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SUMMARY 
 

Increasing antibiotic resistance among bacterial pathogens has been promoting the study 

of bacteriophage (phage) lytic enzymes (bacterial cell wall hydrolases) as 

alternatives/complements to antibiotics. Phages can employ two types of these enzymes 

during their life cycle: i) virion-associated lysins (VALs), which promote a local cleavage 

of cell wall bonds to facilitate phage genome entry into the host cell; and ii) endolysins 

that destroy the wall at the end of infection, leading to cell burst and release of virion 

progeny. We studied the lytic activity of two enterococcal endolysins, Lys168 and 

Lys170, towards clinical isolates of different Gram-positive bacterial pathogens. In the 

conditions tested, both enzymes showed broad antimicrobial activity against E. faecalis, 

including vancomycin-resistant strains, and to less extent against E. faecium. 

We show that lys170 expression results in the production of the expected full length 

polypeptide (Lys170FL, 32.6 kDa) and of a C-terminal fragment of the enzyme 

(CWB170, 12 kDa), with both proteins co-eluting in the purification steps. Further 

analysis revealed that CWB170 corresponded to the Lys170 cell wall binding domain, 

which is independently produced from an in-frame, secondary translational start site. 

Biochemical and biophysical analysis indicated that the fully active Lys170 is a complex 

most likely corresponding to one subunit of Lys170FL associated to three of CWB170. 

Study of Lys170 has thus uncovered a new strategy of increasing the number of CWB 

domains in this type of enzymes.  

A frequently reported problem when working with phage lytic enzymes is their 

propensity to become insoluble. Further, the activity of endolysins is rarely studied in 

conditions that promote robust growth of target bacteria. With the goal of supplanting 

these limitations we engineered a chimerical lysin, EC300, aimed at lysing E. faecalis 

growing in rich culture media. EC300 resulted from the fusion of a M23 endopeptidase 

domain of a VAL to the CWB170 domain of Lys170. The bacteriolysin-like protein 

exhibited a clear enhanced lytic activity when compared to the parental endolysin, 

particularly when assayed in a rich culture medium, thus having the potential to be used 

as an anti-E. faecalis therapy. 
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Keywords: Endolysin, M23 peptidase, chimeric lysin, cell wall binding domain, 
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RESUMO 
 
A emergência de bactérias patogénicas resistentes a antibióticos e a consequente 

limitação de antibióticos eficazes na eliminação destes microrganismos tem sido o motor 

para a pesquisa de alternativas ao uso da terapia antimicrobiana convencional. Nesse 

sentido, tem sido intensamente estudado o potencial das hidrolases do peptidoglicano da 

parede celular bacteriana produzidas por vírus que infetam  bactérias (bacteriófagos ou, 

mais simplesmente, fagos), como alternativas e/ou complementos aos antibióticos. 

Existem dois tipos de enzimas líticas que participam em etapas distintas do ciclo de 

infeção bacteriofágico: i) as lisinas associadas ao virião (VALs), responsáveis por uma 

clivagem controlada e não-letal do peptidoglicano (PG) para facilitar a entrada do genoma 

viral na célula bacteriana hospedeira; e ii) as endolisinas, que destroem a camada de PG 

no final do ciclo de reprodução do fago, o que leva à rutura (lise) da célula hospedeira 

com consequente libertação da descendência viral. As endolisinas em particular têm sido 

muito estudadas e exploradas como terapêutica antimicrobiana, uma vez que têm a 

capacidade de lisar rapidamente bactérias alvo Gram-positivas quando aplicadas 

exogenamente na forma de enzimas recombinantes.  

Este trabalho iniciou-se com a identificação e estudo da actividade lítica de duas 

endolisinas produzidas pelos fagos de Enterococcus faecalis F168/08 e F170/08. A 

endolisina Lys168 apresenta um domínio catalítico (CD) da família das amidohidrolases / 

peptidases dependentes de cisteína-histidina (CHAP), enquanto Lys170 apresenta um CD 

da família Amidase_2. Ambas as proteínas foram heterologamente produzidas em fusão 

com uma extensão C-terminal de 6 histidinas e subsequentemente purificadas na forma de 

proteínas solúveis. A atividade lítica destas proteínas foi testada contra uma vasta coleção 

de isolados clínicos, que incluía diferentes espécies bacterianas Gram-positivas. Ambas as 

enzimas mostraram uma elevada especificidade contra isolados de E. faecalis, ainda que 

com capacidade de atuação em alguns isolados de E. faecium. Numa primeira fase, 

Lys168 e Lys170 foram testadas numa coleção não tipada de isolados clínicos e exibiram 

capacidade lítica em 81% e 97% das estirpes de E. faecalis (n = 73) e 42% e 54% das 

estirpes de E. faecium (n = 26), respetivamente. Numa segunda coleção de estirpes 

geneticamente caracterizadas composta por 30 estirpes clínicas de E. faecalis e 21 de E. 

faecium, incluindo enterococos resistentes à vancomicina (VRE), as lisinas Lys170 e 
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Lys168 exibiram atividade lítica em 93% e 73% das estirpes de E. faecalis, 

respetivamente. Curiosamente, neste segundo grupo de isolados apenas 10% das estirpes 

de E. faecium foram sensíveis à ação de ambas as enzimas. Contrastando com o espectro 

de ação de endolisinas de fagos de E. faecalis reportado anteriormente, Lys168 e Lys170 

apresentaram uma atividade quase exclusiva sobre E. faecalis. Num ensaio controlado em 

meio líquido, ambas as lisinas foram eficazes na eliminação de células da estirpe VRE 

modelo E. faecalis V583.  

Durante os ensaios de expressão heteróloga da endolisina Lys170 observou-se 

sistematicamente a produção de um fragmento C-terminal de Lys170 com cerca de 12 

kDa, para além do polipéptido esperado correspondente à totalidade da proteína 

(Lys170FL, 32,6 kDa). Ambas as proteínas foram co-purificadas através de cromatografia 

de afinidade em colunas de níquel e subsquentemente submetidas a uma cromatografia de 

exclusão molecular (SEC) com o objetivo de as separar. Inesperadamente, os dois 

polipéptidos foram co-eluídos durante a SEC, sugerindo uma associação entre Lys170FL 

e o polipeptídeo de 12kDa. Análises genéticas e bioquímicas provaram que o polipéptido 

de menor dimensão correspondia essencialmente ao domínio que se previa mediar a 

ligação de Lys170 à parede celular (domínio CWB170). Demonstrou-se que este é 

produzido de forma independente a partir de um segundo sinal de tradução interno ao 

gene lys170. A eliminação deste sinal resultou na produção de uma única proteína 

(mLys170) de tamanho idêntico ao de Lys170FL, mas com a metionina de iniciação 

interna substituída por uma leucina. Surpreendentemente, a atividade lítica de mLys170 

revelou ser muito reduzida quando comparada com a de Lys170 nativa (Lys170FL + 

CWB170). Notavelmente, a incubação de mLys170 com quantidades crescentes de 

CWB170 purificada permitiu melhorar progressivamente a atividade lítica de mLys170. 

Observou-se que CWB170 per se não produziu atividade lítica detetável contra E. 

faecalis, apesar de se ter demonstrado a sua afinidade para a superfície bacteriana. 

Análises bioquímicas e biofísicas suportam um modelo em que a forma ativa de Lys170 

corresponde a um complexo constituído por uma subunidade de Lys170FL associada a 

três de CWB170. Complementarmente, ensaios de infeção com o fago F170/08 revelaram 

que os polipéptidos Lys170FL e CWB170 são igualmente produzidos neste contexto, 

descartando a possibilidade de produção artificial durante a sua expressão heteróloga. A 

endolisina Lys170 define assim uma nova família estrutural de hidrolases de PG, até à 
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data desconhecida, revelando uma nova estratégia de aumento do número de subunidades 

de ligação à parede neste tipo de enzimas.  

Um problema frequentemente relatado quando se trabalha com este tipo de enzimas é a 

sua baixa solubilidade e/ou propensão para precipitarem durante a produção em larga 

escala, concentração ou armazenamento. Além disso, e com base nos estudos publicados 

atualmente, pode-se concluir que a atividade das hidrolases do PG de origem fágica é 

raramente estudada em condições que promovem o crescimento ativo da bactéria alvo. 

Com base nesta observação, construiu-se uma lisina quimérica, designada por EC300, 

com capacidade para eliminar células de E. faecalis em fase de crescimento activo em 

meios ricos em nutrientes. EC300 resultou da fusão de um domínio com atividade de 

endopeptidase do tipo M23 da VAL Orf73, também codificada pelo fago F170/08, com o 

domínio de ligação à parede CWB170 da endolisina Lys170. A estrutura hétero-

oligomérica descrita para a endolisina Lys170 foi também observada para a quimera 

EC300, ou seja, a forma ativa desta proteína também corresponde a um complexo 

multimérico entre EC300FL e CWB170. Além de demonstrar uma elevada solubilidade, 

esta proteína, que apresenta uma organização de domínios funcionais semelhante a uma 

bacteriolisina, exibiu uma atividade lítica bastante superior à exibida pela endolisina 

parental, particularmente quando ambas são testadas em condições que permitem o 

crescimento robusto de E. faecalis. Em contraste com a Lys170, a lisina quimérica 

demonstrou ter a capacidade de eliminar eficazmente um painel de estirpes de E. faecalis 

geneticamente caracterizadas e com elevado nível de resistência a antibióticos, quando 

estas se encontravam em fase ativa de crescimento. A EC300 é a primeira enzima 

semelhante a uma bacteriolisina construída a partir de proteínas fágicas com elevada 

atividade antimicrobiana, constituindo assim um potencial agente terapêutico para a 

eliminação de infecções causadas por E. faecalis. 

 

Palavras-chave: endolisina, peptidase M23, lisina quimérica, domínio de ligação à 

parede celular, Enterococcus. 
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BACTERIOPHAGES: THE VIRUSES OF BACTERIA  

 
Bacteriophages, or phages, are viruses that infect bacteria. Phages are frequently 

described as the most abundant and diverse biological entity on earth and they are 

estimated to outnumber bacteria by a factor of ten (Hendrix, 2003; Pedulla et al., 2003). 

Phages were first discovered by Twort (1915) and d´Herelle (1917) in independent 

experiments and it was soon realized that these viruses could be explored as antibacterial 

agents (Chanishvili, 2012). Yet, the decisive impetus to the role of phages in Biology 

came up with M. Delbrück, that together with other scientists such S. Luria and A. 

Hershey, formed a research group that went by the name "phage group". The research 

conducted by this group and its followers on realizing the mechanisms of phage infection 

and bacterial lysis are at the very foundations of the field that later came to be known as 

Molecular Biology (Pennazio, 2006). Bacteriophages are ubiquitous forms, found 

wherever bacteria reside, but they are most frequently isolated from aquatic 

environments. Phages are not able to infect eukaryotic cells, requiring specific target 

bacterial cells for replication. This specificity can be highly refined, with each phage 

attacking just one bacterial species and, in some cases, a few strains of a given species 

(Hanlon, 2007).  

The International Committee for Taxonomy of Viruses (ICTV) presently classifies 

viruses into 7 orders, 103 families, 455 genera and 77 families with unassigned order 

(http://ictvonline.org/taxonomyReleases.asp). Bacteriophages presently constitute 20 

families (Table 1). 

 

 

 

 

 

 

 

 

http://ictvonline.org/taxonomyReleases.asp).


CHAPTER 1 
 

4 

 

Table 1. Major characteristics of bacteriophage families. 

Family Description Examples 

Double-stranded (ds) DNA phages 

Myoviridae Contractile long tail T4 

Siphoviridae Non-contractile long tail  

Podoviridae Short tail T7 

Corticoviridae Lipid-containing phages with icosahedral capsid PM2 

Rudiviridae Non-enveloped, straight rod-shaped phages SIRV-1 

Tectiviridae 
Phages with internal lipoprotein vesicle icosahedral capsid 

PRD1 

SH1, group* SH1 

STV1 group* Icosahedral with protruding vertices STV1 

Fuselloviridae Lipid-containing with lemon-shape phages SSV1 

Globuloviridae Enveloped, lipid-containing, spherical phages PSV 

Plasmaviridae Enveloped, lipid-containing, no capsid phages L2 

Guttaviridae Droplet-shaped phages SNDV 

Lipothrixiviridae Enveloped, filamentous or rod-shaped phages TTV1 

Ampullaviridae Bottled-shaped phages with helical nucleocapsid ABV 

Bicaudaviridae Two-tailed, oval phages with helical nucleocapsid ATV 

Salteprovirus** Short-tails, spindle-shaped phages His1 

Single-stranded (ss) DNA phages 

Inoviridae Non-enveloped Fd, MVL1 

Microviridae Non-enveloped, icosahedral phages X174 

Double-stranded (ds) RNA phages 

Cystoviridae Enveloped icosahedral phages 6 

Single-stranded (ss) RNA phages 

Leviviridae Non-enveloped icosahedral phages MS2 
*Preliminary designation 
**No family assigned 
 
There is a variety of bacteriophage morphological types (Table 1 and Fig. 1A), although 

about 96% of those reported in the literature belong to the order Caudovirales (tailed 

phages, Fig. 1B). Phages from this order are composed by a double-stranded (ds) DNA-
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containing icosahedral head, which is attached to a tail involved in the phage DNA 

delivery to host cells. Figure 1 and Table 1 illustrate the morphological diversity of 

phages and highlight some of their most typical features. The capsid is a protein shell that 

contains the viral nucleic acid; when present, the tail may or may not be a contractile 

structure, and connected to this are usually fibers or analogous structures involved in the 

recognition of specific receptors of the bacterial cell surface (Fig. 1B) (Hanlon, 2007). 

Tailed phages are classified into three families according to the morphological features of 

the tail: Myoviridae, Siphoviridae and Podoviridae (Table1 and Fig. 1A). These three 

families comprise the order Caudovirales (Ackermann, 2007; Maniloff, 2012). The other 

4% of phages are distributed into 17 families, that comprise the polyheadral, filamentous, 

and pleomorphic phages. The nucleic acid material of phages can be made of ds or single-

stranded (ss) DNA or RNA.  

 
 

Fig. 1. (A) Schematic representation of the major bacteriophage families. (B) Caudovirales prototype here 
illustrated by the typical myovirus morphology. 

 

Bacteriophages, like all obligate parasites, cannot complete their life cycle by themselves 

and depend on host bacterial cells to replicate and maintain. The phage extracellular form, 

the virion, is a supramolecular structure that has evolved to maximize viral propagation 

by protecting the phage genome and by promoting its efficient delivery to host bacteria. 

When phages encounter suitable bacterial cells during random motion, they adsorb to 

their cell surface (Fig. 2, adsorption step) via specific receptor sites. These may be a wide 
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variety of cell surface components, such as proteins, oligosaccharide, teichoic acids, 

peptidoglycan, lipopolysaccharides, or even bacterial structures like cell capsule, flagella 

or conjugative pilli (Hanlon, 2007; Rakhuba et al., 2010). After adsorbing, the phage 

injects its genome into the bacterial cell. This step can be mediated by different 

mechanisms, but in Caudovirales it usually involves major structural rearrangements of 

the tail and the formation of a conduit across the bacteria cell envelope (wall and 

membrane(s)), through which the genome is delivered to the host cell cytoplasm. After 

genome injection, two different lifestyles can be followed depending on whether the 

phage as a temperate or virulent (strictly lytic) nature: the lysogenic and/or the lytic 

pathways (Fig. 2). The lytic pathway, which may immediately follow viral genome entry 

of either temperate or virulent phages, has as major role: the multiplication and spread of 

the virus particle. It starts with an intense viral DNA replication and viral protein 

synthesis, taking advantage of bacterial synthetic machinery. Later in the infection 

process the viral genome is encapsidated and the virion progeny assembled within the 

host cell. During this process, lytic functions that include the holin and endolysin proteins 

(in dsDNA phages) accumulate within the infected cell and, at a specific time, both 

proteins cooperate in killing and disrupting the bacterial cell and consequently enabling 

the release of the newly formed virions (Catalão et al., 2013; Young, 2014). 

Alternatively, temperate phages can follow the lysogenic circuit where the viral genome 

normally integrates into the bacterial chromosome. In some cases though, the phage 

genetic material can be maintained in the host cell cytoplasm as an extrachromosomal 

element (e.g. plasmid). In both situations the phage genome (prophage) is perpetuated as 

part of that of the host bacterium, with each daughter bacterial cell inheriting the viral 

DNA (Fig. 2, lysogenic pathway). Eventually, and generally in response to environmental 

factors, the prophage can be induced to enter the lytic pathway, leading to virion 

production and escape from infected bacteria through cell lysis, as described above.  
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Fig. 2. Schematic representation of the two major bacteriophage life styles (adapted from Thiel, 2004). 
 
 

THE BACTERIAL CELL ENVELOPE: A BARRIER TO PHAGE ENTRY AND EXIT 

FROM HOST CELLS 

 
Like all viruses, phages need to deliver their genome to the site of replication within the 

host cell, in this case the bacterial cytoplasm. However, in contrast to eukaryotic viruses, 

the genome of the vast majority of bacteriophages enters naked, or accompanied by only 

a few virion proteins, to the host cell cytoplasm; the emptied virion structure remains at 

the cell surface (Vinga et al., 2006). This most certainly reflects the rather rigid structure 

of the bacterial cell wall, which basically works as tight physical barrier to the passage of 
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most virus particles. Phages evolved mechanisms to deliver their genome into bacteria 

without compromising the integrity and functions of the cell envelope (Vinga et al., 2006 

and see below). In contrast, and exception made for filamentous phages, escape of the 

viral offspring from infected bacteria typically involves extensive disintegration of the 

envelope structure upon the action of phage lytic functions (Catalão et al., 2013, see also 

below).  

The complex and multilayer cell envelope of bacteria consists of a cytoplasmic membrane 

(CM), a cell wall (CW) and, an outer membrane (OM) in the case of Gram-negative 

bacteria and mycobacteria (Fig. 3).  

 

 
 

Fig. 3. Bacterial cell envelopes. (A) Gram-positive bacteria, (B) Gram-negative, and (C) mycobacteria. (D) 

Enterococcus faecalis peptidoglycan prototype structure (Schleifer and Kandler, 1972). OM, outer 

membrane; PG, peptidoglycan; CM, cytoplasmaic membrane; LA, lipoteichoic acids; TA, teichoic acids; 

LPS, lipopolysaccharides; PLs, phospholipids; AG, arabinogalactan; mAGP, complex arabinogalactan-

peptidoglycan; NAG, N-acetylglucosamine; NAM, N-acetylmuramic acid. Adapted from Catalão et al., 

2013.  
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The bacterial CM is a hydrophobic phospholipid bilayer imbedded with proteins, which 

surrounds and contains the cytoplasm and is common to all bacteria. It is the structure 

responsible of energy production, lipid biosynthesis, protein secretion, and transport, and 

acts as a semi-permeable barrier preventing leakage of hydrophilic constituents from the 

cytoplasm and protecting this cell compartment from external aggressions (Silhavy et al., 

2010). The CM is impermeable to protons and other ions, allowing the cell to sustain an 

electron-chemical gradient across the membrane and thus generating the so-called proton 

motive-force (PMF) (Weiner and Rothery, 2007).  

Bacteria do not lyse when put into distilled water due to a rigid CW composed of 

peptidoglycan (PG), which protects the cells from osmotic pressure. PG is a large 

polymer made of repeating units of N-acetylglucosamine (NAG) and N-acetylmuramic 

acid (NAM), which are cross-linked by peptide side chains attached to NAM via amide 

bonds; due to its rigidity the CW also confers shape do the cell  (Vollmer et al., 2008a). 

The overall variation in the PG structure of the different bacteria resides in the amino acid 

sequence of stem peptides and, most importantly, in that forming the interpeptide cross-

bridge (Schleifer and Kandler, 1972; Vollmer et al., 2008a). Most Gram-positive bacteria 

have a stem peptide consisting of L-Ala-D-Glu-L-Lys-D-Ala-D-Ala (L-Lys in position 3, 

Lys-type PG). Stem peptides of adjacent strands are cross-linked with an interpeptide 

bridge from the ε-amino group of the L-Lys residue of one strand to the carboxyl group of 

D-Ala in position 4 of the adjacent strand. This covalent modification results in the 

removal of the terminal D-Ala residue at position 5 (Fig. 3D) (Hancock et al., 2014). The 

exact nature of these cross-bridges can be species-specific and accounts for more than 

100 different PGs (Schleifer and Kandler, 1972). For most species in the genus 

Enterococcus, which was central to the work presented in this thesis (see next chapters), 

this cross-bridge is comprised of a single D-Asp residue (Kilpper-Bälz and Schleifer, 

1987). Enterococcus faecalis appears to be an exception to this theme, as it possesses a 

cross-bridge of 2-3 L-Ala residues (Schleifer and Kandler, 1972) (Fig. 3D). In Gram-

negative bacteria and some Gram-positive bacilli, peptide side chains are usually directly 

cross-linked, with the position 4 D-Ala of one chain being linked to the opposite meso-

diaminopimelic acid (m-Dap) at position 3 (Dap-type PG) (Schleifer and Kandler, 1972; 

Vollmer et al., 2008a). 

Gram-positive bacteria are surrounded by several layers of PG that form a cell wall 

thicker than that found in Gram-negative bacteria. Inside the PG mesh of Gram-positive 

bacteria are long anionic polymers, the teichoic (TA) and lipoteichoic acids (LTA), which 
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can correspond to 60% of the mass of the cell wall, making them major contributors to 

envelope structure and function (Neuhaus, 2003; Dramsi et al., 2008) (Fig. 3A).  

In Gram-negative bacteria the thinner PG layer is surrounded by the OM, which is absent 

from Gram-positive organisms (Fig. 3B). This structure plays a major role in protecting 

Gram-negative bacteria from the environment by excluding toxic molecules and 

providing an additional stabilizing layer around the cell. Because the OM indirectly helps 

stabilize the inner membrane, the peptidoglycan mesh surrounding Gram-negative is 

covalently linked to the OM. The OM is a lipid bilayer composed by phospholipids (PLs) 

in the inner leaflet and lipophospholipids and lipopolysaccharides (LPS) in the outer 

leaflet (Ruiz et al., 2006).  

Mycobacteria also have an OM, of distinct composition from that of Gram-negative 

bacteria, and, in these particular bacteria, the OM is surrounded by a capsule which is 

composed by proteins, polysaccharides and a small amount of lipids (Lemassu and Daffé, 

1994; Lemassu et al et., 1996; Sani et al., 2010). Interestingly, in mycobacteria the PG is 

covalently attached to OM via arabinogalactan (AG), which is esterified to mycolic acids, 

forming the complex arabinogalactan-peptidoglycan (mAGP) (Brennan, 2003) (Fig. 3C). 

 

Double-stranded DNA bacteriophages follow the most drastic strategy to overcome the 

host cell barriers and release their virion progeny, that is, they induce bacterial lysis. As 

detailed below, lysis is accomplished through specialized and regulated functions that 

compromise the physical integrity of the different layers composing the bacterial cell 

envelope. 

 

PHAGE RELEASE FROM INFECTED CELLS: LYSIS-MECHANISMS OF dsDNA 

BACTERIOPHAGES  

 

The culmination of the bacteriophage lytic cycle coincides with the lysis of the host cell 

to allow the release of the virion progeny. Lysis of bacterial hosts mediated by dsDNA 

phages seems to require at least two partners for efficient cell burst: a PG hydrolase, 

known as endolysin and a small hydrophobic protein designated by holin. Endolysins (see 

next section) are responsible for the breakdown of the PG network composing the cell 

wall and are essential for rapid and efficient host cell lysis. Holins are typically small 
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proteins (<150 amino acids) displaying 1 to 3 transmembrane domains and a hydrophilic 

C-terminus (Wang et al., 2000; Young 2002). Generally, holin and endolysin genes are 

clustered with the same transcription orientation in the phage genomes (São-José et al., 

2003; Catalão et al., 2013). 

The coordinated action of these two proteins in the lysis mechanism of Escherichia coli 

phage  is, by far, the best studied and still serves as a model for most dsDNA phages 

employing this lysis strategy (São-José et al., 2003; Young and Wang, 2006; São-José et 

al., 2007). According to this model, phage endolysins accumulate in their active state in 

the host cell cytoplasm during phage replication, while holins are progressively embedded 

in CM. After reaching a critical concentration in the CM, the holins suddenly trigger to 

form a pore that dissipates the membrane PMF, thus killing the cell. In the case of the 

phage  model system, this pore also constitutes the passage through which the endolysin 

gains access to the cell wall, which rapidly leads to its digestion, and hence to cell lysis 

(Young, 2013; Savva et al., 2014) (Fig. 4A). 
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Fig. 4. Models for export and activation of endolysins. (A) The endolysin is exported to the periplasm 

through the holin pores (e.g. phage ). Holin independent, Sec-mediated export of endolysin: (B) 

endolysins with typical signal peptides (SP) (e.g. fOg44); (C) endolysins with signal-arrested-release 

sequence (SAR) (e.g. P1); and (D) mycobacteriophage Ms6 endolysin, were the endolysin export is assisted 

by a chaperone protein. PG, peptidoglycan; CM, cytoplasmic membrane; Cyt, cytoplasm. Adapted from 

Catalão et al., 2013. 
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The confinement of endolysins in the host cell cytoplasm during phage development was 

for long regarded as an imperative of any lysis strategy of dsDNA phages, simply because 

premature cell lysis, before the entire assembly of viral progeny, would not make 

biological sense. Today, however, there is an increasing awareness that phage lysis 

mechanisms can be diverse, with at least subtle deviations to the  paradigm. For 

instance, it is now known that some dsDNA phages instead of making use of the holin 

holes to export their endolysins, they engage the host cell secretion machinery (Sec 

system) to carry these enzymes to the periplasm, way before the completion of the viral 

life cycle (São-José et al., 2000; Young, 2005; São-José et al., 2007). These phages 

produce endolysins with secretion signals, that is, typical signal peptides (SP) or signal-

arrested-release (SAR) sequences, or synthesize chaperon-like proteins that interact with 

endolysins and target them to the Sec translocase (São-José et al., 2000; Xu et al., 2004; 

Catalão et al., 2010) (Fig 4. B, C and D).   

In contrast to what was expected, it was proved that the export of these endolysins to the 

periplasm at early stages of virus replication had no major impact in the bacterial cell 

wall. This implied that the endolysins are kept inactive in the cell wall compartment, 

“waiting” for the exact moment for lysis to occur. An interesting observation is that the 

phages producing holin-independent exported endolysins also encode a holin. In fact, it 

has been demonstrated that even in the systems employing secreted endolysins the holins 

still maintain the key role of defining the lysis timing. In addition, the holin PMF-

dissipating action is responsible for the activation of the pre-secreted endolysins 

(Nascimento et al., 2008; Young, 2013; Savva et al., 2014). It was speculated (São-José 

et al., 2000) and latter demonstrated (Frias et al., 2009) that the holin membrane-

depolarizing function can also trigger the bacterial autolytic machinery, which contributes 

to fast and effective lysis of host cells. Interestingly, at least for phages relying on SAR 

endolysins, it has been shown that the cognate holins produce small-sized pores, as these 

need only to allow the passage of ions and depolarize the CM in order to fulfil their role 

in lysis (Park et al., 2006, 2007). These holins have been coined as ‘pinholins’ given their 

small-hole (pinhole)-forming character when compared to canonical holins like that of 

phage , which forms micron-scale holes (Park et al., 2007; Dewey et al., 2010). 

In addition to the fundamental holin and endolysin players, dsDNA phages seem to have 

evolved auxiliary functions that contribute to the regulation and effectiveness of bacterial 

lysis. Well- known examples are the antiholin protein, whose role is to tune the timing of 
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the holin action, spanins that weaken the OM barrier of Gram-negative hosts and lipases 

that are thought to compromise the mycolyl-arabinogalactan external layer of the 

mycobacterial cell envelope (Catalão et al., 2013; Young, 2014). 

 

Besides endolysins, dsDNA bacteriophages can also encode cell wall lytic functions that 

are associated with the virus particle. These often make part of multidomain, virion 

structural proteins that are here designated as virion-associated lysins (VALs, see next 

section). In addition to their role in virion morphogenesis, VALs are thought to act at the 

onset of phage infection by promoting a local, controlled cleavage of cell wall bonds to 

facilitate phage genome transference to the host bacterial cell. Since endolysins and 

VALs were the main object of the studies presented in this thesis, the next sections will 

provide a detailed description of their fundamental features. 

 

PHAGE-ENCODED PEPTIDOGLYCAN HYDROLASES 
 

Due to the relatively conserved structure of PG, there are limited types of covalent bonds 

available for cleavage by phage PG hydrolases (Fig. 5). Independently of their 

prokaryotic or eukaryotic origin, PG hydrolases are generally classified into five major 

classes depending on the specific bond they attack and/or the reaction mechanism 

(Vollmer et al., 2008b): 1) lysozymes; 2) lytic transglycosylases; 3) N-acetyl-β-D-

glucosaminidases (glucosaminidases); 4) N-acetylmuramoyl-L-alanine amidases 

(amidases); and 5) peptidases (carboxi- or endopeptidases, but with the latter being much 

more relevant in the context of phage PG hydrolases) (Fig. 5). Lysozymes and lytic 

transglycosylases are also collectively known as N-acetyl-β-D-muramidases 

(muramidases). 
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Fig. 5. Basic structure of peptidoglycan with indication of the bonds that are targeted by the five main types 

of enzymatic domains found in phage PG hydrolases. The predominant families of catalytic domains within 

each class of PG hydrolases are indicated according to the Pfam database nomenclature. Note that the 

genesis of these families is essentially based on primary sequence relatedness; this explains why different 

cleavage specificities can be displayed by a single family (e.g. CHAP and Amidase_5). SLT, soluble lytic 

transglycosylase; CHAP, cysteine, histidine-dependent amidohydrolases/peptidases; NAM, N-

acetylmuramic acid; NAG, N-acetylglucosamine. 

 

Lysozymes and lytic transglycosylases breakdown the β-1,4-glycosidic bond between 

NAM and NAG. However, the latter differ from true lysozymes in that they cleave the 

bond with concomitant formation of an intramolecular 1,6-anhydro ring at NAM by an 

intramolecular transglycosylation reaction (Holtje et al., 1975; Thunnissen et al., 1994). 

These glycosidase activities are frequently found in phage-encoded PG hydrolases, 

including VALs, like the tail-associated lysin CwlP from Bacillus subtilis phage SP-β 

(Sudiarta et al., 2010), and endolysins, such as the pneumococcal lysozyme Cpl-1 (Garcia 

et al., 1987) and the phage  lytic transglycosylase R (Taylor and Gorazdowska, 1974). 

Lysozyme and lytic transglycosylase activities are also common in PG hydrolases 
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produced by bacteria, either in enzymes involved in cell wall metabolism or in 

bacteriolysins (PG hydrolases released to the extracellular media to attack bacterial 

competitors, formerly class III bacteriocins, Cotter et al., 2005), and also in enzymes 

produced by eukaryotic cells (Scheurwater et al., 2008; Callewaert and Michiels, 2010) 

Glucosaminidases cleave the glycan component of the PG on the reducing side of NAG. 

This kind of activity is much more frequent in autolysins, such as AltA from E. faecalis 

(Mesnage et al., 2008), but it has also been described for the streptococcal LambdaSa2 

endolysin (Pritchard et al., 2007). 

The amidases target the amide bond between the C2 on the NAM and the primary L-Ala 

of the stem peptide. This activity is among the most frequently found in PG hydrolases 

and seems to be associated quite often with endolysins, maybe because this bond is highly 

conserved in the bacterial cell wall PG (Nelson et al., 2012). In addition, since hydrolysis 

of this bond separates the glycan polymer from the stem peptides, it may be more 

destabilizing to the PG mesh than the cleavage of other bonds and thus it may have been 

favored evolutionarily by bacteriophages for rapid lysis of host cells (Nelson et al., 2012). 

This activity has been demonstrated for the amidase domain of the staphylococcal phage 

11 endolysin (Navarre et al., 1999), the phage K endolysin, LysK (Becker et al., 2009;) 

and the Listeria phage endolysins Ply511 (Loessner et al., 1995), just to give a few 

examples. 

Finally, endopeptidases are the lytic enzymes that cleave any of the peptide bonds within 

or between the peptide stems. As referred to above, the most important variation among 

the bacterial cell wall PG resides in the interpeptide cross-bridges. Therefore, the activity 

of a given endopeptidase tends to be restricted to a particular type of PG. The listerial 

Ply500 and Ply118 endolysins display L-alanyl-D-glutamate endopeptidase activity 

(Loessner et al., 1995). The endolysin of the staphylococcal phage 11 is a bifunctional 

enzyme, cleaving the bond between position 4 D-Ala and the first Gly residue of the 

pentaglycine cross-bridge (D-alanyl-glycine endopeptidase) in addition to its amidase 

activity (Navarre et al., 1999). The also bifunctional endolysin of the streptococcal phage 

B30 exhibits D-alanine-L-alanine endopeptidase and lysozyme activities (Pritchard et al., 

2004). The bacteriolysin lysostaphin from Staphylococcus simulans cleaves the S. aureus 

pentaglycine cross-bridge (Iversen and Grov, 1973). Besides a lytic transglycosylase 

activity (see above), the VAL CwlP from B. subtilis phage SP-β also harbors a peptidase 

domain of the M23 family (Sudiarta et al., 2010).  
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Phage lytic enzymes, i.e., endolysins and VALs, harbour at least one of the five muralytic 

activities just described but, as perceived from examples given above, some have been 

reported that comprise two distinct enzymatic specificities, which are generally attributed 

to two separate catalytic domains (CDs). In addition to these, the endolysins of phages 

infecting Gram-positive bacteria and mycobacteria typically harbor a C-terminal cell wall 

binding (CWB) domain, which mediates substrate recognition and enzyme anchoring 

(Nelson et al., 2012; Payne and Hatfull, 2012; Schmelcher et al., 2012; Oliveira et al., 

2013). Bioinformatics and structural studies have been evidencing the diversity of 

catalytic and CWB domains present in PG hydrolases, when considering their primary 

sequence and fold, with the same PG bond being cleaved by CDs of distinct 

configurations. Despite this, the wealth of enzyme sequences deposited in databases has 

been enabling, through bioinformatics analysis, the organization of CDs and CWB motifs 

into different superfamilies and/or families (López and García, 2004; Firczuk and 

Bochtler, 2007; Layec et al., 2008a,b; Scheurwater et al., 2008; Payne and Hatfull, 2012; 

Oliveira et al., 2013). This, complemented with the development of sequence analysis 

tools (e.g. Marchler-Bauer et al., 2011), generally allows the inclusion of the functional 

domains of a given PG hydrolase in known superfamilies/families. This type of analysis 

though should be taken with caution when trying to assign the cleavage specificities of 

lytic enzymes as it can lead to erroneous conclusions. For example, some CHAP CDs 

have been shown to specify amidase activity (Nelson et al., 2006), others are 

endopeptidases (Navarre et al., 1999; Pritchard et al., 2004), and there is at least one 

example where a single CHAP displays both amidase and endopeptidase activities 

(Linden et al., 2014). 

 

Endolysins  

 

Structural diversity 

Analysis of the overall structure of known phage endolysins generally leads to a 

distinction of those targeting Gram-positive and mycobacteria from those acting on 

Gram-negative bacteria, which again probably reflects the major differences in the cell 

wall architecture of these major bacterial groups.  
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In Gram-negative bacteria, the PG lies between the OM and the CM and is a relatively 

thin layer. Endolysins from phages that infect this type of bacteria are usually single 

domain, globular proteins that typically harbor a single CD and range in mass from 15 to 

20 kDa (Nelson et al., 2012). Exceptions have been described, such as the Gram-negative 

endolysins KJ144 and EL188, both from Pseudomonas phages, which have been shown 

to carry a catalytic domain and an N-terminal CWB domain (Briers et al., 2007; Fokine et 

al., 2008) (Fig. 6). 

 

 

Fig. 6. Domain architecture of Gram-negative and Gram-positive endolysins. Functional domains not 

drawn to scale. Green boxes correspond to catalytic domains (CD); blue boxes represent cell wall binding 

domains (CWBD); N, N-terminus; and C, C-terminus. 

 

Gram-positive organisms lack the OM and the PG is a highly cross-linked multilayer 

followed by the CM. As referred to above, Gram-positive endolysins show a modular 

structure (Diaz et al., 1991) (Fig. 6) and are usually composed by one or two N-terminal 

CDs connected to one to several repeats of CWB motifs at the C-terminus, which 

specifically recognize the host PG or other cell wall components (López and García, 
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2004; Nelson et al., 2012; Schmelcher et al., 2012). The two endolysin functional 

domains are usually linked by a flexible peptide chain (Korndorfer et al., 2006). The 

staphylococcal lysin LysK is an example of a bifunctional endolysin, which bears a 

CHAP endopeptidase and an amidase CD in the N-terminal region linked to a SH3b 

CWB domain (SH3_5 family, (Pfam08460 ) (O’Flaherty et al., 2005; Horgan et al., 

2009).  

The cell wall binding domain can have a significant impact in the activity range of 

endolysins. Several conserved CWB motifs have been described in the literature such as: 

the LysM domain (Visweswaran et al., 2011), which is the most common CWB domain 

in PG hydrolases and has been shown to bind to NAG residues in the sugar backbone of 

the PG (Ohnuma et al., 2008); the bacterial SH3b domain (Whisstock and Lesk, 1999), 

which is also present in some bacteriolysins; the choline-binding modules of Cpl-1 and 

other pneumococcal lysins (Lopez and Gracía, 2004), which specifically recognize the 

choline-containing theichoic acids in the cell wall of S. pneumonia; and the Cpl-7 biding 

domain, which binds to ethanolamine molecules present in the pneumococcal cell walls 

(Bustamante et al., 2010). 

The recognition specificity of a CWB domain in many cases encompasses an entire 

bacterial genus, as observed in studies using various GFP-tagged staphylococcal SH3b 

binding domains (Gu et al., 2011), and is in general broader than the spectrum of the 

respective phage. This indicates recognition of a rather conserved ligand such as the 

pentaglycine interpeptide bridge shared by the most staphylococcal strains (Schleifer and 

Kandler, 1972). Other interesting feature about CWB motifs is that frequently they appear 

in multiple copies. Cpl-1 endolysin bears 6 tandem copies of the choline-binding repeats 

and its lytic activity depends on activation through choline binding (Garcia et al., 1990). 

The related pneumococcal endolysin Cpl-7 harbors 3 tandem repeats of a different CWB 

motif and appears to lyse bacteria both exhibiting choline and ethanolamine at the cell 

wall (Diaz et al., 1991).  

Gram-positive endolysins are generally described as being monomeric proteins and are 

thus the product of a single gene. A remarkable exception is the pneumococcal endolysin 

PlyC, which is composed of two different subunits, PlyCA and PlyCB encoded by 

separate genes. PlyCA is a two CD-containing polypeptide that associates with eight 

PlyCB subunits with CWB activity (Nelson et al., 2006; McGowan et al., 2012) (Fig. 6).  
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Endolysin mode of action  

The degradation of the PG layer by the action of endolysins in the context of phage 

infection leads to lysis of the bacterial cell. As revealed by thin-section electron 

microscopy, endolysins seem to display their lethal effects by forming holes in the cell 

wall through PG digestion. The high intracellular osmotic pressure causes extrusion of the 

cytoplasmic membrane, ultimately leading to hypotonic lysis (Fischetti, 2008; Fischetti, 

2005). In principle, a single endolysin molecule should be sufficient to cleave several 

numbers of bonds. However, Loessner and collegues (2002) showed that a listerial phage 

endolysin had a binding affinity approaching that of an IgG molecule for its substrate, 

suggesting that phage proteins are one-use enzymes, probably requiring several molecules 

attacking the same region to efficiently weaken the cell wall.   

 

Virion-associated lysins of dsDNA bacteriophages 

 

As described above, bacteriophages must transport their genome across the bacterial cell 

envelope to initiate infection. The common obstacles to phage genome transit are the PG 

and CM layers but additional barriers like an OM and/or a polysaccharidic capsule may 

be present depending on the host. While the OM is generally traversed by puncturing (for 

example by a device of the tail), crossing of capsule and PG layers generally benefit from 

depolymerizing activities carried in the virion structure (Casjens and Molineux, 2012). 

Most phage particles carry at least one protein with cell wall degrading activity (the VAL) 

that allows access of the tail tube to the CM (Moak and Molineux, 2004). Traffic through 

this last barrier likely involves pore formation and/or membrane fusion events but its 

molecular details remain the less understood in the process of virus entry (Letellier et al., 

2004). VALs are designed to promote a “surgical” lesion in the cell wall without leading 

to cell death. However, if a VAL-carrying phage adsorbs at very high multiplicities to a 

host cell, it can culminate in cell destruction. This phenomenon is denominated by “lysis 

from without”, as it is a lysis that does not rely on phage infection (Abedon, 2011). 

VALs seem to be quite common in both Gram-negative and Gram-positive infecting 

phages (Moak and Molineux, 2004). These enzymes are typically associated to the phage 

DNA injection machinery and are most frequently incorporated in the tail structure 

(Fokine and Rossmann, 2014). The P7 VAL of the tail-less, dsDNA phage PRD1 which 
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infects various Gram-negative bacteria, such as E. coli, Salmonella enterica and 

Pseudomonas aeruginosa, is associated with the membrane beneath the icosahedral 

capsid (Rydman and Bamford. 2000). VALs are much less studied compared to 

endolysins. Very often they correspond to multifunctional proteins that, in addition to the 

PG hydrolase activity, play a role in the assembly of the phage tail. Known examples of 

this are the tape measure proteins (TMP), which determine the length of the tail and at the 

same time may display PG hydrolase activity (Piuri and Hatfull, 2006; Boulanger et al., 

2008). VALs may also make part of central tail knobs, fibers or spikes (Moak and 

Molineux, 2000; Kanamaru et al., 2002; Kenny et al., 2004; Xiang et al., 2008). They are 

usually larger than cognate endolysins, present high sequence diversity and variable 

domain organization (Rodriguez-Rubio et al., 2012) (Fig. 7).  

 

 

Fig. 7. VALs domain organization and diversity of PG cleavage specificities. Three illustrative examples 

(not to scale) of known VALs targeting Gram-negative and Gram-positive bacteria are shown. CD families: 

SLT, soluble lytic transglycosylase; M23, peptidase M23; Lyz, lysozyme; CHAP, cysteine, histidine-

dependent amidohydrolases/peptidases. 

 

The domains of VALs responsible for PG hydrolase activity are related to those of 

endolysins and bacterial PG hydrolases. Yet, in contrast to the endolysins acting on 

Gram-positive bacteria, the VALs targeting this group of bacteria usually lack a domain 

responsible for cell wall binding (Rodriguez-Rubio et al., 2012). The lack of a CWB 
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domain is not surprising given the context of action of these proteins. Receptor binding 

proteins (RBP) carried in the phage tail distal end are responsible for recognition and 

attachment to bacterial surface receptors. This RBP/receptor interaction triggers major 

conformational changes in the tail structure that ultimately places the VAL it in close 

contact with its substrate (Fig. 8), thus becoming unnecessary the presence of a specific 

domain to direct the enzyme, as it happens with Gram-positive endolysins (Veesler and 

Cambillau, 2011; Rodriguez-Rubio et al., 2012; Fokine and Rossmann, 2014). One 

exception to this rule seems to be the staphylococcal phage 68 VAL P17, which shows a 

typical endolysin domain organization composed by an N-terminal CD and a C-terminal 

CWB domain (Takac et al., 2005). Interestingly, Rodriguez and collaborators (2011) 

showed that the two CDs of the VAL HydH5, encoded by the S. aureus phage 

phiIPLA88, had the ability to bind target cells. In fact, VALs acting on Gram-positive 

bacteria frequently display two CDs (Rodriguez-Rubio et al., 2013). To date, there is no 

described VAL from a Gram-negative infecting phage that harbors more than one CD. 

 

 

Fig. 8. Schematic representation of the mode of action of a virion-associated lysin (VAL) of a prototype 

Gram-positive Myoviridae bacteriophage.  

 

A curious observation is the apparent abundance of VALs of Gram-positive phages 

carrying a CD of the peptidase M23 family in (our analysis). As far as we know, such CD 

has never been observed in VALs from Gram-negative phages. The M23 peptidase CD is 

also present in other PG hydrolases that, similarly to VALs, “attack” the bacterial cell 

from the outside. This is the case of the bacteriolysins lysostaphin (Shindler and 
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Shuhardt, 1964) and Enterolysin-A (Nielsen et al., 2003). In contrast, the peptidase M23 

is rarely found in endolysins, with an exception being the staphylococcal phage 2638A 

endolysin (Abaev et al., 2013). 

 

THE USE OF PHAGE-BASED PRODUCTS TO CONTROL PATHOGENIC BACTERIA 

 

The increasing antibiotic resistance among some important bacterial pathogens, 

associated to the short pipeline of new antibiotic drugs (Gould, 2008; Boucher et al., 

2009), has been calling for the urgent need of developing alternative antibacterials. 

Among the different pursuit approaches, one that has drawn particular attention actually 

goes back into history in the search for potential solutions: the use of bacteriophages and 

their lytic enzymes as antibacterial agents (Thiel, 2004; O'Flaherty et al., 2009; Viertel 

et al., 2014).  

 

Phage therapy 

 

At its origin, the concept of phage therapy proclaimed the use of bacteriophages to treat 

bacterial infections (Harper et al., 2011), although currently the term is commonly used 

when referring to any application of phages with the goal of reducing the density of target 

bacteria with therapeutic, prophylactic or sanitary purposes. The use of these viruses as 

therapies appear to offer a number of advantages over ”conventional” antibiotics: (1) 

bacteriophages generally kill target bacteria with high specificity, being harmLess to the 

natural commensal microbiome; (2) they are effective in eliminating multiple antibiotic 

resistance bacteria given their completely different mode of action; (3) phages replicate in 

presence of the target pathogen, which may limit the number of required doses and time 

of treatment; (4) very few cases of side effects have been reported as result of phage 

administration in humans and animals; and (5) new phages are relatively easy to isolate 

and produced at low costs (Hanlon, 2007; Gorski et al., 2009).  

The first attempts to treat bacterial infections in humans with live phages were conducted 

around 1920, just a few years after the discovery of bacteriophages (Dublanchet and 

Bourne, 2007). Since then, a great number of ‘‘clinical’’ studies have been carried out to 
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evaluate the efficacy and safety of phage therapy (Sulakvelidze and Kutter, 2005) and 

phage therapy was in fact established to considerable extent in Eastern Europe and 

countries of the former Soviet Union, where it has been applied to treat infections caused 

by Staphylococcus, Pseudomonas, E. coli, Klebsiella and Salmonella strains (O’Flaherty 

et al., 2009). One human clinical trial was performed in the Institute of Immunology and 

Experimental Therapy (founded in 1952 in Wroclaw, Poland) between 1981 and 1986 

with 550 patients, with a wide range of bacterial infections, of which 518 had previously 

been unsuccessfully treated with antibiotics. These results demonstrated that 92.4% of the 

patients were cured, 6.9% patients showed an improvement in health condition, and in 

only 0.7% of patients phage therapy appeared ineffective (Slopek et al., 1987). In a more 

recent study made by the same group, 1307 patients were exposed to phage therapy and 

85.9% fully recovered from the bacterial infection, 10.9% showed an improvement of 

condition and 10.8% showed no improvement (Weber-Dabrowska et al., 2000).   

Despite the promising results of the use of bacteriophages as antimicrobial agents, there 

are plausible risks associated to phage therapy, which make essential a judicious choice of 

the viruses to be used as therapeutic agents. The chosen bacteriophages must: (1) have a 

narrow host range, to avoid an imbalance in natural human microflora; (2) be unable to 

establish any sort of lysogeny, as lysogens will become immune to the therapeutic phage; 

(3) not carry virulence/toxin genes in their genomes; (4) display minimal tendency to 

carry out DNA transduction between bacteria; and (5) be endotoxin-free manufactured 

(Gill and Hyman, 2010; Loc-Carrillo and Abedon, 2011). Even when meeting these 

requirements, a major concern related to the use of phages as antibacterials is the 

emergence of phage-resistant bacteria, which seems to be relatively frequent for some 

phage/host systems, at least in laboratory conditions. Although the development of phage 

cocktails might configure a solution to this problem (Drulis-Kawa et al., 2012), in the last 

years there has been an increasing interest in the study of the phage lytic enzymes as an 

alternative antibacterial strategy. One of the reasons motivating such interest is the 

apparent incapacity, or at least difficulty, of bacteria in developing resistance against 

these agents (Shuch et al., 2002; Fischetti, 2005; Rodríguez-Rubio et al., 2013). 
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Endolysins as antibacterials 

 

An alternative to the killing action of phage particles themselves is the use of the lytic 

enzymes they produce. Endolysins seem to be highly potent enzymes when acting under 

their natural context, lysing the host cells from the inside within a reduced time frame. 

The exploration of these enzymes in the combat of pathogenic bacteria builds on the 

observation that such or similar lytic action can occur when endolysins reach the cell wall 

from the outside. Of course, without any special elaboration (see section 5.3) endolysins 

will need to have free access to the cell wall in order to act, and so their use has been 

mainly envisaged in the killing of Gram-positive bacteria because these lack an OM. The 

use of phage lytic proteins presents some advantages over the use of bacteriophages such 

as: (1) to date, and in the conditions tested, no bacterial resistance has been observed, 

even after repeated endolysin treatment (Fischetti, 2005; Rodríguez-Rubio et al., 2013); 

(2) lysins modular structure allows the engineering of enzymes with specific attributes; 

and (3) they can be identified and used from both temperate and lytic phages (O’Flaherty 

et al., 2009). 

The first report of an in vivo assay showed that a single dose of the endolysin PlyC 

administered orally to mice, prior to the addition of group A streptococci, protected the 

animals from upper respiratory tract colonization (Nelson et al., 2001). The same group 

reported eradication of nasopharyngal colonization of mice by Streptococcus pneumonia 

by a single dose of the enzyme Pal within 5h, without affecting the commensal 

microorganisms (Loeffler et al., 2001). PlyGBS is another endolysin that is active against 

group A streptococci as well as B, C, G and L streptococci (Cheng et al., 2005). This 

protein was tested in a murine vaginal model of Streptococcus agalactiae (group B 

streptococci) colonization, aiming its potential use in pregnant women to prevent 

transmission of neonatal meningitis-causing streptococci to newborns. A single vaginal 

dose decreased colonization of group B streptococci by ~3logs. In addition, this enzyme 

was harmLess to the natural vaginal microflora. 

Not only colonization of mucous membranes, but also systemic bacterial infections have 

been successfully eliminated with endolysins. The intraperitoneal administration of 

endolysin PlyG, encoded by the Bacillus anthracis phage γ, prevented death in 13 of the 

19 infected mice, which were infected 15min before the treatment (Such et al., 2002). 
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Cpl-1 and Pal, two pneumococcal endolysins, were able to protect mice from 

pneumococcal bacteremia induced by intraperitoneal injection 1h prior to endolysins 

administration (Loeffler et al., 2003). 

The prevalence of methicillin-resistant S. aureus (MRSA) in nosocomial and community-

acquired infections is among the current serious threats to public health. This has 

generated a considerable amount of interest in identifying and study anti-staphylococcal 

endolysins. The first study using an S. aureus endolysin as therapeutic agent dates from 

2007, in which the endolysin MV-L from phage MR11 was used to eliminate MRSA 

from mice nares. The intraperitoneal administration of MV-L 30min after a lethal MRSA 

inoculum (same route) also provided full protection to the challenged mice (Raschel et 

al., 2007). Recently, LysGH15, the endolysin from the S. aureus phage GH15, conferred 

100% protection in a mouse model of septicemia (Gu et al., 2011). 

In addition to phage-encoded endolysins, a large body of work has been devoted to the 

study of the antibacterial potential of the bacteriolysin lysostaphin, either alone or in 

combination with other S. aureus PG hydrolases. In vitro studies with lysostaphin in 

combination with the endolysin LysK (from phage K) showed a strong synergism in 

eliminating MRSA strains (Becker et al., 2008). A patent application (Kokai-Kun, 2003; 

US 20030211995) also indicates a synergistic action between lysostaphin and the 11 

endolysin against S. aureus. Other types of reported synergisms involve either the 

combined action of different endolysins or the co-treatment with endolysins and other 

antibacterial agents such as conventional antibiotics and bacteriocins. This is the case of 

the phage lytic enzyme Cpl-1, which was synergistic with gentamycin, penicillin and with 

the phage endolysin Pal against several penicillin-resistant and sensitive S. pneumonia 

strains (Loeffler and Fischetti, 2003). A strong synergistic effect was observed between 

the endolysin LysH5 and the bacteriocin nisin during elimination of S. aureus from 

pasteurized milk (García et al., 2010).  

The majority of the studied endolysins only kill the species (or subspecies) of bacteria 

against which they were naturally designed to act on, although there are some exceptions. 

The endolysin PlyV12, from the E. faecalis infecting phage 1, showed a spectrum of 

activity outside that of the host and closely related bacterial strains. In addition of being 

active against E. faecalis and E. faecium strains, PlyV12 was also found to act against 

several disease-causing streptococcal and staphylococcal strains (Yoong et al., 2004).  
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Despite the numerous studies showing the great potential of endolysins as antibacterial 

agents, there are also potential problems associated to the exploration of these lytic 

enzymes. A frequently reported issue is the rather low solubility of endolysins during 

large scale production and/or concentration (Daniel et al., 2010; García et al., 2010; 

Fernandes et al., 2012). In some cases, purified endolysins display poor lytic activity or 

spectrum (Mao et al., 2013) and in others the good activity observed in vitro is not 

paralleled when endolysins are assayed in animal infection models, where the lytic 

enzymes have to be administrated soon after the inoculation of the bacterial agent to 

guarantee high levels of animal survival (Loeffler et al., 2003; Gu et al., 2011; Oechslin 

et al., 2013). The next section presents some strategies that have been followed to solve 

the problems underlying the use of native endolysins or simply to improve their features.  

  

Engineering of phage-lytic proteins  

 

The modular structure of the majority of the endolysins allowed researchers to start 

exploiting the enzymes “promiscuous” structural arrangements by truncating and/or 

swapping functional domains, in order to create more active and stable enzymes, and in 

some cases with extended lytic spectrum. Table 2 presents a few examples of the type of 

engineering commonly done (for a detailed review see Nelson et al., 2012; Schmelcher et 

al., 2012a). The phage K endolysin LysK is the most intensively engineered phage lytic 

protein. As it was mentioned before, LysK harbors two catalytic domains, a CHAP 

(CHAPK) and an amidase (AmidK), linked to a SH3b CWB domain (CWBK) (O’Flaherty 

et al., 2005). Deletion analysis of LysK showed that the CHAPK domain is not only 

essential for activity, but when isolated it is more active than the wild-type protein 

(Becker et al., 2009; Horgan et al., 2009). In vivo assays showed that a single dose of 

CHAPK domain was sufficient to decolonize S. aureus from mice nares (Fenton et al., 

2010). When the peptidase domain of SA2, a streptococcal endolysin, was fused to 

either the CWB domain of LysK or lysostaphin (CWBLysos), the two resulting lytic 

chimeras showed to be active not only in vitro but also in an in vivo mouse model of 

mastitis (Schmelcher et al., 2012b). The chimeric endolysins Lys170-87 and Lys168-87 

are another successful example of swapping functional domains of endolysins from 

different bacterial species. These proteins harbor a CD from two distinct enterococcal 
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endolysins fused to a CWB domain from the S. aureus endolysin Lys87. They showed to 

be active against more than 90% of the S. aureus clinical isolates from a large collection, 

which included a panel of the dominant MRSA and MSSA clones from different parts of 

the world (Fernandes et al., 2012). 

Table 2. Molecular engineering and its effects on phage PG hydrolases properties. 

Type of 
modification Effect Examples References 

Truncation of 
functional 
domains 

Increased lytic 
activity CHAPK 

Becker et al., 2009; Horgan et 
al., 2009; Fenton et al., 2010 

Exchange of 
CWBD 

Swapped cell wall 
specificity 

Lys170-87 
Lys168-87 

Fernandes et al., 2012 

SA2-CWBDLysos 
SA2-CWBDK 

Schmelcher et al., 2012b 

Fusion of two 
full-length 
enzymes 

Increased activity 
and broader lytic 

spectrum 

B30-443-Lysos Donovan et al., 2006 

HydH5-Lysos Rodríguez-Rubio et al., 2012 

Fusion of a CD 
to a full-length 

enzyme 
B30-182-Lysos Donovan et al., 2006 

Fusion of a 
full-length 

enzyme to a 
CWBD 

Broader binding 
spectrum 

LytA-CWBDLYC Croux et al., 1993a, b 

HydH5- CWBDLysos Rodríguez-Rubio et al., 2012 

Fusion of two 
CWBD Increased CWB 

affinity 

GFP-CWBDPly118-
CWBDPly500 

Schmelcher et al., 2011 

Duplication of 
CWBD 

GFP-2CWBDPly500 Schmelcher et al., 2011 

Fusion of CD 
from a VAL to 
CWBD of an 

autolysin 

Increased lytic 
activity 

P128 
Paul et al., 2011; George et 
al., 2012; Vipra et al., 2012 

CHAPHydH5- 
CWBDLysos 

Rodríguez-Rubio et al., 2012 

Gained CWB 
specificity 

CDTuc2009-CWBDLytA Sheehan et al., 1996 

Random 
mutagenesis 

Increased lytic 
activity PlyGBS90-1 Cheng and Fischetti, 2007 

Site-directed 
mutagenesis 

Increased lytic 
activity and tune 
specie specificity 

L98WCD27L 
L98WCD27L1-179 

Mayer et al., 2011 

Enzyme 
dimerization Increased 

molecular weight 
Cpl-1 Resch et al., 2011a 

PEGylation Cpl-1 Resch et al., 2011b 

CWBD, cell wall binding domain; CD, catalytic domain; Lysos, Lysostaphin; K, LysK; LYC, clostridial 
autolysin; GFP, green fluorescent protein; VAL, virion associated lysin. 
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The interest in discovering and engineering new phage-derived lytic enzymes with 

improved characteristics has also turned the attention to the exploration of the 

antimicrobial potential of VALs or their CDs. The VAL CwlP of B. subtilis SP-β 

prophage harbors two CDs: one with muramidase activity and the other with peptidase 

M23 activity. Both CDs were studied independently and showed to be active against the 

host cell wall (Sudiarta et al., 2010).  

The chimeric protein P128, designed to target S. aureus, results from the fusion of a 

CHAP CD from the phage K VAL orf56 (CHAPVALK) with the CWB domain of the 

bacteriolysin lysostaphin (CWBDLysos) (Table 2). P128 enzyme displayed higher activity 

than the truncated CHAPVALK in vitro, and revealed efficacy in decolonizing S. aureus 

from rat nares (Paul et al., 2011; George et al., 2012; Vipra et al., 2012). 

The last examples of lytic protein engineering were focused on producing enzymes with 

higher activity and/or different targets when compared to the parental proteins. Another 

issue transversal to endolysins is their reduced molecular weight, which might cause their 

rapid elimination from the body by the excretion system (short half-life). The 

pneumococcal endolysin Cpl-1 is another protein that has been extensively studied and 

manipulated. In order to increase its half-life, the enzyme was dimerized (Resch et al., 

2011a) and PEGylated (Resch et al., 2011b). Comparing with the monomer, the dimeric 

form resulted in higher lytic activity and increased half-life in mice. However, 

PEGylation abolished lytic activity.  

Because of the reasons referred to above, the study of phage PG hydrolases as potential 

antibacterials has been almost exclusively focused in Gram-positive systems. More 

recently however, several groups have been devising strategies to overcome the main 

physical barrier hindering endolysin access to the cell wall in Gram-negative bacteria, the 

OM. In fact, recent studies in the field of OM permeabilizers have raised hopes of 

expanding the use of phage PG hydrolases against important Gram-negative pathogens 

such as Pseudomonas, E. coli and Salmonella (reviewed in Nelson et al., 2012). The OM 

permeabilizers can be divided into two groups according to their mechanism of action 

(Briers et al., 2011): chelators, such as EDTA and other organic acids, which remove 

divalent cations leading to OM disruption; and polycationic agents like polymyxin and its 

derivatives, which competitively displace the cations, resulting in OM disorganization. 

The pseudomonad endolysins KZ144 and EL188 were shown to display lytic activity 

against a broad range of EDTA-treated Gram-negative species (Briers et al., 2007). 
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Despite the promising results with these endolysins, the use of chelators limits the 

therapeutic application to topical use due to its blood coagulation properties. 

The other approach focused in fusing PG hydrolases to cationic, polycationic or other 

membrane-disrupting peptides (including natural and synthetic peptides) to increase the 

efficacy of these enzymes when added exogenously to Gram-negative bacteria. The 

Artilysins are the product of the fusion of Gram-negative endolysins to a cationic peptide. 

They showed lytic activity against important Gram-negative pathogens, such as 

Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica (Briers et al., 

2014). 

Another interesting strategy to exploit the use of endolysins to treat Gram-negative 

bacterial infections was described by Lukacik and collaborators (2012). They created a 

“hybrid lysin” fusing the colicin-like protein pesticin, responsible for the recognition of 

the membrane transporter FyuA, to the lysozyme domains of phage T4 endolysin. This 

chimera was able to transverse the OM and gain access to the cell wall. Importantly, this 

protein was harmLess to the commensal flora, due to its specific biding to the FyuA, 

which is a major virulence factor of several pathogenic bacterial species (Heesemann et 

al., 1993). 

 

Other applications of phage lytic proteins 

 

The use of PG hydrolases, more specifically endolysins, may not be limited to treat 

human bacterial infections. They seem also to have application in other areas such as in 

the detection and decontamination of environmental and food-borne pathogens, in 

veterinary settings, and in biofilm elimination (Nelson et al., 2012). For example, 

endolysins targeting MRSA may have utility in nursing homes, surgical suites, or athletic 

locker rooms. Endolysins against Bacillus anthracis, such as PlyG and its derivatives 

were effective in the detection of this agent (Such et al., 2002; Fujinami et al., 2007). 

Enzymes against group A streptococci could be used to reduce bacterial loads in child 

care settings (Nelson et al., 2012). The endolysin PlyC was specifically tested as 

environmental disinfectant (Hoopes et al., 2009). As mentioned before, PlyC displays 

lytic activity towards several streptococcal species, including Streptococcus equi, which 

causes equine strangles disease. This is a highly contagious disease of horses that is 
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transmitted through shedding of live bacteria from nasal secretions and abscess drainage 

onto common surfaces in barns. Chemical disinfectant’s are toxic and damages the 

equipment. PlyC was found to eradicate or significantly reduce S. equi from equipment 

without spoiling it. 

Several studies have demonstrated the potential use of phage PG hydrolases for the 

detection and control of food-borne pathogens. The major advantage of these enzymes 

over other decontaminating products is their higher specificity for the target pathogens. 

Application of the phiEA1h lysozyme on the surface of pears inhibited the negative 

impact of Erwinia inoculation (Kim et al., 2004), whereas the staphylococcal endolysin 

LysH5 eliminated S. aureus from pasteurized milk (Obeso et al., 2008) in synergy with 

the lactococcal bacteriocin nisin (Garcia et al., 2010). The chimeric protein resultant from 

the fusion of streptococcal endolysin B30 and lysostaphin was also shown to kill both 

streptococci and staphylococci in milk products (Donovan et al., 2006). 

A very relevant role that endolysins play in food safety is based on the high specificity of 

their CWB domains. These recognition domains have also been used to develop rapid and 

sensitive identification, detection, and differentiation methods (Fujinami et al., 2007; 

Schmelcher et al., 2010). Magnetic beads coated with recombinant CWB domains 

enabled immobilization and recovery of more than 90% of L. monocytogenes cells from 

food samples (Kretzer et al., 2007; Walcher et al., 2010).  

Endolysins have also been explored to eliminate bacterial biofilms, which is the 

predominant bacterial lifestyle associated to infections in humans (Lebeaux et al., 2014), 

and also a problem in food production and processing and various other industries (Van 

Houdt and Michiels, 2010). The high level of antimicrobial resistance makes biofilms 

difficult to eradicate. Yet, recent successes in studies with endolysins hold promise for 

future applications. These include: the removal of static S. aureus biofilms by 

staphylococcal endolysin 11 (Sass and Bierbaum, 2007) and SAP-2 (Son et al., 2010), 

the destruction of S. penumoniae, S. pseudopneumoniae and S. oralis biofilms by various 

pneumococcal endolysins, with Cpl-1 acting synergistically with the autolysin LytA 

(Domenech et al., 2011), and the elimination of Staphylococcus suis biofilms by lysin 

LySMP alone or in combination with antibiotics (Meng et al., 2011). 
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The use of PG hydrolases in the treatment of human diseases or as chemical disinfectants, 

avoid several problems associated with antibiotics. By their enzymatic nature, these 

proteins do not rely on potentially toxic reactive groups utilized by chemical 

disinfectants. As proteins, they are inherently biodegradable and noncorrosive.  

 

PHAGE-ENCODED LYTIC PROTEINS WITH ACTIVITY AGAINST 

ENTEROCOCCUS SP 

 

Enterococci are robust Gram-positive bacteria that are ubiquitous in several ecological 

niches. They are found in soil, sand, water, food products and plants and they 

commensally colonize the lower intestinal tract, oral cavity, and vaginal tract of humans 

and animals (Klein, 2003). Despite this primary status as colonizing bacteria, some 

species have emerged in the last decades as important causes of nosocomial infections, 

notably E. faecalis and E. faecium (Gilmore et al., 2013). In healthy individuals, E. 

faecalis and E. faecium colonization normally has no adverse effect on the host; however, 

the acquisition of virulence factors and high-level antibiotic resistance by enterococci are 

causing these organisms to emerge as a leading source of nosocomial infections, 

particularly in immunocompromised patients (Jett et al., 1994; Jonhson et al., 1994; 

Cetinkaya et al., 2000; Werner et al., 2013). Common diseases caused by enterococcal 

infections include endocarditis, abdominal abscesses, bacteremia and urinary tract 

infections (Schaberg et al., 1991; Emori et al., 1993; Poh et al., 2006; Fisher et al., 2009; 

Sava et al., 2010).  

Due to E. faecalis intrinsic antibiotic resistance, the use of phage lysins as anti-

enterococcal agents has been proposed. At this moment, four endolysins have been 

described with activity against E. faecalis: PlyV12 (Yoong et al., 2004); Orf9 (Uchiyama 

et al., 2008), EFAL-1 (Son et al., 2010) and the endolysin of phage IME-EF1 (Zhang et 

al., 2013), which shares highly amino acid similarity to the uncharacterized endolysins of 

enterococcal phages SAP-6 (Lee and Park, 2012) and BC-611 (Horiuchi et al., 2012). 

When tested in vitro Orf9 and the phage IME-EF1 endolysin showed preferential lytic 

activity towards E. faecalis, but they could also lyse some E. faecium strains. PlyV12 and 

EFAL-1 had wider lytic spectrums, being able to act on different streptococcal and/or 

staphylococcal species besides E. faecalis and E. faecium. Despite carrying CDs of 
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different families, PlyV12 (Amidase-5), Orf9/EFAL-1 (Amidase-2) and the phage IME-

EF1 endolysin (CHAP) were proposed or demonstrated to specify N-acetyl-muramoyl-L-

alanine amidase activity (Yoong et al., 2004; Uchiyama et al., 2011; Son et al., 2010; 

Zhang et al., 2013).  

Curiously, phage lysins from non-enterococcal bacteria have been shown to be effective 

in eliminating Enterococcus species. The endolysin Mur-LH from the temperate phage ϕ-

0303 of Lactobacillus helveticus can lyse a diverse array of Gram-positive bacteria, 

including E. faecium, but surprisingly not E. faecalis (Deutsch et al., 2004). In addition, 

chimeric lysins based on enterococcal endolysins, such as Plys187N-V12C, Lys168-87 

and Lys170-87, designed to attack S. aureus, retain lytic activity against Enterococcus 

species independently of the origin of CD and/or CWBD (Fernandes et al., 2012; Dong et 

al., 2014). Until date, the endolysin of phage IME-EF1 was the only enterococcal lytic 

enzyme tested in vivo in a sepsis murine model, and showed to protect animals from 

sepsis shock (Zhang et al., 2013).  

The spread of multidrug-resistant E. faecalis strains over the community it’s a huge 

concern, specially the interspecies dissemination in households promoted by the 

proximity of pets to their owners (Leite-Martins et al., 2014). There is an urgent need to 

seek for alternatives to conventional antimicrobial therapy to control opportunistic 

infections caused by this pathogen, both in humans and animals. In the following 3 

chapters it is described the antimicrobial potential of the endolysins Lys168 and Lys170 

encoded by the enterococcal phages F168/08 and F170/08, respectively. In addition, we 

studied and characterized the enzyme Lys170 which revealed to be a multimeric protein 

with a novel configuration of endolysin functional domains. We also took advantages of 

Lys170 architecture special features to design a potent chimeric lysin, EC300, based on a 

novel lytic protein design technology. EC300 revealed to be a promising antibacterial 

agent with high lethality against actively growing E. faecalis cells (including 

vancomycin-resistant strains).  
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AUTHOR’S NOTE 

 

 

 

In the following chapter it is highlighted the striking sequence similarity between the 

enterococcal phage F168/08 and a previously described phage named SAP6, which 

was in a first registry assigned in sequences databases as being from Staphylococcus 

aureus. The close relatedness between these two phages translated in almost identical 

endolysins both at the gene and protein levels. However, soon after the approval for 

publication of the work presented in this chapter, the SAP6 genome and endolysin entries 

in sequences databases, GenBank JF731128 and AEM24735, respectively, were corrected 

and it turned out that SAP6 appears also to be an Enterococcus faecalis phage. This 

should be taken into account when reading the following chapter. 
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ABSTRACT 
 

Increasing antibiotic resistance of bacterial pathogens has drawn the attention to the 

potential use of bacteriophage endolysins as alternative antibacterial agents. Here we have 

identified, characterized and studied the lytic potential of two endolysins, Lys168 and 

Lys170, from phages infecting E. faecalis. Lys168 and Lys170 belong to the CHAP and 

Amidase_2 protein families, respectively. Lys168 is quite an unique enterococcal phage 

endolysin. It shares 95% amino acidic identity with the endolysin of S. aureus phage 

SAP6, which in turn is distantly related to all known CHAP endolysins of S. aureus 

phages. Lys170 seems to be a natural chimera assembling catalytic and cell wall binding 

domains of different origin. Both endolysins showed a clear preference to act against E. 

faecalis and they were able to lyse a high proportion of clinical isolates of this species. 

Specifically, Lys168 and Lys170 lysed more than 70 and 90% of the tested isolates, 

respectively, which included a panel of diverse and typed strains representative of highly 

prevalent clonal complexes. Lys170 was active against all tested E. faecalis VRE strains. 

The quasi specificity towards E. faecalis is discussed considering the nature of the 

enzymes’ functional domains and the structure of the cell wall peptidoglycan. 
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INTRODUCTION 
 

Gram-positive pathogens are responsible for a large number of community-acquired and 

health-care-associated bacterial infections. Staphylococci, enterococci, streptococci and 

Clostridium difficile are the most prevalent Gram-positive pathogens of clinical interest 

(Rossolini et al., 2010).  

Enterococci belong to the normal bacterial flora of the intestinal tract of humans and 

several animals and can be found in environmental soil, water, plants, and food. Although 

they are considered commensal bacteria, at least Enterococcus faecalis and Enterococcus 

faecium species are regarded as relevant opportunistic pathogens, being associated with 

nosocomial, and to a lesser extent, community-acquired infections. Typical enterococcal 

infections occur in hospitalized patients with underlying conditions. Both species have 

been described as the second most common cause of wound and urinary tract infections, 

and the third most common cause of bacteremia (Schaberg et al., 1991), and can also be 

involved in neonatal sepsis (Poh et al., 2006), peritonitis, device-related infections, and 

endocarditis (Schaberg et al., 1991; Emori and Gaynes, 1993; Fisher and Philips, 2009). 

The massive use of antibiotics in human health care systems and animal production has 

increased the incidence of antibiotic-resistant enterococci (Rossolini et al., 2010), some of 

which are already intrinsically resistant to a broad range of antibiotics including 

cephalosporins, sulphonamides and low concentrations of aminoglycosides (French, 

2010). In the last decades there has been a dramatic increase of E. faecalis and E. faecium 

infections due to resistant strains to vancomycin (VRE), for long considered the last 

resource when all other classes of antibiotics failed; therefore the search for alternative 

antibacterials to combat these pathogens has become an immediate need. 

Enzybiotics are an example of new potential antibacterials and among these, 

bacteriophage endolysins have been one of the most intensively explored (O’Flaherty et 

al., 2009; Fenton et al., 2010; Fischetti, 2010). Endolysins are enzymes encoded by 

double-stranded DNA bacteriophages that cleave the bacterial cell wall peptidoglycan. 

This activity is essential to promote bacterial host cell lysis at the end of phage life cycle 

thus allowing efficient escape of the viral progeny from infected cells (São-José et al., 

2007). The vast majority of known endolysins from phages infecting Gram-positive 

bacteria feature well conserved domain architecture, in which the N-terminal region 

carries one or two enzymatically active catalytic domains (CD) and the C-terminus motifs 
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responsible for cell wall binding domain (CWBD) (Fischetti, 2008). These enzymes are 

designed to attack one or two of the five major bonds in the peptidoglycan network 

(Loessner, 2005). The rationale behind utilization of endolysins as antibacterial agents is 

that, in principle, they should retain their lytic potential when added exogenously as 

recombinant enzymes. 

Three different E. faecalis phage endolysins, belonging to two Amidase families, have 

been reported before and their killing efficacy towards Enterococcus studied in vitro. 

These are: PlyV12, encoded by phage 1 (Yoong et al., 2004), EFAL-1 produced by 

phage EFAP-1 (Son et al., 2010), and ORF9 from phage ϕEF24C (Uchiyama et al., 

2008). In addition to the capacity to lyse their natural target, E. faecalis, the enzymes 

were also reported to act on the related species E. faecium. Moreover, EFAL-1 could also 

lyse some streptococcal isolates, whereas PlyV12 showed the broadest lytic spectrum by 

also acting against several streptococcal and staphylococcal strains (Yoong et al., 2004). 

In this study we have identified, produced and purified two phage endolysins, Lys168 and 

Lys170, encoded in the genome of two E. faecalis phages, F168/08 and F170/08, 

respectively. Lys168 represents a novel endolysin among enterococcal phages as it carries 

a CD from the CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) family. 

We have studied the lytic action of both endolysins against different Gram-positive 

pathogenic bacteria, which included a panel with representatives of the most prevalent 

VRE clonal complexes in nosocomial infection. The results obtained with Lys170 call for 

a reappraisal of those obtained with ORF9, since these two endolysins are virtually 

identical.  

 

MATERIALS AND METHODS 
 

 Bacteria, phages, culture media and growth conditions  

The E. coli cloning strain XL1-Blue MRF' and its derivatives were grown at 37 ºC with 

aeration in Luria-Bertani (LB) medium (Sambrock and Russell, 2001). The E. coli 

expression strain CG61(São-José et al., 2000) and its derivatives were grown in LB in the 

same conditions, except that incubation temperature was 28 ºC before induction of protein 
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production, and 37 ºC afterwards. When appropriate, LB medium was supplemented with 

kanamycin (30 g/mL) and/or ampicillin (100 g/mL) for plasmid selection. 

Lytic action of enterococcal phage endolysins was assayed in 193 bacteria clinical 

isolates (Tables 1, S1, S3 and S5). Table 1 lists a panel of 28 E. faecalis and 21 E. 

faecium typed strains recovered from patients of a Portuguese hospital between 2004 and 

2006 (Mato et al., 2009) (see Table S3 for a detailed description of these strains). Table 1 

also includes the two model E. faecalis VRE strains V583 and MMH594. Table S1 

corresponds to 99 clinical isolates from Technophage’s collection, 73 E. faecalis and 26 

E. faecium, which were obtained from different Portuguese community and hospital 

settings between 2005 and 2007. Lytic action of recombinant enzymes was also tested in 

clinical isolates of other bacterial species from Technophage’s collection, namely against 

Streptococcus pneumoniae (n = 10), Streptococcus pyogenes (n = 8), Streptococcus 

agalactiae (n = 8), Staphylococcus aureus (n = 9), Staphylococcus haemolyticus (n = 4) 

and Staphylococcus epidermidis (n = 4) (Table S5). 

 

Table 1. Typed enterococcal clinical strains used in this study. 

 

Strain ID PFGE 
pattern Vancomycin Reference Strain ID PFGE 

pattern Vancomycin Reference 

E. faecalis 
   (n=30)  

E. faecium 
   (n=21) 

 

EHCP 3 AO6 resistant 27 EHCP 5 c10 resistant 27 
EHCP 13 S susceptible 27 EHCP 6 a1 resistant 27 
EHCP 24 AO5 susceptible 27 EHCP 14 d2 susceptible 27 
EHCP 31 A2 susceptible 27 EHCP 36 a2 resistant 27 
EHCP 55 AW susceptible 27 EHCP 40 d9 susceptible 27 
EHCP 73 J susceptible 27 EHCP 65 o susceptible 27 
EHCP 78 A3 susceptible 27 EHCP 88 c2 susceptible 27 
EHCP 92 AR susceptible 27 EHCP 149 d6 susceptible 27 
EHCP 93 AX susceptible 27 EHCP 161 t susceptible 27 
EHCP 94 AM susceptible 27 EHCP 178 p susceptible 27 
EHCP 107 K susceptible 27 EHCP 181 d8 susceptible 27 
EHCP 118 AT susceptible 27 EHCP 184 f susceptible 27 
EHCP 143 AU susceptible 27 EHCP 211 c12 susceptible 27 
EHCP 151 H susceptible 27 EHCP 264 e susceptible 27 
EHCP 164 B susceptible 27 EHCP 302 c5 susceptible 27 
EHCP 193 BC susceptible 27 EHCP 341 u susceptible 27 
EHCP 225 R susceptible 27 EHCP 358 i susceptible 27 
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Table 1, cont.      

Strain ID PFGE 
pattern Vancomycin Reference Strain ID PFGE 

pattern Vancomycin Reference 

EHCP 237 AO2 susceptible 27 EHCP 361 c16 resistant 27 
EHCP 241 O susceptible 27 EHCP 378 w susceptible 27 
EHCP 267 AO2 resistant 27 EHCP 407 d7 resistant 27 
EHCP 271 A11 susceptible 27 EHCP 459 s susceptible 27 
EHCP 279 T susceptible 27     
EHCP 281 U susceptible 27     
EHCP 292 A4 susceptible 27     
EHCP 332 I susceptible 27     
EHCP 339 AO1 susceptible 27     
EHCP 389 AO1 resistant 27     
EHCP 391 M susceptible 27     
MMH594 NA resistant 16,45     

V583 NA resistant 31,38     

Abbreviations: NA, Not Applied; PFGE, Pulse Field Gel Electrophoresis 

 

The growth media for these bacteria were purchased from Biokar Diagnostics, Beauvais, 

France. Enterococcal and staphylococcal strains were cultured either in Brain Heart 

Infusion (BHI) or Tryptic Soy Broth (TSB) whereas streptococci were propagated in 

Todd Hewitt Yeast broth (THY). Liquid cultures of Enterococcus and Streptococcus 

species were grown at 30 ºC and/or 37 ºC, without aeration, while those of 

Staphylococcus were incubated at 37 ºC with aeration. 

When necessary, culture media were supplemented with 1.5% or 0.7% agar to obtain 

solid or soft-agar plates, respectively. E. faecalis phages were isolated, purified and 

propagated by standard methods (Kutter and Sulakvelidze, 2004; Clokie and Kropinski, 

2009) either in soft-agar media or liquid broth supplemented with CaCl2 and MgCl2 (5 

mM each). Phage F168/08 and F170/08 propagation hosts were E. faecalis clinical 

isolates 1518/05 and 926/05, respectively (Table S1).  

 

Identification and bioinformatics analysis of phage endolysins 

Genomes from E. faecalis phages F168/08 and F170/08 were extracted from CsCl-

purified lysates (Vinga et al., 2012) and their complete nucleotide sequence determined 

(service purchased to Macrogen, Seoul, Korea). DNA homology searches were carried 

out with BLASTN (Zhang et al., 2000), using the NCBI’s non-redundant nucleotide 

sequences database. Recognition of phage putative genes was performed by integrating 
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the results obtained with GeneMark.hmm and MetaGeneAnnotator web software 

(Besemer and Borodovsky, 2005; Noguchi et al., 2008). Identification of F168/08 and 

F170/08 endolysin genes was based on BLASTP homology searches (Altschul et al., 

1997) with deduced gene products against the NCBI’s nonredundant protein sequence 

database, and on prediction of protein functional domains using NCBI’s CDD (Marchler-

Bauer et al., 2011) and Pfam (http://pfam.sanger.ac.uk/). Assignment of putative linkers 

connecting protein functional domains was performed with SVM (Ebina et al., 2009), 

using the SVM-joint output. Multiple protein sequence alignments were performed with 

ClustalW2 (Larkin et al., 2007). 

 

Cloning of Lys168 and Lys170 endolysin genes 

The coding sequence of endolysins Lys168 and Lys170 was amplified Polymerase Chain 

Reaction (PCR) from phage DNA using a high fidelity Pfu DNA Polymerase (Fermentas 

Molecular Biology Tools, Thermo Scientific). The forward and reverse primers used to 

amplify lys168 carried at their 5’ end the restriction sites NcoI and XmaI, respectively, 

whereas the corresponding primers for lys170 amplification carried BspI and XmaI sites. 

Both products were purified using the High Pure PCR Product Purification Kit (Roche 

Applied Science), double-digested with the appropriate restriction enzymes and ligated to 

the pIVEX2.3d expression vector (Roche Applied Science), which had been previously 

restricted with NcoI and XmaI. This vector is designed to drive the expression of cloned 

genes under the control of the phage T7 ϕ10 promoter and to allow production of the 

corresponding proteins C-terminally fused to a hexahistidine tag. Ligations were used to 

transform the E. coli strain XL1-Blue MRF' as previously described (Chung et al., 1989). 

Transformants were selected in presence of 100 g/mL ampicillin and screened for the 

presence of the desired recombinant plasmids by PCR using insert and vector 

complementary primers. Plasmid DNA from positive clones was extracted (Pure Link 

Quick Plasmid Miniprep Kit, Invitrogen) and the correct DNA structure confirmed by 

endonuclease restriction and DNA sequencing (Macrogen, Seoul, Korea). The constructs 

pDP1 and pDP2 are pIVEX2.3d derivatives carrying lys168 and lys170, respectively. 

 

 

 

http://pfam.sanger.ac.uk/).
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Production and purification of the endolysins Lys168 and Lys170 

E. coli strain CG61, which overproduces phage T7 RNA polymerase upon temperate 

upshift (São-José et al., 2000) was transformed with plasmids pDP1 and pDP2 and 

transformants selected at 28 ºC in presence of 100 g/mL ampicillin and 30 g/mL 

kanamycin. The ability of CG61 derivatives to produce soluble and active Lys168 and 

Lys170 was firstly checked by their culturing over a dense lawn of autoclavated 

enterococcal cells, incorporated in soft-agar LB medium, and confirming the presence of 

lysis halos around E. coli colonies (Fig. S2).  

Selected clones of each endolysin were grown at 28 ºC until an optical density at 600 nm 

(OD600) of 0.3-0.5, after which protein production was induced by moving cultures to a 

shaking water bath set to 42 ºC. After 45 min induction, cultures were transferred to an 

incubator at 37 ºC and agitated for an additional period of 3 h. Cells from induced 

cultures were pelleted by centrifugation (8,000xg, 30 min, 4 ºC) and resuspended in 1/50 

volume of lysis buffer (20 mM Hepes-Na, 500 mM NaCl, 20 mM imidazole, 1% glycerol, 

1 mM DTT, pH 8.0) supplemented with 1x Complete Mini EDTA-free Protease Inhibitor 

Cocktail (Roche Applied Science). Cells were kept on ice and disrupted by sonication 

(Vibra Cell MS2T, Sonic Materials) by performing about 10 bursts of 1 min (amplitude 5, 

pulse 3, 30–40 W) intercalated with pauses of 1 min. Insoluble material was sedimented 

by centrifugation (10,000xg, 30 min, 4 ºC). The supernatant corresponding to the total 

soluble protein extract was filtered through a 0.22 m and endolysins purified by affinity 

chromatography using HisTrapTM HP columns (GE Healthcare) coupled to an AKTA-

Prime system (GE Healthcare). The column and elution buffers had the same composition 

of the lysis buffer, except that the imidazole concentration in the elution buffer was 500 

mM. Eluted fractions were analyzed by SDS-PAGE and Coomassie blue staining 

(LaemmLi, 1970). Endolysins from pure fractions were pooled, concentrated and changed 

to an imidazole-free, phosphate-based endolysin buffer (50 mM phosphate-Na, 500 mM 

NaCl, 25% glycerol, 1 mM DTT, pH 8.0) using HiTrapTM Desalting columns (GE 

Healthcare). Protein concentrations were determined by the Bradford method (Bio-Rad 

Laboratories) using bovine serum albumin as standard. The enzymes were divided in 

small aliquots and kept at -80 ºC. 
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Evaluation of endolysin lytic action against bacterial pathogens 

The capability of endolysins Lys168 and Lys170 to induce lysis of clinical strains from 

different bacterial species was evaluated by two different assays. The endolysins were 

tested against a large number of bacterial isolates by spotting different enzyme quantities 

in dense lawns of viable target cells, which were prepared as follows. Enterococcal and 

streptococcal strains were cultured overnight at 30 ºC, without aeration. Typically, these 

cultures reached an OD600 of about 0.8-1.0. Staphylococcal cultures at this OD600 were 

prepared after 1:200 dilution of overnight cultures and growth at 37 ºC with aeration. 

Cells from these cultures were recovered by centrifugation and resuspended in 1/100 

volumes of the correspondent growth medium. A 300 µL sample of these cell suspensions 

was incorporated in lysis assay buffer (25 mM phosphate-Na, 250 mM NaCl, 1% 

glycerol, 1 mM DTT, pH 8.0), supplemented with 0.7% agar and poured in a Petri dish. 

Four protein quantities of each endolysin (5, 1, 0.2 and 0.04 µg, in 10 mL final volume) 

were spotted on each strain lawn and, after overnight incubation at 37 ºC, checked for the 

presence of lysis halos. These were evaluated and scored (- to +++) according to their 

relative diameter and transparency (Fig. S3). 

Bacterial cell lysis was also studied in liquid medium. Selected strains were grown until 

an OD600 of 0.3-0.4, centrifuged and cells recovered in 1/2 volume of lysis assay buffer. 

Cell suspensions were challenged with the indicated endolysin concentrations and OD600 

variation followed over time. At the end of each assay the surviving colony forming units 

(CFU) /milliliter was determined. Negative controls were equally prepared except that 

endolysin buffer was added instead of endolysin.  

 

Identification of bacterial species 

When necessary discrimination between E. faecalis and E. faecium was performed by a 

PCR based approach, using species specific primers targeting the ddl gene. Primers for E. 

faecalis were fw: CACCTGAAGAAACAGGC and rv: ATGGCTACTTCAATTTCACG, 

with an amplicon size of 475 bp (Depardieu et al., 2004). For E. faecium the amplicon 

size was 1091 bp using primers fw: GAGTAAATCACTGAACGA and rv: 

CGCTGATGGTATCGATTCAT (Jackson et al., 2004). For identification purposes, 

Enterococcus type-strains obtained from the Deutsch SammLung von Mikroorganismen 
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and Zellkulturen collection (DSMZ; Braunschweig, Germany) were used as references, 

namely Enterococcus faecalis DSM 20478 and Enterococcus faecium DSM 20477.  

 

RESULTS 
 

Bioinformatics of enterococcal phage endolysins Lys168 and Lys170 

We have recently determined the nucleotide sequence of the genome of two E. faecalis 

phages from Technophage’s collection, F168/08 and F170/08. Sequence analysis by 

bioinformatics tools identified an open reading frame in each phage genome, whose 

deduced amino acid sequences had high sequence identity with known or putative phage 

endolysins, and which featured conserved domains involved in the hydrolysis of bacterial 

cell wall peptidoglycan. Therefore, these proteins were assigned as the endolysins of 

phages F168/08 and F170/08 and were designated as Lys168 and Lys170, respectively. 

Lys170 is basically identical to the previously described endolysin ORF9 of E. faecalis 

phage ϕEF24C (Uchiyama et al., 2008; Uchiyama et al., 2011), showing a single amino 

acid substitution over its 289 amino acid sequence. Both enzymes carry in their amino 

terminal region a CD of the Amidase_2 family (Figs 1A and S1), whose members include 

zinc amidases that have N-acetylmuramoyl-L-alanine amidase activity (Cheng et al., 

1994). This type of activity was confirmed experimentally for ORF9 (Uchiyama et al., 

2008). Lys170 (and ORF9) appears to be a natural chimera of intergeneric origin since its 

N-terminal CD is highly similar to that of lactobacilli amidases whereas its C-terminal 

region, probably containing the CWBD, reveals high sequence identity to that of 

enterococcal amidases (Fig. 1B). 
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Fig. 1. Domain architecture and sequence relatedness of Lys170. (A) Schematic representation of Lys170 

domain organization. The dashed rectangle delimits the C-terminal region that must contain the CWBD. 

The amino acidic coordinates of functional domains are indicated above and below the scheme. (B) 

ClustalW2 alignment of Lys170 N- and C-terminal primary structures with those of its closest homologues 

(Lactobacillus parafarraginis, Acc. N0. WP_008215034; E. faecalis HIP11704, Acc. N0. EEU69620). 

Asterisk, fully conserved residues; colon, conservation of residues with strongly similar properties; period, 

conservation of residues with weakly similar properties.  

 

In silico analysis of Lys168 identified in the first half of the protein a conserved domain 

of the CHAP family (Bateman and Rawlings, 2003; Rigden et al., 2003; Layec et al., 

2008) (Figs 2A and S1). This protein family includes enzymes that cleave different amide 

bonds in the peptidoglycan network. Unexpectedly, Lys168 shared 95% identity with a 

protein assigned as “amidase” from Staphylococcus aureus phage SAP6 (GenBank 

AEM24735.1). In addition, the F168/08 genome shared between 80 and 94% sequence 

identity over 68% of the SAP6 genome (BLASTN analysis), which translated into a high 

sequence similarity between the products encoded by the homologous portions of both 
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genomes. In addition to its close relationship to the SAP6 endolysin, the Lys168 CD 

shared significant identity with the CHAP domain of a single E. faecalis protein (strain 

TX0104) and with that of other S. aureus phage proteins (Fig. 2B). The later however are 

600aa, multifunctional proteins associated with the virion structure and which are 

thought to assist DNA entry into host cells at the initial steps of infection (Rashel et al., 

2008; Rodríguez et al., 2011). Lys168 C-terminal region had no equivalent homologues 

besides that of the already mentioned endolysin from phage SAP6. 

 

Fig. 2. Domain architecture and sequence relatedness of Lys168. (A) Schematic representation of Lys168 

domain organization. The dashed rectangle delimits the C-terminal region that must contain the CWBD. 

The amino acidic coordinates of functional domains are indicated above or below the scheme. (B) 

ClustalW2 alignment of Lys168 primary sequence with that of its closest homologues (phage SAP6 

endolysin, Acc. N0. AEM24735; E. faecalis TX0104, Acc. N0. EEI10842). Dark gray shading highlights 

the close identity between Lys168 and the endolysin from S. aureus phage SAP6 and between these and the 

CD of one CHAP-like protein from E. faecalis strain TX0104. Highly conserved residues of the CHAP 

domain are depicted in white with light gray shading (Bateman and Rawlings, 2003). Note that the C-

terminal halves of Lys168 and SAP6 endolysins are unrelated to the CHAP-like proteins from E. faecalis 

TX0104 and S. aureus phage 187 (Acc. N0. YP_239513). Asterisk, fully conserved residues; colon, 
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conservation of residues with strongly similar properties; period, conservation of residues with weakly 

similar properties. 

 

Endolysins from phages infecting Gram-positive bacteria display a typical domain 

architecture in which N-terminal CD and C-terminal CWBD are connected by a linker 

sequence (Fischetti, 2008). Although the CDs of Lys168 and Lys170 could be delimited 

in their N-terminal portion using bioinformatics tools (see above), these failed to 

recognize any known CWBD in their C-terminal region. We could however predict the 

location of the central linker domain in each endolysin, and based on this we inferred the 

probable position of CWBD (Figs 1A, 2A and S1). 

 

Heterologous production and purification of endolysins Lys168 and Lys170 

The genes encoding Lys168 and Lys170 were PCR-amplified and cloned in E. coli 

expression vector pIVEX2.3d, which allowed production of the endolysins C-terminally 

fused with a hexahistidine tail (see Materials and Methods). E. coli clones producing the 

enzymes in their active form were initially selected by growing transformants on a dense 

lawn of autoclavated E. faecalis target cells and checking for the presence of lysis halos 

around the E. coli colonies (Fig. S2). Medium scale protein production from selected 

clones allowed us to obtain substantial amounts of soluble Lys168 and Lys170 with the 

expected molecular weight, which were subsequently purified by affinity chromatography 

using nickel columns. Endolysins of pure fractions from the affinity chromatography 

were changed to an imidazole-free, sodium phosphate-based buffer by performing a 

desalting step (Fig. 3). 
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Fig. 3. Analysis of endolysins Lys168 (A) and Lys170 (B) purification by SDS-PAGE and Coomassie blue 

staining. Lanes: M, molecular weight marker; TSE, total soluble protein extract; FT, flowthrough of the 

HisTrap column; AF, fraction of the HisTrap affinity peak; DS, fraction of the HiTrap desalting peak. 

Lys168, 27.6 kDa; Lys170, 32.6 kDa. 

 

Lytic action of Lys168 and Lys170 against enterococcal clinical strains 

In a preliminary assay we assessed the lytic action of purified Lys168 and Lys170 against 

a panel of enterococcal clinical isolates from Technophage’s collection, which were 

provided by different Portuguese clinical settings and isolated from different infection 

contexts. This panel was composed of 73 E. faecalis and 26 E. faecium isolates (Table 

S1). Four different amounts of each endolysin (5, 1, 0.2 and 0.04 g) were spotted on a 

dense lawn of viable cells from each isolate, which was produced by incorporating cells 

from exponentially growing cultures in a soft-agar, phosphate-buffered medium (see 

Material and Methods). Lytic activity was qualitatively evaluated by scoring the relative 

diameter and turbidity of the lysis halos produced after overnight incubation at 37 ºC (Fig. 

S3). 

When applied in its highest quantity (5 g) Lys170 produced a discernible lysis halo in 97 

and 54% of E. faecalis and E. faecium isolates, respectively, whereas Lys168 lysed 81 

and 42% of these. When we scored the percentage of susceptible isolates for the lower 

amounts of each endolysin, it became clear that Lys170 had higher lytic action compared 

to Lys168 (Fig. S4). In addition, for each tested enzyme quantity, Lys170 almost always 
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produced clearer and larger lysis halos than Lys168 (Table S2). The results from this 

preliminary study indicated that Lys170 had better lytic performance than Lys168 and 

suggested that both endolysins preferentially lysed E. faecalis strains. 

The isolates from the panel referred to above were not typed and thus the diversity within 

each Enterococcus species was unknown. To gain more insight on the lytic potential of 

each endolysin against these enterococcal species, the enzymes were equally assayed in a 

panel of 51 multi-resistant typed strains, 30 E. faecalis and 21 E. faecium (Tables 1 and 

S3), 49 of which were the cause of infections in a Portuguese hospital, over a 3-year 

period. These strains displayed high-level resistance to gentamicin and included VREs of 

clonal complexes E. faecalis-CC2 and E. faecium-CC17, which are highly prevalent in 

nosocomial settings and disseminated worldwide (Mato et al., 2009). 

We observed that 5 g of Lys168 and Lys170 were still able to induce lysis of more than 

70 and 90% of the E. faecalis strains, respectively, but only up to 10% of E. faecium 

strains were susceptible to the endolysins. The percentage of lysed strains decreased just 

slightly when the quantity of applied Lys170 was lowered to 0.04 g. In contrast, this 

percentage was significantly diminished when Lys168 quantity dropped to 0.2 and 0.04 

g (Fig. 4). As described above, Lys170 produced clearer and larger lysis halos than 

Lys168 (Table S4). These results confirmed the highest lytic capacity of Lys170 and the 

clear preference of both endolysins towards E. faecalis when compared to E. faecium. 

 

 

 

 

 

 

 

Fig. 4. Lytic action of Lys168 and Lys170 against a panel of diverse, typed clinical strains of E. faecalis 

(n=30) and E. faecium (n=21). The percentage of strains that presented lysis halos is plotted as a function of 

each endolysin quantity.  
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Lytic action of Lys168 and Lys170 against E. faecalis in liquid medium 

The enterococcal endolysins also induced lysis of dense suspensions of viable E. faecalis 

cells prepared from exponentially growing cultures. The examples of figure 5 show the 

lytic action of both endolysins against two target strains, one that was only susceptible to 

Lys170 in the spot assay (see above), the E. faecalis VRE strain V583 (Fig. 5A), and 

another that was similarly lysed by both endolysins, the E. faecalis strain 1915/05 (Fig. 

5B). VRE strain V583 was challenged with 5 g/mL of each endolysin or with a mixture 

of both enzymes, each at a concentration of 2.5 g/mL (Fig. 5A). As expected, Lys170 

induced fast and extensive cell lysis, with the OD600 of the suspensions decreasing to 

about 10% of the initial value within 30 min. At the end of the assay (t = 90 min) the 

CFU/mL dropped to 1% of the initial value. Interestingly, although V583 seemed to be 

resistant to Lys168 in the spot assays, in liquid medium this endolysin could still produce 

a rather gradual cell lysis, leading to a 60% reduction of the initial OD600 and to 80% 

cell killing during the time course of the assay. No significant synergistic effect was 

observed when cell suspensions were treated with a mixture of both enzymes, as the lysis 

profile and loss of cell viability were very similar to those observed with Lys170 alone.  

 

 

 

 

  

 

 

 

Fig. 5. Lytic action of Lys168 and Lys170 in a turbidity assay using E. faecalis strains V583 (A) and 

1915/05 (B). The control (C-) was performed under the same conditions but with added lysin buffer instead 

of endolysin. The “Mix” curve in A results from the combined action of both endolysins. Values are the 

means of three independent experiments with indication of standard deviation. The values on the right side 
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of the curves indicate the percentage of the initial CFU/mL after 90 min of enzymes action and the 

corresponding standard deviation. 

  

The apparent similar efficacy of Lys168 and Lys170 in lysing strain 1915/05 in soft-agar 

medium basically correlated with lysis induced by each endolysin in liquid medium (Fig. 

5B). Both enzymes produced similar lysis curves with the OD600 decreasing to about 20% 

of the initial after 90 min, although in this case Lys168 seemed to induce slightly faster 

and more extensive lysis than Lys170. Both endolysins were capable of killing 98% of 

the initial CFU/mL by the end of the assay. 

Overall, we observed that the lysis profile of a particular E. faecalis strain when 

challenged in liquid medium with the enterococcal endolysins, essentially correlated with 

the lysis efficiencies observed in the spot assay. 

 

 

Activity of enterococcal endolysins against other Gram-positive pathogenic 

bacteria 

The lytic activity of Lys168 and Lys170 was also evaluated in a few clinical isolates of 

other common Gram-positive pathogenic cocci (Table S5) by performing the enzyme 

spot assay as described above. No obvious lysis halo could be discernible in any of the 

tested isolates even for the highest protein amount spotted (5 g). The results suggest 

that Lys168 and Lys170 are evolutionarily designed to specifically act against 

Enterococcus species, particularly E. faecalis if we consider the results described above. 

 

DISCUSSION 

 

In this work we have characterized two endolysins, Lys168 and Lys170 from phages 

infecting E. faecalis and have evaluated their bacterial cell lysis activity. As far as we 

know, only three additional E. faecalis phage endolysins have been described in the 

literature, PlyV12, EFAL-1 and ORF9 (Yoong et al., 2004; Uchiyama et al., 2008; Son et 

al., 2010). ORF9 is virtually identical to Lys170 and thus it will be omitted from this 
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discussion, except in the part where we compare the lytic spectrum we obtained with 

Lys170 with that reported for ORF9 (see below).  

Analysis of the primary sequence of these endolysins uncovered interesting features. The 

enzymes are clear examples of modular architecture by assembling different CDs and 

CWBDs of heterologous origin, thus generating endolysin diversity (Fig. 6). In fact, the 

four distinct endolysins referred to above have distantly related amino acid sequences, 

even when sharing CDs of the same family, as it is the case of Lys170 and EFAL-1 

(Amidase_2 family). Remarkably, although designed to act on the same bacterial cell wall 

each endolysin seems to carry a distinct CWBD, suggesting that several different ligands 

of that cell compartment might be targeted by the endolysins. These enzymes are 

completely unrelated to those identified in 8 sequenced E. faecalis temperate phages, 

which encode endolysins with CD and CWBD of the Glyco_hydro_25 and LysM 

families, respectively (Yasmin et al., 2010). Another striking feature is the lack of close 

similarity between the CD of Lys170, EFAl-1 and PlyV12 and that of E. faecalis 

peptidoglycan hydrolases of the same family. BLASTP analysis showed that the closest 

homologues of the endolysin CDs are those carried by enzymes from different bacterial 

species, some from different genera (Fig. 6). This is in clear contrast to other known 

phage/bacteria systems, where the CD of endolysins is closely related to that of bacterial 

host autolysins (López and García, 2004; Zou and Hou, 2010). Lys168 CD was found to 

be closely related to a single E. faecalis peptidoglycan hydrolase encoded by strains 

TX0104 and TX1341 (Fig. 6). 
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Fig. 6. Nature organization and sequence relatedness of E. faecalis phage endolysin functional domains. 

The sequence similarity between functional domains is evidenced by using identical filling patterns. L., 

Lactobacillus; P., Pediococcus.  

 

Uchiyama et al. (2008) reported for ORF9 (identical to Lys170) a lytic spectrum of 97% 

and 60% against 35 and 10 non-typed E. faecalis and E. faecium isolates, respectively, 

which is very close to the results we obtained when Lys170 was tested in 73 and 26 

clinical isolates of these species (Fig. S4). However, when assayed in a panel of distinct 

and typed E. faecalis and E. faecium strains, Lys170 lytic range against E. faecium 

dropped to about 10% while maintaining that against E. faecalis (Fig. 4). The results 

show the importance of testing the lytic spectrum of endolysins on a reasonable number 

of strains with different known genetic backgrounds. We have thus concluded that 

Lys170 has a strong preference to act against E. faecalis. Both ORF9 and Lys170 were 

unable to lyse bacterial species outside the Enterococcus genus (Uchiyama et al., 2008) 

(Table S5). 
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Lys170 is most likely an N-acetylmuramoyl-L-alanine amidase as this was the activity 

experimentally determined for ORF9 (Uchiyama et al., 2008). Amidases cleave the amide 

bond that links the N-acetyl muramic acid of glycan strands to the L-alanine residue of 

peptide stems. This bond and the nature of the linked residues are common to the vast 

majority of bacterial cell wall peptidoglycans, including that of E. faecium (Schleifer and 

Kandler, 1972). Why is then the E. faecalis cell wall the preferred substrate of Lys170? 

The ability of a given endolysin to cleave the bacterial cell wall depends on the 

integration of four major factors: i) binding of the CWBD to a specific ligand of the cell 

wall; ii) dependence of CD activity on CWBD binding; iii) CD affinity to its substrate; 

and iv) the presence of the peptidoglycan bond that is specifically cleaved by the CD 

(Low et al., 2011). BLASTP analysis of Lys170 CWBD showed that this domain shares 

only significant similarity with those from E. faecalis enzymes. This suggests that Lys170 

CWBD binds to an epitope that is predominantly found in the E. faecalis cell wall and 

that this binding is important for endolysin lytic action. This epitope eventually exists in a 

few strains of the related species E. faecium, explaining why some strains of this species 

are susceptible to Lys170.  

Lys168 also displayed preferred lytic action against E. faecalis cells, acting poorly and in 

a much reduced number of E. faecium typed strains (Fig. 4). As referred to above, Lys168 

CWBD is unrelated to that of Lys170, and thus the CHAP endolysin must recognize an 

epitope different from that targeted by Lys170. The peptidoglycan hydrolases of the 

CHAP family cleave different bonds of the murein structure, although a recent survey of 

the literature suggests that when present in bacterial autolysins the CHAP domain 

specifies amidase activity, whereas in phage endolysins it seems to confer endopeptidase 

activity (Layec et al., 2008). The later activity typically cleaves the amino acidic bridges 

that cross-link the peptidoglycan stem peptides (Navarre et al., 1999; Pritchard et al., 

2004), which can be different among bacterial species as it happens, for example, in E. 

faecalis, E. faecium, S. aureus and S. agalactiae (Schleifer and Kandler, 1972). Assuming 

this type of activity for Lys168 it could be easily explained the specificity of the 

endolysin towards E. faecalis cell wall. However, a recently constructed chimera 

composed of the Lys168 CHAP domain and the CWBD of a S. aureus endolysin proved 

to be very efficient in lysing several bacterial species, including a large number of S. 

aureus clinical strains (Fernandes et al., 2012) (see below). It is therefore more likely that 
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the Lys168 CHAP domain specifies amidase activity and that the enzyme specificity 

towards E. faecalis cell wall is conferred by its CWBD.  

The lytic spectrum of the other two putative amidases, EFAL-1 and PlyV12 (Fig. 6), has 

been also studied. In contrast to what we have observed with Lys168 and Lys170, PlyV12 

was reported to have a broad lytic spectrum, displaying different degrees of activity 

against E. faecium and several streptococcal and staphylococcal strains (Yoong et al., 

2004). The authors provided a possible explanation for the broad lytic spectrum of 

PlyV12, which relied on some sequence relatedness between the enzyme CD and that of 

endolysins from phages infecting the susceptible bacterial species (Yoong et al., 2004), 

although these endolysins are not the closest PlyV12 homologues, as mentioned above 

(Fig. 6). It was also suggested that PlyV12 CWBD might target a cell wall epitope that is 

common to the different bacteria (Yoong et al., 2004). 

The significant sequence relatedness observed between the PlyV12 CD and that of 

streptococcal and staphylococcal phage endolysins was not verified for Lys170. Lys168 

though, exhibited 95% sequence identity with the endolysin of S. aureus phage SAP6 and 

significant similarity with virion-associated lysins of staphylococcal phages (Figs 2 and 

6). Despite this fact, Lys168 failed completely to induce lysis of all tested staphylococcal 

isolates, including those of S. aureus (Table S5). This suggests that the few differences 

observed between Lys168 and SAP6 endolysins (Fig. 2) are on key residues that 

determine the specificity of these enzymes and that these most likely reside in the CWBD 

(see above). In fact, and as referred before, when we exchanged the Lys168 CWBD by 

that of a S. aureus phage endolysin the resulting chimera could efficiently lyse S. aureus 

(Fernandes et al., 2012). 

The endolysin EFAL-1 was also reported to display a broad lytic spectrum against E. 

faecalis and E. faecium (Son et al., 2010). Although this enzyme was tested in a reduced 

number of isolates (13 E. faecalis and 7 E. faecium) and no information was provided 

about their diversity, the fact is that the enzyme seems to be a natural chimera assembling 

a CD and a CWBD closely related to those from E. faecium and E. faecalis cell wall lytic 

enzymes, respectively (Son et al., 2010) (Fig. 6). This may explain the ability of EFAL-1 

in lysing these two bacterial species. No significant sequence similarity was observed 

between the CD of Lys170 and Lys168 and that of E. faecium lytic enzymes (Fig. 6).  
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In conclusion, the results here presented indicate that endolysins Lys168 and Lys170 are 

good candidates for the specific elimination of E. faecalis, including VRE strains, either 

for sanitation or therapeutic purposes. The efficacy of these endolysins in animal models 

of E. faecalis infections is currently under study. 
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Fig. S1.  Bioinformatics analysis of endolysins Lys168 and Lys170 primary sequence. According to CDD 
and Pfam analysis (Marchler-Bauer et al., 2011 and http://pfam.sanger.ac.uk/), Lys168 and Ly170 harbor 
N-terminal CDs of the CHAP (cysteine, histidine-dependent amidohydrolases/peptidases) and Amidase_2 
families, respectively, which are evidenced by the gray shading. Putative linker segments (boldface 
residues) were predicted with SVM tool (Ebina et al., 2009). Inferred CWBDs  are dash-underlined and 
plasmid-born, hexahistidine-containing sequences are in italics. 

 

 

 

 

 

 

 

Fig. S2. “TritonX-100-induced lysis halo assay” (Yokoi et al., 2005) used for confirming production of 
active endolysins by E. coli CG61 derivatives. Transformants were grown overnight at 30 ºC on an LB soft-
agar plate containing 2% (w/v) of autoclavated cells from the host strains of  phages F168 and F170 (E. 
faecalis 926/05 and 1518/05, respectively), 0.1% Triton-X100, 100 µg/mL ampicillin and 30 µg/mL 

http://pfam.sanger.ac.uk/),
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kanamycin. Subsequently the plates were incubated at 4 ºC for 24 h. Lysis halos around E. coli CG61 
colonies expressing Lys168 (A) or Lys170 (B) are shown. 

 

 

 

 

 

Fig. S3. Representative lysis halos resulting from endolysin lytic action in the spot lytic assay. The 
examples shown resulted from the application of 5 g of Lys170 on lawns of different E. faecalis clinical 
isolates. Lysis halos were scored (- through +++) according to their relative size and transparency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. Lys168 and Lys170 lytic action against 73 E. faecalis and 26 E. faecium non-typed clinical isolates 
(Tables S1 and S2). Each isolate was grown until an OD600 of 0.8-1.0 at 30 ºC without aeration. Cells were 
recovered by centrifugation and concentrated 100-fold in fresh culture medium. Samples of 300 µL of these 
cell suspensions were incorporated in lysis assay buffer  (25 mM phosphate-Na, 250 mM NaCl, 1% 
glycerol, 1 mM DTT, pH 8.0) supplemented with 0.7% agar and poured in a Petri dish. The indicated 
amounts of each endolysin were spotted on this cell lawn and plates incubated at 37 ºC for 16-18 h. The 
percentage of isolates that presented lysis halos is plotted as a function of each endolysin quantity.  
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Table S1. Non-typed E. faecalis and E. faecium clinical isolates used in this study. 

Isolate 
code 

Clinical 
specimens 

Isolate 
code 

Clinical 
specimens 

Isolate 
code 

Clinical 
specimens 

E. faecalis, n=73 E. faecium, n=26 

1/06 Pus 926/06 Urine 1000/05 Urine 
1902/05 Ascites fluid 958/05 Urine 1131/05 Pus 
344/06 Scab exudate 992/06 Urine 1132/05 Pus 
363/06 Pleural fluid 1113/06 Blood culture 1607/05 Scab exudate 
46/06 Pus peritoneal 127/06 Urine 1729/05 Urine 
497/06 Blood culture 1408/05 Urine 1793/05 Pus 
834/06 Blood culture 1409/05 Urine 1795/05 Urine 
838/05 Urine 1551/05 Urine 1866/05 Urine 
911/05 Urine 1554/05 Urine 1903/05 Pus 
953/06 Exudate 1558/05 Urine 969/05 Urine 
1130/06 Exudate 1853/05 Urine 1793(VRE) Pus 
1451/05 Urine 2/06 Urine 184/06 Respiratory product 
1665/05 NK 2093/05 Urine 185/06 Catheter 
1915/05 Urine 3/06 Urine 186/06 Respiratory product 
2092/05 Urine 307/06 Urine 187/06 Respiratory product 
45/06 Blood culture 43/06 Urine 188/06 Blood culture 
604/07 Urine 44/06 Pus 198/06 Bile 
71/07 Urine 563/07 Blood culture 226/06 Urine 
786/06 Blood culture 750/06 Blood culture 267/06 Anal exudate 
993/06 Pus 751/06 Blood culture 268/06 Respiratory product 
1040/06 Urine 81/06 Urine 269/06 Blood culture 
1041/06 Urine 952/06 Blood culture 388/06 Blood culture 
1271/06 Urine 954/06 Blood culture 389/06 Blood culture 
1285/06 Urine 263/06 Urine 390/06 Blood culture 
140/07 Urine 1/07 Urine 729/06 Pleural fluid 
1403/06 Ascites fluid 110/07 Urine 515/07 Vaginal exudate 
1404/06 Urine 139/07 Urine   
1405/06 Urine 158/07 Blood culture   
1553/05 Urine 310/07 Urine   
1654/05 Bile 311/07 Urine   
1710/05 Catheter 328/07 Urine   
264/06 Urine 332/07 Urine   
470/06 NK 514/07 Urine   
556/06 Urine 606/07 Urine   
73/07 Urine 1518/05 Pus   
857/05 Urine 926/05 Blood culture   
882/06 Urine     

Abbreviations: NK, Not Known; VRE, Vancomycin Resistant Enterococcus 
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Table S2. Lytic action of Lys168 and Lys170 against the group of non-typed enterococcal clinical isolates.1 

Isolate Lys168 (µg) Lys170 (µg) 
5 1 0.2 0.04 5 1 0.2 0.04 

E. faecalis, n=73         
1/06 +/- - - - +++ +++ + +/- 

1902/05 + + - - +++ +++ ++ ++ 
344/06 - - - - +++ +++ +/- - 
363/06 +/- - - - +++ +++ ++ ++ 
46/06 ++ +/- - - +++ +++ +++ - 
497/06 +/- - - - +++ +/- +/- - 
834/06 +/- - - - +++ +++ ++ - 
838/05 +/- - - - +++ ++ +/- - 
911/05 - - - - ++ ++ ++ +++ 
953/06 +/- +/- - - +++ +++ +++ +/- 

1130/06 + + + - +++ +++ +++ +++ 
1451/05 +/- - - - +++ ++ + - 
1665/05 +/- - - - +++ ++ + +/- 
1915/05 +++ +++ +++ ++ +++ +++ +++ +++ 
2092/05 - - - - +++ ++ + +/- 

45/06 - - - - +++ +++ ++ + 
604/07 + + + + +++ +++ +++ +++ 
71/07 ++ ++ + - +++ +++ ++ ++ 
786/06 + +/- - - +++ +++ ++ + 
993/06 + +/- +/- - ++ ++ +++ +++ 

1040/06 +/- +/- - - +++ +++ ++ + 
1041/06 + +/- - - +++ +++ +++ ++ 
1271/06 + +/- - - +++ +++ ++ + 
1285/06 +/- - - - +++ +++ ++ - 
140/07 +/- +/- - - +++ +++ ++ + 

1403/06 - - - - +/- - - - 
1404/06 +/- - - - +++ ++ + - 
1405/06 + + - - +++ +++ ++ - 
1553/05 - - - - +++ +++ +++ ++ 
1654/05 ++ ++ + +/- +++ +++ +++ +++ 
1710/05 +/- - - - +++ +++ +++ ++ 
264/06 + +/- - - +++ +++ +++ + 
470/06 + + + +/- +++ +++ +++ + 
556/06 + - - - +++ +++ +++ ++ 
73/07 + +/- - - +++ +++ +++ + 
857/05 +/- - - - +++ +++ ++ ++ 
882/06 +/- - - - +++ +++ +++ + 
926/06 + +/- - - +++ +++ +++ + 
958/05 +/- - - - +++ +++ +++ ++ 
992/06 + +/- - - +++ ++ + +/- 

1113/06 + - - - +++ +++ + - 
127/06 + +/- - - +++ +++ ++ + 
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Table S2, cont. 

Isolate 
Lys168 (µg) Lys170 (µg) 

5 1 0.2 0.04 5 1 0.2 0.04 
E. faecalis, cont.         

1408/05 +/- - - - +++ +++ ++ ++ 
1409/05 +/- +/- - - +++ ++ + - 
1551/05 + +/- - - +++ +++ +++ ++ 
1554/05 - - - - +++ +++ ++ +/- 
1558/05 +/- - - - +++ +++ ++ + 
1853/05 ++ ++ + +/- ++ ++ + +/- 

2/06 - - - - +++ + +/- +/- 
2093/05 - - - - +++ +++ ++ + 

3/06 +/- - - - +++ ++ + + 
307/06 - - - - +++ ++ +/- - 
43/06 + +/- - - +++ +++ + +/- 
44/06 +/- - - - +++ +++ +++ ++ 

563/07 + + +/- - +++ +++ ++ + 
750/06 + + +/- - +++ +++ ++ + 
751/06 + - +/- - +++ +++ ++ ++ 
81/06 +/- +/- - - +++ +++ +++ + 

952/06 +/- - - - +++ +++ ++ +/- 
954/06 - - - - +++ ++ + +/- 
263/06 - - - - +++ ++ + +/- 

1/07 +/- +/- - - ++ ++ + +/- 
110/07 + + +/- - +++ +++ ++ +/- 
139/07 - - - - - - - - 
158/07 + +/- +/- - +++ +++ ++ + 
310/07 - - - - +++ +++ +++ ++ 
311/07 +/- - - - +++ +++ ++ +/- 
328/07 +/- - - - +++ +++ ++ +/- 
332/07 - - - - - - - - 
514/07 + + + +/- +++ +++ +++ + 
606/07 ++ +/- +/- - +++ +++ + - 
1518/05 + + + +/- +++ +++ +++ +/- 
926/05 ++ ++ + - +++ +++ +++ + 

E. faecium, n=26         
1000/05 - - - - - - - - 
1131/05 - - - - - - - - 
1132/05 - - - - - - - - 
1607/05 - - - - - - - - 
1729/05 - - - - - - - - 
1793/05 - - - - - - - - 
1795/05 - - - - - - - - 
1866/05 - - - - - - - - 
1903/05 - - - - - - - - 
969/05 - - - - - - - - 

1793(VRE) - - - - - - - - 
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Table S2, cont. 

Isolate 
Lys168 (µg) Lys170 (µg) 

5 1 0.2 0.04 5 1 0.2 0.04 
E. faecium, cont.         

184/06 +/- - - - +++ +++ ++ ++ 
185/06 - - - - +++ +++ + + 
186/06 + +/- - - +++ +++ + ++ 
187/06 + + +/- - +++ +++ + + 
188/06 ++ + +/- - +++ +++ +++ ++ 
198/06 +/- - - - +++ +++ ++ + 
226/06 +/- +/- - - +++ +++ - - 
267/06 +/- - - - +/- +++ +/- +/- 
268/06 +/- - - - +++ +++ +/- +/- 
269/06 + + +/- +/- +++ +++ +/- +/- 
388/06 - - - - +++ +++ - - 
389/06 + + + +/- +++ +++ ++ ++ 
390/06 +/- - - - +++ +++ +/- +/- 
729/06 - - - - - - - - 
515/07 - - - - - - - - 

1Four different quantities of each endolysin were spotted on a dense cell lawn of each isolate, which was 
prepared by incorporating cells from exponentially growing cultures in a soft-agar, phosphate-buffered 
medium. Lytic activity was scored (- to +++) according to the relative size and transparency of lysis halos 
after overnight incubation at 37 ºC. 
Abbreviations: VRE, Vancomycin Resistant Enterococcus 

 

 

 

 

 

 

 

 

 

 



 

 

Table S3. Detailed characterization of the typed enterococcal clinical strains used in this study. 

   Virulence determinants Antibiotic 

Strain ID PFGE 
pattern Vancomycin esp cylA asaI gelE hyl citolysin gelatinase Amp HLG Van Teic Q/D Cip Te E DA LZD 

E. faecalis, n=28                   

EHCP 3 AO6 resistant - + + + -  β + S R R R R R R R R ND  
EHCP 13 S susceptible - - + + - - - S R S S S R S R R  ND 
EHCP 24 AO5 susceptible - - + + - - + S R S S R R R R R ND  
EHCP 31 A2 susceptible - + + - -  β - S R S S R S R R R ND  
EHCP 55 AW susceptible - + + + -  β + S R S I R S S R R  ND  
EHCP 73 J susceptible - - + + - - - S R S S R S I R R  ND  
EHCP 78 A3 susceptible + + + - -  β - S R S S R S R R R  ND  
EHCP 92 AR susceptible - - + + - α - S R S S S R R I R  ND  
EHCP 93 AX susceptible - - + + - α - S R S S S R R R R ND   
EHCP 94 AM susceptible + - + + - α - S R S S S R R R R  ND   
EHCP 107 K susceptible + - - - - α - S R S S S R S R R S 
EHCP 118 AT susceptible - - + + - - - S R S S R R R R R S 
EHCP 143 AU susceptible + - + + - α - S R S S S R R R R  ND   
EHCP 151 H susceptible - + + + -  β - S R S S S R S R R S 
EHCP 164 B susceptible + + + + - β + S R S S R R S R R S 
EHCP 193 BC susceptible - - + + - - - S R S S I R S I R S 
EHCP 225 R susceptible - - + + - - - S R S S I R S I R S 
EHCP 237 AO2 susceptible - - + + - α + S R S S R R R R R S 
EHCP 241 O susceptible - + + + - β - S R S S I R S I R S 
EHCP 267 AO2 resistant + + + + - β + S R R R R R R R R S 
EHCP 271 A11 susceptible + + + - - β - S R S S R S R R R S 
EHCP 279 T susceptible + - + + - - + S R S S R S R I R S 
EHCP 281 U susceptible + + + + - β - S R S S R R R R R S 
EHCP 292 A4 susceptible + + + + - β + S R S S R S R R R S 
EHCP 332 I susceptible - - + + - α - S R S S I R S R R S 
EHCP 339 AO1 susceptible + + + + - α + S R S S R R R R R S 
EHCP 389 AO1 resistant - + + + - β + S R R R R R R R R S 
EHCP 391 M susceptible - + + + - β + S R S S R S R R R S 



 

 

Abbreviations: Amp, Ampicillin; HLG, High-Level-Gentamicin; Van, Vancomycin; Teic, Teicoplanin; Q/D, Quinupristin/Dalfopristin, Cip, Ciprofloxacin; Te, Tetracyclin; 
E, Erythromycin; Da, Clindamycin; LZD, Linezolid; R, Resistant; S, Susceptible; I, Intermediate; ND, Not Determined. 

 

Table S3, cont. 

                  

  Virulence determinants Antibiotic 

Strain ID PFGE 
pattern Vancomycin esp cylA asaI gelE hyl citolysin gelatinase Amp HLG Van Teic Q/D Cip Te E DA LZD 

E. faecium, n=21 
                  

EHCP 5 c10 resistant + - - - - α - R R R R S R R R R ND 
EHCP 6 a1 resistant - - - - - α - R R R R S R S R R ND 
EHCP 14 d2 susceptible - - - - + α - R R S S S R R R R ND 
EHCP 36 a2 resistant - - - - - α - S S R R S R S R R ND 
EHCP 40 d9 susceptible + - - - + α - R R S S S R R R R ND 
EHCP 65 o susceptible - - - - + α - R R S S S R R R R ND 
EHCP 88 c2 susceptible + - - - - α - R R S S S R R R R ND 
EHCP 149 d6 susceptible - - - - + α - R R S S S R R R R S 
EHCP 161 t susceptible + - - - + α - R R S S S R R R S S 
EHCP 178 p susceptible - - - - + α - S R S S S R S R R S 
EHCP 181 d8 susceptible + - - - + α - R R S S S R R I R S 
EHCP 184 f susceptible - - - - + α - R R S S S R R R R S 
EHCP 211 c12 susceptible + - - - - α - R R S S S R S R R S 
EHCP 264 e susceptible - - - - - α - R R S S I R R R R S 
EHCP 302 c5 susceptible + - - - - α - R R S S S R S R R S 
EHCP 341 u susceptible + - + + - α - R R S S S R R R S S 
EHCP 358 i susceptible + - - - + α - R R S S S R R R R S 
EHCP 361 c16 resistant + - - - - α - R R R R S R S R R S 
EHCP 378 w susceptible - - - - + α - R R S S S R R R R S 
EHCP 407 d7 resistant - - - - - α - R S R R S R S R R ND 
EHCP 459 s susceptible - - - - - α - R R S S S R S R R S 
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Table S4. Lytic action of Lys168 and Lys170 against the panel of typed enterococcal clinical strains.1 

Strain ID Lys168 (µg) Lys170 (µg) 
5 1 0.2 0.04 5 1 0.2 0.04 

E. faecalis, n=30 
        EHCP 3(VRE) +/- + +/- - +++ ++ + +/- 

EHCP 13 +++ ++ ++ +/- - + ++ +/- 
EHCP 24 ++ + - - +++ ++ + + 
EHCP 31 + + +/- - +++ ++ + +/- 
EHCP 55 + + +/- - +++ ++ ++ + 
EHCP 73 +++ ++ + + +++ ++ + + 
EHCP 78 +/- +/- - - +++ ++ + +/- 
EHCP 92 - - - - +++ +++ ++ + 
EHCP 93 ++ - - - + +++ ++ +/- 
EHCP 94 ++ + +/- - +++ ++ + - 

EHCP 107 - - - - - - - - 
EHCP 118 +++ ++ + +/- +++ +++ ++ +/- 
EHCP 143 +/- +/- - - +++ ++ + +/- 
EHCP 151 +++ ++ + +/- +++ ++ + +/- 
EHCP 164 +/- +/- - - +++ ++ + +/- 
EHCP 193 +/- +/- - - +/- - +/- - 
EHCP 225 +++ ++ - - ++ ++ + - 
EHCP 237 - - - - +++ +/- ++ + 
EHCP 241 - - - - ++ +/- +/- - 

EHCP 267(VRE) - - - - +++ ++ ++ +/- 
EHCP 271 +/- +/- +/- - +++ ++ ++ ++ 
EHCP 279 + + + + +++ +++ +++ + 
EHCP 281 ++ +/- +/- - +++ ++ + +/- 
EHCP 292 +/- +/- +/- - +++ ++ ++ + 
EHCP 332 +++ ++ + +/- +++ +++ +++ + 
EHCP 339 +/- +/- +/- - +++ ++ ++ +/- 

EHCP 389(VRE) - +/- +/- - +++ + + ++ 
EHCP 391 - - - - +++ ++ ++ +/- 
MMH 594 +++ + + +/- +++ ++ + + 
V583(VRE) - - - - ++ + - - 

E. faecium, n=21 
        EHCP 5(VRE) - - - - - - - - 

EHCP 6(VRE) - - - - - - - - 
EHCP 14 - - - - - - - - 

EHCP 36(VRE) - - - - - - - - 
EHCP 40 - - - - - - - - 
EHCP 65 - - - - - - - - 
EHCP 88 - - - - - - - - 

EHCP 149 - - - - - - - - 
EHCP 161 - - - - - - - - 
EHCP 178 - - - - - - - - 
EHCP 181 - - - - - - - - 
EHCP 184 - - +/- - - +/- - - 
EHCP 211 - - +/- - - + - - 
EHCP 264 - - - - - - - - 
EHCP 302 - - - - - - - - 
EHCP 341 - - - - - - - - 
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         Table S4, cont.         
Strain ID Lys168 (µg) Lys170 (µg) 

 5 1 0.2 0.04 5 1 0.2 0.04 
E. faecium, cont. 

        
EHCP 358 - - - - - - - - 

EHCP 361(VRE) - - - - - - - - 
EHCP 378 - - - - - - - - 

EHCP 407(VRE) - - - - - - - - 
EHCP 459 - - - - - - - - 

1Four different quantities of each endolysin were spotted on a dense cell lawn of each strain, which was 
prepared by incorporating cells from exponentially growing cultures in a soft-agar, phosphate-buffered 
medium. Lytic activity was scored (- to +++) according to the relative size and transparency of lysis halos 
after overnight incubation at 37ºC. 
Abbreviations: VRE, Vancomycin Resistant Enterococcus 
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Table S5. Non-typed clinical isolates from other Gram-positive pathogenic cocci used in this study. 

Species Isolate code Clinical specimens 
Streptococcus pneumoniae, n=10 01/08 Sputum 

 07/08 Sputum 
 63/08 Sputum 
 04/08 Ocular exudate 
 02/08 Blood culture 
 03/08 Blood culture 
 05/08 Blood culture 
 65/08 Bronchial secretions 
 68/08 Bronchial secretions 
 73/08 Cerebrospinal fluid 

Streptococcus pyogenes, n=8 12/08 Pharyngeal exudate 
 13/08 Pharyngeal exudate 
 14/08 Pharyngeal exudate 
 15/08 Pharyngeal exudate 
 16/08 Pharyngeal exudate 
 191/08 Pharyngeal exudate 
 192/08 Pharyngeal exudate 
 193/08 Pharyngeal exudate 

Streptococcus agalactiae n=8 516/07 Vaginal exudate 
 517/07 Vaginal exudate 
 518/07 Vaginal exudate 
 519/07 Vaginal exudate 
 520/07 Vaginal exudate 
 521/07 Vaginal exudate 
 522/07 Blood culture 
 595/07 Blood culture 

Staphylococcus aureus, n=9 1020/05(MSSA) Synovial fluid  
 1538/05(MSSA) Exudate 
 1039/06(MSSA) Exudate 
 662/07(MSSA) Exudate 
 53/08(MRSA) Exudate 
 1011/05(MRSA) Wound exudate 
 1018/05(MRSA) Wound exudate 
 1035/06(MRSA) Exudate 
 1037/06(MRSA) Wound exudate 

Staphylococcus haemolyticus, n=4 1930/05 Catheter 
 06/06 Urine 
 1318/05 Sputum 
 1703/05 Sputum 

Staphylococcus epidermidis, n=4 158/08 Exudate 
 114/08 Exudate 
 110/08 Face exudate 
 1736/05 Catheter exudate 

Abbreviations: MSSA, Methicillin-sensitive Staphylococcus aureus; MRSA, Methicillin-resistant 
Staphylococcus aureus. 
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ABSTRACT 
 

Bacteriophage endolysins are bacterial cell wall degrading enzymes whose potential to 

fight bacterial infections has been intensively studied. Endolysins from Gram-positive 

systems are typically described as monomeric and as having a modular structure 

consisting of one or two N-terminal catalytic domains (CD) linked to a C-terminal region 

responsible for cell wall binding (CWB). We show here that expression of the endolysin 

gene lys170 of the enterococcal phage F170/08 results in two products, the expected full 

length endolysin (Lys170FL) and a C-terminal fragment corresponding to the CWB 

domain (CWB170). The latter is produced from an in-frame, alternative translation start 

site. Both polypeptides interact to form the fully active endolysin. Biochemical data 

strongly support a model where Lys170 is made of one monomer of Lys170FL associated 

with up to three CWB170 subunits, which are responsible for efficient endolysin binding 

to its substrate. Bioinformatics analysis indicates that similar secondary translation start 

signals may be used to produce and add independent CWB170-like subunits to different 

enzymatic specificities. The particular configuration of endolysin Lys170 uncovers a new 

mode of increasing the number of CWB motifs associated to CD modules, as an 

alternative to the tandem repetition typically found in monomeric cell wall hydrolases. 
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INTRODUCTION 
 

Like all viruses, bacteriophages need to parasite host cells, in this case bacteria in order to 

multiply. After replication, newly formed virus particles need to escape from infected 

cells to disseminate. To accomplish this, double-stranded DNA phages have evolved 

protein systems that compromise the integrity of the bacterial cell envelope in order to 

cause host cell lysis. These systems may comprehend a set of functions targeting the 

different cell envelope barriers, but the hallmark of lysis functions is the well-known 

holin-endolysin dyad (Catalão et al., 2013; Young, 2014). Holins are hydrophobic 

proteins that oligomerize in the cytoplasmic membrane and induce the formation of holes 

in a tightly scheduled, saltatory manner. Canonical holins produce micron-scale holes 

large enough to allow the passage of cytoplasm-accumulated endolysins to the cell wall 

compartment, whereas pinholins form small channels that serve to depolarize the 

membrane and activate previously secreted endolysins (Nascimento et al., 2008; Young, 

2013; Savva et al., 2014). Endolysins are enzymes that cleave the peptidoglycan (PG) 

network of the bacterial cell wall. They have been classified into five major functional 

types according to the bonds of the PG they cleave: N-acetylmuramidases (lysozymes), 

endo--N-acetylglucosaminidases and lytic transglycosylases cleave bonds of the N-

acetylmuramic acid (NAM)/N-acetylglucosamine (NAG) moiety of the PG, but with 

different specificities and/or end products; N-acetyl-muramoyl-L-alanine amidases 

hydrolyze the amide bond between NAM and L-alanine residues in the oligopeptide 

chains, and endopeptidases attack the peptide bonds within or between these chains (São-

José et al., 2003; Loessner, 2005). Within each major group, endolysins have been 

subdivided into families according to the sequence relatedness of their functional domains 

(Oliveira et al., 2013). 

The vast majority of endolysins produced by phages of Gram-positive bacteria and of 

mycobacteria seem to display a conserved modular architecture (Diaz et al., 1990; Payne 

and Hatfull, 2012) of two separated functional regions: an N-terminus carrying one to 

three catalytic domains (CD) and a C-terminus segment harboring one or several repeats 

of cell wall binding (CWB) motifs (Fischetti, 2008; Schmelcher et al., 2012). With the 

exception of the multimeric endolysin PlyC, which is composed of a two CD-containing 

polypeptide (PlyCA) associated to eight PlyCB subunits with CWB activity, with A and 
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B subunits codified by separate genes (Nelson et al., 2006; McGowan et al., 2012), all 

studied endolysins are encoded by a single gene and seem to be monomeric when 

purified. 

Some endolysins have the capacity to degrade the cell wall PG and cause cell lysis when 

added in the form of recombinant proteins to Gram-positive bacteria. This has stimulated 

intense research to exploit the potential of endolysins as antibacterial agents (for recent 

reviews see Fischetti, 2010; Nelson et al., 2012; Schmelcher et al., 2012). In one of these 

studies we showed that the endolysin Lys170 from the enterococcal phage F170/08 

exhibited broad lytic activity against Enterococcus faecalis clinical strains (Proença et al., 

2012). Lys170 is a typical modular endolysin displaying an N-terminal amidase CD 

linked to a putative C-terminal CWB region. Lys170 is virtually identical to the 

previously described endolysin of E. faecalis phage EF24C (Uchiyama et al., 2011), 

with both enzymes showing a single substitution over their 289 amino acid sequence.  

We show now that expression of lys170 systematically results in the production of a ca. 

12 kDa small protein, basically corresponding to the predicted Lys170 CWB domain, in 

addition to the expected full length polypeptide (Lys170FL, 32.6 kDa). We have studied 

the interaction between these two endolysin components and their contribution to lytic 

activity. We present data supporting that fully active Lys170 is a multimeric endolysin 

resulting from the association of 12 kDa CWB subunits with Lys170FL. We speculate 

that such endolysin architecture may be quite common and we discuss its potential 

advantages in terms of lytic efficacy. 

 

RESULTS 
 

Expression of endolysin gene lys170 results in two stable polypeptides 

Production of a C-terminal His6-tagged version of Lys170 in E. coli systematically 

resulted in the accumulation of two polypeptides, one corresponding to expected full 

length protein (Lys170FL, 32.6 kDa) and the other with an apparent mass of about 12 

kDa. We have missed this smaller protein in previous works because of too long SDS-

PAGE runs (Proença et al., 2012). The two proteins co-purified during metal chelate 

affinity chromatography (AFC) and were immunodetected with anti-His6 specific 
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antibodies (not shown), which indicated that the 12 kDa polypeptide was a C-terminal 

fragment of Lys170FL; its mass suggested that it would essentially correspond to the 

predicted Lys170 CWB domain (Proença et al., 2012) and therefore it was designated 

CWB170 (Fig. 1A).  

 

Fig. 1. The two polypeptides of endolysin Lys170. A) SDS-PAGE analysis of the Lys170 overproduction in 

E. coli and of the peak fractions resulting from the endolysin purification by metal chelate affinity 

chromatography (AFC). T, total soluble protein extract; FT, affinity column flowthrough. The protein bands 

corresponding to the full length endolysin (Lys170FL) and to its C-terminal product CWB170 are indicated. 

B) Schematic representation of the predicted Lys170 domain architecture. Details of the putative internal 

translation start site driving the independent production of CWB170 are shown below the endolysin 
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scheme. The nucleotide positions mutagenized to eliminate the putative ribosome binding site and start 

codon (Met202) are underlined. C) SDS-PAGE analysis of the mLys170 overproduction in E. coli and of the 

peak fractions resulting from the protein purification by AFC. T and FT as in panel A. The protein band 

corresponding to mLys170 is indicated. D) Domain architecture of mLys170. Below the endolysin scheme 

it is shown the nucleotide and amino acid sequences resulting from the site-directed mutagenesis of the 

putative lys170 internal translation start site. E) SDS-PAGE analysis of the Lys170-derived polypeptides 

produced after substitution of the lys170 Met170 codon by a stop codon. The gel shows total protein extracts 

produced from non-induced (NI) and induced (I) E. coli cultures carrying lys170STOP. The lane from the 

induced culture shows the truncated Lys170 (Lys170STOP; 17.8 kDa) and CWB170 polypeptides. A control 

lane with purified Lys170 shows the positions of Lys170FL and CWB170 proteins. F) Generation of 

Lys170STOP. Details of the nucleotide and amino acid sequences resulting from the substitution of the lys170 

Met170 codon by a stop codon (TAG) are shown below the endolysin scheme. Note that the mutagenesis 

also changed the Ala171 codon (GCA) to a Thr codon (ACA), which generated an XbaI site (TC.TAG.A) 

used for screening purposes. The starting Met202 codon and N-terminal amino acid sequence of CWB170 is 

also shown.  

 

Inspection of lys170 nucleotide sequence revealed the possibility of an internal and in-

frame translational start site located at a position compatible with the production of a 12 

kDa protein (Fig. 1B). Elimination of the putative ribosome binding site (RBS) and 

methionine start codon (Met202) through site-directed mutagenesis resulted in the 

production of a single protein (mLys170) with the same apparent mass of Lys170FL (Fig. 

1C), in agreement with these sequences being a translation signal in E. coli. The 

polypeptide mLys170 has the same amino acid sequence of Lys170FL, except that the 

internal start methionine was substituted by a leucine residue (Fig. 1D). N-terminal 

sequencing of a CWB170 band obtained after SDS-PAGE separation of a sample from 

the Lys170 AFC peak (Fig 1A) revealed the sequence MY(?)LY, which basically 

matches the N-terminal sequence MYCLY(…) expected for a protein initiated at the 

putative secondary start site (cysteine residues could not be determined by the method 

used). To discard the possibility of CWB170 being generated by some sort of cleavage 

mechanism, which could have been inhibited by the M202L alteration we have substituted 

the Met170 codon of lys170 by a stop codon (TAG). Insertion of this stop codon upstream 

of the putative starting Met202 resulted in the production and accumulation of the expected 

truncated product (Lys170STOP) of 17.8 kDa (Fig. 1E,D). Yet, this premature stop in 

translation had no obvious impact on the synthesis of CWB170 (Fig. 1E), as it would be 

expected if the latter polypeptide resulted from processing of Lys170FL. We have thus 

concluded that CWB170 was produced from independent translation initiation at the 
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internal Met202 codon, given rise to a product of 11.6 kDa as deduced from the Lys170 

primary sequence. 

The Lys170 peak fraction from the AFC step (Fig. 1A) was subjected to size-exclusion 

chromatography (SEC) in an attempt to separate Lys170FL from CWB170. Strikingly, 

the two polypeptides essentially co-eluted in a single peak during SEC despite their 

markedly different predicted masses, 32.6 and 11.6 kDa, respectively (Fig. 2). Based on 

the elution volume of the peak we estimated a mass of about 62 kDa (see methods), 

assuming for the species composing the peak a homogeneous and globular nature 

analogous to that of the standard proteins run in the same conditions. Interestingly, when 

a C-terminally His6-tagged CWB170 independently produced and purified by AFC was 

subjected to the same SEC, it resulted in a profile clearly distinguishable from that of 

Lys170, eluting with an apparent mass of 37 kDa (Fig. 2A). mLys170 also peaked at a 

different elution volume during SEC, in this case with an estimated mass of 50 kDa 

(Fig. 2A). Although the masses estimated from simple SEC analysis can be influenced by 

the proteins Stokes radii, the results suggested that: i) Lys170 corresponded to a complex 

of Lys170FL + CWB170 and ii) CWB170 and mLys170 oligomerized and/or formed 

elongated structures conferring them apparent masses higher than those expected for 

monomeric proteins (Erickson, 2009).  
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Fig. 2. Size-exclusion chromatography of the Lys170, mLys170 and CWB170 proteins from the affinity 

purification step. A) The eluting profile of the proteins was monitored by taking absorbance measurements 

at 280 nm (A280 nm). Representative UV curves were combined in a single graph. The apparent protein 

masses derived from the experimentally-determined partition coefficients (Kav, see methods) are indicated 

for each protein. The column void volume (V0), the masses of standard proteins and the fractionation range 

of Lys170 are also indicated. B) SDS-PAGE analysis of the SEC peak fractions of Lys170, confirming the 

co-elution of Lys170FL and CWB170. 

 

Lys170FL and CWB170 polypeptides are required for full endolysin lytic activity 

in vitro  

We showed above that the CWB170 polypeptide seemed to associate with Lys170FL, a 

result that could hint for a role of the C-terminal fragment in endolysin activity. In fact, 

when assays of cell suspension turbidity reduction were performed to compare the lytic 

activity of Lys170 and mLys170 against E. faecalis cells, we observed that the latter 

protein could not elicit any detectable lysis, in clear contrast to the two-component 

endolysin (data not shown). We have thus reasoned that co-incubation of purified 

mLys170 and CWB170 might generate active endolysin complexes, resulting in a visible 

enhancement of lytic activity. To test this hypothesis we have empirically fixed an 

amount of mLys170 (10 µg, 0.31 nmol) and varied the quantity of the smaller protein to 



A TWO-COMPONENT ENDOLYSIN 
 
 

105 

obtain mLys170:CWB170 molar ratios of 1:0.25, 1:0.5, 1:1, 1:2, 1:4 and 1:6. The 

different mixtures were spotted on a dense lawn of E. faecalis cells (see methods) and 

enterolytic activity evaluated based on the presence and relative diameter of the lysis 

halos developed after overnight incubation. Lys170, mLys170 and CWB170 were also 

spotted alone and at the maximum concentration used in the different combinations. The 

results confirmed the much reduced lytic activity of mLys170 when compared to Lys170 

and showed that CWB170 was unable to elicit any detectable lysis by itself (Fig. 3, 

bottom row). However, when mLys170 was pre-incubated with increasing amounts of 

CWB170 the lytic activity was progressively restored, with the ratio 1:6 producing a lytic 

effect apparently similar to that of Lys170 (Fig. 3). The results indicated that CWB170 is 

required for full endolysin activity and again supported an interaction between Lys170FL 

and CWB170. Somewhat unexpectedly, when we tried to evaluate the lytic effect of the 

mLys170/CWB170 mixtures in a more quantitative way, by determining lysis kinetics of 

dense cell suspensions, we could not measure any obvious lysis, even with 1:6 

mLys170:CWB170 molar ratio mixtures. We believe though that this apparently 

contradictory result can be explained by a low efficiency of production of active 

complexes upon mLys170/CWB170 co-incubation, which are still sufficient to be 

detected by the highly sensitive spot test assays (Fig. 3), but not enough to elicit lysis of 

dense cell suspensions (see discussion). 

 

Fig. 3. Impact of CWB170 polypeptide in endolysin activity. Purified mLys170 and CWB170 were co-

incubated at the indicated mLys170:CWB170 molar ratios for 1 h at room temperature. After this period, 

each protein mixture was spotted on a dense lawn of E. faecalis cells. The image shows the lysis halos 

developed after overnight incubation at 37 ºC. Lysis halos from individually spotted mLys170 (0.31 nmol), 

Lys170 (0.31 nmol) and CWB170 (1.86 nmol) are shown in the bottom row. 
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The two endolysin polypeptides are produced in the phage infection context  

Since efficient lytic activity of endolysin Lys170 seemed to require the presence of 

Lys170FL and CWB170, we have anticipated that both polypeptides should be produced 

in E. faecalis cells during infection by phage F170/08. To test this, a mid-log culture of E. 

faecalis strain 926/05 was infected with the phage at an input multiplicity of 2 and 

samples collected every 10 min for production of total protein extracts. These were 

separated by SDS-PAGE, followed by Coomassie blue-staining (to confirm even loading, 

Fig. 4A) and Western blot analysis with anti-Lys170 antibodies (Fig. 4B). The results 

showed that both Lys170FL and CWB170 started to accumulate at t = 20 min, reaching 

their peak 60 min after phage infection. In contrast to what happened with lys170 

expression in E. coli (Fig. 1A), in the phage infection context CWB170 seemed to 

accumulate in great excess when compared to Lys170FL. The results confirmed that the 

two Lys170 polypeptides produced in E. coli are also synthesized during the phage 

F170/08 infection cycle, excluding the possibility of an artifact resulting from 

heterologous expression. 
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Fig. 4. Time course of Lys170FL and CWB170 synthesis during E. faecalis infection by phage F170/08. 

Total protein extracts were prepared from samples of an infected culture (A) collected every 10 min after 

infection, during 80 min. Ten micrograms of each extract were separated by SDS-PAGE and analyzed by 

Coomassie blue-staining (B) and Western blotting with anti-Lys170 antibodies (C). Purified Lys170 (50 ng) 

was used as positive control (+) and 10 µL of lysis buffer was used as negative control (-). The very intense 

band observed in B between positions 10 and 15 kDa of the molecular weight marker is from lysozyme, 

which is present in the lysis buffer at a 2.5 mg mL-1 concentration. 

 

CWB170 promotes endolysin binding to target cells 

Based on the typical modular structure of endolysins from Gram-positive systems and 

also on bioinformatics analysis, we hypothesized that the C-terminal polypeptide 

CWB170 would mediate the binding of endolysin Lys170 to the cell wall of target 

bacteria. To study the binding capacity of the different endolysin polypeptides we have 

incubated E. faecalis cells with purified Lys170, mLys170 and CWB170. After 30 min 

incubation, the mixtures were centrifuged and we have evaluated how the proteins 

distributed between the supernatant and cell pellet fractions. In the absence of target cells 

the three proteins were essentially present in the supernatant fraction (Bs lanes in Fig. 5), 

discarding major protein precipitation and consequent sedimentation (Bp lanes in Fig. 5) 
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during the assay. The larger component of Lys170 (Lys170FL) seemed to be more 

associated with the E. faecalis pellet fraction than the mutagenized form mLys170, which 

was mainly detected in the supernatant fraction (compare fractions S and P for the two 

polypeptides). The CWB170 portion of Lys170 was only faintly detected in the 

supernatant, being most of it found in the pellet fraction. The capacity of the CWB170 

polypeptide to bind E. faecalis was confirmed when the protein was tested alone, as again 

a much higher fraction of the protein was present in the pellet fraction. The results clearly 

showed that CWB170 bound to E. faecalis cells and strongly suggested that this 

independent domain was responsible for promoting binding of Lys170FL. The weak 

binding of mLys170 to the bacterial cell wall, probably due to the absence of 

independently-produced CWB170, may be the cause underlying the decrease of mLys170 

activity (see above).  

 

 
 

 

Fig. 5. Binding of purified mLys170, Lys170 and CWB170 to E. faecalis cells. Binding reactions were 

prepared by adding 1µg of each protein to 100 µL of a concentrated E. faecalis cell suspension, followed by 

30 min incubation on ice. Each reaction was centrifuged and the relative distribution of the proteins in the 

supernatant and pellet fractions analyzed by Western blot using anti-Lys170 antibodies. Negative controls 

consisting in the addition of the proteins to endolysin buffer only (no target cells) were equally prepared 

and processed. Bs and Bp, supernatant and pellet fractions of negative controls, respectively; S and P, 

supernatant and pellet fractions of test assays, respectively. 
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Composition of the Lys170 complex 

The elution profiles of Lys170 and CWB170 during SEC (Fig. 2) and the relative lytic 

activity exhibited by Lys170, mLys170 and mLys170+CWB170 (Fig. 3) strongly 

suggested that Lys170FL and the CWB170 polypeptide associated to form the fully active 

Lys170. The mass estimations of Lys170 (62 kDa) and CWB170 (37 kDa) derived from 

SEC (Fig. 2A) seemed to be incompatible with Lys170 being a simple 1:1 Lys170FL 

(32.6 kDa):CWB170 (11.6 kDa) heterodimer.  

To gain insight on the nature of the putative Lys170FL:CWB170 complex we determined 

the molar masses of purified Lys170, mLys170 and CWB170 by Size-Exclusion 

Chromatography - Multi Angle Light Scattering (SEC-MALS), a technique that allows 

determination of molar mass independently of the protein Stokes radii. SEC-MALS 

analysis of CWB170 produced a single UV peak (Fig. 6), with the protein eluting in SEC 

as monodisperse species at 16.1 mL and with a mass of 46 kDa, which indicated that 

purified CWB170 was a tetramer in solution (theoretical mass of 4CWB170 = 46.4 kDa). 

Most mLys170 showed its UV peak at 15.1 mL elution volume, with a corresponding 

molar mass of 34.1 kDa. This mass fits well that expected for a mLys170 monomer 

(predicted mass = 32.6 kDa) but deviates significantly from that estimated by the simple 

SEC analysis of Fig. 2 (50 kDa). Such discrepancies between the masses predicted by 

conventional SEC and those determined by more accurate methods have been observed 

previously, and they generally derive from the extended, non-globular nature of the 

proteins under analysis (São-José et al., 2006; Ruggiero et al., 2009). Two minor peaks 

were also detected for mLys170 at around 12.6 and 13.7 mL, corresponding to molar 

masses of 98.8 and 62.4 kDa, respectively, suggesting that a fraction of mLys170 could 

form homotrimers and homodimers (predicted masses of 97.8 and 65.2 kDa, 

respectively). Finally, the vast majority of Lys170 (Lys170FL+CWB170) produced an 

UV peak centered at 14.2 mL elution volume, with monodisperse species detected at 13.9 

mL, to which corresponded a molar mass of 70.3 kDa. A minor peak eluted at 15.1 mL, 

with a measured mass (32 kDa) compatible with monomeric Lys170FL. 
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Fig. 6. SEC-MALS analysis of Lys170, mLys170 and CWB170. The relative UV and molar mass (M) 

curves of the three proteins were combined in a single graph; the refractive index (dRI) and light-scattering 

(LS) curves were omitted for clarity. The molar masses measured for the detected peaks are indicated. The 

inset shows a SDS-PAGE loaded with 10 µg samples of each protein preparation used in the SEC-MALS 

analysis. 

 

Considering that the major Lys170 peak would necessarily contain Lys170FL associated 

to CWB170, the best fitting model for the measured molar mass of 70.3 kDa was a 

1Lys170FL:3CWB170 complex (67.4 kDa). Interestingly, this 1:3 stoichiometry 

hypothesis was coherent with the tetrameric state found for isolated CWB170 (see 

above). Of course the molar mass obtained for the peak could also accommodate 

Lys170FL dimers (65.2 kDa), but in this case we would expect a hydrodynamic radius 

(and hence an elution volume) similar to that of mLys170 dimers (62 kDa peak of 

mLys170, Fig. 6). Thus, the presence of a significant fraction of Lys170FL dimers would 

be expected to produce a “shoulder” in the Lys170 UV curve, something which was not 

observed.  

To try sorting out the most likely stoichiometry for the Lys170 complex we extracted 

from the SEC-MALS analysis the UV280nm extinction coefficients (p) of the peaks and 
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compared them to the predicted p of the different multimer models, which was computed 

based on the amino acid sequence of each multimer subunit (see methods). Table 1 shows 

the results of this analysis. We observed that the experimental p for the 70 kDa peak of 

Lys170 (1.953 mL mg-1 cm-1) was very close to that predicted for a 

1Lys170FL:3CWB170 complex (1.983 mL mg-1 cm-1) and quite distinct from the p 

expected for a Lys170FL dimer (2Lys170FL, p = 1.379 mL mg-1 cm-1). The experimental 

p for all the other species detected in SEC-MALS (monomeric Lys170FL/mLys170, 

dimeric mLys170 and tetrameric CWB170) showed a very good match to the 

corresponding theoretical p (Table 1), supporting the robustness of the analysis. 

 

Table 1. Analysis of the UV280nm extinction coefficient (p) of Lys170 multimer models. 

 

Protein 

SEC-MALS 

M peaks 
(kDa) 

Fig. 6 

Experimental 

p, mL mg-1 cm-1 

Multimer 

model 

Computed 
molar mass 

(kDa) 

Computed 

p, mL mg-1 cm-

1 

Lys170 
70 1.953 

1Lys170FL:3CWB1
70 

2Lys170FL 

67.4 

65.2 

1.983 

1.379 

32 1.440 1Lys170FL 32.6 1.379 

mLys170 
62 1.417 2mLys170 65.2 1.379 

34 1.410 1mLys170 32.6 1.379 

CWB170 46 2.457 4CWB170 46.4 2.552 

 

 

In summary, from the presented data we have concluded that the most likely 

stoichiometry for the 70 kDa Lys170 complex was 1Lys170FL:3CWB170. 
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Cross-linking of endolysin multimers 

To independently confirm the presence of multimers identified in the SEC-MALS 

analysis, we used the water-soluble, noncleavable cross-linking agent BS3, which reacts 

with primary amines, to treat purified Lys170, CWB170 and mLys170 at micromolar 

range concentrations (see methods). Cross-linked and control samples were separated by 

SDS-PAGE, followed by Western blotting analysis of the resulting products with anti-

Lys170 antibodies. Note that the cross-linking reaction conditions were optimized to 

allow simultaneous detection of the free monomers and of the different multimeric forms 

of the proteins under analysis in the ensemble of reactions.  Several products were 

detected in the cross-linked sample of Lys170 that were compatible with different homo- 

and heterooligomeric states (Fig. 7A). In addition to a band expected for the complex 

1Lys170FL:3CWB170 (67.4 kDa), other bands most probably corresponding to different 

association/dissociation states of the complex were observed: 2CWB170 (23.2 kDa), 

3CWB170 (34.8 kDa), 1Lys170FL:1CWB170 (44.2 kDa) and 1Lys170FL:2CWB170 

(55.8 kDa). Note that the 55 kDa band in the cross-linking profile of Lys170 can only be 

explained by a 1Lys170FL:2CWB170 multimer, further supporting interaction between 

the two Lys170 subunits. We detected molecular species corresponding to dimers, trimers 

and tetramers (46.4 kDa) in the cross-linked sample of purified CWB170 (Fig. 7B), while 

in the corresponding sample of mLys170 we detected monomeric (32.6 kDa), dimeric 

(65.2 kDa) and a faint band of trimeric (97.8 kDa) species (Fig. 7C). In essence the results 

were coherent with those obtained in the SEC-MALS analysis, although in the particular 

assay shown in figure 7 the signal of the CWB170 tetramer was weaker than those 

obtained in other analogous experiments using higher concentrations of BS3 (data not 

shown).  
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Fig. 7. Cross-linking analysis of endolysin multimers. Purified Lys170 (A), CWB170 (B), mLys170 (C), a 

pre-incubated mixture of CWB170 with mLys170 (D) and a protein sample from the time-point t = 60 min 

of the assay shown in figure 4 (E) were cross-linked with the indicated concentrations of BS3 and the 

reaction products analyzed by Western blot with anti-Lys170 antibodies. When possible, the protein species 

deduced to compose  each band is indicated following the depicted cartoon codes; bands compatible with 

more than one composition/oligomeric state are marked accordingly. 

 

We have also prepared a reaction where pre-incubated mLys170 and CWB170 were 

cross-linked in the same conditions (Fig. 7D). The cross-linking of the mixture resulted in 

the appearance of new bands and in the apparent intensification of others when compared 

to the independent cross-linking of each protein (interpreted as formation of the 44.2 kDa 
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1Lys170FL:1CWB170, the 55.8 kDa 1Lys170FL:2CWB170, and eventually the 67.4 kDa 

1Lys170FL:3CWB170 complexes). The cross-linking pattern resembled that of Lys170, 

although with altered band intensities. In an attempt to unambiguously identify protein 

bands resulting from cross-linking of mLys170 and CWB170 subunits we have generated 

and purified a version of the latter protein with the hemagglutinin (HA) epitope inserted 

just upstream of the His6 tag. Unfortunately, this CWB170-HA protein revealed to be 

non-competent to enhance lysis mediated by mLys170 in experiments like that of figure 

3. In addition, CWB170-HA seemed to be inhibited in its self-association capacity as 

judged by SEC-MALS analysis (data not shown). We have thus decided not use this 

protein in cross-linking assays since it seemed affected in its normal biological activity.  

To check if the Lys170 cross-linking pattern could be reproduced with endolysin 

synthesized during phage infection, we used a sample of the t = 60 min protein extract of 

figure 4 and cross-linked it with 1 and 5 mM BS3. The results obtained (Fig. 7E) were 

consistent with those derived from the cross-linking of purified Lys170 and again 

supported CWB170 self-association and interaction with Lys170FL. However, caution 

should be taken when analyzing cross-links of crude protein extracts because of the 

presence of a high number of other proteins; this may explain the smear observed in 

presence of 5 mM BS3 (Fig. 7E). 

 

DISCUSSION 
 

We presented genetic and enzymatic activity studies indicating that maximum lytic 

activity of endolysin Lys170 requires the full length enzyme (Lys170FL) and a small 

polypeptide corresponding to the last 88 amino acid residues of Lys170FL. This C-

terminal fragment is produced from an in-frame, secondary translation start site and 

basically matches the predicted cell wall binding domain of the endolysin (CWB170). In 

addition, biochemical and biophysical characterization of the endolysin and derived 

proteins strongly suggests that functional Lys170 corresponds to a Lys170FL:CWB170 

heterooligomer, being 1:3 the most likely stoichiometry for the higher order endolysin 

complex. Lys170 is thus the first two-component multimeric endolysin described to date, 

whose subunits are produced from a single gene. 
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The other known multimeric endolysin, PlyC from the streptococcal phage C1, is 

composed of a two CD-containing polypeptide (PlyCA) associated to eight PlyCB 

subunits with CWB activity, but in this case the A and B subunits are encoded by separate 

genes (Nelson et al., 2006). The ring-like PlyCB assembly, which contains eight potential 

binding sites for cell wall components, is crucial for PlyC function as the isolated PlyCA 

module has only residual activity (Nelson et al., 2006; McGowan et al., 2012). The poor 

lytic activity of the mutant endolysin mLys170, which is unable to produce independent 

CWB170 subunits, could be at least partially rescued upon incubation with purified 

tetramers of the latter protein (Fig. 3). This implies that, despite the apparent stability of 

the CWB170 tetrameric form, the equivalent module in mLys170 can still interact with 

and displace subunits of the tetramer, something that seems also to be supported by the 

cross-linking experiments presented in figure 7. Yet, the same cross-linking results also 

suggest that the efficiency of formation of mLys170:CWB170 complexes during co-

incubation of the purified subunits is low. Such indication emerges when comparing the 

intensity of the bands of cross-linked heterooligomers present in Lys170 and in the 

mLys170/CWB170 mixtures, like for example the 55 kDa cross-linking product 

corresponding to a 1Lys170FL(or mLys170):2CWB170 complex (compare panels A and 

D of Fig. 7). We could not detect also any obvious new peak (at most, we detected slight 

peak shifts) during analytical SEC of mLys170/CWB170 mixtures, again suggesting low 

efficiency of complex formation (data not shown). This should explain why 

mLys170/CWB170 mixtures could not induce detectable lysis of dense cell suspensions, 

despite being able to produce the lysis halos of figure 3. In conclusion, the production of 

Lys170FL:CWB170 heterooligomers, that is, Lys170, seems to be much facilitated when 

the two subunits are produced concomitantly within the same cell. 

Our results indicate that the full length, monomeric endolysin needs to increase its 

number of CWB motifs for optimal lytic activity, a requirement that is fulfilled by the 

self-association capacity of the CWB170 subunit (a total of 4 CWB170 motifs present in 

the 1:3 complex). The assembly of CWB170 modules at the Lys170FL C-terminus seems 

to increase the endolysin affinity to cells (Fig. 5); it might also contribute to the proper 

folding/orientation of the enzyme, namely of its N-terminal CD, as suggested for the 

CWB repeats of the pneumococcal endolysin Cpl-1 (Hermoso et al., 2003). The extended 

configuration of mLys170 inferred from its “abnormal” SEC profile (Fig. 6) might be an 

indication of this. 
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It has been shown for several PG hydrolases of Gram-positive systems that the number 

and type of CWB motifs can play a critical role on the catalytic regulation and/or affinity 

of the enzymes to their target cell walls (López and Garcia 2004; Steen et al., 2005; 

Mesnage et al., 2014; Wong et al., 2014). This has been particularly studied for the CWB 

segments of pneumococcal autolysins (bacterial PG hydrolases responsible for the 

phenomenon of autolysis) and their related phage endolysins, whose tandemLy-arranged 

repeats of CWB motifs seem to provide a mechanism to improve cell wall recognition 

(López and Garcia 2004; Bustamante et al., 2010). For several of these pneumococcal PG 

hydrolases the CWB repeats recognize the choline residues of cell wall teichoic acids. 

The number of choline-binding repeats (ChBRs) of autolysins can vary from 7 to up to 

18, but a minimum of 4 ChBRs appears to be required for efficient binding to the cell 

wall (Garcia et al., 1994; López and Garcia 2004; Moscoso et al., 2005). Interestingly, in 

presence of choline the C-terminal ChBRs mediate the dimerization of the LytA 

autolysin, being this dimerization crucial for catalytic activity (Usobiaga et al., 1996; 

Fernández-Tornero et al., 2001).  

The LytA-like pneumococcal phage amidases Ejl and Pal can exist in solution in a 

monomerdimer equilibrium (and additionally tetramer in case of Ejl) depending on 

the choline concentration in the media, with high concentrations favoring the dimeric 

(and tetrameric Ejl) state (Sáiz et al., 2002; Varea et al., 2004). The particular ability of 

Ejl to tetramerize upon substrate binding was proposed as a mechanism to compensate the 

relatively low affinity of the enzyme for choline (Sáiz et al., 2002). Our results do not 

exclude the possibility of co-existence of the 1Lys170FL:3CWB170 complex (67.4 kDa) 

with intermediate molecular species like for example 1Lys170FL:2CWB170 (55.8 kDa) 

or even 1Lys170FL:1CWB170 (44.2 kDa). In fact, in the SEC-MALS analysis of figure 6 

we could observe that elution of the 70 kDa monodisperse species corresponding to the 

1:3 complex was followed by a gradual decrease of the molar mass curve, suggesting the 

presence of species with lower molar mass. The occurrence of this intermediate species is 

also compatible with the cross-linking studies (Fig. 7).  

We wondered if this particular endolysin CWB domain could be found associated to 

different CDs, other than the Amidase-2 family CD present in Lys170. We performed 

BLASTP homology searches using the CWB170 primary sequence and, remarkably, the 

results showed that CWB170-like modules can be found in the C-terminus of PG 

hydrolases harboring CDs with diverse enzymatic specificities, including lysozymes, 
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glucosaminidases and peptidases, in addition to different families of amidases (Fig. 8). 

This observation reinforces the independent functional character of this CWB module. 

Another interesting feature emerging at the DNA level was that all CWB170-like 

domains analyzed started with a methionine codon preceded by a putative RBS (Fig. 8), 

suggesting that translation initiation at this internal start sites should be responsible for 

the independent production of this domain.  

 

 

 

Fig. 8. PG hydrolases with CWB170-like domains. BLASTP searches with CWB170 sequence retrieved 

several PG hydrolases displaying CDs of different enzymatic specificities. The PG hydrolases are organized 

according to their domain architecture and only one member representative of each group is shown. The 

“N” value denotes the number of single, non-redundant protein sequences within each group, but each 

sequence may have been described in many different sequenced genomes (e.g., the represented E. faecalis 

TX0104 sequence is identical to that of 25 different database entries). The GenBank Acc. N0. of the 

members shown are: E. faecalis TX0104, EEI10842; Phage Ef11, ACV83371; Phage EF62, ADX81356; 

E. haemoperoxidus, EOH93425; Carnobacterium maltaromaticum, CCO10928; Ruminococcus gnavus, 

EDN76763; E. pallens, EOH88591. CDs families are according to Pfam database: Amidase_2, pfam01510; 

CHAP, pfam05257; Peptidase_M23, pfam01551; Glucosaminidase, pfam0183; Glyco_hydro_25, 

pfam01183; Amidase_5, pfam05382; Phage_lysozyme, pfam00959; Amidase_3, pfam01520). The in-frame 

ATG codon defining the beginning of CWB170-like domains and the putative RBS upstream are depicted 

in bold (also present in many other members of each group, but we have not confirmed if in all of them). 

ID, sequence identity of the CWB170-like domains to the CWB170 of Lys170, within each group of PG 
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hydrolases (a range or single ID values are presented depending on weather CWB170-like sequences vary 

or not within a given group, respectively). 

 

While we were preparing this article for publication, Dunne et al. (2014) reported on the 

E. coli expression of Clostridia endolysins CD27L and CTP1L and the concomitant 

production of endolysin C-terminal fragments that functioned as a trigger/release factor 

for these amidases. As for Lys170, these C-terminal fragments essentially correspond to 

the predicted CWB domains of the endolysins. Moreover, the N-terminal residue of the 

CD27L fragment was identified as a methionine, whose corresponding codon is preceded 

by putative RBS (TGAGGGAGTTAAACAG.ATG). The CTP1L C-terminal fragment 

was deduced to start with a valine residue (GTG codon), also preceded by a putative RBS 

(AGGGGGAAGATGAA.GTG). Substitution of the initiating Met and Val residues by a 

proline ceased the production of the C-terminal CWB domains. Strangely, the authors 

never refer to the hypothesis of CD27L and CTP1L C-terminal fragments being produced 

from translation initiation at the putative internal start sites. Instead, they propose that the 

Met and Val residues are critical for an autocleavage event that is responsible for the 

generation of the C-terminal fragments. The authors also argue that the cleavage 

mechanism is triggered by one of two possible dimerization modes of the C- terminal 

fragments and that release of the CWB domain is necessary to activate CTP1L, whereas 

in the case of CD27L it might simply facilitate endolysin cell wall penetration.  

In the case of endolysin Lys170, we have excluded cleavage as the mechanism generating 

the independent CWB170 module and proved the functionality of the internal translation 

site. In addition, in none of the experiments presented in this work we could obtain 

evidences for the presence of a 21 kDa N-terminal fragment of Lys170, which would 

result from a cleavage event at Met202. Such N-terminal endolysin fragment is never 

shown also in the work of the Clostridia endolysins. In contrast to the CD27L endolysin 

that apparently exhibited fast and continuous cleavage (Dunne et al., 2014), independent 

incubation of Lys170, mLys170 and CWB170 for 3 days at 4 ºC or at room temperature 

did not reveal any obvious alteration in the polypeptides composition, apart from the 

slight formation of high molecular weight SDS-resistant aggregates at room temperature 

(data not shown). The fact that in a great number of PG hydrolases the putative CWB170-

like domain is initiated by an in-frame methionine preceded by a properly spaced RBS 

(Fig. 8) is also suggestive of the independent production of the C-terminal module by 
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translation initiation at these internal sites. Thus, in our opinion the autocleavage 

mechanism proposed to explain the CD27L and CTP1L C-terminal fragments deserves 

confirmation, namely by studying the effect of inserting a stop codon upstream of the 

Met186 and Val195 putative internal starts, respectively.  

It is relatively common in phage genomes the existence of fully or partially overlapped 

genes, some of which encoding lysis proteins that are known to interact. The best studied 

examples are provided by the E. coli phage  lytic functions. The  holin S gene has a 

dual translation start that enables the synthesis of the holin and anti-holin functions (Bläsi 

et al., 1989). The last step of  virus particles release from infected E. coli involves the 

disruption of the host cell outer membrane. This is accomplished by a spanin complex 

whose components are encoded by genes Rz and Rz1, with the latter being fully 

embedded in the +1 reading frame of Rz (Berry et al., 2012). Endolysin genes encoding 

the expected full length and truncated products through alternative translation initiation 

have been described previously for the staphylococcal and mycobacterial phages 2638A 

and Ms6, respectively. It was speculated for the 2638A endolysin that interaction between 

the full length and the truncated product could explain the higher activity observed when 

the two polypeptides were present (Abaev et al., 2013). The two products of the Ms6 

endolysin gene were shown to be necessary for the normal timing, progression and 

completion of host cell lysis during phage infection, but the possible interaction between 

the two proteins remains elusive (Catalão et al., 2011). 

In conclusion, we believe that the enterococcal endolysin Lys170 represents the first 

described example of a class of PG hydrolases, whose optimal lytic activity depends on 

the assembly of independent CWB subunits at the corresponding module of the full 

length monomer. We speculate that this may constitute a new strategy of increasing the 

number of CWB motifs in these enzymes, as an alternative to the CWB tandem repetition 

commonly found in monomeric PG hydrolases. Considering the data of figure 8 and the 

discussion above about the Clostridia endolysins, we think that this class of lytic enzymes 

might be more widespread than previously anticipated. 
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MATERIALS AND METHODS 

 

Bacteria, plasmids, phage and growth conditions 

E. coli strains XL1-Blue and XL1-Blue MRF’ (Stratagene), used for plasmid isolation 

and propagation, were grown at 37 ºC in Luria Bertani (LB) medium (Sambrook and 

Russell, 2001). The E. coli expression strain CG61 (São-José et al., 2000) and its 

derivatives were grown in LB at 28 C before induction of protein production and at 37 

C afterward. Protein production was induced by heat shock at 42 C in a water-bath with 

shaking for 30 min. When necessary LB was supplemented with ampicillin (100 µg mL-

1), kanamycin (30 µg mL-1) and/or tetracycline 10 µg mL-1. The E. faecalis strains 926/05 

and 1518/05 (Proença et al., 2012) were grown in Trypton Soy Broth (TSB). All culture 

media components were purchased from Biokar Diagnostics. The expression vector 

pIVEX2.3d (Roche Applied Science), used for protein overproduction in E. coli, allows 

the expression of cloned genes under the control of the phage T7 10 promoter and the 

production of the corresponding proteins C-terminally fused to a hexahistidine tag. Phage 

F170/08 was propagated in E. faecalis 926/05 as described previously (Proença et al., 

2012). 

 

General DNA techniques 

Phage F170/08 DNA was extracted from CsCl-purified lysates as described by Vinga et 

al. (2012). DNA polymerase KOD hot start master mix (Novagen) was used for high 

fidelity Polymerase Chain Reaction (PCR), whereas screenings by PCR were performed 

with DNA polymerase NzyTaq green 2x master mix (NZYTech). Extraction of E. coli 

plasmid DNA and purification of PCR products was performed with the commercial kits 

QIAprep Spin Miniprep (QIAGEN) and High Pure PCR Product Purification (Roche 

Applied Science), respectively, following the manufacturers’ instructions. Restriction 

endonucleases and T4 DNA ligase were from Fermentas Molecular Biology Tools 

(Thermo Scientific). DNA restriction, ligation and conventional agarose gel 

electrophoresis were carried out essentially as described by Sambrook and Russell (2001). 

Development of competence and transformation of E. coli strains was according to the 
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method of Chung et al. (1989). All recombinant plasmids were confirmed by DNA 

sequencing (Macrogen, Seoul, Korea). 

 

General protein techniques 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed as described by LaemmLi (1970). Western blotting analysis was carried out 

basically as described by Renart et al. (1979). Endolysin immunodetection was performed 

using a rabbit anti-Lys170 polyclonal serum (see section Rabbit immunization with pure 

Lys170) as primary antibody, and horseradish peroxidase (HPR)-conjugated goat anti-

rabbit Fc polyclonal antibody (Pierce, Thermo Scientific) as secondary antibody. 

Antigen/antibody complexes were detected by chemiluminescence using the RapidStep 

ECL Reagent (Calbiochem). Protein quantification was carried out with the Bradford 

reagent (Bio-Rad Laboratories) using bovine serum albumin (BSA, Bio-Rad 

Laboratories) as standard. PageRuler Prestained Protein Ladder (Thermo Scientific) was 

used as protein marker in SDS-PAGE. 

 

Construction of lys170 derivatives 

Plasmid pDP2, a pIVEX2.3d derivative carrying gene lys170 was described previously 

(Proença et al., 2012). Gene lys170 in pDP2 was subjected to site-directed mutagenesis 

by using the Quick Change II Site directed mutagenesis kit (Stratagene Agilent 

Technologies), resulting in plasmid pDP3 carrying mLys170 gene. The introduced 

nucleotide substitutions eliminated a putative secondary translation start site internal to 

lys170 (see text for details). Mutagenic primers were also used to substitute the Met170 

and Ala171 codons of lys170 by stop and Thr codons, respectively, with the concomitant 

creation of an XbaI restriction site (see text for details). The pIVEX2.3d derivative 

harboring this mutated gene (lys170STOP) was designated pDP5 The DNA segment 

encoding the endolysin C-terminal region CWB170 was PCR amplified with a primer 

pair that added NdeI and XmaI restriction sites to the 5’ and 3’ ends of the coding 

sequence, respectively. The PCR product was cloned into pIVEX2.3d cut with the 

referred enzymes, yielding plasmid pDP4.  
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Production and purification of endolysin polypeptides 

Protein overproduction in E. coli CG61 and subsequent purification by metal chelate 

affinity chromatography was as previously described (Proença et al., 2012). Peak 

fractions from the affinity chromatography step were further purified by size-exclusion 

chromatography using a HiLoad 16/600 superdex 75 prep grade column (GE Healthcare 

Life Sciences), which was equilibrated and run with imidazole-free endolysin buffer (20 

mM HEPES-Na, 500 mM NaCl, 1% glycerol and 1 mM DTT, pH 8.0). Fractions 

containing the purified proteins were pooled, concentrated when necessary and stored at -

80 C as small aliquots. Experimentally-determined partition coefficients (Kav) of proteins 

were used to estimate Stokes radii and the corresponding relative molecular masses by 

extrapolation from a plot of Stokes radii of standard proteins versus (-logKav)1/2 (Cabré et 

al., 1989). The column void volume (V0) was determined with blue dextran 2000 (GE 

Healthcare Life Sciences). The standard proteins (Bio-Rad Laboratories) were 

thyroglobulin (molecular mass = 670 kDa; Stokes radius = 8.6 nm), -globulin (158 kDa; 

4.8 nm), ovalbumin (44 kDa; 2.73 nm), myoglobin (17 kDa; 2.08 nm) and vitamin B12 

(1.35 kDa; 0.85 nm) (Cabré et al., 1989; Talmard et al., 2007).  

 

Protein N-terminal sequencing  

N-terminal sequencing by the Edman reaction was performed by the Analytical Services 

Unit, ITQB (Oeiras, Portugal) in a Procise 491 HT Protein Sequencer (Applied 

Biosystems). 

 

Rabbit immunization with purified Lys170 

The service of raising a rabbit polyclonal anti-serum against endolysin Lys170 was 

purchased to ACIVET, FMV-UTL (Lisbon, Portugal). One New Zealand white rabbit 

was treated with a total of five subcutaneous injections, where the first one contained 220 

μg of purified Lys170 in 1 mL emulsion of Freund’s Adjuvant Complete (Sigma-Aldrich) 

and the remaining four contained each 110 μg of endolysin in 1 mL emulsion of Freund’s 

Adjuvant Incomplete (Sigma-Aldrich). The injections were administered at 2-3 week 

intervals. The anti-Lys170 reactivity/specificity of the different sera collected from the 

animal throughout the protocol was analyzed by Enzyme-Linked Immunosorbent Assay 
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(ELISA) using HRP-conjugated goat anti-rabbit Fc polyclonal antibody as secondary 

antibody. Five days after the final boost, the total serum was recovered, aliquoted and 

stored at -80 C. 

 

Lytic activity of Lys170 and its derivatives  

The lytic activity of Lys170, mLys170 and CWB170, alone or in combination was 

evaluated by spotting the indicated protein quantities on a dense lawn of viable target 

cells, which was prepared as follows. The enterococcal strain 1518/05 was grown 

overnight at 30 C without aeration, reaching an OD600 of approximately 0.8-1.0. Cells 

were harvested by centrifugation and concentrated 100-fold in fresh TSB. A sample of 

300 µL of this bacterial suspension was incorporated in endolysin buffer supplemented 

with 0.7 % agar and poured in a Petri dish. Lysis halos developed during overnight 

incubation at 37 C. Negative controls were equally prepared by spotting endolysin 

buffer. 

 

Time course of endolysin production during phage infection 

To study the synthesis of Lys170 polypeptides in E. faecalis 926/05 during infection by 

phage F170/08, an exponentially growing culture of the strain was infected with the 

phage at an input multiplicity of 2 and incubated at 37 C for 80 min. One-milliliter 

samples were collected every 10 min, cells were pelleted by centrifugation and stored at -

80 C. After thawing, cells were resuspended in 40 µL TE buffer (Sambrook and Russell, 

2001) supplemented with 2.5 mg mL-1 lysozyme, 10 µg mL-1 DNase I and 1x Complete 

Mini EDTA-free Protease Inhibitor Cocktail (Roche Applied Science), and incubated for 

80 min at 37 C for cell lysis. Ten micrograms of total protein from each time point were 

separated by SDS-PAGE, followed by Western blotting analysis with anti-Lys170 

polyclonal serum prepared at 1:10,000 dilution in 1 % skim milk in PBS-T (PBS 1x 

supplemented with 0.02 % Tween-20) and HRP-conjugated goat anti-rabbit Fc polyclonal 

antibody diluted 1:5,000 in 3 % skim milk in PBS-T. 
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Binding of endolysin polypeptides to E. faecalis cells 

Protein samples used in the following experiments were centrifuged (16,000 g, 20 min, 4 

ºC) just before their use to ensure elimination of eventual protein aggregates/precipitates. 

E. faecalis strain 1518/05 was grown until OD600 0.5 at 37 C with aeration, pelleted by 

centrifugation and concentrated 10-fold in endolysin buffer. Samples of 100 µL of this 

cell concentrate were incubated with 1 µg of endolysin polypeptides (Lys170, mLys170 

or CWBD170) for 30 min on ice to minimize cell lysis. The reactions were prepared in 

microcentrifuge tubes pre-coated with 3 % BSA (Sigma-Aldrich) to avoid unspecific 

protein binding to plastic. Controls were equally prepared with endolysin buffer added 

instead of target cells. The mixtures were centrifuged (16,000 g, 10 min, 4 ºC) and 10 µL 

of both supernatant and resuspended pellet fractions (same initial volume) were analyzed 

by Western blot with anti-Lys170 antibodies as described above. 

 

Size-Exclusion Chromatography with Multi-Angle Light Scattering (SEC-MALS) 

Purified Lys170, mLys170 and CWB170 were analyzed using an HPLC-MALS system 

(Shimadzu), a light scattering detector (mini DAWN TREOS system, Wyatt Technology) 

and refractive index detector (Optilab T-rEX, Wyatt Technology). A 120 µg sample of 

each protein was injected in a Superdex 200 10/300 GL Increase column (GE Healthcare 

Life Sciences) equilibrated in endolysin buffer and run at a flow rate of 0.5 mL min-1. 

Molar masses of proteins were calculated using ASTRA 6.1 software (Wyatt Technology) 

using a refractive index increment (dn/dc) value of 0.183 mL g-1. 

Protein stoichiometry analysis was performed using the multisignal detection system of 

SEC-MALS (Nelson et al., 2006). The “UV extinction from RI peak” method of ASTRA 

software allows the determination of UV extinction coefficient (p) in units of mL mg-1 

cm-1. By using the dn/dc value and the UV and RI signals of the protein peaks, 

experimental p values were calculated and compared with those predicted from the 

protein amino acid sequences. Theoretical p were computed with ProtParam tool 

(http://web.expasy.org/protparam/; Gasteiger et al., 2005), which calculates protein 

extinction coefficients using the Edelhoch method (Edelhoch, 1967), but with the 

extinction coefficients for Trp and Tyr residues determined according to Pace et al. 

(1995). We have considered the output values assuming reduced Cys residues.  

http://web.expasy.org/protparam/;
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Protein Cross-linking experiments 

Working solutions of the cross-linking agent bis(sulfosuccinimidyl) suberate (BS3, 

Thermo Scientific) were prepared immediately before use to decrease the extent of 

hydrolysis. BS3 was first dissolved in ultra-pure water to a final concentration of 20 mM 

and then diluted to 5 mM in endolysin buffer. Purified Lys170, mLys170 and CWB170 

were set to a final concentration of 50 ng µL-1 (monomer molar concentrations of 1.5 and 

4.3 µM for mLys170 and CWB170, respectively). Protein samples were treated with 250 

µM of BS3 for 30 min at room temperature (RT), after which the reactions were stopped 

with 50 mM Tris-HCl at pH 7.5 for 15 min at RT. In the control samples the cross-linking 

agent was substituted by endolysin buffer. Two hundred nanograms of each reaction were 

separated by SDS-PAGE followed by Western blot analysis as described above, except 

that anti-Lys170 antibodies were diluted 1:40,000. To cross-link Lys170FL and 

CWBD170 produced during phage F170/08 infection, 5 µg of total protein from time 

point t = 60 min (see section Time course of endolysin production during phage infection) 

were treated with 1 or 5 mM BS3. Cross-linking conditions were as above and subsequent 

analysis by Western blot was with a 1:10,000 dilution of anti-Lys170 antibodies.  

 

Bioinformatics analysis 

Protein homology searches were carried out with BLASTP (Altschul et al., 1997) using 

the NCBI’s nonredundant protein sequence database. Protein conserved domains were 

predicted with NCBI’s tool CDD (Marchler-Bauer et al., 2011) and Pfam 

(http://pfam.xfam.org/). Multiple protein sequence alignments were performed with 

ClustalW2 (Larkin et al., 2007).  
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ABSTRACT 

 

Bacteriophage lytic enzymes, either endolysins or virion-associated lysins, have been 

receiving considerable attention as potential antibacterial agents, particularly for the 

combat of antibiotic-resistant Gram-positive pathogens. A common obstacle in the 

exploration of these enzymes is their low solubility during large scale production. In 

addition, a conclusion that easily emerges from the careful analysis of a great number of 

reports on the field is that the activity of phage lytic enzymes is rarely studied in 

conditions that support robust growth of the target bacteria. Here we report the 

construction and study of a chimerical lysin, EC300, which was designed to target and 

kill Enterococcus faecalis in conditions supporting vigorous bacterial growth. EC300 

resulted from the fusion of a predicted M23 endopeptidase domain of a virion-associated 

lysin to the putative cell wall binding domain of a previously characterized amidase 

endolysin, both produced by the E. faecalis phage F170/08. In addition to display high 

solubility, this bacteriolysin-like protein exhibited a clear enhanced lytic activity over the 

parental endolysin, when both were assayed in a rich bacterial growth medium. We 

demonstrate the killing efficacy of EC300 against growing cells of a panel of typed E. 

faecalis clinical strains with high level of antibiotic-resistance. The possible reasons for 

the marked difference between the lytic performance of EC300 and that of the amidase 

are discussed. 
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INTRODUCTION 

 

Enterococci are commensal bacteria in the intestines of humans and several animals, and 

can also be found in soil, water and plants (Klein, 2003). In the recent years, the species 

Enterococcus faecalis and Enterococcus faecium have become increasingly important 

opportunistic pathogens worldwide, especially because of life-threatening nosocomial 

infections (Gilmore et al., 2013). They have been associated to several human infections, 

such as neonatal sepsis, peritonitis, device-related infections and infective endocarditis, 

being described as the second most common cause of wound and urinary tract infections 

and the third most common cause of bacteraemia (Schaberg et al., 1991; Emori et al., 

1993; Poh et al., 2006; Fisher et al., 2009; Sava et al., 2010). Enterococci exhibit intrinsic 

resistance to several first-line antimicrobial agents; they show low-level resistance to β-

lactams and aminoglycosides, and resistance to cephalosporins (Hammerum, 2012). In 

addition, enterococci show high propensity to acquire resistance to other antimicrobial 

agents, including quinolones, macrolides, tetracyclines, streptogramins and glycopeptides 

(Murray, 1990; Arias et al., 2008; French et al., 2010). 

The reduced susceptibility to antibiotics can make extremely difficult the treatment of an 

infection caused by enterococci and the therapeutic options are limited (Werner et al., 

2013). Equally worrying is the fact that new antibiotics are not being developed at a rate 

sufficient to replace those drugs that are becoming ineffective (Theuretzbacher, 2012). 

Therefore, there is a growing need to find therapeutic alternatives to fight infections 

caused by these multidrug resistant enterococci.  

Bacteriophages, or simply phages, are viruses that specifically infect bacteria. During 

their life cycle, most double-stranded DNA phages seem to employ two types of enzymes 

that degrade de peptidoglycan (PG) moiety of the bacterial cell wall: i) virion-associated 

lysins (VALs), which are typically carried in the virus particle and are thought to promote 

a local cleavage of PG bonds to facilitate phage DNA transference into the host bacterial 

cell, and ii) endolysins, which act at the end of the phage reproductive cycle to destroy the 

cell wall PG mesh leading to cell burst and to the consequent release of the virion 

progeny. The potential of endolysins, and more recently of VALs as antibacterial agents 

towards Gram-positive bacterial pathogens has been intensively studied (for recent 

reviews see Fenton et al., 2010; Nelson et al., 2012; Schmelcher et al., 2012a; Rodríguez-
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Rubio et al.; 2013). Phage endolysins from Gram-positive systems typically display a 

modular architecture where one or more catalytic domains (CDs) responsible for PG 

cleavage are connected by a flexible linker to a cell wall binding (CWB) domain 

(Schmelcher et al., 2012a). VALs from phages infecting Gram-positive bacteria are 

frequently multidomain proteins and are usually larger than cognate endolysins; similarly 

to these they can display multiple CDs (Rodríguez-Rubio et al., 2013).  

In spite of the increasing number of reports in the last 10-15 years supporting the 

antibacterial activity of phage PG hydrolases, the fact is that in the vast majority of the 

studies the lytic enzymes are tested in conditions that do not support robust bacterial 

growth; most commonly, in vitro experiments are performed with target cells washed and 

suspended in buffered solutions. In fact, the high lytic activity observed in these 

conditions frequently does not translate to the expected results when assays are 

transposed to animal infection models. In most cases, satisfactory levels of animal 

survival are observed only when lytic enzymes are administrated to animals soon after the 

injection of the deadly bacterial inoculum, which is also prepared in a buffer (Loeffler et 

al., 2003; Gu et al., 2011; Oechslin et al., 2013). The observation that metabolically 

active, growing bacteria are able to mount at least a certain level of resistance to 

endolysin attack from the outside is somewhat expected, since in the context of phage 

infection endolysins always act after cells had been killed by another phage-encoded 

protein, the holin (Catalão et al., 2013). Regarding this aspect, VALs might be viewed as 

having the advantage of being naturally “designed” to act on actively growing bacteria. 

Another group of proteins sharing this feature are bacteriolysins (formerly class III 

bacteriocins, Cotter et al., 2005) like the M23-like endopeptidases lysostaphin and 

enterolysin A, which are known to display potent lytic activity in growth promoting 

conditions (Kumar, 2008; Khan et al., 2013). 

The goal of this work was to design an enzyme with effective anti-E. faecalis activity in 

growth supporting conditions. For that, we have assumed the theoretical advantages of 

VALs and bacteriolysins referred to above and have generated an artificial, bacteriolysin-

like enzyme (EC300) by fusing the M23 endopeptidase CD of the VAL Orf73 to the 

CWB domain of the previously characterized endolysin Lys170 (Proença et al., 2012; 

Proença et al., 2014), both produced by the E. faecalis phage F170/08. The results show 

the superior lytic activity of EC300 when compared to the endolysin Lys170. 
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MATERIALS AND METHODS  
 

Bacteria, phage and growth conditions 

Escherichia coli strain XL1-Blue MRF’ (Stratagene), used for plasmid isolation and 

propagation, was grown at 37 C in LB medium (Sambrook and Russell, 2001). E. coli 

expression strain CG61 (São-José et al., 2000) and its derivatives were grown in LB at 28 

C before thermal induction of protein production (heat-shock at 42 C for 30 min in a 

wet bath), and at 37 C afterward. When necessary, LB was supplemented with ampicillin 

(100 µg/mL), kanamycin (30 µg/mL) and/or tetracycline (10 µg/mL). The antibacterial 

activity of EC300 was tested against a panel of typed, multiresistant enterococcal clinical 

strains (Table 1), which was composed of 28 E. faecalis and 21 E. faecium isolates from 

patients of a Portuguese hospital between 2004 and 2006 (Mato et al., 2009), plus the two 

model E. faecalis clinical strains MMH594 and V583 (Sahm et al., 1989; Huycke et al., 

1991; Shankar et al., 2002; Paulsen et al., 2003). These strains and the E. faecalis clinical 

isolates 1518/05 and 926/05 from TechnoPhage collection were grown in Trypton Soy 

Broth (TSB). When required, media were supplemented with 1.4 or 0.7 % agar to obtain 

solid or soft-agar plates, respectively. All culture media components were purchased from 

Biokar Diagnostics. E. faecalis phage F170/08 was propagated in E. faecalis strain 

926/05 as described previously (Proença et al., 2012). 
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Table 1. Typed enterococcal clinical strains used in this work. 

Strain ID PFGE 
pattern 

Vancomycin 

resistance 
Other relevant resistances1 References 

E. faecalis, n=30       Mato et al.,, 2009 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

EHCP 3 AO6 resistant HLG, Teic, Q/D, Cip, Te, E, 
DA 

EHCP 13 S susceptible HLG, Cip, E, DA  

EHCP 24 AO5 susceptible HLG, Q/D, Cip, Te, E, DA 

EHCP 31 A2 susceptible HLG, Q/D, Te, E, DA 

EHCP 55 AW susceptible HLG, Teic, Q/D, E, DA 

EHCP 73 J susceptible HLG, Q/D, Te, E, DA 

EHCP 78 A3 susceptible HLG, Q/D, Te, E, DA 

EHCP 92 AR susceptible HLG, Cip, Te, E, DA 

EHCP 93 AX susceptible HLG, Cip, Te, E, DA 

EHCP 94 AM susceptible HLG, Cip, Te, E, DA 

EHCP 143 AU susceptible HLG, Cip, Te, E, DA 

EHCP 107 K susceptible HLG, Cip, E, DA 

EHCP 151 H susceptible HLG, Cip, E, DA 

EHCP 118 AT susceptible HLG, Q/D, Cip, Te, E, DA 

EHCP 164 B susceptible HLG, Q/D, Cip, E, DA 

EHCP 193 BC susceptible HLG, Q/D, Cip, E, DA 

EHCP 225 R susceptible HLG, Q/D, Cip, E, DA 

EHCP 241 O susceptible HLG, Q/D, Cip, E, DA 

EHCP 237 AO2 susceptible HLG, Q/D, Cip, Te, E, DA 

EHCP 267 AO2 resistant HLG, Teic, Q/D, Cip, Te, E, 
DA 

EHCP 271 A11 susceptible HLG, Q/D, Te, E, DA 

EHCP 279 T susceptible HLG, Q/D, Te, E, DA 

EHCP 292 A4 susceptible HLG, Q/D, Te, E, DA 

EHCP 281 U susceptible HLG, Q/D, Cip, Te, E, DA 

EHCP 339 AO1 susceptible HLG, Q/D, Cip, Te, E, DA 

EHCP 391 M susceptible HLG, Q/D, Te, E, DA 

EHCP 332 I susceptible HLG, Q/D, Cip, E, DA 

EHCP 389 AO1 resistant HLG, Teic, Q/D, Cip, Te, E, 
DA 

MMH594 NA susceptible HLG, E Huycke et al.,, 1991; 
Shankar et al., 2002 

V583 NA resistant HLG, E Sahm et al., 1989 ; 
Paulsen et al., 2003 
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Table 1, cont     

Strain ID PFGE 
pattern 

Vancomycin 

resistance 
Other relevant resistances1 References 

E. faecium, n=21        Mato et al., 2009 

 

  

  

  

  

  

  

  

  

  

  

 

  

  

  

  

  

 

EHCP 5 c10 resistant Amp, HLG, Teic, Cip, Te, 
E, DA 

EHCP 6 a1 resistant Amp, HLG, Teic, Cip, E, 
DA 

EHCP 14 d2 susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 40 d9 susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 36 a2 resistant Teic, Cip, E, DA 

EHCP 65 o susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 88 c2 susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 178 p susceptible  HLG, Cip, Te, E, DA 

EHCP 149 d6 susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 161 t susceptible Amp, HLG, Cip, Te, E 

EHCP 181 d8 susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 184 f susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 211 c12 susceptible Amp, HLG, Cip, E, DA 

EHCP 264 e susceptible Amp, HLG, Q/D, Cip, Te, 
E, DA 

EHCP 341 u susceptible Amp, HLG, Cip, Te, E 

EHCP 358 i susceptible Amp, HLG, Cip, Te, E, DA 

EHCP 361 c16 resistant Amp, HLG, Teic, Cip, E, 
DA 

EHCP 302 c5 susceptible Amp, HLG, Cip, E, DA 

EHCP 407 d7 resistant Amp, Teic, Cip, E, DA 

EHCP 459 s susceptible Amp, HLG, Cip, E, DA 

EHCP 378 w susceptible Amp, HLG, Cip, Te, E, DA 

 

1Amp- Ampicillin; HLG- High-level gentamicin; Teic- Teicoplanin; Q/D- Quinupristin/Dalfopristin; Cip- 
Ciprofloxacin; Te- Tetracyclin; E- Erythromycin; Da- Clindamycin; LZD- Linezolid 
NA: Not applied. 

 

General DNA techniques 

Phage F170/08 DNA was extracted from CsCl-purified lysates (Vinga et al., 2012). 

Preparation of E. coli plasmid DNA and purification of Polymerase Chain Reaction 

(PCR) products were performed with the commercial kits QIAprep Spin Miniprep kit 

(QIAGEN) and High Pure PCR Product Amplification kit (Roche Applied Science), 
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respectively, following the manufacture instructions. The restriction enzymes used were 

purchased to Fermentas (Thermo Scientific). Recombinant plasmids were confirmed by 

DNA sequencing (Macrogen, Seoul, Korea). Restriction endonuclease digestions, DNA 

ligations, and conventional agarose gel electrophoresis were carried out essentially as 

described by Sambrook and Russell (2001). Development of competence and 

transformation of E. coli strains was according to the method of Chung et al., (1989). 

 

General protein techniques 

The Bradford reagent (Bio-Rad Laboratories) was used for protein quantification using 

bovine serum albumin as standard. After Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE), gels were either stained with Coomassie blue or transferred 

to 0.45 µm nitrocellulose membranes (Bio-Rad Laboratories) for Western blotting 

analyses. EC300 polypeptides were immunodetected using a horseradish peroxidase-

conjugated anti-His6 monoclonal antibody (Roche Applied Science). PageRuler 

Prestained Protein Ladder (Thermo Scientific) was used as protein marker in SDS-PAGE. 

 

Construction and cloning of EC300 chimeric gene and its derivatives 

The coding sequence including the peptidase M23 CD of the VAL Orf73 from the 

enterococcal phage F170/08 was PCR amplified from the phage DNA using the KOD hot 

start master mix (Novagen). The sequence encoding the C-terminal region of the cognate 

endolysin Lys170, harbouring its CWB domain (CWB170), was similarly amplified in a 

separate reaction. The 3’ and 5’ ends of the M23 and of the CWB domain PCR products, 

respectively, carried a 28-bp complementary segment that allowed fusing both fragments 

by overlap-extension-PCR (Ho et al., 1989), using the M23 forward and the CWB 

domain reverse primers. These primers added NdeI and XmaI restriction sites for cloning 

of the chimerical gene in the expression vector pIVEX2.3d (Roche Applied Science), 

originating the recombinant plasmid pDPEC300. Gene EC300 in pDPEC300 was 

subjected to site-directed mutagenesis by using the Quick Change II Site directed 

mutagenesis kit (Stratagene Agilent Technologies), resulting in plasmid pDPmEC300 

carrying mEC300 gene. The introduced nucleotide substitutions eliminated the internal 

translation start site known to drive the independent synthesis of the CWB170 domain 
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(Proença et al., 2014, see text also). The pIVEX vectors allow the expression of genes 

under the control of the phage T7 10 promoter and the production of the corresponding 

proteins C-terminally fused to a hexahistidine tag. Details of the primary sequence of 

EC300, mEC300 and of the parental lytic enzymes are presented in Figure S1. The 

pIVEX2.3d derivatives were used to transform E. coli strain CG61, which produces the 

phage T7 RNA polymerase upon temperate upshift. The production of active EC300 by 

CG61 clones was confirmed by growing them over a dense lawn of autoclaved 

enterococcal cells and by checking the development of lysis halos around E. coli colonies 

(Proença et al., 2012, Fig. S2).  

 

Protein Production and purification 

EC300 and mEC300 production and purification by metal chelate affinity 

chromatography was as described by Proença, et al., (2012). Fractions eluted from the 

HisTrap HP columns (GE Healthcare) were analysed by SDS-PAGE and those containing 

the partially purified enzymes were subjected to size-exclusion chromatography using a 

Hi-load 16/600 superdex 75 prep grade column (GE Healthcare), equilibrated and run in 

protein buffer (20 mM HEPES-Na, 500 mM NaCl, 1 % glycerol and 1 mM DTT, pH8.0) 

at a flow rate of 1 mL/min. Purified enzymes were divided in small aliquots and stored at 

– 80 C until use. Experimentally-determined partition coefficients (Kav) of proteins were 

used to estimate Stokes radii and the corresponding relative molecular masses by 

extrapolation from a plot of Stokes radii of standard proteins versus (-logKav)1/2 (Cabré et 

al., 1989). The column void volume (V0) was determined with blue dextran 2000 (GE 

Healthcare Life Sciences). The standard proteins (Bio-Rad Laboratories) were 

thyroglobulin (molecular mass = 670 kDa; Stokes radius = 8.6 nm), -globulin (158 kDa; 

4.8 nm), ovalbumin (44 kDa; 2.73 nm), myoglobin (17 kDa; 2.08 nm) and vitamin B12 

(1.35 kDa; 0.85 nm) (Cabré et al., 1989; Talmard et al., 2007).  Proteins Lys170 and 

CWB170, also used in this work were produced from pIVEX2.3 derivatives pDP2 

(Proença et al., 2012) and pDP4 (Proença et al., 2014) and purified as described above.  
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Lytic activity in liquid media 

The lytic activity of EC300 and Lys170 was studied against selected E. faecalis strains 

actively growing in TSB. The strains were grown until OD600 of 0.3-0.4, centrifuged and 

resuspended in ½ volume of fresh TSB. Cell suspensions were challenged with the 

indicated concentrations of EC300, Lys170 and/or nisin (Sigma Aldrich) and OD600 

variations followed over time. Lytic activity was also tested with E. faecalis cells 

recovered in ½ volume of protein buffer. Negative controls were similarly prepared, 

except that protein buffer was added instead of the lytic proteins.  

 

Evaluation of EC300 antibacterial activity in solid medium  

The bacterial growth inhibition potential of EC300 and Lys170 was evaluated against the 

panel of typed E. faecalis and E. faecium clinical strains (Table 1) on double-layer agar 

TSA plates as follows. A 200 µL sample of each target bacteria in exponential growth 

phase (OD600 = 0.3-0.4) was incorporated in 5 mL of TSA soft-agar and poured over a 

TSA solid bottom. Plates were allowed to dry for 30 min in a laminar flow class 2 

biological safety cabinet and then 4 different amounts of purified EC300 (10, 3.3, 1.1 and 

0.37 µg in a final volume of 10 µL) were spotted on each strain lawn. The plates were 

incubated overnight at 37 C and the anti-enterococcal activity was evaluated and scored 

(- to +++) according to relative diameter and transparency of the growth inhibition halos. 

Lys170 endolysin was only tested at the maximum amount (10 µg). EC300, mEC300, 

Lys170 and CWB170, alone or in combination, were also tested on dense lawns of viable 

E. faecalis strain 1518/05 prepared in agarized protein buffer as described previously 

(Proença et al., 2014). Negative controls were prepared by spotting 10 µL of protein 

buffer. 

 

Bioinformatics tools 

Phage F170/08 putative genes were recognized by integrating results obtained with 

GeneMark.hmm and MetaGeneAnnotator web software (Besemer et al., 2005; Noguchi 

et al., 2008). Identification of phage F170/08 putative VALs were based on BLASTP 

homology searches (Altschul et al., 1997) and on the prediction of protein functional 

domains using NCBI’s CDD (Marchler-Bauer et al., 2011) and Pfam 
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(http://pfam.xfam.org/). Putative linkers connecting protein functional domains were 

assigned with SVM (Ebina et al., 2008), using the SVM-joint output. 

 

RESULTS  
 

Rationale for the generation of the chimeric lysin EC300 

We have characterized previously the lytic activity of the endolysin Lys170 from the E. 

faecalis phage F170/08 (Proença et al., 2012). Analysis of the primary sequence of the 

enzyme indicated that it carried an N-terminal CD of the Amidase_2 family (pfam01510) 

linked to a C-terminal CWB domain. Interestingly, and in contrast to the vast majority of 

described endolysins, was showed recently that Lys170 corresponds to a multimer 

composed of one subunit of the expected full length protein (Lys170FL) associated with 

up to three copies of the enzyme CWB domain (CWB170), which is simultaneously and 

independently produced from an in-frame, secondary translation start site (Proença et al., 

2014). Lys170 displayed a broad spectrum of lytic activity against E. faecalis clinical 

strains when these were collected from exponentially growing cultures and resuspended 

in a physiologic buffer before enzyme addition (Proença et al., 2012). However, Lys170 

exhibited very poor lytic or killing activity when added directly to logarithmic phase 

cultures in rich media like TSB or Brain Heart Infusion (BHI), even at concentrations of 

several tenths of micrograms per milliliter (Proença et al., unpublished). Strikingly, the 

lytic capacity of the endolysin could be fully restored in these conditions if E. faecalis 

cells were treated with nisin (see below), a well know lantibiotic that induces lipid II-

mediated pore formation in the bacterial cytoplasmic membrane (Hasper et al., 2004; 

Wenzel et al., 2012). These results indicated on the one hand that Lys170 activity was not 

being inhibited by growth media components, and from the other hand that actively 

growing E. faecalis exhibits intrinsic resistance to exogenously-added Lys170.  

As mentioned above, the ability of actively growing cells to resist endolysin attack may 

simply reflect the fact that during phage infection endolysins always act in cells 

previously killed by the holin function. In contrast, other PG hydrolases such as VALs 

and bacteriolysins are meant to act against bacteria in this physiologic state. Curiously, 

some PG hydrolysis CDs seem to be shared by VALs and bacteriolysins, like for example 

the endopeptidase CD of the M23 family (Fig. 1A), which is found in several VALs and 

http://pfam.xfam.org/).
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in the bacteriolysins lysostaphin and enterolysin A (Thumm and Götz 1997; Sudiarta et 

al., 2010; Rodríguez-Rubio et al., 2012a; Khan et al., 2013; Stockdale et al., 2013).  

 

Fig. 1. Rationale behind the construction of the lytic chimera EC300. (A) Examples of bacteriolysins and 

virion associated lysins (VALs) harbouring the endopeptidase catalytic domain (CD) of the M23 family 

(M23). Note that the bacteriolysin schemes represent the direct, non-processed products of translation. (B) 

Domain architecture of EC300 and of the parental proteins Orf73 and Lys170 of phage F170/08. CWB170 

is the CWB domain of endolysin Lys170. CD families (Pfam database entries): M23, peptidase family 

(PF01551); SLT, soluble lytic transglycosylase (PF01464); NLPC/P60, peptidase family (PF00877); SH3b, 

cell wall binding domain of the SH3_5 family (PF08460); Amidase_2, amidase family (PF01510). 

 

In silico analysis of phage F170/08 genome sequence allowed the identification of two 

putative genes, orf72 and orf73, encoding VALs. We focused on orf73, whose deduced 

product (1061 amino acid residues; 118 kDa) harbours two putative PG hydrolysis CDs, a 

peptidase M23 (residues 687 to 787) and a NLPC/P60 (residues 926 to 1058; 

Anantharaman and Aravind, 2003) (Fig. 1B and Fig. S1A). We have reasoned that by 

fusing the peptidase M23 CD of Orf73 to the CWB domain of Lys170 (CWB170) we 

would generate a bacteriolysin-like chimera with the capacity of inducing lysis of actively 

growing E. faecalis, thus overcoming the limitation described for Lys170. The resulting 

anti-Enterococcus faecalis chimera of 300 amino acids (EC300) is schematically 

represented in Figure 1B and details of its primary sequence are presented in Figure S1. 
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 Production and Purification of EC300 

EC300 was produced in E. coli C-terminally fused to a hexahistidine tag (His6), which 

allowed its purification by affinity chromatography (AFC). During protein production we 

systematically detected in Coomassie-stained SDS-PAGE gels and in anti-His6 Western 

blots a C-terminal fragment of EC300 of about 12kDa, in addition to the expected full 

length EC300 (Fig. 2). As mentioned above, this fragment is also produced during 

Lys170 synthesis and we showed it is essential for robust lytic activity of endolysin 

Lys170 (Proença et al., 2014). The C-terminal product (CWB170) results from an in 

frame, secondary translational start site lying at the beginning of the CWB170 coding 

sequence; this secondary start site is present both in the parental endolysin Lys170 and in 

the chimera EC300 (Fig. S1). We have shown that CWB170 oligomerizes and associates 

to the full length Lys170 via CWB170-CWB170 interactions (Proença et al., 2014). 

Analysis of the major size-exclusion chromatography (SEC) peak of EC300 (SE1 peak in 

Fig. 2) indicates that the chimeric protein is an analogous heterooligomer, which also 

results from the association of the full length EC300 with the CWB170 subunit. As for 

Lys170 (Proença et al., 2014), elimination of the internal start site in EC300 coding 

sequence, with the consequent abolishment of synthesis of the extra CWB170-containing 

12 kDa polypeptide, resulted in a dramatic decrease of the lytic activity of the mutated 

protein (mEC300). 

 

Fig. 2. EC300 and mEC300 purification. (A) EC300 and mEC300 fractions from the corresponding affinity 

chromatography (AFC) purification steps were subjected to size-exclusion chromatography (SEC).  The 

eluting profile of the proteins was monitored by taking absorbance measurements at 280 nm (A280 nm). 
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Representative UV curves were combined in a single graph. Note the two-peak elution profile of EC300 

corresponding to the full length EC300/CWB170 complex and to the free CWB170 module, respectively. 

The apparent protein masses derived from the experimentally-determined partition coefficients (Kav, see 

methods) are indicated for each protein. The column void volume (V0) and the masses of standard proteins 

are also indicated. (B) SDS-PAGE analysis of the AFC and SEC steps of EC300 and mEC300. Lanes: T, 

total protein extract; FT, AFC flowthrough; AF1 and AF2, EC300 and mEC300 AFC peak fractions, 

respectively; SE1 and SE2, EC300 SEC peak fraction; SE3, mEC300 SEC peak fraction. The full length 

EC300 (34 kDa) and the CWB170 (12 kDa) polypeptides are indicated by white and black arrows, 

respectively. 

 

Yet, as observed also for the corresponding mLys170 mutant, co-incubation of mEC300 

with increasing amounts of independently purified CWB170 progressively restored at 

least part of the lytic activity lost by the mutated protein (Proença et al., 2014 and Fig. 3), 

further supporting the heterooligomeric nature of the fully active EC300. 

 

 

 

 

 

 

 

 

Fig. 3. Impact of CWB170 polypeptide in EC300 activity. A fixed amount of purified mEC300 (10 µg, 0.31 

nmol) was co-incubated with CWB170 at the indicated mEC300:CWB170 molar ratios for 1 h at room 

temperature. After this period, each protein mixture was spotted on a dense lawn of live E. faecalis cells 

prepared in agarized protein buffer. The image shows the lysis halos developed after overnight incubation at 

37 ºC. Lysis halos from individually spotted mEC300 (0.31 nmol), EC300 (0.31 nmol) and CWB170 (1.86 

nmol) are shown in the bottom row. 

 

During EC300 heterologous production the CWB170 fragment seemed to accumulate in 

large excess when compared to the amount detected during Lys170 synthesis in the same 

conditions (Proença et al., 2014); this is probably the cause of the second peak observed 

during EC300 SEC, which is composed of free CWB170 (SE2 in Fig. 2). The elution 
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profile of this non-associated form of CWB170, with an apparent mass of 36 kDa (Fig. 

2A) is very similar to that of an independently-expressed, recombinant form of CWB170, 

which we have shown to form homotetramers (Proença et al., 2014). 

All the experiments described below were carried out with EC300 from factions of SEC 

peak SE1 (Fig. 2), which in fact corresponds to a complex of full length EC300 

associated with CWB170 subunits. Data from SEC (Fig. 2A) and cross-linking 

experiments (not shown) indicate that the stoichiometry of the EC300 complex should be 

identical to that of Lys170 (Proença et al., 2014), that is, one full length EC300for three 

CWB170 subunits. In addition, mEC300 seems monomeric in solution but, as described 

for mLys170 (Proença et al., 2014), the protein appears to exhibit an extended 

conformation as it elutes during SEC with an apparent mass higher (46 kDa) than the 

expected for the monomer (34 kDa) (Fig. 2A).  

 

EC300 has superior lytic activity when compared to Lys170 

Lys170 and EC300 could lyse viable E. faecalis cells that were collected from 

exponentially growing cultures and suspended in a buffered solution before enzyme 

addition, with EC300 provoking faster and more extensive lysis than the endolysin (Fig. 

4A). However, Lys170 could neither induce lysis nor even arrest growth of cell 

suspensions prepared in TSB culture medium, in clear contrast to EC300 that was able to 

elicit lysis in these conditions (Fig. 4B). To rule out the possibility of selective inhibition 

of Lys170 by TSB components, cell suspensions were simultaneously treated with the 

endolysin and the lantibiotic nisin, which induces membrane pore formation and 

consequently cell death. Cells killed by the nisin action revealed to be fully susceptible to 

the lytic action of Lys170, indicating that TSB components do not significantly interfere 

with endolysin activity (Fig. 4B). The results also indicated that in nutritional media E. 

faecalis cells are intrinsically resistant to Lys170 attack from the outside, but still 

susceptible to the chimeric enzyme.  
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Fig. 4. Comparison of EC300 and Lys170 lytic activities in liquid medium. Cells from exponentially 

growing E. faecalis strain  1518/05 were suspended either in a buffered solution (A) or in TSB (B) and 

OD600 variation followed after addition of the lytic enzymes. EC300 and Lys170 were added at 10 µg/mL in 

(A) and 50 µg/mL in (B). Nisin concentration, either alone or in combination with Lys170 was 2 µg/mL. 

Curves “Cells” and “Buffer” correspond to controls with no additions or with added protein buffer, 

respectively.  

 

EC300 spectrum of activity against enterococcal clinical strains 

The spectrum of EC300 antibacterial activity was evaluated on a panel of typed, 

multidrug-resistant E. faecalis and E. faecium clinical strains (Table 1). These strains 

displayed a high-level resistance to gentamicin and included vancomycin-resistant 

enterococci (VRE) of clonal complexes E. faecalis-CC2 and E. faecium-CC17, which 

have been described as highly prevalent in nosocomial settings and disseminated 

worldwide (Top et al., 2008; Mato et al., 2009; Kuch et al., 2012; ). Four quantities of 

EC300 (10, 3.3, 1.1 and 0.37 µg) were spotted on soft-agar TSA lawns that had been 

inoculated with cells from exponentially growing cultures of each strain of the panel (see 

methods). A lawn of E. faecalis clinical isolate 1518/05 served as positive control for 

EC300 activity. Growth of E. faecium strains appeared unaffected by any of the spotted 

EC300 amounts. In contrast, growth inhibition could be detected in 97% of E. faecalis 

strains for the highest tested quantity of the chimeric lysin and 40% for the lowest (Fig. 

5).  
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Fig. 5. Susceptibility of a panel of typed E. faecalis strains to the EC300 growth inhibition activity. (A) 
Lytic activity of Lys170 and EC300 against live cells of strain 1518/05 incorporated as a dense lawn in an 
agarized buffer. (B) Representative growth inhibition halos, classified (-) to (+++), obtained in a soft-agar 
TSA lawn of strain EHCP 78 after spotting the indicated EC300 quantities. A spot of 10 µg of Lys170 and 
10 µL of protein buffer were also tested. (C) Percentage of strains susceptible to the different amounts of 
EC300 (growth inhibition evaluated on soft-agar TSA lawns).  
 

Of the four vancomycin-resistant E. faecalis tested strains, two (EHCP 267 and EHCP 

389) seemed to be much more susceptible to EC300 than the others (V583 and EHCP 3) 

(Fig. 6). Given the reduced number of tested VRE strains, and considering that a wide 

spectrum of relative activity was also observed for vancomycin-susceptible strains (Table 

S1), we could not establish any obvious correlation between glycopeptide resistance and 

susceptibility to EC300. Note that in these assay conditions 10 µg of the endolysin 

Lys170 produced only a very slight growth inhibition in a couple of E. faecalis strains 

(Table S1). In a previous study, where the endolysin was tested against dense lawns of 
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bacteria prepared in a soft-agar physiologic buffer, more than 90% of the same strains 

were susceptible to 5 µg of the endolysin (Proença et al., 2012). The two lytic enzymes 

produce indistinguishable lysis halos on dense lawns of the control E. faecalis strain 

1518/05 prepared in agarized assay buffer (Fig. 5A). 

 

 

 

Fig. 6. Evaluation of EC300 capacity to inhibit growth of four vancomycin-resistant E. faecalis strains 

(EHCP 3, EHCP 389, EHCP 267 and V583). The amounts of tested EC300 and the assay conditions were 

as in figure 4. A spot of 10 µg of Lys170 and 10 µL of protein buffer were also tested as controls. ´ 

 

DISCUSSION 

 

The work here presented was prompted by a couple of observations with a few endolysins 

we have studied recently: 1) the endolysins were able to lyse target bacteria suspended in 

media that keep cell viability without supporting growth (e.g. buffered solutions); and 2) 

the same endolysins could only induce efficient lysis of target cells suspended in growth-

promoting media (e.g. culture media) if bacteria were first or concomitantly killed by 

another agent, like for example the lantibiotic nisin. Nisin was previously shown to 
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dramatically enhance the lytic activity of endolysins (Nascimento et al., 2008; Catalão et 

al., 2010; García et al., 2010) and to trigger the activity of bacterial autolysins (Severina 

et al., 1998; Frias et al., 2009; Lansa et al., 2012). These facts, associated to the 

observation that most studies on the lytic action of endolysins are performed in conditions 

where target bacteria are in a state of reduced metabolic activity, led us to raise the 

hypothesis that, in the natural context of phage infection, the killing action of holins may 

be required to fully sensitize cells to the activity of at least some endolysins. In other 

words, at least some endolysins may not be suited to attack well-fitted bacteria from the 

outside. Although related to endolysins, phage VALs and bacteriolysins may stand as 

better suited alternatives as they are naturally adapted to act against dividing bacteria. In 

fact, VALs are responsible for the phenomenon of ‘lysis from without’, which is 

characterized by the ability of some phages to induce premature lysis when added to host 

cells at high multiplicities (Abedon, 2011). 

The idea of taking advantage of the particular features of bacteriolysins and VALs has 

been explored recently, particularly when targeting Staphylococcus aureus. Lysostaphin 

and its functional domains have been fused to endolysin or VAL moieties to generate 

chimeras with improved antibacterial activity against S. aureus (Idelevich et al., 2001; 

Donovan et al., 2006; Paul et al., 2011; Rodríguez-Rubio et al., 2012b; Schmelcher et al., 

2012b; Saravanan et al., 2013); in other approaches lysostaphin has been simply used 

synergistically with phage lytic enzymes (Becker et al., 2008).  

Although PG hydrolase activity has been demonstrated for several VALs, one important 

observation is that, with very few known exceptions (Takác and Bläsi, 2005), VALs seem 

to lack the CWB domain typically found in endolysins; this is probably because cell wall 

targeting is fulfilled by other proteins of the virion structure, such as the receptor binding 

proteins (Rodríguez-Rubio et al., 2013). To overcome this limitation, VALs or their CDs 

have been fused to the CWB domain SH3b of lysostaphin (Paul et al., 2011; Rodríguez-

Rubio et al., 2012b).  

In line with the ideas explained above, we have for the first time engineered a 

bacteriolysin-like enzyme aimed at killing E. faecalis in growth supporting conditions. 

The chimera EC300, which combined a M23 peptidase CD from a VAL with an 

endolysin CWB domain (CWB170), showed increased lytic and killing properties when 

compared to the parental endolysin (Lys170). The superior performance of EC300 was 

particularly evident in growth media. M23-like peptidase domains are present in a wide 
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variety of proteins such as bacteriolysins, autolysins and eukaryotic cell proteins, but are 

rarely found in endolysins; one exception is the staphylococcal phage 2638A endolysin 

(Abaev et al., 2013).  

Another interesting feature of EC300 results from the fact that, similarly to Lys170, the 

fully active chimerical enzyme is a complex made of EC300 full-length polypeptide 

associated with independently produced CWB170 subunits. Although the exact 

stoichiometry of the EC300 multimer was not determined, the available evidences 

strongly suggest that it should have the same configuration of the Lys170 multimer 

(Proença et al., 2014), that is, being made of one molecule of the full-length EC300 

complexed with three of CWB170. This will means that EC300 assembles one M23 

endopeptidase CD with four copies of the CWB170, which provide to the lytic enzyme 

high affinity to the cell wall (Proença et al., 2014). In addition, due to its multimeric 

nature EC300 is a protein with almost 70 kDa; this will certainly be an advantage for the 

study of its effectiveness in animal infection models since, as observed for the dimeric 

form of the pneumococcal endolysin Cpl-1 (Resch et al., 2011), it should reduce renal 

clearance (proteins smaller than 60-65 kDa tend to be rapidly eliminated by glomerular 

filtration in humans; Maack et al., 1979). 

The rather promiscuous modular structure of endolysins themselves has also been 

intensively explored to engineer chimeras with increased solubility and with changed 

and/or extended lytic spectra when compared to parental endolysins (Croux et al., 1993; 

Daniel et al., 2010; Pastagia et al., 2011; Schmelcher et al., 2011; Fernandes et al., 2012; 

Mao et al., 2013; Yang et al., 2014). The results obtained with EC300 suggest that fusing 

CDs from VALs to CWB domains of cognate endolysins may constitute an additional 

strategy to generate enzymes with improved features. The next step will be to evaluate the 

therapeutic efficacy of EC300 in a murine model of enterococcal bacteraemia. 
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SUPPLEMENTARY MATERIAL  

 

Fig. S1. Primary sequence details and domain architecture of the VAL Orf73 (A), the endolysin Lys170 (B) 
and of the chimera EC300 (C). M23 peptidase and Amidase_2 CDs were defined by CDD 
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and Pfam (http://pfam.xfam.org/) analysis. Putative 
linker segments (boldface residues) were predicted with SVM tool 
(http://domserv.lab.tuat.ac.jp/dlpsvm.htmL). Inferred cell wall binding domain (CWBD) is delimited by a 
dashed box with indication of the secondary translation starting Met202 (M), which initiates the independent 
CWB170 module. The protein mEC300 carries the single amino acid substitution M202L. 

http://pfam.xfam.org/)
http://domserv.lab.tuat.ac.jp/dlpsvm.htmL).
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Fig. S2. “TritonX-100-induced lysis halo assay” (Ebina et al., 2009) used for confirming production of 
active EC300 chimera by E. coli CG61. Transformants were grown overnight at 30 ºC on an LB soft-agar 
plate containing 2% (w/v) of autoclavated cells from the E. faecalis strain 1518/05, 0.1% Triton-X100, 100 
µg/mL ampicillin and 30 µg/mL kanamycin. Subsequently the plates were incubated at 4 ºC for 24 h. Lysis 
halos around E. coli CG61 colonies expressing EC300 are shown. 
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Table S1. Growth inhibition of typed E. faecalis clinical strains by EC300.1 

Specie Strain2 Vancomycin 
EC300 (µg) 

Buffer 
Lys170 

(µg) 
10 3.3 1.1 0.370 10 

E. faecalis V583 R +/- +/- - - - - 

MMH594 S +++ +++ + - - - 

EHCP 3 R +/- +/- - - - - 

EHCP 13 S +++ +++ ++ + - - 

EHCP 24 S +++ ++ + +/- - +/- 

EHCP 31 S +++ +++ ++ + - - 

EHCP 55 S +/- +/- - - - - 

EHCP 73 S ++ ++ + +/- - - 

EHCP 78 S +++ ++ + +/- - - 

EHCP 92 S + +/- - - - - 

EHCP 93 S +++ ++ +/- - - - 

EHCP 94 S +++ ++ + +/- - - 

EHCP 107 S - - - - - - 

EHCP 118 S +++ ++ + - - - 

EHCP 143 S +/- - - - - - 

EHCP 151 S ++ + +/- - - - 

EHCP 164 S +++ ++ +/- - - - 

EHCP 193 S +++ ++ +/- +/- - - 

EHCP 225 S +++ +++ +++ +++ - + 

EHCP 237 S +/- +/- - - - - 

EHCP 241 S ++ + +/- +/- - - 

EHCP 267 R ++ + +/- - - - 

EHCP 271 S +++ +++ ++ + - - 

EHCP 279 S +++ +++ ++ ++ - +/- 

EHCP 281 S +/- - - - - - 

EHCP 292 S +++ +++ + +/- - - 

EHCP 332 S ++ + +/- - - - 

EHCP 339 S +++ ++ +/- - - - 

EHCP 389 R +++ ++ + - - - 

EHCP 391 S +/- - - - - - 

E. faecalis 1518/053 S +++ +++ ++ +/- - - 
1Growth inhibition was qualitatively evaluated by scoring as (–) to (+++) the relative diameter and transparency of the lysis halos 
produced by each EC300 quantity, after overnight incubation at 37 ºC. 
2See Table 1 for additional features of the strains 
3Positive control for EC300 activity. 
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CONCLUDING REMARKS AND FUTURE 
PRESPECTIVES 

 

The general increase of antibiotic resistance among some of the most relevant bacterial 

pathogens has been prompting the development of new approaches to tackle this major 

public health problem. One strategy receiving particular attention preconizes the use of 

recombinant forms of phage PG hydrolases to eliminate bacteria, particularly those that 

are Gram-positive. Search of such antimicrobial agents to combat E. faecalis infections 

remains poorly developed when compared to other infectious agents, like for example S. 

aureus.  

We report in this thesis the study of the lytic activity of the endolysins Lys168 and 

Lys170 encoded by the enterococcal phages F168/08 and F170/08, respectively (Proença 

et al., 2012). In contrast to other reported enterococcal endolysins (Yoong et al., 2004; 

Son et al., 2010), Lys168 and Lys170 were active almost exclusively against E. faecalis 

and ineffective in lysing other Gram-positive bacteria (Proença et al., 2012). In the 

conditions tested Lys170 exhibited better lytic performance than Lys168 and showed a 

broader lytic spectrum against E. faecalis strains. In a study developed by our group, the 

CDs of these two endolysins were fused to a CWB domain from a staphylococcal 

endolysin. In addition to retain the action against E. faecalis, the host-range of the 

chimerical endolysins was expanded not only to Staphylococcus species but also to S. 

pyogenes (Fernandes et al., 2012). These results showed that the CDs of the enterococcal 

endolysins are not species specific; however, changing the CWB domains was crucial for 

shifting the bacterial target as Lys170 and Lys168 could not lyse non-enterococcal 

species. The fact that the Lys168 CD of could degrade the PG from different species 

might indicate that, rather than displaying the most commonly observed peptidase 

activity, the CHAP domain of Lys168 displays in fact amidase activity, as proposed for 

the enzyme of phage IME-EF1 (Zhang et al., 2013). Lys168 digests of purified E. faecalis 

PG could be analyzed by HPLC coupled to mass spectrometry to determinate the 

cleavage specificity of the endolysin.  

The fact that CWB170 and the putative CWB domain of Lys168 are unrelated at the 

primary sequence level might suggest that they recognize different epitopes of the 
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enterococcal cell surface, which are not present either in Staphylococcal species or in S. 

pyogenes. In this work we have neither explored the specificity of each CWB domain nor 

to which cell wall components they might bind to, but at least for Lys170 we could 

provide evidences that the CWB170 module greatly increases the binding efficiency of 

the endolysin to the bacterial surface.  

The established idea of endolysins being monomeric in solution and having a highly 

conserved modular architecture, where the two functional regions of the enzymes are 

linked by a peptide linker, was challenged by the unusual arrangement of the 

pneumococcal endolysin PlyC functional domains (Nelson et al., 2006). The multimeric 

nature and the particular two-component assembly described in this thesis for the 

enterococcal endolysin Lys170 corresponds to another deviating example. In contrast to 

PlyC, where CD and CWB subunits are produced by separated genes (Nelson et al., 

2006), the extra monomers of CWB170 in Lys170 result from a secondary translational 

start site internal to lys170, i.e. both subunits are produced by the same gene.  

A great number of PG hydrolases of Gram-positive systems carry (or are predicted to) 

tandem repetitions of CWB motifs. For some of these, such as the choline-binding repeats 

and the LysM motifs, it has been shown that their cooperative action increases the affinity 

and/or activity of the enzymes towards their respective substrates (López and Garcia 

2004; Steen et al., 2005; Mesnage et al., 2014; Wong et al., 2014). PlyC and Lys170 

represent a distinct class of PG hydrolases where the number of CWB domains in each 

functional unit is increased through multimerization of this module, instead of relying on 

the repetition of their coding sequence in the corresponding genes. One question that 

remains open after our studies concerns the mechanism mediating Lys170 assembly, 

namely what are the interacting segments involved in Lys170FL and CWB170 

association. In an in silico analysis of the Lys170FL/CWB170 primary sequences we 

could not obtain any obvious hints about the possible interaction interface(s). Note that all 

the biochemistry work with Lys170 and its derivatives was carried out in reducing 

conditions; thus, disulfide bond formation between Lys170 Cys residues is not expected 

to be involved in Lys170FL/CWB170 association. Further protein biochemical and 

biophysical characterization, such as x-ray crystallography could be attempted to disclose 

how the Lys170 multimer is assembled. 

In chapter 3 we provided clues for the presence of CWB170-like modules in different PG 

hydrolases and speculated that the previously described Clostridia endolysins CD27L and 
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CTP1L may in fact undergo a multimerization process analogous to that of Lys170. In 

other words, we believe that the production of endolysin (of other PG hydrolases) 

functional units through the assembly of different subunits may be more common than 

expected. These subunits may be produced from separate genes, from alternative 

translation initiation and perhaps even from proteolytic processing from the full length 

products (for example autocleavage of peptidases). It is interesting to note that expression 

of several endolysin genes has been described to result in the production of truncated 

products through alternative translation initiation. These products may correspond to 

small C-terminal polypeptides of unknown function (Wittmann et al., 2010; Shearman et 

al., 1994) or be larger proteins carrying both CD and putative CWB domains (Catalão et 

al., 2011; Abaev et al., 2013). The latter situation is very interesting as in case of 

demonstration of heterooligomer formation the endolysin functional units would display 

repeated CD and CWB domains. 

A transversal observation that comes out from the studies of endolysins relates to the in 

vitro conditions usually employed to evaluate their lytic potential. With the goal of having 

the most controlled assay conditions possible, lytic activity of phage PG hydrolases is 

typically studied in buffered environments of defined chemical composition. Most 

frequently, target cells are washed from their culture medium and suspended in buffer that 

keeps bacterial viability, but which does not support cell proliferation. These were the 

type of conditions we employed to study the lytic potential of the enterococcal endolysins 

Lys168 and Lys170 (Proença et al., 2012). However, when exerting their action during 

phage infection, endolysins always act from the inside of host cells and, most importantly, 

after these had been killed by the holin-mediated membrane pores (São-José et al., 2007; 

Catalão et al., 2013; Young, 2014). We have raised the hypothesis that there might be a 

certain misconception when assuming that recombinant endolysins added from the 

outside to metabolically active cells will act as efficiently as in the natural context of an 

infection. In fact, our experience with enterococcal and other endolysins has been telling 

us that actively growing bacteria (like those in a rich culture medium) are much more 

resistant (sometimes fully resistant) to endolysin attack from without, when compared to 

the same bacteria lying in nutrient-depleted media (like physiologic buffers). This may 

constitute a limitation to the use of endolysins as antibacterial therapy.   

With these assumptions in mind, in Chapter 4 we describe the development of a 

chimerical lytic enzyme active against E. faecalis based on a novel design that aimed to 
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overcome the limitations referred to above. The rationale behind this new technology was 

to fuse CDs from virion-associated lysins (VALs), which are phage proteins naturally 

designed to act on the bacterial cell wall from the outside (for more detailed information 

see VALs characteristics in Chapter 1), to CWB domains of endolysins, mimicking the 

natural domain arrangement of some bacteriolysins (previously considered as bacteriocins 

with PG hydrolase activity). The most promising chimera obtained based on this design 

was the anti-enterococcal protein EC300, which bears as CD a peptidase M23 domain 

from a VAL of phage F170/08 and the well characterized CWB170 as cell binding 

domain. This enzyme showed better stability and solubility in comparison to the parental 

endolysin Lys170 (not shown) and, most relevantly,  exhibited much higher lytic action 

against E. faecalis cells challenged in a rich culture medium (see RESULTS in Chapter 4). 

EC300 is the first bacteriolysins-like, 100% phage-based protein reported in the literature 

and the first enterococcal chimeric lysin capable of killing live cells of E. faecalis in 

growth promoting media). Another interesting feature of this chimera is the fact that it 

inherited the oligomerization features discovered for Lys170 (Proença et al., 2014), since 

both enzymes share the same C-terminal domain. This characteristic is expected to confer 

to EC300 high affinity to target cells, because of the multiple copies of CWB170 carried 

in each EC300 functional unit, and to be advantageous in future in vivo assays of animal 

infection models, since the EC300 mass ( 70 kDa) should contribute to extend its half-

life within animals.  

Enterococci are just one example of Gram-positive bacterial pathogens that currently pose 

serious problems in the context of antibiotic resistance and healthcare-associated 

infections. Staphylococcus aureus is by far the most worrying bacterial species, more 

specifically because of its methicillin resistant strains. It is also the most extensively 

studied in terms of seeking alternatives to the conventional antibiotherapy, including the 

search of PG hydrolases with potential antimicrobial action. We have also tried the 

EC300 approach to develop bacteriolysin-like chimeras targeting S. aureus. During this 

project we constructed 4 anti-S. aureus chimerical enzymes, which were generically 

denominated as S. aureus chimeras (SC). Figure 1 represents the pipeline of the 5 

bacteriolysin-like enzymes constructed during this PhD project. The four SC proteins 

harbour the CWB domain of the S. aureus endolysin Lys87, previously used to construct 

the chimeric endolysins Lys170-87 and Lys168-87 (Fernandes et al., 2012). 

Unfortunately, none of the 4 SC constructs reached the final goal: SC248 failed to be 
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produced; SC91 and SC87 were very active in preliminary lytic assays, but become 

insoluble during large scale production; and, SC170, become inactive after its 

purification, although being stable in solution and active in preliminary lytic assays. Thus, 

despite our new approach we still faced the commonly reported issue of the low solubility 

of anti-S. aureus PG hydrolases , whether endolysins or VALs (Daniel et al., 2010; 

García et al., 2010; Fernandes et al., 2012).  

 

 

Fig. 1. Pipeline of bacteriolysins-like proteins developed during this thesis. The blue boxes correspond to S. 

aureus targeting lytic chimeras (SC) and the pink box corresponds to E. faecalis targeting lytic chimera 

(EC). For more detailed information about “Triton X-100 induced lysis halos assay” see Fig. S2 Chapter 2.  

 

Although extension of the new lytic enzyme design to other pathogens still requires 

optimization, the technology proved successful in the development of a product (EC300) 

with improved lytic action against E. faecalis, leading to the filling of patent (Provisional 

national application patent No. 20141000060398). 

Regarding the engineering of artificial  lytic proteins with improved antibacterial features, 

the chimeric lysin EC300 is a good example of the importance of studying the 

fundamental biochemical properties of the parental proteins.  
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