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Resumo

O principal objetivo desta tese é modelizar o risco de crédito de uma determinada in-

stituição �nanceira utilizando modelos estruturais. Neste sentido, propomos a análise de

dois modelos � Merton(1974) e CreditGrades � que são apresentados de acordo com a sua

evolução temporal. Em cada modelo é calculada a fórmula fechada para a probabilidade de

default neutra face ao risco, assim como o credit spread para uma empresa de referência. No

entanto, antes da implementação prática dos modelos estruturais, é apresentado um refer-

encial teórico que visa fornecer, de forma gradual, informações consideradas indispensáveis

para a compreensão dos modelos em causa.

O modelo de Merton (1974) apresenta uma grande inovação que reside no modo de

tratar o capital próprio de uma companhia como uma opção de compra sobre os seus

ativos, permitindo assim a aplicação de métodos de avaliação de opções, tais como os

modelos de Black e Scholes (1973) e de Merton (1973). As vantagens reconhecidas do

modelo são não apenas a quantidade reduzida de parâmetros a estimar, como também a

simplicidade de o colocar em prática. No capítulo I são também apresentadas algumas

vantagens e desvantagens do modelo. O facto de o processo do valor dos ativos da empresa

não ser observável no mercado constitui a maior di�culdade na implementação dos mode-

los estruturais. Estudos académicos propõem metodologias de estimação avançadas para

determinar os parâmetros deste processo. Com efeito, um dos inconvenientes deste modelo

é assumir o valor dos ativos (V t) e a respetiva volatilidade (σvt), como parâmetros de input

ao modelo, uma vez que não são diretamente observáveis no mercado. Neste trabalho, são

apresentadas duas aproximações ao modelo no que se refere à estimação dos parâmetros:

uma aproximação iterativa e outra como solução de um sistema de equações não-lineares.

Em 2002, foi construído um modelo baseado na completa transparência de mercado �

CreditGrades � para comparar os spreads modelados com os spreads observados no mercado

e calcular a probabilidade de sobrevivência de uma determinada empresa. Construído sobre

a estrutura do modelo Black e Cox (1976), o qual relativiza algumas das premissas presentes

no modelo standard de Merton (1974), permite que um evento de default possa ocorrer

antes da maturidade T (se o valor dos ativos da empresa tocar na barreira de default).
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Outra das vantagens relevantes é o facto de a dívida �nanceira ser expressa por ação e

estimada com base em dados �nanceiros provenientes de demonstrações consolidadas. Por

outro lado, os poucos inputs do modelo são todos observáveis no mercado.

Na segunda parte deste trabalho, é apresentada uma aplicação destes modelos a um

caso real: trata-se de um banco português que recentemente entrou em default. Pretende-

se assim mostrar a probabilidade de default e o credit spread do banco em estudo, num

cenário �nanceiro adverso, permitindo observar e analisar a adequacidade destes modelos

ao mundo real. Por outro lado, o uso prévio destes modelos não teria evitado a situação de

bancarrota do banco, mas daria uma boa percepção do risco de crédito ao longo do tempo.

Concluindo, o objetivo geral desta tese é informar o leitor sobre o modo possível de

construir modelos de risco de crédito, dando-se um ênfase especial aos métodos práticos

que um banco e/ou uma seguradora, nas respetivas áreas de corporate banking e atuariado,

podem fazer uso, num processo de desenvolvimento de um novo modelo de credit rating.

Palavras-Chave: Risco de Crédito, Modelos Estruturais, Modelo de Merton (1974),

Modelo CreditGrades, Probabilidade de Incumprimento, Credit Default Swap.
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Abstract

The main objective of this thesis is to model the credit risk of a certain �nancial

institution under the structural model approach. In this setting, we propose the analysis

of two models - Merton (1974) and CreditGrades - which are presented according to its

temporal evolution. Each model provides the closed-form formulae for the risk-neutral

default probability and credit spread of a reference �rm. However, before the practical

implementation of the structural models, it is presented a theoretical framework that aims

to provide, gradually, information considered essential to the understanding of the models

under analysis.

The Merton (1974) model o�ers a huge innovation that lies in the way of treating a

company's equity as a call option on its assets, thus allowing for applications of Black and

Scholes (1973) and Merton (1973) option pricing methods. The advantages recognized for

the model are not only the few parameters to estimate but also the simplicity of putting

it into practice. In Chapter I, we also present some advantages and disadvantages of the

model. The unobservability of the �rm's assets value is a major di�culty in the implemen-

tation of structural models. Academic studies propose advanced estimation methodologies

to determine the parameters of this process. In fact, one of the shortcomings of Merton's

model (1974) is to assume the value of company assets (V t) and the respective volatility

(σvt) as parameters of input to the model, since they are not directly observable in the

market. In this work, we presented two approaches to the model regarding the estima-

tion of parameters: an iterative approach and other as a solution of a system of nonlinear

equations.

In 2002, it was developed a completely transparent market based model - CreditGrades

- to match modeled spreads with the observed spreads and which calculate the survival

probabilities of a reference �rm. Built on the framework of the Black and Cox (1976)

model, which relaxes some of the assumptions present in the standard Merton model, it

enables a default event to occur before maturity T (if the value of company assets hits the

default barrier). Others relevant advantages is the fact that the �nancial debt expressed

on a per-share basis and estimated based on �nancial data from consolidated statements.

v



On the other hand, the inputs of the model are all observable in the market.

In the second part of this work, it is presented an application of these models to a real

case, i.e. a portuguese bank that recently went into default. The aim is to show the default

probability and the credit spread of the bank in study, in an adverse �nancial scenario,

allowing to observe and analyze the adequacy of these models to the real world. Moreover,

previous use of these models would not have avoided the situation of bankruptcy of the

bank, but give a good insight of credit risk over time.

The general purpose of this thesis is to inform the reader on how it is possible to

construct credit rating models. Special emphasis is made on the practical methods that

a bank or insurance in the respective areas corporate banking sector and actuarial could

make use of in the development process of a new credit rating model.

Keywords: Credit risk, Structural models, Merton (1974) model, CreditGrades model,

Default probability, Credit default swap.
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Chapter 1

Introduction

Credit risk has been an important issue which has been getting a growing concern among

�nancial agents, including banking institutions, since the �nancial collapse that ruined

Lehman Brothers. As daily practice, the banks provide �nancing to their clients in the form

of loans, bonds, structured products among others. All this activity has to be monitored,

managed and quanti�ed. Moreover, in the last two decades, the international banking

with its streams of capital and the increasing integration of �nancial markets, followed by

economic instability of national monetary systems and the recent �nancial crisis, brought

even more the need for rigorous measures in the calculation of capital requirements. For this

reason, banks have recently allocated more resources than usual for this issue. According to

the purposes set out in Basel II, capital requirements can be determined using an internal

assessment of the probability of default of counterparties. This has led many researchers

and practitioners to develop trading models for assessing credit risk over the last decade.

A class of models for assessing credit risk very well known in the �nancial literature is

called structural models. Structural models use the dynamics of structural variables of a

�rm, such as asset and debt to measure the time of default. These models were developed

from Black and Scholes (1973) and Merton (1974). Merton and Black and Scholes were

pioneered in building a model of default. This class includes also the Black and Cox

(1976), Geske (1977), and Vasicek (1984) models. Each of these models, built years later,

so present improvements in the theoretical framework, reformulating or removing some

of the unrealistic assumptions. Black and Cox (1976) introduce a more complex capital

structure, with subordinated debt; Geske (1977) introduces the interest payments on the

debt. Merton clari�ed and extended the model of Black and Scholes (1973). For a more

realistic model, several assumptions were imposed. Merton assumes that the debt value

of the �rm is represented by a zero-coupon bond which will be due at maturity T . Based

on the theory of option pricing provided by Black and Scholes (1973), the equity of a
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�rm is a European call option on the assets of the �rm with maturity T and strike price

equal to the book value of liabilities. The purpose of structural models is to estimate the

risk-neutral probability of �rm default and therefore anticipate changes in credit quality

of a �rm. Thus, this model uses a default event when the value of assets is less than the

value of the debt at time T . In addition to evaluating the possibility of default, the Merton

(1974) model also allows calculating the credit spread on the debt.

The main advantage of the Merton (1974) model is to include option-pricing models in

the estimation of default, in which they provide a necessary framework for extracting the

necessary information about the bankruptcy of market prices. However, some restrictive

assumptions lead to a very simplistic model, and therefore only consider �ve variables as

inputs of the model: the face value of debt, the current value of assets, the respective

volatility, debt maturity T and the risk-free rate.

One of the main problems in the implementation of structural models refers to the

estimation of the variables related with the �rm's assets. In the Merton model, it is

di�cult to estimate the value of company's assets and their volatility and it requires the

application of some numerical methods. In order to overcome these di�culties, we present

two approaches calculated from market value of �rm's equity and the equity's instantaneous

volatility suggested by Crosbie and Bohn (2003) and Vassalou and Xing (2004) and using

a non-linear system of equations procedure.

Thus, for the study in question, we also present and compare the predictive performance

of models presented above with other: CreditGrades. The original CreditGrades was

published in 2002 by some investment banks - Deutsche Bank, Goldman Sachs, JPMorgan

and the RiskMetrics Group - to compare the modeled spreads with the estimated spreads.

The RiskMetrics in 2002, summarized the CreditGrades model as follows: �The purpose

of the creditgrades is to establish a robust but simple framework linking the credit and

equity markets�. The high performance of the model in the pricing equity options and

simultaneously on credit default swap (CDS) turn the model an industry benchmark,

according to Currie and Morris (2002) and Yu (2005). The CreditGrades model is a

version extended from the Merton (1974) model and therefore belongs to the class of

structural models. Under the paper of Byström (2005) noted that the model uses the

theoretical framework of the Merton (1974) model which models default probability only

depending on the leverage ratio and the assets volatility of �rm. In this sense, we present

two possibilities to determine the survival probability: a proposal by Finger et al. (2002)

which uses the closed-form formula for the survival probability and the other possibility

presented by Kiesel and Veraart (2008) based on an explicit analytic formula to determine

the exact survival probability.
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However, the CreditGrades model di�ers from many structural models, this is because

the main purpose of the structural models is to accurately estimate the probability of

default, whereas the CreditGrades was designed to better perform the matching of credit

spreads obtained by the model with the observed credit spreads on the market. On the

other hand, most structural models have a great di�culty in estimating the value of com-

pany assets as well as its volatility. In CreditGrades model, the estimation methodology is

based on few input parameters, which are observable in the market. In addition, this model

incorporates a random default barrier to make it stochastic, which allows to include the

uncertainty (which is the key feature in the reality of �nancial markets) at the current level

of debt and a default event will happen unexpectedly. Enjoyed by many practitioners and

researchers, the CreditGrades model contains an element of uncertain in recovery rates,

which helps generate realistic short-term credit spreads, as yields a simple and analytic

CDS pricing formula, according to Chao, Yu and Zhong (2011).

Finally, we analyze the performance of the models when they are applied in practice.

In second part of this work, the models are implemented in Matlab using market data

and �nancial data from consolidated statements to determine various credit risk measures:

probabilities of default and Credit Default Swap (CDS) spreads. The models are applied

to a �nancial institution of repute in Portugal - BES - which recently became involved in

a complex situation causing the default of the bank and the consequent exit of Portuguese

stock index - PSI 20. In this context, we present a brief overview of the economic situation

in Portugal.

3



Outline of Thesis

Credit risk modeling is a wide �eld. In this thesis an attempt is made to shed a light

on the many methods and subjects of credit risk modeling. Chapters 2 to 4 provide the

fundamental understanding of credit risk modeling.

The structure of the thesis is as follows:

Chapter 2: Financial and Mathematical Background In order to get a better

feel for credit modeling framework there are some important concepts and measures that

are worth considering.

Chapter 3: Structural Models in Credit Risk This chapter introduces some

classical �rm-value models based on Geometric Brownian Motion such as the Merton model

and CreditGrades model. In each of these models, it is derived the probability of default

and the credit spread, as well as discussed their advantages and shortcomings.

Chapter 4: Application to Real Case In this chapter, we address the implemen-

tation and testing of the models presented in previous chapter. Thus, we use real data to

examine the probability of default and credit spread of a portuguese bank that recently

went into default.

Chapter 5: Conclusions Once lodged the real case are discussed, in this chapter, the

conclusions regarding the implementation of the models to the real case. Some guidelines

for future research will also be presented.
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Chapter 2

Financial and Mathematical

Background

2.1 Credit Risk

In general, the credit risk is present constantly in the lives of people, companies, �nancial

institutions and increasingly in many countries. Credit risk, also known as default risk,

is the potential loss arising from default of an economic agent to meet its contractual

obligations in preestablished period of time. Credit events include default, failure to pay,

loan restructuring, and others. A more common example is when a homeowner stops

making mortgage payments. In this case, the risk that the bank faces is credit risk, a

person acquires a loan, and the default happens when the creditor is not able to pay the

promise payment of principal or interest on the loan.

The type of risk the bank is facing is exactly credit risk: the reference entity is the

person that asks for the loan, and default occurs on the day the creditor declares that he

is not able to honor his obligations. Other underlying risk is spread risk over the duration

of the loan [0;T ], where T is often referred to as maturity or time horizon. Moreover, and

in the current crisis observed in many countries in Europe, many lenders defaulted, this

because, there are various elements that the bank does not know on the day it provides

the loan. Facing the situation of uncertainty of any creditor, a bank will evaluate their

creditworthiness.

Since initially the bank does not know the probability that the creditor will not meet

its �nancial obligations, the credit risk can be generalized to the following equation:

CreditRisk = max {Actual Loss− ExpectedLoss; 0} ,

5



where the actual loss is the observed �nancial loss. Credit risk is then the actual losses

exceed expected losses. Expected losses are made up by the default probability multiplied

by Exposure at Default (EAD) - is the amount that the borrower legally owes the bank -

and, in turn, is again multiplied by the Loss Given Default (LGD) - is the percentage of

actual loss (EAD) that the bank loses with the default of the borrower. To overcome the

fact that a bank does not know the probability of default of a creditor, means that the

bank develop methods for assessing credit risk. Thus, the calculation of the probability of

default is done by collecting information about the lender, in order to get an idea about the

likelihood of this not being able to pay the repayment of principal and interest. However,

there remains two further elements of uncertainty impossible to measure: the severity of

the loss and the time of default.

Throughout this study, this probability will be referred to as survival probability:

PSurv(t) = Probability that default will not occur in [0; t].

Correspondingly, we will call default probability between 0 and t, as:

PDef (t) = Probability that default will occur in [0; t].

For each 0 < t < T , these probabilities can be related by the following formula:

PDef (t) = 1− PSurv(t).

In Figure 2.1, we can see the default probabilities to a year that are observed in the

market and respective correspondence to the ratings, according to the Standard & Poor's.

Figure 2.1: Historical average 1-year default rate for 1981-2008 following Standard&Poor's
classi�cation. Source: Standard&Poor's Financial Services LLC.

Next section focuses on the presentation of a class of models widely popular - structural

models - and that it is the main target of the present study.

6



2.2 Credit Risk Modeling

Over the last decade, several practitioners and researchers have developed sophisticated

models towards modeling the growing credit risk from important aspects of their business

lines. These models allow banks to measure and manage the risk of their �nancial products.

There are more and more reasons for the growing interest in modeling the credit risk. In

recent years, the trading of �nancial instruments related to credit risk volume has increased

exponentially. The implementation of Basel II for banks and Solvency II for insurers, has

encouraged the development of internal models to set regulatory capital requirements.

2.2.1 Market price methods

The two classes of models of credit risk that are more common in the literature are the

structural models and reduced-form models (also known by intensity models). Over the

next chapters only structural models are studied. Structural models - also known as the

value-of-the-�rm approach - represent the link between equity and credit risk. These models

help to provide a clear and transparent relationship between default risk and the capital

structure of a �rm. The main propose is to accurately estimate the default probability.

However, the disadvantages that are assigned to them are the strong assumptions on the

dynamics of �rm's assets, V = {Vt; 0 ≤ t ≤ T}, in debt and how this capital is structured.

In order to better understand it, let us introduce the following simple structural model.

We consider that default happens when the asset value cross the �xed level B, which

corresponds to the value of the �rm's liabilities within the time horizon, as shown in

Figure 2.2. For the sake of illustration, we assumed that the asset value follows a geometric

Brownian motion with drift 0.05 and standard deviation 0.3. We also assumed that the

asset value at time t = 0 is V0 = 100 and the level B, represented by the solid line in

Figure 2.2, equals 99.95. In this particular example of structural model, the evolution of

asset values default will occur after around �ve months.

7



Figure 2.2: Example of a structural model (T = 1 year) where the dynamics of the as-
set value, Vt is a geometric Brownian motion (μ= 0.05, σv= 0.3). Default occurs if the
underlying asset hits the default barrier.

2.3 Background and overview of credit derivatives

Credit derivatives are bilateral �nancial contracts that transfer risk between two parties

and whose payo�s are a function of the default of a speci�ed reference entity. In many cases,

credit derivatives are used to hedge, transfer, or manage credit risk and can be seen as an

insurance against default. The idea is that credit risk is transferred without reallocating

the ownership of the underlying asset. In general, two counterparties are involved, the

protection buyer and the protection seller, which agree on a contract related to the default

of the reference entity(ies). The credit derivatives market has experienced considerable

growth over the past �ve years. We believe that the market has now achieved a critical

mass that will enable it to continue to grow and mature. This growth has been driven

by an increasing realization of the advantages credit derivatives possess over the cash

alternative, plus the many new possibilities they present. Figure 2.3 shows the growth

of the volumes of credit derivatives exchanged on the market from 2000, testifying the

exponential popularity of these products. Banks and investments undertakings are using

credit derivatives to hedge credit risk, reduce risk concentrations on their balance sheets,

free up regulatory capital in the process and to mitigate the capital requirements imposed

by the Basel II Accord. Indeed, banks use credit derivatives to hedge or assume credit risk,

to enhance portfolio diversi�cation, and to improve the management of their portfolios.
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Figure 2.3: Global credit derivatives market, in trillions of U.S. dollars. Source: British
Banker's Association.

There is a wide variety of di�erent products which may be classi�ed as credit derivatives.

The �nancial product most dominant and used in the credit derivatives market has been

the credit default swap (CDS) - account for more than twice as much of the market.

Credit Derivative Instrument Type Market Share (% Notional) at End 1999

Credit Default Products 38%

Collateralized Loan Obligation (CLO) 18%

Asset Swaps 12%

Total Return swaps 11%

Credit Linked Notes 10%

Baskets 6%

Credit Spread products 5%

Table 2.1: Market Share of Credit Derivative Products. Source: British Banker's Associ-
ation Credit Derivatives Report 2000.

These contracts are designed to mitigate the risk of default on credit obligations. The

CDS contracts had a great use in the global crisis of 2008 and will be used to test the

capability of our models to calculate the CDS spreads according with market data. A

broader view of credit derivatives can be found in Das (2000). The remaining of this

section will focus on this family of �nancial contracts.
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Figure 2.4: Credit Default Swap contract

2.3.1 Credit Default Swaps

In terms of credit derivatives, the �Plain vanilla� CDS quickly became the most e�cient

and liquid instrument for lenders, loan underwriters, bond investors, traders and portfolio

managers to e�ciently transfer and manage credit risk. CDS are over-the-counter (OTC)

contracts. They are used to transfer credit risk of a reference entity from one party to

another.

A standard CDS consists of a bilateral contract in which the protection buyer of the

CDS pays a �xed premium and previously agreed to the seller until the speci�ed maturity

date of CDS or until a default occurs. When a default occurs, the protection buyer receives

a payment - known as the default leg - which is the di�erence between face value and the

recovery value of the reference entity. If no default occurs until maturity of the CDS

contract, the seller pays nothing. These two cash �ow streams of a CDS contract are

typically named the �xed leg (the �xed periodic premium paid by the protection buyer)

and the default leg (the payment contingent on the occurrence of a credit event) according

to the nature of the payment. Figure 2.4 provides an illustration of the functioning of a

CDS contract.

De�nition 2.3.1. CDS Spreads: The CDS spread is usually a quarterly fee (in basis

points) that represents the price to enter a CDS contract against the default of the reference

entity, re�ecting the riskiness of the underlying credit.

To understand the concept and operations of a CDS, let us suppose a protection buyer

(a person or �rm) purchases a zero-coupon defaultable bond of a �rm with face value of

protection V = 5 000 Euros, maturity T = 10 years and with CDS spreads of 300 basis

points (bp) to be protected against the default of this bond. The protection buyer can

enter a CDS contract of the same maturity of the defaultable bond.

The protection buyer thus will make annual payments of 300bp x 5 000 = 150 Euros,
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i.e. 150 Euros is the yearly cost of the risk the protection seller is taking. According to

the situation of the bond, the payments are as follows:

� The bond does not default before maturity of CDS, the protection buyer pays annu-

ally 150 Euros and receive the face value of V = 5 000 Euros at maturity.

� The bond defaults. In this case, the protection buyer is compensated by the pro-

tection seller with the diference between V and the recovery value after default.

To understand the concept of recoverable amount of a �rm is necessary to have an

overview of a situation of default, the creditors claiming the assets of company, such

as holders of defaultable bond. The recovery rate R is the proportion of the claimed

amount received in the event of default. This is usually a result of a liquidation of

the company's assets and generally results in a lower amount than the par value.

Historical data on the amount recovered show that R can vary between 20% and

50%, depending on the debtholders. In our example, suppose the recovery rate is

R = 40% for our protection buyer (i.e. the recovery value is 2 000 Euros). The

protection seller will pay an amount equal to V x (1−R) = 3 000 Euros, lower than

face value.

Next subsection, presents some concepts and mathematical symbols that are important to

understand the scope of this work.

2.4 De�nitions and Principles

We start by providing some basic concepts on stochastic processes. Next, we introduce

some de�nitions and assumptions that will be used under our structural models.

De�nition 2.4.1. Random Variable A random variable Z de�ned on a probability space

(΄Ω;F ;P) is a measurable function Z : ΄Ω � E.

Depending on the scenario ω∈΄Ω , the random variable can take diferent values; Z(ω)

indicates the realization of the random variable Z, if the scenario ω happens.

De�nition 2.4.2. Stochastic Process. A stochastic process X = {Xt, 0 ≤ t ≤ T} is a
family of random variables de�ned on a probability space (΄Ω;F ;P), where t indicates the

time parameter.

The functions t � Xt (ω) attached to the outcomes are called sample paths, and the

index t is referred to as �time�. The best way to think of a stochastic process is to view it

as a �random function� on the domain [0,∞), with the sample paths as its realizations.
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2.4.1 Brownian Motion

Brownian motion is an important stochastic process given its great applicability to count-

less models of credit risk, but above all to be used as the basis for building other processes.

It can be thought of as the �standard normal� process. A Brownian motion is often de-

noted by the letter W , since it is also known by Wiener process, who was among the �rst

to study Brownian motion in a mathematically rigorous way.

De�nition 2.4.3. Brownian Motion A stochastic process W = W t, t ≥ 0 is a Brownian

motion (or Wiener process) if the following conditions hold:

1. W 0 = 0;

2. The process has stationary increments, i.e. the distribution of the increment W t+s−
Wt over the interval [t, t + s] does not depend on t , but only on the length s of the

interval;

3. The process has independent increments, i.e. if l < s ≤ t < u, W u−Wt and W s−Wl

are independent random variables. In other words, increments over non-overlapping

time intervals are stochastically independent;

4. For 0 ≤ s < t the random variable W t−Ws follows a Normal distribution N(0, t−s).

The paths of a Brownian motion are continuous but very irregular and can be mathemat-

ically demonstrated the in�nite variations on a given compact time interval1.

A Brownian motion can be easily simulated by discretizing time using a very small

step ∆t. The value of a Brownian motion at time points {n∆t, n = 1, 2, ...} is obtained
by sampling a series of Standard Normal N(0, 1)2 random numbers {vn, n = 1, 2, ...} and
setting:

W 0 = 0, Wn∆t = W(n−1)∆t +
√

∆tvn.

Figure 2.5 shows a typical Brownian motion path.

1For a de�nition see, for example, Sato (1999)
2Normal distribution with mean zero and standard deviation equal to one.
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Figure 2.5: A sample path of a Brownion motion.

Geometric Brownian motion, which is constructed from a Brownian motion, is one

of the most popular stochastic processes in �nance, e.g. it is the basis of the Black and

Scholes (1973) model for stock price dynamics in continuous time. A stochastic process S =

St, t ≥ 0 is a geometric Brownian motion if it satis�es the following stochastic di�erential

equation

dSt = St(μdt + σvdW t), S0 > 0, (2.4.1)

where W = W t, t ≥ 0 is a standard Brownian motion, μ is drift parameter, and σv > 0 is

the volatility parameter. Equation 2.4.1 has only one solution (see, for instance, Bjork

1998):

St = S0 exp

((
μ− σv

2

2
)
t + σvWt

)
. (2.4.2)

The related log-returns

logSt − logS0 =

(
μ− σv

2

2
)
t + σvWt, (2.4.3)

follow a Normal distribution,N(t(μ− σv22 ),σv2t). Thus S has a Lognormal distribution. Using

Figure 2.6 we can graphically see the realization of a geometric Brownian motion, which is

based on the sample path of the standard Brownian motion with S0 = 100, μ = 0.05 and

σv
2 = 0.3.
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Figure 2.6: A sample path of a geometric Brownian motion with S0 = 100, μ = 0.05, and
σv

2 = 0.3.

2.4.2 Modelling Assumptions3

De�nition 2.4.4. Risk-Free Asset The price process B = {Bt, 0 ≤ t ≤ T} is the price
of a risk-free asset if it follows the dynamics

dBt = rtBtdt, (2.4.4)

whereB = {Bt, 0 ≤ t ≤ T} is called the short rate and can be either an adapted process,

or a deterministic function of time. The process B = {Bt, 0 ≤ t ≤ T} will be referred to

as the compounded short rate.

If we interpret the risk-free asset as a bank account with short rate of constant interest

r we have the discount factor:

D (t, T ) = exp (−r (T − t)) . (2.4.5)

From now on we will consider the short rate r to be constant, or we will directly

observe the term structure D(t, T ) on the (bond) market. Stochastic short rate are not

contemplated throughout the present study.

De�nition 2.4.5. Martingale A stochastic process X = {Xt, 0 ≤ t ≤ T} is a F t mar-

tingale if the following conditions hold:

3Some of these assumptions may be relaxed or modied.

14



� X is adapted to the �ltration {F t}t≥0.

� E [|Xt|]<∞ for each t.

� For all s and t such that s ≤ t, the following relation holds:E [Xt|Fs] = Xs.

The �rst condition states that at each time t, we can observe the value of X. The third

condition says that the expectation of a future value of X, given the information available

today, equals the present value of X. This means that a martingale has no systematic drift

- fair games in gambling and absence of arbitrage in �nancial market models.

De�nition 2.4.6. Arbitrage Let φ be a self-�nancing investment strategy. Let Aφ=

{Aφt , 0 ≤ t ≤ T} be the process describing the value of φ as a function of time. An arbitrage
∼
φ
is a self �nancing investment strategy that makes zero investment at time zero and has

net positive pro�t with positive probability:

A
∼
φ

0 = 0, P
(
A

∼
φ

t ≥ 0
)

= 1, P
(
A

∼
φ

t > 0
)
> 0.

De�nition 2.4.7. Complete Market A market is said to be complete if for every con-

tingent claim CX
T there exists a self �nancing investment strategy φ whose value exactly

replicates the claim:

Aφ(T ) = CX
T

Market completeness implies that the only price of a contingent claim CX
T consistent

with no-arbitrage is given by
∏C

t = Aφt .

Assumption 2.4.8. Perfect Markets The markets are assumed to be �perfect" and

frictionless in the sense that there are no transaction costs or taxes. Assets are perfectly

divisible. Investors act as price-takers (i.e. trading in assets has no e�ect on prices) and

have equal access to information. Trading in assets takes place continuously in time. There

is unlimited borrowing or lending at the riskless interest rate. There are no restrictions

against short sales.

This is a standard assumption made in the literature for risk-neutral valuation of deriva-

tives, as for example in Black and Scholes (1973) and Merton (1973).

Assumption 2.4.9. Arbitrage-Free Market. We will assume to work in a market

where arbitrage opportunities are not possible. In particular, we will price any security

in such a way that there is no arbitrage opportunity in the market. The arbitrage-free

condition implies that with zero capital it is not possible to make any pro�t. It can be

demonstrated that without this assumption, the market would not be in equilibrium, and

correct pricing of �nancial instruments would not be possible.
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Chapter 3

Structural Models in Credit Risk

3.1 The Merton model

The quantitative modelling of credit risk were initiated with the papers of Black and Scholes

(1973) (hereafter, BS) and Merton (1974). Merton develops a framework that relates the

�rm's assets value to its credit risk and subsequently uses the BS option pricing formulas to

price defaultable bonds and equity of the �rm. This section describes the Merton (1974)

model and shows how the probability of �rm default can be inferred from the market

valuation of �rms under speci�c assumptions on how assets and liabilities evolve. We �rst

resume the assumptions underlying the model and analyze the conditions of default. Then

we present the formulas to price equity and debt and to calculate default probabilities and

credit spreads. The shortcomings of the Merton model are discussed in section 3.1.6.

3.1.1 Assumptions and default conditions

The power of the Merton model is bought at the price of some strong assumptions. Thus

Merton (1974) makes the following restrictive assumptions to develop his model1:

1. There are no transaction costs, bankruptcy costs, or taxes. Assets are divisible and

trading takes place continuously in time with no restrictions on short selling of all

assets. Borrowing and lending is possible at the same constant interest.

2. There are su�cient investors in the market place with comparable wealth levels, such

that each investor can buy as much of an asset as he wants at the market price.

3. The risk-free interest rate r is constant and known with certainty.

1Since Merton uses the Black and Scholes (1973) methodology to price securities, Merton makes these
assumptions along with some of the BS assumptions.
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4. The debt is composed by a zero coupon bond.

5. The liabilities of the �rm consist only of a single class of debt.

6. The evolution process of the �rm's assets value V t follows a stochastic di�usion

process:

dV t

V t
= (μV − δ) dt + σvV dWt, (3.1.1)

where μV is the instantaneous expected rate of return on the �rm's assets per unit time,

δ is the payout of the �rm per unit time, σvV is the volatility of the �rms assets per unit

time, and dWt is the increment to a standard Wiener process.

In addition to these assumptions, other issues have led to innovations: the use of nor-

mality in the returns distribution rather than one allowing for tail fatness; the assumption

of nonstochastic interest rates; the static nature of the capital structure of the �rm, and so

on. However, the critical assumptions are continuous time trading and assumption 6. The

total debt is treated in a very simplistic way and consists of a zero coupon bond (ZCB)

and there are no other issue before maturity of the ZCB. The �rm's equity consists of

ordinary shares. Both debt and equity are contingent claims on the assets of the �rm. The

�rm value or value of total assets equals the value of total debt Bt and equity Et; in other

words: V t = Bt + Et.

The ZCB has a face value of debt D, in which is paid at maturity T . A high D

means that the �rm is more heavily debt �nanced, whereas a low D means that the �rm

is more equity-�nanced. At the same time, the higher the level of debt D, the higher is

the default risk of the �rm, as the same underlying cash �ow will now have to pay o� a

greater amount of debt. When the ratio of the value of assets to debt is higher than one

or the value of the �rm's assets at maturity exceeds D, then the �rm is solvent at date

T and the debt holders receive the full notional amount and the shareholders receive the

residual asset value VT − D. When the asset value at maturity is less than D, the �rm

is insolvent because it does not have su�cient assets to meet debt claims, i.e. can not

make the promised debt payment and defaults. The bondholders take over the �rm and

receive the �rm value VT , while the shareholders receive nothing. Shareholders never have

to compensate for the bondholders loss in case of default, which means that ET can not

be negative (ET > 0).

To better understand the dynamics of the Merton model, �gure 3.1 summarizes the

model.
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Figure 3.1: Dynamics of asset value of the Merton model. Source: 2002 RiskMetrics Group
Inc.

Figure 3.1 illustrates the dynamics of �rm assets in the Merton model. As mentioned

above in the model assumptions, the total debt of the �rm Bt presents a static structure

over time and that the value of equity (V t−Bt) oscilates with the value of the �rm's assets.

In the �gure are shown two possible scenarios for the �rm: the bold line represents a event

default, which occurs only when the �rm value falls below the threshold default (LD) at

maturity, such that V T < D; the dotted line shows a non-default path. The shaded area

below default barrier of this distribution is the probability of default.

3.1.2 Option pricing theory

Based on the assumptions and default conditions described in section (3.1.1), we want to

price equity and corporate bonds issued by a �rm whose assets are driven by a geometric

Brownian motion. Using Merton (1974), we need the BS option pricing theory or else there

would be an opportunity for arbitrage pro�ts. To accomplish this objective, we will work

under the risk-neutral probability measure.

We de�ne the following notation E is the value of the �rm's equity, B is the value of

total debt and V is the value of its assets. In the Merton framework, the payo� of the

equity value and debt value at time T is given by

ET = max [V T −D; 0] (3.1.2)
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BT = min [V T ;D] = D −max [D − V T ; 0] = V T −max [V T −D; 0] , (3.1.3)

where D is the face value of a zero coupon bond.

Under the aforementioned set of simplifying assumptions, BS (1973) and Merton (1973)

conclude that the �rm's equity and debt can be seen as a European call option on the value

of the �rm with exercise price D and maturity T . The stockholders have the right but

not the obligation to remain the owners of the �rm by paying the exercise price D (i.e.

the face value of debt). The option holder will only exercise the option if the asset value

price is higher than the exercise price. We can now apply the BS option pricing formulas

to determine the value of the �rm's equity at time t (0 ≤ t ≤ T ). Then the equity price at

time t is de�ned by

Et = VtΦ(d1)- D exp(−r (T − t))Φ(d2), (3.1.4)

where d1 =
ln
(

V t
D

)
+
(
r+σv

2

2

)
(T−t)

σvV

√
T−t and d2 = d1 − σvV

√
T − t. The Φ(·) is the cumulative

standard normal distribution function and d1 and d2.

Using the previous formula and knowing that, Bt = Vt − Et, we can derive the value

of the debt at time t,

Bt = VtΦ(−d1)+ D exp(−r (T − t))Φ(d2). (3.1.5)

On the other hand, the output value can also be obtained as the price of a riskless bond

minus the price of a European put otion, then we �nd that debt value is also given by

Bt = D exp(−r(T − t))− Pt(Vt, D, T − t) (3.1.6)

= D exp(−r(T − t))− [D exp(−r(T − t))Φ (−d2)− VtΦ (−d1)] (3.1.7)

= VtΦ(−d1)+ D exp(−r(T − t))Φ(d2), (3.1.8)

where Pt is the price of a BS European put option, written on the value of the �rm.

3.1.3 The Merton model: Estimating the asset value and asset volatility

One advantage of Merton model is to appear easy to implement in practice. However,

a little thought shows two hurdles to be surmounted before the model can be applied to

real-world �rms - estimation of asset value and asset volatility. If all liabilities of a given
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�rm were traded in the market, then we could easily measure the value of the �rm's assets

by simply adding up the market value of equity and debt. In practice, however, not all

�rm's debt is traded, so that we can not directly observe the market value of the �rm. We

present two approaches to implement the Merton model.

The iterative approach

To calculate the asset volatility σvV we employ the iterative method proposed by Crosbie and

Bohn (2003) and Vassalou and Xing (2004). This method is a relatively recent technique

of calculating asset value and asset volatility and has shown considerable usefulness for

better in predicting �rms default probabilities. The iterative procedure has a signi�cant

advantage over the non-iterative procedure, because variability in actual market leverage

is too high for the simpler approach to yield a reliable estimate of asset volatility.

Let us suppose that we would have to implement the Merton model with a one year

horizon, that is our purpose would be to estimate the default probability in one year.

To accomplish this task we need to estimate the asset value and volatility. The iterative

procedure to estimate such unobservable variables is as follows:

1. De�ne a given tolerance level for convergence2.

2. Use daily data from the past 12 months (e.g. 252 trading days) to obtain an estimate

of the (historical) equity volatility σvE . Alternatively, we may create a vector of asset

pricesV t−a, for a = 0, 1, ..., 252. The asset prices are de�ned as the sum of the

market value of equity Et−a and the book value of liabilities Dt−a. The market value

of equity is typically de�ned as market capitalization and the book value of liabilities

as debt in one year plus half the long-term debt. Then, set the initial value for the

estimation of σvV as the standard deviation of the log asset returns computed with

the V t−a vector.

3. Rearranging �rst the Black and Scholes (1973) equity-pricing equation for the assets

value of the �rm, we obtain

V t =
[
Et + Dte

−rtΦ (d2)
]
/Φ (d1) , (3.1.9)

we use now the new σvV in each trading day over a 12 months. This system of

equations is composed by 253 equations with 253 unknowns. To compute the asset

value V t−a using Eta as the market value of equity and Dt as the book value of the

2Vassalou and Xing (2004), for instance, specify an error tolerance of 10−4.
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�rm's liabilities of each day t− a, that has maturity equal to T . In that manner, we

obtain a time initial serie of V t−a from a time series of BS equations.

4. The next step is to calculate the standard deviation of those V t−a, and the new σvV

will be used as as the input to the equation obtained in step 3 in the next iteration.

5. Repeat this procedure until the values of σvV from two consecutive iterations converge.

Our tolerance level is speci�ed according with paper of Vassalou and Xing (2004).

For most �rms, only a few iterations are necessary for σvV to converge. Once this value is

obtained, we may easily retrieve the asset value V t through equation (3.1.9). Moreover,

once daily values of V t−a are estimated, we can compute the drift μ, by calculating the

mean of the log asset returns of the �nal V t−a vector.

A solution using equity values and equity volatilities

This approach to estimate the value of the �rm's assets is implemented in the Merton

model. Before presenting this non-iterative estimation method it is appropriate to re�ect

on their predictive ability. Still prior to implementing this method, we can expect some

lack of e�ectiveness on the accuracy of the estimation of the probability of default. This

is because the solution of this system of equations has a static solution and does not

incorporate the dynamics of the assets value of �rm, ie, the e�ect of leverage is not included

in the estimation of parameters.

Since the market price of equity is daily observable in the market, then the market value

of the �rm and volatility of assets can be obtained directly using the Black-Scholes-Merton

option pricing framework which recognizes equity as a call option on the underlying assets

of the �rm (with strike price equal to the value of debt and the same debt's maturity),

that is

Et = VtΦ(d1)- De−r(T-t)Φ(d2), (3.1.10)

where d1 and d2 are respectively given by

d1 =
ln
(
V t
D

)
+
(
r + σv

2

2

)
(T − t)

σvV

√
T − t

d2 = d1 − σvV
√
T − t. (3.1.11)

Moreover, the volatility of equity is related to the volatility of the underlying asset through

the following local function

σvE = Φ (d1)

(
V t

Et

)
σvV . (3.1.12)
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Given that the market value of equity is avaliable and the equity volatility can be easily

estimated, we can use these two equations to obtain an estimate of the value of assets V t

and respective volatility σvV . This system of equations is not trivial, as we can see through

the equation (3.1.10), d1 and d2 depend both on the asset value V t and volatility σvV .

Thus, a numerical solution is required. Sobehart et al (2000) calculate the market value

and volatility of the �rm's assets from equity prices.

3.1.4 The implied credit spread of risky debt in the Merton model

Since nowadays on �nancial trading room is common to dealing with bonds in terms of

yield rather than prices, we can obtain analytical expressions for the credit spread and the

yield to maturity. The Merton's model can be used to explain risky debt yields.

De�ne Bt as the market price of the debt at time t and D as payment at maturity of

a zero coupon-bond (ZCB). Then the yield to maturity yt,T is de�ned as the solution to:

Bt = De−yt,T (T−t). (3.1.13)

Rearranging the formula,

yt,T = − ln(Bt/D)

T − t
, (3.1.14)

from which we can easily obtain the analytical expression of the credit spread:

s(t, T ) = yt,T − r (3.1.15)

= − 1

T − t
ln

(
VtΦ(−d1)+ De−r(T−t)

Φ(d2)

D

)
− r (3.1.16)

= − 1

T − t
ln

(
Φ (d2) +

Vt

De−r(T−t)Φ (−d1)

)
> 0. (3.1.17)

Taking a closer look, we notice that the term Vt

De−r(T−t) is the inverse of the �quasi-

debt ratio� d = De−r(T−t)

Vt
- leverage ratio. The implied credit spread depends only on the

leverage, d, the asset volatility, σvV , and the time to maturity, T − t.

For t < T , the credit spread s(t, T ) is de�ned as the excess return on a defaultable

bond. In fact, the risky bonds have a expected return higher than risk-free interest rate,

ie, the yield of a corporate bond is higher than the yield of a government bond. Note also

that when t tends to maturity T , the credit spread in the Merton model tends to in�nity

or zero, depending on whether the value of the assets at maturity is or not greater than

the face value of a ZCB.
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3.1.5 Default Probability

Based on this information and Merton framework, the risk-neutral probability PD of de-

fault at time T can be calculated as:

PD = Φ(−d2) = 1− Φ (d2) . (3.1.18)

The default probability depends only on the leverage, d =
(
V t
D

)
, the asset volatility, σvV ,

the risk-free interest rate r and the time of repayment, T .

3.1.6 Advantages and disadvantages of the Merton model

The clearest advantage of the Merton model (1974) is the facility of implementation and

the direct applicability of the theory of pricing European options developed by BS (1973).

Thus, the Merton model allows an e�ective approach to assess the credit risk of a �rm and

to calculate the equity and debt values.

Despite its simplicity and intuitive appeal, Merton's model has several limitations:

� The most critical issue relates to the fact that the model only recognizes the �rm

default at maturity of debt. The behavior of the asset values of �rm before maturity

is not considered in the assessment of credit risk of a �rm. In other words, if the

value of the �rm falls below the level of debt but if it is able to recover and make the

payment of the debt prior to maturity, in the Merton model this fact is ignored.

� A problem that is common to all structural models, is to have as input in valuation

formula, the value of company assets and the respective volatility. These variables

are di�cult to determine, since they are not observable in the market, such as the

value of the equity of a �rm. This shortcoming is overcome and studied in this work.

� In reality the capital structure of a �rm is much more complicated than is assumed

in the Merton model. The debt of the company is treated as a simple zero-coupon

bond whose value is constant over time.

� The assumption of a �at term structure of riskless interest rates has been one of the

biggest criticisms.

� Furthermore, another shortcoming of the model is the ability of the default pre-

diction. The Merton model is unable to estimate the occurrence of jumps to the

default. This is a consequence of the continuous path of geometric Brownian motion

- stochastic process that to modeling the dynamic of assets value of �rm. However,
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the assumption of continuity of the stochastic process results that default can be

predicted with increasing precision as time passes.

� The assumption that liquidation/transfer of control is costless, i.e., the costs of

bankruptcy are nil.

3.1.7 The empirical performance of the Merton model

The Merton model has been the target of many empirical studies, but has also been

responsible for several extensions that resulted in the appearance of new models more

e�ective. Jones et al. (1984) present the �rst empirical study and test the performance

of the Merton model in practice. They test the ability to price corporate bonds and �nd

that the model prices are far below the corresponding market prices. Years later, Eom et

al. (2004) test �ve structural models and con�rmed the previous study, which also reveals

that bond prices were trading above their value and spreads by the Merton model. Gordon

Gemmill (2002) test the performance of the Merton model with regard to spreads of the

zero coupon bonds. He has shown that Merton's model works well in the particular case

when zero-coupon bonds are used for funding. Campbell and Taskler (2003) �nd in the

recent empirical work, that the levels of volatility explains well the changes in corporate

bonds yield. More recently, Huang and Zhou (2008) �nd that the Merton model does

several shortcomings in estimating CDS spreads.

In the next section, we present some extensions to the Merton model in order to address

these shortcomings recognized in the literature.

3.1.8 Extensions to the Merton model

As noted earlier, the Merton model involves many simpli�cations and restrictive assump-

tions. Over the years, there has been an e�ort in the �nance literature to overcome the

shortcomings presented in the section 3.1.6. We present and discuss some extensions to the

Merton model that we consider essential for a credit risk assessment model more robust,

e�ective and better predictive ability. Thus, the extensions with regard to the capital

structure of the �rm, the interest rate process and the �rm value process are presented.

3.1.8.1 Capital Structure

In the Merton model (1974), the �rm's debt consists of a single zero coupon bond. Geske

(1977, 1979) had the idea of introducing coupon bonds in the debt structure of the company,

in which the payment of the coupons can be seen with a compound option and thus includes

the possibility of default. In the Geske model, the debt structure is modeled with several
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coupon bonds. In general, shareholders have in each coupon payment date the option

of making payment to bondholders, thereby ensuring the right to control the company

until the maturity date of the next coupon. The shareholders make the coupon payments

by issuing new equity. When the shareholders do not make a coupon payment, the �rm

defaults. In this case, the bondholders take over the �rm and receive the assets value of

�rm. Geske presents a structural model with a capital structure more complex.

3.1.8.2 Fisrt-passage models

The Merton (1974) model assumes default if the assets value of the �rm fall below the

level of debt at maturity T . In real world, a company can default at any time and due

to any �nancial obligation. In order to overcome this assumption, we present a new class

of models called First-Passage time Models. First-Passage time Models were introduced

by Black and Cox (1976), extending the Merton model, and modeled with the purpose of

allowing that default can happen at any time t, and not only at the maturity date of the

debt. Since there is this uncertainty of default at any time, the probability of default and

the credit spread are higher in this model than in the Merton (1974) model.

On the other hand, the debt value of �rm is higher than in the Merton model, the

inverse situation happens with the equity value of �rm. Practicioners and researchers have

argued with the fact that investors have to insure against constant uncertainty of default

�rm.

3.1.8.3 Assets value process

The Merton model uses a di�usion process to the value of the company, as with other

models proposed in this work. According to the model assumptions, the di�usion process

of a company does not consider a sudden drop in the value of the company. This means

that a company that is not in a di�cult �nancial situation has a probability of default

and credit spread undervalued, since any company observed in the market can suddenly

be taken to default, either by external factors (which can not control) or marginal factors

in the �rm's assets value.

One of the approaches to overcome these problems is to include jumps in the �rm's

asset value process. Zhou (1997, 2001) introduced an extended Merton model with risk of

random jumps in the asset value process. With this jump di�usion process a default event

can occur through marginal changes in the �rm's assets value (the di�usion component of

V t) or from unexpected changes in the �rm value process (the jump component of V t). In

the �rst case, the �rm value equals the default barrier at default, and, in the second case
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the �rm value might be below the barrier at default. In Zhou's paper, the recovery rates

are naturally stochastic.

One drawback of including a jump-di�usion process in structural models is that it

turns the parameters estimation more di�cult and are therefore less attractive for practical

purposes.

3.2 The CreditGrades structural model

In this section, we describe the CreditGrades model, in which we follow the technical doc-

ument of Finger (2002). The model was developed by RiskMetrics, J.P. Morgan, Goldman

Sachs and Deutsche Bank to create a market benchmark in credit risk. As one of the au-

thors of the model - RiskMetrics - the proposed model presents a more robust and realistic

theoretical framework between the equity and credit market. The CreditGrades model is

a structural model and hence an extension of Merton (1974) and BS (1973) model. Thus,

it also assumes that the equity and debt value of the �rm are modeled as an option on the

asset value. The purpose of the CreditGrades model is to show the two main reasons that

di�er from the other structural models. First, the default probability is not determined

very accurately, as the structural models. The CreditGrades model was developed in order

to model credit spreads and compare with the credit spreads observed in the market. Sec-

ond, the model uses approximations to the value of assets, respective volatility and drift

terms, which relates these variables with other observable quantities in the market. As

mentioned by Byström (2005), the CreditGrades model is a simpli�ed version of Merton

(1974) model which the probability default is only function of asset volatility and leverage

ratio.

This model has also some signi�cant advantages in yhe point of view of practical im-

plementation because this provides a closed form solution for the pricing of credit default

swaps (CDS) and, on the other hand, expresses the variables of the �rm in a per share

basis. Another advantage over structural models is that it overcomes the low credit sreads

problem, which has been heavily criticized. This is because the �rm's assets starting below

the default barrier and can not retrieve only by the di�usion process. There are at least

two ways to solve this problem. One proposal by Hull and White (2001) that used a time-

dependent default barrier which is calibrated to market spreads. Another alternative is to

incorporate two-sided jumps into the assets value process. For further study see Ozeki et

al., (2011). In the CreditGrades model, the uncertainty of the default barrier may lead to

the assets value reaches closer to the point of default.

Identical to the Merton (1974) model, the CreditGrades model assumes that the value
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of the assets of the company is driven by a geometric Brownian motion process:

dVt

Vt
= μV dt + σvV dWt, (3.2.1)

where μV and σvV are two constants representing, respectively, the expected continuously

compounded rate of return on the �rm's assets and the volatility of the assets, and dWP
t

is a standard Brownian motion under P 3. The model assumes that the drift rate is equal

to zero, in order to maintain a constant leverage ratio.

In Merton (1974) model we discussed several limitations. One of them, is to consider

that the value of company's assets evolves by a process of pure di�usion and the default

barrier is �xed. In order to overcome this simpli�cation, the CreditGrades model assumes

the randomness of the default barrier by introducing a new variable - Λ - the recovery

value. Thus, the default barrier can be interpreted as the amount of the company's assets

remaining in the case of �rm default. Additionally, the recovery rate can be di�erent

in some sectors of the industry, depending on the situation of �rm default, if it is in

liquidation or if the �rm is default due to �nancial or operational problems. The random

default barrier is given by

Bt = ΛD, (3.2.2)

where D is the debt-per-share and Λ is the recovery rate. The recovery rate Λ follows a

lognormal distribution with mean Λ and percentage standard deviation λ. The barrier is

modeled as:

ΛD = ΛDeλZ−
λ
2

2 , (3.2.3)

where λ, Λ ∈ R+and Z is a standard normal random variable.

In this way, the uncertainty of the barrier is modeled as well as the level of debt. The Λ

parameter is not observed with accuracy and not evolve over time. From a more practical

way, this parameter is estimated by J.P. Morgan based on historical data of �rms defaulted.

Yu (2006) and Byström (2006) used market data to estimate the implied recovery rate and

the implied standard deviation of recovery rate, minimizing the di�erences between the

theoretical and empirical credit spreads.

With the uncertainty of the recovery rate, the default barrier can be hit unexpectedly,

once the default event occurs when the assets of the �rm touch in barrier for the �rst time.

3The physical measure P is a probability measure. The most common applications are seen in statistical
estimations from the hedging of portfolios. The risk-neutral measure is very important in the world of
mathematical �nance. Under the risk-neutral measure, the expected value of the �nancial derivatives is
discounted at the risk-free rate r.
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This represents a major improvement over the Merton model.

3.2.1 Survival Probabilities

Approximated Survival Probability

The survival probability (Lardy et al., 2000) of a �rm is based on the �rm's ability to pay

its total debt service, i.e. the asset values probability of not reaching the default barrier

before time t. Based on the above assumptions, the closed-form approximation for the

survival probability P t under the CreditGrades model is

P t = Φ

(
−At

2
+

log(d)

At

)
− dΦ

(
−At

2
− log(d)

At

)
, (3.2.4)

where

d =
V0e

λ
2

ΛD
, (3.2.5)

and

A2
t = σv2t + λ2. (3.2.6)

The formula for approximating of the survival probability equation (3.2.4), presents some

drawbacks, as regards the temporal boundary. In other words, at period of time ]−Δt, 0],

there is a possibility of non-zero probability of default. Under Finger (2002), this condition

may be related with some modeling assumption, more speci�cally the lognormality the

barrier recovery rate at the default.

Exact Survival Probability

For the reason given above, the alternative closed-form solution for computing the survival

probability is provided by Kiesel and Veraart (2008), which corrects the formula given in

Finger (2002). In a practical way, the di�erence between the two approaches of the survival

probability is residual. The exact survival probability at time t is given by

Pt = Φ2

(
−λ

2
+

ln(d)

λ
,−At

2
+

ln(d)

At
;
λ

At

)
− dΦ2

(
λ

2
+

ln(d)

λ
,−At

2
− ln(d)

At
;− λ

At

)
,

(3.2.7)

where d and At are de�ned as in equations (3.2.5) and (3.2.6), respectively, and

Φ2 (a, b; ρ) =

ˆ a

−∞

ˆ b

−∞

1

2π
√

1− ρ2
exp(−1

2
(
x2 − 2ρxy + y2

1− ρ2
))dxdy (3.2.8)

is the cumulative bivariate normal distribution.
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3.2.2 Credit Spreads

For a given constant free-risk interest rate r, the default probability given by equation

(3.2.7) and the speci�c recovery rate R, we can express the continuously compound credit

spread c∗ as

c∗ = r(1−R)
1− P (0) + erξ(G(t + ξ) + G(ξ))

P (0) + P (t)e−rt − erξ(G(t + ξ)−G(ξ))
, (3.2.9)

where ξ = λ
2

σv2
, and the function G is given by Rubinstein and Reiner (1991):

G(u) = dz+ 1
2Φ(-

log(d)

σv
√
u
−zσv
√
u) + d−z+ 1

2Φ(-
log(d)

σv
√
u

+zσv
√
u), (3.2.10)

with z =
√

1
4 + 2r

σv2
.

Additionally, it is necessary to specify the meaning of two variables to avoid confusion.

The parameter R is the expected recovery rate of the speci�c debt of a �rm, while Λ is the

expected average recovery rate of all classes of debt. The speci�c recovery rate R is lower

than the Λ to cover more classes of debt.

3.2.3 Implementation of the CreditGrades Model

To implement the CreditGrades model, there are several parameters that need to be cal-

ibrated. Some variables are estimated from market data, such as the assets value of �rm

at the initial time t = 0, the volatility of the assets and the debt-per-share.

The debt-per-share is obtained from �nancial data using consolidated statements. How-

ever, �rst we need to determine the total amount of debt of the �rm, which includes short-

term and long-term borrowings and half the sum of the other short and long term liabilities.

Non-�nancial liabilities correspond to accounts payable, deferred taxes and reserves are not

included in model. The shares used to calculate the debt-per-share are common shares plus

preferred shares.

The number of common shares are directly observable on the Bloomberg but can also

be obtained by dividing the market capitalization by stock price. Similarly, the preferred

shares are calculated by dividing the book value of preferred shares by the price of common

stock on the date of reporting of book value. However, these shares are limited at the half

the number of common shares.

In this model, the distance-to-default is obtained from the Itô's lemma that relates the

equity and assets volatilities. The default threshold is given by:

η=
1

σv
ln(

Vt

ΛD
). (3.2.11)
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Based on the analysis of the behavior of the distance-to-default, Finger (2002) argue that

the best approach to the initial value of the assets is

V0 = S0 + ΛD, (3.2.12)

where S0 is the current stock price. According to the assets value formula, the relationship

between equity and asset volatilities is given by

σvV = σvE
St

St + ΛD
. (3.2.13)

Thus, the equations of the leverage ratio (3.2.5) and (3.2.6), we have the following change

d =
S0 + ΛD

ΛD
eλ

2

, (3.2.14)

and

A2
t = (σvE

St

St + ΛD
)2t + λ2, (3.2.15)

which allows a closed-form solution for the survival probability given by equation (3.2.4).

The mean of recovery rate Λ and the percentage standard deviation λ are estimated

empirically and in a subjective manner, ie, several rating agencies ( such as, J.P Morgan and

Standard & Poor's ) published empirical study based on a historical database of companies

defaulted. The CreditGrades model proposes Λ=0.5 and λ=0.3.
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Chapter 4

Application to a Real Case

In this chapter, we address the model implementation and testing. We summarize our

empirical results on testing the structural credit risk models, based on the stochastic process

Geometric Brownian Motion to observe default probabilities and credit spreads. In order

to accomplish this, we provide examples of how the credit models presented can be used

to analyze and monitor changes in the credit riskiness of particular �rms.

4.1 BES bank

The Banco Espírito Santo (BES) has a long history of contribution to the economic, social

and cultural development of Portugal. It is known for being one of the largest �nancial

institutions operating in Portugal and the largest national bank in the PSI-20, with a

market share of 20.3% and 2.1 million customers. However, the end of �rst half of 2014

(July 31, 2014) the supervisor - Bank of Portugal - announced a historic loss of ¿ 3.5 billion,

driven by provisions for impairments of ¿ 4.3 billion. With growing daily depreciation in

the stock market, the regulatory minimum capital requirement of BES was 5%, below

of the threshold set by regulators, i.e. 7% under Capital Requirements Directive (CRD).

Thus, given that the minimum capital ratios were not secured and a growing concern about

the �nancial strength of the Espírito Santo Group (GES), the bank was not authorized

to obtain credit from their lenders. On 10 July, the Espirito Santo International (ESI)

estimates a bankruptcy request, while the rating agency Moody's lowered the rating on

three levels of the Espírito Santo Financial Group (ESFG), to Caa2 from B2. Regarding

the bank in the table below we can see the latest revision of the rating agency Moody's in

long-term debt and deposit ratings of Banco Espírito Santo, S.A.
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Firm Rating Rating Date Industry

BES Ba3 11 Jul 2014 Financial Services

Table 4.1: Rating BES by Moody's. Source: Bloomberg

Moody's justi�ed the rating cut, which was already o� the scale of investment ('junk'),

with the rise of the credit risk of ESFG. The position of the shareholders of the bank in

this process were highly damaged �nancially, because, on July 31, Euronext announced

that BES would leave the PSI-20 index next August 8, which led bank shares to be worth

zero euros. Moreover, as happens in the eventual liquidation of bank, the bondholders are

the �rst to be reimbursed. This scenario is not on the table in the case of BES because

European legislation does not currently impose losses on senior creditors (senior debt). On

31 July, the debt reaching maturity in 2019 is trading at 92% of the nominal value, ie the

one to which the bank agrees to repay at maturity.

After heavy falls of shares BES on market, on August 1, equity was trading in the ¿

0.12 under �gure 4.1.

Figure 4.1: Historical equity prices of BES bank. Source: Bloomberg.

Similary, the volume of total equity decreased sharply in recent months, as is seen in

Figure 4.2.
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Figure 4.2: Historical volume of total equity of BES bank. Source: Bloomberg

A few weeks after the presentation of results on bank's solvency and the constant de-

valuation of assets led to the bankruptcy of bank. As such, the regulatory and supervisory

authorities intervened to protect the situation of depositors and credits from banks sep-

arating the current insolvent bank into two bank (the bank "bad" and "good" bank), ie

all toxic assets (the high volume of debt) were kept in the current bank BES and other

assets considered "goods" (e.g. customer deposits, credits from banks and insurance Tran-

quilidade) are integrated in the Novo Banco together with a new presidency led by Vítor

Bento. This Novo Banco present all capital requirements required to have been capitalized

with funds from Troika1.

Since this is a very recent case and given the complexity of the structure of the Espírito

Santo Group (ESG), the complete responsibilities are not yet de�ned. However, currently

the prior president of the BES - Ricardo Salgado - is released after having paid a bail of 3

millions. On 31 July, Bank of Portugal issued a statement where he admitted to criminal

practice on the BES. Among others, the crimes under current investigation addressed

mainly by regulatory and supervisory authorities (Bank of Portugal and Securities Market

Commission - CMVM) are the fraudulent management and illicit �nancing.

1The Troika is made up of three elements, the European Commission (EC), the European Central Bank
(ECB) and the International Monetary Fund (IMF). Troika team assessed that the real accounts Portugal
to de�ne the �nancing needs of the country. They negotiated and evaluated the �nancial rescue program for
Portugal was composed by Jürgen Kröger (European Commission), Poul Thomsen (International Monetary
Fund) and Rasmus Rü�er (European Central Bank).
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4.2 Macroeconomic Framework

Despite the continuation of a trend of recovery, the �rst half of 2014 was marked by an

increase in overall economic activity below expectations. This was especially visible in

the Eurozone, which should be recorded in the second quarter, a variation of PIB growth

slightly higher than that observed in the �rst three months of the year (0.2% compared with

previous year). The activity in this economy remained penalized by the persistence of a

strong euro, with adverse impacts on external demand and industrial activity. Additionally,

and despite some signs of stabilization, credit to non-�nancial private sector remained in

decline. With annual in�ation at 0.5% the European Central Bank (ECB) announced in

May, a reduction of reference interest rates, taking the interest rate on the main re�nancing

operations to 0.15% and the interest rate on the deposit facility2 to -0.1%. The monetary

authority also announced new measures to support the �nancing of economic activity. In

this context, the 3-month Euribor fell from 0.287% to 0.207% in the �rst half, while the

bonds yield on 10-year fell from 1.929% to 1.245%. The euro depreciated 0.7% over the

same period to EUR / USD 1.369.

In Portugal, after a fall of 0.6% in �rst quarter, the PIB is expected to record a very

slight expansion in second quarter, still penalized by the temporary drop of industrial

activity. Already private consumption and activity in the services extended the recent

trend of recovery. The yield of OT's to 10 years decreased from 6.13% to 3.65% in the

�rst half, with the Portuguese Treasury aimed at accessing long-term debt markets, with

emissions at 5 and 10 years, in euros and dollars. Despite a gain of 3.7% in the �rst six

months of the year, the PSI-20 fell by 10.6% in second quarter, penalized by unfavorable

developments in the �nancial sector.

4.3 Case studies: data and methodology

To identify estimation issues that are typical for the three models considered in chapter 3

we perform one case study. In this case study, we calculate CDS spreads and probability

of default of a �rm based on various input parameter sets that are estimated from that

�rm's market and balance sheet data. The next section presents the results.

2The deposit rate of the European Central Bank (ECB) is the interest rate that the ECB remunerates
for deposits that banks hold at the central bank. On 5 June 2014, the ECB decided to lower this rate to
-0.1%. This means that banks will have to pay to put their deposits in the ECB.
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4.3.1 Data

Since BES is a Portuguese bank that has recently entered into default, we decided to

analyze the performance of the models under study. To determine the input parameters

for the models we use a simple methodology described below. To apply this methodology,

we need approximately 252 trading days of equity prices and balance sheet data. All data

was collected from Bloomberg. For each trading day between 28 June 2013 and 30 June

2014, we take the bank closing price of equity, the market capitalization, equity preferred,

and the outstanding amount of short and long term debt of the bank if available. As a

proxy for the risk-free interest3 rate we take the 12-month Euribor daily rates. In this

sense, as the models in study require interest rate with continuous capitalization, so we

proceed to the respective change. In the CreditGrades model we take the mean recovery

rate (Λ) and standard deviatio of global recovery (λ) from empirical studies in literature

in which it is assumed that Λ = 0.50 and λ = 0.30.

4.3.2 Methodology

This section describes the methodology to determine the input parameters for models

under study from the acquired data. We use a fast and simple methodology such that we

can focus on estimation issues to the input parameters.

Firm and Di�usion Parameters

In the previous chapter, we presented the Merton(1974) model in which we identify the

unobservability of the �rm's assets value process as the main problem in applications of

structural models. It requires that the di�usion parameter (σvV ) are determined from other

data.

As mentioned above - in section 3.1.3 - the Merton (1974) model we applied two dis-

tinct implementations. The estimation of the parameters were estimated using the follow-

ing methodology: we construct a daily time series of asset value using the balance sheet

equation (assets Vt is equal to capital Et more liabilities Xt). According to this equation

the total assets of a �rm equals the sum of total debt and total equity. On each trading

day, we add the �rm's market capitalization as total equity and the book value of debt

as total debt to construct a time series of daily assets value. From this time series, we

calculate the daily log returns of the �rm's assets value to determine the parameters4.

3Note that the risk-free interest rate is only used to discount the cash �ows and not as drift in the �rm's
assets value process.

4The equity prices have a lognormal distribution, thus we take the log-returns of the time series of the
�rm's assets, such thatσvV is normally distributed
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The alternative methodology was also implemented in the Merton model, consists in

resolution of the system of non-linear equations of equity value and respective volatility -

described in equations (3.1.10) and (3.1.12). Solving this system of equations is not trivial,

so are given two initial conditions for the asset value of �rm and asset volatility. The

initial assets value equals the book value of debt more the �rm's market capitalization in

initial time t = 0. The starting point of the assets volatility of �rm are estimated based on

standard deviation of daily log returns of �rm's values. Another starting point often seen

in the �nancial literature is to consider the local function given by equation (3.1.12) that

relating the asset volatility with the observable equity volatility. The equity volatility is

calculated from the standard deviation of daily log returns of the stock prices of equity. In

order to get a better precision, we choose a error tolerance of 10−13.

The CreditGrades model has a particularity that makes it more e�ective and accurate

in the estimation of these parameters: it treats the variables in a per share basis. However,

the fundamental accounting equation remains valid. In the initial assets value of �rms at

time t = 0, we have the current stock price (S0) more the default threshold, i.e., the average

recovery value of debt per share (ΛD). The debt-per-share D is computed by dividing the

liabilities by the number of shares. The various items that make up these responsibilities

were already presented in section 3.2.3. The methodology applied to estimation of the

assets volatility does not di�er from that used in the Merton model, ie, through local

function that relates the equity and asset volatility.

4.3.3 Empirical results

The models discussed in this paper were programmed in Matlab. After running the models,

whose market and accounting information is between June 28, 2013 and June 30, 2014,

produce the default probabilities to one-year and the credit spread for each model at the

date June 30, 2014. Note that these are the most important outputs to measure the

�nancial health of the �nancial institution concerned. The default probability of short-

term may be viewed as forward-looking and take into account the �rm's liabilities. In

this sense, provide an essential aid as a quantitative measure of solvency of the �nancial

institution, which uses current market information. The credit spread is a risk measure

associated with a credit situation of the �nancial institution, it is normal for an institution

in �nancial di�culty to show larger credit spreads due to the compensation of risk involved.

The case study is about the BES, and the period of analysis coincides with the breakdown

of its �nancial situation in which the reasons were mentioned in the previous chapter. The

results produced by the structural models can be summarized in the following table:
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Structural models Default Probability CDS Spreads (in basis points)

Merton (1974) - EqSolve 0% 0bps

Merton (1974) - Iterative 25.03% 76bps

CrediGrades model 30.46% 254bps

Table 4.2: Results of structural models for the BES.

Merton (1974) model

In general, we expected to obtain these results. The methodology for estimating the �rm's

value - using the system of nonlinear equations of the equity value and respective volatility

- has some problems which we explain in the next chapter. However, in order to analyse

the evolution of the default probability and credit spread, we calculate these risk indicators

for the three previous quarters.

Quarters Default Probability CDS spread

Sep/13 0,000000000069057 0,000000000000074

Dec/13 0,000000023979961 0,000000000045853

Mar/14 0,000000068687869 0,000000000173229

Jun/14 0,000000000000000 0,000000000000000

Table 4.3: Quarterly results of Merton (1974) model using the system of nonlinear equa-
tions for the BES.

These results are counterproductive, since the fact that the value of the default proba-

bility and the CDS spread are both very small, we were already expecting. However, these

two risk measures have an intuitive behavior, i.e., evolve with the deterioration of �nancial

conditions of BES. Moreover, at the date June 30, 2014, the default probability should be

higher when compared to previous quarters, but that is not true in these results, which

seems a counterproductive result, as we can see by the �gure below.
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Figure 4.3: Time-series of the probability of default and the CDS spread by a system of
equations of the Merton (1974) model.

38



If we compare the results obtained by Merton (1974) model - according to the non-linear

system of equations - with the actual events, we see that the default probability does not

re�ect a very credible assessment of the true �nancial condition of the bank. Regarding the

credit spread, although results are very low and without adherence to reality, the behavior

of the CDS spread is is in line with the events of the bank, i.e., registering higher values

when the BES is deteriorating.

As a basis of comparison, we also calculated for the previous quarters the default

probability and the CDS spread, adopting the Merton (1974) model with the iterative

approach. The results can be seen in the table below.

Quarters Default Probability CDS spread

Sep/13 15.05% 28bps

Dec/13 5.70% 8bps

Mar/14 6.62% 13bps

Jun/14 25.03% 76bps

Table 4.4: Quarterly results of Merton (1974) model using the iterative procedure for the
BES.

From June 2013 until the ending of year, the risk of default BES tends to decrease

slightly over time, however already at this stage revealed serious concerns (according to

our model with a default probability 15.05%). For this reason, since the end of 2013 that

the the Bank of Portugal has been closely watching the accounts of BES and alert the bank

about the growing trend of debt and impairment charges related to the business. Although

the record value of debt has been announced following the presentation of the accounts

from BES for the �rst half of 2014, in the �rst quarter, BES presented their accounts with

a prejudice never before reported by the bank. This was the turning point, i.e., it was

from the �rst quarter of the year that the markets began to pay more attention to the

degradation of BES, recording historical depreciation in the stock market. It is in this

scenario that the default probability and credit spread given by the Merton (1974) model,

under the iterative approach, re�ects better the reality.

In contrast with the non-linear system of equations approach, the probability of default

and CDS spreads calculated by iterative procedure are more realistic, given the notorious

and recognized ability to predict default. In this work, these advantages can be veri�ed

from Table 4.2, which shows the di�erence of estimation methods of the �rm's variables

through the results. Another widely advantage recognized in the literature (Vassalou and

Xing (2004) and Crosbie and Bohn (2002)) is the fact that the estimation of �rm's value

are calculated only using observable market information. On the one hand, yields more

accurate estimates and on the other allows to evaluate the credit risk is taken almost to
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the moment, being possible to generate time series of the default probability and CDS

spread. The main reason for the success of this iterative method applied to the Merton

(1974) model is revealed in the next chapter.

CreditGrades model

Of all the structural models presented in this work, the CreditGrades model is the one with

default values of probability and CDS spreads more reliable and accurate. The reason

focuses on capital structure more complete, and therefore closest to the reality of the

market, the input parameters are all observable in the market and the default threshold is

volatile, thus incorporating the uncertainty of the market when the liabilities of a �rm.

In general, it is di�cult to assess whether a model overestimates or underestimates the

default probability. However, we could be induced in error - once the default probability

and CDS spread is larger than the other model under study - the CreditGrades model

overestimates these risk measures, once through the models do not know the behavior of

the stock the second half of 2014.

Rating Agencies 30-06-2014 31-07-2014

S&P BB B3

Moody's Ba3 B-

Fitch BB+ -

Table 4.5: Comparison of the ratings of the three largest rating agencies. Source: Investor
Report - 30 June 2014 and Banco Espírito Santo Special Report.

But comparing with the market view concerning the �nancial condition of the BES,

we can observe that the model CreditGrades predicted more accurately the credit risk of

the bank. On the other hand, we can still compare the estimation of credit spread by our

model with the implicit risk of CDS spread estimated by Bloomberg. Although the time

series does not have the most logical and intuitive path of the credit spread of a bank

nearly bankrupt, the residual di�erences lies in 9 basis points, as we can see in the �gure

below.
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Figure 4.4: Relationship between stock prices and implicit risk in the CDS spread calcu-
lated by Bloomberg. Source: Bloomberg

In the CreditGrades model we decided to make the parallelism of the closed-form

solutions to compute the survival probability using the exact and the approximate formula.

On the other hand, we change the parameter of the model - the Standard Deviation of

Global Recovery - which is preset in our model and assumes a value of 0.3 (such as in the

theoretical document of the CreditGrades model), for a Deviation of Global Recovery of

0.1. The reason for this, lies in the work of Veraart (2008), which justi�es the change of

this parameter, stating that the �nancial sector is heavily regulated, so λ may be lower.

The results of this parameter change in exact and approximate default probability, are as

follows:

Parameter λ Exact Default Prob. Approximate Default Prob. CDS spread

λ=0.3 30.465% 43.054% 254bps

λ=0.1 15.680% 16.400% 59bps

Table 4.6: Change of Global Recovery Standard Deviation (λ=0.3 to λ=0.1) in the exact
and approximate survival probability of the CreditGrades model.

These changes in the volatility of the recovery rate, leading to signi�cant changes in

default probabilities and distance themselves from the results of Merton (1974) model,

according iterative procedure. On the other hand, it seems that the higher the volatility

of the recovery rate, the higher di�erences between closed-form solutions of the default

probability.
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Chapter 5

Conclusions

The aim of this work is to implement and analyze the adequacy of structural models

to real life, in order to make the link between the theoretical models (often developed

by academics) and the applicability to any one quoted company in the market (i.e., the

professional reality). The models presented in this work - Merton (1974) model and Cred-

itGrades model - are classics in the literature of structural models. In the Merton (1974),

we use model used two approaches for estimating the �rm's variables to solve the main

problem of structural models, ie, the �rm's variables are not directly observable in the

market. We use the solution of the non-linear equations system, of the equity value and

respective volatility, and the iterative approach proposed and studied by Vassalou and

Xing (2004), Crosbie and Bohn (2002).

Concerning the approach of nonlinear equations system, this does not produce consis-

tent and accurate values for the default probability and credit spread. This is because it

considers only the instant and can not incorporate market dynamics, i.e., the di�erences

in market leverage over time. This is also con�rmed by Duan (1994), which mentions

some drawbacks of this approach: First, consider the constant equity volatility over time

and independent of assets value and time; Second, the equation of the equity value is re-

dundant, since it is only considered to derive the second equation; Third, the traditional

approach does not provide distribution functions or con�dence intervals for the estimates

of the variables of the �rm (Vt and σvV ). For a broader knowledge of this approach, see

Duan (1994) and Ronn and Verma (1986).

There are some papers of researchers (Crouhy, Galai, Mark (2000), Deliandes and Geske

(2003) and (Ho Eom, Helwege &Huang, 2004)), which claim that the default probability

calculated by structural models is seen as an upper bound of the objective probability

of default. The reason for this is related to market leverage. When the market leverage

decreases suddenly, the asset volatility increases given that the company is more exposed to

42



credit risk. It will tend to be overestimated and the same happens the default probability.

In the opposite scenario, when the market leverage suddenly grow, the asset price volatility,

as well as the default probability is underestimated, since the �rm's debt is falling, so the

credit risk of the �rm decreases. These little reasonable and consistent results are given by

the formula (3.1.13). The iterative procedure has a signi�cant advantage over non-iterative

procedure by the reasons given above, i.e., the variability of market leverage is great for

a model does not incorporate this dynamic, since it is an essential factor to produce an

reliable estimate of asset volatility.

The CreditGrades model presents a closed-form solution to calculate the survival prob-

ability using two distinct formulas. In 2002, Finger presented an approximate formula

and years later Veraart and Kiesel (2008) corrected and provided the exact probability of

survival. According to Finger (2002), the di�erence between the exact and approximate

formula is small. However, in our application to the BES, we �nd the signi�cant di�er-

ences between the formulas of the default probability. With the change in volatility of the

recovery rate, we obtain probabilities far below those calculated by Standard Deviation of

Global Recovery, as well as the CDS spread that came down from 254bps to 59bps.

This work provides an important insight into the monitoring of the model CreditGrades

during the �nancial crisis, even more, being this the model that more accurately estimated

the indicators of credit risk. On the other hand, provides a survey of the most important

factors that are missing in the others structural models. Lastly, still provides a clear

reference guide to the pricing of CDS, since this model is used by many professionals for

the purpose of negotiation and evaluation of results of their portfolios.

5.1 Further Studies

Throughout this work three models were presented for assessing and measuring the credit

risk of a given quoted �rm. Some of these models have assumptions which restrict its

performance and thus yields some unrealistic values.

In this regard, we present one of the improvements suggested in the Merton (1974)

model, but now for the CreditGrades model. This extension to the original CreditGrades

model presented by Finger (2002) and Stamicar and Finger (2006), is to include the pos-

sibility of jumps in the dynamic process of the �rm's assets. The presence of jumps in the

�rm value is modeled by Lévy processes, with the purpose of describing the discontinuous

dynamic of asset value in a certain company. In this scenario, this new extension has

almost closed formulas for the equity pricing options and for the calculation of the survival

probability. Moreover, since the original model is widely used by researchers to make the
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pricing CDS, such as Chu Yu and Zhong (2011), it would be interesting to investigate this

new approach to assess the e�ect of jumps on the value of the company, on the short-term

credit spreads and equity volatility skew. A good guideline to implement this extension is

given by Ozeki, Yamazaki, Umezawa and Yoshikawa (2011).

Moreover, the models presented in this work assume that the interest rate r is constant

over time. As we know, this is another unrealistic assumption of structural models. As

such, and in order to improve the performance of the original model CreditGrades, we

suggest including a process of stochastic interest and adopting the valuation model for

noncallable and callable corporate bonds, according to the paper of Kim (1993). Thus,

it would be possible to further analysis and a more consistent and realistic comparison

between market risk and credit risk, and thus the default probability and credit spread

would make a report of the most appropriate market risk.

There are many other topics of interest to investigate and improve the structural mod-

els, however we believe that these two proposals make them more practical models and

above all more realistic in the eyes of �nancial markets.
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