
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

LOAD BALANCING IN REAL SOFTWARE DEFINED
NETWORKS

Gonçalo Miguel Alves Semedo

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

2014

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

LOAD BALANCING IN REAL SOFTWARE DEFINED
NETWORKS

Gonçalo Miguel Alves Semedo

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitectura, Sistemas e Redes de Computadores

Dissertação orientada pelo Prof. Doutor Fernando Manuel Valente Ramos
e co-orientado pelo Prof. Doutor Nuno Fuentecilla Maia Ferreira Neves

2014

Acknowledgments

First of all I want to thank my parents for all the support and encouragement that was
fundamental for me to achieve my goals. Without them I would not got this far, not only
because of all the investment they made in my education, but also because of all the love
and firm hand that kept me in the right path. I like to thank my sister for putting up with
me and help me in my journey, she was also very important for me to achieve my goals.
I also want to thank the rest of my family, especially my cousins Ricardo Alves, André
Torrinha and Pedro Paiva throughout the time we spend together to relieve stress by doing
some exercise or just by hanging out.

I want to give a special thanks to my longtime friends Diogo Santos, Miguel Silva and
Susana Vilhena for all their friendship, support and advice.

I want to give a great thanks to all my companions Carlos Barata, João Martins, Fábio
Santos, Tiago Aparicio, Tiago Posse, João Nascimento, Rafael Oliveira, José Carilho and
Rita Henriques for all these 6 amazing years that we spent together on this journey that
was the college life. We had awesome moments and lots of night outs, some of them
partying while others studying.

Of course, I must thank my advisors professor Fernando Ramos and professor Nuno
Neves for the opportunity to join this project and for all their guidance.

Finally I want to thank Vinı́cius Congo for helping me with the bioinformatics appli-
cation that made possible the third test and a more accurate result.

iii

To my family and friends.

Resumo

Actualmente, configurar uma rede pode ser um processo demorado e penoso, prin-
cipalmente quando estamos a falar de redes constituı́das por centenas de routers e swit-
ches. É necessário configurar cada um destes equipamentos individualmente, normal-
mente usando a linha de comandos, num processo muito susceptı́vel a erros. As redes
definidas por Software ou Software Defined Networking (SDN) [19, 27] são um novo pa-
radigma que surgiu recentemente e que visa resolver estes problemas de configuração e
de gestão de redes. A ideia principal de uma SDN consiste na centralização da lógica
do controlo da rede num controlador SDN (ou num grupo de controladores), que con-
trola e monitoriza todo o comportamento da rede. Assim, há uma separação entre o plano
de controlo que tem por função preencher as tabelas de encaminhamento dos switches
com base nas decisões do operador da rede (ou das aplicações que tomam as decisões),
e o plano de dados, isto é, o encaminhamento dos pacotes. Esta separação é possı́vel
através da definição de uma API entre os switches e o controlador, como por exemplo o
OpenFlow [30]. Uma rede SDN possibilita que as redes sejam programáveis permitindo
a definição do comportamento da rede a partir do controlador, facilitando a definição e
implementação de aplicações complexas tais como balanceamento de carga, encaminha-
mento ou segurança.

O objectivo deste trabalho consiste na construção de um balanceador de carga usando
este novo paradigma. As principais diferenças em relação aos distribuidores de carga
convencionais, que são baseados em hardware especializado e caro, é que o que propomos
é baseado em software sendo uma aplicação que corre em cima de um controlador. Além
disso faz balanceamento de carga considerando não só o servidor para onde devemos
enviar os dados, mas também o melhor caminho para chegar até ao servidor escolhido.

Para a construção do nosso projecto usámos o controlador Floodligth [8], feito em
Java. Usando este controlador avaliámos várias combinações de algoritmos de escolha de
servidor e de algoritmos de escolha de caminho.

Como acreditamos não existir um algoritmo que seja o mais indicado para todas as
aplicações, desenvolvemos uma nova aplicação de balanceamento de carga para redes
SDN: MALOB (Multi-Algorithm Load Balancer), uma aplicação que selecciona o algo-
ritmo de acordo com o tipo de pedido.

vii

Um dos pontos mais relevantes deste trabalho prende-se com a sua avaliação. Para
a realização dos vários testes recorremos à GENI [13], uma rede experimental de larga
escala. A GENI possibilita o desenvolvimento de uma grande variedade de experiências,
tais como, desenho e avaliação de novos protocolos, serviços distribuı́dos, gestão de
conteúdos ou serviços de gestão de redes, usando uma rede fı́sica real. Uma das principais
razões pela qual optámos pela GENI foi o facto de esta nos permitir explorar o potencial
de novas tecnologias como as SDN. Com uma avaliação experimental feita numa rede real
como a GENI conseguimos resultados que nos permitem tirar conclusões mais precisas
relativamente ao impacto do nosso trabalho.

Palavras-chave: Software-Defined Networking, Balanceamento de carga, OpenFlow,
GENI, Floodlight.

viii

Abstract

Nowadays, network management can be a painful and tedious process, especially
when we consider large networks with hundreds of switches and routers. In traditional
networks, it is necessary to configure each equipment, one by one, typically using a com-
mand line in an error-prone process. Software Defined Networking (SDN) [19, 27] is a
new paradigm that aims to change this current undesirable state of affairs. The main idea
of SDN consists in logically centralizing network control in a SDN controller (or a cluster
of controllers), which controls and monitors the behavior of the network. The goal is to
separate the control plane from the data plane. This separation is possible by means of
an API between the switches and the controller such as OpenFlow [30]. Networks thus
become programmable, allowing the definition of the behavior of the entire network from
a vantage point, the controller, thus facilitating the creation of advanced network policies,
such as load balancing, routing and security.

The main goal of this project is to develop and evaluate a load balancer using this new
paradigm. Conventional load balancers are expensive specialized hardware equipment
whereas our proposal is based on a software application running on top of the SDN con-
troller. Additionally, our solution enables load balancing to be performed not only based
on server choice, but also on the best path to the chosen server.

To achieve our goal we used the Floodlight controller [8] implemented in Java. Us-
ing this controller we evaluated several combinations of algorithms for server and path
selection.

As particular algorithms are suitable for particular applications, we propose a Multi-
Algorithm Load Balancer (MALOB), a load balancing application for SDNs that has the
capability to adapt to the different types of requests, selecting the most appropriated al-
gorithm accordingly with the type of request. One of the most relevant contributions
of this dissertation is its evaluation. We used GENI [13], a large-scale testbed that en-
ables the possibility of performing a variety of experiments, such as, protocol design and
evaluation, distributed service offerings, content management and in-network service de-
ployment. GENI allows us to explore the potential of underlying technologies such as
SDN. An experimental evaluation made with a real network such as GENI, enabled us to
take more faithful conclusions about the impact of our work.

ix

Keywords: Software-Defined Networking, Load Balancing, OpenFlow, GENI,
Floodlight.

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Traditional Networks . 1
1.2 Software Defined Network, a new paradigm 2
1.3 Motivation . 3
1.4 Contributions . 4
1.5 Work Plan . 4
1.6 Document Structure . 6

2 Related Work 7
2.1 Software-Defined Networking . 7

2.1.1 OpenFlow . 8
2.2 SDN controllers . 9

2.2.1 Nox . 9
2.2.2 Onix . 9
2.2.3 Floodlight . 11

2.3 Load Balancing . 11
2.3.1 Content-blind load balancing . 12
2.3.2 Content-aware load balancing 12
2.3.3 Plug-n-Serve: An SDN Load Balancer 13

2.4 Evaluation . 13
2.4.1 Mininet . 14
2.4.2 Mininet Hi-Fi . 14
2.4.3 GENI . 15

3 Design and Implementation 19
3.1 Application Design . 20
3.2 MALOB . 22
3.3 Implementation . 23

xi

3.3.1 Maintaining Network State . 23
3.3.2 Maintaining Server State . 26
3.3.3 Load Balancing Algorithms . 26

4 Evaluation 29
4.1 Topology and Testbed Setup . 29
4.2 Evaluation Results . 30

4.2.1 HTTP Requests . 31
4.2.2 FTP Requests . 32
4.2.3 Bio Application Requests . 33
4.2.4 Discussion . 33

5 Conclusion 37

Acronyms 39

Bibliography 44

xii

List of Figures

1.1 Traditional Networks Architecture . 2
1.2 Traditional Network vs SDN . 3

2.1 Network design using SDN . 8
2.2 NOX-based network . 10
2.3 Plug-n-Serve design . 14
2.4 Map with all GENI sites. 17
2.5 Map with all InstaGENI sites . 18

3.1 SDN Load Balancer Design . 19
3.2 Steps for a new request . 21
3.3 MALOB usage . 22
3.4 Total round-trip time of a LLDP packet 24
3.5 Use of scripts to retrieve state information 25
3.6 Paths bandwidth example . 27

4.1 Network Topology . 30
4.2 HTTP Results . 32
4.3 FTP Results . 33
4.4 CPU usage by request at Server-2 . 34
4.5 BioApp Results . 34
4.6 Network topology used to evaluate the performance of HT-PS against SL-

PS. 35
4.7 Results for the HTTP test. 35
4.8 Results for the FTP test . 35

xiii

List of Tables

2.1 Example of an OF-enabled switch flow table 9

3.1 REST Commands . 20
3.2 MALOB Services Table . 23

4.1 Algorithm combinations . 29
4.2 Node Configuration . 30
4.3 Links Throughput and Latency . 31
4.4 Links characteristics. 35

xv

Chapter 1

Introduction

Computer networks are the spine of many businesses today. These networks are getting
bigger and bigger with thousands of devices that have to be configured and managed.
Nowadays configuring and managing a network is a complicated, tedious and error-prone
process. To avoid this undesirable state of affairs, a new paradigm called Software-
Defined Networking (SDN) [19, 27] has been proposed. This new paradigm consists
in separating the data plane from the control plane. In a SDN a logically centralized
controller handles the control plane.

The main goal of this project is to create a load balancer application for SDN ar-
chitectures and evaluate it in a real testbed. Contrary to traditional load balancers, our
application is capable of not only choosing the best server to handle the request, but also
select the best path to that server.

1.1 Traditional Networks

Enterprise IT departments have very limited options to get the best performance from their
network while the demands on the quality of service are always increasing. Normally,
they have to use device-level management tools and manual processes to configure each
device, which in many cases can be thousands. To meet the several business and technical
needs, over the last few decades the network industry has evolved protocols to deliver
higher performance and reliability, broader connectivity, and more stringent security. This
variety of protocols and devices results in very complex setups that represent one of major
problems of today networks. For example, when a new device must be added or moved,
engineers must change configurations of switches, routers, firewalls, and update Access
Control Lists (ACLs), Virtual Local Area Networks (VLANs), quality of service (QoS),
and other protocol-based mechanisms using low-level device-level management tools. A
long, complicated, tedious, and error-prone process.

As shown on Figure 1.1, the network can be divided into three different planes: the
management plane, the control plane, and the data plane. In the first plane we have

1

2 Chapter 1. Introduction

management applications used by engineers for motorization and configuration of the
network. The control plane represents the network protocols defined by the management
plane. This plane controls the data plane defining how it should behave according with
the rules imposed by the management plane. The data plane is responsible for forwarding
the data. In current networks the control plane and the data plane are handled by the same
network devices and the whole structure is highly decentralized, which means, operations
such adding a new protocol must be deployed in every network component. Although
this architecture has been quite effective in terms of network performance, the difficulty
to add new features led to the addition a plethora of devices such as: dispatchers, man-
agement middleboxes, firewalls, etc, increasing the network cost and complexity, and as
a consequence making its management more difficult.

Figure 1.1: Traditional Networks Architecture

1.2 Software Defined Network, a new paradigm

Software-Defined Networking (SDN) is a new paradigm in networks. The main idea of
SDN consists in the centralization of network control in a logically centralized program –
the SDN controller – which controls and monitors the behavior of the network. With this
program it is possible to control and manage the entire network by writing applications
that run on top of it. By separating the control plane from the data plane, it becomes easier
to configure the network. Networks thus become programmable, allowing the definition

Chapter 1. Introduction 3

of the behavior of the entire network from the controller, and the possibility to easily cre-
ate advanced network policies, such as load balancing. Figure 1.2 presents the difference
between traditional networks and Software-Defined Networks, where in the first the con-
trol plane is handle by the multiple network devices, while in SDNs the control plane in
handle by software controller hosted in a server or a cluster of servers.

Figure 1.2: Traditional Network (left) vs SDN (right)

1.3 Motivation

To achieve better performance internet services are replicated, with load balancers dis-
tributing work by the replicas. The common architecture consists in putting a hardware-
based load balancer - a dispatcher - at the entrance of the network. This dispatcher uses
load balancing algorithms such as simple Round-Robin or more sophisticated content-
based algorithms, to distribute the load by the several replicas of the server. Since all the
requests must go through the dispatcher, this component may become a bottleneck, so
usually it is necessary to replicate the dispatcher too. This method can be costly, ranging
from around $2,000 to close to hundreds of thousands of dollars[3]. Motivated by this
fact, in this work we investigate the possibility of building a load balancer as a software
application in an SDN infrastructure. This solution is cheaper because it is software based
and the application runs in the server that hosts the controler. In addition, it may achieve
better performance because it becomes possible to not only choose which server handles
the request, but also select the best path to the chosen server.

4 Chapter 1. Introduction

1.4 Contributions

We will evaluate the combination of both server and path selection algorithms to un-
derstand which algorithms have a better performance. As we anticipate that no single
algorithm has the best performance in every situation, we propose MALOB, a Multi-
Algorithm Load Balancer that has the capability of adapting according to the type of
request, and choosing the algorithm that fits better to the current request. Using the ben-
efits of the SDN paradigm this load balancer takes into account different variables such
as link latency, link bandwidth, and CPU usage. The source code was made available
open-source on GitHub1.

For evaluation, we used the Global Environment for Network Innovations (GENI) [13],
a large-scale testbed that enables us to perform the evaluation in a realistic non-structured
Wide Area Network (WAN) environment. Using GENI we are able to obtain more realis-
tic results about the impact of our solution in real Software Defined Networks.

As a summary, the main contributions of our work are:

• Multi-Algorithm Load Balancer (MALOB), an adaptable load balancer application
for the Floodlight [8] controller;

• An evaluation of different kinds of load balancing algorithms for server selection
and path selection;

• Evaluation of the load balancing algorithms on an non-structured WAN network
using GENI [13], a large scale testbed.

1.5 Work Plan

In this section we present our work plan, the challenges we faced and the required changes
to the initial plan.

Study of the State of the Art

Between October and January, we focused on studying the state of the art. By reading
some literature about SDN, we learned how the separation of the control plane from the
data plane may bring benefit to the current state of affairs in networking. We have noticed
that most of the evaluation of SDN applications is made by using the Mininet emulator
(which will be explained later) and, due the lack of experiments using large scale test
beds, we decided to use GENI, a large testbed that enabled us to create a real network
with multiple machines, aiming to obtain a more accurate view of the performance of our
application.

1https://github.com/goncaloSemedo/MALOB/

Chapter 1. Introduction 5

Familiarization with the Floodlight controller

During the following two months, we experimented using the SDN controller on Mininet.
After some research we were able to create a network on Mininet, which allowed us to
start learning how the controller works. For that we focused on creating different load
balancing algorithms.

Familiarization with the GENI Testbed

From April until the end of May, we studied the possibility of using this platform for
evaluation. At the end of May we built our non-structured WAN topology and started
running the first algorithms developed.

Selection and Implementation of the Algorithms

We started discussing the algorithms that were worth a deeper evaluation. After an anal-
ysis of possible alternatives, we decided to evaluate three algorithms for path selection,
and three algorithms server selection. We finished the implementation of all algorithms
by the end of July.

Test and evaluation using GENI

The tests ran on GENI until the end of August. We tested the algorithms considering three
different types of requests, since we anticipated that some algorithms would perform bet-
ter than others, depending on the type of request. First, for simple Hypertext Transfer
Protocol (HTTP) requests, the latency on the path is the variable that has the most im-
pact, since it is dealing with small files. Then, we moved to File Transfer Protocol (FTP)
requests because the transfer of large files implies that the chosen path should have the
highest throughput possible. Finally, we considered an application for genome data pro-
cessing, motivated by the need of having an application that requires more processing
time from the servers. In this case, unlike the other two, it is not the time to transfer that
matters, but the response time of the server.

Differences from the initial plan

During the course of this project we realized that performing an evaluation using a real
test bed is an arduous task. The main change to the initial plan occurred while creating
the topology using the GENI platform. We tried both the ExoGENI and the InstaGENI
designs, which took some time because the resources were not always accessible. Since
the network crosses the entire United States, it was susceptible to a series of problems.
Just to give an example of the realism of our evaluation setting, on one occasion one site
was struck by a lightning.

6 Chapter 1. Introduction

1.6 Document Structure

This document is organized as follows:

• Chapter 2 – Gives a review of related work. We present the state of the art on SDN
and load balancing. We explain how SDN operates and some of its key functions.
We also present various load balancing algorithms. Finally, we discuss several
possibilities for evaluating network experiments.

• Chapter 3 - Describes the design of our load balancing application explaining its
architecture and how we implemented it.

• Chapter 4 - Describes the setup used to test our algorithms, and the results of our
experiments.

• Chapter 5 - Provides the conclusions.

Chapter 2

Related Work

In this section we will explain the SDN paradigm and how future networks may benefit
from this novel architecture. We give an overview on load balancing algorithms, and
conclude with a summary of the evaluation platforms that are used in our work.

2.1 Software-Defined Networking

Software-Defined Networking (SDN) [19, 27] is a new paradigm in networks. The main
idea of SDN consists in the centralization of network control in a logically centralized
program – the SDN controller – which controls and monitors the behavior of the network.
The goal is to separate the control plane from the data plane. This separation is possible
by means of an Application Programming Interface (API) between the switches and the
controller, such as OpenFlow [30]. Networks thus become programmable, allowing the
definition of the behavior of the entire network from the controller and the possibility to
create advanced network policies such as load balancing, routing and security.

Figure 2.1 illustrates the various layers that constitute an SDN. The first layer, called
application layer, consists of the applications that define the behavior of the network, com-
monly using the Representational State Transfer API [18]. This API uses the Hypertext
Transfer Protocol (HTTP) to allow remote applications to send instructions to the con-
troller or retrieve information from the controller. In the control layer we have a logically
centralized software-based SDN controller, responsible for handling the control plane and
maintain a global view of the network. This controller has the job of translating the appli-
cations instructions to the data layer by means of the OpenFlow API. It is also responsible
to give applications an up-to-date view of the network state. The data layer is composed
of the network devices responsible for packet forwarding, such as switches and routers.
The communication between the data layer and the control layer is made by OpenFlow.

7

8 Chapter 2. Related Work

Figure 2.1: Network design using SDN

2.1.1 OpenFlow

OpenFlow [30] is a protocol that enables the communication between the switches and the
SDN controller. OpenFlow started as a mechanism for researchers to realistically evaluate
their experiments, as it enables the separation of experimental traffic from production
traffic. This allows the use of a network switch for experiments without interfering with
normal traffic. OpenFlow allows the modification of the flow tables of the switches, using
a well-defined interface, by issuing commands from the controller. An OpenFlow-enabled
switch (OF switch) can match packets against the different headers which enable more
dynamic and flexible forwarding instructions than common network devices.

In Table 2.1 we illustrate a flow table that supports OpenFlow. The table shows the
flow rules used to evaluate what action the switch should take when a packet for that par-
ticular flow arrives. The first 5 columns represent the packet headers that can be matched
(this is what defines a flow). The column “Action” represents the action, defined by the
controller, that the switch must perform when it matches on that row. Finally the last
column represents the number of packets received by the switch that matched that flow.
For example, we can see that all packages with Transmission Control Protocol (TCP) des-
tination port 25 will be discarded and that the switch has already discarded 100 of those
packets. The unknown packets (all the first 5 columns have only an *) are forwarded to

Chapter 2. Related Work 9

the controller, which is the default behavior, the controller can then decide what action to
perform to those packets.

MAC src MAC dest IP src IP dest TCP dport Action Count

* 10:20:* * * * port 11 235

* * * 123.8.2.1 * port 2 300

* * * * 25 drop 100

* * * * * Controller 455

Table 2.1: Example of an OF-enabled switch flow table

2.2 SDN controllers

Controllers are the core component of an SDN. They oversee the behavior of the entire
network and implement the decisions to achieve the desired state for the network. They
are a logically centralized program that offers services and applications for controlling
the network. It is important to emphasize that a logically centralized program does not
mean that we have a centralized system. Actually, the controller can be distributed and
replicated for fault tolerance and/or better performance [26]. In any case, applications are
written as if the network view was stored on a single machine [21].

2.2.1 Nox

NOX [21] was the first SDN controller and was written in C++ and Python. As shown in
Figure 2.2, a NOX-based network consists of a set of switches and one server, running the
NOX controller software and the management applications over it. The NOX programing
model is event-driven, meaning that, the data plane triggers events, like a Packet In event,
and applications are notified of the event. NOX has core applications to discover and
observe the network components. These applications are responsible for creating and
updating a single database containing all network observations and data (network view),
providing observation granularity at the switch-level topology, showing the locations of
users, hosts, middleboxes, and other network elements [21]. Like any other centralized
controller, Nox has to handle all flows in the network making it a possible bottleneck.
Anyway this controller is able to handle around 100000 flows per second [21], which is
considered enough for a good range of networks [15].

2.2.2 Onix

Onix [26] is a distributed SDN control platform that runs on a cluster of one or more
physical servers, each of which may run multiple Onix instances. Onix uses a database

10 Chapter 2. Related Work

Figure 2.2: NOX-based network

called Network Information Base (NIB) that stores the current state of the network. The
state in the NIB is distributed and replicated among all Onix instances using basic state
distribution primitives. Onix also provides a general API which allows, depending on the
desired implementation, to make trade-offs among consistency, durability, and scalability.

Contrary to other controller designs, the NIB sits between the management plane and
the control plane, and it is through this database that the applications interact indirectly
with the data plane. The management plane modifies the NIB and the controller reads
those modifications and translates them in commands to the data plane. In the other
way around, the controller updates the NIB according to the events triggered by the data
plane, and notifies the applications about the updates made in the NIB. Every time a
NIB is modified, the NIBs of the other Onix instances must be updated, for the sake
of consistency. Onix provides the possibility of choosing between strong or eventual
consistency for this purpose. For strong consistency it offers a transactional persistent
database, and for eventual consistency it has a memory based Distributed Hash Table
(DHT) available.

Chapter 2. Related Work 11

2.2.3 Floodlight

Floodlight [8] is an enterprise-class, Apache-licensed, Java-based OpenFlow Controller.
This is the one we have chosen to use in our project because it is designed to offer high-
performance and scales well with the number of network components [8]. The fact that it
is implemented in Java also contributed to this decision.

The Floodlight controller is based on another controller called Beacon [17]. Java was
the chosen programming language because it offers the best balance between performance
and user friendliness. It is also portable, which means it can run on a variety of operative
systems. In addition, Beacon (and Floodlight) has a good and simple API and comes with
useful applications:

• Device manager: tracks devices seen in the network including information on their
addresses, last seen date, and the switch and port last seen on;

• Topology: discovers links between connected OpenFlow switches;

• Routing: provides shortest path layer-2 routing between devices in the network;

• Web: provides a Web user interface.

One advantage of Beacon and Floodlight is the runtime modularity, the capability of
not only starting and stoping applications while it is running, but to also add and remove
them, without shutting down the controller process. Applications are fully multithreaded
having blocking (Shared Queue) and non-blocking (Run-to-completion) algorithms for
reading OpenFlow Messages. The evaluation presented in [17] concluded that Beacon
was the controller with best performance when compared to NOX [21], Pox [5] and Mae-
stro [32].

2.3 Load Balancing

Web applications scale by running on multiple servers to be able to service an increasing
number of users that demand Web content. To achieve the desired performance, load
balancers are used to distribute the request by the replicas. This results in important
benefits such as scalability, availability, manageability, and security of Web sites [20].
The Load balancer job is to choose which server should handle the next request, using
algorithms such as Round-Robin. After receiving a request from the client, it applies the
load balancing algorithm and forwards the request to the chosen server.

Load Balancers today consist of expensive specialized hardware, the dispatcher, lo-
cated at the entrance of the network [37]. This dispatcher is a special component used
only for load balancing so it can handle many requests with good performance. The
dispatcher may become a bottleneck and it is therefore necessary to replicate the load

12 Chapter 2. Related Work

balancer, which increases the cost of the solution further. A limitation of the traditional
load balancers is that they only take into account server choice, not taking into consid-
eration the traffic load. This limitation is something we explore in our work by creating
algorithms that evaluate the state of the links, taking into consideration not only server
choice itself, but also taking into consideration the best path to the chosen server.

2.3.1 Content-blind load balancing

The first category of load balancer is called Content-blind load balancing [20]. This type
of load balancer is unaware of the application information contained in the incoming re-
quest. These load balancers can work at layer-2 or layer-3. In a layer-2 forwarding mode,
both the load balancer and the servers are in the same Internet Protocol (IP) subnet. The
load balancer uses the Media Access Control (MAC) address available in the data link
layer information to determine the output interface port for that packet, after running the
load balancer algorithm. In layer-3 forwarding, the load balancer and servers have dif-
ferent IP addresses and in this case the load balancer works as a router. Two forwarding
techniques have been implemented in a dispatcher-based web cluster using layer-3 rout-
ing: Network Address Translation (NAT) and IP Tunneling (IPTun). The first one consists
of rewriting the layer-3 destination address of the incoming packet to the IP address of
the real server selected by the load balancer. IPTun consists of the encapsulation of IP
datagrams within IP datagrams, with the source and destination IP address specifying the
virtual IP address of the system and the target server IP address, respectively. The Vir-
tual Internet Protocol (VIP) is an IP address assigned to multiple applications residing on
multiple servers, rather than being assigned to a specific server or network interface card.
Incoming data packets are sent to the VIP address and routed to actual network interfaces
using the MAC address.

In this type of load balancers, the most common algorithms used for forwarding pack-
ets are:

• Round Robin: the load balancer chooses the next server in a circular way;

• Random: the load balancer chooses the next server randomly;

• Least Loaded: the Load balancer chooses the server with the lowest load;

• Least Connections: the Load balancer chooses the server with smallest number of
TCP connections.

2.3.2 Content-aware load balancing

Content-aware load balancing [20] is a category of load balancers where the load balancer
is aware of the packet’s content data. In this architecture each server may provide a

Chapter 2. Related Work 13

different service but the client does not know the specific machine that provides it with
the service. It is the load balancer’s job to forward each package to the correct server.
For this, the load balancer analyses the package content (HTTP request). This is thus an
architecture that works at the application level. One big advantage of this approach is
the possibility to use caching techniques on the servers. Applications can store frequent
replies in cache, making more efficient the processing of the following requests. Example
architectures include: TCP Splicing [29], Redirect Flows [16], Socket Cloning [38].

2.3.3 Plug-n-Serve: An SDN Load Balancer

Part of our interest in this problem has arisen from Plug-n-Serve [24]. The motivation of
Plug-n-Serve is to transform load balancing into a network primitive. As an SDN load
balancer, it benefits from the SDN architecture where a logically centralized controller
handles the control plane. The load balancer application uses this controller to configure
the data plane in accordance with the application decisions. The algorithm used in this
load balancer is called LOBUS (Load-Balancing over UnStructured networks). The state
LOBUS needs to track, includes the load on the servers, the response time of the servers
and the congestion of the links. The algorithm determines the current state of the network
and servers and, then, based on this information, chooses the appropriate server to handle
the request and chooses the best path in order to minimize response times.

On Figure 2.3 (taken from [24]), we have a diagram that shows the Plug-n-Serve
design.

The controller has three modules: Flow manager, Net Manager, and Host Manager.
The Net Manager is responsible to oversee network behavior, topology, and utilization
levels. This is used to gather useful information for the application to be able to choose
the best path. The Host Manager monitors the state and load of the network servers. This
component gathers information like the host CPU usage or the number of TCP connec-
tions, which allows the application to choose the server that, should handle the request.
The Flow Manager manages route flows according to the load balancing application. It is
also responsible to inform the application when a new flow arrives on a switch.

Plug-n-Serve follows the design of Aster*x [22], a prototype that was created to initi-
ate a meaningful debate on designing load-balancing systems for large-scale services. We
believe the idea behind Aster*x and Plug-n-Serve is solid, but both short papers (a poster
and a demo) do not detail the algorithms they introduced, and they do not compare with
other alternatives. The present work aims to fulfill those gaps.

2.4 Evaluation

The next sections describe the most common platforms that are used to test and evaluate
SDN applications.

14 Chapter 2. Related Work

Figure 2.3: Plug-n-Serve design (Source: [24])

2.4.1 Mininet

Mininet [28] is an emulator written in python that allows the evaluation of a network with
several components in a single computer. Mininet differs from other emulators because
it employs lightweight virtualization (by using Linux containers) and supports the SDN
paradigm. It can run real code and support several topologies. This emulator has some
limitations, namely the precision of the results with high loads, which may not be accu-
rate. The CPU resources are multiplexed in time, and for that reason the Linux scheduler
does not guarantee that a component that is ready to send a packet, to do so.

2.4.2 Mininet Hi-Fi

Mininet Hi-Fi [23] extends the original Mininet architecture by adding mechanisms for
performance isolation, resource provisioning, and monitoring for performance fidelity.
This version overcomes the limitations of its predecessor, isolating the resources used by
virtual hosts and switches. For that purpose Mininet Hi-Fi uses the following OS-level
features from Linux:

• Control groups (cgroups), allow a group of processes (belonging to a container/virtual

Chapter 2. Related Work 15

host) to be treated as a single entity for scheduling and resource management;

• CPU Bandwidth, enforces a maximum time quota for a cgroup within a given period
of time;

• Traffic Control, configures link properties such as bandwidth, delay, and packet
loss.

In this way, resources are carefully provisioned by splitting the CPU among containers
and leaving some margin to handle packet forwarding, based on offline profiling, thus
yielding a result that matches hardware.

Mininet-HiFi lets the experimenter allocate link speeds, topologies, and CPU fractions
based on their estimated demand, and can also monitor performance fidelity to help verify
that an experiment is operating realistically. As links run at a fixed-rate, packets should
leave at predictable times whenever the queue is non-empty. To monitor host fidelity, the
CPU idle time is observed. CPU bandwidth limiting ensures that no virtual host receives
excessive CPU time, but it can happen that a virtual host does not receive sufficient time
to execute its workload. Nevertheless, Mininet Hi-Fi is a very useful tool to evaluate
networks with good fidelity.

2.4.3 GENI

Although Mininet-Hi-Fi provides mechanisms for performance isolation, it is still an eval-
uation platform that does not represent real hardware or real users. In this study our
goal was to evaluate our ideas in a real SDN. For that reason, we decided to use the
Global Environments for Network Innovations (GENI) [13]. GENI is a virtual laboratory
test bed for large-scale network experimentation where researchers can create their net-
work topologies using real equipment. In general, test beds like GENI are platforms that
enable the possibility of deployment and evaluation of large, realistic experiments with
real hardware and real users. This development environment provides customizable soft-
ware, hardware, and networking components for researchers to create their experiments.
GENI’s original motivation was to overcome the limitations imposed by the current net-
work infrastructures that severely limit the potential for innovation in the global, public
Internet. GENI also explores the potential of emerging technologies such as SDN. Virtu-
alization enables experimentation to run at reasonable cost, so GENI uses it to combine
heterogeneous resource types, providing a platform for network science researchers to
perform experiments that move beyond simulation. GENI also provides:

• Scalability: experiments can range from small laboratory to a national scale;

• Protocol diversity: The networks and their components support a large diversity of
protocols, such as IPv4, IPv6, OpenFlow, TCP, etc.;

16 Chapter 2. Related Work

• Execution environment diversity, ranging from isolated laboratory style controlled
environments to internet environments.

In order to support a large range of users, resources must be shared while giving the
impression that those resources are exclusive. GENI borrows the concept of sliceabil-
ity [33], the virtualization of a shared physical resource into multiple virtual machines
providing some degree of isolation and the illusion of exclusive resources. Similarly,
network resources can be also virtualized. The most common way to achieve this is by
means of virtual local area networks (VLANs) that provide a well-understood degree of
data isolation. However, VLANs do not offer meaningful performance isolation or pro-
grammatic control. For the latter, the SDN paradigm offers a more flexible means for
network virtualization.

The GENI network sites are mainly composed of university campus in the United
States, as shown in Figure 2.4. Each site has a chief information officer (CIO) that is re-
sponsible for the maintenance and accessibility of the site. In order to achieve that support
from each site’s CIO, GENI organized a program to educate universities on the potential
benefits to their campus of emerging paradigms like SDN. Because this technology of-
fers the possibility of supporting enhanced campus network management capabilities as
well as enabling more effective and cost-effective approaches to network security, over
fifty universities joined this program. A key goal of GENI’s current expansion phase is
to achieve initial deployments of this technology in parallel with production networks at
national scale. This deployment will result in a revolutionary new programmable, virtual-
ized, distributed collection of resources (networks, computers and storage), a global scale
deeply programmable cloud that will support the GENI research mission, and as well as
enabling research and education in a wide variety of areas such as big data, cloud-based
applications, or security.

As a summary, using GENI brings the following benefits:

• Amount and diversity of resources: GENI provides more resources than other test
beds or laboratories for network experimentation. It gives access to hundreds of
nation-wide distributed resources including computation and network;

• Realistic networks: GENI permits a growing number of experiments to move be-
yond simulation and into emulation and realistic deployment environments;

• Non-IP connectivity across resources: GENI allows users to set up Layer 2 connec-
tions between compute resources and run Layer 3 and above protocols connecting
these resources;

• Deep programmability: using the SDN paradigm, GENI gives the possibility to
program not only the hosts but also the switches of the network;

Chapter 2. Related Work 17

Figure 2.4: Map with all GENI sites. (Source: www.geni.net)

• Control the experiment’s environment: we can get exclusive access to certain re-
sources like CPU, RAM and network resources, and hence the ability to repeat
experiments under similar conditions.

InstaGENI

In each campus, the basic deployment unit of computation and storage is called a GENI
rack. Each rack has multiple compute nodes, disk-based persistent storage, and Open-
Flow switches. At the moment two distinct GENI rack types exist, ExoGENI [10] and
InstaGENI [12]. The first was built by the Renaissance Computing Institute, emphasizing
performance using IBM hardware. The second was built by an HP team, emphasizing
affordability using HP hardware. The InstaGENI design was the chosen for our project
mainly because it provided us with more sites and a better geographical dispersion than
ExoGENI. In figure 2.5 we show the location of the InstaGENI sites.

Each InstaGENI rack consists of five experiment nodes, one control node, an Open-
Flow switch for internal routing, and data plane connectivity to the Internet. In our work
the experimental nodes used Xen virtualization [11]. This virtualization platform allows
multiple operating systems to share conventional hardware in a safe and resource man-
aged fashion, but without sacrificing either performance or functionality. Also, one of the
images hosted on Xen nodes supports Open vSwitch (OVS)) [34]. OVS is an open-source
software switch designed to be used as a virtual switch in virtualized server environments
that supports OpenFlow. With this software virtual machines can forward traffic between
different Virtual Machines (VMs) on the same physical host and also forward traffic be-
tween VMs and the physical network. The network architecture provides layer-2 services

18 Chapter 2. Related Work

Figure 2.5: Map with all InstaGENI sites

across the wide area, while permitting deep programmability. Various techniques can be
used for that purpose. In our projected we used Ethernet-over-GRE (EGRE) Tunnels, an
IP tunneling technique where packets are multiplexed based on an Ethernet frame’s des-
tination MAC address instead of IP addresses, avoiding the IP-address collisions that can
happen in this type of environment.

Chapter 3

Design and Implementation

The load balancing application developed in this thesis was built on top of the floodlight
controller, which controls all OpenFlow switches on the network, as shown in Figure
3.1. Our application is an extension of floodlight’s simple load balancer, that currently
only uses the round-robin algorithm for choosing the server for the next request, and
the shortest path (by number of hops) for selecting the path to the server. We use these
algorithms as baseline.

Figure 3.1: SDN Load Balancer Design

19

20 Chapter 3. Design and Implementation

3.1 Application Design

Three key primitives must be defined for our application to work: Virtual IPs (VIPs),
pools and members. VIP is the virtual IP of the service that clients use to make requests.
This is the IP clients use when making a request to the service. They are unaware that
this is VIP or that the service is replicated. When a new request is sent, it arrives at the
first edge switch and, as it is the first packet of this flow, it is forwarded to the controller.
When it arrives at the controller, the application checks the destination IP. If it is a VIP, the
application runs the load balancing algorithm and selects the target server and the path to
reach it. The controller, using the information from the application, creates the necessary
entries in the switch flow tables and pushes them into the data plane. In Figure 3.2 we
have an example of this process. We will return to this figure below. Pool is the list of
servers that correspond to a certain VIP. It is from this list that the algorithm selects the
target server. Finally, a member represents a server in a pool’s list. This primitive has
important attributes that define the state of the represented server, such as the CPU usage,
the number of TCP connections, or the response time. These are used by some of the
algorithms to select the next server.

Using floodlight’s Representational State Transfer (REST) API [6, 18], we can easily
define these primitives, as in Table 3.1. For example in the REST command to define a
VIP, five data fields are presented: the “id”, identifier of the VIP; the “name”, name of
the VIP; the “protocol” and “port”, optional fields used for example if the design requires
different VIPs to handle different protocols; the “address”, the VIP address; and finally
the url with the address of the controller were the data is posted.

Primitive REST Command

VIP curl -X POST -d ’{“id”:“1”,“name”:“vip1”,“protocol”:“icmp”,“address”:
“10.0.0.100”,“port”:“8”}’ http://< ControllerIP >/quantum/v1.0/vips/

Pool curl -X POST -d ’{“id”:“1”,“name”:“pool1”,“protocol”:“icmp”,“vip id”:
“1”}’ http://< ControllerIP >/quantum /v1.0/pools/

Member curl -X POST -d ’{“id”:“2”,“address”:“10.0.0.4”,“port”:“8”,“pool id”:
“1”}’ http://< ControllerIP >/quantum/v1.0/members/

Table 3.1: REST Commands to define important application primitives

Considering Figure 3.2, in the first step the client makes a request to the service’s VIP.
Then (step two), the switch realizes that it does not have any flow in its table for this new
packet, so it sends that packet to the controller using the OpenFlow protocol, triggering
a PacketIn event at the controller (step 2). Upon receiving the new packet, the controller
informs the load balancing application about the event (step 3). The application checks
if the Destination IP of the packet matches any of its VIPs, if so, the application runs the

Chapter 3. Design and Implementation 21

Figure 3.2: Steps for a new request

load balancing algorithm to choose the destination server and the path to reach it (step 4).
From the results of the algorithm the application tells the controller to start a PacketOut
event to the chosen server using the selected path (step 5). Note that the application
chooses a path for the request and for the corresponding reply. So, on the sixth step, the
controller pushes the new flows into the necessary switches to enforce the paths indicated
by the application. Since we are using a VIP in step 6.1, special actions are needed. While
in steps 6.2 and 6.3 the action is to tell the switch to which port the packets of this flow
should go, in step 6.1 the switch will also have to convert the destination IP (VIP) into the
chosen server IP, and then in the backward direction to convert again from the server IP
into the VIP for the reply. The same is true for the MAC address. Finally, the controller
pushes back the first packet with the new destination IP to the switch. Since all switches
have the necessary flows on their tables, the request (and the reply) can travel throughout
the network.

22 Chapter 3. Design and Implementation

3.2 MALOB

Different applications have different requirements. A web browsing application requires
short response times, whereas for a large file transfer, high throughput is preferable. For
that reason, different service requests may benefit from distinct load balancing algorithms.
In light of that, we created MALOB, a Multi-Algorithm Load Balancer that has the capa-
bility to adapt to the different types of requests. In the design of MALOB we considered
three broad types of requests. First requests that prefer short response time. For these,
the load balancer should choose the path with the lowest latency (Web browsing applica-
tions is the prime example). Second one that perfers the path with the highest throughput
(file transfer applications, for instance). Finally, one that requires a significant amount of
processing (say a, genome processing application). The first is used when clients request
relatively small data with high intensity but requiring insignificant processing. HTTP re-
quests are an example of such: the response to the HTTP GET request must be returned
as quickly as possible, since pages are very small, making latency the prime factor to con-
sider. The second one is a request for a larger amount of data. Downloading files using
protocols such as FTP are an example of this type of request where the throughput a path
can offer is the variable with highest impact on the download time. In the last type of
application we consider, requests require a significant processing. For these applications,
path latency or throughput do not have a great impact and choosing the server with highest
available CPU is the most important factor.

Figure 3.3: MALOB usage

Considering this, upon receiving a new request MALOB analyses the destination port
of the request, checks its services table (Table 3.2) and decides which algorithm fits better
that type of request. For example, as can be seen in Figure 3.3, when the application
receives a request with destination port 80, the port used by HTTP requests, the load

Chapter 3. Design and Implementation 23

balancer uses the shortest path-latency server algorithm. As the name hints, this algorithm
selects the server whose path offers the lowest latency. If, on the other hand, the request
is for port 21, used by FTP, the server chosen is the one whose path offers the highest
throughput. The third example port we have is for a bioinformatics application, which
requires a huge amount of processing. In this case, the load balancer uses the algorithm
that chooses the server with lowest CPU usage. To set up the MALOB service table (Table
3.2) we used floodlight’s Rest API to define new services that use predefined ports, and
the algorithm that will be used for those requests. An example of one such command is:

• curl –x POST –d ’{“service name”:“BioApp ”,“algorithm”:“3”,“port”:“6789”}’
http://< ControllerIP >/quantum/v1.0/services/

One advantage of using the REST API is that we can modify the service table in
runtime, without the need to stop and reset the controller.

Service Name Port Algorithm

HTTP 80 1

FTP 21 2

BioApp 6789 3

Default - 1

Table 3.2: MALOB Services Table. In the last colum we present the algorithm identifiers:
1 - Shortest Latency-Path Server; 2 - Highest Throughput-Path Server; 3 - Lowest CPU
Usage.

3.3 Implementation

This section presents the implementation details. We include a description of the modi-
fications made to two of the controller’s default applications: the original Load Balancer
application and the Link Discovery application. We also describe all the load balancing
algorithms evaluated in this thesis, and how they were implemented.

3.3.1 Maintaining Network State

The SDN paradigm allows us to have a global view of the entire network from a logically
centralized location, giving us the possibility to take into account several variables about
network state, such as the link’s latency and bandwidth, thus allowing us to create more
advanced routing algorithms. In this section we explain how the SDN controller keeps
track of network state.

24 Chapter 3. Design and Implementation

Network Latency

One load balancing algorithm takes path latency into account, so we need to keep track of
this latency between every pair of links. For this purpose, we leverage on an application
built on top of floodlight: Link Discovery. This application is used by the controller to
discover the topology. Using this application the controller is able to discover the links
between OF switches. This application, periodically commands OF switches to flood
Link Layer Discover Protocol (LLDP) packets and Broadcast Domain Discovery Protocol
(BDDP)1packets through all their ports in order to build a view of the whole topology. The
LLDP packets are not forwarded by the switches. When a switch receives one of these
packets from another switch it sends it to the controller. This way one LLDP packet
only travels between two directly connected switches, making it possible to calculate the
latency of every link.

To calculate the latency between two OF switches, we calculate the round trip of
the LLDP packets. As the controller-switch link delay influences the overall round trip
(particularly in the WAN setting we are considering), we need to perform a correction on
the estimated value.

Figure 3.4: Total round-trip time of a LLDP packet

Consider Figure 3.4 to understand why. The total round trip time of a LLDP packet
(RTTTotal) is influenced by three variables: latency between S1 and the controller (LS1−C),
the latency between S1 and S2 (LS1−S2) and the latency between S2 and the controller
(LS2−C). Since we only need the latency between switches S1 and S2, we have to elimi-
nate the other two variables. To that end, when the controller starts the discovery process
(floodlight has a 15 seconds interval between discoveries), it also sends an ECHO REQUEST
OF message to each switch. Every time a switch receives an ECHO REQUEST it replies

1BDDP packets are used to discover topologies that have both non-OF switches and OF switches.

Chapter 3. Design and Implementation 25

with an ECHO REPLY. By calculating the time it takes for these packets to travel between
the switch and the controller, we are able to obtain an approximate measure for those two
variables we want to eliminate. As a result, we obtain the latency between S1 and S2:

LS1−S2 = RTTTotal − (
RTTLS1−C

+RTTLS2−C

2
)

Network Throughput

One of the algorithms evaluated uses the throughput of the paths to determine the best
path. To measure the throughput in each link of the network we use the tool Iperf [41].
Iperf measures maximum TCP throughput between two hosts. Iperf reports throughput,
delay, jitter and datagram loss between two nodes. This tool was installed on every node
of the network and, by means of a script, it was periodically executed between every pair
of directly connected nodes. To send the throughput information collected by the nodes
to the controller, we devised the following technique presented in Figure 3.5.

When the script running iperf on a node finishes collecting the throughput information,
a UDP packet that contains the information collected is sent with a special IP that does
not belong to any server or client. When the packet arrives at the first OF switch it realizes
that it does not have any entry in its flow table that matches the packet, so it sends it to
the controller. The controller, upon receiving the packet sent by the OF switch, analyzes
the destination IP of the packet and realizes that the packet contains information about
the throughput of a link between two directly connected nodes. In order for the controller
to be able to update its information, it needs the IP of the nodes at each end of the link
and the throughout value of the link. The IP of one of the nodes is the IP of the sender
of the packet, the other two values are retrieved from the data of the packet. Finally, the
controller discards the packet.

Figure 3.5: Use of scripts to retrieve state information

26 Chapter 3. Design and Implementation

3.3.2 Maintaining Server State

In this thesis we use two variables to define the state of the servers: CPU usage and the
number of active TCP connections. A script was developed to retrieve this data for every
server. The technique used to send this information to the controller is the same as for the
throughput above. Next we describe how the script is used to obtain those two variables.

CPU Usage

Using the ımpstat command from the sysstat package, the script is able to retrieve CPU
reports that include this information. This command has two arguments; the first argument
is the time interval between reports while the second is the number of reports, calculating
in the end the average value between reports.

Number of TCP Connections

To retrieve the number of TCP connections, the load balancer application increments a
counter that represents the number of active TCP connections of one server, every time
that server is chosen. Since it would be time-consuming for the controller to control when
a connection ends, we use an additional technique to refresh this counter. A script on
the servers runs the command netstat −an|grep “server IP” |grep -c “ESTABLISHED”,
to periodically retrieve the number of active TCP connections on that server. Hence the
number of TCP connections is periodically updated in the application. The use of the
counter and its periodic refresh is important when multiple requests are in a queue waiting
for the load balancer to chose the server that will handle the next request. Without the
refresh all the request in the queue would be sent to the same server until the update from
the servers arrived which would not be effective.

3.3.3 Load Balancing Algorithms

In this section we make a detailed description of the load balancing algorithms that were
evaluated.

Algorithms for Path Selection

In an SDN, we have the possibility of controlling the path’s every flow follows in the
network. Therefore, after selecting the server, it is possible to select the best path for that
server. To choose the best path, we evaluated two versions of the shortest path algorithm,
and a new algorithm that selects the path that provides the highest throughput:

• Shortest Path by number of Hops (SPH): the chosen path is the one with the least
number of hops between the client and the server. This is the algorithm used in
conventional networks.

Chapter 3. Design and Implementation 27

• Shortest Path by Latency (SPL): the chosen path is the one with the lowest latency.
This latency is the sum of the latency on each link of the route (set of links) between
the server and the client.

• Highest Throughput Path (HTP): the selected path is the one that has the highest
available throughput. The throughput is the amount of data that the link can transmit
per second. Note that the best path is the one with highest throughput in the least
throughput link. To make this point absolutely clear in Figure 3.6 we illustrate a toy
example. In this figure we have two paths, each composed of two links: path 1 has
an 80 Mb/s link and another of 10 Mb/s, while path 2 has two links with 20 Mb/s
throughput each. Despite path 1 having the best link (80 Mb/s), the best path is the
second one, as its least throughput link is the 20 Mb/s, which compares favorably
to the 10 Mb/s for path 1.

Figure 3.6: Paths bandwidth example

The first algorithm is the one used by the current floodlight’s load balancer application.
It uses the Dijkstra’s algorithm [40] for selecting the path using the least number of hops.
For the second algorithm, we changed the Dijkstra’s algorithm in such a way to use the
latency between nodes, as the variable, instead of the number of hops. The third algorithm
is not a variation of the Dijkstra’s algorithm. When a new request arrives, the algorithm
calculates the maximum throughput in each possible path to the target server, and selects
the one with the highest value.

Algorithms for Server Selection

To determine which is the most appropriate server to respond to a specific request from a
client, the following algorithms were evaluated:

28 Chapter 3. Design and Implementation

• Round-Robin (RR): this is the most common load balancing algorithm, it simply
chooses the next server in a circular way. Being one of the most common and
widely used, it will be employed as a baseline.

• Least Number of TCP Connections (LC): this algorithm chooses the server with the
least number of active TCP connections.

• Least CPU Usage (CPU): in this algorithm, the server with lowest CPU usage is
chosen.

SDN-Based Server Selection Algorithms

With SDN we are more aware of the state of the network, so we can use different variables
to evaluate the best load balancing solution. Using the potential this paradigm has to offer,
we developed two new algorithms. The main difference between these two SDN-based
algorithms and the traditional ones is that the selection of the server depends on the path.
In traditional algorithms the server is chosen based on server conditions (CPU usage,
number od connections, etc., as seen before).

• Shortest Latency-Path Server (SL-PS): chooses the server whose path between itself
and the client offers the lowest latency.

• Highest Throughput-Path Server (HT-PS): chooses the server whose path between
itself and the client has the best throughput.

The first algorithm calculates the lowest latency routes between the client and all
servers. It is similar to the SPL algorithm, but the calculation is made to all servers.
After having the set of lowest latency routes to each server, the algorithm chooses the
server with the lowest latency route of the set. In a WAN environment this will normally
be the server closest to the client. The HT-PS algorithm is similar, but instead of finding
the lowest latency path, it finds the best throughput path to all servers.

Chapter 4

Evaluation

The main objective of our evaluation is to assess the impact of a load balancer based on
the SDN paradigm in real networks. To this end, we will run our experiment in the Global
Environments for Network Innovations (GENI) [13]. As said before, GENI is a virtual
laboratory for large-scale networks experimentation where researchers can create their
network topologies with real equipment and evaluate them with real usage. The target of
our evaluation is a WAN environment. We evaluated different combinations of algorithms
for server and path selection and compared their performance considering three types of
requests: HTTP requests, a large file transfer, and a CPU-heavy application related to
genome data processing.

We considered the algorithms described in Section 3.3.3. A summary of all combina-
tions that were tested appears in Table 4.1.

Shortest Path Hops Shortest Path Latency Highest Throughput Path

Round-Robin RR+SPH RR+SPL RR+HTP

#Connections LC+SPH LC+SPL LC+HTP

CPU Usage CPU+SPH CPU+SPL CPU+HTP

Shortest Latency-Path Server (SL-PS)

Highest Throughput-Path Server (HT-PS)

Table 4.1: Algorithm combinations formed by server choice algorithms (rows) and path
choice algorithms (columns)

4.1 Topology and Testbed Setup

Using GENI resources we were able to create a non-structured WAN across the United
States, as show on Figure 4.1. The nodes on the network are virtual machines with the

29

30 Chapter 4. Evaluation

characteristics presented in Table 4.2. The virtual machines that work as a switch have
Open vSwitch [34, 7] installed.

Table 4.3, displays a snapshot of the throughput and latency of the links on this setup.
This table shows that exists heterogeneity in this network, with links with 90 Mb/s of
throughput while others only have 12 Mb/s. The same goes for the latency that ranges
from 2 ms to 36 ms. This heterogeneity is very important in order to achieve realistic and
representative results in our evaluation.

Figure 4.1: Network Topology

Nodes #CPU GHz RAM

Switches 1 2.10 512

Clients 1 2.10 512

Servers 2 and 3 1 2.10 512

Server-1 4 2.10 1024

Controller 2 2.10 1024

Table 4.2: Node Configuration

4.2 Evaluation Results

We considered 3 types of requests in our evaluation: HTTP requests, large FTP file trans-
fer, and a compute-intensive bioinformatics application. Each experiment consists of ap-
proximately 3000 HTTP requests, 500 FTP requests and 300 requests for the bioinfor-
matics application. The performance metric that was used is the response time, which is
defined as the time since the client made the request until it received the reply. To com-
pare the performance of each algorithm we present the median of the response time of all

Chapter 4. Evaluation 31

Source Destination Throughput (Mb/s) Reverse (Mb/s) Latency (ms)

Client-1 Server-1 57.8 58.1 15

Client-1 Kansas 30.7 26.8 21

Client-1 Server-3 12.1 23.9 36

Client-2 Server-1 39.9 51.2 19

Client-2 Kentucky 52.2 53.0 11

Client-2 Server-2 89.7 83.0 10

Client-3 Server-2 90.3 90.4 7

Client-3 Kentucky 56.7 53.6 9

Client-3 Client-4 62.6 57.0 14

Client-4 Kentucky 76.9 71.8 8

Client-4 Server-3 91.2 91.1 2

Server-1 Kansas 20.3 17.4 28

Server-3 Kansas 11.7 15.3 16

Kansas Kentucky 36.7 39.1 10

Table 4.3: Links Throughput and Latency

requests and, to have a notion of its variation, we present error bars with the 90th and 10th
percentile.

4.2.1 HTTP Requests

In this experiment, each client requested around 15000 html pages (5 pages per request)
for about 2 hours. Every page had 60 KB, which is the average size for an html page [2].
The motivation for this experiment is to assess the performance of an application that
needs a short response time, guaranteeing that the response is received as fast as possible.

In Figure 4.2, we can see that the SDN-based algorithms, SL-PS and HT-PS, per-
formed better. They achieved a median value of 0.2 seconds, while the other nine com-
binations had median response times ranging from 0.4 to 0.6 seconds. The reason why
both had similar performances is because in this setup the server whose path’s had better
throughput is also the one with the lowest latency. We will look at this with more detail
in section 4.2.4. Taking a look at the other algorithms, SPL is the best as latency is in-
deed the most important factor. The SPH algorithm achieves very similar results as the
lowest latency path is usually the one with fewer hops. The HTP algorithm had the worst
performance, because the size of the request is so small that having higher throughput is

32 Chapter 4. Evaluation

Figure 4.2: HTTP Results

irrelevant. This algorithm sometimes selects a longer path, which although having more
throughput also has more latency. We can also observe that the variation in the first nine
combinations is larger than on the SDN-based algorithms. In WAN environments, there
are multiple paths to the same destination each one with distinct characteristics that have
a major influence on the response time of some applications. Therefore, selecting the
server based on the path is a good option for this type of requests

4.2.2 FTP Requests

In this test, clients requested 150 files with 100 MB each for about 2 hours using the
file transfer protocol (FTP). In this experiment, we want to assess the performance of the
algorithms considering applications that require high throughput.

Again, like in the HTTP experiment and for the same reason, the SL-PS algorithm had
a similar performance as the HT-PS (see Figure 4.3). They were again the algorithms with
best performance, achieving median response times of 18 seconds, with a small variation.
The first three algorithms had a similar performance among them, and performed poorly
when compared with the SDN algorithms. They achieved median response times around
35 seconds with a larger variation, with some requests tooking more than 50 seconds to
be responded. Nevertheless, when using the HTP algorithm that takes throughput into
account when choosing the path to the reach the chosen server, their performance was
improved. This improvement is due to the fact that it does not matter if packets take
a longer path if that path has the highest throughput, and therefore it can transfer more
bytes per second than the others. As we suspected, these applications also benefit when
the target server is selected based on the path in such WAN environment.

Chapter 4. Evaluation 33

Figure 4.3: FTP Results

4.2.3 Bio Application Requests

Although in WAN environments the state of the links influences the response time for
some applications, for others it may not be crucial, namely when the time to process a
request is large. In the third set of experiments, we therefore used a compute-intensive
application, related with genome treatment, where clients have a file with ADN sequences
and the servers have a protein database that they use to determine how many proteins an
ADN sequence contains.

In this experiment the clients sent around 100 sequences to the servers, and these
responded with the number of proteins found in those sequences. The required CPU
usage for the requests of this application is very high. We can see this in Figure 4.4,
where we present the impact of one request of each application evaluated (in server-2).

As we predicted, the CPU algorithm performed better than in the previous experi-
ments. As we can see in Figure 4.5, the CPU algorithm achieved a median response time
of around 35 seconds, while the other algorithms achieved a median response time of
around 65 seconds. Path delays or throughput are not fundamental for this type of ap-
plication, which demonstrates that the best load balancing algorithm is dependent of the
client application.

4.2.4 Discussion

In the first two experiments, we concluded that selecting the target server based on the
path would be the best option. However we were not able to understand the difference be-
tween the two SDN-based algorithms. To understand that, we created a smaller topology,
displayed on Figure 4.6, with the characteristics presented in Table 4.4. The objective

34 Chapter 4. Evaluation

Figure 4.4: CPU usage by request at Server-2

Figure 4.5: BioApp Results

was two have two servers available: one with a highest throughput link but highest la-
tency, and the other with shortest latency but with a lower bandwidth connection. We run
the HTTP and FTP tests again, but only for the two algorithms in question.

Chapter 4. Evaluation 35

Figure 4.6: Network topology used to evaluate the performance of HT-PS against SL-PS.

Source Destination Throughput (Mb/s) Reverse (Mb/s) Latency (ms)

Client Server-1 10.7 9.8 7

Client Server-2 62.6 57.0 14

Table 4.4: Links characteristics.

As we can see in the Figure 4.7, the SL-PS algorithm outperformed HT-PS, with
HT-PS outperforming SL-PS in Figure 4.8. Indeed, the best algorithm depends on the
application proving that both algorithms are important depending on the application.

Figure 4.7: Results for the HTTP test. Figure 4.8: Results for the FTP test

36 Chapter 4. Evaluation

As summary, the main conclusions are:

• In WAN environments, network state has a direct influence on the response time of
several applications, so selecting the server based on the path is a good solution for
those cases.

• For applications such as Web browsing that request small data and require fast re-
sponse times, link latency is the prime factor that influences the response time. So,
the SL-PS algorithm is the one that fits better this type of applications.

• For file transfers, where high throughput is required in order to achieve fast down-
load speeds, the HT-PS algorithm is the best solution.

• For CPU-intensive applications however, the algorithm that selects the target server
based on the CPU usage has the best performance.
This made us conclude that, as predicted, even in WAN environments for some
applications the path characteristics are irrelevant.

Chapter 5

Conclusion

In traditional networks thousands of devices have to be configured and managed in a man-
ual, complicated, and error-prone process. To overcome this undesirable state of affairs
a new paradigm called Software Defined Networking was proposed. This new paradigm
decouples the control plane from the data plane, making networks deeply programmable,
allowing the definition of the behavior of the entire network from a logically centralized
program, and opening the possibility of creating advanced network policies such as load
balancing, routing and security.

Currently load balancing consists of inserting expensive hardware-based load bal-
ancers in the entrance of the network, which is a costly, but necessary solution. Leverag-
ing the benefits from the SDN paradigm, we proposed a load balancer application which
is cheaper because it is software based and, in addition, may achieve better performance
selecting the best path to the selected server, or even choosing the server based on the
path.

As the performance of an load balancing algorithm depends on the type of request, we
developed MALOB, a Multi-Algorithm Load Balancer that has the capability of adapting
to the type of request.

We evaluated several combinations of both server and path selection algorithms in
order to know which algorithm fits better each type of request. We used the GENI test
bed to obtain realistic results by performing experiments in real non-structured WAN
topology, with real and customizable hardware, and also with real usage. After our tests,
we concluded that none of the algorithms had the best performance for all application,
and that performance indeed depends on the application characteristics. We emphasize,
however, that the SDN paradigm was fundamental to achieve good performance in this
WAN environment.

37

38 Chapter 5. Conclusion

Acronyms

ACLs Access Control Lists.

API Application Programming Interface.

BDDP Broadcast Domain Discovery Protocol.

CPU CPU Usage.

FTP File Transfer Protocol.

GENI Global Environment for Network Innovations.

HT-PS Highest Throughput-Path Server.

HTP Highest Throughput Path.

HTTP Hypertext Transfer Protocol.

IP Internet Protocol.

LC Least Number of TCP Connections.

LLDP Link Layer Discover Protocol.

MAC Media Access Control.

MALOB Multi-Algorithm Load Balancer.

OF switch OpenFlow-enabled switch.

OVS Open vSwitch.

REST Representational State Transfer.

RR Round-Robin.

39

40 Acronyms

SDN Software-Defined Networking.

SL-PS Shortest Latency-Path Server.

SPH Shortest Path by number of Hops.

SPL Shortest Path by Latency.

TCP Transmission Control Protocol.

VIP Virtual Internet Protocol.

VLANs Virtual Local Area Networks.

VMs Virtual Machines.

WAN Wide Area Network.

Bibliography

[1] http://frenetic-lang.org/pyretic/.

[2] http://httparchive.org/trends.php.

[3] http://kemptechnologies.com/br/compare-kemp-f5-big-ip-citrix-netscaler-
hardware-load-balancers/.

[4] http://osrg.github.io/ryu/.

[5] http://www.noxrepo.org/pox.

[6] http://www.openflowhub.org/display/floodlightcontroller/floodlight+rest+api.

[7] http://www.openvswitch.org/.

[8] http://www.projectfloodlight.org/floodlight/.

[9] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcom-
ing the internet impasse through virtualization. Computer, 38(4):34–41, 2005.

[10] Ilia Baldine, Yufeng Xin, Anirban Mandal, Paul Ruth, Chris Heerman, and Jeff
Chase. Exogeni: A multi-domain infrastructure-as-a-service testbed. In Testbeds
and Research Infrastructure. Development of Networks and Communities, pages 97–
113. Springer, 2012.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177, 2003.

[12] Nicholas Bastin, Andy Bavier, Jessica Blaine, Jim Chen, Narayan Krishnan, Joe
Mambretti, Rick McGeer, Rob Ricci, and Nicki Watts. The instageni initiative: An
architecture for distributed systems and advanced programmable networks. Com-
puter Networks, 61:24–38, 2014.

[13] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Di-
pankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A federated testbed for

41

42 Bibliography

innovative network experiments. Computer Networks, 61(0):5 – 23, 2014. Special
issue on Future Internet Testbeds.

[14] Sapan Bhatia, Murtaza Motiwala, Wolfgang Muhlbauer, Yogesh Mundada, Vytautas
Valancius, Andy Bavier, Nick Feamster, Larry Peterson, and Jennifer Rexford. Trel-
lis: A platform for building flexible, fast virtual networks on commodity hardware.
In Proceedings of the 2008 ACM CoNEXT Conference, page 72. ACM, 2008.

[15] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. Ethane: Taking control of the enterprise. ACM SIGCOMM
Computer Communication Review, 37(4):1–12, 2007.

[16] Steven Colby, John J Krawczyk, Raj Krishnan Nair, Katherine Royce, Kenneth P
Siegel, Richard C Stevens, and Scott Wasson. Method and system for directing a
flow between a client and a server, December 21 1999. US Patent 6,006,264.

[17] David Erickson. The beacon openflow controller. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages 13–18.
ACM, 2013.

[18] Roy T Fielding and Richard N Taylor. Principled design of the modern web archi-
tecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150, 2002.

[19] Open Networking Fundation. Software-defined networking: The new norm for net-
works. ONF White Paper, 2012.

[20] Katja Gilly, Carlos Juiz, and Ramon Puigjaner. An up-to-date survey in web load
balancing. World Wide Web, 14(2):105–131, 2011.

[21] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McK-
eown, and Scott Shenker. Nox: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[22] Nikhil Handigol, Mario Flajslik, Srini Seetharaman, N McKeown, and R Johari.
Aster* x: Load-balancing as a network primitive. In 9th GENI Engineering Confer-
ence (Plenary), pages 1–2, 2010.

[23] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. Reproducible network experiments using container-based emulation. In
Proceedings of the 8th international conference on Emerging networking experi-
ments and technologies, pages 253–264. ACM, 2012.

[24] Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McKeown, and
Ramesh Johari. Plug-n-serve: Load-balancing web traffic using openflow. ACM
SIGCOMM Demo, 2009.

Bibliography 43

[25] Bert Hubert et al. Linux advanced routing & traffic control howto. setembro de,
2002.

[26] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, et al.
Onix: A distributed control platform for large-scale production networks. In OSDI,
volume 10, pages 1–6, 2010.

[27] Diego Kreutz, Fernando Ramos, Paulo Verissimo, Christian Esteve Rothenberg, Sia-
mak Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehen-
sive survey. arXiv preprint arXiv:1406.0440, 2014.

[28] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, page 19. ACM, 2010.

[29] David A Maltz and Pravin Bhagwat. Tcp splice for application layer proxy perfor-
mance. Journal of High Speed Networks, 8(3):225–240, 1999.

[30] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[31] Aref Meddeb. Why ethernet wan transport? Communications Magazine, IEEE,
43(11):136–141, 2005.

[32] Eugene Ng. Maestro: A system for scalable openflow control.

[33] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint
for introducing disruptive technology into the internet. ACM SIGCOMM Computer
Communication Review, 33(1):59–64, 2003.

[34] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. Extending networking into the virtualization layer. In Hotnets, 2009.

[35] Robert Ricci, Jonathon Duerig, Leigh Stoller, Gary Wong, Srikanth Chikkulapelly,
and Woojin Seok. Designing a federated testbed as a distributed system. In Testbeds
and Research Infrastructure. Development of Networks and Communities, pages
321–337. Springer, 2012.

[36] Eric Rosen, Arun Viswanathan, Ross Callon, et al. Multiprotocol label switching
architecture. 2001.

44 Bibliography

[37] Harikesh Singh and Shishir Kumar. Dispatcher based dynamic load balancing on
web server system. International Journal of System Dynamics Applications (IJSDA),
1(2):15–27, 2012.

[38] Yiu-Fai Sit, Cho-Li Wang, and Francis Lau. Socket cloning for cluster-based web
servers. In Cluster Computing, 2002. Proceedings. 2002 IEEE International Con-
ference on, pages 333–340. IEEE, 2002.

[39] Anand Sivasubramaniam, Umakishore Ramachandran, and H Venkateswaran. A
comparative evaluation of techniques for studying parallel system performance.
Technical report, Technical Report GIT-CC-94/38, College of Computing, Georgia
Institute of Technology, 1994.

[40] S Skiena. Dijkstra’s algorithm. Implementing Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica, Reading, MA: Addison-Wesley, pages 225–
227, 1990.

[41] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf: The
tcp/udp bandwidth measurement tool. htt p://dast. nlanr. net/Projects, 2005.

	List of Figures
	List of Tables
	Introduction
	Traditional Networks
	Software Defined Network, a new paradigm
	Motivation
	Contributions
	Work Plan
	Document Structure

	Related Work
	Software-Defined Networking
	OpenFlow

	SDN controllers
	Nox
	Onix
	Floodlight

	Load Balancing
	Content-blind load balancing
	Content-aware load balancing
	Plug-n-Serve: An SDN Load Balancer

	Evaluation
	Mininet
	Mininet Hi-Fi
	GENI

	Design and Implementation
	Application Design
	MALOB
	Implementation
	Maintaining Network State
	Maintaining Server State
	Load Balancing Algorithms

	Evaluation
	Topology and Testbed Setup
	Evaluation Results
	HTTP Requests
	FTP Requests
	Bio Application Requests
	Discussion

	Conclusion
	Acronyms
	Bibliography

