combined with the preceding extract. In Fraction 6 (metals 

bound in crystalline Fe oxides - F6), 25 ml of 0.1 M ascorbic acid (C6H8O6) + 

0.25 M (NH4)2C2O4 pH 3.25 were added to the preceding residue, and kept at 

96 ± 3°C in a water bath for 30 min. Samples were allowed to cool, after which 

they were centrifuged and decanted; 12.5 ml of 0.2 M (NH4)2C2O4 pH 3.25 was 
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used to redissolve the residue, shaking the solution for 10 min in the dark. The 

supernatant was then combined with the preceding extract. Lastly, in Fraction 

7 (total residual metals, e.g. bound to silicates - F7) the sediment was 

transferred to Teflon containers and digested with 15 ml of concentrated 

perchloric acid (HClO4) and concentrated HNO3, for 2 h at 120 °C. Fractions 1 

to 4 were stabilized by adding 0.5 ml 65% HNO3. 

Trace metals (Cd, Cu, Ni, and Zn) were determined by Flame Atomic 

Absorption Spectrometry (FAAS, SpectraAA 50, VARIAN). Total 

concentrations of Cd, Cu, Ni, and Zn were calculated as the sum of the seven 

fractions. Instrumental recalibration and analytical blanks were used for quality 

control. Detection limits of the method were as follow (ppm): Cd – 0.03; Cu – 

0.03; Ni – 0.15; Zn – 0.33. 

Statistical analysis 

Two-way analysis of variance (ANOVA) (Sokal and Rohlf, 1995) was used to 

test for differences in total concentrations of metals and organic matter 

percentage (TOM), considering sampling site (Hortas and Rosário) and species 

(H. portulacoides, S. furticosa, S. maritima). Tukey’s HSD was used to compare 

groups means where significant differences were found. ANOVA’s assumptions 

of normality and homoscedasticity were verified with Kolmogorov-Smirnov test, 

with Lilliefors correction (normality), and Cochran's C test (homoscedasticity). 

When the criteria were not met, variables were log transformed (Log10 [M], 

where M is the concentration of a given metal), or arcsine transformed in the 

case of TOM (arcsin √𝑝, where p is the percentage value for TOM).  

Non-metric multidimensional scaling (nMDS) (Clarke, 1993) was used in 

combination with permutational multivariate analysis of variance (PERMANOVA) 

(Anderson, 2001; McArdle and Anderson, 2001) to test for differences between 

the sediment samples regarding the type of vegetation cover (or lack of it). A 

similarity percentage analysys (SIMPER) was used to determine the average 

contribution of each variable (metal fraction) to the differences between the 

sediment groups (Clarke, 1993).  
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The statistical packages STATISTICA 12.0 (StatSoft Inc., 2013) and Primer v.6 

& PERMANOVA (Clarke and Gorley, 2006) were used for data treatment and 

statistical analysis. 

 

RESULTS 

Total organic matter content (TOM) and particle size distribution in sediments 

from both sampling sites is presented in Table 1. A significant effect of Site 

[F(1,16)=215.3, p < 0.001], and of the interaction between Site and Sediment 

group [F(3,16)=58.7, p < 0.001] was observed in TOM content in the sediment. 

Organic matter, silt and clay particles were generally higher in Rosário salt 

marsh sediments (Fig. 2).  

 

Figure 2 – Particle size distribution and organic matter content (TOM, average ± sd), 

at root depth and mud flat sediments. H.p. – Halimione portulacoides; S.f. – 

Sarcocornia fruticosa; S.m. – Spartina maritima; Mud – bare sediments. Different 

letters: significant differences in LOI among species; *: significant differences in LOI 

between salt marshes (p < 0.05), N=24. 

Sediments between the roots of Halimione portulacoides had the highest TOM 

in Rosário salt marsh (21.3 ± 1.8%), and the lowest in Hortas salt marsh (2.2 ± 

1.2%). Significant differences were found within Hortas salt marsh between 

TOM of the sediments beneath H. portulacoides and the remaining groups 

(Sarcocornia fruticosa and Spartina maritima, p < 0.05, and bare sediments, 

p < 0.001). In Rosário saltmarsh, TOM in the sediments of H. portulacoides was 
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significantly higher than those of S. fruticosa, S. maritima and bare sediments 

(p < 0.001). No significant differences were found between TOM beneath pure 

stands of S. maritima and S. fruticosa within either salt marsh (p > 0.05). The 

comparison of TOM within each species’ sediments between salt marshes, on 

the other hand, was always significant (p < 0.001). Bare sediments (Mud) 

presented statistically significant differences from H. portulacoides (p < 0.001), 

S. maritima (Hortas, p < 0.05; Rosário, p < 0.001) and S. fruticosa (Hortas, 

p < 0.01; Rosário p < 0.001), but despite TOM in Mud from Rosário being higher 

than Hortas salt marsh, differences were not statistically significant (p > 0.05).   

Particle size distribution (Fig. 2) was reasonably consistent among samples 

from Rosário salt marsh. Finer particles were predominant beneath the three 

halophytes, whereas bare sediment was almost proportionally divided into sand 

and fine particles. In Hortas saltmarsh, H. portulacoides rhizosediments 

showed a larger proportion of sand than those beneath S. fruticosa and 

S. maritima, which had higher contents of silt and clay. Sand content in bare 

sediments from Hortas salt marsh was the lowest in the salt marsh. Generally, 

the sediments in Hortas salt marsh were coarser grained than in Rosário. 

Total Concentration of Metals 

Total concentration of metals in sediments (Table 1) showed statistically 

significant differences (p < 0.05) regarding Cd, Ni, and Zn, but not in the case 

of total Cu. ANOVA results showed a significant effect of Site [F(1,16)=23.6, 

p < 0.001], Sediment Group [F(3,16)=4.5, p < 0.001], and of the interaction of 

both factors [F(3,16)=6.2, p < 0 .05] in Cd concentration in the sediments and 

rhizosediments. The concentration of Ni was significantly affected by Site 

[F(1,16)=30.9, p < 0.001] and by the interaction of Site and Sediment Group 

[F(3,16)=13.6, p < 0.001], but not by the latter on its own. Samples from Rosário 

salt marsh showed higher concentrations of Ni than those from Hortas (except 

Mud samples). Lastly, the concentration of Zn was only significantly affected by 

Site [F(1,16)=70.9, p < 0.001], with all samples from Rosário presenting higher 

concentrations of Zn than the samples from Hortas saltmarsh. Tukey’s HSD 

results are reported next to metal concentrations in Table 1.  
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Table 1 – Average metal concentrations (μg.g-1 dry weight ± sd) in rhizosediments (c. 

5-8 cm) and mud flat sediments. Halimione portulacoides (H. p.), Sarcocornia fruticosa 

(S. f.), Spartina maritima (S. m.) and bare sediments (Mud), in Hortas and Rosário salt 

marshes. Different superscript lower case letters (a,b) represent statistically significant 

differences among species within a salt marsh; asterisks (*) represent statistically 

significant differences within a species between salt marshes (p < 0.05); N=24 

Site 
Sediment 

group 
Cd Cu Ni Zn 

Hortas H. p. 1.1 ± 0.1 18.8 ± 14.1 4.2 ± 1.1a* 36.1 ± 39.6* 

 S. f. 2.2 ± 0.8 60.7 ± 44.0 12.8 ± 6.4* 52.9 ± 3.8* 

 S. m. 1.6 ± 0.2* 68.4 ± 60.8 12.1 ± 4.0 80.3 ± 17.9* 

 Mud 2.3 ± 0.1   8.8 ± 0.2 29.5 ± 4.5b 197.3 ± 5.7 

Rosário H. p. 2.5 ± 0.3  54.9 ± 3.4 32.3 ± 2.2* 322.4 ± 82.9* 

 S. f. 2.0 ± 0.6ª 58.0 ± 11.0 32.8 ± 4.5* 328.4 ± 55.5* 

 S. m. 3.9 ± 0.8b*  63.5 ± 37.1 32.4 ± 22.9 527.3 ± 195.8* 

 Mud 2.8 ± 0.6 19.4 ± 3.2 16.3 ± 3.3 384.2 ± 56.4 

Metal Speciation 

Metal associations to the seven operationally defined fractions in the sediments 

between roots and in bare sediments are shown in Figure 3. Globally, the 

association to the most labile fractions, particularly to the carbonates fraction, 

was higher in Cd (up to 56%) and Zn (up to 40%); these two elements were the 

most variable in their geochemical partitioning, considering the high mobility 

observed within the several fractions. The partitioning into the residual phase 

was more abundant for Cu (7 out of the 8 groups had between 50 and 77% of 

Cu associated to this fraction) and Ni (whose partitioning into the residual 

fraction was between 60 and 80% in 7 out of the 8 groups of samples). The 

remaining fractions were varied among metals and type of sediments. 

The least variable element regarding geochemical partitioning was Cu: the 

organic fraction was the second most abundant fraction for Cu (13 to 37%), 

after the residual fraction (23 to 77%). Only H. portulacoides rhizosediments 

from Hortas salt marsh presented a slightly different pattern regarding Cu 

speciation, with a higher partitioning into the carbonates phase (36%), followed 

by the residual fraction (24%) and organic complexes (23%). The most variable 

elements regarding geochemical partitioning were Cd and Zn, given the high 

mobility observed within the several fractions.  
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Cadmium was more readily available at Rosário salt marsh (25.4%) than at 

Hortas (8.3%), considering the first two fractions (exchangeable + bound to 

carbonates) (Fig. 3). 

  

  

 

Figure 3 – Metal partition in the rhizosediments of Halimione portulacoides (H. p.), 

Sarcocornia fruticosa (S. f.), Spartina maritima (S. m.) and bare sediments (Mud), in 

Hortas and Rosário salt marshes (N=24).  F1 – Easily exchangeable metals;  F2 

– Bound to carbonates;  F3 – Bound to Mn oxides;  F4 – Organic complexes;  

F5 – Bound to amorphous Fe oxides;  F6 – Bound to crystalline Fe oxides;  F7 – 

Residual metals. 

Cadmium was more readily available at Rosário salt marsh (25.4%) than at 

Hortas (8.3%), considering the first two fractions (exchangeable + bound to 

carbonates) (Fig. 3). Within each salt marsh, Cd was more readily available 

(F1+F2) in bare sediments (29% in Hortas salt marsh, 56% in Rosário salt 

marsh), followed by H. portulacoides rhizosediments (14% in Hortas, 36% in 

Rosário). Zinc availability was similar in Hortas salt marsh between sediments 

with and without vegetation cover. In Rosário salt marsh, bare sediments 
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exhibited greater availability of Zn (40%) than sediments beneath either of the 

three halophytes (average 15.6 ± 3.3%).  

Multivariate analysis was applied to each element separately, with the 

geochemical fractions as variables. The nMDS ordination plots (Fig. 4) showed 

a good representation of the data ordination, as the stress value was smaller 

than 0.1 (Clarke, 1993).  

 Hortas Rosário 

Cd 

  

Cu 

  

Ni 

  

Zn 

  

Figure 4 – Non-metric multidimensional scaling (nMDS) ordination plots based on 

Euclidean distances of each metal partitioning for the rhizosediments of 

Halimione portulacoides ( ), Sarcocornia fruticosa ( ) and Spartina maritima ( ), and 

bare sediments ( ) collected in Hortas and Rosário salt marshes. Permanova pairwise 

tests results are superimposed on the nMDS ordination plots. * p < 0.05.  
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PERMANOVA results (Table 2) showed the two salt marshes had distinct 

partitioning of Cd depending on the type of coverage. Bare sediments and 

vegetated sediments in Hortas salt marsh exhibited significantly different Cd 

partitioning, as did S. maritima’s rhizosediments and sediments covered by the 

other two halophyte species (p < 0.05). In Rosário salt marsh, H. portulacoides 

and bare sediments both differed from sediment between the roots of 

S. fruticosa (p < 0.05).  

Table 2 – PERMANOVA analysis of trace metals partitioning in sediment between roots 

of Halimione portulacoides (H. p.), Sarcocornia fruticosa (S. f.), Spartina maritima (S. 

m.) and bare sediments (Mud), in Hortas and Rosário salt marshes. Pseudo-F: 

pseudo-F statistic, p: p-value; Perm: number of permutations 

 Pseudo-F p Perm. Pairwise tests 

Hortas     

Cd 8.8 0.000 7330 
Mud ≠ (H. p.**; S. f.*; S. m.**) 
S.m. ≠ (H. p.**; S. f.*) 

Cu 3.9 0.000 7361 S. f. ≠ Mud* 

Ni 6.5 0.001 7341 H. p. ≠ (Mud**; S. f.*; S. m.*) 

Zn 1.4 n.s. 7291  

Rosário     

Cd 3.7 0.001 7298 S. f. ≠ Mud** 

Cu 1.6 n.s. 7357  

Ni 1.6 n.s. 7296  

Zn 4.0 0.015 7277 H. p. ≠ (Mud**; S. f.**) 

n.s.: non-significant (p > 0.05); * p < 0.05, ** p < 0.01 

Different fractionation was also found among sediment groups for Cu and Ni in 

Hortas sediments, and Zn in Rosário salt marsh. Bare sediments and 

S. fruticosa exhibited significant differences in Cu partitioning (p = 0.02), 

whereas Ni fractionation was distinct in H. portulacoides and the remaining 

groups (p < 0.05). Regarding Zn in Rosário salt marsh, significant differences 

were found between non-vegetated sediments and both H. portulacoides 

(p = 0.01) and S. fruticosa. 

SIMPER analysis (Table 3) highlighted the geochemical fractions that were more 

important in the distinction among sediment groups. Some variation was 

observed, but otherwise common tendencies were noticed. For example, 

Fe/Mn oxides were largely responsible for the differences found in Cd 
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partitioning between S. maritima and the other sediment groups, whereas Cd 

in the labile fractions (Exchange and Carbonates) was more important in the 

separation between non-vegetated sediments and rhizosediments.  

Table 3 –SIMPER results listing the highest contributing fractions for the distance 

between sediment groups (rhizosediments from Halimione portulacoides (H. p.), 

Sarcocornia fruticosa (S. f.), Spartina maritima (S. m.) and bare sediments (Mud), in 

Hortas and Rosário salt marshes; N=24); Cut off for low contributions: 90.00%. Metal-

association fractions: Exch – Exchangeable; Carb – Carbonates; MnOx – Mn oxides; 

Org – Organic complexes; FeOx – Fe oxides; Res – Residual fraction  

Groups Contribution of individual fractions (%) 

Hortas  

Cd      

H. p. - Mud Exch (34) > Res (27) > Org (21) > Carb (11)  

S. f. - Mud Carb (34) > Exch (30) > Org (15) > Res (14)  

S. m. - Mud MnOx (26) > FeOx (23) > Carb (23) > Exch (21)  

S. m. -  H. p. MnOx (37) > Org (32) > FeOx (13) > Carb (9) > Carb (9) 

S. m. - S.f. FeOx (37) > Org (29) > MnOx (19) > Res (14)  

Cu      

S. f. - Mud FeOx (40)  > Org (23) > Res (18) > MnOx (14)  

Ni      

H. p. - Mud Org (20) > MnOx (19) > Res (18) > FeOx (17) > Exch (13) 

H. p. - S.f. MnOx (24) > Res (23) > Org (20) > Carb (12) > Exch (11) 

H. p. - S. m. Exch (30) > Res (19) ≈ MnOx (19) > Carb (14) > Org (11) 

Rosário      

Cd      

S. f. - Mud Carb (32) > FeOx (20) > MnOx (19) > Org (14) > Exch (10) 

Zn      

H. p. - Mud Carb (25) > Org (19) > FeOx (17) > Res (16) > MnOx (14) 

S. f. - Mud Carb (24) > FeOx (23) > MnOx (18) > Res (16) > Org (12) 

In Rosário salt marsh, labile Cd, Fe/Mn oxides, and organic bound metal were 

important in the distinction between S. fruticosa and both H. portulacoides and 

bare sediments. Generally, metals bound to either carbonates or the 

exchangeable fractions showed important contributions to the separation 

between bare sediments and those between roots, particularly in Rosário salt 

marsh, but also verified regarding Cd partitioning in Hortas salt marsh, as 

referred above (Table 3).  
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DISCUSSION 

Metal concentrations reported in this work were generally in the same order of 

magnitude of those reported for the Tagus estuary salt marshes across the 

literature (e.g. Caçador et al., 1996a; Reboreda et al., 2008; Vinagre et al., 

2008; Caçador et al., 2009). Variation in the sampling years, sampling season 

and core depths may account for the variability found in the several works, and 

apart minor exceptions, e.g. considerable higher Zn concentration in the 

vegetated sediment in Caçador et al. (1996a), no other striking differences were 

noticed. On an overall basis, the sediment biogeochemical environment is 

mostly associated to the maturity of the marshes, with young marshes showing 

low organic matter contents and high sand percentages, contrarily to mature 

marshes. This is in accordance with previous findings where the 

biogeochemical environment of the marshes can be distinguished based on its 

characteristics (Duarte et al., 2013a). This environment will condition not only 

the metal retention in its overall extension, but also the forms in which metals 

will be retained. If this is true for the overall differences between marshes, some 

differences arise within each marsh among different halophyte stands (Duarte 

et al., 2008; Duarte et al., 2009). 

Higher concentrations of Cd, Ni and particularly Zn were generally found in 

Rosário salt marsh samples (even though not all comparisons were found to be 

significant). The two areas present distinct characteristics that influence a 

higher metal enrichment in Rosário, compared to Hortas, namely higher TOM 

and greater proportion of finer particles. Close proximity to higher urban and 

industrial pressures in Rosário salt marsh also influence the observed 

differences in metal accumulation in the sediments (Caçador and Vale, 2001; 

Reboreda et al., 2008). Organic matter concentration and particle size 

distribution also contribute to some differences in metal burden found in 

sediments beneath different types of vegetation cover. The sediments 

colonized by Spartina maritima presented higher concentrations of all metals 

than the rhizosediments of Halimione portulacoides (except for Ni, which had 

similar concentrations beneath the two species in Rosário salt marsh). When 

higher percentages of organic matter and finer particles (clays and silt) are 

present, there is an increase in the metal binding capacity, with higher cation 



CHAPTER 3 

82 

 

exchange capacity, enhanced by the negatively charged clay particles and their 

large surface area (Ujevic et al., 2000). On the contrary, sediments with higher 

percentage of sand and low organic matter content usually present lower levels 

of metal retention (Williams et al., 1994). In Hortas salt marsh, S. maritima 

rhizosediments were dominated by finer particles, and had significantly higher 

TOM, while beneath H. portulacoides stands they were dominated by sand. 

However, this characteristic was not enough to explain the differences in the 

metal burden beneath the two species in Rosário salt marsh. There, the three 

species grow in sediments with similar particle size distribution (Caçador et al., 

2009) and TOM was higher in H. portulacoides rhizosediments. As for 

Sarcocornia fruticosa, TOM and particle size distribution were generally closer 

to those observed in S. maritima. Metal content, on the other hand, was not 

consistent between salt marshes: it was closer to H. portulacoides in Rosário 

salt marsh, but approached the concentrations of S. maritima in Hortas. 

Sediments with vegetation cover usually present higher metal content than bulk 

sediments. Again, organic matter appears to exert a certain influence in 

obtaining such results, but Doyle and Otte (1997) found that Fe oxides may be 

more important in binding metals like Zn than organic matter itself.   

When observing the geochemical partitioning of the four metals, two main 

tendencies were revealed: Cd and Zn, having analogue chemical behavior 

(Smolders and Mertens, 2013), showed greater mobility among the several 

operationally defined fractions, while Ni and Cu did not. The latter, above all, 

was particularly less mobile, given its partitioning being observed largely into 

the residual and organic fractions. Hortas salt marsh sediments showed greater 

variability in metal fractionation than that observed in Rosário salt marsh. The 

morphology of the two sites is distinct, and the results may be influenced by 

such differences. Rosário salt marsh is a mature system (Valiela et al., 2000; 

Duarte et al., 2013a), with extensive vegetation cover and a complex branched 

system, while Hortas is considered a young salt marsh (Valiela et al., 2000; 

Duarte et al., 2013a), with considerable open areas and sparser vegetation 

cover, and with a less complex channeling system than Rosário. 
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Sediments at Rosário salt marsh are more uniformly distributed, particularly 

rhizosediments, being mostly constituted by finer particles. Reboreda and 

Caçador (2007a) observed that physical and chemical characteristics varied 

little in the sediments between the roots (5 to 15 cm deep) of S. maritima and 

H. portulacoides in this salt marsh; Caçador et al. (2009) found a slightly 

reductive environment in the top 25 cm beneath S. fruticosa whereas similar 

and more oxidative Eh values were accounted beneath S. maritima and 

H. portulacoides; the same authors reckoned identical pH values beneath every 

species considered in the study. None of those differences (Eh and pH) were 

statistically significant. This low variation among different species may therefore 

help to explain why metal partitioning in the solid phase of Rosário’s sediments 

exhibited similar trends regardless of the vegetation cover, especially for Cu 

and Ni. Cd and Zn, on the other hand, were more labile/weakly adsorbed in 

non-vegetated sediment than beneath H. portulacoides (Zn) or S. fruticosa (Cd 

and Zn). On the absence of vegetation cover, Cd and Zn seem to be 

predominantly bound to carbonates, whereas between roots the partitioning 

favors the association with Fe/Mn oxides, organic matter and the residual 

fraction, thus reflecting the influence of plant roots in the immobilization of 

metals. These immobilized metals may be relatively inert over long periods of 

time (years), only responding to slow changes like mineral weathering or 

organic decomposition (Young, 2013). Metal partitioning in sediments from 

Hortas salt marsh was more variable than in Rosário sediments, but 

nonetheless similar trends were observed. Cadmium partitioning in the 

rhizosediments of the three halophytes differed from non-vegetated sediment. 

Similarly to what was observed for Rosário’s sediments, the partitioning into the 

labile fractions was more noticeable in bare sediments, pointing like before to 

greater availability in the absence of vegetation cover. Middle and upper marsh 

vegetation differed from S. maritima predominantly regarding Cd bound to Fe 

and Mn oxides and to organic complexes. Iron and Mn oxides were more 

abundant in sediments colonized by S. maritima, while Cd bound to organic 

complexes was more abundant in H. portulacoides and S. fruticosa 

rhizosediments. These species have higher root densities than S. maritima 

(Duarte et al., 2010). Organic complexing agents, like humic substances, 

released by the roots will favor the complexation with Cd, since this metal has 
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a higher sorption strength to humic acids than to Fe oxides (Smolders and 

Mertens, 2013). Spartina cordgrasses have a highly developed aerenchyma 

(Maricle and Lee, 2002), which is paramount in surviving waterlogging for a 

low-marsh species. Aerenchyma is thus responsible for supplying the oxygen 

for the roots’ metabolic demands (Maricle and Lee, 2002). Once metabolic 

demands are satisfied, oxygen not required for respiration is lost into the 

sediments, supplying microorganisms’ demands for oxygen and oxidizing 

reduced components (Sundby et al., 2005). Cadmium is typically very mobile 

in the estuarine environment (Förstner and Kersten, 1988). The larger 

proportion of Cd and Zn in the labile fractions of the sediment, (exchange and 

carbonates) showed these metals were generally more available than Cu and 

Ni.  

Copper was predominantly bound to the residual and organic fractions, as 

already pointed, except beneath H. portulacoides rhizosediments in Hortas salt 

marsh. In this case, almost 40% Cu was associated to the labile fractions, 

pointing towards increased availability of this metal. A combination of factors 

helps explaining this observation: the high root biomass of H.  portulacoides 

(Duarte et al., 2010), together with the larger proportion of sand particles and 

low organic matter content found in its rhizosediments, would justify an 

increased oxygen pumping into the sediments, ultimately originating a more 

oxidative environment. The oxidation of sulfides may explain the increase in the 

labile Cu found beneath H. portulacoides in Hortas salt marsh. As long as metal 

binding is not facilitated by high organic matter content, metal mobility may 

increase because metals are released from sulfides but not immediately 

adsorbed onto Fe oxides (Jacob and Otte, 2003). As a result, leaching of Cu 

from the sediment may occur, enhanced by oxidative pumping by tidal drainage 

(Förstner and Kersten, 1988). Additionally, it may also increase the 

bioavailability of metal to halophytes, which was actually observed (Duarte et 

al., 2013b), and particularly high concentrations of Cu were found in 

H. portulacoides roots in Hortas salt marsh (5 and 10-fold the concentrations in 

S. maritima and S. fruticosa – own unpublished data). Regarding Ni partitioning, 

H. portulacoides rhizosediments in Hortas showed a distinct fractionation 

scheme from the other samples. However, if we consider the proportion of 
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available metal (exchangeable and bound to carbonates), there was little 

variation among species, with labile Ni being considerably low. Caetano et al. 

(2008) registered a weak removal of Ni from the sediment by plant roots, which 

was also related with the low affinity that the soluble forms of this element have 

to oxides. The observed increase in the Ni bound to organic complexes is also 

expected to decrease the rate of uptake to plant tissues due to the stability 

inherent to such complexation mechanisms. All these data come to enlighten 

the retention processes among young and mature marshes. Rosário salt 

marsh, previously classified as a mature marsh (Duarte et al., 2013a) with high 

amounts of bioavailable metals (Duarte et al., 2013b) has an overall higher 

capacity for metal retention due to its higher silt and organic matter contents. 

On the other hand young marshes like Hortas (Duarte et al., 2013a) have low 

total and bioavailable metal concentrations (Duarte et al., 2013b), conditioned 

by the comparatively low availability of organic and high affinity ligands for metal 

binding. 

 

CONCLUSIONS 

With this work, general trends were observable in metal partitioning in salt 

marsh sediments: Cd and Zn present more mobility within the solid phase 

fractionation while Ni, and particularly Cu, are predominantly unavailable for 

plant uptake. These general trends occur regardless of the area or sediment 

vegetation cover, meaning that the metal chemistry is the most important factor 

in these processes. Notwithstanding those common tendencies, a closer look 

within each marsh type showed that metals with greater mobility are also more 

influenced by the type of vegetation cover (or its absence). In agreement with 

the literature, Cd and Zn are more available in bare sediments, evidencing the 

important role of vegetation in stabilizing metal contamination in salt marsh 

sediments. Salt marsh morphology or colonizing species are clearly of minor 

importance in the mobilization of Ni and Cu. Nonetheless, the presence of 

Halimione portulacoides in low organic matter and high sand content seems to 

favor the mobility of the latter within different salt marsh compartments, i.e., Cu 

is eventually mobilized from the sediment into the pore water, later becoming 
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available for plant uptake. Overall, although the metal’s characteristics 

conditions its chemical binding forms within the sediment matrix, the marsh 

maturity must also be accounted as a major factor modulating the sediment 

composition and thus the availability of binding forms. Thus, it seems evident 

that the marsh maturation process develops side by side with the marsh 

capacity as a sink for contaminants. 
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METAL PARTITIONING AND AVAILABILITY IN ESTUARINE SURFACE 

SEDIMENTS: CHANGES PROMOTED BY FEEDING ACTIVITY OF 

SCROBICULARIA PLANA AND LIZA RAMADA 

ABSTRACT 

Several works have evidenced in the past the importance and influence of 

plants and terrestrial invertebrates in metal availability in soils and sediments 

through changes in metal speciation. In contrast, the impact of estuarine 

invertebrates and fishes in this process has been poorly explored. The partition 

of metals in estuarine surface sediments was studied in a controlled 

environment according to four operationally defined fractions. Sediments were 

analyzed before and after the passage through the gut of two detritivorous 

species. Scrobicularia plana feeds on the bottom and suspended sediment 

particles through the inhalant siphon. Liza ramada is an interface feeder, 

filtering the superficial layer of the sediment and suspended particles in the 

water column. Cd, Cu and Ni bound to carbonates increased in the pellets of 

S. plana, compared with the ingested sediment, as did exchangeable Zn. 

Similarly, Cd and Zn bound to carbonates have also increased in the pellets of 

L. ramada; on the contrary, a decrease of Ni was observable in the pellets of 

this fish. The outcome of the controlled experiments pointed to a potential 

increase in some metals’ availability in the estuarine environment, as a result 

of the more mobile metal forms in the excreted fecal pellets. This draws the 

attention to a relevant impact of the trophic activity of both species, alongside 

with the potential enhancement brought to it by the bioturbation promoted by 

them, in the role that the estuary itself has as a contaminants’ buffer. 

 

Keywords: Metals; sequential extraction; bioavailability; fecal pellets; estuarine 

sediment. 
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INTRODUCTION 

Metals in the estuarine ecosystem and in estuarine sediments in particular, 

have become a subject of increasing interest among ecologists in the last 

decades, and that resulted in a massive number of publications on the subject 

(Sun et al., 2012). One of the concerns raised by the presence of metals in 

these ecosystems is the permanent character of such pollutants, as they are 

not degradable and therefore persist in the environment (Wood, 2011).  

Estuarine sediments may either act as a sink or as a source of metals to the 

ecosystem, depending on the metals’ predominant flux (Mason et al., 2006). 

Stakeholders are often faced with the necessity of deciding if the occurrence of 

high concentrations of metals in the sediments are a synonym of ecological 

risk, but it can be very difficult to predict environmental impacts based on total 

concentration of metals in the sediment (Ankley et al., 1994), despite the efforts 

made in that this direction (e.g. Long et al., 1995; Crommentuijn et al., 2000). 

Accordingly, it is mostly agreed nowadays that the total concentration of metals 

in the ecosystem does not provide a real image of their availability or, more 

importantly, of their toxicity to the biota (Tessier et al., 1979; DiToro et al., 

1990). It is the bioavailable metal fraction (Harmsen, 2007), i.e. the total amount 

of a metal that, within a given period, is either available or can be made 

available to be taken up by organisms (Peijnenburg and Jager, 2003), that will 

determine the degree of toxicity, instead of the total concentration of that metal. 

This bioavailability is dependent, among other factors, on metal speciation (the 

physical and chemical forms among which the metal may be distributed). Metal 

speciation is intrinsically connected to sediment geochemistry, since the way in 

which a metal is bound to the sediment particles will affect its mobility, and 

ultimately the fraction of the metal that is available for biological uptake and its 

potential toxicity.  

Several works to date have showed that organisms, beside sediment 

geochemistry, may as well modify metal partition in the sediment, from 

microorganisms (Duarte et al., 2008), to plants (Caçador et al., 1996; Reboreda 

and Caçador, 2007), and animals (Udovic et al., 2007; Sizmur et al., 2011a). 

The activities of benthic organisms, like feeding and borrowing, increase the 
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turbidity and physical disturbance in the water-sediment interface, which may 

either affect metal partitioning and toxicity in muddy sediments (Green and 

Chandler, 1994; Ciutat and Boudou, 2003), or cause no evident alteration in 

that metal toxicity (Fleeger et al., 2006). It has been shown, for example, that 

the presence of some terrestrial invertebrates alters the speciation of metals 

and metalloids in soil and manure (Li et al., 2009; Sizmur et al., 2011a; Sizmur 

et al., 2011b). Gut chemistry is usually pointed as responsible for metal 

alterations by macrofauna, as the reducing conditions and pH variations found 

therein may induce changes in metal speciation and be responsible for 

differences in the assimilation efficiency of those metals (Plante and Jumars, 

1992; Ahrens and Lopez, 2001; Griscom et al., 2002), hence responsible for 

changing the bioavailability of such elements. 

Based on the principle that differences in physicochemical properties among 

sediments can result in differences in the bioavailable fraction of metals 

(Luoma, 1989), metal partitioning studies are often used to make an attempt in 

predicting such bioavailability. Although sequential extraction protocols have 

recognized limitations (Bordas and Bourg, 1998) and are not free of criticism 

(Nirel and Morel, 1990; Bacon and Davidson, 2008), these methods are 

generally used with the purpose to indirectly obtain what is likely to be released 

in solution under different environmental conditions (Tessier et al., 1979). 

Methods may include more or less manipulative and time consuming 

consecutive steps. These techniques use sequential “selective” extractions with 

increasingly strong reagents under specific conditions to extract metals 

associated with various sized particles, and used as a proxy for metal 

associations with various geochemical, albeit operational, fractions e.g. 

ammonium oxalate at a low pH and in the dark to extract metals bound in the 

amorphous Fe oxides of the sediment (Forster, 1995). 

The present work investigated the alterations in metal partition promoted by the 

passage of estuarine sediment through the gut of two species that, although 

belonging to different taxonomic groups, feed on detritus from the bottom 

sediments. The premise considered here was that differences between the gut 

chemistry and the environment conditions could influence contaminants 
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bioavailability (Ahrens and Lopez, 2001). Thus, the main objective of this work 

was to understand the extent to which metal mobility/availability could be 

affected as a direct consequence of the presence of two abundant species in 

the estuarine environment: the peppery furrow shell Scrobicularia plana (da 

Costa, 1778) (Bivalvia: Semelidae) and the thin-lipped grey mullet Liza ramada 

(Risso, 1827) (Actinopterygii: Mugilidae). 

 

MATERIALS AND METHODS 

Sampling  

The sampling took place in the Tagus estuary intertidal mudflats. The Tagus 

(38°44’N, 9°08’W) is a semi-diurnal mesotidal estuary with ca. 4 m of tidal range 

located in the West coast of Portugal (Fig. 1). The estuary is composed of a 

deep and narrow inlet channel and a shallow bay differentiated in salt marsh 

areas, sand islands, and mud flat areas.  

Scrobicularia plana, is a widely distributed species in the Northeast Atlantic 

estuaries (from the Norwegian Sea into the Mediterranean and southward to 

Senegal) (Tebble, 1976), highly tolerant to saline and temperature variations 

during tidal cycles (Bryan and Hummerstone, 1978). This bivalve is very 

common in the intertidal mudflats of the Tagus estuary, living buried at about 5 

to 20 cm deep. It feeds on the bottom sediment particles and although it also 

ingests suspended particles through the inhalant siphon, it is considered a 

deposit feeder (Hughes, 1969). The location of these clams is easily 

recognizable during low tides by the star-shaped marks left on the sediment 

where they fed.  

Liza ramada, is a catadromous fish with a wide distribution (Mediterranean, 

Black Sea, Azov Sea and Eastern Atlantic from Cape Verde and Senegal to 

southern Baltic and British Isles) (Freyhof and Kottelat, 2008), frequently 

prevailing in polluted waters. It feeds on the extensive mudflats of estuaries, 

scraping the superficial layer of the sediment and also suspended particles in 

the water column (Almeida, 1996), presenting a great feeding plasticity (Bruslé, 

1981). The thin-lipped grey mullets are responsible for stirring a large amount 

of surface sediment during the ample movements made while feeding (Almeida 
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et al., 1993). The amount of stirred and ingested sediment is proportional to the 

thin-lipped grey mullets’ body length (Almeida, 2003) and small parallel grooves 

are visible during low tides in the mudflats where the mullets fed in the previous 

tide (P.R. Almeida, pers. com.). Stomach contents primarily include microalgae, 

meiofauna, organic debris and inorganic sediment particles (Laffaille et al., 

2002; Almeida, 2003). The latter function as a grinding paste to break cell walls 

in the pyloric portion of the mullets stomach (Odum, 1968), a muscular gizzard 

similar to the one found in birds. Finer particles are preferentially selected by 

the mullets (Almeida, 2003; Pedro et al., 2008). 

 

 

Figure 1 - Tagus Estuary detail with the location of Rosário and Hortas salt marshes. 

Scrobicularia plana specimens were captured in a low-contamination intertidal 

mud flat (Pedro et al., 2008) in Hortas salt marsh (Fig. 1). In the considered 

sampling area, mean density of S. plana varies from approximately 810 ind./m2 

to 1087 ind./m2 (França et al., 2009). Specimens of similar size (N=420; approx. 

2.5 cm shell width) were used in the experiments after a 7 day minimum period 

of depuration and acclimation in artificial saltwater, with approximate salinity of 

25 at 17°C.  

Liza ramada specimens were captured with trammel nets next to the area of 

the Tagus estuary Nature Reserve (Hortas salt marsh area, Fig. 1). Eight 

specimens of L. ramada of similar size (approx. 25 cm standard length) were 

kept in a 300 L tank for acclimation and to allow the elimination of stomach 
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contents. The experimental conditions regarding salinity and temperature were 

maintained approximately similar to the ones found in the location used to 

collect the sediment samples (17-19°C and salinity of approximately 25).  

Experimental Design 

To obviate the inconvenience that low metal content poses during detection, 

surface sediment samples (top 0.5 cm) were collected in a mud flat with higher 

concentration of metals (Reboreda et al., 2008), in the Rosário saltmarsh 

(Fig. 1). Sediment particles larger than medium and coarse grain sand 

(> 250 µm) were removed from the samples by sieving through a calibrated 

nylon mesh on arrival at the laboratory facilities.  

Scrobicularia plana  

The sieved sediment (initial sediment samples, henceforth referred as 

“Sediment”) was homogenized by mixing the water-logged sediment in a 

container, and distributed in different holding tanks with artificial saltwater, with 

8 to 10 cm of sediment in each tank. Constant water temperature was assured 

by keeping the holding tanks (33 L capacity aquariums, approx. 50x25x32 cm 

each) in a cold bath (ca. 17°C). The cold bath was achieved by placing each 

individual tank inside an 800 L approximate capacity tank (180x90x50 cm3) with 

250 - 300 L of cooled water (HAILEA HC-500a water chiller and EHEIM-1260 

pump). Redox potential (Eh) and pH were also monitored (HANNA pH/mV, 

HI 9025); 420 specimens were added to the tanks immediately after turbidity of 

the water had diminished - ca. 70 specimens per tank - and left in the tanks for 

a 48 h period to allow them to feed; after that period, they were transferred into 

new tanks with artificial saltwater to expel the fecal pellets. Fecal pellets were 

collected with a disposable pipette (2.5 ml capacity, one per tank) during the 

following two days. The control sediment samples consisted of sediment in 

contact with water but not with the specimens during the trial. The procedure 

described above (depuration, feeding period and collection of pellets) was 

repeated twice with the same specimens to obtain enough mass of fecal pellets 

for the chemical analysis. No mortality was observed in the first trial, and less 

than 5% mortality was observed in the second trial. All samples were freeze-

dried prior to analysis.  
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Liza ramada  

The specimens were anesthetized in a 2-phenoxyethanol solution at a 

concentration of 0.4 ml L-1 before the experiment. Each specimen was fed with 

the sieved sediment by using a probe while anesthetized. The probe was 

specifically developed for this study, and consisted in a polypropylene tube with 

approximately 2.5 mm diameter, with epoxy resin molded at the tip to create a 

smooth tapered end. The probe’s efficiency was tested in thin-lipped grey 

mullets cadavers (bought from local fishermen) prior to the experiment, to 

ensure the animals welfare during the trials. After the probe-feeding step, the 

specimens were left to recover from anesthesia and placed in individual tanks 

during approximately 30-45 min. Fecal pellets were collected during the 

following 6 h (“Pellets”). Control samples were obtained by leaving the same 

sediment used to feed L. ramada specimens in tanks without fishes (“Control”). 

To achieve the amount of sample necessary to the sequential and total 

extraction procedures, the experiment was repeated three times, with an 

interval of ca. 5 days between each test. 

Trace metal analysis 

All laboratory material used was decontaminated of any adsorbed ions by 

soaking in 0.25 M nitric acid (HNO3) for 24 h and 0.25 M hydrochloric acid (HCl) 

for 48 h, and rinsing three times with deionized water to avoid cross-

contaminations. (Reverse Osmose, Elga Purelab Prima) to avoid cross-

contaminations.  

Total concentration of metals was obtained by digesting 0.1 g of each sample 

(Sediment, Pellets and Control) with 2 ml of Aqua regia (HNO3/HCl, 1:3 v/v), for 

3h at 110°C. A sequential extraction procedure, described by Tessier et al. 

(1979) and modified by van Hullebusch et al. (2005), was used to determine 

trace metals partitioning (Cd, Cu, Ni, Pb and Zn) in the samples. The method 

consisted of consecutive extraction of 1.0 g of sample through the following 

steps: easily exchangeable/available fraction (EXCH) – 10 ml of 1 M 

ammonium acetate (NH4OAc), shaking at 150 rpm for 1 h at room temperature, 

followed by centrifugation for 10 min at 4000 rpm; bound to carbonates  fraction 

(CARB) – 10 ml of 1 M acetic acid (CH3COOH), shaking at 150 rpm for 1 h at 
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room temperature, followed by centrifugation as described before; bound to 

organic matter/sulfide fraction (OM/S) – 5 mL of a 30% solution of hydrogen 

peroxide (H2O2) (brought to pH 2 with HNO3) and shaken at 35°C and 150 rpm 

for 3 h; residual fraction (RES) – 10 ml of Aqua regia (HNO3/HCl; 1:3, v/v), 

digested for 3 h at 110°C in PTFE closed vessels. Obtained solutions 

(supernatant from centrifugations and digestion product from Aqua regia) were 

made to 10 ml with ultrapure water. Metal determinations (Cd, Cu, Ni, Pb and 

Zn) were done with inductively coupled plasma mass spectrometry (ICP-MS) 

using a Termo X Series, with detection limits of 0.1 ppm (Cd, Ni), 1.0 ppm (Cu) 

and 5.0 ppm (Zn). The efficiency of the sequential extraction procedure was 

obtained by comparing total concentration of trace metals with the sum of the 

four individual fractions. The accuracy and precision of the analytical 

methodology for total elemental determinations were assessed by replicate 

analysis of certified reference materials, BCR-277R (IRMM) for sediments. 

Blanks and the concurrent analysis of the standard reference material were 

used to detect possible contamination/losses during analysis and to ensure the 

accuracy and precision of the analytical method.  

Statistical analysis 

Wilkoxon signed-ranks test (Wilcoxon, 1992) was used to compare total 

concentration of metals with the sum of the four fractions from the sequential 

extraction, in order to ascertain the efficiency of the latter. Kruskal-Wallis (H) 

test, followed by Simultaneous Test Procedures (STP) (Siegel and Castellan, 

1988) was  used to compare trace metals partition into each sedimentary phase 

among the three groups of samples (Pellets, Sediment and Control). Non-

metric multidimensional scaling (nMDS) (Clarke, 1993) was used to ordinate 

the similarity data (Euclidean distance) obtained for the three groups of 

samples regarding the partitioning of all metals into the different geochemical 

fractions considered. The obtained nMDS ordination plot allowed for an 

immediate visual interpretation of the metal speciation among groups. An 

Analysis of similarities (ANOSIM) routine was performed on normalized data to 

examine statistical significance between the groups (Clarke and Gorley, 2006). 

Similar percentages (SIMPER) test was used to determine which specific 
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variables contributed to overall differences, i.e., which elements’ fractions had 

more influence on dissimilarities among groups (Clarke, 1993). 

The statistical packages SPSS© Statistics 20.0 (IBM, 2011), and Primer v.6 & 

PERMANOVA (Clarke & Gorley, 2006) were used for data treatment and 

statistical analysis. 

 

RESULTS 

Total concentration of metals was compared to the sum of the four fractions 

sequentially extracted (EXCH, CARB, OM/S and RES). The differences 

between the sum of fractions and the total concentration of metal in each group 

of samples were not statistically significant (p > 0.05), indicating an efficient 

recovery rate of metals with the sequential extraction methods (sum of the four 

fractions, divided by the total extraction). For Scrobicularia plana, the recovery 

rates of metals varied between 72% and 105% of the total metal concentrations; 

regarding Liza ramada, the recovery rates were between 88% and 109%. 

Trace metal partitioning 

Scrobicularia plana 

Chemical associations of Cu and Ni were largely dominated by the RES fraction 

(70 to 91%), followed by the OM/S fraction (7 to 30%), the CARB fraction (0.2 

to 4%) and finally by the metals in the EXCH fraction (0.1 to 1%) (Fig. 2). The 

partitioning of Cd and Zn was slightly different, with less weight of the RES 

fraction of both metals in the three groups of samples (36 to 61%). The order 

of abundance of the fractions was identical to the previous metals, but in a 

different magnitude. The OM/S fraction assumed a more important role in metal 

partitioning, representing 32 to 62% of the associations, while the CARB and 

EXCH fractions combined represented less than 20% (2 to 19%) of Cd and Zn 

partitioning.  

When comparing the total concentration among the three groups (pellets, 

sediment and control) no significant differences were found (p > 0.05). The 

partitioning into the CARB fraction of all metals was generally higher in the 



CHAPTER 3 

98 

 

pellets, with significant differences found in the case of Cd, Cu and Ni (p < 0.05) 

(Table 2). Significant differences were also found regarding the residual fraction 

of Cd and Zn, with pellets showing higher concentrations than the control group 

(p < 0.05). Although the difference between pellets and the sediment was not 

statistically significant, the concentration of the latter was very similar to the one 

of the control samples, which was in fact observed in all the above 

comparisons. Also the differences between pellets and sediment samples 

regarding Ni in the OM/S fraction and Zn in the EXCH fraction proved to be 

statistically significant (p < 0.05). 

  

Figure 2 – Metal partition in the pellets, sediment and control samples from the 

experiences with Scrobicularia plana.  EXCH – Exchangeable fraction;  CARB 

– Carbonates-bound fraction;  OM/S – Organic matter-bound fraction;  RES – 

Residual fraction. 

Liza ramada 

Chemical associations in the Liza ramada experiment were dominated by the 

RES fraction (68 to 95%) regarding all metals (Fig. 3). Generally, the 

association of metals to the remaining fractions was considerably variable. The 

ORG fraction followed in decreasing order in most cases, varying between 2.6 

and 23%, but the CARB fraction was relatively similar regarding Cd and Zn. 
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The Cu association to the OM/S fraction represented less than 1% in all groups, 

and the same was observed regarding Ni in the sediment. The EXCH fraction 

was the least abundant for most metals and groups. The exception to this was 

verified for Cd in the control group (10% of total Cd), and Ni in sediment and 

control samples (4% and 13%, respectively). 

 

Figure 3 – Metal partition in the pellets, sediment and control samples from the 

experiences with Liza ramada.  EXCH – Exchangeable fraction;  CARB – 

Carbonates-bound fraction;  OM/S – Organic matter-bound fraction;  RES – 

Residual fraction. 

Significant differences were found between pellets and control samples in the 

case of total Cd (p < 0.01), and between pellets and both sediment and control 

samples in the case of total Zn (p < 0.01). In both situations, the concentration 

in the pellets group were higher. Total Cu and Ni did not differ among groups. 

Considering metal partitioning significant differences were found in the EXCH 

fraction of Cu, Ni and Zn (Table 2). Pellets had higher concentration of Cu 

associated with the EXCH fraction than the other groups, and higher 

concentrations of Ni (p < 0.01) and Zn (p < 0.05) were found in the control 

samples. Regarding the CARB fraction of Cd, Ni and Zn. significant differences 

were found between pellets and sediment samples (Table 2). Sediment 
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samples had higher concentration of Ni in this fraction than the pellets 

(p < 0.01), while the opposite was observed for the other two elements (p < 0.05 

in the case of Cd, and p < 0.01 in the case of Zn). 

Table 2 – Kruskal-Wallis test (H) results for the chemical associations of metals in the 

sediment (S), pellets (P) and control (C) samples from the Scrobicularia plana and Liza 

ramada experiments. EXCH – Exchangeable fraction; CARB – Carbonates fraction; 

OM/S – Organic matter and sulfides fraction; RES – Residual fraction  

  Scrobicularia plana Liza ramada 

  H(2,N=9) p-level 
Post-hoc 
comps. 

H(2,N=16) p-level 
Post-hoc 
comps. 

Cd EXCH 6.161 n.s.  4.740 n.s.  

 CARB 6.489 * P > C 7.474 * P > S 

 OM/S 3.289 n.s.  2.945 n.s.  

 RES 6.489 * P > C 11.046 ** P > S,C 

Cu EXCH 5.422 n.s.  12.941 ** P > S 

 CARB 7.200 * P > C 2.647 n.s.  

 OM/S 5.956 n.s.  4.041 n.s.  

 RES 5.600 n.s.  7.522 * P > S 

Ni EXCH 5.422 n.s.  12.223 ** C > P 

 CARB 6.489 * P > C 10.904 ** S > P 

 OM/S 7.200 * P > S 10.741 ** P > C 

 RES 5.422 n.s.  7.371 n.s.  

Zn EXCH 7.200 * P > S 6.463 * C > S 

 CARB 5.600 n.s.  11.581 ** P > S 

 OM/S 5.956 n.s.  3.898 n.s.  

 RES 6.489 * P > C 10.006 ** P > S 

n.s.: non-significant (p > 0.05); * p < 0.05, ** p < 0.01. 
Post-hoc comps.: multiple comparisons tests results 

The OM/S fraction only differed between groups regarding Ni association, with 

pellets presenting higher concentration of Ni in this fraction than the control 

samples (p < 0.01). Finally, Cd, Cu and Zn concentrations in the RES fraction 

were higher in the pellets, when compared with the sediment samples. In the 

case of Cd, this difference was also observed between the pellets and the 

control samples. Although the RES fraction of Ni yielded significant differences 

in the Kruskal-Wallis test, multiple comparisons a posteriori were unable to find 

differences among the three groups of samples. 

The multivariate analysis on the metal partitioning in the S. plana experiment 

showed tight clusters for the samples belonging to the pellets group, and for 

the sediment and control samples together (Fig. 4, left plot). Considerably more 
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scatter was observable in the nMDS ordination plot for L. ramada, especially 

within the sediment samples (Fig. 4, right plot). A certain degree of overlapping 

was apparent between the sediment and control samples in this case. Although 

two separate clusters are showed for the pellets samples, this group still 

appeared completely separated from the other two. The goodness of fit 

estimate for the nMDS ordination plots, given by the stress value, showed that 

the ordination of the plot could be considered a good representation of the data 

ordination, with no real prospect of misinterpretation (Clarke, 1993).  

 

Figure 4 – Non-metric multidimensional scaling (nMDS) ordination plot based on 

Euclidean distances of the metal partitioning data of the three groups from the 

experiments with Scrobicularia plana (left plot) and Liza ramada (right plot) .  Pellets; 

 Sediment;  Control. 

The global R statistics from ANOSIM were 0.844 for S. plana (p < 0.05) and 

0.643 for L. ramada (p = 0.01), respectively, which means that the overall 

distances between the pellets, sediment and control samples were statistically 

significant. Pairwise comparisons failed to detect differences when comparing 

groups from S. plana (p = 0.10), but the comparison of the L. ramada groups 

showed significant differences between pellets and both sediment (R = 0.845, 

p = 0.02) and control samples (R= 0.704, p = 0.02), but also between sediment 

and control samples (R = 0.38, p = 0.024). Although the R value indicated that 

sediment and control samples were more similar to each other than to the 

pellets, both groups were still significantly different when considering metal 

partitioning for all elements together.  

SIMPER analysis showed that in S. plana the control and sediment samples were 

closer (average squared distance, d2 = 11.08) than the pellets with either 
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sediment (d2 = 56.12) or control samples (d2 = 54.70). None of the variables 

(metal partitioning fractions) stood out in the SIMPER analysis when comparing 

the pellets with the other groups, with relatively low individual contributions to 

the dissimilarity (<9%). Cadmium associated with the organic phase and Ni in 

the residual fraction showed the highest contributions for the dissimilarity 

between sediment and control samples (34.35 and 31.64 %, respectively). All 

other metal fractions contributed with less than 9% for the dissimilarity of the 

two groups, with the labile fractions of Zn and Cd (exchangeable and 

carbonates) showing the smallest contribution (<1% each). In L. ramada, the 

average squared distance between the groups was similar, although slightly 

higher between the pellets and the sediment samples (d2 = 44.23, against an 

average squared distance of 33.17 and 34.14 between the control samples and 

the pellets and sediment, respectively). The individual contribution of each 

variable to the observed distances was low, with the highest values staying 

below 13%.  

 

DISCUSSION 

Analyzes undertaken in this work have showed that after ingestion of the 

sediment by Scrobicularia plana and Liza ramada some alterations occurred in 

the partitioning of several trace metals, which were enough for the three groups 

to be considered distinct by multivariate analysis. Deposit feeders are known to 

modify sediment geochemistry through as they change physic-chemical 

parameters of the sediment with their activity e.g., burrow construction, 

irrigation or molecular diffusion (Green and Chandler, 1994). In the present 

work, however, sampling constraints did not allow to evaluate if changes in 

metal partitioning were accompanied by changes in the physical and chemical 

characteristics of the samples, like organic matter content, particle size 

distribution, Eh or pH, mostly due to the difficulty in obtaining enough fecal 

pellets material.  

The most noticeable differences observed in both experiments (S. plana and 

L. ramada) were related to changes in the carbonates and, in some cases, in 
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the exchangeable fractions. In S. plana, Cd, Cu, Ni and Zn bound to EXCH and 

CARB were higher in the pellets. The increase in the concentration of 

exchangeable metals may be related to the increment in the acidity of the gut 

environment. The pH in the digestive diverticula of this species may be as low 

as 5.6 (Payne and Thorpe, 1993), which could be enough to destroy some 

carbonates and this way contribute to change the original partitioning of metals 

in the sediment, releasing metals that could eventually be more easily 

extractable. The increase in the acidity causes increased solubility (Förstner, 

1993), since additional protons will compete with metal cations for the same 

binding sites. The simultaneous increase in the carbonates-bound fraction 

points to an interaction between the sediment passing through the gut of the 

clam and the gut environment, which may have led to the remobilization of the 

particle bound metals in this fraction. Regarding L. ramada, the concentrations 

of Cd, Cu and Zn in the EXCH and/or CARB fractions in the pellets were higher 

than in the ingested sediment (although statistical significance was not 

achieved for all the cases), and Ni partitioning into the carbonates phase 

significantly decreased in the pellets. The increase in the exchangeable Zn may 

be related to the increase that was observed in the total concentration of this 

metal in the pellets, although this relationship is recognized to a greater extent 

in Cd (Wang et al., 2002; Chakraborty et al., 2012). The increase in the 

concentration of total Cd in the pellets, when compared to the initial sediment, 

could be enough to influence the geochemical partitioning of this element after 

passing through the mullets’ gut (Chakraborty et al., 2012). Within the gut, the 

ingested food suffers the action of enzymes, changes in pH, abrasion, all of this 

working together towards breaking down organic matter. Compounds 

previously complexed with organic matter may be released in the gut by this 

process, and together with everything that is not taken up in the gut are 

transformed into fecal pellets and released in the aquatic environment (Wotton 

and Malmqvist, 2001). A process that can explain the significant increase of Zn 

in the pellets in the one involved in Zn excretion through intestinal sloughing to 

maintain Zn homeostasis in teleost fish (Bury et al., 2003). The pH in the 

stomach of grey mullets vary from acidic (3.5 – 4) to slightly alkaline (7 – 8.5), 

depending on the species (Payne, 1978). Liza ramada’s gut pH has not been 

described so far, but given its feeding ecology it is expected to be predominantly 
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acidic. In such case, the acidic environment may cause the destruction of 

carbonates, similarly to the described for S. plana, and also increase Ni 

solubility (Gonnelli and Renella, 2013). The fact that a correspondent increase 

in Ni associated with the pellets exchangeable fraction was not observed is 

likely a consequence of increased assimilation of Ni bound to the sediment 

labile fractions (Baumann and Fisher, 2011). 

The partitioning of Ni into the organic matter/sulfides phase showed higher 

concentrations in the fecal pellets of both species. This may seem 

counterintuitive, as the digestive process of both species is expected to break 

down the organic matter, decreasing its content in the egested sediment. It was 

not possible to assess the organic matter content in the pellets, and for that 

reason the incorporation of organic matter by the animals could not be 

quantified. Nickel has a high affinity with organic matter; low molecular weight 

organic ligands (LMWOL), humic substances or particulate matter can easily 

form complexes with Ni in soils (Gonnelli and Renella, 2013). It is likely that 

metals associated with the OM/S phase of the sediment were bound to more 

refractory organic compounds, which would decrease the assimilation 

efficiency (AE) of those metals. A predominance in labile organic compounds 

(like LMWOLs), on the other hand, would enhance the AE of metals bound to 

organic matter (Baumann and Fisher, 2011). A depletion in labile organic matter 

in the ingested sediment, together with further complexation of metals with the 

lining mucus that involves the fecal pellets (Wotton and Malmqvist, 2001), can 

thus help explaining the increase in metals associated with the OM/S phase in 

the pellets. 

 

CONCLUSION 

The results showed that in the experimental conditions of this work the activity 

of Scrobicularia plana and Liza ramada potentially favored the mobility of Cd, 

Cu, and Zn in the sediments. It is possible that the underlying increase in the 

acidity in the gut of the animals, compared to the nearly neutral pH of the 

surrounding environment, is involved in the solubilization of the metals, making 
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them more available to the estuarine environment or to be more easily 

assimilated by the organisms. Evident changes in the metal partitioning were 

evidenced in the abovementioned trials and should be taken into consideration. 

Although there is a high degree of similarity of the underlying mechanisms, 

some specificity was also detected. This pointed to a differential role of the 

different trophic mechanisms carried out by different animals and the 

consequent bioturbation implied. The processes that lead to changes in metal 

partitioning seem to be almost metal-independent mechanisms, being mostly 

associated to the gut chemistry rather than to the metal chemistry. All these 

findings point out to a new role for the deposit feeders as key players in metal 

biogeochemistry, and thus in the estuary depuration function.  
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THE LUSITANIAN TOADFISH AS BIOINDICATOR OF ESTUARINE SEDIMENT 

METAL BURDEN: THE INFLUENCE OF GENDER AND REPRODUCTIVE 

METABOLISM 

ABSTRACT 

Early diagenetic processes and anthropogenic activities are responsible for 

metal enrichment in estuarine sediments. The Tagus estuary (Portugal) is no 

exception, and as a result of past and present pressures, surface sediment 

contamination is still an issue in some areas. Since such metal loads may be 

incorporated by benthic organisms, this study analyzed the accumulation of 

trace metals in the Lusitanian toadfish (Halobatrachus didactylus) in the Tagus 

estuary. In order to determine the role played by the seasonal reproductive 

cycle of the Lusitanian toadfish in the bioaccumulation process of trace metals 

in its tissues, the concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn were 

determined in the liver of male and female specimens captured during 

reproductive and non-reproductive periods. The results showed that metal 

accumulation in the liver was related simultaneously with gender and season, 

with females having higher levels of Cd, Cu and Zn during the reproductive 

period. The metabolic roles of Cu and Zn in embryonic development may 

explain such results, as both metals accumulated in the female liver to be 

transported to the gonads later on. Cd, on the other hand, does not have a 

metabolic role, and the higher concentrations of this metal found in spawning 

females could be related to the high affinity of Cd to vitellogenin, which is 

produced in the liver. To assess the species’ potential as an indicator of metal 

contamination, the concentrations of the seven elements were compared in the 

muscle tissue of adult, type I males (age ≥ 5), from two areas with distinct 

sediment metal loads. Non-essential metals in the muscle reflected the same 

differences between areas that were found in the sediment samples, 

evidencing H. didactylus as a potential indicator of those elements 

bioavailability from the sediment. The results showed that the muscle tissue of 

adult specimens of a relatively sedentary species such as H. didactylus is a 

useful indicator of long term accumulation of trace metals. On the contrary, liver 

concentrations of trace metals showed variation according to the reproductive 
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status, which could lead to overestimate of the environmental status concerning 

trace metals bioavailability. Spawning season and liver tissue should thus be 

avoided in biomonitoring studies targeting this benthic fish. 

 

Keywords: Halobatrachus didactylus; Bioindicator; Trace elements; Muscle; 

Liver; Spawning season 

 

INTRODUCTION 

The continuous growth of human populations around coastal areas and the 

constant demand for their natural resources is a long standing and increasing 

phenomenon (Tilman et al., 2001). This resulted from the fact that, within 

coastal areas, estuaries are among some of the most valuable ecosystems, 

when considering the average (per hectare) of the estimated values of the 

services they provide (Costanza et al., 1997).  In the last two to three decades, 

a growing environmental awareness of the negative impacts of anthropogenic 

pressures led to the emergence of an increasing number of studies concerning 

pollution in estuaries (Sun et al., 2012), focusing e.g. on the contaminant 

determination in these ecosystems (Chapman et al., 2013). More specifically, 

a growing awareness has been observed regarding metals in the aquatic 

ecosystems (Zhou et al., 2008), particularly due to their non-degradable and 

persistent character (Wood, 2011), and the impacts they may promote on the 

biota. 

The uptake of metals in aquatic organisms may occur via direct uptake from 

water by gills or skin, by ingestion of contaminated suspended particles, or by 

ingestion of contaminated food items (van der Oost et al., 2003), and a 

relationship between metal levels in tissues and those in water, sediment or 

food items may be found (e.g. Bervoets et al., 2001). Fishes are among the 

organisms that are usually described as pollution indicators (e.g. Marcovecchio, 

2004; Birungi et al., 2007; Caçador et al., 2012; Zrnčić et al., 2013), with several 

reasons contributing to this interest. Some studies address commercial and/or 

public health interest on the fish species (Burger and Gochfeld, 2005; Wang et 

al., 2005; Pedro et al., 2014), while others are more concerned with the species 
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ecology and the potential usefulness as indicators of metal bioavailability 

(Jørgensen and Pedersen, 1994; Caçador et al., 2012). Metal accumulation in 

fish tissues is affected by several aspects, among which are the trophic ecology 

(Pourang, 1995), ontogenic development (Farkas et al., 2002, 2003), or body 

size (Heath, 1995). The latter is not consensual, as some studies found positive 

relations between tissue metal burdens and  size (e.g. Zyadah, 1999), while 

others found negative (Canli and Atli, 2003; McKinley et al., 2012) or no 

relationship (Canpolat and Calta, 2003) between the two.  

In metal accumulation studies involving fish tissues, two of the most commonly 

addressed are the liver and the muscle. The primary role of liver in the 

accumulation, biotransformation and excretion of contaminants (Heath, 1995; 

Pereira et al., 2010), justifies the prominent interest of this organ in 

bioaccumulation studies. This is particularly true in situations of chronic (e.g. 

for Cd) and acute (e.g. Cu) exposures, given that a prompt response to the 

contaminant levels is found in accumulation levels in the liver (Sorensen, 1991). 

However, variations due to different reproductive status of the specimens 

throughout the year (Miramand et al., 1991; Monsefrad et al., 2012) may 

encourage using concentration of metals in the muscle as an alternative to the 

liver, despite the fact that the muscle generally concentrates metals to a lesser 

degree than other tissues (Miramand et al., 1991). Nevertheless, the muscle 

can be considered as a long-term storage tissue, reflecting persistent 

contamination, such as it is observed in mollusks’ mantle, for example 

(Langston et al., 1998). It also has the clear advantage of being easy to obtain, 

both quantitatively and in terms of the reduced possibility to occur 

contamination from other tissues during the harvesting.   

The Lusitanian toadfish Halobatrachus didactylus (Bloch and Schneider, 1801), 

is a mainly marine species, but in the northern limit of its distribution (Iberian 

Peninsula) it is also common in brackish waters (Costa and Costa, 2002). It can 

be found buried in the sediment or under rock crevices (Roux, 1986), feeding 

on clams, crabs, shrimps and fishes (Costa et al., 2000; Costa et al., 2008), 

with sediment also being found in its stomach contents. Regardless of its ability 

to perform ample movements in the estuary (Campos et al., 2008), it is a 
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relatively sedentary species. Distinct behavior between genders was previously 

observed during the reproductive season, with type I (“normal” morphotype) 

males building nests and presenting parental care for eggs, larvae and 

juveniles, while females and type II males (“alternative” morphotype) do not 

(Modesto and Canário, 2003; Pereira et al., 2011).   

The Lusitanian toadfish has been, to a certain degree, overlooked regarding 

biomonitoring studies. Considering its ecology and feeding habits, a 

relationship between metal levels in the surrounding environment and the 

accumulation in fish tissues should be expected. H. didactylus was used in this 

work to investigate if the muscle tissue of could be a good indicator of distinct 

levels of trace metals in the bottom sediment. A second objective of this work 

was to assess if differences in the concentration of metals in the liver of 

H. didactylus would arise considering the reproductive metabolism of the 

species. While males need to build up large energy reserves to endure the time 

they will spend guarding the nests, females high energetic necessities are 

directed towards the gonadal development for the production of the species 

characteristic large eggs (Costa, 2004), leading necessarily to distinct hepatic 

metabolisms. Thus, gender and season (reproductive/non-reproductive) should 

yield different metal accumulation in the liver. 

To accomplish the first objective, i.e., the bioindicator quality of H. didactylus, 

sediment and fish samples were collected from two distinctly disturbed areas 

in the same estuary. The second objective was addressed by analyzing male 

and female specimens collected in the more contaminated of the two areas, 

during and after the reproductive season. 

 

MATERIAL AND METHODS 

Study area 

This study was carried out in the Tagus estuary, Portugal (Fig. 1), one of the 

largest estuaries on the west coast of Europe (38°44′ N, 9°08′ W), and the 

largest transitional water area in Portugal, covering 320 km2. It is a semi-diurnal 

mesotidal estuary (ca. 4 m tidal amplitude), with a deep and narrow inlet 
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channel and several large and shallow bays, with almost 40% of the estuarine 

area comprising intertidal mudflats and extensive areas of salt marshes, 

particularly in the southern and eastern shores. The tidal influence of this 

estuary reaches 80 km upstream from Lisbon, and under normal hydrological 

conditions salinity reaches 0 roughly 50 km upstream from the river mouth, at 

Vila Franca de Xira (Costa et al., 2007).  

 

Figure 1 – Tagus estuary (Portugal), showing Almada (a) and Seixal bay (b) sampling 

areas in detail. 1 - Corroios salt marsh; 2 - Rosário salt marsh;  in (a): 

Halobatrachus didactylus sampling area with gillnets; in (b): beam-trawl 

transepts for H. didactylus sampling; : sediment sampling sites in both areas; WWTP 

– Wastewater treatment plant. 

As in many other areas, the anthropogenic pressure over the Tagus estuary is 

intense and diverse (Rilo et al., 2012), leading to the deposition of a large array 

of contaminants. Agricultural runoff and urban and industrial effluents are 

discharged into the estuary, with the most important agricultural areas located 
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primarily in the NE region of the left bank, and the two major industrial areas 

being comprised within Vila Franca de Xira – Alverca and Seixal – Barreiro 

regions (Fig. 1).  

Because of the size and high diversity of habitats, the Tagus estuary has an 

important role as a nursery area for many fish (Cabral and Costa, 1999), 

notwithstanding the human pressures. Halobatrachus didactylus, a resident 

species, assumes a key ecological role in this ecosystem due to its abundance, 

longevity, large maximum size reached, and for being a top predator in the 

estuarine food web (Pereira et al., 2011).  

The Seixal Bay is an area with high potential spawning grounds for the 

Lusitanian toadfish, H. didactylus, given its relatively closed and shallow nature. 

This favors warmer water conditions in late spring and early summer, when this 

subtropical species spawns, which is evident from data reporting high species 

abundance and recruits density in the bay and its vicinity (Cotter et al., 2013; 

unpublished data). On the contrary, in the Almada area larger specimens are 

found, with smaller densities (Cotter et al., 2013). 

The Almada municipality estuarine front (Fig. 1a) is located near the Tagus 

estuary mouth. It is a highly hydrodynamic, exposed area, with depths that may 

be greater than 25 m. Untreated domestic effluents were previously discharged 

in the area, but a wastewater treatment plant (WWTP) began to operate in 

2003. This area benefited from the natural conditions, never having shown 

significant degradation of its waters. Nonetheless, ecological improvements 

were observed since then (Costa et al., 2010). The Seixal Bay (Fig. 1b) is a 

relatively small water body (ca. 4.2 km2 total surface) with intertidal areas 

composing approximately 95% of the bay. The anthropogenic pressure in this 

bay was very relevant, with less than 50% of domestic effluents treated until 

recently. After 2011, the Seixal WWTP allowed for 100% rates of domestic 

effluent treatment. Notwithstanding the fact that issues such as eutrophication 

were addressed with this improvement, contamination with metals cannot be 

solved through classic wastewater treatment. Consequently, their 

bioavailability is still a matter of great concern in this area, as reported by 

Caçador et al. (2012), who showed that several vertebrate and invertebrate 
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taxa reflected sediment and suspended particulate matter contamination, 

particularly of non-essential metals. A few familiar farms and small factories 

(tannery, fertilizers and pesticides production) are still operating in the area, as 

well as two aquaculture units. The Seixal Bay has also harbored in the past 

industrial fish processing and naval construction and repairing, with only some 

shipyards currently still in business (unpublished data, source Seixal 

Municipality). The continuous monitoring of metal contamination in this area 

remains a current necessity, particularly given the ecological importance of the 

bay.  

Sampling  

Fish sampling 

A total of 44 specimens of H. didactylus were sampled during low-tide with a 

beam-trawl (width ≈ 1.5 m; mesh size of 5 mm) in the Seixal Bay (SXL) (Fig. 

1b), in the spring (mid April) and summer (late July) of 2010 [spring: N=34 (14 

males, 20 females); summer: N=10 (7 males, 3 females)]. Additionally, a total 

of 6 male specimens with LT ≥ 300 mm (age class >5 (Pereira et al., 2011)) 

were captured in Almada (ALM) (Fig. 1a) during the summer of 2010, using 

gillnets. Data on body total length (LT) were registered for each fish. Muscle and 

liver samples were collected and stored at -80°C. Gonads were used to 

differentiate gender. 

Sediment sampling 

Sediment samples were collected at SXL and ALM (Fig. 1) using a modified 

van Veen grab (0.05 m2 attack area) and a modified Day grab (0.1 m2 attack 

area), respectively. Distinct grabs were used to ensure optimal operational 

conditions at both sites, considering each location depth and hydrodynamics. 

A total of 17 samples were collected (SXL, N=8 and ALM, N=9), each with 3 

replicates. Only the uppermost 7-10 cm of the dredged sediment were stored 

for analysis, using for that purpose polyethylene vials filled directly from the 

surface of the dredged sediments, and deep frozen on arrival to the laboratory 

(-80°C). Organic debris and larger particles (e.g. small pebbles, broken shell 

pieces) were removed prior to trace metals determination. 
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Trace metals determination 

All samples (tissues and sediment) were freeze dried (Cryodos-50, Telstar Life 

Science solutions, Spain) prior to processing for metal extraction. After 

complete dehydration, about 0.1 g of grinded, homogenized dry tissue was acid 

digested in Teflon® vessels with 2 ml of a mixture of HNO3 (65%, Panreac, 

p.a.) and HClO4 (60%, Panreac, p.a.) (9:1, v/v), during 2 h, in an electrical oven 

at 110°C. Approximately 0.1 g of homogenized dehydrated sediment was acid 

digested in Teflon® vessels with 2 ml of a mixture of HNO3 and HCl (37%, Carlo 

Ebra, p.a.) (3:1, v/v), during 3 h, in an electrical oven at 110°C. The resulting 

solutions were allowed to cool at room temperature before being filtered 

through Whatman 42 filters (90 mm diameter; <2.5μm pore size) and diluted to 

10 ml with ultrapure water (Type I, 18MΩ/cm, Elga Purelab Classic). All 

laboratory material used was decontaminated of any adsorbed ion by soaking 

in 0.25 M nitric acid (HNO3) for 24 h and 0.25 M hydrochloric acid (HCl) for 48 h, 

and rinsing three times with deionized water to avoid cross-contaminations. 

(Reverse Osmose, Elga Purelab Prima) to avoid cross-contaminations. 

Trace metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) were determined by Flame Atomic 

Absorption Spectrometry (FAAS, SpectraAA 50, VARIAN). Detection limits of 

the method were as follow (ppm): Cd – 0.03; Co – 0.13; Cr – 0.15; Cu – 0.03; 

Ni – 0.15; Pb – 0.32; Zn – 0.33. The accuracy and precision of the analytical 

methodology for elemental determinations were assessed by replicate analysis 

of certified reference materials, TORT-2 (NRCC) for fish tissues and BCR-146 

(IRMM) for sediments. Blanks and the concurrent analysis of the standard 

reference material were used to detect possible contamination/losses during 

analysis and to ensure the accuracy and precision of the analytical method. 

The obtained values of the reference materials were within 80 – 110% of the 

certified concentrations.  

In line with other recent studies about Tagus metal contamination (Duarte et 

al., 2013; Duarte et al., 2014), enrichment factors were calculated using as 

background levels, the metal concentrations from the upper crust (Turekian and 

Wedepohl, 1961). Previous studies showed that the application of the Earth’s 

crust values is adequate for this type of studies, due to the large dimension of 
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the Tagus estuary and its spatially heterogeneous industrial history (Duarte et 

al., 2013). 

Statistical analysis 

Mann-Whitney U-test was used to compare the accumulation of the seven 

metals in fish muscle between the two sampling areas (SXL and ALM), using 

adult type I males (age ≥ 5 years) collected in both areas during summer. The 

same test was used to compare trace metal concentrations in sediment 

samples from the two locations. Principal Component Analysis (PCA) (Hair et 

al., 1998) was conducted to assess how sediment and muscle samples were 

distributed in the Euclidean space when all metals were considered. Data were 

normalized by logarithmic transformation prior to being analyzed. Permutational 

multivariate analysis of variance (PERMANOVA) (Anderson, 2001; McArdle and 

Anderson, 2001) was used to assess differences between the two areas under 

study considering all metals. 

Analysis of variance (ANOVA) (Zar, 1999) was used to test differences in the 

total length of specimens according to gender and season. Linear regression 

was used to assess the relationship between the fishes’ body size and metal 

concentrations in the liver of SXL specimens. PCA (Hair et al., 1998) was used 

to identify potential groups according to gender and/or season using the 

concentrations of the different metals in the liver of H. didactylus as variables. 

Statistical significance among gender and season groups was assessed with 

PERMANOVA. 

The statistical packages SPSS v.20 (IBM, 2011) and PRIMER-e +PERMANOVA 

(Clarke and Gorley, 2006; Anderson et al., 2008) were used for data treatment 

and statistical analysis.  

 

RESULTS 

The average concentration of metals in the sediment samples of both sites 

followed different patterns: Seixal Bay (SXL) samples showed Zn > Pb > Cu > 

Cr > Co > Ni > Cd, while metals in Almada (ALM) sediment samples followed 
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the order Zn > Pb > Cr > Ni > Co ≈ Cu > Cd. The highest values for all elements 

in sediments were found in SXL (Fig. 2), with significant differences between 

the metal burden of the two areas for all the studied metals (p < 0.05 for Cd; 

p < 0.001 for the remaining elements). Trace metal concentrations in muscle 

samples from both areas also showed different patterns. In SXL the order was 

Zn > Pb > Cu > Ni > Co > Cd > Cr, while in ALM the order was Zn > Cu > Cd > 

Cr > Co > Ni > Pb. The levels of the trace metals in H. didactylus muscle were 

generally higher in Seixal Bay (Fig. 2), as it was observed in sediment samples, 

except for Cr, which was higher in ALM, and Cu, that showed similar 

concentrations in both locations. Significant differences between the two areas 

were found regarding Cd, Co, Ni and Pb concentrations (p < 0.01). Ni and Pb 

in muscle tissue from ALM area were below the detection limits (0.15 and 0.32 

ppm, respectively).  

The PCA based on the concentrations of the seven metals under study showed 

a clear separation between SXL and ALM, for both sediment and muscle 

samples (Fig. 3). The first two principal-components (PC1 and PC2) for the 

sediment accounted for 84.4% and 12.0% of the variation, respectively. All 

variables, except Cd, contributed similarly to the variability of PC1 

(eigenvectors, λ≈ -0.4, Cd λ = -0.3). Regarding PC2, Cd and Cu were the most 

important variables contributing to the overall variation (λ: Cd = -0.8, Cu = 0.3).  

In muscle analysis, PC1 and PC2 accounted for 56% and 28% of total variation, 

respectively. The most contributing variables in PC1 were Cd (λ = 0.4), Co, Ni 

and Pb (λ ≈ 0.5), while in PC2, that was observed for Zn (λ = -0.6), Cr and Cu 

(λ ≈ -0.5). The PERMANOVA results (Table 1) showed that in both cases 

(sediment samples and H. didactylus muscle), the differences between the two 

areas were statistically significant (p < 0.001).  
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 SXL     ALM 

 

Figure 2 – Trace metals concentration (µg.g-1 dry weight, 𝑥̅ ± sd) in sediment samples 

from Almada, , ALM (n=9) and Seixal Bay, , SXL (n=8), and in Halobatrachus 

didactylus  muscle (adult males) from the same areas (ALM: n=5; SXL: n=8). * 

Significant differences between areas (p < 0.05).  
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Figure 3 – PCA diagrams (1st and 2nd components), based on metal concentrations in 

whole sediment samples (left) and Halobatrachus didactylus muscle samples (right), 

from Almada (ALM, ) and Seixal bay (SXL, ). Number of sediment and muscle 

samples as in Fig. 2. 

Males’ total length (TL) ranged between 151 mm and 409 mm, while females 

TL ranged between 155 mm and 426 mm. The difference in TL of males and 

females was not statistically significant (F(1,43,0.05) = 0.200, p = 0.657). The 

relationship between metal concentrations in H. didactylus liver and fish size 

was tested and a significant positive correlation (r2
adj = 0.542, p < 0.001, N = 

23) was only found between TL and Co concentration in female specimens. 

None of the other metals yielded significant results in the regression analysis, 

and the same absence of significance (p > 0.05) was found for all metals when 

considering the male specimens in the regression analysis. Considering this 

result, and given the almost generalized lack of relationship between fish length 

and metal concentrations for both male and female specimens, total length was 

not included as a factor in the subsequent multivariate analysis.   

Table 1 – PERMANOVA analysis, testing differences between areas (Almada and Seixal 

Bay) for trace metals accumulation profile (Cd, Co, Cr, Cu, Ni, Pb and Zn) in sediment 

and Halobatrachus didactylus muscle samples. Locations and sample numbers as 

described in Fig. 1 and Fig. 2. Pseudo-F: pseudo-F statistic, p: p-value; Perm: number 

of permutations 

 Source Pseudo-F p  Perm 

Sediment Area 6.10 0.0001 9945 

Muscle Area 13.20 0.0008 1285 
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Regarding specimens captured during the spring, the liver of H. didactylus 

females (n=20) exhibited higher concentration of most metals than the liver of 

males (n=14) (Fig. 4).  

   

   

 
 spring     summer       

Figure 4  – Trace metals concentration (µg.g-1 dry weight, 𝑥̅ ± sd) in the liver of male 

and female Halobatrachus didactylus collected in the spring, , and summer, , of 

2010 in Seixal bay (spring: n(female)=20, n(male)=14; summer: n(female)=3, n(male)=7). 

Different lower case letters: significant differences between males and females 

(p < 0.05); *: significant differences between spring and summer (p < 0.05). # below 

the detection limit (0.15 ppm). 
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Significant differences were found in the case of Cu (males: 34.1 ± 14.9 μg.g-1; 

females: 56.2 ± 24.5 μg.g-1; p = 0.015) and Zn (males: 102.0 ± 30.0 μg.g-1; 

females: 133.6 ± 24.5 μg.g-1; p = 0.011. No significant differences were found 

(p > 0.05) when comparing the concentrations of metals in the liver of males 

and females captured during the summer. In what concerns each gender 

separately (Fig. 4), Zn concentration in the males’ liver was significantly 

different between spring (102.0 ± 30.0 μg.g-1) and summer (30.0 ± 29.9 μg.g-1) 

specimens (p = 0.001). The liver of female specimens presented significant 

differences between spring and summer concentrations for Cd (p = 0.03), Cu 

and Zn (p = 0.01) concentrations, with the three elements presenting higher 

concentrations in the spring.  

Most specimens had Cr concentrations in the liver below the detection limit 

(0.15 ppm). For that reason, Cr was removed from the multivariate analysis. 

Regarding the remaining trace metals (Fig. 5), H. didactylus specimens 

sampled in spring and summer showed different tendencies for metal 

accumulation in the liver.  

 

Figure 5 – PCA diagram (1st and 2nd components), based on metal concentrations in 

the liver of male and female Halobatrachus didactylus, collected in the spring ( , ) 

and summer ( , ) of 2010 in Seixal bay (SXL). Number of liver samples as in Fig. 4.  
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The PCA showed that these differences were mostly due to Cu, Zn and Cd 

variation. In liver analysis, PC1 and PC2 accounted for 53.6% and 16.3% of 

total variation, respectively. The most contributing variables in PC1 were Cu (λ 

= -0.6), Zn (λ = -0.6) and Cd (λ = -0.5), and in PC2, the same variables were 

accounted with the highest contributions (λ: Cd = -0.7, Zn = -0.5 and Cu = 0.3).  

PERMANOVA results (Table 2) showed that the differences between male and 

female specimens were not statistically significant (p > 0.05) when season was 

not considered, but significant differences were found regarding season (p = 

0.0001) and considering the interaction of season and gender (p = 0.003). 

Subsequent pairwise tests (Table 2) showed that, in spring, males and females 

concentrated metals distinctly in their liver (t = 1.984; p = 0.010). On the 

contrary, females and males sampled in the summer did not present significant 

differences (t = 1.769; p > 0.05). Specimens sampled in the spring presented 

statistically significant differences from summer specimens, considering both 

genders (p < 0.001). 

Table 2 – PERMANOVA analysis for trace metals (Cd, Co, Cu, Ni, Pb and Zn) 

accumulation profile in the liver of male and female Halobatrachus didactylus; samples 

collected in the spring and summer of 2010. Location and replicate numbers as 

described in Fig. 1 and Fig. 4; df: degrees of freedom; Pseudo-F: pseudo-F statistic, 

p: p-value; Perm: number of permutations; Pairwise: significant pairwise tests  

Source Pseudo-F p  Perm Pairwise  

Season 17.83 0.0001 9942  

Gender 1.42 0.2107 9945  

Season x Gender 5.49 0.0032 9957 

Spring: males ≠ females* 

Males: Spring ≠ Summer *** 

Females: Spring ≠ Summer*** 

* p < 0.05; *** p < 0.001 

 

DISCUSSION 

Metal concentrations in the surface sediment of Seixal Bay (SXL) and Almada 

(ALM) exhibited evident differences. These are justified both by the distinct 

urban/industrial pressure and by the different physical conditions of the inner 

and outer estuary areas in which SXL and ALM they are located. Greater 

depths and high hydrodynamics are found in ALM (Fortunato et al., 1997), with 
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low organic matter and finer particles content (Costa et al., 2010), while SXL 

area surface sediments exhibit greater abundance in finer particles and 

consequently higher organic matter content (Freitas et al., 1998).  

When compared to the upper continental crust (UCC) average concentration 

(Wedepohl, 1995), the concentration of Cd, Co, Cu, Pb and Zn in SXL 

sediments are above the documented values, while in ALM only Cd 

concentration exceeds the UCC concentration, thus supporting the greater 

importance of the anthropogenic input of metals in the SXL area. On a more 

regional scale, Zn, Pb, Cu, Cr and Ni concentrations were compared to 

concentrations considered to represent pre-industrial levels (prior to 1963) 

(Vale, 1986), and calculated for two saltmarsh areas (Corroios and Rosário, 

Fig. 1) in the Tagus estuary (Caçador et al., 1996). This showed that SXL 

sediment samples were above such background values for Zn, Cu and Pb, 

while ALM sediment concentrations did not exceed them. These results confirm 

previous studies (Costa et al., 2010) which had shown that the ALM area is, in 

general, relatively poorly impacted with metal contamination in sediments, 

rocky shore invertebrates, and fishes. 

The Seixal Bay area, which had the highest metal concentrations in the 

sediment, showed the highest levels of Co and non-essential metals (Cd, Ni 

and Pb) in the muscle of Halobatrachus didactylus. Such relationship, where 

metal levels in fish muscle from different areas reflected the differences found 

in the sediment’s metal concentrations has been described in other studies 

(Alquezar et al., 2006; Usero et al., 2003). As a resident estuarine species, of 

sedentary character and slow growth rates (Costa, 2004), H. didactylus type I 

males may potentially be good providers of persistent metal contamination in 

sediments.  

The gills are usually the preferred route of uptake for waterborne Cd, Co, Pb, 

and Ni, particularly for the former three, and the uptake occurs primarily using 

other divalent cations pathways (Blust, 2011; Mager, 2011; McGeer et al., 

2011; Pyle and Couture, 2011). Being a benthic and relatively sedentary fish 

(Campos et al., 2008), close contact with the sediment is predominant in this 

species life cycle. Alongside with the gills pathway, the ingestion of 



CHAPTER 4 

126 
 

contaminated suspended particles or food items is another preferential route of 

uptake (van der Oost et al., 2003). Benthic macrofauna in SXL area showed 

high levels of metal concentration (Caçador et al., 2012), while ALM 

macrofauna usually shows lower metal burdens (unpublished data). Thus, in 

SXL, the ingestion route bears higher metal loads through sediment particles 

intake and preyed organisms. The role of the skin in the uptake of metals, 

although in most cases less important than other pathways, is not completely 

discarded (Blust, 2011; Mager, 2011; McGeer et al., 2011; Pyle and Couture, 

2011). Batrachoidids in general and H. didactylus in particular, have rough skin, 

profusely covered with a thick layer of mucus (Roux, 1986). Glycoproteins in 

fish mucus may act as ion exchangers and fish mucus, although acting like an 

isolating layer from surrounding water, cannot generally provide a significant 

barrier to diffusion of water, but may have a role in ionic regulation in fish 

(Shephard, 1994). Contrarily to the present results, (Neto et al. (2011)) found 

that no clear relationship could be established between metal concentrations in 

the European eel muscle and sediments in the Tagus estuary. Those results 

were attributed to a great heterogeneity in environmental conditions, unlike the 

present study, where only two very distinct areas were compared. 

Recently, several EU directives have been implemented in all EU-member 

states, focusing on the improvement of the ecological quality of the water 

bodies under each country’s jurisdiction. The Water Framework Directive 

(WFD), even though not focusing on the levels of contaminants in the biota, 

tends to evaluate the ecological quality of the transition and coastal waters by 

the usage of organisms/communities as proxies (European Comission, 2000). 

In light of the present results, it is possible to say that H. didactylus, being a 

benthic species, resident and predominantly sedentary in the estuaries in its 

northern distribution limits, can be used as a proxy of the sediment quality in 

terms of metal accumulation. Furthermore, the Marine Strategy Framework 

Directive (MSFD) is far more specific than the WFD, having an ecological 

quality descriptor focused exactly on the contaminant levels of fish species for 

human consumption (European Comission, 2010). As mentioned earlier, this is 

also a marine species (particularly as it gets further from the northern limit of its 

distribution) and has economic importance (Costa, 2004); hence, this is a 
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possible bioindicator for metal contamination both in estuaries and costal 

ecosystems. 

The concentration of metals in fish tissues may be affected, among other 

factors, by differences in size. As referred, inverse relations between body 

length/weight and metal concentration are commonly found (Heath, 1995; Canli 

and Atli, 2003; McKinley et al., 2012). This is mostly due to distinct metabolic 

rates between smaller and larger specimens (Sorensen, 1991), with the 

younger (smaller) having higher metabolic activities and hence displaying 

correspondently higher metal concentrations. Nonetheless, even though a 

considerable variation in total length was found within males and females in this 

study, not only did body size not varied between genders, but the majority of 

the elements analyzed in the liver showed no relationship with the fish size. 

Only Co evidenced significant increasing concentration in the liver of females 

with increasing size. Cobalt is a key component of cobalamin (Blust, 2011), 

which is essential for fish growth (John and Mahajan, 1979), but a justification 

for sex specific increasing Co uptake as it was observed could not be found.   

In a study conducted in the Tagus estuary, Pereira et al. (2011) observed that 

reproductive specimens (gonadal states IV and V – maturing and mature 

gonads, respectively) of H. didactylus were only found between February and 

June. Higher Cu and Zn concentrations were found in the liver of specimens 

captured during spring (April), therefore in the middle of the reproductive period. 

Although with less expressive (yet significant) differences, Cd concentration 

was also higher in spring specimens’ liver. During the reproductive phase, in 

response to the requirements for Zn and Cu for gametogenesis, 

metallothioneins (MT) levels usually increase in the liver (Olsson et al., 1987). 

This explains the greater liver burdens of these metals in specimens captured 

in spring, when compared to those captured in the non-reproductive season (in 

this case, in the summer). MTs are responsible for the detoxification of non-

essential metals, like Cd or Hg, and the regulation of metal availability for metal 

dependent functions, as it happens with Zn and Cu (Roesijadi, 1992). Cu and 

Zn were not only higher in spring, but females concentrated more metal in their 

livers than males in that season. Higher metal concentration in female fish 
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tissues have been described before (Al-Yousuf et al., 2000; Alquezar et al., 

2006). These differences are likely related to distinct reproductive metabolism 

between male and female toadfishes. Among many other functions, the liver is 

responsible for the production of vitellogenin, a protein that is the precursor of 

the egg yolk (Shackley et al., 1981; Pereira et al., 1993). From there, 

vitellogenin is taken to the gonads by the blood (Shackley et al., 1981). The 

toadfish eggs are rather large (up to 5.5 mm), and contain a considerable 

amount of yolk (Costa, 2004). Cu and Zn, both essential metals, are probably 

accumulating to a greater extent in the female liver to be transported to the 

gonads afterwards, given their metabolic roles in the embryonic development 

(Shackley et al., 1981). The higher concentrations described for Zn in 

reproductive females when comparing with males and non-reproductive 

females may also be related to prostaglandin metabolism (Watanabe et al., 

1997). Although Cd plays no role in the embryonic development, the liver of 

reproductive females of H. didactylus also presented higher concentrations of 

this element comparatively to non-reproductive females. This result can be 

explained by the fact that Cd shares chemical properties with Zn. Like Zn, Cd 

forms strong binds to metallothioneins, resulting in increasing lipid solubility and 

bioaccumulation (Sorensen, 1991). Shackley et al. (1981) suggested that Cd 

could have the same uptake and transfer in liver and gonads of the female 

blenny that Cu and Zn endure during gametogenesis.  

Contrary to the reproductive period specimens, the liver of post-spawning 

females did not exhibit significant differences in Cd, Cu and Zn accumulation 

when compared to the liver of post-spawning males. Nonetheless, while Cu and 

Zn concentrations in the liver of post-spawning females are lower than in males, 

practically no difference is observed in Cd concentration. This could mean that 

females might be eliminating most of the Cu and Zn accumulated in the liver 

during the vitellogenesis phase through the gametes during spawning (Deb and 

Fukushima, 1999), similarly to what was described for mussels (Langston et 

al., 1998) or barnacles (Rainbow, 1998), but that the same does not occur for 

Cd. Results from the study with the female blenny (Shackley et al., 1981) 

suggested that Cu and Cd peaked in the liver during vitellogenesis, and were 

then incorporated in the oocytes (which will ultimately be shed). Although some 
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authors found little evidence of Cd accumulation in female gonads (Pereira et 

al., 1993), others showed that Cd can in fact bind to vitellogenin, displacing 

endogenous metals (Ghosh and Thomas, 1995). The same study showed that 

Cd incorporation in the ovaries increased when this metal was bound to 

vitellogenin, indicating this as an important pathway for metal transfer from the 

liver during vitellogenesis. This could, of course, compromise the viability of the 

eggs or embryos, depending on the concentration of metal exposure (Jezierska 

et al., 2009), but it is possible that metal tolerance is transferred maternally 

instead, and the survival of the offspring is not affected (Lin et al., 2000; Peake 

et al., 2004). Our results, however, seem to suggest that unlike Cu and Zn, Cd 

is not likely to be eliminated or incorporated via the liver – gonads – gametes 

pathway that appears to be possible for the other two metals.  

Zinc was the only metal for which differences were found between reproductive 

and non-reproductive males of H. didactylus. Zn burden in the liver of Mullus 

barbatus males was also significantly different between the reproductive and 

non-reproductive periods, being higher in the former (Miramand et al., 1991). 

The significant increase in Zn levels in reproductive males is probably related 

to the fundamental role of this element in the maintenance and regulation of 

spermatogenesis and sperm motility, as it was suggested by Yamaguchi et al. 

(2009) in their work with a Japanese eel animal model. 

Hepatic levels of metals may, in some cases, give a fast response to short-term 

environmental exposure, particularly in severe situations (Sorensen, 1991). For 

instance, acute and chronic exposures to Cd and Cu, respectively, promoted a 

rapid increase of those elements in the liver, and a delayed increase was 

observed regarding other tissues accumulation, like the muscle (Sorensen, 

1991). Liver concentrations of some metals in H. didactylus are, however, 

clearly influenced by the reproductive status of the specimens, particularly in 

the case of Cu and Zn, and therefore the hepatic tissue should be avoided 

during the reproductive period from a monitoring point of view. The usefulness 

of the liver as an indicator of environmental exposure to metals, either regarding 

non-reproductive specimens, or metals whose accumulation is not affected by 

the reproductive stage, is yet to be verified in the Lusitanian toadfish.  
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CONCLUSIONS 

The concentrations of trace metals in Halobatrachus didactylus tissues must be 

regarded under different approaches. Our results clearly show that, in the liver, 

essential elements accumulation is naturally influenced by metabolism and 

physiology, and that accumulation will most likely not reflect environmental 

levels during their reproductive period, exhibiting homeostatic regulation. 

Gender and season influence in Cu and Zn accumulation in the liver were 

evident, but Cd burden was also affected by these two factors. On the other 

hand, the muscle of the Lusitanian toadfish appears to be a good indicator of 

metal deposition in estuarine sediments, mainly concerning the accumulation 

of non-essential metals (Cd, Ni and Pb). Therefore, this work highlights 

H. didactylus as a useful species to be studied when assessing the efficiency 

of measures to achieve a good environmental status in aquatic ecosystems, 

considering both the Water Framework Directive and the Marine Strategy 

Framework Directive. This species is well established in several estuaries of 

the Iberian Peninsula, and the population in the Tagus estuary appears to be 

expanding (Pereira et al., 2011). Also, its relative sedentary behavior enhances 

the likelihood to provide local responses to contaminant levels.  
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FINAL CONSIDERATIONS 

This thesis focused on metal speciation and metal availability in salt marsh 

sediments and adjacent intertidal mudflats, and more specifically on the effect 

of sediment-organism interactions on such parameters. Reports on sediment 

quality based on total metal concentration are still common (e.g., Varol, 2011), 

and will probably continue to be a part of environmental quality assessment 

studies. Total metal concentrations can give us a picture of environmental 

modification when compared to pre-industrial values for those elements 

(Hahladakis et al., 2013), or to the Earth’s upper continental crust composition 

(Wedepohl, 1995), but they ultimately do not provide information on whether 

those metals are bioavailable, and to what extent. It is in this context that metal 

speciation becomes important. Total concentrations of metals may, 

nonetheless, reveal the degree of metal pollution and even be related to the 

accumulation of metal by organisms (Fan et al., 2014).  

In this work it was assessed how organisms could be affected for being in close 

contact with potentially contaminated sediment (Chapters 2 and 4). Dietary 

intake is one of the ways by which metals may enter an organism, having 

particular importance in the case of deposit feeders ingesting metal-bearing 

sediments (Millward et al., 2001). In Chapter 2, the feeding habits of 

Liza ramada, scraping and filtering the sediment surface, served as an example 

of a close link between estuarine sediment contamination and dietary intake of 

metals by a vertebrate. The relationship between the two is not always apparent 

or observable, since metals may be regulated and/or excreted without 

assimilation by the organisms (Brown and Depledge, 1998). Younger 

specimens of L. ramada were potentially more exposed to the sediment’s metal 

contamination, given the preference showed by smaller sediment particles in 

their diet. Smaller particles are characterized by a larger specific surface area, 

creating a greater adsorption surface for metals. The hypothesis of higher 

concentration of metals in the tissues of smaller fishes was confirmed, and the 

higher metabolism of younger animals (Heath, 1995) likely enhanced the 

potentially greater exposure to metal contamination and subsequent metal 
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assimilation. Stomach contents provided contrary results, but this is most likely 

a consequence of the lack of homogeneity in estuarine surface sediment, which 

was in fact described in the first part of Chapter 2. Stomach contents of mugilids 

thus appear as poor indicators of metal exposure in the estuarine ecosystem. 

They provide a “snap shot” of the feeding habits, and will not necessarily be 

reflected in the accumulation of trace metals in the tissues, namely in muscle. 

Additional insight could have been achieved with metal partitioning analysis or 

enzymatic studies to provide information on actual metal availability and 

exposure to metal contamination. Notwithstanding these results, the 

relationship between metals in sediments and in fish tissues should not be 

disregarded. As it was observed in Chapter 4, sediment contamination 

(primarily regarding non-essential metals) can be reflected in long term metal 

accumulation in the muscle of adult male toadfishes. Halobatrachus didactylus 

is a resident, predominantly benthic species, occupying a high level in the 

estuarine trophic web (Branco et al., 2008). It has a relative importance for 

human consumption, and consequently the bioaccumulation displayed by this 

fish highlights how a top predator from highly impacted estuarine areas can be 

a source of toxic metals ingestion to human populations. 

Chapter 3 dealt with how organisms could affect trace metals cycle in the 

sediments, specifically by altering their geochemical fractionation and mobility. 

Salt marsh plants are known to promote entrapment and mobilization of metals 

in the sediments, modifying the sediment’s chemical and physical 

characteristics (Caçador et al., 1996; Reboreda and Caçador, 2007; Reboreda 

et al., 2008). Benthic organisms, on the other hand, affect the dynamic of 

sediment particles, promoting bioturbation and thus also interfering, directly or 

indirectly, with the dynamic and mobility of metals (Green and Chandler, 1994; 

Ciutat and Boudou, 2003). The feeding habits of L. ramada promote an 

increase in the bioturbation of the top layer of bottom sediments. According to 

some studies, bioturbation by benthic organisms can affect sediment layers 

down to 20 cm deep, exposing previously anoxic sediments to oxidation and 

thus promoting electron transfers (Williams et al., 1994). Such great depth is 

not affected by the movements of L. ramada, but it may be observable in the 

burrowing behavior of Scrobicularia plana. The grey mullet’s movements 
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throughout the estuary enable the transport of sediment from distinct areas 

through great distances, thus making this species a horizontal vector of 

sediment whose metal partitioning has been altered while passing through the 

digestive system of the fish. On the other hand, S. plana burrowing behavior 

favors the transport of surface sediment particles into deeper layers of the 

sediment, bringing oxidized surface sediment into anoxic layers, thus promoting 

a vertical exchange of sediment particles under different geochemical 

conditions. The oxidation of previously anoxic sediment also occurs, when 

particles removed by S. plana from its burrows are released at the surface by 

the exhalant siphon (Hughes, 1969). The oxidation of organic matter and 

sulfides may result in more soluble forms, especially through the formation of 

sulfates from the oxidation of sulfides, as the sulfates are more soluble than 

sulfides (Ngiam and Lim, 2001). Trace metals bioavailability may change as a 

result of geochemical changes in the sediment, which are usually diverse and 

metal specific, i.e., generalizations are usually difficult to make (Griscom et al., 

2000). Fecal pellets from benthic organisms increase the organic matter 

content in the bottom sediments, and hence the metal sink associated with it 

(Duarte et al., 2008). Breaking down of organic matter, on the other hand, 

increases the area exposed to microbial decomposers. Microorganisms 

produce exopolymers that play multiple functions, like attachment to substrata, 

adsorption and retention of nutrients or conservation of exoenzymes (Wotton, 

2004). These extracellular polymeric substances (EPS) have great metal 

binding capacity and form multiple complexes with ions (Bhaskar and Bhosle, 

2006). Bacterial EPS may thus function as carriers for metal into the estuarine 

trophic chain, since many organisms feed on EPS as a supplementary source 

of carbon. On the other hand, the presence of chloride ions competes with 

metal binding EPS, (Bhaskar and Bhosle, 2006), hence reducing the extent to 

which metals adsorbed to these polymers enter food chains. The laboratory 

trials with the bivalves and fishes carried in this work suggest that the gut 

chemistry of these animals render some metals more available in the estuarine 

sediments than they initially were. Together with the possibility of enhanced 

metal binding to microbial EPS, both S. plana and L. ramada may be increasing 

the bioavailability of metals to the trophic web directly and indirectly.  
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Contrary to the animals’ effect on metal partitioning in estuarine sediments, the 

presence of salt marsh plants render metals potentially less available. Local 

influence of the vegetation cover type was observable, but the metals’ chemical 

behavior appeared to override site or species effects to metal geochemical 

partitioning. Two groups were formed regardless of the site or species, based 

on more or less mobile elements (Cd/Zn and Cu/Ni, respectively). Metals may 

become more immobilized and accumulate to a higher extent in sediments 

between the roots of halophytes, and rhizosediments also tend to promote 

higher accumulation of metals when compared to bare sediments. The higher 

the specific surface area of the root systems, the more pronounced 

accumulation of metals surrounding them is expected (Reboreda and Caçador, 

2007), as this enhances root-sediment interactions and allows a greater 

adsorption and/or complexation of metals (Sundby et al., 2005; Duarte et al., 

2009). Halophytes can, nevertheless, be a source of metals to the estuarine 

trophic chain, as decaying material bearing metals sheds and continues to be 

decomposed, becoming metal-bearing detritus (Caçador et al., 2009; Duarte et 

al., 2010; Couto et al., 2013). The hydrology and morphology of the Tagus 

estuary salt marshes create conditions to a rapid flush of those detritus 

(Caçador et al., 2009). This way, salt marshes, generally regarded as sinks for 

metal pollution, become a source to the adjacent estuarine areas through plant 

decay and decomposition. In a scenario of sea level rise due to global climate 

change, this export of metals is expected to increase (Duarte et al., 2014), 

consequently affecting the metal fluxes into the estuarine trophic web. 

 

REFERENCES 
 

Bhaskar, P.V., Bhosle, N.B., 2006. Bacterial extracellular polymeric substance (EPS): 
A carrier of heavy metals in the marine food-chain. Environment International 32, 
191-198. 

Branco, P., Costa, J.L., Raposo de Almeida, P., 2008. Conservation Priority Index for 
Estuarine Fish (COPIEF). Estuarine, Coastal and Shelf Science 80, 581-588. 

Brown, M.T., Depledge, M.H., 1998. Determinants of trace metal concentrations in 
marine organisms, in: Langston, W.J., Bebianno, M.J. (Eds.), Metal Metabolism in 
Aquatic Environments. Chapman & Hall, London, pp. 184-217. 



CHAPTER 5 

142 
 

Caçador, I., Vale, C., Catarino, F., 1996. The influence of plants on concentration and 
fractionation of Zn, Pb, and Cu in salt marsh sediments (Tagus Estuary, Portugal). 
Journal of Aquatic Ecosystem Health 5, 193-198. 

Caçador, I., Caetano, M., Duarte, B., Vale, C., 2009. Stock and losses of trace metals 
from salt marsh plants. Marine Environmental Research 67, 75-82. 

Ciutat, A., Boudou, A., 2003. Bioturbation effects on cadmium and zinc transfers from 
a contaminated sediment and on metal bioavailability to benthic bivalves. 
Environmental Toxicology and Chemistry 22, 1574-1581. 

Couto, T., Duarte, B., Barroso, D., Cacador, I., Marques, J.C., 2013. Halophytes as 
sources of metals in estuarine systems with low levels of contamination. Functional 
Plant Biology 40, 931-939. 

Duarte, B., Reboreda, R., Cacador, I., 2008. Seasonal variation of extracellular 
enzymatic activity (EEA) and its influence on metal speciation in a polluted salt 
marsh. Chemosphere 73, 1056-1063. 

Duarte, B., Almeida, P.R., Caçador, I., 2009. Spartina maritima (cordgrass) 
rhizosediment extracellular enzymatic activity and its role in organic matter 
decomposition processes and metal speciation. Marine Ecology 30, 65-73. 

Duarte, B., Caetano, M., Almeida, P.R., Vale, C., Cacador, I., 2010. Accumulation and 
biological cycling of heavy metal in four salt marsh species, from Tagus estuary 
(Portugal). Environmental Pollution 158, 1661-1668. 

Duarte, B., Valentim, J.M., Dias, J.M., Silva, H., Marques, J.C., Caçador, I., 2014. 
Modelling sea level rise (SLR) impacts on salt marsh detrital outwelling C and N 
exports from an estuarine coastal lagoon to the ocean (Ria de Aveiro, Portugal). 
Ecological Modelling 289, 36-44. 

Fan, W., Xu, Z., Wang, W.-X., 2014. Metal pollution in a contaminated bay: 
Relationship between metal geochemical fractionation in sediments and 
accumulation in a polychaete. Environmental Pollution 191, 50-57. 

Green, A.S., Chandler, G.T., 1994. Meiofaunal bioturbation effects on the partitioning 
of sediment-associated cadmium. Journal of Experimental Marine Biology and 
Ecology 180, 59-70. 

Griscom, S.B., Fisher, N.S., Luoma, S.N., 2000. Geochemical influences on 
assimilation of sediment-bound metals in clams and mussels. Environmental 
Science & Technology 34, 91-99. 

Hahladakis, J., Smaragdaki, E., Vasilaki, G., Gidarakos, E., 2013. Use of Sediment 
Quality Guidelines and pollution indicators for the assessment of heavy metal and 
PAH contamination in Greek surficial sea and lake sediments. Environmental 
Monitoring and Assessment 185, 2843-2853. 

Heath, A.G., 1995. Water Pollution and Fish Physiology, 2nd ed. Lewis Publishers, 
Boca Raton. 

Hughes, R.N., 1969. A study of feeding in Scrobicularia plana. Journal of the Marine 
Biological Association of the United Kingdom 49, 805-823. 

Millward, R.N., Carman, K.R., Fleeger, J.W., Gambrell, R.P., Powell, R.T., Rouse, 
M.A., 2001. Linking ecological impact to metal concentrations and speciation: a 
microcosm experiment using a salt marsh meiofaunal community. Environmental 
Toxicology and Chemistry 20, 2029-2037. 

Ngiam, L.S., Lim, P.E., 2001. Speciation patterns of heavy metals in tropical estuarine 
anoxic and oxidized sediments by different sequential extraction schemes. Science 
of the Total Environment 275, 53-61. 



FINAL CONSIDERATIONS 

143 
 

Reboreda, R., Caçador, I., 2007. Copper, zinc and lead speciation in salt marsh 
sediments colonised by Halimione portulacoides and Spartina maritima. 
Chemosphere 69, 1655-1661. 

Reboreda, R., Caçador, I., Pedro, S., Almeida, P.R., 2008. Mobility of metals in salt 
marsh sediments colonised by Spartina maritima (Tagus estuary, Portugal). 
Hydrobiologia 606, 129-137. 

Sundby, B., Caetano, M., Vale, C., Gobeil, C., Luther, G.W., Nuzzio, D.B., 2005. Root-
induced cycling of Lead in salt marsh sediments. Environmental Science & 
Technology 39, 2080-2086. 

Varol, M., 2011. Assessment of heavy metal contamination in sediments of the Tigris 
River (Turkey) using pollution indices and multivariate statistical techniques. 
Journal of Hazardous Materials 195, 355-364. 

Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et 
Cosmochimica Acta 59, 1217-1232. 

Williams, T.P., Bubb, J.M., Lester, J.N., 1994. Metal accumulation within salt marsh 
environments: a review. Marine Pollution Bulletin 28, 277-290. 

Wotton, R.S., 2004. The ubiquity and many roles of exopolymers (EPS) in aquatic 
systems. Scientia Marina 68, 13-21. 

 
 
 
 



 

144 
 

AGRADECIMENTOS 

Gostaria de dedicar algumas palavras de agradecimento a várias pessoas e 

instituições que de uma ou de outra forma contribuíram para o desenvolvimento e 

finalização desta tese:  

Aos meus orientadores, Professora Doutora Isabel Caçador e Professor Doutor Pedro 

Raposo de Almeida, pela constante disponibilidade para a discussão dos trabalhos 

que compõem esta tese, pelo imprescindível apoio científico, e pela perseverança 

e preocupação em ajudar a resolver as dificuldades e os percalços que foram 

surgindo ao longo do caminho. 

À Professora Doutora Maria José Costa, pelo seu apoio e palavras de incentivo ao 

longo dos anos, e por me ter acolhido na sua equipa no Centro de Oceanografia.  

Ao Professor Doutor José Lino Costa, pelo acompanhamento constante e atento, 

pelas palavras de incentivo que ajudaram a ultrapassar momentos de maiores 

dúvidas, pelos incessantes e valiosos esclarecimentos sobre estatística e pela 

colaboração e revisão crítica de parte dos trabalhos desta tese.  

À Professora Doutora Maria Eduarda Pereira, por me ter recebido no seu laboratório 

na Universidade de Aveiro, pela transmissão de conhecimentos e pela enorme 

gentileza com que me disponibilizou alojamento durante a estadia em Aveiro. 

À Cátia Reis pela amizade constante ao longo dos anos, pela motivação e otimismo, 

por toda a ajuda (direta e indireta) e pelos dias (e noites) de voluntariado no 

laboratório e no computador; à Rita e à Leonor por saberem, como só as crianças 

sabem, dizer aquelas palavras que animam um dia difícil; ao Nuno, pela amizade, 

motivação, e ajuda na revisão de textos.  

À Gilda Silva, à Elsa Cabral e à Mafalda Mascarenhas, pelo incansável apoio e 

amizade, por me ajudarem acreditar que era possível chegar ao fim quando tudo 

parecia ser um obstáculo; pelas conversas mais (e menos!) ligeiras que ajudaram 

a “levar o barco a bom porto”. À Gilda agradeço ainda a preciosa ajuda no 

laboratório e atenção ao detalhe sem a qual muitos erros teriam sido cometidos, 

pelo serviço de “ambulância”, e pela revisão atenta deste manuscrito. À Elsa e à 

Mafalda agradeço também por todo o apoio administrativo ao longo dos anos.  

À Catarina Mateus, pela amizade e apoio, pelo companheirismo na nossa ‘equipa das 

lampreias’, pela motivação e boa-disposição, e pelas nossas longas conversas 

(quase existenciais, ou nem por isso!). E por me lembrar tantas vezes que estava 

“quase, quase”!  

Ao Bernardo Duarte e à Joana Freitas, pela boa companhia na nossa sala/biblioteca, 

pelas discussões à volta de artigos e ideias, pelas aventuras e desventuras no 

laboratório, e pela preciosa ajuda no mundo das plantas. À Joaninha por todas as 

vezes em que abraçou a causa do “material-de-ninguém” que insistia em surgir tão 

misteriosamente nas bancadas. 

Ao Carlos Alexandre, à Catarina Mateus, ao Bernardo Quintella, ao Filipe Romão, ao 

João Paulo Medeiros, ao Givaldo, à Vera, à Sara pela ajuda em saídas de campo 



 

145 
 

e/ou longas horas de laboratório; à Erica, ao João Paulo, à Paula, à Luísa, ao 

Tadeu, à Ana Filipa, à Ana Sofia, à Ana Sousa e à Carla, e à restante equipa 

daquele que será sempre o “IO”, pelos bons momentos, companhia e boa 

disposição ao longo dos anos. 

Às minhas amigas “de sempre”, Adília, Tânia e Lina, pelas muitas e boas conversas 

absolutamente não-académicas, pelas chamadas “à terra”, e pelas nossas 

caminhadas tão importantes para manter o equilíbrio (e, em não raras ocasiões, a 

sanidade mental!).  

À minha família (chegada e alargada), não pela sua contribuição direta para esta tese, 

mas por todas as outras coisas sem as quais não teria sido possível dedicar o 

tempo necessário a este projeto (e elas são muitas!), pelo apoio, confiança e 

carinho.  

 

 

AGRADECIMENTOS INSTITUCIONAIS 

Ao Centro de Oceanografia, e ao seu atual Diretor, o Professor Doutor Henrique 

Cabral, por me terem sido proporcionadas as condições necessárias para a 

realização deste trabalho. 

À Faculdade de Ciências da Universidade de Lisboa, por aceitar a minha proposta de 

tese de Doutoramento e facultar as condições necessárias à sua realização. 

 

A instituição de acolhimento foi financiada com o projeto PEst-OE/MAR/UI0199/2014 

e a autora desta tese com a bolsa individual de doutoramento com a referência 

SFRH/BD/37926/2007, ambos pela Fundação para a Ciência e a Tecnologia (FCT). 

Parte dos trabalhos que compõem esta tese foram também financiados pela FCT 

através do projeto “MECTIS - Metal cycling and sediment dynamics in Tagus estuary; 

influence of salt marsh plants and fishes” (POCI/MAR/58548/2004). 

 

 


	Table of contents
	ABSTRACT
	RESUMO
	Resumo Alargado
	List of Papers
	CHAPTER 1
	General Introduction
	Aims and Structure of the Thesis
	REFERENCES


	CHAPTER 2
	Granulometric selectivity in Liza ramado  and potential contamination resulting from heavy metal load in feeding areas
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	REFERENCES

	Bioaccumulation of trace metals in thin-lipped grey mullet (Liza ramada): relationship with size and ecological repercussions
	INTRODUCTION
	MATERIAL AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	REFERENCES


	CHAPTER 3
	Metal speciation in salt marsh sediments: influence of halophyte vegetation in salt marshes with different morphology
	INTRODUCTION
	MATERIAL AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	REFERENCES

	Metal partitioning and availability in estuarine surface sediments: changes promoted by feeding activity of Scrobicularia plana and Liza ramada
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	REFERENCES


	CHAPTER 4
	The Lusitanian toadfish as bioindicator of estuarine sediment metal burden: the influence of gender and reproductive metabolism
	INTRODUCTION
	MATERIAL AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	REFERENCES


	CHAPTER 5
	Final considerations
	Agradecimentos


