
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

PHASED - PHYSIOLOGIC ADVANCED SENSING
DEPLOYED

André Filipe Feiteiro Justo

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

2014

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

PHASED - PHYSIOLOGIC ADVANCED SENSING
DEPLOYED

André Filipe Feiteiro Justo

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Engenharia de Software

Dissertação orientada pelo Prof. Doutor Luı́s Manuel Pinto da Rocha Afonso Carriço
e co-orientado por Luı́s Miguel Santos Duarte

2014

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Professor
Luı́s Carriço and to my co-supervisor Luı́s Duarte, not only for accepting me as their
student and introducing me to the world of research, but also for their guidance, advice
and for being patient with me during the elaboration of this master thesis.

A huge “thank you” to my family. I am immensely grateful for their support, guidance
and specially for providing me with this opportunity. I thank my father, António Justo,
that inspired me to learn and be curious. To my mother, Helena Justo, for the understan-
ding and for being always there for me. To my brother, Daniel, with whom i share some
of the best moments of my life.

I would like to thank all the participants in my work’s evaluation, who have willingly
shared their precious time to help me.

Last but not least, I want to thank my friends and colleagues for sharing all of the good
and the bad moments and making my day better when I needed it the most.

iii

Aos meus pais.

Resumo

Atualmente os dispositivos móveis têm uma enorme importância em vários aspetos
das nossas vidas, pois a sua evolução ao longo dos últimos anos fez com que estes dispo-
sitivos agregassem inúmeras funcionalidades que anteriormente apenas existiam em equi-
pamentos mais especializados. Os smartphones de última geração destacam-se pelo facto
de possuı́rem um grande leque de tecnologias e sensores, tais como o Wi-Fi, GPS, ace-
lerómetro, entre outros. Apesar de grande parte destes mecanismos terem sido integrados
nos smartphones para melhorar as funcionalidades do mesmo, hoje em dia tornaram-se
fundamentais para, entre outras coisas, obter informações sobre o contexto do utilizador
e do ambiente que o rodeia.

Com a evolução das capacidades dos dispositivos e com a facilidade de difusão de
aplicações nos principais sistemas operativos móveis, têm surgido imensas aplicações
móveis sensı́veis ao contexto. Estas aplicações utilizam as informações recolhidas por
sensores para adaptar os seus serviços face a um determinado contexto ou atividade do uti-
lizador. Com a possibilidade de integração de sensores nas aplicações móveis, têm surgido
também diferentes cenários em diferentes domı́nios onde esta integração se revela uma
mais-valia. Por exemplo, no domı́nio da saúde surgiram aplicações para monitorização
remota de pacientes através de sensores fisiológicos, permitindo uma abordagem proa-
tiva em caso de emergência. Outro cenário comum é o desenvolvimento de jogos com
recurso a sensores e atuadores, proporcionando uma experiência de jogo mais imersiva.
No entanto, um problema pertinente é o facto de que para criar este tipo de aplicações é
muitas das vezes necessário trabalhar com vários sensores de diferentes fabricantes e com
diferentes especificações, tornando o processo mais difı́cil e moroso. Outro problema é o
facto destas aplicações serem criadas com um propósito especı́fico, invalidando a hipótese
de serem adaptadas para funcionarem em distintos cenários.

Existem domı́nios em que a necessidade de criar e adaptar as aplicações é uma ati-
vidade recorrente. Muitas das vezes, os requisitos impostos pelo domı́nio variam rapi-
damente o que torna inviável o desenvolvimento de novas soluções num curto espaço de
tempo. Por exemplo no domı́nio da saúde, é necessário que as aplicações sejam facil-
mente adaptáveis para acompanhar a evolução dos pacientes. Uma potencial solução para
ultrapassar estes obstáculos é a criação de ferramentas de autoria que juntam programa-

vii

dores e não programadores, em que os primeiros fornecem os mecanismos necessários
para que os últimos possam rapidamente criar soluções que satisfaçam as suas reais ne-
cessidades. Apesar de algumas ferramentas deste tipo se terem revelado bem-sucedidas,
atualmente nenhuma permite a criação de aplicações Android com recurso a sensores, de
uma forma prática e acessı́vel a utilizadores sem experiência em programação.

O principal objetivo deste trabalho é aproveitar o potencial dos smartphones e das
informações de contexto recolhidas através de sensores para tornar as aplicações móveis
reativas e proativas. Estas informações podem ser utilizadas para, entre outras coisas, ini-
ciar interações adicionais com o utilizador. As principais contribuições desta dissertação
são:

1. Um ambiente de execução de aplicações móveis que permite que as aplicações cri-
adas através de uma ferramenta de autoria possam ser executadas nos dispositivos
móveis. Para além disso, este ambiente de execução contém ainda os mecanis-
mos necessários para recolher informações dos sensores existentes nos smartpho-
nes ou sensores externos. Esta informação é depois processada e utilizada para
despoletar eventos que são utilizados para iniciar interações entre os utilizadores e
as aplicações. Esta abordagem permite que as aplicações se tornem reativas (rea-
gindo com uma determinada ação face a um contexto especı́fico) e/ou proativas (as
aplicações podem, por exemplo, iniciar-se automaticamente).

2. A integração de um conjunto de componentes e melhorias numa ferramenta de au-
toria já existente, com vista a permitir que utilizadores sem experiência na área da
programação possam rapidamente criar aplicações móveis que utilizam sensores
para despoletar ações nas aplicações em função de um determinado contexto.

O trabalho desenvolvido nesta dissertação assentou sobre uma plataforma de autoria já
existente denominada DETACH (DEsign Tool for smartphone Application Composition
- Ferramenta de Desenho para a Composição de Aplicações para Smartphones). Embora
esta plataforma já possibilitasse a criação de aplicações móveis, estas não suportavam o
uso de sensores e, portanto, numa primeira fase foi necessário identificar as limitações
deste sistema face à integração de sensores. Uma vez que o sistema DETACH é com-
posto por um ambiente de autoria e um ambiente de execução de aplicações móveis, foi
necessário avaliar até que ponto estes ambientes suportavam os mecanismos necessários
para a inclusão de sensores nas aplicações. As limitações encontradas permitiram perce-
ber as alterações necessárias e identificar um conjunto de requisitos que serviram de base
para o desenvolvimento deste trabalho.

O maior foco deste trabalho foi o desenvolvimento do ambiente de execução das
aplicações móveis. Este ambiente foi desenvolvido em Android e é responsável tanto
pela execução das aplicações como pela recolha de dados através de sensores. Para su-

viii

portar aplicações reativas e proativas, foi necessário identificar uma abordagem que per-
mitisse recolher informações de contexto, avaliá-la e posteriormente despoletar determi-
nadas ações nas aplicações. Como tal, foi necessário escolher uma arquitetura baseada
em eventos, por forma a dar o comportamento reativo e proativo às aplicações. Foram
também tidos em conta outros aspetos como a modularidade, uma vez que a capacidade
de adicionar novos componentes à ferramenta de autoria é um requisito fundamental para
o sucesso da mesma.

Após o desenvolvimento do ambiente de execução das aplicações móveis, foi ne-
cessário melhorar o ambiente de autoria. Neste ambiente, foram introduzidos os mecanis-
mos que permitem a criação de aplicações que utilizam sensores. Os utilizadores podem,
através de programação visual, utilizar um conjunto de eventos oferecidos pelos sensores
para definir o comportamento das suas aplicações com base nesses eventos. Com base
em feedback obtido em avaliações do DETACH (prévias a este trabalho), foram ainda
feitas algumas alterações na interface da ferramenta por forma a melhorar a usabilidade
da mesma.

Na última fase deste trabalho, e com o objetivo de validar o mesmo, pedimos a um
conjunto de programadores que realizassem uma avaliação em que tinham de adicio-
nar um novo sensor ao sistema. Este processo envolveu os dois ambientes do ecos-
sistema e permitiu-nos perceber se no futuro os programadores conseguem garantir a
implementação de novos sensores. Posteriormente, os mesmos utilizadores tiveram de
executar todo o processo de criação de uma nova aplicação para testar se o sensor im-
plementado estava a funcionar corretamente. Este processo consistiu na criação de uma
aplicação através da ferramenta de autoria, sincronização da aplicação para o smartphone
e execução da mesma. Embora este grupo de utilizadores não fosse o principal público
alvo desta ferramenta de autoria, esta tarefa permitiu-nos observar e tirar algumas con-
clusões sobre os novos mecanismos introduzidos e que suportam a criação de aplicações
com sensores. Todos os participantes conseguiram terminar com sucesso as tarefas pro-
postas, validando a nossa abordagem com vista a garantir a modularidade e capacidade
de adicionar novos sensores à plataforma de autoria.

Palavras-chave: Sensores, Sistemas sensı́veis ao contexto, Sistemas baseados em
eventos, Ferramentas de autoria, Plataformas de execução

ix

Abstract

The latest technological innovations contributed to the evolution of smartphones and
the availability of embedded sensors, such as the accelerometer, digital compass, gyro-
scope, GPS, microphone, and camera are creating new application scenarios. Nowadays,
mobile devices also come with a large set of resources that offer third-party programmers
the tools to develop sensing applications.

Even though several domains capitalized this information to improve their applica-
tions capabilities, there are others where applications’ requirements change quickly and it
becomes important to have an easy and flexible development environment in such a way
that the applications deployed can be rapidly tailored to each situation. Authoring tools
proved to be a successful approach to overcome those problems; however, currently there
is a lack of tools that support the creation of mobile sensing applications. We also believe
that we can go one step further and combine the potential of smartphones and sensors’
context-data to create reactive and proactive mobile applications.

This work aims at addressing the previous problems with the introduction of an ecosys-
tem that comprises: a) an Android runtime environment that runs the applications created
and uses a set of sensors to collect informations about the context of the user; b) a web
authoring-tool that enables non-expert users to create mobile applications that rely on
sensors. Supported sensors encompass the chronometer, GPS and a set of third-party
physiological sensors (electromyography and electrocardiography).

To validate our work we conducted an evaluation encompassing developers in order
to assess the complexity of adding new sensors to the platform. All participants were able
to complete the proposed tasks, validating our approach and thus ensuring that in future
developers are capable of expanding the authoring environment with additional sensors.

Keywords: Sensors, Context-aware systems, Event-based systems, Authoring tools,
Runtime environments

xi

Contents

Figures List xix

Tables List xxi

Listings xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Contributions . 4
1.4 Planning . 4
1.5 Document organization . 5

2 Related work 7
2.1 Context-aware computing . 7

2.1.1 Sensors . 8
2.2 Sensor Runtime environments . 10

2.2.1 Context in event processing modelling 11
2.2.2 Event filtering approaches . 12

2.3 Sensor Programming environments . 14
2.3.1 Context-aware prototyping environments 15
2.3.2 DETACH . 17

2.4 Summary . 17

3 DETACH Analysis 19
3.1 System architecture . 19
3.2 DETACH Authoring Tool . 20

3.2.1 Applications’ anatomy . 20
3.2.2 Interface . 21

3.2.2.1 Screen templates . 22
3.2.2.2 Screen triggers . 23
3.2.2.3 Runtime Emulator . 24

xiii

3.3 DETACH Mobile . 24
3.4 Constraints in sensor integration . 25

3.4.1 Runtime environment . 25
3.4.2 Authoring environment . 27

3.5 Summary . 28

4 Adding Sensors 29
4.1 Architecture . 29
4.2 DETACH Mobile . 34
4.3 Adding sensors to the runtime environment 37

4.3.1 Adding a new sensor . 38
4.3.2 Implemented Sensors . 43

4.4 Adding sensors to the authoring environment 46
4.5 Summary . 50

5 Authoring Sensors 51
5.1 DETACH interface . 51
5.2 Quality of life improvements . 53

5.2.1 Creating connections . 54
5.2.2 Editing connection details . 56
5.2.3 Deleting screens . 58

5.3 Using Sensors . 58
5.3.1 UI characteristics . 59
5.3.2 Connection types . 59
5.3.3 Available Sensors . 61
5.3.4 Scenario . 63

5.4 Run-Time Emulator . 66
5.4.1 Scenario . 68

5.5 Summary . 70

6 Evaluation 73
6.1 Participants . 73
6.2 Equipment and Tools . 74
6.3 Metrics . 74
6.4 Procedure . 75
6.5 Results . 76
6.6 Discussion . 80

7 Conclusions 85
7.1 Future work . 86

xiv

Bibliography 92

xv

List of Figures

1 DETACH’s system architecture . 20
2 Anatomy of a DETACH application . 21
3 DETACH interface . 22
4 DETACH mobile screen templates . 22
5 Connection rules specification . 23
6 Example screen configuration and respective run-time result 24
7 Application running in DETACH Mobile 25

8 Runtime environment updated architecture 30
9 PHASED architecture . 31
10 Sensor’s workflow . 33
11 Development and installation process of a new Sensor Processing Unit,

and related stakeholders . 34
12 DETACH Mobile status screen (left), DETACH Mobile menu options (right) 35
13 List of available sensors (left), Sensor status updated (right) 36
14 DETACH Mobile authentication screen 36
15 UML Class diagram . 38
16 Shimmer EMG sensor . 44
17 Sample output of Shimmer EMG . 44
18 Shimmer ECG sensor . 45
19 ECG waveform of a heart beat. 45
20 Sample electrocardiogram output of Shimmer ECG 45
21 Emulator tabs . 49
22 Alternative interfaces to simulate user’s current location 49

23 Comparison between initial and improved DETACH’s interface 52
24 Panel which allows the configuration of a new transition between screens 53
25 Button to create connections (old interface) 54
26 Visual feedback when creating connections 55
27 AND/OR evaluation mode . 55
28 Alternative ways to transit from one screen to another 56
29 Information displayed in transition’s label 56

xvii

30 Screen configuration panel . 57
31 Transition details displayed in the right side panel 57
32 Button to delete selected screens . 58
33 Trash can area, with visual feedback when deleting a screen 58
34 Available sensors templates . 59
35 Transition between screens (without the use of sensors) and correspond-

ing triggers . 60
36 Transition between two screens using a sensor and corresponding triggers 60
37 External transition using an ECG sensor and corresponding trigger 61
38 Time sensor representation . 61
39 Time sensor condition trigger example 61
40 Location sensor representation . 62
41 Location sensor condition trigger example 62
42 ECG sensor representation . 63
43 ECG sensor condition trigger example 63
44 EMG sensor representation . 63
45 EMG sensor condition trigger examples 63
46 Scenario application - phase 1 . 64
47 Scenario application - phase 2 . 65
48 Specifying a location to trigger an event when the user goes inside it . . . 65
49 Scenario final application . 66
50 DETACH application running in the DETACH Run-Time emulator 67
51 DETACH run-time emulator with an extra section to simulate sensor’s

events . 67
52 DETACH run-time emulator after pressing the ”Simulate values” button . 68
53 Scenario application emulation (left), new screen shown after answering

the question (right) . 69
54 Screen activated (right) when João arrives at the airport (left) 69
55 Screen activated (right) when João’s heart rate goes above 140bpm (left) . 70

56 EMG electrodes placement . 74
57 Average time per task (task 1 to 4, respectively) 77
58 Frequency of unsuccessful attempts in template creation 78
59 Feedback about adding a new template in DETACH 78
60 Frequency of unsuccessful attempts when developing the Android module 79
61 Feedback about adding a new sensor module in Android 80
62 External trigger and a transition between screens based on a sensor trig-

ger, respectively . 82
63 Sketch of an alternative way to use sensors in transitions 82
64 Context menu after right-clicking in a screen/sensor template 83

xviii

xx

List of Tables

1 Map between events and actions . 32

xxi

Listings

4.1 Android Manifest XML file example . 39
4.2 Sensor Service skeleton . 40
4.3 Location service implementation . 41
4.4 Sensor XML file structure . 47
4.5 Example of an Event representation in XML 48
4.6 Location sensor JavaScript file . 50

xxiii

Chapter 1

Introduction

Sensors are becoming increasingly important in interaction design and sensing tech-
nologies are becoming pervasive. A significant effort in human-computer interaction has
been dedicated to create user-interfaces that rely on sensorial mechanisms.

Nowadays we have a lot of different sensor types such as environmental sensors (e.g.
light, temperature, noise), motion sensors, physiological sensors, among others. In addi-
tion, most recent smartphones offer numerous technologies, such as the mobile network,
Wi-Fi and internal sensors (e.g. GPS1, accelerometer, gyroscope). This proliferation of
sensors has created many usage scenarios, which can be enabled with their proper inte-
gration into devices of all kinds.

With the evolution and dissemination of smartphones, the integration of sensors in
mobile applications becomes more and more a reality. One of the promising fields is
in the domain of healthcare and wellness management. New application scenarios have
emerged, such as mobile and remote healthcare services for elderly people, self-monitoring
services on physical exercise or physical rehabilitation, remote health monitoring services
in emergency situations, among others [1]. Over the years, healthcare evolved to a more
proactive approach where it is essential to have the ability to detect and prevent certain
conditions in patients, and manage their well-being over time [2]. Another scenario, with
fewer clinic concerns, is the development of games which use sensors and actuators (e.g.
vibration) to interact with the environment of the game, providing an immersive game
experience.

Despite the numerous existing scenarios, the need to create and adapt applications for
mobile devices is in some areas a recurring activity. In addition, it is also necessary to
take into account the complexity to integrate the different sensors available in a practical
and fast way, in order to match the needs of each application. This issue can be addressed
by creating an environment encompassing programmers and non-programmers, in which

1Global Positioning System

1

Chapter 1. Introduction 2

the former provide the necessary mechanisms so that the latter can create applications that
fulfill their needs, even without programming experience.

To achieve our goals, we developed a set of components responsible for collecting data
from sensors. We also extended an existing authoring tool by developing a set of features
which enable non-expert users to access sensor’s data and use it in their applications.

1.1 Motivation

The evolution of smartphones and proliferation of all kinds of sensors enabled new
applications across a wide variety of domains, such as healthcare [3], social networks [4],
environmental monitoring [5] and transportation [6]. Until recently, research in mobile
sensing activities, such as user’s activity recognition (e.g. walking, driving, sitting) re-
quired specialized mobile devices or platforms to be fabricated. However, the availability
of cheap embedded sensors initially included in smartphones (e.g. accelerometer used to
change the display orientation) are creating possible new applications [7]. In addition,
smartphones come with a large set of resources that offer third-party programmers the
tools to develop sensing applications, such as monitoring a user’s well being, tracking
sport’s performance, among others [7]. In the health field, several cardiac monitoring
systems emerged, such as iRhythm [8], Corventis [9] and Toumaz [10]. In general they
have sensors for vital sign monitoring (e.g., ECG2, blood pressure) and motion monitoring
through accelerometers, gyroscopes and similar sensors.

Despite using new technologies, the main shortcoming of these systems is the fact that
they continue to be dedicated systems, with a very well defined purpose. While this may
not be an issue in some domains, there are some cases where the requirements imposed
by the domain, change so quickly that it becomes important to create an easy and flexible
development environment in such a way that the applications deployed can be rapidly
adapted to each situation, without expensive development costs. We also believe that
we can combine the potential of smartphones and sensors to create richer and proactive
applications. We intend to use smartphones as a personal activity coordination device with
many capabilities such as scheduling (e.g. calendaring), personal and generic context-
awareness (e.g, GPS location), and others. This context information may be used to
adapt the process of sensor data collection and also to initiate additional interactions with
the user [11]. Some challenges for context-aware sensing are the diversity of context
environments, the range of physiological conditions and issues related to sensors, such as
overcoming sensor noise, sensor failure and smooth context recognition [12].

Our motivation is to create a tool that allows users to easily and rapidly prototype

2Electrocardiography

Chapter 1. Introduction 3

mobile applications, addressing the lack of authoring tools that supports the creation of
mobile sensing applications. We believe that there are a lot of applications that can be
supported by context-information provided by sensors. That information can either be
used for simple analysis or for more complex situations. A few examples are:

• Continuous heart monitoring, using sensors like ECG and store the information for
later access - typical passive use of sensor data.

• Monitor a user’s chronic disease and in case of failure, automatically call for help -
typical active use of sensor data.

• Use motion sensors to create custom movements and match them with specific ac-
tions.

We want to collect and transform that information, and provide users with a set of
events that can trigger specific behaviours in an application.

1.2 Goals

The main goal of this work is the development of an ecosystem that provides the nec-
essary tools to let users compose mobile applications and afterwards, run them in Android
devices. Moreover, our work focuses in integrating sensors in the applications created, to
collect user’s context-information and create context-aware mobile applications.

To achieve this, our system must provide two different tools:

• A web authoring-tool which allows users without programming skills to create
mobile applications. This tool let users customize the applications’ look and feel.
Users can also customize the applications’ behavior and use sensors to create appli-
cations that adapt to the context of the user.

• An Android run-time environment that interprets and runs the applications cre-
ated with the web authoring-tool. In addition, the run-time environment is respon-
sible to provide a set of sensors that collect informations about the context of the
user. Therefore, it should be able to:

– Collect data from external sensors that are connected to the smartphone via
Bluetooth or internal sensors that exist in smartphones (e.g. GPS, accelerom-
eter).

– Work with several types of sensors and be flexible in order to easily allow
the addition of new sensors to the system.

Chapter 1. Introduction 4

– After the collection of data, optionally, it should be possible to apply some
types of processing. This means that for example, we can use the ECG raw
data to draw a graph of the user’s heart rhythm or process it to get user’s heart
rate.

– Work like an event-based system: Each sensor has a user-defined set of
rules that define the system events. This will allow the applications to react
differently when facing different contextual information.

1.3 Contributions

This work’s main contributions are:

• Development of an Android runtime environment capable of collecting context data
from sensors (internal or external to the smartphone). Additionally, this data can be
used to trigger events within mobile applications, making them not only reactive
but also proactive.

• Improvements in DETACH’s authoring environment3 to support the creation of
sensor-based mobile applications. We included the required mechanisms to allow
non-expert users to design applications that can have different flows according to
conditional transitions based on sensor’s data.

The following publication emerged from this work:

• André Justo, Luı́s Duarte, Luı́s Carriço (2014). Integrating Sensors in a Mobile
Application Authoring Environment. HCI 2014 - 28th International British Com-
puter Society Human Computer Interaction Conference, SouthPort, UK, Septem-
ber, 2014.

1.4 Planning

The development of this thesis work was divided in the following phases:

• Phase 1 - September and October 2013: learning process of the functioning of
the sensors and definition of PHASED system
The purpose of this phase was to learn how to work with the sensors available
and how to work with some of the technologies that were used in the development
process. Additionally, it was also necessary to start working on some aspects related
to PHASED, such as the system requirements and the system architecture.

3http://accessible-serv.lasige.di.fc.ul.pt/˜afjusto/detach/webtool

http://accessible-serv.lasige.di.fc.ul.pt/~afjusto/detach/webtool

Chapter 1. Introduction 5

• Phase 2 - November 2013 until January 2014: development of PHASED
During this phase, we started the development of the system. It also included the
writing of a preliminary report describing the work made until then and how the
work should evolve until the end.

• Phase 3 - February and March 2014: development of DETACH Mobile
This phase consisted on the improvement of several DETACH Mobile functionali-
ties.

• Phase 4 - April until July 2014: DETACH’s interface improvements and inte-
gration of PHASED and DETACH
During this phase, several interface improvements were made. Some of those im-
provements were the result of feedback obtained in previous DETACH trials, while
others were related with the inclusion of sensors in the tool.

• Phase 5 - August to October 2014: System evaluation and writing of the Mas-
ter’s thesis
Establishment of an experiment to evaluate the work done. Writing of this docu-
ment with all the developed work and results achieved.

1.5 Document organization

This document is organized as follows:

• Chapter 2 - Related work
In this chapter we focus in some topics and definitions related to the work domain.

• Chapter 3 - DETACH Analysis
This chapter gives an overview of the DETACH System.

• Chapter 4 - Adding sensors
This chapter describes PHASED - an Android runtime environment to collect user’s
context data from sensors and run applications created with DETACH. Here, we
also explain the architecture used to tackle the requirements of this work. In the end,
this chapter explains how new sensors can be added to the system, from developers’
point of view.

• Chapter 5 - Authoring Sensors
In this chapter we present several DETACH’s interface improvements, mostly due
to the integration of sensors in the authoring environment. We also present the
process of creating applications with sensors.

• Chapter 6 - Evaluation

Chapter 1. Introduction 6

This chapter presents the results of an experiment done with developers, to evaluate
the process of adding new sensors to the system.

• Chapter 7 - Conclusions
This chapter presents a discussion of the full work accomplished and point out
possible future work.

Chapter 2

Related work

This chapter presents some aspects related to this project domain. We start by defining
context-aware computing and the importance of context in this field of research. After,
we present an overview of a wide range of sensors available today, either embedded in
modern smartphones or trough dedicated sensor platforms. Since one of the goals of
our work is to use context-data to create an event-based system, we also describe the
importance of context in these type of systems and explore some approaches used to
create systems of this kind. At the end, a description about programming environments is
given.

2.1 Context-aware computing

Context is an important factor in human behaviour because people act based on that.
The context may relate to external conditions, location, weather conditions and time of
the day, among others [13].

In the last years, several context-aware applications emerged, incorporating various
kinds of relevant context information in order to improve their usability. Context aware-
ness describes the ability of a system to sense user’s state and the environment, and modify
its behavior based on this information [12]. Gartner [14] defines “context-aware comput-
ing” as the concept of taking advantage of information about the end-user to improve the
quality of the interactions. Most of the software only uses direct relevant information like
direct inputs, while context-aware systems also acts upon indirect relevant information.
The utilization of context in processing is a big step towards modelling the real world be-
haviour. Current technology can provide us with information such as user location, user
activity and light and noise levels [2]. Location context coupled with user’s identity can
be very useful for various service applications [13] and for example a few location-aware
guides have been designed for city tours [15].

7

Chapter 2. Related work 8

An architecture that is aware of the end user’s context and delivers relevant informa-
tion was first presented by Gartner as Context Delivery Architecture (CoDA) [14]. CoDA
is aimed for event-driven applications and in summary, the functioning of the software
elements (e.g., services or event handlers) is determined by the input to the element and
by secondary sources of information – the context offered by external sources such as
weather or traffic services. That means that two invocation of the same service with the
same parameters may yield different results in different circumstances. It also introduces
the concept of creating applications through reusable components and aims to enhance
user’s experience using the knowledge of context and adapt the application behaviour to
it.

2.1.1 Sensors

Context can be acquired by means of different sensors that gather pieces of context
information and supply the information for interpretation and utilization in applications.
With the deployment of sensor networks it is not only possible to obtain real-time infor-
mation about the physical world but also act upon that information. The accuracy and
the timeliness of this information is important since actions are usually taken based upon
these sensed values. In general, the quality and the reliability of this data are important
issues that have received attention [16, 17]. Acquiring context information can mainly be
done in two ways:

1. Explicit acquisition - user is aware that context information is being collected for
use by an application and usually needs to give consent for the information to be
collected. For example, location sensors in web browsers require authorization to
obtain information about the user’s current location.

2. Implicit acquisition - user is normally unaware that context information is being
collected either for use by an application or for storage. For example, when the ap-
plication uses an accelerometer to implicitly determine the speed at which the user
is travelling while accessing the application. Another example of implicit context
information acquisition include the recording of a user’s previous interaction with
the system [18, 19].

In 2004, Michael Beigl et. al [20] conducted a survey to identify the most typical
sensors needed for applications in Ubiquitous and Pervasive Computing. Through a sur-
vey of 12 typical existing and implemented applications, they identified 7 general types
of sensors - namely movement, light, force, temperature, audio, humidity and proximity.
The distribution of sensors among the analyzed applications showed a preference to sen-
sors for movement, followed by light and force/pressure. These sensors are especially
suited for activity recognition of the object to which the sensor is attached (e.g. to derive

Chapter 2. Related work 9

the general internal context of an object). However, two more sensors must be added to
the list of most used sensors: temperature and audio. Both sensors are commonly used
to derive information about the environment of the object. These sensors are therefore
useful for deriving the situational context of an object.

Since then, mobile phones evolved as a computing platform and acquired richer func-
tionalities and these advancements often have been paired with the introduction of new
sensors. For example, accelerometers have become common after being initially intro-
duced to enhance the user interface and use of the camera. Now, among other things, they
are used to automatically determine the orientation in which the user is holding the phone
and use that information to automatically re-orient the display between a landscape and
portrait view or correctly orient captured photos.

Most modern smartphones include several dedicated sensors, such as gyroscope, com-
pass, accelerometer, proximity sensor and ambient light sensor. They also include other
more conventional devices that can be used to sense, such as front and back facing cam-
eras, microphones, GPS, WiFi, and Bluetooth radios. Many of the newer sensors are
added to support the user interface (e.g. the accelerometer) or augment location-based
services (e.g. the digital compass).

Several domains capitalized the potential of sensors to improve their application’s ca-
pabilities. One of the most common type of context-aware applications are based on user’s
location. Applications such as Foursquare1 and museum or tourist guides heavily rely on
this information to adapt the information that is presented to the user and are very popular
nowadays. GPS is also commonly used in applications to track sport’s performance, such
as Runstatic2 and Endomondo3. Non-phone-based mobile sensing devices such as the
Intel/University of Washington Mobile Sensing Platform (MSP) [21] have shown value
from using other sensors not found in phones today (e.g., barometer, temperature, humid-
ity sensors) for activity recognition; for example, the accelerometer and barometer make
it easy to identify not only when someone is walking, but when they are climbing stairs
and in which direction. Other researchers have embedded sensors in standard mobile
phone earphones to read a person’s blood pressure [22] or used neural signals from cheap
off-the-shelf wireless electroencephalography (EEG) headsets to control mobile phones
for hands-free human-mobile phone interaction [23].

Even though it’s evident that sensor capabilities heavily contributed to improve appli-
cations used in our daily lives, there is also a problem associated with such applications
targeted to the general population: most of them are not flexible in order to meet some
domain’s requirements. If a user requires a specific functionality, it would be necessary

1http://foursquare.com
2https://www.runtastic.com
3http://www.endomondo.com

http://foursquare.com
https://www.runtastic.com
http://www.endomondo.com

Chapter 2. Related work 10

to deploy a whole new version of the system, which is not practical. Instead of creat-
ing custom made applications from scratch, a possible solution may be the development
of sensor runtime environments where multiple sensors can be integrated to provide an
easier way of creating mobile sensing applications.

2.2 Sensor Runtime environments

Event driven architectures have evolved in the last years, changing the traditional com-
puting architectures that are based on synchronous request-response interactions between
clients and servers. This paradigm shift brings two critical changes:

• Event-based systems support applications that are reactive in nature. Being reactive
means that the processing is triggered in response to events, instead of the tradi-
tional responsive applications in which processing is done in response to a specific
request [24];

• Event-driven architectures adopt the decoupling principle, in which there are event
producers, event consumers and event processing agents [24].

The next phase of the evolution of those systems introduces a conceptual architecture
known as proactive event-driven computing [24]. Proactivity refers to the ability to iden-
tify desired future events and take advantage of future situations by applying prediction
and automated decision making technologies.

The growing availability of cheap and pervasive sensor technology, the spreading of
broadband connectivity and the developments in predictive analytics technology are some
factors that make those systems possible [24]. Analytics has evolved from being descrip-
tive (understanding of historical data), to being predictive (providing forecasts of future
behaviour). The next step is prescriptive analytics which means the use of data to pre-
scribe the best course of action to realize the best outcome [25]. This way, reactive com-
puting coupled with predictive analytics brings the ability to react to events before they
occur, which is the main objective of proactive event-driven computing.

The conceptual model of proactive event-driven applications is built over the existing
work in event processing architectures. The core of this model is the notion of event
processing network (EPN). This notion has been defined by Luckham [26] and refined
by Etzion and Niblett [27] as a collection of event processing agents (EPA), producers
and consumers. Those agents are in an intermediary layer that stands between the event
producers and consumers. The main types of event processing agents are:

• Filter - decides whether an event continues to flow in the system, based on satisfac-
tion of an assertion;

Chapter 2. Related work 11

• Transformation - derives events as function of input in various ways (for example,
aggregation);

• Pattern detection - derives events based on detection of patterns.

This work follows the guidelines of an event-based system and will focus mainly on
filter and transformation agents. Filter agents will be used to process events triggered
by rules with one condition only, such as the current location of the user. Transformation
agents are useful to process more complex events and will be essentially used to aggregate
various rules (e.g., current location of the user and time of the day). The agents will use
the data collected by the sensors and analyze each sensor’s rules in order to trigger, or not,
the action attached to the event.

2.2.1 Context in event processing modelling

In event processing, context plays the same role that it plays in real life: a particular
event is processed in a different way depending on the context in which it occurs and
may be ignored in some contexts. In context aware computing it might be useful to take
a set of events and group them into context partitions so that they can be processed in
a related way. The way events are grouped is defined by context dimensions that tell us
what aspect of the event is used to do the grouping. There are various context dimensions,
such as temporal, spatial, state oriented and segmentation oriented [13].

Temporal context

This type of context is aimed to partition the temporal space into time intervals. The
typical use of temporal context is to group events to process them together based on the
fact they have occurred during the same time interval.

Spatial context

Spatial context groups events according to their geospatial characteristics. There are
three types of spatial contexts:

• Fixed location - context partitions are associated with the location of a reference
entity called geofence. An event is classified into a context partition if its location
is inside the spatial entity.

• Entity distance location - context partition is based on the distance between the
event’s location and some other entity.

Chapter 2. Related work 12

• Event distance location - this type specifies an event type and a matching expression
predicate. If an event occurrence that matches the predicate is detected, then a new
partition is created.

Segmentation oriented context

State-oriented context differs from the previous dimensions because the context is
determined by the state of some entity that is external to the event processing system.

Our work will mainly use temporal and segmentation oriented context dimensions.
When an event is triggered by a rule with one condition only (e.g. heart rate above 80bpm)
it is not required to use any context dimension presented above. However, when using
rules with several conditions (e.g. heart rate above 80bpm and current location of the
user) it is required to group those events in a temporal context (to ensure that both events
occurred in the same time span) and in a segmentation oriented context (to ensure that
both events belong to the same rule).

2.2.2 Event filtering approaches

The approach chosen by each system is very important because it defines how things
work and therefore it defines key aspects of the system such as the importance of the
mobile device or the amount of data retrieved from the sensors (and consequently the
amount of processing needed to compute it all).

Many health monitoring systems use a 3-tier remote monitoring architecture [28, 29]
where a personal device such as a smartphone acts as a hub that collects data from body-
worn biomedical sensors and later transmit the data (with or without additional process-
ing) to a backend server. Some prototypes that rely on the 3-tier architecture are geared
towards low-intensity sensors (e.g., weight scales or glucose readings) [30]. In these cases
the mobile device doesn’t do any local processing and the data is sent to the remote server
for either real-time or offline analysis.

In [31], a middleware known as HARMONI (Healthcare-Oriented Remote Monitor-
ing) uses a rule engine on the mobile device to support context-aware distributed event
processing where the mobile device dynamically changes its processing of the sensor
streams based on changes in both local and external context. Processing refers to opera-
tions that may be performed on the sensor data, such as filtering (e.g., heart rate between
70-90), statistical summarization (e.g., average of heart rate readings over a period of

Chapter 2. Related work 13

time) or feature extraction (e.g., obtain the QRS4 components of an ECG signal). HAR-
MONI also supports the concept of adaptive sensor event processing. As monitoring ap-
plications are typically interested only in higher-layer events (e.g., arrhythmia from ECG
readings) or statistical summarization, HARMONI uses a spatio-temporal processing on
the mobile device to filter relevant data. In [11] there’s also another approach denoted as
activity-triggered deep monitoring (ATDM) that focus on applications that need to trans-
mit potentially high-rate data streams of data, but only when a specific contextual activity
of the patient is detected.

The activity-triggered deep monitoring and HARMONI approaches have the advan-
tage of reducing the amount of data collected by each sensor. This is very helpful to
reduce the amount of processing that has to be done and avoids wasting unnecessary re-
sources. However, in order to dynamically change the process of collection of data, other
techniques are required to understand the activity or the context of the user (e.g. if user is
walking, running or sleeping). This can be a limitation if we don’t have the resources to
achieve that.

Other approaches focus on the continuous transmission of data from various ’always-
on’ sensors. To reduce the higher volumes of sensor data that will arise from the use of
continually-transmitting sensors (such as ECG or EMG), Mohomed et al. [31] proposes
the use of data management middleware that distributes the processing across both the
mobile device and the backend. The principal focus is the exploration of the user’s con-
text (both physiological and activity) to adapt the stream processing logic on the client
device. This focus is motivated by the fact that both the medical events being observed
and the expected values for medical parameters (e.g., heart rate) are often a function of an
individual’s activity (e.g., walking or running) and her medical context (e.g., prescribed
medication).

Continuous sensing raises considerable challenges in comparison to sensing applica-
tions that require a short time window of data. There is an energy tax associated with
continuously sensing and potentially uploading in real time to the cloud for further pro-
cessing. Solutions that limit the cost of continuous sensing and reduce the communication
overheard are necessary. If the interpretation of the data can tolerate delays of an entire
day, it might be acceptable if the phone can collect and store the sensor data until the
end of the day and upload when the phone is being charged. However, this delay-tolerant
model of sensor sampling and processing severely limits the ability of the phone to react
and be aware of its context. Successful sensing applications will have to be smart enough
to adapt to situations. There is a need to study the trade-off of continuous sensing with
the goal of minimizing the energy cost while offering sufficient accuracy and real-time

4The QRS complex is a name for the combination of three of the graphical deflections seen on a typical
electrocardiogram (ECG)

Chapter 2. Related work 14

responsiveness to make the application useful.

In our work, users have the ability to manually start and stop sensors. When a sen-
sor is started, it uses a ’always-on’ approach to constantly collect and process data, and
eventually fire events. However, our system also supports the ability to use context infor-
mation from ”low-cost” (in terms of resources consumption) sensors (e.g. Time sensor)
to activate ”heavier” sensors (e.g. GPS) that usually drain considerable amounts of bat-
tery when used. As an example, users can personalize the activation of sensors based on
his/her daily activities. The main benefit of this approach is to reduce sensors’ uptime and
consequently reduce the amount of processing that needs to be done and minimize the
energy problem associated with continuous sensing.

2.3 Sensor Programming environments

End-user programming allows people who are not professional developers to create
and modify software. The programming environments used by end-users include spread-
sheet systems, authoring tools and visual programming languages. With these tools, users
are able to write and edit formulas, drag and drop objects to create their programs [32].
Visual programming consists in moving graphical elements instead of typing code to pro-
gram something. This type of programming is very attractive to young people who have
the goal to create simple applications or simple interactive games and is very popular in
educational technology. Scratch [33] is a visual programming environment that allows
users to use event driven programming to create interactive projects. Users have at their
disposal a set of blocks that can be snapped together to create a sequence of commands
and the blocks visually fit together like puzzle pieces. There are four kinds of blocks:
command blocks, function blocks, trigger blocks and control structure blocks. Scratch is
a powerful tool and allows to create a wide range of projects, including animated stories,
games and educational projects.

Inspired by Scratch programming language and environment, Catroid [34] is a similar
tool intended for the use by kids and runs on smartphones and tablets. Programs are con-
structed using visual Lego-style pieces where commands are stuck together by arranging
them visually. Catroid focus on devices with multi-touch screens and take advantages of
many sensors built into smartphones/tablets such as acceleration or gyroscope sensors,
or GPS for location based programs. Catroid also allow to wirelessly control external
hardware such as Lego robots and other devices.

In [35], a programming environment to create physics-based games (such as Angry
Birds) called Fizz is presented. This system allows children to produce games and simula-
tions using events and drag and drop programming. The main idea of Fizz is that scenes of

Chapter 2. Related work 15

games, stories or simulations are created from toys which have properties and behaviours.
The properties include colour and the 2D physics simulation characteristics shape, mass,
and elasticity. There are default properties so that children do not need to modify them
unless they wish to. Behaviours are lists of actions the toys perform when certain events
occur. A careful combination of these foundations enables children to produce interesting
and engaging programs.

Although none of the presented tools is related to this project main goal, this research
shows that visual programming tools can be useful to domains where stakeholders are
non-expert programmers and therefore can create personalized applications if they are
supported by the necessary tools. Having said that, we believe that applications can take
advantage of using sensors in many ways if non-expert users have the ability to control
those using only visual elements, making the production of applications much simpler
and richer.

2.3.1 Context-aware prototyping environments

Over the years, several systems and infrastructures have been developed to provide
developers with toolkits that enables the creation of context-aware applications. Even
though those tools and technological advances for acquiring contextual information con-
tributed to the development of numerous context-aware applications, there was still a
lack of authoring environments supporting both programmers and end-users. This lack of
support closes off the context-aware application design space to a larger group of users.
Without a proper authoring environment, developing a context-aware application requires
developers and end-users to work together to either build an application from scratch (in-
volving direct interaction with hardware sensors and devices) or to use low-level sensor
toolkits. Either way, in order to acquire context information, large amounts of code must
be written to develop simple sensor-based applications. Those limitations narrow the
design of interesting applications because end-users have less control over how the appli-
cations behave. Since they have more knowledge about their activities and surrounding
environments than anyone else, they need the ability to create and modify applications
as those activities and environments change. In summary, end-users without technical
expertise must be able to rapidly prototype applications and have control over such appli-
cations, or else they might fail to meet users’ needs.

To address this problem, some systems were created to empower end-users in building
context-aware applications by lowering barriers and allowing the development of appli-
cations that match their needs without requiring them to write code [36, 37, 38]. iCAP
(Interactive Context-aware Application Prototyper) [36] is a system that allows end-users
to visually design a variety of context-aware applications based on if-then rules, tem-

Chapter 2. Related work 16

poral and spatial relationships and environment personalization. iCAP allows users to
prototype applications by describing situations and associate specific actions to it which
results in exerting control over sensing systems and dictate application behavior. Topi-
ary [37] was created to enable the rapid prototyping of location-enhanced applications.
Topiary builds storyboards from scenarios that represent local contexts. These scenar-
ios are demonstrated by the end-user and the constructed storyboards describe interaction
sequences that can run on mobile devices. “a CAPella” [38] is a context-aware proto-
typing environment that gives the end-user the ability to program by demonstration. Its
main components are: a recording system, an event detection engine, a user interface and
a machine learning system. More recently, Realinho et. al [39, 40] developed the IVO
(Integrated Virtual Operator) platform which also enables end-users to build and deploy
context-aware applications. This platform is composed by a visual programming appli-
cation builder available on the web (IVO Builder) where users can define a set of context
conditions (spatial and temporal) and workflows of activities, which are later triggered
when the user is in the presence of those contexts. There is also a smartphone runtime
layer (IVO Client) that loads the developed applications and provides a Workflow Engine
to enable the coordination of the flow of activities.

Most of the systems stated above were developed when the research in context-aware
computing started to become more important. Even though they provided important con-
tributions in empowering end-users to create context-aware applications, all the systems
(except IVO) are outdated and don’t support the newest mobile OS. In addition, the ma-
jority have a big focus in location-based scenarios which narrows the domains where such
applications can be used. Another important difference when compared with our work is
that it seems the applications created with those systems are just a set of context scenarios
(without any relationship) which triggers actions when facing those contexts. With our
work, we want to create an authoring environment where users can create and customize
the screens of the application and create transitions between them. In addition, the context
information collected will be used to either trigger those transitions or automatically start
additional interactions with the user (e.g. automatically open the application and prompt
the user to fill a form).

As far as we are concerned, there are few authoring tools that enable end-users with-
out programming expertise to create mobile applications that: a) support sensor based
interactions; b) use context-information to adapt application’s behavior based on different
scenarios. Even though sensors are becoming important in interaction design, specify-
ing the relationship between sensor values and application logic still remains an exercise
of trial-and-error [41]. Hartmann et al. [41] introduces techniques for authoring sensor-
based interactions by demonstration. A combination of direct manipulation and pattern
recognition techniques enables designers to control how demonstrated examples are gen-

Chapter 2. Related work 17

eralized to create interaction rules. In our work, we aim at providing a set of sensor
events that can be easily used by non-expert users. Even though we try to use a higher
level of abstraction, some events may require additional configuration (e.g. define a range
of values in which the event may occur).

2.3.2 DETACH

DETACH5 [42, 43] is an authoring tool which was created to target therapists that
need to design and deploy mobile applications for Cognitive Behavioral Therapy (CBT)
procedures. This type of therapy is usually divided in two different kinds of sessions:
there are sessions where the therapist and the patient are both inside an office; and sessions
where the patient needs to follow some homework tasks. In this domain, the ability for
those homework tasks to adapt to the patient’s evolution is crucial to ensure the success
of the treatment. The use of technology solutions proved to improve patient engagement
as well as improving registry organization, since paper artefacts can be replaced with
digital ones. However, the diversity of pathologies and the fast change of application’s
requirements undermines the common approach of creating dedicated solutions to each
patient. To address these limitations, DETACH allows therapists without programming
experience to quickly create applications tailored to each patient’s needs.

The development of DETACH started with a series of participatory design and think-
ing aloud trials with non-programmer users aiming to understand how they conceptualized
programming. The results of interacting with low and high fidelity prototypes provided
a set of interaction patterns and behaviors used to design the final DETACH tool. Final
evaluations showed that the tool fulfilled all the initials requirements by allowing health
professionals, and people with no programming experience, to create applications and run
them in a mobile runtime environment.

Even though DETACH was developed to provide solutions in the health domain, there
are other domains where DETACH’s applications can be useful. In this work we are going
to extend DETACH’s capabilities by integrating sensors in the environment. A detailed
explanation about DETACH is given in Chapter 3.

2.4 Summary

In this chapter we started by presenting the importance of context in ubiquitous appli-
cations that are developed nowadays. With the evolution of smartphones and the availabil-
ity of sensors (either embedded or external) obtaining context information about user’s ac-

5DEsign Tool for smartphone Application Composition

Chapter 2. Related work 18

tivity or user’s surrounding environments becomes easier. Even though numerous context-
aware applications have been developed, most of them are dedicated applications with a
well-defined purpose and don’t provide any expandability (in terms of adding new sen-
sors to the application) or customization to fit several scenarios. There are domains where
applications’ requirements are often changing and developing a context-aware applica-
tion from scratch is expensive and time consuming. In addition, creating such applica-
tions involve working with several sensors from different manufacturers and with different
hardware specifications which requires some expertise. Another problem is the fact that
end-users have a deeper knowledge of their activities and surrounding environments that
everyone else; however, they may fail to translate this knowledge to applications require-
ments.

In order to overcome the problems stated above, there is a need to develop a visual
prototyping environment that enables end-users to build context-aware applications with-
out writing any code. The goal of this environment is to empower end-users and let them
have an active role in application’s composition. The literature presented in this chapter
shown us that existing visual programming environments produced positive results when
used by non-expert users. This motivate us to create an environment where users can use
sensor’s context information to create reactive and proactive applications. This environ-
ment also provides two benefits: expand the design space of context-aware application
design to a larger group of users and give end-users the ability to control what should
happen in those applications. Some challenges to create an ecosystem that allows the
development and execution of applications with sensors are:

• Providing an easy and flexible way to let users customize application’s behavior by
using events provided by sensors.

• Collecting context informations from sensors and transform it in higher-level events
that can be easily understood by non-expert users.

• Creating a rule engine that sits between the visual authoring environment and the
mobile runtime environment. Most context-aware applications can be described as
a collection of rule-based conditions where if some condition is matched then

some behavior is triggered in the application.

• Creating a versatile runtime environment that works with all kinds of sensors, in
order to match the requirements of different domains.

Chapter 3

DETACH Analysis

In this chapter we present a global overview of the DETACH system. This overview
provides the necessary background about the current state of DETACH, presenting some
important concepts which allows the reader to understand how the system works.

In the end, we discuss several constraints related to the integration of sensors in the
system. Overcoming these constraints by providing the required mechanisms to com-
pose sensor-based applications and collect context-data from sensors are our goals in later
chapters.

3.1 System architecture

This system comprises three different components:

• a web tool to create mobile applications, denominated DETACH.

• a mobile runtime environment capable of running the created applications called
DETACH Mobile.

• a database in which applications and user data is stored.

DETACH and DETACH Mobile use a thin client/fat server architecture. This archi-
tecture is shown in Figure 1.

19

Chapter 3. DETACH Analysis 20

Figure 1: DETACH’s system architecture

This architecture covers three types of stakeholders:

• Non-Expert Programmers: should be able to easily create mobile applications
using the available screen templates, personalizing their contents and behavior as
they want in order to satisfy their needs.

• IT Professionals: responsible for the creation and maintenance of DETACH’s com-
ponents.

• Mobile Application End-Users: should be able to use the mobile application that
was assigned to them.

3.2 DETACH Authoring Tool

Having in mind that DETACH is aimed at people without programming experience,
the tool was developed as a web application to ensure that no installations or configu-
rations were necessary prior to using the tool to create applications. This choice also
ensures that all users working on different operating systems and different devices can
use the authoring tool without any constraint.

DETACH’s interface was built with HTML5, CSS3 and Javascript. DETACH server
also uses PHP and MySQL to handle some functionalities such as user and application
management.

3.2.1 Applications’ anatomy

Like any mobile application, each DETACH application is comprised by a set of
screens. To ease and guide the authoring process, users have at their disposal a set of
template screens, each one with different content elements and a purpose (e.g. display a

Chapter 3. DETACH Analysis 21

message, display images, ask a question). The content elements of each screen are cus-
tomizable by users; however, users can’t add additional content elements to the screen.
Screen templates are developed and maintained by developers. To control the behavior
of an application, users must specify transitions between screens. Transitions may de-
pend on simple navigation elements (e.g. navigation buttons) or content elements (e.g.
radio buttons) and are represented as arrows. The anatomy of a DETACH application is
summarized in Figure 2.

Figure 2: Anatomy of a DETACH application

3.2.2 Interface

The interface of the web application (Figure 3) is divided in three distinct areas:

• A top section containing the available screen templates which can be used to com-
pose applications (red layer in Figure 3).

• A central canvas to which screen templates can be dragged and organized (green
layer).

• A configuration panel on the right side that enables the customization of the selected
screen(s) in the canvas (blue layer).

Chapter 3. DETACH Analysis 22

Figure 3: DETACH interface

3.2.2.1 Screen templates

To create applications, users can choose from a set of available screen templates (Fig-
ure 4):

• Screens containing only messages (blue color).

• Screens containing dynamic content that changes according to user answers (yellow
color).

• Screens containing questions with possible choices (green color).

• Screens containing free answer questions (red color).

Figure 4: DETACH mobile screen templates

When a screen template is clicked or dragged into the canvas, that screen is added
to the current application. Each screen template contains different elements that can be

Chapter 3. DETACH Analysis 23

customized, using the configuration panel located on the right side of the interface. Com-
mon to all screens are the screen title, screen notes (small appointments, only visible to
the user which is creating the application) and screen add-ons (audio, subliminal content,
background and text customization). Each screen template may have other fields that can
be personalized by the user.

3.2.2.2 Screen triggers

In addition to dragging screens to the canvas, users also need to specify transitions
between screens (represented in the canvas as blue arrows, linking one screen to another).
Even though each screen template offers different triggers, we can group them in two
categories:

• Triggers based on navigation elements: These triggers allow actions based on
navigation elements, such as clicking the ”next button” available in all screen tem-
plates. They are particularly used with screen templates that only display static
content (such as text and images) that don’t provide additional user interactions.

• Triggers based on screen content: Some screen templates have content elements
(e.g. radio buttons, check boxes, sliders) that provide additional user interactions,
and therefore give users the possibility to control the transitions based on the current
state of the contents (e.g. if radio button 1 is selected goes to screen 2, otherwise
goes to screen 3).

Transition can be customized through a connection definition panel that appears after
a connection is created (Figure 5).

Figure 5: Connection rules specification

Chapter 3. DETACH Analysis 24

3.2.2.3 Runtime Emulator

DETACH also provides a runtime emulator that let users quickly preview how a mo-
bile application created with DETACH would look in a smartphone. This emulator allows
a person to test the application’s interface, content, sound, styling and behavior without
the hassle of deploying the application to a smartphone, which is very handy when proto-
typing new applications.

Figure 6: Example screen configuration and respective run-time result

3.3 DETACH Mobile

DETACH Mobile is a runtime environment, built on top of Android OS, capable of
running applications created with DETACH. It uses Java with an Android WebView that
handles HTML5, CSS3 and Javascript content the same way as DETACH Runtime Em-
ulator. This solution requires an active internet connection to authenticate users and load
application’s contents from server in real-time.

Users can navigate through the application screens (Figure 7) back and forward and
this information is appended to a log file which can be viewed later by the application’s
author.

Chapter 3. DETACH Analysis 25

Figure 7: Application running in DETACH Mobile

3.4 Constraints in sensor integration

In order to better perceive most of the requirements of our work, first we must un-
derstand current DETACH limitations regarding the integration of sensors in the system.
Including sensor-based interactions requires improvements and modifications in both DE-
TACH’s environments: authoring and mobile runtime. In this section we individually
discuss the constraints of each environment, which are addressed in later chapters.

3.4.1 Runtime environment

Context awareness is widely used in ubiquitous computing in order to perceive user’s
activity or surrounding environment, and react accordingly. Being ’context aware’ means
that raw data from sensors have to be analyzed and converted into a description that makes
sense for both applications and users. Our goal in this work goes beyond collecting con-
text data from users; we want to take advantage of such information to create more dy-
namic and proactive applications.

Currently DETACH Mobile, the runtime environment, merely contains a way to run
DETACH applications. Until now, the capabilities of this environment were enough to
address the existing requirements; however, integrating sensors to collect context data
and control the behavior of an application arises several problems:

(a) How does the system communicates with sensors in order to use the data collected?

Chapter 3. DETACH Analysis 26

(b) How does the system transforms data into events?

(c) How does the system consume fired events and triggers specific actions within an
application?

Besides these problems, we must also take into consideration that DETACH follows a
principle of modularity, where developers are important stakeholders that are responsible
to add new components (screen templates and sensors) to the system. In order to achieve
this, the runtime must provide a high abstraction level and support a way to easily work
with several types of sensors. Our objective is to create a unified programming interface
that supports multiple sensors and remove barriers that may exist when using different
types of sensors (e.g. data formats, programming languages).

As we presented in Chapter 2, event-based systems are well suited to tackle these type
of requirements. They support applications that are reactive, meaning that we can use
processed data to take actions in response to specific events. With this approach, we may
have several producers of events that must be able to:

• Communicate with sensors and collect data from them.

• Apply some processing to the collected data (e.g. process raw data from an ECG
sensor to calculate user’s heart rate). It’s important to convert meaningless data into
something that can be easily understood by non-experts users.

• Trigger events: each sensor has a set of rules that define the system events. This will
allow the system to react differently when facing different contextual information.

• Support the configuration of the sensors (e.g. setting the sensors’ operation thresh-
old values).

In addition to producers, it is also required to have a consumer of events. This component
must be able to:

• Understand events triggered by sensors. These events will be associated with a
specific behavior in a DETACH application (e.g. change screen when user’s heart
rate is above 80 bpm).

• Support the aggregation of events from different sensors (e.g. heart rate value and
user location at the same time). DETACH supports transitions with multiple con-
ditions, and therefore we must ensure that asynchronous events are grouped and
correctly processed.

• Take actions in response to events.

Chapter 3. DETACH Analysis 27

3.4.2 Authoring environment

In order to integrate sensors in the authoring environment, we must take into consid-
eration two different perspectives:

1. On the one hand, developers need to create representative sensor elements which
can be used by non-expert users when composing applications.

2. On the other hand, the process of composing applications requires some modi-
fications to introduce new sensor elements and allow the configuration of screen
transitions based on sensor triggers.

At this point DETACH lacks the support of sensor elements, and therefore we must
include them in the authoring environment. The specification of those elements are re-
sponsibility of developers. Most importantly, developers must specify a list of triggers
that are provided by each sensor. An important note is that sensors are not available in the
authoring environment and therefore, this requires particular attention when it comes to
application testing, since the current runtime emulator is not prepared to support applica-
tions that use context data.

From the point of view of non-expert users, they must be able to easily compose appli-
cations with sensors. A key difference to the current tool is the possibility to use sensors
to control the behavior of an application. While screens are used to define the interface
of an application, sensors will be used to control the transitions between screens. The
challenge here is to provide an easy method to specify transitions which rely on sensors
while avoiding the disruption of the current application composition procedures. At this
point, the runtime emulator does not successfully support sensor-based applications. To
do so, this emulator must be updated in order to support the input of fake sensor data.
Otherwise, triggers that require context data won’t work.

In summary, the current authoring environment must be improved in order to:

• Support the addition of sensor elements in the tool’s interface.

• Use sensor elements to specify sensor-based triggers that are used to control transi-
tions between application’s screens.

• Use the runtime emulator to preview and test the behavior of applications, including
a way to input sensor data and simulate sensor-based transitions.

Chapter 3. DETACH Analysis 28

3.5 Summary

In this chapter we reviewed DETACH - an existing authoring environment that en-
ables users without programming experience to design and deploy mobile applications.
It comprises three components: i) a server with a database in which applications and
user data is stored; ii) a web tool to author applications denominated DETACH; iii) an
Android runtime environment capable of interpreting the created applications called DE-
TACH Mobile.

In DETACH’s web tool, non-expert programmers can compose mobile applications by
selecting screen templates and configure its contents. They can also give the application
some type of behaviour, by creating transitions from each screen to another based on
different triggers. This tool also features an emulator that let users quickly preview how a
application would look in a smartphone.

Since our work focuses in extending the functionalities of DETACH to enable the
development of sensor-based applications, we analyzed the current state of both environ-
ments (authoring and runtime) in order to perceive their limitations regarding the integra-
tion of sensors. Those limitations provided us with a set of requirements and problems to
tackle in the following chapters.

Chapter 4

Adding Sensors

This chapter covers the design of an Android runtime environment which is used
to execute the applications created with DETACH. This work focuses on providing the
necessary mechanisms to collect data from sensors.

A key point for the proper functioning of DETACH is related to the fact that this tool is
the result of joint efforts between the various stakeholders. IT experts have the necessary
skills and expertise to create and maintain content that supports the requirements imposed
by the domain specialists, and therefore we must ensure that in the future they can also
add new sensors to the system. In the last sections we describe, from the developers’
point of view, how to add new sensors in the system. First, we explain how to code
and add a sensor to the mobile runtime environment, in order to collect data and control
events associated with the sensor. Then we focus in explaining the necessary steps to
add a sensor in the DETACH authoring environment which enables the composition of
sensor-based applications.

4.1 Architecture

In order to properly integrate sensors in DETACH, several changes in the architecture
were required. As pointed out in Chapter 3, the current architecture of the authoring tool is
enough to support the addition of sensors. Most changes in the authoring tool are related
to the process of application composition and will be described in Chapter 5. However, the
runtime environment, which is the focus in this section, lacks the mechanisms to collect
data, and use it to control the behavior of the applications.

To support the requirements presented in the previous chapter, we propose an updated
architecture to the runtime environment (Figure 8). This architecture is now comprised
by:

29

Chapter 4. Adding Sensors 30

• Application View: used to render mobile application’s contents. This component
already existed in the previous architecture.

• Event Manager: used to interpret and coordinate events triggered by sensors and
consequently, trigger behaviors within a DETACH application.

• Sensor Processing Units: used to collect and interpret sensor data. Also used to
trigger events within the system.

Figure 8: Runtime environment updated architecture

As shown in the previous figure, the Event Manager and Sensor Processing Units are
part of a sub-system called PHASED. This sub-system will run in smartphones along
with DETACH Mobile, providing a bridge between sensor devices and the Application
View. In this architecture we ensure that each component has a well-defined function tar-
geting a specific concern. This approach provides modularity and separation of concerns,
facilitating the maintenance and addition of components. Even if the Application View
is modified, these changes won’t have impact on the system operation since the Event
Manager just knows which screen should show or hide at a given time. The presentation
layer is responsibility of the Application View. The Sensor Processing Units encapsulate
the logic applied to the data collected via the sensors. The operation of these units is
independent and the events triggered must contain the relevant information needed by the
Event Manager in order for them to be correctly interpreted. The communication with
external or internal sensors is also independent from sensor to sensor, thereby ensuring
that different types of sensors can be used.

Chapter 4. Adding Sensors 31

With this approach, we ensure that PHASED is capable of:

(a) collecting and interpreting sensor data.

(b) using sensor data to trigger certain behaviours within applications created with
DETACH.

The proposed architecture uses an event-driven approach. This approach works around
the production, detection and consumption of events and allows the transmission of events
among loosely coupled components. In our system, the Event Manager is responsible to
detect and consume events that are produced by Sensor Processing Units. PHASED’s
architecture is shown in Figure 9.

Figure 9: PHASED architecture

Event Manager

The Event Manager is the system’s primary engine and it plays an important role
in our system because it is the only component that consumes events. This component
ensures that all events are processed in correct order and it also provides the ability to
aggregate asynchronous events that are fired by different sensors. Consequently, it allows
users to specify transitions between screens that rely on different sensors.

Chapter 4. Adding Sensors 32

This component is executed when a user launches DETACH Mobile in his/her smart-
phone. It’s responsible for:

• parsing an input XML file that contains information about all the events of a DE-
TACH application. When users compose applications whose screen’s behavior de-
pend on sensors (covered with more detail in Section 5.5), a XML file with all the
events of the application is generated. This file also contains information about
the actions to take when specific events occur. Each event is defined as a triplet
< identifier, source, target > where the identifier is unique and source and
target are used by the Event Manager to perform the action associated with the
event.

• detecting and consuming events fired by Sensor Processing Units. It maintains an
internal state table of all events and actions to take when events are fired (Table 1).
This table is created with the information provided by the XML file.

• performing actions when necessary. In this case, the action is the activation of
a specific screen of a DETACH application when an event (or a combination of
events) occur.

Event(s) Source screen Screen to activate

[1:3:0] and [1:3:1] 1 3
[2:3:0] 2 3

Table 1: Map between events and actions

When several events share the same source and target screen, it means that there is a
transition between two screens that encompasses several conditions (e.g. heart rate above
120bpm and user is at home). Each time an event is triggered by a Sensor Processing
Unit, the Event Manager receives a notification with the identifier of the event. Then,
it updates the state table and checks if the event received must trigger an action. For
instance, if the Event Manager received a notification with the identifier [1:3:0] nothing
would happen until the Event Manager also receive an event with the identifier [1:3:1]
(Table 1).

The Event Manager is particularly important to combine events from different sensors
and prioritize certain events, if necessary. In addition to maintaining a state table, the
Event Manager is also responsible to communicate with the Application View module, in
order to let it know that a specific screen must be displayed to the user. The Event Manager
acts as a bridge between a low level layer (Sensors) and a higher layer (Application View)
thus ensuring a better integration between both layers.

Chapter 4. Adding Sensors 33

Sensor Processing Units

Each Sensor Processing Unit is comprised by a Processing Logic module and a XML
file containing a list of events that should be controlled by a sensor. They are responsible
for performing the required communication with a sensor, whether the sensor belongs
to the smartphone or the sensor is attached via Bluetooth. After the communication is
established, this component must collect data from the sensor and process it. This is done
by the Processing Logic module. Each Processing Logic module must transform raw data
into data types that can be used to evaluate specific actions offered by a sensor. When
a specific action is detected, the Sensor Processing Unit triggers an event that will be
received by the Event Manager. To evaluate these actions, each Processing Logic module
contains one or more drivers (each driver controls a specific action). Drivers are functions
that use context data provided by the sensor to evaluate if any event must be triggered.

All Sensor Processing Units share the same workflow during their execution. They
are always retrieving data, processing it and finally they evaluate conditions to check if
any event should be fired, notifying the Event Manager when necessary. This workflow is
shown in Figure 10.

Figure 10: Sensor’s workflow

As mentioned before, developers play a important role in DETACH since they are re-
sponsible for creating new components requested by the users who have the role of com-
posing applications. Having this in mind, each Sensor Processing Unit is an independent
module and is deployed as a standalone APK1. This way, users can individually install
and remove Sensor Processing Units in the same way they do with common Android
applications, and future programmers can add new sensors without the need to deploy
a new version of the whole system. When an APK is installed in the smartphone, it is

1Android Application Package File

Chapter 4. Adding Sensors 34

automatically recognized by the runtime environment and can be activated/deactivated by
end-users through DETACH Mobile interface. This procedure is shown in Figure 11.

Figure 11: Development and installation process of a new Sensor Processing Unit, and
related stakeholders

4.2 DETACH Mobile

DETACH Mobile is an Android application whose purpose is to run applications cre-
ated with DETACH, and it is the implementation of the architecture explained before.
It uses an Android WebView that handles HTML5, CSS3 and JavaScript to display the
application’s screens. Internet connection is not required except to synchronize the nec-
essary application files from the server.

When a user starts DETACH Mobile, a status screen is shown (Figure 12 - left). This
screen displays the name of the last project downloaded and a list with each sensor’s
state (either running or not running). Again, all the Sensor Processing Units previously
installed in the smartphone will be automatically recognized by the runtime environment,
and are available to be used to collect context information. From this screen, users can
also intentionally start a DETACH application by using the button ”Launch application”.
Despite providing a way to manually start an application, as will be explained in more
detail in Chapter 5, the integration of sensors in the applications also allows users to
specify that an application automatically start when facing a specific context (e.g alert the
user to take his medication at 10am).

Chapter 4. Adding Sensors 35

Figure 12: DETACH Mobile status screen (left), DETACH Mobile menu options (right)

Accessing the menu (Figure 12 - right), users can also:

• Connect sensors: used to start sensors. When DETACH Mobile is launched it
automatically detects all the sensors installed in the smartphone (Figure 13 - left)
and include them in the list presented to the user when this menu item is pressed.
When a sensor is started, DETACH Mobile invokes the service corresponding to
the sensor selected. If the sensor is successfully connected, the label indicating the
sensor status in the main screen is updated (Figure 13 - right).

• Pair sensors: List all the Bluetooth devices that are paired with the smartphone. It
allows the user to associate an external device with a specific sensor (e.g. select the
mac address of the EMG sensor).

• Stop all sensors: Stop the execution of all sensors.

• Synchronize core files: Downloads core files required to run a DETACH applica-
tion. Without these files, users can’t run applications. An active Internet connection
is required to download the files from the server.

Chapter 4. Adding Sensors 36

Figure 13: List of available sensors (left), Sensor status updated (right)

• Synchronize project: Download an application that was previously assigned to a
user. When the user select this option, an authentication screen is shown (Figure
14). If the input credentials are valid, an application previously assigned to the user
is downloaded. This action requires an active Internet connection.

Figure 14: DETACH Mobile authentication screen

After downloading the application, the internet connection is no longer necessary.
From this point, a user can run the downloaded application. If this application requires

Chapter 4. Adding Sensors 37

sensors, these must first be enabled to allow the application to work correctly.

4.3 Adding sensors to the runtime environment

The Event Manager and all Sensor Processing Units are implemented as Android
Services. An Android Service2 is an application component that allows long-running
operations in the background (even if the user switches to another application) and does
not provide any user interface. Services can also be started by another application which
is very useful and allow us to start and stop sensors from DETACH Mobile interface.
Since the components need to communicate with each other, a Messenger3 component
was used which allows the implementation of message-based communication between
our services.

In order to add new sensors to the runtime environment, developers must code the
necessary mechanisms to retrieve data from the sensor and code the necessary drivers to
control the events featured by a sensor. To ease the development of new sensors, devel-
opers must use a library that contains a set of base classes that already offer some utilities
(e.g. parse XML files, communication with the Event Manager). Figure 15 shows the
UML Class Diagram of this library.

The most generic class is called SensorBase and inherits from the class Service
provided by Android OS (Figure 15). This class is responsible for:

• initializing generic data structures and register a sensor within the system (which
allows the communication between the Sensor Processing Unit and the Event Man-
ager).

• parsing the XML file which contains information about the events related with the
sensor, after the initialization.

• notifying the Event Manager when an event is fired.

• unregistering the sensor when a sensor is stopped.

Since external sensors require a way to connect and communicate with a smartphone,
developers can extend and code custom sensor classes that inherit from the base class.
Specifically, in our work we used Shimmer’s physiological sensors (ECG and EMG).
Shimmer4 is a provider of wearable sensor products and solutions. To properly operate
with these sensors, we also developed the SensorShimmer class which inherits from
the class SensorBase. SensorShimmer provides the utilities to establish a Bluetooth

2http://developer.android.com/guide/components/services.html
3http://developer.android.com/reference/android/os/Messenger.html
4http://www.shimmersensing.com/

http://developer.android.com/guide/components/services.html
http://developer.android.com/reference/android/os/Messenger.html
http://www.shimmersensing.com/

Chapter 4. Adding Sensors 38

Figure 15: UML Class diagram

connection between the sensor and the smartphone and collect data from it. To perform
the connection and collect data, Shimmer’s manufacturers provide a library which offers
a set of utilities to interact with a Shimmer device.

4.3.1 Adding a new sensor

First, developers need to create a new Android project with an Android Service and
import the custom library explained before. The project package name must be
com.phased.SensorName (e.g. com.phased.ECG) because DETACH Mobile
automatically loads all the sensors that share this package name.

Before coding the Sensor’s Service, developers must setup the Android Manifest file.
First, it’s required to include a schema that allows exportable services. Afterwards, de-
velopers may need to list some permissions used by the sensor (e.g. accessing Bluetooth,
accessing GPS location) and finally, they must export the Service (which allows DE-
TACH Mobile to recognize it). More details about how to setup the Android Manifest
can be found in the developer’s guide annexed to this document. Listing 4.1 shows an
example of a full Android Manifest file.

Chapter 4. Adding Sensors 39

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android=”http://schemas.android.com/apk/res/android”
3 xmlns:tools=”http://schemas.android.com/tools”
4 package=”com.phased.ecg”
5 android:versionCode=”1”
6 android:versionName=”1.0” >
7
8 <uses−sdk
9 android:minSdkVersion=”8”

10 android:targetSdkVersion=”18” />
11
12 <uses−permission android:name=”android.permission.INTERNET”/>
13 <uses−permission

android:name=”android.permission.WRITE EXTERNAL STORAGE”/>
14 <uses−permission

android:name=”android.permission.BLUETOOTH ADMIN”/>
15 <uses−permission android:name=”android.permission.BLUETOOTH”/>
16 <uses−permission

android:name=”android.permission.ACCESS FINE LOCATION”/>
17 <uses−permission

android:name=”android.permission.ACCESS MOCK LOCATION”/>
18 <uses−permission

android:name=”android.permission.ACCESS COARSE LOCATION”/>
19 <uses−permission

android:name=”android.permission.ACCESS NETWORK STATE”/>
20
21 <application
22 android:allowBackup=”true”
23 android:icon=”@drawable/ic launcher”
24 android:label=”ECG”>
25 <activity
26 android:name=”com.phased.mysensor.StartActivity”
27 android:label=”ECG”>
28 <intent−filter>
29 <action android:name=”android.intent.action.MAIN” />
30 <category android:name=”android.intent.category.LAUNCHER” />
31 </intent−filter>
32 </activity>
33 <service
34 android:name=”com.phased.ecg.ECG”
35 android:exported=”true”
36 android:label=”ECG”
37 tools:ignore=”ExportedService”>
38 </service>
39 </application>

Chapter 4. Adding Sensors 40

40 </manifest>

Listing 4.1: Android Manifest XML file example

Moving to the Android Service programming, it must extend the class SensorBase
or the class SensorShimmer (if it’s a Shimmer device) provided in the custom library.
A skeleton of the service is shown in Listing 4.2.

1 public class MySensor extends SensorBase {
2
3 @Override
4 public int onStartCommand(Intent intent, int flags, int startId) {
5 super.onStartCommand(intent, flags, startId);
6 // TODO: more initializations here, if necessary
7 }
8
9 @Override

10 public void getData(Object[] objs) {
11 // processData is a boolean function which allows the

programmer to check if data can be proccessed.
12 if (processData()) {
13
14 // iterate each rule associated with this sensor
15 // the parameter of retrieveDriverRules() should be equal

to the value(s) in the tag <driver>
16 // specified in the XML
17 for (Rule rule : retriveDriverRules("driver-name")) {
18 // TODO: evaluate rules and trigger events
19 }
20 }
21 }
22 }

Listing 4.2: Sensor Service skeleton

onStartCommand() function

This function is called every time DETACH Mobile starts the service. It’s responsible
to perform initializations (e.g. configure some sensor parameters, connect the sensor). If
the connection fails, the running service is destroyed.

getData() function

Each time the sensor receives new data, this function should be executed. The argu-
ment objs provides an array of objects (giving the developer the flexibility to define the
type of data passed in the argument) with the data collected.

Chapter 4. Adding Sensors 41

processData() function

It’s a boolean function which allows the programmer to check if data can be processed.
By default it always returns true but it can be overridden, for example to check if it makes
sense to evaluate data (e.g. is there any data yet? is the user doing any activity?).

sendTriggerMessage() function

Fires an event, notifying the Event Manager.

Developers also need to implement a method responsible for retrieving data from the
sensor and process it if necessary (e.g. transform raw data into data that has some meaning
and can be used to evaluate event’s conditions). This function isn’t included in Listing 4.2
because it varies from sensor to sensor.

Lastly, the developer must program the drivers that use the data collected and fire
events when necessary. Those drivers are responsible for evaluating the set of events as-
sociated with each sensor and are executed each time the sensor collects new data. Listing
4.3 shows the implementation of the Location service.

1 public class GPS extends SensorBase {
2
3 private static final long MINIMUM_DISTANCE_CHANGE_FOR_UPDATES = 10;

// in Meters
4 private static final long MINIMUM_TIME_BETWEEN_UPDATES = 1000; //

in Milliseconds
5
6 private LocationManager locationManager;
7
8 @Override
9 public int onStartCommand(Intent intent, int flags, int startId) {

10 super.onStartCommand(intent, flags, startId);
11 // Create a handler to access user’s location
12 locationManager = (LocationManager) getSystemService(Context.

LOCATION_SERVICE);
13 locationManager.requestLocationUpdates(
14 LocationManager.GPS_PROVIDER,
15 MINIMUM_TIME_BETWEEN_UPDATES,
16 MINIMUM_DISTANCE_CHANGE_FOR_UPDATES,
17 new MyLocationListener()
18);
19 return START_STICKY;
20
21 }
22
23 @Override
24 public void getData(Object[] obj) {

Chapter 4. Adding Sensors 42

25 if (processData()) {
26 for (Rule rule : retriveDriverRules("user-location")) {
27 Location event_location = new Location("");
28 String[] event_coords_split = rule.getCondition_values

().split("_");
29 event_location.setLatitude(Double.parseDouble(

event_coords_split[0]));
30 event_location.setLongitude(Double.parseDouble(

event_coords_split[1]));
31 Double radius = Double.parseDouble(event_coords_split

[2]);
32
33 float distance = event_location.distanceTo((Location)

obj[0]);
34 if (distance <= radius) {
35 sendTriggerMessage(rule.getId());
36 }
37 else
38 markAsFalse(rule.getId());
39 }
40 }
41 }
42
43 /**
44 * Handler that retrieves the user location from the GPS sensor.
45 * Each time the user position changes, the function getData() is

called.
46 */
47 private class MyLocationListener implements LocationListener {
48 public void onLocationChanged(Location location) {
49 getData(new Object[] { location });
50 }
51
52 public void onStatusChanged(String s, int i, Bundle b) {
53 Toast.makeText(GPS.this, "GPS status changed",
54 Toast.LENGTH_LONG).show();
55 }
56
57 public void onProviderDisabled(String s) {
58 Toast.makeText(GPS.this, "GPS turned off",
59 Toast.LENGTH_LONG).show();
60 }
61
62 public void onProviderEnabled(String s) {
63 Toast.makeText(GPS.this, "GPS turned on",
64 Toast.LENGTH_LONG).show();
65 }
66 }
67 }

Listing 4.3: Location service implementation

Once all the coding is finished, developers must deploy the sensor’s APK in order to
be downloaded and installed in Android devices. At this point, DETACH Mobile will
automatically detect the new sensor and it can now be used by end-users in their applica-

Chapter 4. Adding Sensors 43

tions.

4.3.2 Implemented Sensors

In the following section, we briefly describe the sensors available in our system.

Time

This sensor provides events based on time conditions. The events available are:

• Elapsed time since an application started: To control these events, we use a
Chronometer that starts when a DETACH application is launched. This event let
users define triggers based on the elapsed time since the application was started
(e.g. display Screen 3 when the elapsed time since the application started is 2
minutes).

• Elapsed time on current screen: Similarly to the previous type of events, we use
a Chronometer that starts each time a new screen is displayed to the user.

• Time of the day: These events use the Alarm Manager offered by Android OS
to create alarms at specific times of the day.

Location

This sensor is responsible for controlling the user’s geolocation using the internal GPS
sensor available in smartphones. It allows the specification of a set of activity zones to
control if a user enters or leaves one of these zones. Each zone is defined as a pair of
coordinates in the form of (latitude, longitude) and a radius. Events are triggered when a
user goes inside or leaves one of the locations defined.

To obtain the user’s position, we use a Location Provider which is a provider
offered by Android OS that periodically reports on the device’s geographical location.

EMG

The Shimmer EMG sensor (Figure 16) measures and records the electrical activity
associated with muscle contractions and can be used to analyse and measure the move-
ments’ biomechanics.

Chapter 4. Adding Sensors 44

Figure 16: Shimmer EMG sensor

This sensor is non-invasive (surface EMG) and therefore the activity it measures is a
representation of the activity of the whole muscle or group of muscles whose electrical
activity is detectable at the electrode site. The maximum signal ranges from ± 2.2 mV. A
sample output is shown in Figure 17.

Figure 17: Sample output of Shimmer EMG

At this point, our EMG sensor detects two gestures:

1. Muscle contraction: to detect a contraction we establish an activation threshold
value (e.g. values > 1.0). When the signal obtained goes above this threshold
we consider that the muscle was contracted. The threshold value can be adjusted
because the activity measured varies from muscle to muscle.

2. Muscle retraction: to detect a retraction, a contraction must happen before. Simi-
larly, we establish a reset threshold value (e.g. values < 0.5) and when the signal
goes below this threshold for a period of time, we consider that the user retracted
his/her muscle. This threshold can also be adjusted.

ECG

The Shimmer ECG sensor (Figure 18) records the pathway of electrical impulses
through the heart muscle.

Chapter 4. Adding Sensors 45

Figure 18: Shimmer ECG sensor

To calculate the heart rate in beats per minute (BPM) from an electrocardiogram (Fig-
ure 20), we use the R waves (which are part of the QRS complex, shown in Figure 19).

Figure 19: ECG waveform of a heart beat.

Figure 20: Sample electrocardiogram output of Shimmer ECG

Chapter 4. Adding Sensors 46

The heart rate (HR) in BPM is given by the following formula:

HR(BPM) = 60 ∗ (Nr − 1)/((S2 − S1/Fs)

where Fs denotes the sampling rate (in Hz) of the signal, S1 denotes the sample num-
ber of the first R wave detected, S2 denotes the sample number of the last R wave detected
and Nr is the total number of R waves between S1 and S2.

4.4 Adding sensors to the authoring environment

In this section we focus in explaining the required steps to add a new sensor in the
authoring environment to enable the creation of applications that use them.

As stated in Chapter 3, users can compose applications from a set of screen templates.
To integrate sensors in the composition of applications, we used a similar approach by
giving users the possibility to use sensor templates to control the workflow of an applica-
tion. The key difference is that sensors templates are used to control the behavior, while
screen templates are used to customize the appearance. This will be covered with more
detail in Chapter 5.

Adding a new sensor template in DETACH follows the same requirements as adding
a new screen. Each template is composed by three files:

(a) An image file.

(b) A XML with the specification of the sensor details.

(c) A JavaScript containing information about how DETACH runtime emulator can
simulate sensor values.

All of these files should have the name of the new sensor and should be added in the
sensors folder hosted in the server.

Image file

This file is used to represent the sensor in the sensors list and in the canvas. The file
must have the .png format and for a better representation the image should have 65 x 65
pixels.

XML file

This file contains the details about the sensor, such as the name and available triggers.
The format of the file is shown in Listing 4.4.

Chapter 4. Adding Sensors 47

1 <sensor>
2 <type>EMG</type>
3 <description>
4 Uses an EMG sensor to control the screens behaviour.
5 </description>
6 <triggers>
7 <trigger id=”1”>Muscle contraction
8 <label>Contraction</label>
9 <sensor>

10 <name>emg</name>
11 <driver>contraction</driver>
12 <stream>no-data</stream>
13 </sensor>
14 <deactivation>
15 <type>time</type>
16 <data>0</data>
17 </deactivation>
18 </trigger>
19 </triggers>
20 </sensor>

Listing 4.4: Sensor XML file structure

<type tag>

Sensor type to be shown below the sensor image.

<description tag>

Description displayed when the user mouse hover a sensor template in the sensors list.

<label tag>

This tag is used to display a label in the connections between screens. Each connection
has a label with the information of every trigger specified.

<sensor tag>

All the information contained inside the sensor tag is used to create the list of events
associated with each sensor. This information is appended to each condition defined by

Chapter 4. Adding Sensors 48

the end-user (while creating the transitions between each screen). Later, these events will
be used by the sensor’s Android module.

The name tag specifies to what sensor a specific event belongs and the driver tag
maps an action which will be coded in the Android module later.

As an example, the connection shown in Figure ?? produces the following event (List-
ing 4.6):

1 <event>
2 <source>1</source>
3 <target>2</target>
4 <condition id>0</condition id>
5 <condition data></condition data>
6 <allowback>true</allowback>
7 <sensor>
8 <name>emg</name>
9 <driver>contraction</driver>

10 <stream>no-data</stream>
11 </sensor>
12 <deactivation>
13 <type>time</type>
14 <data>10</data>
15 </deactivation>
16 </event>

Listing 4.5: Example of an Event representation in XML

In this example, if the user is viewing Screen 1 and contract his/her muscle, then
Screen 2 will be shown.

<deactivation tag>

This tag allows the programmer to deactivate an event for a specific amount of time.
If the data tag is equal to 0, then it will remain always active. In the example given above,
the event can only be fired once every ten seconds.

JavaScript file

The JavaScript file must contain all the necessary code to generate a graphical inter-
face in the runtime emulator which allows users to simulate sensor events (Figure 21 and
Figure 22). The runtime emulator is a tool included in DETACH’s authoring environ-
ment which allows users to quickly preview how applications would look like in a real

Chapter 4. Adding Sensors 49

smartphone. With the inclusion of sensors in the system, developers must provide a way
to simulate sensor data because sensors won’t be available in the web environment. The
updated runtime emulator will be presented in more detail in Section 5.4.

First, developers should add the function set[Sensor]Tab(sensorName)where
[Sensor] should be replaced with the name of the sensor. In this function, develop-
ers can use the function createTab(sensorName) which automatically creates the
HTML markup to generate a new tab in the emulator (Figure 21) with the name passed in
the argument sensorName.

Figure 21: Emulator tabs

Developers should also define the graphical interface with the HTML elements that
best suit the simulation of the events produced by the sensor. As a practical example let
us consider the Location sensor. There are several distinct ways to create an interface that
simulates the current geographical position of an user. On the one hand, we could create a
set of input fields where users could insert the latitude and longitude of a position (Figure
22 - left). On the other hand, we could display a map where users could click and create
a point which represents the current position (Figure 22 - right).

Figure 22: Alternative interfaces to simulate user’s current location

After creating the interface, for every trigger previously defined in the XML file, de-
velopers must add a function check[Sensor]Trigger[TriggerID]. These func-
tions are responsible to retrieve simulated data from the interface previously defined and

Chapter 4. Adding Sensors 50

perform the evaluation of each trigger. Listing 4.6 shows the implementation of the Lo-
cation sensor already available in DETACH.

1 function setLocationTab(sensor) {
2 var tab = createTab(sensor);
3 tab.append(’<div id="mapCanvas"></div>’);
4 }
5
6 function checkLocation1(eventConditionNumber, eventData, sourceScreen,

destScreen, connection_id) {
7 var data = eventData.split("_");
8 var lat = data[0];
9 var lon = data[1];

10 var rad = data[2];
11 var point = new google.maps.LatLng(lat, lon);
12 var currentPos = new google.maps.LatLng(marker.position.lat(), marker

.position.lng());
13 if (google.maps.geometry.spherical.computeDistanceBetween(currentPos,

point) <= rad){
14 setConditionAsTrue(sourceScreen, destScreen, connection_id,

eventConditionNumber);
15 }
16 }

Listing 4.6: Location sensor JavaScript file

4.5 Summary

Integrating sensors in DETACH required several modifications in the system’s core
components and in this chapter we presented an updated architecture of DETACH Mobile
- an Android runtime environment. The renewed architecture comprises: a) a set of Sen-
sor Processing Units responsible for collecting sensor’s data and trigger events within the
system; b) an Event Manager used to interpret events triggered; c) an Application View
which renders mobile application’s contents. This architecture uses an event-driven ap-
proach and ensures that: i) applications are capable of collecting and interpreting sensor
data; ii) applications are capable of using sensor data to trigger certain behaviours within
them.

Developers have an important role in creating and maintaining digital content that
supports the requirements imposed by domain specialists. In this chapter we presented
the necessary steps to add a sensor to both environments: runtime and authoring. Adding
a new sensor in the runtime environment encompasses the development of an Android
module that provides the mechanisms to communicate with a sensor and retrieve data.
In the authoring environment, developers must provide the UI elements which enable the
composition of applications that use the sensor.

Chapter 5

Authoring Sensors

Even though previous DETACH trials have been successful, we noticed that there
was still some space to improve the user experience of this tool. Based on the feedback
provided by users, we tried to improve several key interface elements and tasks, which are
described with more detail in this chapter. Some of these changes are motivated by the
fact that users are accustomed to some interaction patterns associated with their operating
system, such as using the context menu triggered by a right mouse button click to find
hidden functionalities and interactions. Besides, we also tried to automatize some tasks
(e.g. creating connections between screens) to avoid the repetition of the same action over
and over.

We also describe the necessary changes in the authoring environment in order to use
sensors in the composition of applications. These changes include the addition of new
sensor templates in the tool’s interface, giving users the ability to use sensors to control
the behavior of an application. The runtime emulator was also improved in order to
properly emulate applications that rely on sensors.

5.1 DETACH interface

Although some elements were modified, DETACH’s interface still remains divided in
three distinct areas:

(a) A top section which displays the available screens and sensors templates.

(b) A central canvas to which the templates can be dragged and organized.

(c) A configuration panel on the right side that enables the customization of the dif-
ferent elements in the canvas.

51

Chapter 5. Authoring Sensors 52

Figure 23 shows DETACH’s previous interface (on top) and DETACH’s newest interface
(on bottom).

(a) Initial interface

(b) Improved interface

Figure 23: Comparison between initial and improved DETACH’s interface

Chapter 5. Authoring Sensors 53

The most significant difference in the newest interface is the inclusion of sensors in the
authoring environment. The introduction of these elements are described in the Section
5.3.

5.2 Quality of life improvements

Feedback from domain specialists, who participated in previous DETACH trials, com-
mented that during the composition of applications they needed to repeat the same action
several times. This issue is mainly due to the creation of transitions from one screen to an-
other, and it’s particularly visible when a user composes a more complex application that
has a large number of screens. Another issue is that when a user creates a new connec-
tion, a configuration panel pops up (Figure 24) which interrupts the user’s workflow. This
panel is used to establish the conditions required to transit from one screen to another.
Inside the panel users have a visual indication of the source and target screens (Figure 24
- top right corner). Here, users can also delete the connection.

While more complex rules can be defined for some transitions, we noticed that most
of the transitions occur when a user presses the ”next” button. Therefore, to address
the previous problems we made some modifications in order to automatize and ease the
composition of an application.

Figure 24: Panel which allows the configuration of a new transition between screens

Chapter 5. Authoring Sensors 54

5.2.1 Creating connections

In the most recent version of DETACH, we changed the way transitions are defined.
Instead of selecting a source screen, hitting a button to create a new connection (Figure
25) and selecting a destination screen, now users can create transitions by right-clicking
the source screen (automatically entering in ”creation” mode) and selecting the destina-
tion screen. We still use the origin-destination connection strategy since it was the most
popular strategy adopted by users in previous participatory design sessions.

Figure 25: Button to create connections (old interface)

After the creation of a new transition, users aren’t presented anymore with the panel
which allows the configuration of a new transition (Figure 24). Instead, a default condition
is chosen (the ”next button” is the most common choice, as stated before) and users can
configure the transition details later if they want. To edit transitions, users can select them
in the canvas and use the panel located on the right side of the interface (this feature is
explained with more detail later in Section 5.2.2). In alternative, they can also double-
click in a transition (in the canvas) and the configuration panel described before (shown
in Figure 24) pops-up again.

Visual feedback

With the possibility to drag sensors templates to the canvas, it also became necessary
to add visual feedback during the connections’ creation to help users validate their actions.
Users can only create connections whose source is either a screen template or a sensor
template; the destination must always be a screen template (Figure 26 - left). Creating a
connection whose destination is a sensor template results in a invalid action (Figure 26 -
right).

Chapter 5. Authoring Sensors 55

(a) Valid connection (b) Invalid connection

Figure 26: Visual feedback when creating connections

AND/OR connections

Another substantial difference in connection establishment is related to the possibility
of establishing multiple connections from the same source to the same destination.

In the previous version it was possible to specify only one connection from the same
origin to the same destination. Then, in the connection’s configuration it was possible
to use a combination of conditions to trigger the connection with the use of the conjunc-
tion operator (AND) or disjunction operator (OR) (Figure 27). Using the AND operator
means that all conditions must be verified in order to move to the next screen. On the
contrary, using the OR operator means that at least one condition must be true to activate
the transition.

However, this approach limits the complexity of triggers that we may establish. For
instance, with this approach it’s impossible to specify a transition that matches [Condition
A and Condition B] OR [Condition C and Condition D].

Figure 27: AND/OR evaluation mode

Now, with the possibility to create multiple connections from the same source to the
same destination, each connection is seen as an alternative way to transit from one screen
to another (disjunction operator - OR). The conditions configured inside each connection
are verified with the conjunction operator (AND), meaning that all rules must be true in

Chapter 5. Authoring Sensors 56

order to transit from one screen to another. Figure 28 shows an example where there are
two distinct ways to go from one screen to another.

Figure 28: Alternative ways to transit from one screen to another

5.2.2 Editing connection details

In the previous interface, there was little visual feedback about the conditions that
trigger a transition between screens. Each transition drawn in the canvas had a label
containing the text ”Link N”, where N denoted the id of the transition (Figure 29 - left).
This information was rather useless, and if a user wanted to know what conditions trigger
a transition, the only option was to open the transition configuration panel to get that
information. The same happened if a user wanted to delete a transition.

The first step to improve this situation was the inclusion of a list of all conditions in
the label referred before (Figure 29 - right). Now, it becomes much easier to visually
identify the conditions that trigger the transition.

Figure 29: Information displayed in transition’s label

Chapter 5. Authoring Sensors 57

When a user selects a screen in the canvas, the configuration panel on the right side
displays all the customizations of the selected screen (Figure 30). However, selecting a
connection in the canvas used to pop up the transition configuration panel where users
could personalize the conditions.

Figure 30: Screen configuration panel

Once again, we found that sometimes this panel was very intrusive and therefore we
decided to follow the same pattern used in screen selection. This means that, now when
a user selects a transition in the canvas, instead of showing the configuration panel to the
user, the details about the transition are shown in the right side panel (Figure 31).

Figure 31: Transition details displayed in the right side panel

In this configuration section, users can add, edit and remove conditions. They can also

Chapter 5. Authoring Sensors 58

delete the transition. The full-screen configuration panel can still be accessed by double-
clicking the condition in the canvas, or by using a button that exists in the right side panel
(Figure 31 - bottom).

5.2.3 Deleting screens

In the most recent interface, we replaced the ”Delete” button (Figure 32) by a trash can
area (in the upper left corner of the canvas) where users can drag and drop screens (Figure
33 - left). This approach follows a common pattern among most of the operating systems
and therefore is a well known practice for many users. Like in the previous version of
DETACH, it’s still possible to drag and drop back to the screen templates area or use
keyboard shortcuts.

Figure 32: Button to delete selected screens

In addition, we also included a visual feedback indicating that a screen is being deleted
when dragged on top of the trash can (Figure 33 - right).

Figure 33: Trash can area, with visual feedback when deleting a screen

5.3 Using Sensors

A significant difference from the original interface comes from the possibility to use
sensors during the composition of an application. In the following sections we describe
several aspects encompassing the creation of applications with sensors, and how sensing
applications work. We also present the available sensors in our authoring environment

Chapter 5. Authoring Sensors 59

and an updated runtime emulator that can simulate the applications created based on fake
sensor data.

5.3.1 UI characteristics

We decided to follow the same approach used before with screen templates and there-
fore, we created a list of sensors templates (Figure 34). These templates are located in the
top section of the interface and can be dragged into the canvas.

Figure 34: Available sensors templates

When a sensor template is clicked or dragged into the canvas, that sensor is added to
the current application. Each sensor template features different triggers that can be used
to control the behavior of an application.

5.3.2 Connection types

Sensors can be used to:

(a) Control transitions between screens: users can add sensors to transitions, em-
powering that transition with additional triggers. For example, a Simple message
screen contains only one screen trigger called Next Button Press (Figure 35). If
we empower a transition with a Time sensor, then we can use three additional ex-
ternal triggers provided by the sensor (Figure 36). Adding sensors to transitions
allow the specification of conditions based on sensor data (e.g user location, user
heart rate).

Chapter 5. Authoring Sensors 60

Figure 35: Transition between screens (without the use of sensors) and corresponding
triggers

(b) Trigger an external event: Screens can be activated by external events (meaning
that this type of events doesn’t depend on a previous screen). This type of con-
nections changes the way applications are activated. Before, without sensors in
applications, users would have to manually start an application when they need to
run it. With sensors, we can configure applications to start when facing specific
context conditions, which is great to remove this burden from the user and allow
the development of proactive applications. Common scenarios where proactive
applications are helpful include:

• using a daily alarm in therapeutic applications to remind users to perform a
specific action;

• opening the application when the user enters or leaves a specific location
(e.g. hospital, home);

• activating an application when the user’s heart goes above a specific value
(Figure 37).

Figure 36: Transition between two screens using a sensor and corresponding triggers

Chapter 5. Authoring Sensors 61

Figure 37: External transition using an ECG sensor and corresponding trigger

5.3.3 Available Sensors

In this section, we briefly present the sensors that are available in the authoring envi-
ronment and can be used by non-expert programmers to compose applications.

Time

This sensor provides triggers based on time variables. Figure 38 shows the image
representation of this sensor in the canvas.

Figure 38: Time sensor representation

At this point, the following triggers are available:

• Elapsed time since the application started

• Elapsed time on screen

• Time of the day

Users can also apply a sub-condition of is atleast, is at most or is between values. An
example is shown in figure 39.

Figure 39: Time sensor condition trigger example

Chapter 5. Authoring Sensors 62

Location

The Location sensor provides one trigger based on the geographical location of the
user. Figure 40 shows the image representation of this sensor in the canvas.

Figure 40: Location sensor representation

Non-expert programmers can make a specific trigger to occur on one or more geo-
graphical areas. Each geographical area is defined as a pair of coordinates in the form of
(latitude, longitude) and a radius. However, to ease the creation of each area, users have
at their disposal a map where they can quickly search for a specific location and mark
each area.

This trigger is activated when the end-user walks inside of one of the specified areas.
An example is shown in figure 41.

Figure 41: Location sensor condition trigger example

ECG

At this point, the ECG features one trigger based on the heart rate of an individual.
Figure 42 shows the image representation of this sensor in the canvas.

Chapter 5. Authoring Sensors 63

Figure 42: ECG sensor representation

Similar to the Time sensor, users can also apply a sub-condition of is atleast, is at
most or is between. An example is shown in figure 43.

Figure 43: ECG sensor condition trigger example

EMG

This sensor uses triggers based on the electrical activity of the muscles. Figure 44
shows the image representation of this sensor in the canvas.

Figure 44: EMG sensor representation

So far, users can use the following triggers:

• Muscle contraction

• Muscle retraction (which occurs after a contraction)

Examples of conditions are shown in figure 45.

Figure 45: EMG sensor condition trigger examples

5.3.4 Scenario

As an example, we can imagine a scenario where João, a very successful Portuguese
researcher, is going to Google’s headquarters in London to have a technical interview.

Chapter 5. Authoring Sensors 64

Contrary to what would be expected, João does not feel anxious about the challenges that
he will need to solve in the interview. However, in order to travel to London he must face
one of his biggest fears: travel by plane.

Our goal is to create an application that helps João in his plane trip. In addition to
the sensors available in his smartphone (Time and Location), he also travels with an ECG
sensor to control his heart rate. This application will have the following behavior:

1. At any time, João can start this application manually. In this case, a screen ques-
tioning how is he feeling is shown. Depending on his answer, a different animation
is displayed.

2. When João arrives at the airport in Lisbon, he will be prompted with a set of screens,
containing a set of pre-flight questions.

3. Similarly, when he arrives in London, he must answer a set of post-flight questions.

4. During the flight, there may be situations where João starts to feel very anxious (his
heart rate goes above 140bpm). In order to tranquilize him, a screen with a relaxing
animation and his favorite music should be displayed for 6 minutes. After that, he
must answer a question about his current state.

Let’s start by accomplishing our first requirement. To do so, we will use an Icon
question screen to question him about his feelings. Each answer will transit to a different
Message with Image screen. Figure 46 shows João’s application at this point.

Figure 46: Scenario application - phase 1

Moving to 2), we need to add a Location sensor to track João’s location. When he
arrives at the airport in Lisbon, this sensor will automatically show the application to

Chapter 5. Authoring Sensors 65

João. After this, he will answer the pre-flight questions. Similarly, to achieve 3), we also
use a Location sensor to know when João safely arrive at the London airport. When he
does so, he will answer the post-flight questions. The implementation of these behaviors
is shown in Figure 47.

Figure 47: Scenario application - phase 2

Figure 48: Specifying a location to trigger an event when the user goes inside it

Finally, to finish our application we need to implement the 4th requirement. We use
an ECG sensor to control João’s heart rate, and configure an event to show a screen when
his heart rate goes above 140bpm. In this screen, we place a relaxing animation and

Chapter 5. Authoring Sensors 66

his favorite music playing. After 6 minutes, our Time sensor will automatically display
the next screen, which is responsible to ask João about his current feelings. Our final
application is shown in Figure 49.

Figure 49: Scenario final application

With this example, we created an application that has multiple entry points (manually
by intentionally activating the application at any time, automatically when João’ heart rate
is above 140bpm and when he arrives at the airports). We also use sensors to automati-
cally transit from one screen to another (using a Time sensor that changes screen after 6
minutes).

5.4 Run-Time Emulator

DETACH features a Run-Time emulator which allows users to quickly preview how
an application created would look in smartphones (Figure 50). This emulator allows a
person to test their application’s interface, content, styling and behaviour, and avoids the
need of a real smartphone while the user is composing the application.

Chapter 5. Authoring Sensors 67

Figure 50: DETACH application running in the DETACH Run-Time emulator

With the inclusion of sensors in the authoring tool a new problem emerged because
sensors (and consequently, sensor data) aren’t available in the web environment. Also,
since users can now control the behavior of an application with sensors, this emulator
would fail to reproduce the events offered by sensors (due to the lack of sensor data) and
therefore it becomes impossible to properly test the behavior of an application. To address
this problem, we decided to append a new section to the emulator, which is responsible
to emulate sensor data (e.g user’s geolocation, user’s heart rate). This data will be used
to verify the veracity of events controlled by each sensor. Figure 51 shows the Run-Time
emulator with the extra section.

Figure 51: DETACH run-time emulator with an extra section to simulate sensor’s events

Chapter 5. Authoring Sensors 68

In the above figure we can see that this section contains a set of tabs, each one cor-
responding to a sensor available in the tool. Each tab contains an interface to simulate
input data from a sensor. This interface is designed by the developers who are responsible
for adding new sensors to the system. Each interface can be different because each sensor
provides different data types. This also gives developers the flexibility to design interfaces
that best suit each sensor.

At the bottom of the extra section, we also appended a summary of all possible transi-
tions from the current screen. This summary let the users know to what screens they can
transit and how they can do it.

Finally, to properly simulate a state of a sensor, users must click the button ”Simulate
values”. This button uses the data inserted in the fields (of all tabs) to evaluate conditions
associated with each sensor. When a specific condition is true, the color changes from red
to green. This behavior can be seen in Figure 52.

Figure 52: DETACH run-time emulator after pressing the ”Simulate values” button

When all the conditions of a transition are true, the Run-Time emulator displays the
next screen.

5.4.1 Scenario

To explore the runtime emulator, let us resume João’s scenario presented before, and
use the application created in the previous section. If we simulate our application in
the emulator (Figure 53 - left), we are acting as if João would manually activate his ap-
plication (obviously, without context-data from sensors we can’t just start the emulator
automatically). In this case, we see a screen asking about João’s feelings. Based in our
answer, a new screen will be presented (Figure 53 - right).

Chapter 5. Authoring Sensors 69

Figure 53: Scenario application emulation (left), new screen shown after answering the
question (right)

To simulate when João arrives at the airports or when his heart rate is above 140bpm,
we can use the right panel of the emulator interface to input some data. If this application
was running in smartphones, the application would automatically open, but once again,
we can’t simulate this behavior here. However, using fake input data we can simulate a
similar behavior just to preview screen’s contents. Figure 54 emulates the screen present-
ing the pre-flight questions displayed to João when he arrives at the airport in Lisbon.

Figure 54: Screen activated (right) when João arrives at the airport (left)

With a similar approach, we can simulate João’s heart rate to preview the screen we
created when he gets too anxious during the flight (Figure 55). If we input a value of

Chapter 5. Authoring Sensors 70

160bpm (which is greater that 140bpm, that was the value we specified in the condition
when we composed our application), this screen will be displayed to João.

Figure 55: Screen activated (right) when João’s heart rate goes above 140bpm (left)

There is no point in presenting all the screens that we previously created in our appli-
cation. These examples are enough to demonstrate that even without having real context-
data in our authoring environment, we can improvise and fake some context-data in order
to preview the screens of our application.

5.5 Summary

In this chapter we presented several modifications in the authoring environment in
order to improve the user experience. Some of these modifications were motivated by
feedback given in previous DETACH trials while others were to provide the means to
create applications with sensors.

The quality of life improvements presented in this chapter were done to facilitate
some tasks, such as creating and editing transitions between screens. Some of these tasks
were repeated over and over and this issue was particularly visible when users created
more complex applications with a large set of screens. We also introduced general UI
improvements, such as visual feedback to help users validating their actions and replacing
UI buttons with common interaction patterns (e.g. drag and drop UI elements to a trash
can).

Regarding sensors, we added a set of sensor templates that can be used to control the
behavior of the applications. Sensor templates can be dragged into the canvas and can:

Chapter 5. Authoring Sensors 71

a) be attached to a screen transition to provide additional triggers; b) be used to trigger
external events allowing the development of proactive applications. So far, DETACH
features a Time sensor, a Location sensor and two physiological sensors: an ECG and an
EMG. Lastly, we improved the existing runtime emulator in order to support the emulation
of applications with sensors. Sensors aren’t available in the authoring environment and
therefore we extended the emulator UI interface to support the simulation of sensor events
based on fake input data.

Chapter 5. Authoring Sensors 72

Chapter 6

Evaluation

After all the development process, the system was submitted to an experiment. Since
the focus of this work is the inclusion of sensors in DETACH, our goal was to perceive
the complexity of adding new sensors to the system in order to ensure future updates.

This experiment focused mainly in the process of adding new sensors to the system
(as explained in Chapter 4). This process can be split in four different steps:

1. Create a new sensor template in DETACH (authoring tool).

2. Compose an application to test if the sensor template is working as expected.

3. Create and deploy an Android sensor module, that is responsible to communicate
with the sensor, collect data and process it.

4. Use DETACH Mobile to run the DETACH application created in step 1 in order to
evaluate if the outcome is working as expected.

In this session, subjects were asked to add an EMG (electromyography) sensor to
DETACH with one trigger (muscle contraction).

6.1 Participants

13 subjects (12 male, 1 female) were recruited, with ages ranging from 23 to 35 years
old (x = 27, SD = 3.4). All of them have at least a bachelor’s degree in one area of
Information Technologies and were comfortable with both Portuguese (native language)
and English (professional working proficiency) languages.

73

Chapter 6. Evaluation 74

6.2 Equipment and Tools

Subjects were handed a laptop (MacBook 13”) with an external mouse attached, pre-
viously loaded with the required development tools to create and add a new sensor in the
system. Even though some participants weren’t familiar with Apple’s OS, they easily got
used to the differences to the other operating systems (mainly keyboard shortcuts) and
therefore it didn’t affect their performance.

The tools used were:

• A text editor (Sublime Text) to create XML and JavaScript files.

• An IDE (Eclipse) that supports the development of Android applications, with the
Google ADT’s plugin installed.

Subjects also had access to a Shimmer’s EMG Sensor prepared with 2 electrodes that
were placed on the subject’s forearm as shown in Figure 56 and an Android smartphone
(Google Nexus 5). During the session, subjects also had a developer’s guide1 with exam-
ple code and general guidelines to help them finish the required tasks. Besides, partici-
pants had at their disposal a researcher to clarify on any questions regarding the equipment
or tools used.

Figure 56: EMG electrodes placement

6.3 Metrics

We chose the following metrics:

• Time to complete the integration process - total time required to conclude all the
necessary steps to add a new sensor.

1http://accessible-serv.lasige.di.fc.ul.pt/˜afjusto/detach/webtool/
howto.html

http://accessible-serv.lasige.di.fc.ul.pt/~afjusto/detach/webtool/howto.html
http://accessible-serv.lasige.di.fc.ul.pt/~afjusto/detach/webtool/howto.html

Chapter 6. Evaluation 75

• Number of unsuccessful attempts in template creation – this metric reflects the
number of unsuccessful attempts by each participant to create a new sensor tem-
plate in DETACH. Unsuccessful attempts were considered when the sensor’s trig-
ger created by the subject wasn’t working properly or the runtime emulator couldn’t
simulate the trigger defined.

• Number of unsuccessful attempts to create the Android sensor module – this
metric reflects the number of unsuccessful attempts by each participant to create a
new Android module which is responsible to collect and process the data. Unsuc-
cessful attempts were considered when the sensor deployed by the subject wasn’t
working as expected (e.g. couldn’t connect to the smartphone, wasn’t recognized
by DETACH Mobile, couldn’t trigger events).

6.4 Procedure

This experimental session was comprised by a pre-task and a set of tasks that included
all the necessary steps to add a new sensor to the system. Participants were asked to
accomplish the following tasks:

• Pre-task - a development guide describing the process in detail was handed to sub-
jects in order to give them a list of guidelines necessary to complete the tasks with
success. This guide also had some code examples and the description of some rel-
evant functions.

• Task 1 - in this task we asked the participants to create a new sensor template. Each
template is composed by three files:

– A XML with the specification of the sensor details.

– An image file.

– A JavaScript containing information about how DETACH runtime emulator
can simulate sensor values.

• Task 2 - in order to evaluate if the template was working, participants had to com-
pose a new application that used the trigger defined before in the XML file. This
application was used in Task 4 to evaluate if the whole system was working as ex-
pected. Subjects also used the runtime emulator to evaluate if the emulator was
properly simulating the trigger defined.

• Task 3 - here, subjects created a new Android project in Eclipse and set-up the
required library to develop a new Android module. After configurations were done,
they were asked to program the sensor’s driver that is responsible to use the data

Chapter 6. Evaluation 76

collected by the sensor and program the logic that should be applied to the data.
After this, they deployed the sensor’s APK to the phone.

• Task 4 - in this task, users launched DETACH Mobile (already installed in the
smartphone). Then, they synchronized the DETACH application created in Task 2
and started the EMG sensor, in order to start collecting data. Finally, they launched
the application and checked if the behaviour of the sensor was working as they
expected.

• Post-task - to conclude, participants were asked to give feedback about the session
in order to evaluate and improve the process.

6.5 Results

All participants were able to perform the proposed tasks in an average time of 84
minutes. As shown in Figure 57, creating a sensor template (task 1) and an Android
module (task 3) took in average 32 and 28 minutes, respectively. On a side note, a similar
evaluation (prior to this work) reported in [44] accessed that developers took in average
35 minutes to add a new screen template (instead of a sensor template) to DETACH.
Therefore, we can conclude that adding a screen or sensor template takes roughly the same
time (35 and 32 minutes, respectively). Our efforts to use similar approaches regarding the
addition of screens and sensors templates in the authoring environment are emphasized
by obtaining identical development times.

Even tough the applications created in Task 2 were very simple (two or three screens
and one or two sensors), subjects took an average of 16 minutes to complete this task.
Since most users didn’t explore the tool at the beginning of the trial (the majority started
to code the sensor template right away), this was the first time that they interacted with the
tool’s interface, which led to a bigger completion time. When subjects needed more that
one attempt to successfully add a sensor template, they needed to re-create their applica-
tions (after fixing the bugs which caused the unsuccessful attempt) and we could observe
that they started to compose applications much faster as soon as they felt familiarized
with the tool. Nevertheless, our primary goal was to access the complexity of adding new
sensors to the system and not the usability of the tool.

Chapter 6. Evaluation 77

Figure 57: Average time per task (task 1 to 4, respectively)

Adding a new template in DETACH (Task 1 & 2)

Most participants preferred to reuse the code snippets provided in the developer’s
guide, instead of creating the files from scratch. They easily understood the pieces of code
that required some modifications in order to match the experiment objectives. However,
this approach also led to a few basic mistakes (variables and functions misspelling) which
were the cause of some unsuccessful attempts, specially when filling the Javascript file.
All subjects filled the XML file without any problems or questions.

When filling the Javascript file, some subjects had some doubts about what they were
coding. This issue was due to the fact that all of the subjects started the coding pro-
cess without exploring the functionalities of DETACH, in particular the runtime emulator.
However, they didn’t have problems understanding how to code the required functions.

As we explained in Section 4.4, developers need to code and generate a graphical
interface in the runtime emulator which allows users to simulate sensor events. Some
subjects with less expertise in Javascript and HTML suggested that we should provide
a base implementation of this interface and let developers override this implementation
when necessary, arguing that this would reduce the learning curve and help people with
less expertise in these programming languages. This is an important observation which
will be used as a guideline in future improvements in order to ease this task.

As shown in Figure 58, the majority of the participants implemented the template after
one unsuccessful attempt.

Chapter 6. Evaluation 78

Figure 58: Frequency of unsuccessful attempts in template creation

Subjects didn’t check any code from other sensors (except the code that was available
in developer’s guide) and the feedback about adding a new template was positive (Figure
59).

Figure 59: Feedback about adding a new template in DETACH

Participants didn’t watch any tutorial before attempting to create an application. They
were able to understand by themselves how to add screens/sensors to the canvas and how
to delete them (by using the trash can area introduced in this work). However, initially
some of them tried to click in the trash can to delete the selected elements before un-
derstanding that it was supposed to drag and drop. When they needed to specify the
transitions to give the application some behavior, they weren’t able to understand how to
enter in creation mode. After explaining to them how to do so, the visual feedback helped
them understand what actions were valid or invalid. The majority attempted to delete
transitions the same way they did with screens/sensors but this feature is not implemented
yet. Therefore, they got confused and asked how they could perform such action. Overall,
all participants created their applications without wasting much time with doubts about
how to perform a specific action. As we stated before, when they needed to re-create their

Chapter 6. Evaluation 79

applications after unsuccessful attempts, they progressively started to create applications
much faster.

Adding a new sensor module in Android (Task 3 & 4)

Once again, participants didn’t check any code from others sensors and preferred to
reuse the code provided in the developer’s guide. Overall, we felt that subjects had less
problems to create the module in Android when compared to the template creation. In the
opinion of some of the participants, the development of this module was more straightfor-
ward. However, this may be explained by the fact that some of the developers are more
proficient in Android programming than web programming (specially programming in
Javascript).

Project and environment configurations were perfectly handled by everyone. When
filling the sensor’s driver, a few participants took some time to understand the relation be-
tween the trigger previously specified in the XML file (task 1) and how they would map it
in order to fire an event when the muscle is contracted. This was the most common mis-
take made by 7 participants (Figure 60) who needed more than 1 attempt to successfully
finish this task and was mainly due to the lack of information in the developer’s guide.

Also, some users suggested that would be better if they had more detailed information
about each function (in particular the processData() function, which confused some
users that didn’t understand if they should implement this function, or not).

Figure 60: Frequency of unsuccessful attempts when developing the Android module

Overall, the feedback about these tasks was also positive (Figure 61).

Chapter 6. Evaluation 80

Figure 61: Feedback about adding a new sensor module in Android

6.6 Discussion

This experiment allowed us to perceive the complexity of adding new sensors to the
system, which was our main goal. Before submitting this work to a proper usability test
with non-expert users, it was important to validate if developers could still contribute with
their expertise to extend the set of available sensors in DETACH.

Development perspective

Although we felt that creating a sensor module in Android (task 3) was easier than
adding adding a sensor template (task 1), the number of participants who completed this
task after zero or one unsuccessful attempt was slightly lower. This is most likely related
to the fact that adding a sensor module in Android has more specific details which led to
some small typos.

Regarding the process of development, some participants suggested some improve-
ments that will be taken in account in future work. Those improvements are:

• Provide generic graphical interfaces - As we already stated, while filling the
Javascript file, some participants pointed out that we should provide a generic im-
plementation of the graphical interface used to input fake data in the runtime emu-
lator in order to allow the simulation of sensor events.

• Encapsulate to simplify the development process - When developing the sensor’s
drive in Android, one participant said that were a few lines of code that use some
less known Java functions that could be abstracted in a higher-level function in
order to avoid confusion.

Chapter 6. Evaluation 81

Usability perspective

Even though our main goal was not the evaluation of the usability of the tool after
the introduction of sensors in the authoring environment, whenever developers need to
add new sensors they must necessarily test if the sensor is working properly. To do so,
they need to compose applications and test them with the runtime emulator and therefore,
we took this opportunity to take some conclusions about some of the quality of time
improvements that we made in this work. In general, we believe that most of the changes
contributed to a smoother development of applications. With this evaluation and feedback
given, we were able to perceive and conclude the following:

• Deleting screens/sensors feels more natural using drag and drop to a trash can in-
stead of hitting a delete button.

• Most users missed the ability to drag and drop connections to delete them (at the
moment, drag and drop to delete only works with screens/sensors);

• Visual feedback validation when creating transitions proved to be useful to avoid
invalid actions;

• After entering in creation mode (right-click in a screen/sensor template), at first
almost every participant tried to choose the target screen by right-clicking again
instead of using a left-click. Since they entered in creation mode with a right-click,
they right-clicked a few times in the target screen before asking if it was working
as expected or something was wrong. This behavior should feel more natural since
most of the operating systems and tools have hidden right-click context menus and
options are usually selected with a left-click. Future evaluations with the ability
to select a target screen with either a left or right click may provide additional
information about this interaction pattern.

• Some users felt uncomfortable with the current approach used to create connections
with sensors. They said it makes sense when creating connections to trigger external
events (Figure 62 - left) but they would prefer an alternative way to use sensors to
control transitions between screens (Figure 62 - right).

Chapter 6. Evaluation 82

Figure 62: External trigger and a transition between screens based on a sensor trigger,
respectively

A suggested alternative was the ability to drag a sensor template over a connection’s
label (instead of creating a connection between a sensor template and a label) in
order to empower the connection with additional sensor triggers. A sketch of this
suggestion is shown in Figure 63.

Figure 63: Sketch of an alternative way to use sensors in transitions

• A participant also suggested that when right-clicking in a screen/sensor template,

Chapter 6. Evaluation 83

we should display a context menu with several options (e.g. create transition, edit
screen/sensor, delete screen/sensor) instead of automatically entering in creation
mode. A representative sketch of this behavior is shown in Figure 64.

Figure 64: Context menu after right-clicking in a screen/sensor template

Chapter 6. Evaluation 84

Chapter 7

Conclusions

Nowadays mobile devices are our daily companions which follow us anywhere. They
proved to be a great opportunity and an important tool to create and improve context-
aware systems which have been a central research topic in ubiquitous computing for the
past few years. While some of this research has focused on developing frameworks and
toolkits to support programmers in building this type of applications, there is still a lack
of support for end-users to create context-aware applications. Usually, developers lack
the domain knowledge that domain specialists cannot easily convey when establishing
requirements for new applications. In addition, common development cycles are slow
compared to how fast applications’ requirements change.

With this dissertation, we proposed an ecosystem that enables non-programmers to
build, deploy and run context-aware mobile applications without the need to write any
programming code. Our objective was to join the efforts of different stakeholders to reach
a common goal: provide better and richer applications to meet the requirements of a par-
ticular user/scenario. With that said, we want developers to provide the mechanisms and
tools that enable non-experts users to create such applications. This ecosystem features
two different tools:

1. DETACH, a web-authoring tool that uses a visual programming approach to let
users customize the applications’ look and feel. In addition, users can also use a
set of sensors to create context-aware applications. This is achieved by letting users
define a set of contextual events (that rely on sensor’s context data) which are later
triggered when the user is in presence of such contexts. Sensor events can be used to
control the flow of applications (move from one screen to another) or to proactively
activate applications when specific contexts are identified.

2. DETACH Mobile, an Android runtime environment that loads the developed ap-
plications and also provides the mechanisms to collect context data from sensors,
which is later used to trigger events within mobile applications. This runtime en-

85

Chapter 7. Conclusions 86

vironment follows an event-driven approach in order to support the dynamic nature
of context-aware applications.

In Chapter 3 we analysed the state of DETACH prior to this work. This tool was
already developed but it didn’t support the creation of context-aware applications. In
order to perceive the requirements of our work, we needed to understand the constraints
regarding the integration of sensors in DETACH. With this analysis we found several
limitations in both environments: runtime and authoring.

In Chapter 4 we covered the design of DETACH Mobile. This runtime environment
was re-designed in order to support the dynamics of context-aware applications. In addi-
tion, we provided a detailed explanation about how developers can ensure future updates
by adding new sensors to the runtime and authoring environment.

In Chapter 5 we changed our focus to the authoring environment. Feedback from
DETACH’s trials (prior to this work) motivated some quality of life changes in the tool’s
interface and tasks. Those changes aimed to enhance the usability of this tool, in order to
ease the authoring process. In addition, we also presented the necessary changes regarding
the integration of sensors in the composition of applications.

Finally, in Chapter 6 we conducted an evaluation to access the complexity of adding
new sensors to our system. Ensuring that developers can extend and improve our system
with new components is a major requirement of our work. Without this, our authoring en-
vironment would fail since different domains use different context scenarios and sensors.

7.1 Future work

Even though our goals were achieved, there is still space to improve our system in
different ways. From a perspective of usability, it’s important to submit the authoring
environment to a trial with non-expert users in order to perceive if the quality of life
changes made in the authoring positively help users. In addition, we also need to access
if non-expert users are able to compose applications with sensors, which is the major goal
of our work. There are other possible improvements/additions, such as:

• Validation of transition’s conditions - at this point, when creating transitions be-
tween screens, there isn’t any kind of validation about conditions that may already
be in use or may be in conflict with others. This could be a major improvement to
help non-experts users avoid creating transitions that are semantically incorrect.

• Use sensor’s context-data in a passive way - Since we are constantly collecting
context information, we could create new types of screen templates that display

Chapter 7. Conclusions 87

such information. For example, we could create a screen template to display an
ECG graph with the user’s heart activity.

• Prioritization of certain events - Even though the architecture of our runtime envi-
ronment is ready to support the prioritization of specific events, at the moment there
isn’t a way to specify events with a higher level of priority.

• Add actuators and similar devices - Integrating this kind of devices would follow
similar requirements of adding sensors, with the difference that they would output
(e.g. vibrate) actions.

Bibliography

[1] Akio Sashima, Takeshi Ikeda, and Koichi Kurumatani. Toward mobile sensor fusion
platform for context-aware services. In Vernon S. Somerset, editor, Intelligent and
Biosensors. InTech, 2010.

[2] M. Milosevic, M. T. Shrove, and E. Jovanov. Applications of smartphones for ubiq-
uitous health monitoring and wellbeing management. In Journal of Information
Technology and Application (JITA), 2011.

[3] S. Consolvo et al. Activity sensing in the wild: A field trial of ubifit garden. In Proc.
26th Annual ACM SIGCHI Conf. Human Factors Comp. Sys., pages 1797–1806,
2008.

[4] E. Miluzzo et al. Sensing meets mobile social net- works: The design, implemen-
tation, and evaluation of the cenceme application. In Proc. 6th ACM SenSys, pages
337–50, 2008.

[5] M. Mun et al. Peir, the personal environmental impact report, as a platform for
participatory sensing systems research. In Proc. 7th ACM MobiSys, pages 55–68,
2009.

[6] A. Thiagarajan et al. Vtrack: Accurate, energy-aware traffic delay estimation using
mobile phones. In Proc. 7th ACM SenSys, Berkeley, CA, Nov. 2009.

[7] N.D. Lane, E. Miluzzo, D. Peebles H. Lu, T. Choudhury, and A.T. Campbell. A
survey of mobile phone sensing. IEEE Comm. Magazine, 48(9):140–150, Sept.
2010.

[8] Irhythm. http://www.irhythmtech.com.

[9] Corventis. http://www.corventis.com/US.

[10] Sensium toumaz. http://www.toumaz.com.

[11] B.Falchuk, A.Misra, and S.Loeb. Server-assisted context-dependent pervasive well-
ness monitoring. In Proc. ICST International Workshop on Wireless Pervasive
Healthcare, London, 2009.

89

http://www.irhythmtech.com
http://www.corventis.com/US
http://www.toumaz.com

Bibliography 90

[12] Korel B T. and Koo SGM. Addressing context awareness techniques in body sensor
networks. In 21st International Conference on Advanced Information Networking
and Applications Workshops, pages 798–803, Niagara Falls, Ontario, 2007.

[13] O. Etzion, Y. Magid, E. Rabinovich, I. Skarbovsky, and N. Zolotorevsky. Context
aware computing and its utilization in event-based systems. In DEBS, 2010.

[14] Context delivery architecture: Putting soa in context. http://www.gartner.
com/DisplayDocument?id=535313.

[15] K. Heverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Developing a
context-aware electronic tourist guide: some issues and experiences. In Proc. CHI,
The Hague, Netherlands, 2000.

[16] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collaborative approach
to in-place sensor calibration. In Proceedings of IPSN’03, 2003.

[17] E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors. In Proceedings of
ACM WSNA’03, 2003.

[18] G. Adomavicius and A Tuzhilin. Personalisation technologies: A process-oriented
perspective. Communications of the ACM, 48(10):81–90, 2005.

[19] B. Y. Lim, A. K. Dey, and D Avrahami. Why and why not explanations improve
the intelligibility of context aware intelligent systems. In Proceedings of CHI 2009-
Studying Intelligent Systems, pages 32–41, Boston, MA, USA, 2009.

[20] Michael Beigl, Albert Krohn, Tobias Zimmer, and Christian Decker. Typical sen-
sors needed in ubiquitous and pervasive computing. In Proceedings of the First
International Workshop On Networked Sensing Systems (ISSN ’04), pages 153–158,
2004.

[21] T. Choudhury et al. The mobile sensing platform: An embedded system for activity
recognition. IEEE Pervasive Comp, 2(7):32–41, 2008.

[22] M.-Z. Poh et al. Heartphones: Sensor earphones and mobile application for non-
obtrusive health monitoring. In IEEE Int’l. Symp. Wearable Comp., pages 153–54,
2009.

[23] A. T. Campbell et al. Neurophone: Brain-mobile phone interface using a wireless
eeg headset. In Proc. 2nd ACM SIGCOMM Wksp. Networking, Sys., and Apps. on
Mobile Handhelds, New Delhi, India.

[24] Y. Engel and O. Etzion. Towards proactive event-driven computing. In Proceedings
of the 5th ACM international conference on Distributed event- based system, pages
125–136, 2011.

http://www.gartner.com/DisplayDocument?id=535313
http://www.gartner.com/DisplayDocument?id=535313

Bibliography 91

[25] A. Robinson, J. Levis, and G. Bennett. Informs news: Informs to officially join
analytics movement. INFORMS, OR/MS Today, 37(5), 2010.

[26] D.C. Luckham. The power of events. Addison-Wesley, 2002.

[27] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications, 2010.

[28] D. Husemann, C. Narayanaswami, and M. Nidd. Personal mobile hub. In ISWC
’04: Proceedings of the Eighth International Symposium on Wearable Computers
(ISWC’04), pages 85–91, Washington, DC, USA, 2004. IEEE Computer Society.

[29] E. Lubrin, E. Lawrence, and K. F. Navarro. Motecare: an adaptive smart ban health
monitoring system. In BioMed’06: Proceedings of the 24th IASTED international
conference on Biomedical engineering, pages 60–67, Anaheim, CA, USA, 2006.
ACTA Press.

[30] M. Blount et al. Remote health-care monitoring using personal care connect. IBM
Systems Journal, 46(1):95–113, 2007.

[31] Mohomed I., Misra A., Ebling M., and Jerome W. Contextaware and personalized
event filtering for low-overhead continuous remote health monitoring. In Interna-
tional Symposium on a World of Wireless, Mobile and Multimedia Networks, 2008.

[32] Margaret Burnett. What is end-user software engineering and why does it matter?
In Proceedings of the 2nd International Symposium on End- User Development (IS-
EUD ’09), pages 15–18, 2009.

[33] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The scratch programming language and environment. ACM Transactions on
Computing Education (TOCE), 10(4):1–15, November 2010.

[34] Wolfgang Slany. Catroid: a mobile visual programming system for children. In Pro-
ceedings of the 11th International Conference on Interaction Design and Children,
Bremen, Germany, June 2012.

[35] Robert Sheehan, Ducksan Cho, and Joon Ha Park. Improving on a physics-based
programming system for children. In Proceedings of the 11th International Confer-
ence on Interaction Design and Children (IDC ’12), pages 312–315, New York, NY,
USA, 2012.

[36] A. Dey, T. Sohn, S. Streng, and J Kodama. icap: Interactive prototyping of context-
aware applications. Pervasive Computing, 3968:254–271, 2006.

[37] Y. Li, J.I. Hong, and J.A Landay. Topiary: a tool for prototyping location-enhanced
applications. In Proceedings of the 17th Annual ACM symposium on User Interface
Software and Technology, pages 217–226, 2004.

Bibliography 92

[38] A.K. et al Dey. a cappella: Programming by demonstration of context-aware appli-
cations. In CHI, pages 33–40, 2004.

[39] Valentim Realinho, Teresa Romão, Fernando Birra, and A. Eduardo Dias. Rapid
development of mobile context-aware applications with ivo. In Proceedings of the
8th International Conference on Advances in Computer Entertainment Technology,
ACE ’11, pages 91:1–91:2, New York, NY, USA, 2011. ACM.

[40] Valentim Realinho, Teresa Romão, Fernando Birra, and A. Eduardo Dias. Building
mobile context-aware applications for leisure and entertainment. In Proceedings of
the 8th International Conference on Advances in Computer Entertainment Technol-
ogy, ACE ’11, pages 29:1–29:8, New York, NY, USA, 2011. ACM.

[41] Bjorn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. Author-
ing sensor-based interactions by demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, San Jose, California, USA, 2007.

[42] Filipe Fernandes, Luı́s Duarte, and Luı́s Carriço. Flow specification patterns of
end-user programmers: Lessons learnt from a health mobile application authoring
environment. In Human-Computer Interaction - INTERACT 2013, 14th IFIP TC13
International Conference, Cape Town, South Africa, 2013.

[43] Filipe Fernandes, Luı́s Duarte, and Luı́s Carriço. Detach, criação de aplicações
móveis para todos. In 5a Conferência Nacional em Interação Pessoa-Máquina
(Interacção’13), Portugal, 2013.

[44] Filipe Fernandes. Detach: Design tool for smartphone application composition.
Master’s thesis, Universidade de Lisboa - Faculdade de Ciências, 2013.

[45] Dartmouth College. Mobile sensing group. http://sensorlab.cs.

dartmouth.edu.

[46] Philip Robinson and Michael Beigl. Trust context spaces: An infrastructure for
pervasive security in context-aware environments. In Conference on Security in
Pervasive Computing, 2003.

[47] A.K. Dey, D. Salber, and G.D Abowd. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human Computer
Interaction, 16(2):97–166, 2001.

http://sensorlab.cs.dartmouth.edu
http://sensorlab.cs.dartmouth.edu

	Figures List
	Tables List
	Listings
	Introduction
	Motivation
	Goals
	Contributions
	Planning
	Document organization

	Related work
	Context-aware computing
	Sensors

	Sensor Runtime environments
	Context in event processing modelling
	Event filtering approaches

	Sensor Programming environments
	Context-aware prototyping environments
	DETACH

	Summary

	DETACH Analysis
	System architecture
	DETACH Authoring Tool
	Applications' anatomy
	Interface
	Screen templates
	Screen triggers
	Runtime Emulator

	DETACH Mobile
	Constraints in sensor integration
	Runtime environment
	Authoring environment

	Summary

	Adding Sensors
	Architecture
	DETACH Mobile
	Adding sensors to the runtime environment
	Adding a new sensor
	Implemented Sensors

	Adding sensors to the authoring environment
	Summary

	Authoring Sensors
	DETACH interface
	Quality of life improvements
	Creating connections
	Editing connection details
	Deleting screens

	Using Sensors
	UI characteristics
	Connection types
	Available Sensors
	Scenario

	Run-Time Emulator
	Scenario

	Summary

	Evaluation
	Participants
	Equipment and Tools
	Metrics
	Procedure
	Results
	Discussion

	Conclusions
	Future work

	Bibliography

