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Resumo 

 

Sabe-se que a presença de fortes ligações de hidrogénio no estado líquido cria 

azeótropos, que desaparecem com o aumento da temperatura. Este comportamento 

sugere que a destilação a elevadas temperaturas representa uma boa estratégia para 

separar os componentes de misturas binárias, tais como sistemas de água-álcool, 

muito relevantes na indústria química. 

Os combustíveis biodegradáveis começam a desempenhar um papel importante na 

economia global do mundo, com os preços do petróleo a aumentar de forma 

constante, pelo que a busca de energias e de combustíveis alternativos é vital para a 

sustentabilidade da economia mundial. A produção de combustíveis biodegradáveis 

como os álcoois requer propriedades de misturas binárias envolvendo álcoois tais 

como metanol, etanol, propanol, butanol e pentanol (cadeia linear ou ramificada), 

tanto a partir da experimentação, como da previsão e da correlação. A obtenção de 

dados de equilíbrio líquido vapour (ELV) a temperaturas elevadas tornou-se um dos 

meios mais importantes para o dimensionamento de unidades de destilação de alta 

pressão. 

Foi com essa visão que um programa experimental de equilíbrio líquido-vapour 

(VLE) a elevadas temperaturas foi desenvolvido em colaboração entre o Centro de 

Ciências Moleculares e Materiais (CCMM - FCUL) e o Laboratório de Termodinâmica 

Experimental (CQE - IST). As medições de ELV no intervalo de temperaturas 363.3K 

423.7K foram realizadas para os sistemas água+etanol, água+1-propanol e 

etanol+1-propanol utilizando um aparelho de fluxo. 

As medições de ELV a elevadas temperaturas mostram algumas dificuldades 

experimentais, devido à possível degradação térmica de alguns álcoois, tais como o 

metanol. Com a finalidade de minimizar este fenómeno, foi escolhido um método de 

fluxo. 

A interpretação teórica destes dados de ELV tem sido feita no passado recorrendo a 

equações de estado. O sucesso destas interpretações é limitado pelo tipo de 
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compostos e também pelas condições de trabalho. De entre várias equações de 

estado, novos métodos que tomam em conta os efeitos de associação molecular têm 

sido propostos ao longo dos anos. A equação de estado Statistical Associating Fluid 

Theory (SAFT) desenvolvido por Gubbins e colegas é uma delas. 

Neste trabalho uma variação dessa equação (Statistical Associating Fluid Theory for 

potentials of Variable Range - SAFT-VR) foi utilizada para prever o ELV das misturas 

binárias em questão. Esta teoria previu eficazmente o comportamento destas 

misturas binárias com algumas limitações para alguns componentes puros. 
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Abstract 

 

It is known that the presence of strong hydrogen bonds in the liquid state creates 

azeotropes, which disappear with the increase of temperature. This behavior 

suggests that the distillation at high temperatures could provide a good strategy to 

separate components of binary mixtures such as alcohol-water systems, very 

relevant in the chemical industry.  

Biodegradable fuels start to play an important role in the world global economy, as 

oil prices are increasing steadily and the search for alternative energies and fuels is 

vital for the sustainability of world economy. The production of biodegradable fuels 

as alcohols, needs properties of binary mixtures involving methanol, ethanol, 

propanol, butanol and pentanol (linear and branched), both from experiment, 

prediction and correlation. High temperature vapour liquid equilibrium (VLE) 

measurements became one of the key data for the design of high pressure 

distillation units. Also, alcohols have a wide use in industry as solvents for fats, oils, 

resins, paints, and nitrocellulose; others find use in the manufacture of perfumes 

and brake fluids. Mixtures of ethanol with 1-propanol, 1-butanol, or 1-pentanol can 

be used as fuel oxygenates, as cryogenic fluids and as heat reservoir in cryogenic 

power generation systems. That’s why the knowledge of thermodynamic properties 

for these mixtures at various temperatures is important.  

It was with this vision that a VLE experimental program at high temperatures was 

developed in a collaboration between the Centre for Molecular Sciences and 

Materials (CCMM-FCUL) and the Experimental Thermodynamics Laboratory (CQE-

IST). The VLE measurements over the temperature range 363.3 K to 423.7 K have 

been performed for the systems water+ethanol, water+1-propanol and ethanol+1-

propanol using a flow apparatus.  

The VLE measurements at high temperature show some experimental difficulties 

due to the possible thermal degradation of some alcohols, like methanol. With the 

purpose of minimizing this phenomenon, these studies must be carried out using a 

flow apparatus. This was the main reason for the choice of a flow method over a few 

types available.  
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The theoretical interpretation of these VLE data has been done in the past by using 

equations of state. The success of these interpretations is limited by the type of 

compounds and also by the working conditions. From the various possibilities, new 

methods designed to take into account the effects of molecular association have 

been proposed over the years. The Statistical Associating Fluid Theory (SAFT) 

equation of state developed by Gubbins and coworkers is one of them.  

In this work a variation of this equation (Statistical Associating Fluid Theory for 

potentials of Variable Range - SAFT-VR) was used to predict the VLE of the binary 

mixtures in question. This theory was found to accurate predict the behavior of 

these binary mixtures with some limitations for some pure components.  
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Chapter 1 - Introduction 
 

For many chemical products (especially commodity chemicals), the cost of 

separation makes a significant contribution to the total cost of production. In fact, 

there is a strong economic incentive to perform separations with optimum 

efficiency. However the rational design of a typical separation process (for example, 

distillation), we need the thermodynamic properties of mixtures. In particular, for a 

system that has two or more phases at some temperature and pressure, the 

equilibrium concentrations of all components in all phases are required. This makes 

Thermodynamics the most important tool towards the optimization of one of the 

cornerstones of chemical engineering that is the separation of fluid mixtures [1]. 

There are many ways to obtain information about the phase behavior of fluid 

mixtures, but the direct measurement of phase-equilibrium remains an important 

source of information, though it is difficult and expensive to obtain accurate 

experimental data [2]. Even when applied thermodynamics is used to calculate the 

phase behavior of a mixture, experimental data are important, because in this case, 

it is primarily a tool for analyzing the robustness of the experimental data. However, 

without some experimental information, this “stretching” cannot generate anything 

useful. In fact, at least some experimental data points are needed to adjust 

interaction parameters [1-3]. Therefore, for a progress in applied thermodynamics, 

the role of experiments is essential [1].  

Useful compilations of high-pressure fluid-phase-equilibria data have been done 

over the years by some authors. These compilations have proven to be helpful in a 

much faster way to seek experimental results for comparison. This compilation 

divides the results per binary, ternary or multicomponent mixtures and by the type 

of method used (see chapter 3). Knapp et al. [4] presented the compiled data 

covering the period 1900–1980. After these authors, others followed. Fornari et al. 

[5] covered 1978–1987, Dohrn and Brunner [6] 1988–1993, Christov and Dohrn [7] 
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1994–1999, Dohrn et al. [1] 2000-2004 and more recently Fonseca et al. [8] 2005-

2008. In all of these papers we have found that the binary mixtures of water+alcohol 

or even the binary mixtures of primary alcohols have few results providing 

enforcement for acquiring such data. This work will contribute to increase the 

number of data in that area and complement the existing ones. 

 

1.1. Objectives  

 

This PhD project, included in the Technological Chemistry area, has the aim to 

provide the community with accurate VLE data at high temperatures for 

water+alcohols and alcohols+alcohols binary mixtures, to facilitate efficient high 

temperature separation of these compounds through high temperature distillation. 

The implementation of this thesis involves the following specific objectives: 

1. Upgrading the existing VLE flow apparatus, by improving the temperature 

control of the equilibrium cell and pressure transducers accuracy, for 

ethanol-water measurements up to 423.2K. 

 

2. Constructing a new VLE flow apparatus, including a new oven with a better 

temperature control and capable of reaching temperatures up to 573.2K and 

pressures up to 20 MPa. 

 

3. VLE measurements, in the temperature range 373.2 to 423.2K, for several 

binary compositions of systems: 

 Ethanol – water; 

 1-propanol – water;  

 Ethanol+1-propanol. 

 

4. Modeling the VLE measurements using the Statistical Associating Fluid 

Theory for potentials of Variable Range (SAFT-VR) equation of state. 
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1.2. Outline of thesis 

 

In chapter 1 an introduction is made presenting the main objectives and the outline 

of this thesis. 

In Chapter 2, a brief review of Vapour-Liquid Equilibria (VLE) is given. Hundreds of 

equations representing the PVT behaviour of fluids have been proposed, few before 

van der Waals, but mostly later. They have a central role in the thermodynamics of 

fluids. In this chapter a review of these theoretical methods of VLE property 

prediction is discussed as an introduction to the equation used to model the 

experimental results, the Statistical Associating Fluid Theory for potentials of 

Variable Range (SAFT-VR). 

In Chapter 3 we give a detailed description of the classification of VLE Experimental 

Methods, as a support and justification to our chapter 4, in which a description of 

the chosen apparatus is made, as well as the experimental procedure. The 

description of the new apparatus (under construction) is also made. 

Chapter 5 presents the results and discussion in the article form. Paper I refers to 

the evaluation of performance of the VLE apparatus using water and water-ethanol 

system as their behaviour has been extensively studied and accurate data is 

available for comparison. New data have been obtained for temperatures between 

363.3 and 423.7 K, and pressures up to 1 MPa. Paper II refers to the results of VLE 

measurements for the systems water-1-propanol, and Paper III the measurements 

for the ethanol+1-propanol binary mixture. In all of these papers a correlation with 

the SAFT-VR equation was carried out. These studies show that the phase equilibria 

is accurately described with this model.  

In Chapter 6 of this thesis, we will give the final conclusions and overall comments 

of our work and an outlook on the possible future research in related subjects. 
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Chapter 2 - Vapour-Liquid Equilibrium 

Modeling 

 

2.1. Introduction 

The scientific literature on fluid phase equilibria goes back well over 150 years and 

has reached enormous proportions, including thousands of articles and hundreds of 

books and monographs. 

In the chemical process industries, fluid mixtures are often separated into their 

components by operations, such as distillation, absorption, and extraction. The 

design of such operations requires quantitative estimates of the partial equilibrium 

properties of fluid mixtures. Whenever possible, such estimates should be based on 

reliable experimental data for the particular mixture at conditions of temperature, 

pressure, and composition. 

Unfortunately, such data are often not available. In typical cases, only fragmentary 

data are available and it is then necessary to reduce and correlate the limited data 

to make the best possible interpolations and extrapolations. One example is the 

study of the fluid-phase behavior of water-linear alcohols binary mixtures. Despite 

of the various studies of properties of these pure fluids, there is a lack of data at high 

pressures and temperatures [1]. Phase equilibrium measurements are both difficult 

and expensive, and it is necessary to maximize the information and understand for 

a particular system what can be obtained from a minimum amount of 

experimentation. The costs of vapour liquid equilibria data vary with the type of 

equipment and system studied and the number of experiments. If we take into 

account the equipment development, the costs are very high.  
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For systems of more than two components, the experimental work necessary to 

obtain a complete phase diagram reaches impractical requirements. For this and 

others reasons the use of VLE computational modelling has grown. In this chapter 

we talk briefly about the thermodynamics of the vapour-liquid equilibria, the 

evolution of the equations of state and the types of experimental methods for 

obtaining vapour-liquid equilibria data.  

 

2.2. Thermodynamics of Vapour - Liquid Equilibrium (VLE) 

In thermodynamics the term “vapour-liquid equilibrium” refers to systems with 

liquid and vapour phases in equilibrium. Here we consider a system in which a 

single liquid phase is in equilibrium with its vapour phase at a given temperature 

and pressure. In terms of Gibbs language we say that for every component i in the 

mixture, the condition of thermodynamic equilibrium is given by 

L
i

V
i ff   equation 2.1 

where ƒi is the fugacity of component i, V for vapour and L for liquid [1]. To fully 

understand the equilibrium we need to quantify the quantities of interest that are 

the temperature, the pressure, and the compositions of both phases. Given some of 

these quantities, our task is to calculate the others. The fundamental problem is to 

relate these fugacities with the mixture composition in both phases, because the 

fugacity of a component in a mixture depends on the temperature, pressure, and 

composition of the mixture.  

Two different strategies can be used to calculate the fugacities in both phases. In the 

first one we relate V

if  and L

if  to temperature, pressure, and mole fraction, 

introducing the vapour-phase and liquid phase fugacity coefficients 
V
i and 

L

i  

Py

f

i

V
iV

i   equation 2.2 

Px

f

i

L

iL

i   equation 2.3 
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where yi is the vapour phase and  xi is the liquid phase molar fractions. The fugacity 

coefficients can be calculated from vapour phase PVT y data, usually given by an 

equation of state [1].  

Deviations from ideal behavior are more likely to occur in the liquid phase than in 

the vapour phase. As a result of smaller intermolecular distances, the forces of 

interaction between molecules in the liquid are considerably stronger. In contrast, 

the vapour phase can be assumed to behave ideally from low to moderate pressures. 

At higher pressures, the fugacity coefficients for the vapour phase must be 

calculated using an equation of state [2].  

In the first strategy the calculations use equation 2.2 to determine , while for the 

liquid phase the fugacity of the component i by the equation 2.3. Furthermore, the 

fugacity coefficients of the components in both phases can be calculated using the 

relation: 

ZdV
Vn

P

RTV

nVti
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
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
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






 





  equation 2.4 

where Z is the compressibility factor, pV/RT. This relation is very useful for cubic 

equations of state. 

In the second strategy the phase behavior of real liquids is usually described by 

using the activity coefficient concept i : 

0

ii

L

i

i

i
i

fx

f

x

a
  equation 2.5 

where ai is the activity of the component i, and 0

i
f  the fugacity of pure liquid at the 

same temperature and pressure of the mixture (standard-state fugacity). In this case 

the calculus is based on activity coefficient models, such as Margules, Van Laar, 

Wilson, NRTL, UNIFAC and UNIQUAC in which we calculate phase equilibrium 

compositions from excess Gibbs energy [2].  

The use of the first strategy for mixture calculations needs information on pure 

components and like and unlike binary interactions. On the other hand, this 

v

i
f
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approach requires no standard states for the components in the mixtures, in 

contrast with the second strategy. These advantages are especially important for 

mixtures containing supercritical components.   

The main disadvantage of the second strategy is the problem of the non-existence of 

accurate equation of state, which describes complex liquids, like associated fluids 

with hydrogen bonding. Due to these advantages of the first strategy, it was chosen 

for the current work. 

In the next subchapter we will introduce the equation of state used in this work, 

presenting a review about the evolution of the equations of state, namely the cubic 

ones, which have been used in many engineering calculations. 

 

2.3. Modelling Vapour - Liquid Equilibrium with Equations of State (EOS) 

 

Equations of state play an important role in chemical engineering design and they 

have assumed an expanding role in the study of the phase equilibria of fluids and 

fluid mixtures [3]. In view of the variety of chemical species and applications, it is 

not astonishing that until today hundreds of equations of state have been published; 

if variants are counted, too, the total exceeds thousands. It happens frequently that 

authors of new equations of state, or of new variants of existing equations of state, 

report significant improvements with regard to properties and substances they are 

interested in, but fail to comment on the applicability or consequences beyond their 

own immediate field of research. The readers of such a publication sometimes have 

difficulties to access its importance or applicability to their own problems. 

Furthermore, some sub-functions or terms of equations of state are known to be 

more efficient than others for describing real fluids, especially if wide ranges of 

temperatures and pressures are concerned. There is now a considerable expertise 

available on the relation between functional forms of equations of state and their 

capability to correlate various thermodynamic properties; unfortunately, this 

information is not always taken into account [4].  
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Generally, equations of state can be distinguished mainly in empirical, theoretical 

and semi-empirical (or semi-theoretical) equations. Comprehensive reviews can be 

found in the works of many authors [5-10]. 

Empirical equations usually need a large amount of experimental data of pure 

components and contain a large number of substance-specific parameters with little 

physical meaning. Their application is restricted to a very limited number of 

substances or just one component and their lack of predictive power beyond the 

pressure–temperature limit where they have been developed makes them 

impractical for general purposes [11]. 

Theoretical equations are based on statistical thermodynamic insight. They have 

fewer substance-dependent parameters, and these parameters have physical 

meaning. They require time-consuming calculations and suffer from limitations of 

existing theories, making their predictions less accurate. However, they may 

represent property trends correctly even far away from their fitting range. For 

instance, the well-known Virial Equation of State may be regarded as an empirical 

equation i.e., as a power series in density, with coefficients to be fitted to 

experimental data, as well as, a theoretical equation if the coefficients are calculated 

from the appropriate integrals over Boltzmann factors [4,11].  

Semi-empirical EOSs combine features of both theoretical and empirical equations, 

for example, they provide good results for a large number of pure components and 

their predictions beyond the pressure–temperature limit of the experimental data 

used to develop them are often acceptable. Due to these facts this is the most 

extensively used type of EOS for prediction of phase equilibrium and 

thermodynamic properties of fluids. Moreover, semi-empirical EOSs offer the fastest 

way to make quantitative predictions of thermophysical properties of pure 

substances and mixtures with few experimental determinations using few 

adjustable parameters [11]. 
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2.3.1. From Van der Waals to SAFT  

 
Many equations of state have been proposed in the literature over the years with 

either an empirical, semi-empirical or theoretical basis. It would take a very long 

thesis to describe all of them, their weaknesses, their strengths and their limitations. 

Some are better for volumes, others for phase equilibria, but they all have something 

in common: their beginning.  

The history of the equation of state dates back to at least 1662 when Boyle 

conducted his experiments on air and deduced that, at a given temperature, the 

volume of a fixed mass of gas is inversely proportional to its pressure (PV=constant). 

The effect of temperature was observed by Charles in 1787 and later by Gay-Lussac 

who, in 1802, found the dependence of volume on temperature to be linear at 

constant pressure. Together with Dalton’s law of partial pressures, postulated in 

1801, these observations suggest the relation  


i

i VRTnP /)(  equation 2.6 

that we recognize nowadays as the equation of state of a perfect gas mixture. After 

this breakthrough, the work of Faraday (1823), Andrews (1869) and others succeed 

and paved the way towards the modern view of an equation of state presented by 

van der Waals [12]. 

The van der Waals equation was the first equation to predict vapour–liquid 

coexistence over a century ago.   

The history of this equation began in 1873, when van der Waals obtained his 

doctor's degree for a thesis entitled “Over de Continuiteit van den Gas- en 

Vloeistoftoestand” (on the continuity of the gas and liquid state – Figure 2.1), which 

put him in the foremost rank of physicists. In this thesis, he proposed an "Equation 

of State" embracing both the gaseous and liquid state. 

He demonstrated that the two states of aggregation not only merge into each other 

in a continuous manner, but that they were in fact of the same nature. This equation 

of state was a dramatic improvement over the ideal gas law. It was van der Waals' 

genius that made him see the necessity of taking into account the volumes of 
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molecules and the intermolecular forces ("van der Waals forces", as they are now 

generally called) in establishing the relationship between the pressure, volume, and 

temperature of gases and liquids. Van der Waals won the Nobel Prize for this work 

in 1910 [13].  

 

 
 
Figure 2.1 – Heike Kamerlingh Onnes (left) and van der Waals (right) in front 
of the helium-´liquefactor´, Leiden 1908 [13] 

 
Error! Reference source not found.7 gives us the van der Waals equation  

RTV

a

bV

V

RT

pV
Z 


  equation 2.7 

where Z is the compressibility factor, T the temperature, V the volume, p the 

pressure and R the molar universal gas constant. 

In this equation the parameter b gives us the co-volume occupied by molecules 

(repulsive part), whereas the parameter a gives us the attractive forces between 

molecules (attractive part). 

From the beginning van der Waals knew that his “constant” b was not, in fact, a 

constant but a decreasing function of the density. So it was clear to him that one 
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should only use the equation with caution in P,V,T regions remote from those in 

which a and b had been determined. Nevertheless for many years, when his equation 

became well known, many physicists used it assuming a and b as true constants, 

ignoring the reservations set out by van der Waals. Then the attempt to invent new 

equations started, some intended for special applications, others purely empirical 

and some based on theoretical arguments [14]. Van der Waals devoted much effort 

in trying to discover the dependence of his parameters with temperature and 

density1. And because the application of the equation to the liquid state didn’t 

provide with correction the properties of the state, many efforts were made by 

authors in improving the above equation, replacing the repulsive part by a more 

convenient expression and modifying the attractive term.  

In Tables 2.1 and 2.2 from we can view some of the modifications to these terms. 

Perhaps, the most important model for the modification of the van der Waals 

equation of state is the Redlich-Kwong equation [16]. It retains the original van der 

Waals hard-sphere term with the addition of a temperature- dependent attractive 

term (equations 2.8 to 2.10) [3]: 

)(5.1 bVRT

a

bV

V

RT

pV
Z





  

equation 2.8 

 

cc pTRa /4278.0 5.22  equation 2.9 

 

cc pRTb /0867.0  equation 2.10 

where the subscript c indicates properties at the critical point. The success of the 

Redlich-Kwong equation has been the impetus for many further empirical 

improvements. More than 100 modifications to this equation have been proposed 

[12]. Soave in 1972 [17] suggested replacing the term a/T1.5 with a more general 

temperature-dependent term a(T) that is  

)(

)(

bVRT

Ta

bV

V
Z





  equation 2.11 

 

                                                           
1 “For a long time I searched for a definite characteristic to find whether just making b variable is 
sufficient to bring about complete agreement between my formula and experiment, …, whether perhaps 
it is necessary to assume variability of a and b with temperature…” van der Waals in his Nobel Prize 
acceptance text [15]. 
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2176.057.1480.0  m  

equation 2.13 

 
 

cc pRTb /08664.0  equation 2.14 

where ω is the acentric factor, proposed by Pitzer in 1955 [18]. 

To test the accuracy of Soave-Redlich-Kwong (SRK) equation, the vapour pressure 

of a number of hydrocarbons and several binary systems were calculated and 

compared with experimental data. In contrast to the original Redlich-Kwong 

equation, Soave’s modification fitted the experimental curve well and was able to 

predict the phase behavior of mixtures in the critical region, and today is one of the 

most used equations together with the Peng-Robinson equation of state [3].  

 

In 1976, Peng and Robinson [18] redefined a(T) as: 
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226922.05422.137464.0  k  

equation 2.16 

 

cc pRTb /07780.0  equation 2.17 

Recognizing that the critical compressibility factor of the Redlich-Kwong equation 

is overestimated, they also proposed a different volume dependence.  

 )()(
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bVbbVVRT

Ta

bV
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RT
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



  

equation 2.18 

The Peng-Robinson equation of state (PR) slightly improves the prediction of liquid 

volumes and predicts a critical compressibility factor of Zc=0.307. Peng and 

Robinson [19] gave examples of the use of their equation for predicting the vapour 

pressure and volumetric behavior of single-component systems, and the phase 

behavior and volumetric behavior of the binary, ternary, and multicomponent 



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

14 

system and concluded that the equation can be used to accurately predict the vapour 

pressures of pure substances and equilibrium ratios of mixtures. The Peng-

Robinson equation performed as well as Soave-Redlich-Kwong equation [3]. 

The Peng-Robinson and Soave-Redlich-Kwong equations are used widely in 

industry. The advantages of these equations are that they can accurately and easily 

represent the relation among temperature, pressure, and phase compositions in 

binary and multicomponent systems. They only require the critical properties and 

acentric factor for the generalized parameters. Little computer time is required and 

good phase equilibrium correlations can be obtained. However, the success of these 

modifications is restricted to the estimation of vapour pressure. The calculated 

saturated liquid volumes are not improved and are invariably higher than 

experimental measurements [3]. In Table 2.2 a summary of the most important 

modifications to the attractive term of the van der Waals equation is presented 

where these equations are represented. 
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Table 2.1 – Modifications to the Attractive Term of van der Waals Equation 

Equation Attractive Term (-Zatt) 

Redlich-Kwong (RK) [16] 
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The other way to modify the van der Waals equation is to examine the repulsive 

term of a hard-sphere fluid (Table 2.2). Many accurate representations have been 

developed theoretically and by computer simulation for the repulsive interactions 

of hard spheres and incorporated into an equation of state, for example in the work 

of Carnahan and Starling [30] and Guggenheim [31].  Perhaps the most widely used 

alternative to the van der Waals hard-sphere term is the equation proposed by 

Carnahan and Starling : 
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where  = b/4V. 
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Other equations of state have been formed by modifying both attractive and 

repulsive terms, or by combining an accurate hard-sphere model with an empirical 

temperature dependent attractive contribution. Carnahan and Starling [36] 

combined the Redlich-Kwong attractive term with their repulsive term - CSRK 
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This equation is one of the most known equations that modifies both attractive and 

repulsive terms. 

For many decades these methods for describing the thermodynamic behavior of 

fluids composed of simple molecules were effective. By simple, we mean molecules 

for which the most important intermolecular forces are repulsion and dispersion 

(van der Waals attractions). Many hydrocarbons, natural gas constituents, simple 

organic molecules (e.g., methyl chloride, toluene), and simple inorganics (N2, CO, O2, 

N2O, etc.) fall within this category. 

Nevertheless, many fluids, and particularly mixtures, do not fall within this simple 

class, like polar solvents, hydrogen-bonded fluids, and so on. The correlation of data 

requires complex and unphysical mixing rules and temperature dependent binary 

parameters, and the predictive capability of the approach is usually very poor. The 

reason for this is that, for such fluids, important new intermolecular forces come 

into play [37]. 

The first mixing rules were proposed by Zudkevitch and Joffe [38] for the Redlich 

Kwong equation of state: 
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An important class of these complex fluids consists of those that associate to form 

relatively long-lived dimers or higher n-mers. This class of fluids includes those in 

which hydrogen bonding, charge transfer, and other types of complex interactions 

can occur, for example linear alcohols.  So they require special treatment when being 

modeled. 

A more promising route for understanding the properties of these associating fluids 

is provided by recent theories that are firmly based in statistical mechanics. In 

principle, statistical mechanics provides formal recipes for calculating the structure 

and thermodynamics of a fluid given its intermolecular potential function. However, 

for most systems of interest, this solution requires the use of one or more 
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approximations that ultimately determine the accuracy of the theory [37]. The next 

section explains one of these new routes as it introduces one equation of state that 

has grown in the past decade the Statistical Associating Fluid Theory, abbreviated 

as SAFT. 

 

2.3.2.  SAFT EOS 

In 1990, Chapman et al. [39-40] proposed an approach capable of determining the 

properties of the liquid and vapour phase. This model called Statistical Associating 

Fluid Theory, normally called SAFT, was developed from the Wertheim’s theory [41-

46].  

Within the framework of SAFT, the EOS of a fluid is a perturbation expansion given 

in terms of the residual molar Helmholtz energy Ar, defined as the difference 

between the total molar Helmholtz energy and that of an ideal gas at the same 

temperature T and molar density : 

),(),(),(  TATATA IDEALr   
 

equation 2.22 

SAFT implicitly assumes that there are three major contributions to the total 

intermolecular potential of a given molecule:  

 the repulsion-dispersion contribution typical of individual segments,  

 the contribution due to the fact that these segments can form a chain,  

 the contribution due to the possibility that some segments form association 

complexes with other molecules.  

The residual Helmholtz energy is given within the SAFT formalism (equation 2.23) 

as a sum of the contributions from these different intermolecular effects 

ASSOCCHAINMONOr AAAA   
equation 2.23 

where the superscripts MONO, CHAIN, and ASSOC refer to the contributions from the 

“monomeric” segments, from the formation of chains, and from the existence of 

association sites, respectively.  

By combining the above equations we obtain the usual forms of the SAFT equation: 



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

19 

ASSOCCHAINMONOIDEAL AAAAA   
 

equation 2.24 
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equation 2.25 

where N is the number of molecules, k the Boltzmann constant, and T the absolute 

temperature. 

Hence, a SAFT fluid is a collection of monomers that can form covalent bonds; the 

monomers can interact via repulsive and attractive (dispersion) forces and, in some 

cases, association interactions. The many different versions of SAFT essentially 

correspond to different choices for the monomer fluid and different theoretical 

approaches to the calculation of the monomer free energy and structure. Perhaps 

the most popular are the Perturbed-Chain and Variable Range versions of the SAFT 

approach (PC-SAFT and SAFT-VR, respectively) [47]. In the next section we give a 

brief overview on the model used to correlate our data, the SAFT-VR model.  

 
 
SAFT-VR Model 

In the approach of Mac Dowell et al. [48], water is represented as a single spherical 

segment (m = 1) with four associating sites, two representing the hydrogen atoms 

and two the lone electron pairs. For ethanol and 1-propanol one association site 

representing the hydroxyl hydrogen atom and two the oxygen lone electron pairs 

are included; in this case, the number of spherical segments is 1.533 accounting for 

the elongated molecular shape (Figure 2.2). It should be noted that, both in the pure 

compounds and in the mixture, the associative interactions are only allowed 

between sites of different type, namely “hydrogen-type” sites can only interact with 

“electron-type” sites and vice versa. 
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Figure 2.2 – SAFT-VR model for water (on the left) and alcohol (on the right) 

 
The inter and intramolecular cross interactions between segments are obtained 

from the modified Lorentz-Berthelot combining rules [49]: 
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equation 2.27 
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equation 2.28 

Being SAFT-VR a new model when compared to those that are traditional in 

Chemical Engineering, the data available for the use of this type of correlation with 

binary mixtures of water+alcohol and alcohol+alcohol is limited. However, in more 

than 20 years, there has been an increase in the amount of papers using this type of 

equation to correlate experimental data. For full details of the SAFT–VR expressions 

the reader is directed to the original paper [50]. 
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Chapter 3 - VLE Experimental Methods 

 

3.1. Introduction 

High-pressure phase behavior is often complex and difficult to predict. At high 

pressures deviations from ideal behavior become much larger than at ambient or 

moderate pressures. Therefore, the experimental investigation is often the only 

suitable method to determine accurately the high-pressure phase behavior. Many 

different methods are used to measure high-pressure phase equilibria. The reason 

is that no single method is suitable to determine all different VLE behavior at 

different temperatures and pressures. 

According to Nagahama [1] there are four different methods to measure high 

pressure phase equilibria:  

1. Static method;  

2. Recirculation method;  

3. Flow method; 

4. Synthetic method. 

This provides a well-structured, classification according mainly to the feeding type 

and sampling method mainly. However, some authors prefer to elaborate this 

classification towards on how the compositions of the equilibrium phases are 

determined, analytically or not and whether the mixture to be investigated has been 

prepared (synthesized) with accurate composition known or not. This provides us 

with two classes: 

1. Analytical methods; 

2. Synthetic methods. 
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In each of these classes we can find many different methods divided into subclasses 

according to several experimental conditions (Figure 3.1). The variety of 

experimental methods reported is even more confusing, since various authors use 

different names for the same experimental method. Expressions like ‘static’ or 

‘dynamic’ are used in connection with many different methods [2]. 

 

 

Figure 3.1 – Classification of experimental methods for VLE according to Dohrn et al. 
[3]  
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3.2. Static Method 

The static method is illustrated in Figure 3.2. In this method the cell, with constant 

or variable volume, is filled with each substance and temperature and pressure are 

adjusted to allow the phase separation. Magnetic stirrers or rocking equipment are 

used to reach the equilibrium state. After that, samples are taken from both phases 

to be analyzed by appropriate techniques, such as Gas Chromatography (GC) and 

mass spectrometry.  

 

Figure 3.2 – Schematic diagram of a static apparatus for VLE measurements 

The static method for VLE experiments under high pressure, has inherently several 

problems such as sampling problems. By withdrawing a sample from the cell it can 

cause a change in the equilibrium state variables (pressure, temperature and 

composition). Also, due to the partial vaporization or condensation during sampling, 

the analyzed sample composition may not be the same as that in the equilibrium cell 

[1]. However, for more than 40 years, this type of apparatus became increasingly 

important with the development made by Gibbs and van Ness [4]. At that time many 

others followed [5-11] this new method in various ways. Kolbe and Gmehling [12] 

developed and apparatus using this method, capable of measurements of vapour-

liquid equilibria up to 423K and 1MPa. This work was used by the scientific 

community for many years as a reference, and it was used to test our apparatus (see 

chapter 5 for Paper I).  

Despite new advances for apparatus for vapour liquid equilibrium, the static method 

is still used today. Guo et al. [13] developed, for the analysis of vapour pressure and 

vapour + liquid equilibrium up to 400K and 3MPa, an apparatus based on the static 
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analytic method with an internal stirrer and view windows (Figure 3.3). With this 

apparatus, the authors report an improvement in the average absolute deviation of 

vapour phase mole fraction (AAD y) in comparison with literature data. However, 

they obtained a higher average absolute relative deviation of pressure (AARD p), 

due to the effect of sampling in the pressure. 

 

 

Figure 3.3 – Schematic of the experimental apparatus of Guo et al. [13]. 1. Feed 
system; 2. Digital controller; 3. Digital controller; 4. Temperature and 
pressure indicator; 5. GC; 6 and 7. Motors; 8. Vacuum pump; 9. Vacuum vessel; 
10. Cooling coil; 11. isothermal liquid bath; 12. Electric heater; 13. Equilibrium 
cell; 14. Stirrers; 15. Pressure transducer; 16. N2-filled system. 

 

3.3. Recirculation Method  

A schematic diagram of recirculation apparatus is given in Figure 3.4. This method 

is based in the use of two recirculating pumps, one for the liquid and the other for 

the vapour phase. By recirculating the phase(s) the equilibrium state can be reached 

very fast and the disturbance of the equilibrium state inherent to sampling can be 

diminished using a special sampling device. When employing the recirculation 

method we must take care with the performance of the recirculating pumps and to 

the temperature of the bath in which all parts of the apparatus are placed.  

These two reasons avoid the excessive pressure drop in the case of a good 

recirculating pump, and partial vaporization or condensation in recirculating lines. 
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Figure 3.4 Schematic diagram of a recirculation apparatus for VLE measurements 

 

In the work of Athès et al. [14], the authors report a problem with their deviation in 

temperature. In fact, the maximum temperature deviation at fixed liquid 

composition is of about 1.5 K. They attribute this deviation to some problems 

inherent to their recirculation method - Figure 3.5 - (partial condensation, pressure 

and temperature fluctuations) or to the uncertainty in the analysis of the ethanol 

composition.  

These problems are very serious for VLE measurement in the region close to the 

critical point where a very small fluctuation in temperature and pressure can lead a 

big change in phase behavior [1].   
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Figure 3.5 - Flowchart of the vapour–liquid equilibrium apparatus Labodest® [14] 
(1) electrical immersion heater; (2) mixing chamber; (3) contact path; (4) separation 
chamber; (5) solenoid valves; (6) vapour phase; (7) liquid phase; (8 and 9) circulation 
steams; (10) sampling port. 

 

3.4. Synthetic Method  

A schematic diagram of synthetic apparatus is given in Figure 3.4. This method is 

used to prepare a mixture of known composition (synthesize) and then to observe 

its behavior in a cell with visual observations. As shown in this figure, the synthetic 

method does not need sampling. After transferring the amounts of substances into 

the cell the temperature and pressure are adjusted until the contents of the cell form 

a homogeneous phase, whose mole fractions can be obtained from feed amount of 

each substance at the beginning. Then the pressure or temperature is varied until 

the incipient formation of a new phase.  
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Figure 3.6 – Schematic diagram of a synthetic apparatus for VLE measurements 

 

The known composition, the temperature and the pressure define a point of the 

phase envelope. The cell is usually of the variable volume type. The advantages of 

this method are that the difficulties regarding sampling are avoided, very simple 

apparatus is used, and that the phase envelope and PVT behavior of a mixture can 

be determined even near the critical conditions. However, the disadvantages are [1]: 

(1) Precise detection of incipient phase formation especially for dew point is 

difficult and it causes inaccuracies in temperature and pressure readings. 

(2) The composition of coexisting phases can only be determined indirectly 

in binary mixtures and in general cannot be obtained in multicomponent 

mixtures. 

The synthetic method includes the so-called "dew- and bubble-point method" and 

also "total pressure measurement method". The former is just the same as that 

mentioned above and the latter is that where the amounts of substances transferred 

into the cell changed at constant temperature, until the formation of a new phase 

appears.  

According to Fonseca et al. [2] in his review of the experimental methods and 

systems investigated in the period of 2005 to 2008, there is a tendency for 
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increasing the amount of papers using these types of methods. According to their 

review they are more used by the scientific community than the Analytical methods.  

These methods can be used where the analytical methods fail, i.e., when phase 

separation is difficult, due to similar densities of the coexisting phases, e.g. near or 

even at critical points. Often the experimental procedure is easy and quick, and 

because no sampling is necessary, the equipment is rather inexpensive. On the other 

hand, it can be designed for extreme experimental conditions, as higher 

temperatures and pressures rise the costs of equipment.  

A disadvantage of this method is that they yield less information than the analytical 

ones, being mainly used for binary or pseudo-binary mixtures [2]. 

A new experimental set-up for the measurement of phase equilibria at temperatures 

ranging from 243 K to 353 K and pressures up to 20 MPa was developed by Fonseca 

and von Solms [15], making use of the synthetic isothermal method. A schematic 

representation of the apparatus is presented in Figure 3.7. 

The quality of this equipment was confirmed by the authors through several tests, 

including measurements along the three phase co-existence line for the system 

ethane + methanol, the study of the solubility of methane in water, and of carbon 

dioxide in water. They found that the largest influence on the accuracy of the 

solubility results is related to the ratio between the volumes of the two phases in 

equilibrium. Experiments with small volume of the vapour phase are less 

susceptible to the influence of other sources of errors, resulting in a higher precision 

of the final results. 

 

 

 

 



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

31 

 

Figure 3.7 - Schematic representation of the new experimental set-up for the 
measurement of multi-phase equilibria by a synthetic method. (A) High-pressure 
view cell. (B) Pressure sensor. (C) Platinum resistance thermometers. (D) High-
pressure gas cylinder. (E) Data logger. (F) Cold light source with optical fibre (G) 
Temperature chamber. (H) Stirring with remote control. (I) Video monitor. (J) Video 
camera. (K) Computer for data acquisition [16]. 

 

 

3.5. Flow Method  

A schematic diagram of the flow method is illustrated in Figure 3.8. This is an open 

cell, in which flows two or more components are flowing continuously in the cell, 

until steady-state is reached. This technique offers several advantages, mainly a 

short residence time in the cell (avoiding thermal degradation) and the possibility 

of obtaining large amount of samples of both phases. However, the flow method is a 

dynamic system and it has some problems [1]:  

(1) The precise control of both feed rate and liquid level in a cell must be done 

in order to keep the masses of components fixed; 

(2) A suitable sampling technique should be developed to collect complete 

sample, especially for multicomponent mixtures; 
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Figure 3.8 Schematic diagram of a flow apparatus for VLE measurements 

 

An application of this method develloped by Niesen et al. [15] is shown in Figure 3.9.  

The precise control of both feed rate and liquid level in a cell can be achieve once 

known how both the feeding pump and the exiting valves work. Despite of this 

method being a flow method it can easily be upgrade to a recirculating flow method 

whenever the quantity of the original sample is in question. To avoid the excessive 

pressure drop a back pressure regulator can be installed diminishing the effects in 

the equilibrium. 

 

 

Figure 3.9 –Vapour liquid equilibrium apparatus of Niesen et al. [15] based on a 
flow method 

Analysis 

 

Analysis 

P 

Vapour 

 

Liquid 



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

33 

For this work, and according to the classification of Nagahama this Flow Method was 

chosen to design our VLE apparatus. The main reason of this option is the 

minimization of possible thermal degradation, since the residence time of the 

mixture in the VLE cell is highly reduced.  
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Chapter 4 – VLE apparatus and 

Experimental Procedure 
 

In this work a vapour-liquid equilibrium (VLE) continuous flow apparatus was used. 

The purpose of using continuous flow apparatus, as said before, is to minimize 

thermal decomposition in the phases under study. Originally constructed by Rosa et 

al. [1], and upgraded for this study, this apparatus was designed to collect vapour-

liquid equilibrium data at temperatures up to 453.15K and pressures up to 1.7MPa. 

A second apparatus was built to extend the ranges of temperatures up to 573.15K 

and pressures up to 20MPa. Both instruments are described in this chapter.  

 

4.1. Vapour-Liquid Equilibria Apparatus #1  

 

The first VLE apparatus used in this study is presented schematically in Figure 4.1 

and shown in Figure 4.2. It is the same apparatus as that described and tested by 

Rosa et al. [1], subjected to modifications in the pressure transducers and in the 

oven stability in order to allow more accurate measurements. There are three main 

sections in this apparatus: sample feeding section, equilibrium section and sampling 

section.  
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Figure 4.1 – Schematic of the VLE apparatus #1[1] 

 

 

Figure 4.2 – Overall view of VLE apparatus #1. A – feeding vessel; B – circulating pump; 
C – oven with window; D – Measurement and control zone; E – Sampling zone.  
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4.1.1. Sample feeding section 

Figure 4.3 shows a schematic diagram of this section. The mixture to be studied is 

introduced in a glass sample vessel, and forced to initiate the flow by suction by a 

metering pump (LDC Analytical, model 396-89) through a protecting filter, to the 

preheater in the thermostat bath in section two. A relief valve in its way guaranties 

a minimum pressure at the pump exit, controlled by a Bourdon tube type 

manometer. A back pressure regulator, preceded by a heat exchanger, acts a safety 

device to avoid overpressure in the flowing system. 
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Figure 4.3 – Schematic of the sample feeding section of the VLE apparatus #1 [1] 
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4.1.2. Equilibrium section 

This section (Figure 4.4) consists on an isothermal air bath, containing the preheater 

and the equilibrium cell which is maintained at the desired temperature. The 

preheater is made from an aluminum cylindrical block, filled with copper filing dust, 

through which the flowing tube, made from stainless steel 316S (OD = 0.3175 cm) 

passes. This preheater has a sufficient length designed to minimize the temperature 

shock between the thermostat entry and the equilibrium cell and the sample 

degradation. A second heat exchanger stabilizes the temperature of liquid fluid 

before the cell entry. The equilibrium cell (Figure 4.5) is a stainless steel 316 block, 

rated for 13MPa and 588.15 K, equipped with a glass window (Jerguson 11-R-20) to 

visualize the liquid-vapour interface. The input line to the cell is made in an inverted 

U shape, to increase the heat and mass transfer between the two phases after the 

liquid flash. The thermostat is an air-bath controlled by a PID controller (OmRon, 

model E5CN) from 303.15K to 523.15K, within ±0.5% of indicated value given by 

supplier. The temperature of the equilibrium is measured inside the high pressure 

cell, with the thermometer in the liquid phase, with a platinum resistance 

thermometer (OMEGA Tech. Co), and a 5½ digit multimeter (Keithley, model 197) 

calibrated together by Electrónica Industrial de Alverca (EIA) (see Appendix 1 for 

calibration certificate) with an expanded uncertainty 0.049K (k=2) for the 

Temperature working range. 
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Figure 4.4 – Schematic of the equilibrium section of the VLE apparatus #1 [1] 

 

 

Figure 4.5– View of the high pressure cell of VLE apparatus #1 
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4.1.3. Sampling section 

This section of the apparatus is schematically represented in Figure 4.6. The vapour 

phase is sampled from the top of the cell, using a micro-metering valve to expand it 

to atmospheric pressure through a coil inside the thermostat to prevent pre-

condensation. This metering valve also determines the vapour flow rate. The vapour 

is then cooled in a condenser (heat exchanger) to room temperature, and collected 

in a small glass flask, prepared for the density determination. The liquid sample is 

obtained from the bottom of the equilibrium cell, at the operating pressure, and after 

passing through the condenser where it cools down, is expanded to the atmospheric 

pressure using a micro-metering valve.  

When the steady-state is reached the pressure of the equilibrium system is 

measured in the compressed liquid line with a pair of pressure transducers (GE 

Druck, model UNIK5000) with 0-0.4 and 0-1.7MPa calibrated by the manufacture 

with uncertainties2 of ± 0.02 and ± 0.085 MPa respectively, and a digital pressure 

readout, 4½ digits (GE Druck model DPI282).  The composition of the equilibrium 

sample is determined by densimetry, using a (Anton Paar DSA 5000 M) densimeter3.  

The values of the density of the binary mixtures of ethanol–water were obtained 

from published data and fitted to a polynomials in the molar fraction of ethanol 

within the range of the experimental measurements (see Appendix 2). The 

uncertainty of the molar fraction determination, taking into account the uncertainty 

in the density measurements was found to be ux = 0.0001. The same procedure was 

adopted for the other two binary mixtures.  

 

                                                           
2 Uncertainty of 0,05% full-scale given by the manufacture 
3 Calibrated with water (Millipore) and tetrachloroethylene (H&D Fitzgerald - certified values) with an 
expanded uncertainty of 0.01 kg m-3 (k =2) [2] 
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Figure 4.6 – Schematic of the sampling section of the VLE apparatus #1 [1] 

 

 

4.2. Evaluation and Testing of the VLE Apparatus #1 performance 

 

In this section all the upgrades, evaluations and tests conducted to the vapour-liquid 

equilibrium apparatus #1 in the first year of this thesis are described. These tests 

were carried out in order to better understanding the limitations of the equipment 

and to try to minimize variations in equilibrium, due to the operational procedure. 

For this, the tests carried out to the circulating pump, to the air bath and to the 

collecting valves are presented. To test the performance of the apparatus the water-

ethanol system was chosen, since there are accurate data for it obtained by Niesen 

et al. [3]. The study was carried out at 423.7K and the agreement between both data, 

as shown in detailed in Chapter 5, in Paper I suggested the good performance of the 

apparatus. 
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4.2.1. LDC Analytical Pump, model 396-74 

 
As described in chapter 3, the flow method has the advantage of short residence time 

in the cell avoiding thermal degradation and the possibility of obtaining large 

amount of samples of both phases. However, the accurate control of both feed rate 

and liquid level in a cell must be done in order to keep the masses of components 

fixed. Whenever the flow rate changes, there is a direct perturbation in the system 

resulting in variations in both temperature and pressure as well in the mass of each 

component. So, in order to minimize these perturbations, a test was performed to 

the circulating pump to better understand the effect of changing the flow during the 

experimental procedure. 

The model used in this equipment provides us a variation of feeding between 0 and 

100% flow. For these extremes we have a corresponding flow velocity of 0.63 and 

6.38 ml.min-1 given by supplier. The equation that gives us the flow rate is given by: 

6333.0(%)0575.0)min.( 1  flowmlv  
equation 4.1 

In tests carried out with pure ethanol the optimal feeding flow rate was found to be 

between 15 to 30%. For minor flow rates the cell would take too much time to fill 

and almost all the liquid entering the cell would vaporize. For higher flows the 

perturbation in the pressure was higher giving higher vapour pressure values. It was 

found that in this case it was very difficult to fix the temperature. But for the control 

of the level in the equilibrium cell the feeding is not the only variable affecting this, 

the sampling is also a big problem. The equilibrium between the entering and exiting 

of a sample must be in perfect harmony. For this in the next section we talk about 

the optimization of the sampling valves. 

 
 

4.2.2. Micro-metering Valves 

As mentioned in the description of the ELV apparatus, there are two micro-metering 

valves for collection of the gas and liquid phase samples. In order to try to establish 

a correspondence between the opening in the valve and the amount of ejected 

sample (ml) per unit time (minute), to acquire an equilibrium between the input and 
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output of the samples, tests were performed making it possible to express this 

relationship in equation 4.2 for liquid and equation 4.3 for vapour phases 

5674.21657.8)min.( 1  openingmlv  
equation 4.2 

 

3298.07921.3)min.( 1  openingmlv  equation 4.3 

These tests were conducted with a fixed input of 30% in the feeding pump, 

considerer the optimal feeding flow. Each time the opening of a valve was changed, 

an alteration in the equilibrium would occur; for minor openings there was an 

increment in the vapour pressures. For an input of 30% we found that for achieving 

equilibrium in the cell level we had to have equilibrium between the amounts of 

both exiting phases for low temperature values. For higher temperatures and for the 

same feeding flow we had more vapour in the system, so the opening of the vapour 

valve was consequently higher. These relations were based in experience of 

developing an optimal relation between feeding and sampling.   

 

4.2.3. Air Bath 

As already mentioned, the VLE apparatus was constructed with an air bath to 

control the temperature of the cell. The reason for choosing this over a liquid heat 

transfer fluid (i.e. oil), which is more stable and not subject to the big convection 

currents, is based on the fact that for higher temperatures and with time the oil 

degrades sometimes with toxic products, making it difficult to observe the liquid-

vapour interface in the equilibrium cell. Another reason, no less important, is 

because of the industrialization process, that for a large scale industry, oils become 

expensive as industrial heating requires high volumes. Moreover, some oils used at 

high temperatures are usually toxic. 

The PID controller present in the bath with an uncertainty within ±0.5% of indicated 

value given by supplier, for temperatures of 423.2K we had uncertainties of 2.1K. 

Despite this the temperature of the equilibrium was measured in the liquid phase 

with a platinum resistance thermometer inside the equilibrium cell, with a much 

better uncertainty. 
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In order to assess the stability of the air bath experiments were performed at room 

temperature and at 423.15K. In this evaluation temperature readings were obtained 

from the six RTD displayed in specific places as shown in Figure 4.4. Each reading 

was the average of ten temperature readings (spaced by 1 minute) after two hours 

of stabilization. For the room temperature tests, the control temperature was the 

laboratory ambient temperature. For higher temperatures the control temperature 

was the PID controller temperature. For the standard of each RTD the temperatures 

of the six of them were registered with the air bath opened (for values see Appendix 

3).  

By introducing steel mesh, we observe a stabilizing the bath at higher temperatures, 

since it decreases the convection. However, despite of this it is extremely difficult to 

avoid the heterogeneous filling of the air bath. As it can be seen in Figure 4.7 the 

introduction of the steel mesh at room temperature stabilizes the temperature 

readings between the RTD’s but increases the difference between the room 

temperature and the RTD’s readings. In Figure 4.8 we can also see that for 423.15K 

the temperature between the Standard and RTD’s are higher than ±5 K (for values 

see Appendix 2). This makes the filling more problematic than helpful.  

 

 
Figure 4.7 – Stability of the air bath at 296.55K without any filling or with steel mesh 
filling in comparison with the temperature measured with the open bath (standard). 
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Figure 4.8 – Stability of the air bath at 423.15K without any filling or with steel mesh 
in comparison with the PID controller temperature (standard). 

 

4.3. Vapour-Liquid Equilibria Apparatus #2  

A second VLE flow apparatus was built to extend the VLE measurements up to 

20MPa at a maximum temperature of 573.15K (Figure 4.9). It represents a 

development of the original one (apparatus #1), allowing more accurate 

measurements. Although similar in the design, it presents some differences in the 

mentioned three sections. 

In the sample feeding section we have a glass sample vessel, where the mixture is 

present and forced to initiate the flow by suction by a similar metering pump (LDC 

Analytical, model 396-89) through a protecting filter, to the oven in section two. In 

this section we don’t have a relief valve, but a bourdon tube type manometer gives 

us the pressure value at the pump exit. A back pressure regulator acts a safety device 

to avoid overpressure in the flowing system.  
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Figure 4.9– VLE apparatus #2  

 

In this apparatus an oven (Hotpack, model 213024) capable of reaching 623,15K 

containing the equilibrium cell will represent the equilibrium section. Once inside 

this oven, the sample will pass by a 24m spiral of tubing (1/8” O.D.) serving as a 

preheater, and then enter the high pressure cell.  

In the original high pressure cell the seal in the glass window is done through a 

Teflon gasket. Since the Teflon cannot be used above 450 K, a new high pressure 

cell was designed, which is shown in Figure 4.10.  

The cell is constructed from a cylindrical block of 316SS. The view port is a 4.445 cm 

diameter by 0.635 cm thick sapphire window (Figure 4.10a). A 0.101 cm diameter, 

24 K gold o-ring will seal the sapphire window, making a tight seal due to the 

pressure apply to this o-ring. The opposite end of the cell will have a dummy window 

which is made of 316SS, and that will be seal with another 24 K gold o-ring. Brass 

backup shims will be used to hold the o-rings in place and to eventually distribute 

the sealing force around the outer edge of the windows. Belleville washers are used 
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to counteract thermal expansion effects. Figure 4.10b shows a schematic of an upper 

view cut of the cell and Figure 4.11 the cell under construction inside the oven.  

 

 

 

a)        b) 

 

 

 

 

 

 

Figure 4.10 – a) Frontal view of the high pressure equilibrium cell of the VLE 
apparatus #2, and b) upper cut view of the cell. 

 

To carry out temperature measurements up to 573.15 K, a commercial oven 

(Hotpack, model 213024) was used. Due to a better temperature control inside the 

oven ( 0.1 K given by supplier), more accurate temperature measurements can be 

achieved.  

The temperature of the equilibrium will be measured inside the high pressure cell, 

in the liquid phase with a platinum resistance thermometer (Wika model CTH7000) 

calibrated by manufacture to within ±0.05K (given by calibration – see appendix 1 

for calibration certificate), and the resistance will be measured with a 5½ digit 

multimeter (Keithley, model 196), better than before. 

Once the equilibrium is reached, the vapour and the liquid samples are collected in 

the sampling section, and the pressure and temperature values are measured. The 

pressure with the pressure transducers (Setra Systems, Inc., model 206) with 0-6,89 

and 0-20,7MPa (no calibration available yet) and digital pressure readouts, 4½ 

digits (Setra Systems, Inc., model 300D).  
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Figure 4.11 – High pressure equilibrium cell of the VLE Apparatus #2 

 

4.4. General operating instructions of the VLE apparatus and experimental 

procedure 

It is important to understand that for VLE measurements is more difficult to operate 

a flow system than a static one. The equilibrium state required for the 

measurements must be achieved and maintained in a flow system in contrast to a 

more stable batch system. For example, the temperature of a bath is much easier to 

control than the temperature of a fluid flowing through a tube of 1/8’’ O.D. at 

100ml/min. For a binary system there are two degrees of freedom. Additionally, 

there is the obvious requirement that when the steady-state is reached, relative 

proportion of the two phases should be maintained. For this equipment, the 

temperature and vapour/liquid meniscus are controlled requiring the pressure to 

be fixed and by setting the flow rates of the two phases.  
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4.4.1. Starting 

The first thing to do when starting from zero operating the VLE apparatus is to turn 

on the entire electrical system, and the multimeter and let it stabilize for a while. 

Then all valves should be checked, all valves should be opened with exception of the 

vapour and liquid exit valves (the access valves to the transducers should be opened 

carefully). Then the PID controller, or the oven controller (in case of VLE#2) should 

be turned on and the temperature should be insert. After these initial tasks, the 

system is now ready for stabilize the temperature. After approximately 1 hour of 

temperature stability, the pump is turned on in the minimum flow. In case of VLE#1 

it can be established the exit pressure of the fluid with the relief valve. In this stage 

the cell will start to fill. The back pressure (that can be closed for a filling more rapid 

of the cell) should be regulated for the maximum exit pressure of the pump, acting 

as a safety device to avoid overpressure in the flowing system. The liquid level 

should be maintained controlling the vapour exit valve. 

 

4.4.2. Equilibrium 

This is the more difficult stage to operate. The liquid level should be maintained by 

controlling the vapour and liquid exit valves, the pump flow and the back pressure 

regulator, in order to have the same quantity of sample at entry and exit of the 

apparatus (steady-state mass flow). In practice, this is difficult because at minimum 

de-regulation in one of these possible controlling parameters, the equilibrium is 

perturbed and the level of liquid varies.  

 

4.4.3. Sampling 

After about 15 minutes (maximum time calculated with the minimum flow rate for 

the fluid to reach the end of the system) with the system is equilibrium, samples of 

the vapour and liquid phase can be collected. . Samples are collected in glass flasks 

in ice baths for minimize the sample evaporation. As mentioned in section 4.1.3. the 

composition of the equilibrium sample was determined by densimetry, using a 

densimeter. The values of the density of the binary mixtures were obtained from 

published data (see references in Papers I, II and III) and fitted to polynomials in the 
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molar fraction of ethanol within the range of the experimental measurements (for 

values see Appendix 2). 

 

4.4.4. Turning off 

When finished the fluid flow is turned to zero, as well as the pump. Then the PID 

controller or the oven is turned off, and all valves closed after a while with exception 

of the transducers valves. The temperature and pressure of the system is controlled 

to guaranty that it decreases safely. If necessary the exit valves are opened to 

decrease the pressure and consequently the temperature more rapidly in the 

system, but these valves should be closed in the end. 
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Chapter 5 – Results and Discussion 

In this chapter details about the experimental results and discussion are presented 

in article format. Articles are referred as “Paper I”, etc. 

 

5.1. List of Papers 

 

Paper I.  

A.F. Cristino, S. Rosa, P. Morgado, A. Galindo, E. J. M. Filipe, A. M. F. Palavra and C. A. 

Nieto de Castro, High-temperature vapour–liquid equilibrium for the water–alcohol 

systems and modeling with SAFT-VR: 1. Water–etanol, Fluid Phase Equilib. 341 

(2013) 48-53 

doi:10.1016/j.fluid.2012.12.014 

 

Paper II.  

A.F. Cristino, S. Rosa, P. Morgado, A. Galindo, E. J. M. Filipe, A. M. F. Palavra and C. A. 

Nieto de Castro, High-temperature vapour–liquid equilibrium for the water–alcohol 

systems and modeling with SAFT-VR: 1. Water–1-propanol, J. Chem. Thermodyn. 60 

(2013) 15-18 

doi:10.1016/j.jct.2012.12.019 

 

Paper III.  

A.F. Cristino, P. Morgado, A. Galindo, E. J. M. Filipe, A. M. F. Palavra and C. A. Nieto de 

Castro, High-temperature vapour–liquid equilibrium for ethanol-1-propanol mixtures 

and modeling with SAFT-VR, Submitted to Fluid Phase Equilibria 

 

http://dx.doi.org/10.1016/j.fluid.2012.12.014
http://dx.doi.org/10.1016/j.jct.2012.12.019
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5.2. Summary of Papers 

 

A flow apparatus originally built in the Faculty of Sciences from Lisbon University 

was upgraded and tested to carry out vapour–liquid equilibrium at high 

temperatures for water–alcohol binary mixtures in the temperature range of 363–

443 K and pressures up to 1.7 MPa. In Paper I experimental VLE data for the water–

ethanol system is presented for temperatures between 363.3 and 423.7 K, and 

pressures up to 1 MPa. The results obtained were compared with available literature 

data to test the accuracy of the equipment and also with the predictions from SAFT-

VR EOS. The performance of this VLE apparatus was found to be commensurate with 

the design parameters and the required accuracy. 

 

Paper II is dedicated to the vapour-liquid equilibrium of the water-1-propanol 

binary mixture for temperatures between 403.2 and 423.2K, and pressures up to 

0.72MPa. Vapour pressures for the pure 1-propanol were also obtained in the 

temperature range from 383.2 to 423.2K and compared with literature. Once again 

the agreement between experimental results and data from the literature was 

excellent being the deviation in the vapour pressure of pure propanol well within 

the mutual uncertainty of the vapour pressure, except at the highest temperature, 

where our value is 0.01 MPa higher. In all the experiments this temperature was 

found to be the more unstable due to the limits of pressure and temperature that the 

apparatus is under. 

The SAFT-VR was found to be a good tool to predict the behavior of this binary 

mixture. However, the values of the binary interaction parameters were only slightly 

adjusted from those obtained for the (water + ethanol) system in order to obtain 

better predictions.  

 

In order to complete the cycle of binary mixtures using water, ethanol and 1-

propanol, in Paper III, experimental vapour liquid equilibrium data for the ethanol-

1-propanol binary mixture was obtained using the same flow apparatus. The SAFT-



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

52 

VT has proven as in Paper I that overestimates the vapour pressure for pure ethanol. 

This fact was investigated in this paper, using the Wagner equation for pure ethanol 

as well as for pure 1-propanol, since the accurate representation of vapour pressure 

data over a wide temperature range requires an equation of greater complexity. The 

good agreement of previous experimental determinations and results from the 

literature with this equation supported the idea that it is one of the most effectives 

in modelling the vapour pressure dependence on temperature.  

  

A new EOS for ethanol was also used to correlate our data, as well as the data from 

other authors with also good agreement supporting the fact that this apparatus 

provides good and accurate data. 
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A.F. Cristino, S. Rosa, P. Morgado, A. Galindo, E. J. M. Filipe, A. M. F. Palavra and C. A. 

Nieto de Castro, High-temperature vapour–liquid equilibrium for the water–alcohol 

systems and modeling with SAFT-VR: 1. Water–etanol, Fluid Phase Equilib. 341 

(2013) 48-53 

doi:10.1016/j.fluid.2012.12.014 

 

 

 

 

Note: The author of this thesis contribute to reassembling, testing of the equipment, 
to the vapour liquid equilibrium measurements of the pure components, data 
analysis, to the discussion and conclusions. 
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A.F. Cristino, S. Rosa, P. Morgado, A. Galindo, E. J. M. Filipe, A. M. F. Palavra and C. A. 

Nieto de Castro, High-temperature vapour–liquid equilibrium for the water–alcohol 

systems and modeling with SAFT-VR: 1. Water–1-propanol, J. Chem. Thermodyn. 60 

(2013) 15-18 

doi:10.1016/j.jct.2012.12.019 

 

 

 

 

Note: The author of this thesis contribute to the vapour liquid equilibrium 
measurements, data analysis, to the discussion and conclusions. 
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A.F. Cristino, P. Morgado, A. Galindo, E. J. M. Filipe, A. M. F. Palavra and C. A. Nieto de 

Castro, High-temperature vapour–liquid equilibrium for ethanol-1-propanol mixtures 

and modeling with SAFT-VR, Submitted to Fluid Phase Equilibria 

 

 

 

 

 

 

Note: The author of this thesis contribute to the vapour liquid equilibrium 
measurements, data analysis, to the discussion and conclusions. 
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Chapter 6 – Conclusions and Future 

Perspectives 

 

This chapter summarizes the major conclusions from the research done in this Ph.D 

thesis and presents ideas that can be explore in the future, some of which that are 

already in course.  

 

6.1. Overall Comments and Conclusions 

The water-alcohol system is of much interest in the context of distillation processes, 

and as such, a detailed understanding of its properties is crucial. A key to the design 

of new, more energy-efficient processes and solvents is the ability to predict 

thermophysical properties accurately. This was one of the overall aims of this work. 

In chapter 4, a description of a flow apparatus for the measurement of the vapour-

liquid equilibria was made. This apparatus originally constructed by Rosa et al. [1], 

was improved with new pressure transducers, new micro-metering valves and a 

new relief valve. These upgrades had the goal of an improvement of the accuracy of 

the pressure data and sampling. The evaluation and test of the apparatus was made 

with a well-studied alcohol, such as ethanol, since accurate data exists with the 

purpose of evaluate the problems inherent to a flow apparatus. These tests and 

evaluations, despite of having an analytical fundament, are primarily operator and 

experimental procedure dependent. Many conclusions were taken from these tests, 

but most important it was the establishment of a new experimental procedure.  
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The determination of the composition of the mixtures in vapour and liquid phases 

was performed with a density vs molar fraction calibration curve. The densimeters 

used for water + ethanol mixtures were calibrated using the classical method. 

However, for the remaining systems involving n-propanol the new densimeters 

were calibrated according the methodology described by Lampreia and Nieto de 

Castro [2], more reliable and accurate. 

Measurements with the water-ethanol, water-1-propanol and ethanol-1-propanol 

systems at different temperatures were made and compared with literature data 

and with the SAFT-VR approach. For such known alcohols it was expected to find 

more accurate data in the literature. However for the chosen temperatures there 

wasn’t available the amount of data expected. And when existing, some do not have 

the accuracy claimed. This tells us that this data is still used nowadays for designing 

but also that a lot of work need to be done in this area. The comparison of our results, 

obtained with the flow method, with literature suggests the quality of working 

conditions of the apparatus, as well as their accuracy. 

The comparison of our results with SAFT-VR predictions, a well based equation of 

state, used by many authors as one of the best improvements of the originally SAFT 

theory, showed that it can predict the behaviour of the binary mixtures under study. 

It should be emphasized that in the calculations, the unlike interactions parameters 

were obtained from Lorentz-Berthelot [3] type combining rules. For the system 

ethanol + 1-propanol, an almost ideal solution, it was not necessary to use 

corrections to the binary mixing rules (equations 2.24 to 2.26) The good 

performance of the Lorentz-Berthelot combining rules reflects the similarity 

between the two studied substances. The theoretical results are thus true 

predictions. The only setback was the prediction for pure ethanol vapour pressure. 

In papers I and III, the theory has proven to overestimate the vapour pressure of 

pure ethanol. For this a coherence test was performed to the pure alcohols vapour 

pressures using the Wagner equation. The results show a good agreement between 

our data for the pure alcohols, previous experimental determinations [4-5] and the 

recent equation of state of Schroeder et al. [6] for ethanol. They also show that 

Wagner equation is one of the most effectives in modelling the vapour pressure 
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dependence on temperature, although minor corrections to the exponents are 

necessary near the critical point, as used by Schroeder et al. [6].  

In order to obtained data for higher temperatures and pressures, a second 

apparatus was designed using the same flow technique. This apparatus capable of 

reaching 573.15K and 20MPa will offer the possibility of complementing the first 

one originating a larger range for pressure and temperature. The equilibrium cell 

was also redesigned in order to allow these thermodynamic studies. The materials 

(the sapphire window used in the cell, the gold o-rings and all the materials in the 

valves) used in this cell were also chosen very carefully in order to permit these 

higher values of temperature and pressure.  

 

6.2. Future Perspectives 

 

The present work was a contribution for the scientific and industrial community of 

accurate vapour liquid equilibrium data for water and alcohol binary mixtures. 

Despite of the existing knowledge in this area, there is still immense work to be 

done, mainly because nowadays we can obtain more accurate data.  

As mentioned earlier the cost of separation of two or more phases makes a 

significant contribution to the total cost of production. For the rational design of a 

typical separation process (for example, distillation), we need accurate 

thermodynamic properties of mixtures, i.e. the equilibrium concentrations of all 

components in all phases. This makes Thermodynamics the most important tool 

towards the optimization of one of the cornerstones of chemical engineering, the 

separation of fluid mixtures. This important fact enhances the necessity of 

continuing this work with the study of more binary mixtures containing both linear 

and branched alcohols. New equations of state can be applied to model our data. 

This work to be reported in the future. 

This type of work can continue in the future with higher carbon chain alcohols, liner 

and branched, as well with mixtures of pinenes, in a logical connection to previous 

our in our group on density and specific heat [7-9]. 
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One other focus of future work must be in mixtures with great impact in our 

industries and Ionic liquids (ILs) have become an important class of novel solvents.  

Composed mostly by a combination of organic cations with organic or inorganic 

anions with alkyl chain, the possibility of changing this combination provides an 

excellent opportunity to adapt to a specific application becoming the most versatile 

solvents. Excellent reviews of ionic liquids on separation techniques [10] 

thermodynamic of non-aqueous mixtures [11], analytical applications [12] and in 

the field of catalysis [13] are available in the literature. However, much work 

remains to fully uncover the large potential of this novel class of liquids. For 

example, the technology of absorption heat pumps and refrigeration using 

absorption cooling cycles with ionic liquids has received growing attention in the 

past years.  Classical working fluids, such as LiBr/H2O (which is corrosive and 

presents solidification problems) and H2O+NH3 (which is toxic and an odor 

nuisance) systems have safety and environmental impacts that can be avoided 

simply by replacing them with IL-natural refrigerants (e.g; IL-H2O, IL-CO2 and IL-

NH3). This fact increases the need for information about the thermodynamic and 

transport properties of the mixtures of ILs with H2O, CO2 or NH3 for a better choice 

for new environmentally friendly absorption refrigerants. An extensive review on 

all these systems is currently under preparation, and will be published soon. Future 

work will include data for these binary mixtures important not only for the scientific 

community but also for the industry. 
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Appendix 1 – Calibrations of the VLE 

apparatus #1  
 

A1.1. Platinum Resistance thermometer (PT100) from apparatus #1 

 
The calibration of the PT100 of the VLE apparatus was conducted by EIA – 

Electrónica Aviónicos. The results from the calibration certificate are presented in 

the calibration certificate in Figure A. 1. 

 

Figure A. 1 – Calibration certificate of the PT100 from apparatus #1 
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A1.2. Manometers from apparatus #1 

In figures A.2 and A.3 the Calibration certificates of the pressure transducers from 

apparatus #1 are presented. 

 

Figure A. 2 – Calibration certificate of the pressure transducer with lower range 
(0-0.4MPa) 
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Figure A. 3 – Calibration certificate of the pressure transducer with higher range 
(0-1.7MPa) 

 

 

 



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

87 

A1.1. PT100 from apparatus #2 

The calibration of the PT100 of the VLE apparatus was conducted by the supplier. 

The results from the calibration certificate are presented in the calibration 

certificate in Figure A. 4. 

 

Figure A. 4 – Calibration certificate of the PT100 from apparatus #2 
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Appendix 2 – Conversion of densities 

into molar fractions 
 

The values of the density of the binary mixtures were obtained from published data 

and fitted to third order polynomials (equation A.1) in the molar fraction of ethanol 

within the range of the experimental measurements. 

32   DCBAionmolarfract  equation A. 1 

For the water-ethanol system a Portuguese standard was used [1] to convert 

densities into molar fractions at 293.2K. These results were divided into four ranges 

of density in order to minimize the error in the conversion. In table A 2.1 the results 

for the third order polynomial parameters for each density range is presented.  

 

Table A. 1 – Parameters for the polynomial equations of molar fraction vs density for 
water+ethanol 

A B C D Density range 

83.9973 -213.8998 177.6357 -47.73650 [0.998203; 0.97033 [ 

148.2090 -466.9040 494.4409 -175.8000 [0.97033; 0.90688 [ 

59.43614 -177.4131 179.7468 -61.76374 [0.90688; 0.82244] 

-101.5696 411.6026 -538.7524 230.4754 ] 0.82244; 0.78932] 

 

The same method was applied to the water-1-propanol system, in this case using the 

results from Benson and Kiohara [2] at 303.2K (table A 2.2).  
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Table A. 2 – Parameters for the polynomial equations of molar fraction vs density for 
water+1-propanol 

A B C D Density range 

31.35468 -50.70319 0 19.82351 [0.79547; 0.804885[ 

229.1745 754.8644 834.0296 308.8242 [0.804885; 0.881865 [ 

78.0892 -235.9090 239.71 -81.8946 [0.881865; 0.964113] 

-527.008 1625.274 -1668.17 569.8976 [0.964113; 0.995651] 

 

For the ethanol+1-propanol system the results for the conversion at 293.2K were 

taken from the work of Cano-Gómez and Iglesias-Silva [3]. In this case a second 

order polynomial was applied to only one density range, for a better fitting. Table A 

2.3 presents the polynomial parameters for the density range. 

 

Table A. 3 – Parameters for the polynomial equation of molar fraction vs density for 
ethanol+1-propanol 

A B C Density range 

-331.5120 908.0048 -616.5830 [0.79013;0.80358 [ 

 

A 2.1. Bibliography 

 

[1]. NP-753, Norma Portuguesa (Portuguese Standard), 1969  

[2]. G.C. Benson, O. Kiohara, J. Sol. Chem. 9 (1980) 791–804. 

[3]. J.J. Cano-Gómez and G.A. Iglesias-Silva, J. Chem. & Eng. Data, 57 (2012) 2560-

2567 

 

 



High Temperature Vapour-Liquid Equilibria of Water-Polyalcohol mixtures 

Ana Cristino 

90 

Appendix 3 – Evaluation of the stability 

of the air bath of VLE#1 
 

In tables A. 4 and A. 5 the results from the evaluation of the stability of the air bath of VLE 

apparatus #1 is presented. 

Table A. 4– Stability of the air bath at 296,55K with or without ventilation and with 
or without filling with steel mesh 

Filling RTD 1 2 3 4 5 6 

No 
filling 

room temperature 296.55 296.55 296.55 296.55 296.55 296.55 

standard 296.85 296.65 296.55 297.95 295.55 297.95 

with ventilation 297.25 297.75 297.25 297.95 297.35 297.85 

without ventilation 297.65 297.85 297.75 297.95 297.75 297.85 

20 
mesh 

standard 296.85 296.65 296.55 297.95 295.55 297.95 

with ventilation 293.25 293.95 293.55 293.75 293.85 294.55 

without ventilation 294.75 295.05 294.85 294.95 294.95 294.75 

40 
mesh 

standard 296.85 296.65 296.55 297.95 295.55 297.95 

with ventilation 293.45 294.15 293.65 293.65 293.75 294.85 

without ventilation 294.85 296.35 296.25 295.95 294.95 297.55 

 
 
Table A. 5- Stability of the air bath at 423.15K with or without filling with steel mesh 

RTD 1 2 3 4 5 6 

standard 423.15 423.15 423.15 423.15 423.15 423.15 

no filling 426.65 421.05 427.95 425.05 428.35 399.45 

20 mesh 428.75 421.55 431.95 425.65 429.35 396.25 

40 mesh 427.95 422.15 427.55 426.15 425.65 392.55 

 

 


